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ABSTRACT

This study investigated patterns in the development of computa-
tional thinking and programming expertise in the context of the
Exploring Computer Science (ECS) program, a high school introduc-
tory CS course and professional development program designed to
foster deep engagement through equitable inquiry around CS con-
cepts. Prior research on programming expertise has identified three
general areas of development Ð program comprehension, program
planning, and program generation. The pedagogical practices in
ECS are consistent with problem solving approaches that support
the development of programming expertise. The study took place
in a large urban district during the 2016ś17 school year with 28 ECS
teachers and 1,931 students. A validated external assessment was
used to measure the development of programming expertise. The re-
sults indicate that there were medium-sized, statistically significant
increases from pretest to posttest, and there were no statistically
significant differences by gender or race/ethnicity. After controlling
for prior academic achievement, performance in the ECS course
correlated with performance on the posttest. With respect to spe-
cific programming concepts, the results also provide evidence on
the progression of the development of programming expertise. Stu-
dents seem to develop comprehension and planning expertise prior
to expertise in program generation. In addition, students seem to
develop expertise with concrete tasks prior to abstract tasks.
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1 INTRODUCTION

łOur economy is rapidly shifting, and both educators and business

leaders are increasingly recognizing that computer science (CS) is

a ‘new basic’ skill necessary for economic opportunity and social

mobility.ž Ð White House Blog [24]
With President Obama’s announcement of the Computer Science

For All Initiative in 2016, there has been a surge in the number of
districts that are planning for or newly implementing computer
science (CS) offerings at their schools. Since the dawn of themodern,
standards-based era [19], this is the first time that a new subject area
is gaining prominence as a core subject. As seen in theWhite House
blog entry, much of the rhetoric around the Computer Science for
All initiative has focused on broadening participation by increasing
the number of women and minorities who pursue computer science
as a career. Broadening participation is an important focus given the
dismal levels of participation of women and minorities in computer
science. However, without attending to the structural barriers to
participation [14], programs that propagate traditional approaches



to CS education are unlikely to contribute to the goal of broadening
participation.

In a review of computing research, Sheard and colleagues [23]
identified a variety of strategies with empirical support on their
effectiveness at improving computing outcomes. In particular, they
highlight the explicit teaching of planning strategies, pair pro-
gramming, and collaborative learning. In addition, Robins and col-
leagues [22] summarize empirical support that a problem solving
approach is an effective means to develop programming expertise.
On the other hand, Robins and colleagues have also documented
that despite this evidence, some CS educators believe that such
problem-solving, collaborative approaches to CS can ‘dumb down’
the curriculum.

Pears and colleagues [20] make a plea for more large-scale, sys-
tematic research that examines the relationship between teaching
techniques and student outcomes. In order to support generaliza-
tions across initiatives, it is important for researchers to be explicit
about the pedagogical techniques being used and to use a common
framework for characterizing student outcomes. In this study, we
examine two research questions related to the correlation between
a particular problem-solving approach to teaching high school com-
puter science and the development of programming expertise. (a) To
what extent does student performance in the Exploring Computer
Science course correlate with performance on the end of course
exam? (b) Which aspects of programming expertise are the most
difficult for students to develop? In the next section, we discuss a
prominent high school computer science curriculum that explicitly
incorporates the aforementioned empirically supported pedagogies.

1.1 Exploring Computer Science

The Exploring Computer Science (ECS) curriculum and profes-
sional development program was developed at the University of
California, Los Angeles and the University of Oregon, with the
goal of contributing to broadened participation of women and mi-
norities and increased equity in the field of computer science [14].
Specifically, the ECS curriculum seeks to accomplish this goal of
broadening participation by introducing the field of computer sci-
ence and computational practices in a way that makes the field
relevant, engaging, and stimulating for a diverse population of
students. The ECS curriculum is composed of activities that are
designed to engage students in computer science inquiry around
meaningful problems; the ECS professional development program
is designed to prepare teachers to implement these inquiry-based
activities while also guiding teachers in building a classroom culture
that’s culturally relevant and inclusive of all students.

When computer science is not taught for deep engagement, but
rather as an abstract academic subject, it privileges access to mostly
Caucasian, male students [14]. To play an integral role in such
classrooms, students must master abstract programming for pro-
gramming’s sake. In contrast, the ECS curriculum is designed to
engender deep engagement with important computer science con-
cepts using important features of communities in which youths
participate outside the classroom. General technology use outside
of school by youths of all races and genders tends to revolve around
making social connections and working on practical problems [12].

As suggested by the research reviews cited above, reorienting com-
puter science instruction to focus on problem-solving experiences
that are meaningful to students has the potential to increase access
to computer science content. In addition, collaborative learning and
paired programming techniques create opportunities for students
to learn from each other.

At the core of ECS are a set of high-leverage teaching practices [9]
that support the three interwoven teaching strands of ECS: equity,
inquiry, and CS concepts. The following high-leverage teaching
practices enable students to equitably participate in student-led
inquiry around important CS concepts: (a) provide a meaningful
context for learning; (b) scaffold the development of CS concepts;
(c) facilitate peer inquiry and collaboration; and (d) encourage mul-
tiple forms of expression [7, pp. 7ś8]. Inclusiveness is supported
by focusing on ideas that are meaningful to students, and activities
in the curriculum provide space for teachers to incorporate stu-
dents’ background and culture. In addition, many activities focus
on real-life issues in the community; for example, students can
make games that communicate messages about healthy eating or
about the plight of undocumented students [15]. Resting on equity
are inquiry-based activities in which students are łexpected and
encouraged to help define the initial conditions of problems, utilize
their prior knowledge, work collaboratively, make claims using
their own words, and develop multiple representations of particular
solutionsž [15]. By engaging students in equitable inquiry through
the first two strands, students gain access to the domain content of
computer science, the third strand.

1.2 Computer Science Content in ECS

For this study, we will use the context of ECS to investigate whether
the ECS problem-solving approach correlates with the development
of programming expertise. We will also contribute to the literature
by engaging in a large-scale, systematic study of ECS implementa-
tion. We focused on the development of programming expertise in
the context of students in the Chicago Public Schools (CPS) who
are participating in an ECS course. CPS is the first school district in
the United States to enact computer science as a high school gradu-
ation requirement. ECS is a primary course through which students
fulfill the requirement. This research has been conducted in the
context of the Chicago Alliance For Equity in Computer Science
(CAFÉCS), which is an ongoing researcher-practitioner partnership
between CPS, The Learning Partnership, DePaul University, Loyola
University, and the University of Illinois at Chicago [3, 4]. (Some
important prior research results produced by the alliance report
on the impact of the ECS course on students’ attitudes towards
computer science [2], students’ choices about future CS course-
work [16], and students’ development of computational thinking
practices [17].)

As recommended by the research review of Robins and col-
leagues [22], the ECS course first introduces students to general
problem solving that is abstracted from any specific language. In
the subsequent unit on programming, the ECS sequence gener-
ally follows the ‘chain of cognitive accomplishments,’ involving
three general phases as described by Linn and Dalbey [13]. (a) Stu-
dents first develop comprehension of specific language features by
studying their usage within specific case examples. For example,



to investigate the concept of conditionals, the teacher engages stu-
dents in a game of asking them to stand up if something is true,
such as if a student is a girl AND wearing a blue shirt. Students
are able to develop an appreciation of the feature of a language
before engaging in the syntax of a language. (b) Next, the students
focus on planning solutions through problem solving scenarios.
For example, students apply their knowledge of conditionals to
develop a Rock, Paper, Scissors game. They use pseudocode to plan
out the possible winning scenarios based on combinations of rock,
paper, and scissors. (c) Lastly, the programming unit culminates
in students generating code to develop a programming project of
their own choosing. The students define the problem, plan out a
solution, and then use the features of the programming language
to implement their solution.

The development of expertise in comprehending programs, plan-
ning, and generation of programs has been studied in the liter-
ature [22]. The bulk of this research focused on comprehension
of programs Ð examining the extent to which students demon-
strate understanding of an existing program. Research on planning
highlights the need for students to organize their thinking prior to
translating program specifications into program code. Less research
has been done on program generation in which students create part
of or a whole program to meet a set of criteria.

These łcognitive aspects of children and novices learning com-
putational concepts were studied extensively in the 1980sž [10, p.
42] but have received less attention since then [10]. Research on
planning has shown that students generally spend very little time
planning, which suggests a need to focus explicitly on supporting
students’ planning efforts. Students are able to reason about surface
features of a problem, but have difficulty envisioning the unknowns
of given problems. In the area of program generation, research has
shown that students have particular difficulty with conditionals
and loops [18, 21]. In general, educators need to be realistic about
what can be accomplished within an introductory CS course.

2 MEASUREMENT OF PROGRAMMING
EXPERTISE

To measure the development of programming expertise, we used
assessments that were aligned to the computational thinking con-
cepts in ECS [6]. The assessments were developed and field tested
by SRI International over two years using Evidence-Centered De-
sign (ECD), an assessment methodology that is especially advan-
tageous when the knowledge and skills to be measured involve
complex, multistep performances. The ECD process involved (1)
working with various stakeholders to identify the important com-
puter science skills to measure, (2) mapping those skills to a model
of evidence that can support inferences about those skills, and (3)
developing tasks that elicit that evidence. The assessments were
field tested with 941 students over two years [6]. Separate pretest
and posttest forms were created. The pretest contains six tasks
that measure students’ initial understanding of CS concepts and
computational thinking. Across the six tasks there are a total of 19
subtasks that are scored independently. The posttest contains five
tasks, two of which were on the pretest and three of which were
different. The two common tasks were used to equate the two forms
and allow for measurement of growth from pretest to posttest. SRI

developed scoring rubrics with student work examples for each
of the tasks. Across all of the pretest and posttest tasks, there are
a total of 30 question prompts that are each scored individually.
The assessments and scoring rubrics can be accessed from the SRI
assessment website [11]

A subset of the tasks were used for this analysis to examine
the development of student expertise in comprehension, planning,
and generation. In keeping with the recommendation of being
realistic about the expectations for students, the assessment tasks
targeted narrow aspects of each ability that were aligned with the
expectations of the ECS curriculum.

Within program comprehension, there were two tasks that were
assessed. First students were provided with a written algorithm.
They were given an input value and asked to determine what the
program output would be. Next students were given a scenario in
which three drivers with cars needed to pick up 12 passengers for
a concert and no more than five people could be in one car. Given
an approach to efficiently picking up the passengers, students need
to determine whether the algorithm will meet the criteria.

Under planning, students used the same driver and passenger
scenario. Theywere asked to determine which inputs were provided
in the scenario and which important inputs were not provided in
the scenario. In a separate task, students were asked to provide
requirements for a program that would help a teacher track student
information.

For program generation, students were provided with an algo-
rithm that is abstracted from any given language. They are then
asked to decide which step in the algorithm would use a Scratch
conditional block and which step would use a Repeat-Until Loop.
Based on the chain of cognitive accomplishments cited above, we
hypothesized that comprehension would be the least complex, fol-
lowed by planning and then generation. As discussed below, this
hypothesis about levels of complexity of the tasks was tested using
the Rasch scaling method to estimate the relative level of difficulty
of each set of tasks.

3 METHODS

This study was undertaken by CAFÉCS in the context of the im-
plementation of ECS in CPS. There were 90 teachers who taught
an ECS course during the 2016ś17 school year to 6,425 students.
The school district invited all of the teachers to administer the
pretests at the beginning of the school year and the posttests at the
end of the school year. There were 28 teachers with 1,931 students
who administered both the pretests and posttests to their students.
These teachers and their students were included in the study. The
remaining ECS teachers were dropped from the study since they
provided only partial data or no data.

Table 1 shows the demographic characteristics of the students
who were included in the study, and, for comparison, the demo-
graphic characteristics of the remaining ECS students as well as
the total district high school population. Statistical comparisons of
each demographic characteristic were conducted between the ECS
research participants and ECS non-participants. Asterisks indicate
those demographic characteristics in which there was a statisti-
cally significant difference between the research participants and
non-participants.



Table 1: Demographic characteristics of ECS research par-

ticipants in comparison to non-research ECS students and

all district high school students. An asterisk in the research

sample column indicates that value is statistically signifi-

cantly different from the ECS sample.

Characteristics District Other ECS
Research
Sample

Number of students 109,053 4494 1931

Female Ð 45% 42%
Caucasian 8% 12% 15%∗

African-American 40% 29% 20%∗

Hispanic 46% 46% 58%∗

Asian 4% 8% 5%
Low Income 83% 86% 82%∗

Special Ed 16% 13% 14%
ESL 8% 9% 9%
Freshman 25% 66% 71%∗

Attendance 88% 92% 91%
GPA Ð 2.7 2.7

In general, there were fewer females than males who completed
the ECS course, but there was no statistical difference between
research participants and non-participants. The largest racial demo-
graphic group in ECS were Hispanic students followed by African-
American students. In the research sample, there was a larger per-
centage of Hispanic and Caucasian students and a lower percentage
of African-American students than the non-research participants.
The research population had a lower percentage of low-income stu-
dents. The proportion of special education, and English language
learners was similar as was the rates of attendance and the overall
GPA. Given the large sample size, there were sufficient numbers
of students in each demographic category to be able to investigate
differences in outcomes based on gender and race/ethnicity.

3.1 ECS Professional Development

Curriculummaterials and activities represent one component of the
ECS program. Implementation of ECS was supported by a robust
professional development program. Given the significant shift in
the nature of computer science teaching required for successful
implementation of ECS, teachers need extended professional devel-
opment to successfully adapt to the ECS model of teaching [8]. The
ECS PD program is intentionally designed to prepare teachers to
implement the inquiry-based activities while also guiding them to
build a classroom culture that is inclusive of all students [8]. Pro-
fessional development begins with a weeklong summer workshop
prior to implementing ECS. There are five key components of the
ECS professional development model, the first being that teachers
engage in the process of collaborative inquiry in small groups in
the same way that students will engage in inquiry. The second com-
ponent is that, throughout the first week, teachers participate in
inquiry specifically through a teacher-learner-observer model. Each
small group is assigned a lesson in which the group co-plans and
teaches the lesson to the rest of the participants, who experience
the lesson as learners. After the lesson, all the participants engage

in reflective discussion about the experience from the point of view
of the three ECS teaching strands (equity, inquiry, and CS content).
These first two components of ECS professional development are
consistent with what Desimone and Garet [1] call active learning
in professional development. Their review of professional develop-
ment found that active learning was an important component of
professional development as it significantly influenced changes in
teacher practices.

The third component of ECS professional development is explicit
discussion and reflection on equitable practices. During the work-
shop, the teachers read sections of Stuck in the Shallow End [14],
which provides rich case study descriptions of the roots of inequity
in computer science. The fourth and fifth components of ECS PD
are meant to sustain teacher development over long time spans,
which is another key dimension of effective PD [1]. The fourth
component is ongoing professional development during the school
year and a second weeklong workshop the summer after their first
year of implementation. The fifth component of ECS PD is the
development of a professional learning community. It begins in
the summer workshop through the formation of small groups that
engage in collaborative inquiry. It is also built up through the trust
that teachers develop as they engage in tough, open discussions
about equity as well as through open, honest feedback on lesson
design and implementation during the workshops.

3.2 Assessments

During the 2016ś17 school year, teachers administered the SRI-
developed ECS pretest at the beginning of the year and the posttest
at the end of the year. SRI has developed rubrics for each of the
assessment tasks. These rubrics are designed for classroom teachers
to grade their students’ assessments. SRI reports that it takes teach-
ers about 5 minutes per student to score the assessments. In order to
aggregate assessment result across teachers, we used independent
scorers to grade the assessments.

We hired The Graide Network to score the pretests and posttests.
The Graide Network recruited and trained 26 undergraduate pre-
service teachers to score the performances tasks. The scorers were
provided training on each of the rubrics prior to scoring. As part
of the training, each scorer scored a common set of 80 pretest re-
sponses from each question prompt in order to equate the severity of
the scorers. For the posttest, we had overlapping subsets of scorers
rate the same students. We used the Facets software version 3.71.4
to conduct Many-Facet Rasch Measurement analysis (MFRM) [5] to
scale the student responses at each administration. Facets develops
a model based on how well the student performed across the range
of question prompts with set difficulties taking into account the
severity of the scorer relative to the other scorers. Within MFRM,
the goal is not for scorers to arrive at agreement on the scores, but
instead to model the variation in how the scorers interpreted the
rubrics. As long as the raters are internally consistent in how they
apply the rubric, Facets can adjust the students’ scores based on
the severity or leniency of the scores relative to other scorers. We
used the pretest tasks as the benchmark for scaling item difficulty.
For scaling of the posttest scores, the item difficulties of the two
common tasks were fixed based on the pretest scales. The overall
model fit of the students, tasks, and scorers at each administration



was high. For ease of interpretation, the logit scale produced by
Facets was converted to a scale ranging from 0 to 25.

4 RESULTS

To set the context for investigating the development of specific as-
pects of programming expertise, we first examine the overall pretest
to posttest performance as well as examine the extent to which
students’ performance in the course predicts posttest performance.

In the first model we test the growth of computational thinking
from pretest to posttest. The average pretest score was 11.7 out of
25 and the average posttest score was 13.8 for a growth of more
than two points. We used a paired t-test to determine that this
growth was statistically significant (t(1930)=24.5, p < 0.001) with
a medium effect size of 0.6 standard deviations, adjusted for the
correlation between the pretest and posttest.

In the second model, we investigated the extent to which stu-
dents’ course performance correlates with the development of com-
putational thinking after controlling for student characteristics.
Since students were nested within teachers, we conducted hierar-
chical linear modeling (HLM) on the posttest performance using
WHLM software version 7.24q. There are two levels to the HLM
model (see Figure 1 for the HLM equation). Given that students
of a particular teacher have a shared experience, the HLM analy-
ses account for this shared variance of students within a class by
developing a linear model of each student characteristic for the
population of students of a given teacher. HLM then aggregates
the intercepts and slopes across all of the teachers to model the
relationships of each variable to the posttest performance.

At the first level are the student characteristics, which include
each student’s pretest score, grade level, gender (female), race
(African American or Hispanic versus other races), participation in
special education, participation in free or reduced lunch program
(FRL), which serves as an indicator of low-income status, partic-
ipation in the English language learning program (ELL), annual
attendance rate, cumulative GPA in the year in which the student
completed ECS, and grade the student received in the ECS course.
The pretest score, attendance, cumulative GPA, and ECS course
grade are group mean centered. The level 1 random effect is rep-
resented by ri j . At the second level are the teachers. There are no
teacher characteristics included in the model. The pretest score
coefficient and ECS course grade coefficient are random effects, rep-
resented as u1j and u11j , respectively. These random effects allow
the slopes of the two coefficients to vary across teachers at level
2. All of the other factors are fixed effects. After controlling for
student characteristics, the HLM analyses provide evidence on the
extent to which performance in the ECS course correlated with
performance on the posttest.

We used students’ course grades as an indicator of course per-
formance. In addition, we examined whether there were differ-
ences in posttest performance by students of different gender and
racial/ethnic backgrounds. Table 2 shows the results of the analysis.
After controlling for pretest performance, there were no statis-
tically significant differences in posttest performance by gender,
race/ethnicity or level of family income. There were statistically
significant negative differences in posttest performance for ELL
and special education students. After also controlling for students’

overall academic performance as measured by their GPA as well as
their school attendance, how well students performed in the course
had a statistically significant correlation with posttest performance.

5 DISCUSSION

Given that students significantly increased their overall perfor-
mance from pretest to posttest and their posttest performance was
correlated with performance in the ECS course after controlling
for demographic and other behavioral characteristics, we can now
examine the results of students’ performance on the specific set
of programming tasks on the posttest assessment. The process
of Rasch scaling provides an estimate of each student’s cognitive
ability related to the computer science concepts within ECS as mea-
sured by the assessments. In addition, the process of Rasch scaling
provides an estimate of the difficulty of each task for the population
of assessment takers. In the Rasch context, a student is considered
competent at a task if the student’s ability is greater than or equal to
the difficulty of the task. Table 3 shows the percentage of students
at pretest and posttest whose estimated Rasch ability level is greater
than or equal to the level of difficulty of the tasks in each category
of programming competency.

Across all categories, there were more students who achieved
competency at posttest than at pretest. Generally the tasks related
to comprehension and planning were easier than the tasks related
to program generation as indicated by the fact that there is a higher
percentage of students whose ability level is greater than or equal to
the difficulty level of those tasks. These results are consistent with
the ‘chain of cognitive accomplishments,’ in which tasks related
to language features and planning are easier than tasks related
to program generation. In addition, tasks that were concrete in
nature were generally easier with most students demonstrating
competency by posttest. These tasks include determining the output
from a written algorithm, identifying the available inputs from a
problem scenario, and deciding the general requirements for a
teacher’s program to track student information. Tasks that were
more abstract in nature were generally more difficult, with less
than half of the students demonstrating competency on those tasks.
These tasks include testing an algorithm against the specifications,
identifying inputs that are not given in the problem scenario, and
use of loops and conditionals.

6 CONCLUSIONS

School districts across the United States are responding to the call
to increase access to computer science for all high school students.
It is important for school districts to be mindful of the research
on effective practices for the development of computer science
expertise as well as research on setting reasonable expectations for
student development of expertise.

In this research, we examined the impact of ECS on the devel-
opment of programming expertise in the context of a large-scale
implementation. ECS is a prominent high school introductory com-
pute science course that is closely aligned to effective pedagogical
practices that have theoretical and empirical support. A primary
goal of the ECS curriculum and professional development program
is to contribute to broadened participation of women and minori-
ties and increased equity in the field of computer science. The



POSTTESTi j = γ00 + γ10 ∗ PRETESTi j + γ20 ∗ FEMALEi j + γ30 ∗GRADE_LEVELi j + γ40 ∗ HISPANICi j

+γ50 ∗AFRICAN −AMERICANi j + γ60 ∗ IS_SPECIAL_EDi j + γ70 ∗ IS_FRLi j + γ80 ∗ IS_ELLi j + γ90 ∗ATTENDANCEi j

+γ100 ∗GPAi j + γ110 ∗ ECS_GRADEi j + u0j + u1j ∗ PRETESTi j + u11j ∗ ECS_GRADEi j + ri j

Figure 1: HLM model equation.

Table 2: HLM Model results for the student posttest scores by student characteristics. The factors in bold are statistically

significant.

Characteristic Coefficient
Standard
Error t-ratio p-value

Average 14.74 1.0 t (27) = 14.69 p < 0.001

Student Characteristics
Pretest 0.15 0.03 t (27) = 4.97 p < 0.001

Grade Level −0.08 0.09 t (221) = −0.83 p = 0.407
Female −0.17 0.13 t (252) = −1.34 p = 0.181
Hispanic 0.26 0.18 t (183) = 1.44 p = 0.151
African-American −0.25 0.23 t (287) = −1.08 p = 0.283
Free or Reduced Lunch −0.04 0.09 t (177) = −0.51 p = 0.611
ESL −0.66 0.24 t (106) = −2.78 p = 0.007

Special Education −1.05 0.18 t (628) = −5.68 p < 0.001

Rate of Attendance −2.59 0.89 t (39) = −2.95 p = 0.005

Cummulative GPA 0.72 0.15 t (61) = 4.70 p < 0.001

ECS Course Grade 0.26 0.13 t (27) = 2.04 p = 0.051

Table 3: Percentage of students demonstrating competency

on each dimension of programming expertise at pretest and

posttest.

Problem type Pretest Posttest

Comprehension

Determine Output 62% 87%
Will Output Meet Requirement? 14% 34%

Planning

Available Inputs 46% 78%
Generate Requirements 38% 69%
Missing Inputs 20% 45%

Generation

Conditional 22% 48%
Loop 7% 21%

curriculum is composed of activities that are designed to engage
students in computer science inquiry around meaningful problems
in the context of a classroom culture that’s culturally relevant and
inclusive of all students.

We conducted a large-scale, systematic study, as recommended
in the literature [20], to examine whether a curriculum that uses
a problem solving approach can support the development of pro-
gramming expertise. Overall, students achieved medium-sized, sta-
tistically significant learning gains from pretest to posttest and
those learning gains were spread equitably across gender and
race/ethnicity. These learning gains were correlated with students’
academic performance in the course after controlling for students’

prior academic performance. These results provide evidence that
a problem solving approach can support the development of pro-
gramming expertise.

These results also provide evidence on the progression of the
development of programming expertise. Students seem to develop
comprehension and planning expertise prior to expertise in pro-
gram generation. In addition, students seem to develop expertise
with concrete tasks prior to abstract tasks. These results provide
evidence for the current sequencing of activities in ECS that are
consistent with the ‘chain of cognitive accomplishments’ approach.
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