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Mathematics and Programming Exercises for Educational Robot Navigation

Abstract

This paper points students towards ideas they can use towards developing a con-
venient library for robot navigation, with examples based on Botball primitives, and
points educators towards mathematics and programming exercises they can suggest to
students, especially advanced high school students.

1 Introduction

This paper will develop mathematical and programming exercises for navigating with a typ-
ical educational robot, such as those used in the Botball®) educational robotics program [7].
We consider a robot with two wheels that may be driven independently (forwards or back-
wards up to some maximum speed) and a third balance point such as a caster wheel or track
ball (drawn as in Figure [1)). This type of robot is generally referred to as a differential-drive
robot [2, p. 11-12], [3, [I] or a two-driving wheel robot [8, p. 4]. We do not consider Swedish
wheels [2, p. 89] that can roll in all directions (aka omni wheels as in a Botball kit experiment
a few years ago) or even wheels that turn as in a typical modern automobile.

Figure 1: We will sketch our robot as shown, with a pointed front and a reference point
centered between the two independently-driven wheels; there is also an assumed third balance
point, for example a caster wheel in the back.

This model is a good fit for most educational robots, including the two types generally
used in the Botball program: the iRobot Create®) robot based on the Roomba® vacuum
cleaning platform, and robots built from LEGO pieces and other provided parts in style used
for many LEGO demobots over the years.

An important parameter for this type of robot is the distance w between the wheels,
most often referred to as track width. In the Create robot this distance is fixed; in LEGO
robots, there is some flexibility in the design. Intuitively, a small w allows for more nimble
movement, but it can increase the likelihood of rollover problems.

In the limit, with w = 0, we would be essentially dealing with moving a single point
around a two-dimensional field, but this paper assumes a positive track width, which is
enough to put the options for robot motion into the relatively complicated category referred
to as non-holonomic [2], p. 88-91].



While there exist deeper technical treatments of motion planning using inertial navigation
(elementary overview in [2], p. 77-80] for example) and/or attending to complicated obstacle
avoidance scenarios, this paper assumes use of dead reckoning E] given a known terrain and
manually preplanned paths.

It is true that there can be great value in using sensors such as a range finder to judge
distance to a landmark, a reflectance sensor to detect colored tape boundaries on the driving
surface, or even a camera, but dead reckoning is still a valuable technique. The sensors may
be complicated to use or prone to failure (e.g., internal glitches, loosening of a mount, or
loosening of an electrical connection); participants in Botball tournaments may especially
notice how rarely the camera is used successfully. Thus teams may eschew some sensors
entirely, or advanced programmers may wish to use them in conjunction with code that
detects failures and can fall back on fail-safe alternative code. In any case, dead reckoning
is likely to be helpful, even if only for initial rough positioning before using sensors, because
this may be achievable at higher speed and lower power consumption.

One simple bit of sensor use that may be particularly helpful is to use built-in Botball
functionality for testing motor rotation amounts, or Create travel distances or rotation angles
(get_motor_position_counter, get_create_distance, or get_create_total_angle). Re-
sults may then be more robust under varying levels of battery charge, but good results may
also be achievable using only timing delays as long as the battery is frequently recharged.

Section 2 discusses the more general mathematical context for motion planning, and then
Section 3 returns to discussion of concrete programming implementations. Most of Section 3
remains generally applicable to any differential-drive robot, but we use Botball-provided
functions at the lowest implementation level.

2 Mathematical Exercises

A preliminary analysis of the time required to complete a typical robot motion under different
schemes of operation varying in programming difficulty is given in [4]. The set of schemes
considered was later expanded [6] and formed into a worksheet suitable for high school
students [5]. For convenient reference, Figure [2] reproduces a compact illustration of the
six types of paths considered. The paths vary primarily according to whether motion is
mostly rectilinear or more general and whether turns are based on rotations (wheels moving
in opposite directions) or swings (one wheel stationary).

In each of the six cases illustrated, we are seeking to move the reference point on the
robot from a starting position at coordinates (0,0) to a target position (x,y) with the robot
pointing in the same direction at the end of the motion as at the beginning.

Educators may wish to access a free-standing PDF worksheet on comparing the time
required to traverse the different types of paths, and BKTEX [10] source (using the tikz pack-
age [9]) that could be used to produce modified versions of the worksheet, both of which
will be stored in the Loyola eCommons (https://ecommons.luc.edu/cs_facpubs/231) in
association with [5]. A seventh variation that might be assigned is to consider moving the
reference point along a single circular arc (instead of the two arcs in Figure ) without

Lcalculating one’s current position by using a previously determined position and advancing that position
based upon known or estimated speeds over elapsed time and course
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Figure 2: The paths of the robot wheels for the routing methods considered in [0, 5]. (a)
and (b) for horizontal and vertical navigation, using rotations and swings, respectively. (c)
and (d) for general navigation, using rotations and swings, respectively, and (e) and (f) for
two other path types designed to avoid hitting a competition field boundary as may occur in
(c). In (e), straight segments are added at the beginning and end of the path; these lengths
are exaggerated for visual effect. In (f), we follow two mirror-image circular arcs.

worrying about the final robot orientation (direction). This seventh type of path would look
as in Figure . (This could be a sufficient type of motion to contemplate in a case where the
robot has a rotating effector anchored above the reference point.)

The proof is left to the reader, but the angle 6 and the distance traveled by the reference
point are actually the same in Figures|3[and . Specifically, # = 2 arctan(z/y), and the radius
of the arc traversed by the reference point is (z* + y?)/(2x) in Figure [3| and (2% + y?)/(4x)
for each of the two arcs in Figure [2f. The time to traverse the single-arc path is still a little
less than for the two-arc path, since it is determined by arc lengths of the outer wheel, which
is the one traveling at full speed, and this part of the analysis is also left to the reader.
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Figure 3: The path using one arc and not worrying about final orientation

void gostraight(float dist){ /* dist in millimeters */
create_drive_direct(speed,speed); msleep(straightfit(dist)); create_stop();}

void rotate(float theta){ /* theta in positive/negative radians for right/left rotations */
float dist=theta*w/2; /* computers arc length given rotation radius w/2 */
if (dist>=0) {create_drive_direct(speed,-speed); msleep(rrotfit(dist)); create_stop();}
else {create_drive_direct(-speed,speed); msleep(lrotfit(dist)); create_stop();}}

void swing(float theta){ /* theta in positive radians for right swings; negative for left */
float dist=theta*w; /* computes arc length given swing radius w */
if (dist>=0) {create_drive_direct(speed,0); msleep(rswingfit(dist)); create_stop();}
else {create_drive_direct(0,speed); msleep(lswingfit(dist)); create_stop();}}

Figure 4: Example code for straight, rotation, and swing movements. straightfit,
rrotfit, lrotfit rswingfit, and lswingfit incorporate linear regression results as sug-
gested in a similar LEGO scenario in 6, Section 5].

3 Programming Exercises

Students may also find it to be an interesting exercise to create a library of program routines
that can be used to send the robot along the paths discussed in Section Most of this
section is of general applicability, but we use the following bottom-level Botball functions
(as well as alluding to a few others below):

e create_drive_direct(left_speed,right_speed); /* drive Create wheels; speeds in mm/s */
e create_stop(); /* stop the Create movement */
e msleep(milliseconds); /* Wait before executing next command; does nmot stop movement. */

Routines for the basic primitives could be programmed for a LEGO robot as described
in [0, Figure 1 and Section 5] using cmpc and gmpc to measure motor rotations. Similarly,
basic navigation primitives may be programmed for the Create as in Figure . (The variable
w is assumed to be globally defined to represent the track width.)

This suggested code uses timing delays rather than the functions get_create_distance
and get_create_total_angle, since other experience with Create programming seems to
show that if the Create is moving too slowly or testing too frequently, changes in the return
values of these functions may not be detected as needed to bring the motion to a stop.
Successful testing was done with a LEGO robot in [5], where it was also suggested to teach
students to use a spreadsheet for linear regression to determine how to convert distances to



int gotorectswing(float x, float y){
float dx, dy, midy;
dx=x-curx; dy=y-cury; /* find = & y changes from start & target */
midy=(dy-w)/2; /* find y midpoint */
gostraight (midy); swing(M_PI/2); gostraight(dx-w); swing(-M_PI/2); gostraight (midy);
curx=x; cury=y; return(0);}

Figure 5: A routine to implement rectilinear paths with swings as in Figure 2p.

appropriate numbers of motor ticks. Here the conversion is from distances to appropriate
timing delays. It is possible that when working with the Create robot, it would not be
necessary to use so many different fitting functions as sketched here, since the Create robot
might have more consistent behavior; in contrast, LEGO robots are likely to be not com-
pletely symmetrical in their construction, so that regression fitting for left rotation might be
different from right rotation, for example. For the LEGO robot, one may also typically need
to run the wheels at slightly different speeds to actually go straight; similar adjustments
might be needed for the Create but would perhaps be less necessary.

One other detail before using the navigation primitives to construct paths as in Figure
is that mathematically simple analyses assume that the robot can instantaneously switch
from, for example, going straight to rotating. To get reasonably reliable behaviors from
the navigation primitives, it is probably sensible to terminate each one with a pause that
allows movement to settle; this could be achieved by inserting a short msleep after each
create_stop invocation in Figure . (In tests performed in conjunction with a LEGO robot
in [6], it was sufficient to insert a single msleep of 100ms at the end of the doticks procedure
there [5, Fig. 1].)

Once the primitives are in place for the LEGO and/or Create robot, a good programming
exercise is to write routines to traverse each of the paths in Figure 2l For example, a routine
to follow a path as in Figure and update global variables indicating current position
(curx,cury) could be written as in Figure 5| (after doing #include <math.h> to define M_PI
for the value of 7):

This solution assumes z > w, as well as y > w; it would not be difficult to also handle
xr < —w. It also would be good practice to follow the standard C programming practice of
having the function return a non-zero value when the motion cannot be completed. Similarly
implementing paths as in Figures [2h, ¢, and e is reasonably straightforward, and these are
left as exercises for the reader.

A more involved case is implementing paths as in Figure [2d, where there is some com-
plexity in determining the value of the angle 6. As shown in [6], the correct 6 is where the
following function evaluates to zero:

ysinf — (r —w)cosh —w .

An analytical solution is not evident, but the equation can be solved numerically, e.g., by the
bisection method. This is a good opportunity to teach students how to program numerical
root finding. The root finding could be done just for this particular function, but one can
even teach advanced students how to use the interesting programming technique of passing
a function to a general root-finding function. A solution is provided in Figure |§| (for y large



float genswingtheta(float theta){ return(dy*sinf (theta)-(dx-w)*cosf (theta)-w); }

int gotogenswing(float x, float y){
int findroot(float low, float high, float (*fun) (float), float maxerr, float *result);
float thetasoln, sx, sy; /* thetasoln, straightz, and stratghty *x/
dx=x-curx; dy=y-cury;
if (findroot(-M_PI/2,M_PI/2,&genswingtheta,.001,&thetasoln))
{printf("Couldn’t find theta for generalized navigation with swings.\n"); return(1);}
sx = dx-w+wxcosf (thetasoln); sy = dy-w*sinf (thetasoln);
swing(thetasoln); gostraight(sqrt((sx)*(sx)+(sy)*(sy))); swing(-thetasoln);
curx=x; cury=y; return(0);}

int findroot(float low, float high, float (*fun)(float), float maxerr, float *result){
/* Assumes fun well-defined and non-zero at each of high and low */
float highval, lowval, midval; highval = fun(high); lowval = fun(low);
if (highval*lowval > 0) return(l); /* Maybe no zero in range */
while (high-low > maxerr) {
*result = (high+low)/2; midval = fun(*result);
if (midval==0) return(0);
if (highval*midval>0) {high=#*result;highval=midval;} else {low=*result;lowval=midval;}}
xresult=high; if (fabsf (highval)>fabsf(lowval)) *result=low; return(0);
}

Figure 6: A routine to implement a straight path with swings at the end as in Figure [2d,
using a general root finding procedure.

void arc(radius,theta){ float speedratio = (radius-w/2)/(radius+w/2);
/* ref pt arcs right/left; radius in mm & theta in positive/negative radians */
outerdist=theta*radius; /* computes arc length for outer wheel */
if (theta>0) create_drive_direct(speed,speed*speedratio);
else create_drive_direct(speed*speedratio,speed);
msleep(arcfit(outerdist)); create_stop();

Figure 7: Example code to traverse a circular arc.

enough); this solution partially implements the practice of having functions return a non-zero
value when they cannot complete successfully. (We also assume here, for simplicity, that dx
and dy are declared globally.)

Finally, programming a path as in Figure [2f, like for Figure [2[d, requires relatively sub-
stantial mathematics; in addition, we need another navigation primitive beyond those of
Figure [l This slightly more advanced primitive to follow a circular arc of specified radius
through a specified angle could be programmed as in Figure [/l This time, we will assume
that one linear regression function arcfit suffices for both rightward and leftward arcs.

The simplest way to use the circular arc primitive is as suggested at the end of Section
in a path of just one arc in which we do not worry about the robot’s final orientation. Using
the results stated at the end of Section [2 the core part of a procedure implementing this
path would just be the call



arc ((x*x+y*y)/(2x) ,atan2f (x/y));

An exercise left for the reader is to write a procedure to follow the path of Figure [2ff, using
two calls to the arc procedure.

4 Conclusion

This paper has presented a number of mathematical and programming exercises that stu-
dents can carry out in an exploration of robot navigation. It has also sketched solutions
to some of these exercises and has pointed to other sources with additional details and/or
source files for generating student worksheets. Example solutions to programming exercises
have extended as far down as showing how to complete implementations using pre-defined
functions provided in the Botball program for control of the Create robot. These implemen-
tations have not been tested on a Create robot, but successful testing has been completed
using analogs of the primitives in Figure [4| for a LEGO robot to implement paths as in
Figures [2h—d.
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