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Reduction in the cost of Network Cameras along with a rise in connectivity enables entities all around the

world to deploy vast arrays of camera networks. Network cameras offer real-time visual data that can be used

for studying traffic patterns, emergency response, security, and other applications. Although many sources of

Network Camera data are available, collecting the data remains difficult due to variations in programming

interface and website structures. Previous solutions rely on manually parsing the target website, taking many

hours to complete. We create a general and automated solution for aggregating Network Camera data spread

across thousands of uniquely structured webpages. We analyze heterogeneous webpage structures and identify

common characteristics among 73 sample Network Camera websites (each website has multiple web pages).

These characteristics are then used to build an automated camera discovery module that crawls and aggregates

Network Camera data. Our system successfully extracts 57,364 Network Cameras from 237,257 unique web

pages.

ACM Reference format:
Ryan Dailey, Aniesh Chawla, Andrew Liu, Sripath Mishra, Ling Zhang, Josh Majors, Yung-Hsiang Lu,

and George K. Thiruvathukal. 2021. Automated Discovery of Network Cameras in Heterogeneous Web

Pages. 1, 1, Article 1 (February 2021), 25 pages.
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1 INTRODUCTION
As the cost, ease of use, and Internet bandwidth has improved, more Network Cameras are being

deployed by governments, hobbyists, and private entities. Real-time data is data that provides

information about the current or near-past. Network cameras returning real-time data offer rich

contextual information and are used for weather [18], traffic [3], security [2, 7], and other applica-

tions all around the world [23]. These real-time data sources provide distinct advantages over other

types of publicly available data because it could be used to study temporally dependent phenomena.

For example, Figure 1 shows two instances where real-time Network Camera data could be use to

help emergency responders save lives. The images, taken in Houston during a period of intense
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(a) (b)

Fig. 1. Real-time Network Camera data gives valuable information during natural disasters such as flooding.
These Network Camera images were taken in Houston, Texas from Houston Transtar [52]. (a) shows how
first responders could use real-time data to identify individuals that were stranded or needed assistance. (b)
shows how Network Camera images could be used to determine a safe path through a flooded city.

(a) (b)

Fig. 2. Real-time data could be used to identify traffic accidents. These Network Camera images from were
taken from traffic cameras installed by the Georgia Department of Transportation [35]. (a) shows emergency
workers clearing an accident and (b) shows a car fire.

flooding, show how real-time visual data could be used to identify and rescue individuals stranded

in the water (Figure 1a). Real-time views of the city could also be used to direct emergency vehicles

around heavily flooded city streets (Figure 1b). These tasks could not be done with slower methods

of visual data collection such as Google Street View [56] where data is rarely collected.

In addition to the rise of real-time Network Camera data, recent developments in deep learning

techniques for computer vision have enabled cameras to play a deeper role in threat detection [27],

route planning [21], and other applications. Deep learning models require a large amount of training

data to achieve high levels of accuracy [17]. Network camera data has been shown to be substantially

different from traditional object detection datasets [14]. Data from Network Cameras often have

smaller subjects, more object occlusion, and a greater number of objects per frame compared with

traditional datasets like ImageNet [11]. The real-time data collected from Network Cameras could

be used to create new training datasets for computer vision applications. For example, images of

crashes and car fires, like those in Figure 2, could be used to build computer vision models that

alert emergency responders to traffic accidents without human intervention.

Despite the ubiquity of real-time public Network Camera data, there is no easy way to collect

this data and adopt it to new applications. This is because the data is distributed by thousands

of organizations on individual websites across the Internet. For example, universities, regional

transportation departments, news stations, and many other organizations in New York State have

, Vol. 1, No. 1, Article 1. Publication date: February 2021.
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Camera	Websites

Deployed	Cameras

(c)(b)(a)

Fig. 3. Data fromNetwork Cameras in the same geographical area are distributed across several websites. Each
website has a different structure. (a) Syracuse University [55] uses video. (b) New York State Thruway [48],
has a list. (c) NYCDOT [32], has a map. None of these websites provide an easy way to retrieve the Network
Camera data.

Network Camera Discovery System 
 
 
 
 

Web
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Network Camera
Identification

Visual  
Data Links HTTP  

Verified 
Network 
Cameras 
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Camera
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Fig. 4. Proposed Network Camera Discovery Process. The system can be broken down into two parts: the
Web Crawler module and the Network Camera Identification module. The resulting cameras are then stored
in a Camera Database which can be accessed using a RESTful API.

camera networks deployed. Figure 3 shows an example of Network Cameras deployed in New York

City. Although the cameras are in overlapping geographical areas, each organization provides its

own website to access the camera data. Because cameras providing related data are spread across

many heterogeneously structured websites, it is difficult to collect and process the Network Camera

data for new applications. To find this data across different websites, one could search for "traffic

cameras New York" or "New York webcams" in a search engine and manually determine where

the Network Camera data is on the resulting websites. This process is inefficient and does not

guarantee that all the Network Camera data for a given area is found. Even if users are able to find

a website with relevant Network Camera data, organizations provide no way to download and

process the data from their website. Each website has a different user interface and distributes data

in different formats (image vs video).

Our solution for automated Network Camera discovery eliminates the need for human efforts

during the discovery process. Our system, shown in Figure 4, creates a database of Network Camera

data that users can directly access using a RESTful API. We remove the need to manually search

, Vol. 1, No. 1, Article 1. Publication date: February 2021.
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for Network Camera data on the Internet. Using our system, a user can directly query the database

API and collect real-time Network Camera data from hundreds of websites. Our Network Camera

discovery system consists of two parts: (1) A Web Crawler module that finds data links (2) A

Network Camera Identification module that distinguishes between real-time data links and links to

static visual data (such as logos). After our system classifies a link to be real-time in nature, the

data retrieval information is stored in a database which can be accessed using a public RESTful

API. The data can then be used for a variety of purposes including: real-time traffic monitoring,

or to build computer vision training datasets to solve new problems. The proposed system allows

users to discover Network Cameras through API calls to the database.

In this work, we define a Network Camera as a link with the following properties:

(1) The link provides visual data, either as a static image or a streaming video.

(2) The data provided by a link is from a statically positioned camera.

(3) The visual data provided by the link is real-time and changes from an initial time (t0) to a later
time (t0 + ∆t ). ∆t can be less than one second to several hours. This feature is highlighted in

Figure 5.

t0 t0 + ∆t

Fig. 5. The frames above are from the same Network Camera. These images from the NYC Department of
Transportation [32] provide real-time data that can be accessed from a single static URL.

To develop our solution, we studied a sample of 73 sites that distribute data from Network

Cameras (Section 3). We then used this study to identify a set of common data formats that can

be used to automatically collect network camera data. We build a system for automated network

camera discovery (Section 4). We discussed an implementation of our system in Section 5 and

evaluated the results in Sections 6 and 7. When our system was tested on the 73 websites, it

successfully discovered 57,364 cameras on the sites. The system checked for Network Camera data

from 237,257 unique web pages. Using the manually labeled data, we evaluate the accuracy of our

method. Our camera discovery system achieves precision and recall of 98.7% and 98.2% respectively

on a manually labeled dataset.

2 RELATEDWORK
Manymethods have been proposed for creating semantic classifications of multimedia on web pages.

For example, Chen et al. [8] generate descriptions of the content of images using a combination

of "high-level" features (file name, hyperlinks, surrounding text) and "low-level" features (image

color histogram, shape, and texture). These descriptions can then be searched to enabled users

to find useful image data. Similar methods are used by Yuan et al. [61] to generate a semantic

representation of Youtube videos. These works infer properties about the visual data based on

contextual information in the webpage. Although these works do not identify real-time data, they

use the context of the surrounding web page to develop a better understanding of visual data.

, Vol. 1, No. 1, Article 1. Publication date: February 2021.
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In [4], Brickley et al. propose a methodology for creating a search engine for publicly available

datasets. Datasets are found by parsing RDF (Resource Description Framework), Microdata, and

JSON-LD (JavaScript Object Notation for Linked Data) formats. Their broad definition includes

visual data but not necessarily real-time data.

Work has also been done on analyzing Peer-to-Peer streaming networks. In [57], Vu et al.

proposed using a web crawler to collect information on live Peer-to-Peer TV streams. However,

their focus was on network topology and the data they collected was only from one Peer-to-Peer

video sharing site PPLive. They do not crawl multiple websites. Furthermore, the data streams on

PPLive are TV streams, not streams from Network Cameras.

The heterogeneity of public sensor data distribution methods was highlighted by Mao et al.

in [25]. They propose that public sensor data from governments around the world could be collected

and used for other purposes if the data interface was standardized. They suggest that web crawling

methods could be used to collect this sensor data. Their focus is on government websites that

provide a single web page where public datasets can be downloaded. These datasets however, do

not contain real-time image data.

Nath et al. [30] present a system for visualization of sensor data on a map. Like Mao et al., they

note the problem of heterogeneous methods for distributing sensor data in public data repositories.

Their solution to this problem is to create an interface for displaying sensor data from various

sources in one interface. They do not attempt to automatically highlight sensor data on the internet,

instead, their work focuses on how to store and visualize the data after it has been collected.

The Archive of Many Outdoor Scenes (AMOS) [20] project is closely related to our work. They

use publicly available Network Cameras to create a dataset of over 330,000,000 images. Jacobs et

al. outline the methodology in collecting these cameras as well as analysis done on the images

taken over time. To create their dataset, they do not automatically discover the cameras, but rather

combine lists provided by Network Camera aggregation sites and manual searches in a search

engine. They also allow users to submit their cameras. A comparison of related work can be found

in Table 1.

It is important to acknowledge the privacy implications of this work. In previous work, we discuss

the privacy concerns of collecting publicly available multimedia data including Network Camera

data [24]. Widen [59] discusses the conditions when privacy can be expected. More specifically, the

paper classifies the scenarios based on the subject’s location and the observer’s location. Recently,

the public facial recognition dataset from Microsoft known as MS Celeb [16] has been taken down

over privacy concerns [29].

Our prior work [10] created a database of Network Camera data using human-made parsing

scripts. In the solution, a parsing script waswritten for each site individually due to the heterogeneity

of website structures. Writing a script for each website makes the camera discovery processes

inefficient. Websites change over time and new cameras may be added. For example, Figure 6 shows

two screen-shots from the Travel-Cam website [53] before and after a redesign. Changing web

site structures require manually updating human-made scripts. This paper improves our previous

method by creating a general solution that automatically discovers camera data on the Internet.

This can lead to easier access to thousands of Network Cameras real-time data.

To our knowledge, this is the study that focuses on automatically collecting real-time video data

from heterogeneous websites.

The major contributions of this paper include

• A detailed analysis of the website structures of Network Camera websites.

• A general system for automatically aggregating Network Camera data on the Internet.

, Vol. 1, No. 1, Article 1. Publication date: February 2021.
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(a)
(b)

Fig. 6. Structure and style of web pages change over time. (a) shows Travel-Cam.net [53] in February 2019.
The website has a pull down menu. (b) shows how the site had been redesigned by April 2019. The pull-down
menu has been removed.

Work

Visual Data

Collection

Identify

Real-time Data

Automated

Data Aggregation

Chen et al. [8] ✓ ✓
Yuan et al. [61] ✓
Brickley et al. [4] ✓
Vu et al. [57] ✓
Mao et al. [25] ✓
Jacobs et al. [20] ✓ ✓
Dailey et al. [10] ✓ ✓
This Work ✓ ✓ ✓

Table 1. This table compares the related work. To our knowledge, this is the only work that combines visual
data collection, real-time data identification, and automated data aggregation into one system.

• A method for determining if a given data link is from a Network Camera providing real-time

data.

3 WEBSITE STRUCTURE ANALYSIS
In order to identify Network Camera data from heterogeneous web structures, we create a system as

shown in Figure 4. Our system contains aWeb Crawler module and a Network Camera Identification

module. The Web Crawler module must be able to effectively find and extract Network Camera

data links from web pages. The Network Camera Identification module must be able to differentiate

between real-time Network Camera data and other visual data. For these modules to be effective,

we must first understand what data formats, website structures, and programming interfaces are

most common among Network Camera websites.

In this section, we identify commonalities that can be used to create a general solution for

aggregating Network Camera data. A set of 73 sample websites are analyzed; Table 2 shows the dis-

tribution of these sites. Section 3.1 explains the data formats, website structures, and programming

interfaces of these websites. Section 3.2 analyzes how the websites are organized and can be parsed

into the database.

, Vol. 1, No. 1, Article 1. Publication date: February 2021.
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Type Sites Estimated Number of Cameras Cameras/Site
Aggregation 8 27909 6977

Traffic 42 21755 505

News Station 1 502 502

Tourism 3 5062 1687

University 14 31 2

Weather 4 2712 678

Total 73 57971
Table 2. Distribution of types of camera websites studied.

(a) (b) (c) (d)

Fig. 7. Examples of images found on web pages not from Network Cameras. (a) Static Photographs [54], (b)
Logo, (c) Map markers, (d) Social media logos [34].

3.1 Data Formats for Network Cameras
Most Network Cameras studied on the sample websites distribute camera data in either static image

or streaming video formats. Only one website on the 73 example sites, OnTheSnow [9], did not

use static image or streaming formats. In some cases [34, 38, 53], sites post a combination of both

static images and streaming videos. The following paragraphs describe the differences of these data

formats.

3.1.1 Static Images. Static images such as PNG and JPEG are the most common formats for

public Network Camera data. Of the 73 sample websites, 57 provide some static images. These

static images are snapshots from the cameras and are updated intermittently. The user must send a

new HTTP request to retrieve updated data from the websites.

For most websites, each time an image is updated, the server overwrites the previous image.

This means that an HTTP request sent to the same link at t0 and t0 + ∆t will return different

images. Figure 5 shows two example images downloaded from the same Network Camera data link.

Network cameras that have a link format similar to (1) are the most common of the 57 websites that

provide static images. Next we will discuss other link formats that were observed in our sample

websites.

<base URL>/<camera id>.jpg (1)

Several sites [31, 44, 51] have query strings appended to the URL when the user loads the page.

In most sites with query strings, the date-time field has no effect on the data downloaded from

the link. In (2) for example, each time the web page is loaded, the date-time field is updated. For

this group of sites, the query string can be completely removed from the data link and the most

recent image data will still be returned.

<base URL>/<camera id>.jpg?<date-time> (2)

, Vol. 1, No. 1, Article 1. Publication date: February 2021.
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(a) (b) (c) (d)

Fig. 8. Examples of different list views from Network Camera websites. (a) and (b) are from department
of transportation websites [5, 43]. (c) shows a Network Camera on a university website [47]. (d) shows an
aggregation site called WorldCam.eu [15]. This site shows Network Cameras by their geographic locations.

The above examples show that even within Network Camera websites that distribute data as

static images, there is significant heterogeneity to the formatting of the data links. Next, we discuss

sites that distribute Network Camera data in streaming video formats.

3.1.2 Streaming Cameras. The second most popular format for camera data is streaming formats

such as HTTP Live Streaming (HLS), Motion JPEG (MJPG), Real-time Message Protocol (RTMP),

and Real-time Streaming Protocol (RTSP). Streaming data is less common, as only 16 sites (22%)

from the sample websites used streaming formats. The most common streaming format is MJPG

which makes up about 43% of streams followed by HLS (38%) and RTMP (18%). In some cases, a

single site offered more than one streaming format.

RTMP, RTSP, and HLS formats require embedded video players to view the camera data in

browsers. HLS camera data is loaded using an m3u playlist file. In 2 sites, the m3u file is loaded

automatically when the video player is loaded and requires no user interaction. For 3 other sites,

users must interact with the video player (press a play button) before an HTTP GET request is

sent for the m3u file. This type of interaction can make it difficult for cameras to be automatically

identified.

MJPG streams can be directly embedded in a web page and do not need a video player to view.

These streams are often from cameras that have HTTP servers inside. These cameras will respond

to a variety of HTTP requests allowing the user to get either static image, MJPG video, or HLS

video from the camera by sending specific HTTP requests. For some other cameras, the data is

distributed using either an HLS stream or an RTMP stream. In some cases [6, 34], an RTMP or HLS

link can be found in an XHR request (discussed further in Section 3.2). This is usually when the

link is loaded in the page automatically and does not require the user to click or interact with the

page to load the video data.

3.2 Network Camera Site Organization
In this section, we analyze how camera data is organized and presented on the sample websites. The

diversity of structures and organizations within sample sites is greater than the formats discussed

in Section 3.1. The developers of each site use different programming interfaces, making it difficult

to find shared characteristics that can be used to create a generalizable aggregation method. Some

sites embed camera data links directly in the HTML of the pages, other sites require the user to

click a button or scroll on a map to load the camera data.

Humans can navigate sites to access the camera data but automated solutions may not be able to

interact with these views to load the Network Camera data. For example, the traffic website for

the City of Tallahassee [33] requires the user to close a pop up menu, select a drop down menu,

, Vol. 1, No. 1, Article 1. Publication date: February 2021.
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(a) (b) (c) (d)

Fig. 9. Examples of websites that distribute camera data in interactive maps using different APIs. (a) This
website displays a popup on Google Maps API [5]. (b) HERE Maps API is used [42]. Clicking on a camera
marker will display an image on the top right corner of themap. (c) TheMissouri Department of Transportation
traffic website [38] uses ArcGIS API. (d) When a user clicks on a map marker, another webpage is shown [40].

then select "Cameras" in the drop down menu. Humans can deduce how to interact with the pages

to load the camera data, but these interactions are complicated for machines because there is no

standard way to interact with the page. Figures 8 and 9 depict the variability within the sample

Network Camera sites.

We identify two methods that are most common for organizing data on the pages: (1) Lists Views

(2) Map Views. The following subsections analyze these two methods in more detail. In general,

all 73 sample websites can be categorized into methods (1) and (2), but variation exists between

implementation details. This means that a method for aggregating data from one website may not

work on another website. In some of the sample sites, both a map and a list are used to organize the

data on the same site. For example, Figures 8a and 9a show a map and a list both from the Alberta

Department of Transportation website [5].

3.2.1 List Views. For 47 of the 73 (64%) sites provide list views of the Network Camera data.

Figure 8 shows examples of different list views. We can further break down list views by studying

how the data links are loaded into the pages. In some cases [1, 37, 44], real-time image data

is embedded in the HTML and loaded directly with the pages, commonly seen in traffic camera

websites. Figure 8a shows a screen-shot fromAlberta 511 [5]. In this example, the site uses an API call

to load camera data into the page. The most recent snapshot is then automatically embedded in the

HTML of the page. For these sites, simply parsing the HTML and extracting the <img src="...">
tags yields camera data links.

In other cases, aggregating the camera data requires user interaction. These sites are more

difficult to automatically aggregate due to the range of interactions needed to load the links. In

Figure 8b no image data is loaded into the page until the user selects a region and a route from a

drop down menu. After these parameters are selected, the user must select a camera location from

the corresponding list. One image can be loaded at a time.

Another type of list view can be observed on aggregation sites [12, 53, 58]. These sites rely on

user submissions to aggregate large numbers of Network Cameras. These aggregation sites have

more cameras than other types of Network Camera websites but in many cases the data is not

hosted directly on the site. WorldCam.eu, seen in Figure 8d, is one such site.

Fourteen websites are from universities. These sites have a large number of pages but few

Network Cameras, making it difficult to find cameras on these sites. Often universities have one or

two Network Cameras looking at iconic areas around the campus. These cameras are not listed

in a table on the site like the previous examples. A Network Camera from University of Southern

, Vol. 1, No. 1, Article 1. Publication date: February 2021.
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API Number of Sites Example
Google Maps 18 Figure 9a

Openlayers 8

ArcGIS 7 Figure 9c

HERE 4 Figure 9b

Leaflet 3

HTML 2 Figure 9d

Other 1

Total 43
Table 3. APIs used by websites that had interactive maps.

California [47] is shown in Figure 8c. This website has only one Network Camera but thousands of

web pages.

3.2.2 Map Views. Some sites provide interactive maps. For 43 of the 73 (59%) sites present camera

data in a map. In most cases, the user can zoom and pan around the map to see the geographic

locations of the cameras. Figure 9 shows some examples of websites that use interactive maps.

Map interfaces are especially common with traffic camera websites from regional departments of

transportation (DoT).

Interactive maps are similar to the list view shown in Figure 8b because they do not embed the

Network Camera data directly in the HTML pages. On these sites, Network Camera images are

only shown on the pages when users click on the corresponding map markers. Camera data is

displayed in one of three ways: (1) inside a map as shown in Figures 9b, (2) as a pop-up shown in

Figure 9a, or (3) each map marker links to another web page where the images are displayed [5, 36].

For most of sample sites with map views, a JavaScript API is used to create the interactive maps.

The examples in Figures 9abc show maps created with a JavaScript API. Table 3 lists the different

APIs used by the 43 sample sites that have maps. Google Maps [26] is the most popular API used

by the sites accounting for 41% of all sites that use JavaScript.

To create map markers, JavaScript APIs need geospatial information. In 70% of cases, the geospa-

tial data comes from an XMLHttpRequest (XHR) to a JSON or XML file. XHR files are found by

monitoring the HTTP requests sent by the client during the page load. Eighty-two percent of the

geospatial XHR files also contain links to the Network Camera data streams. In many cases, all

information that appeared on the map marker when it was clicked was also stored in the the XHR

file. Three of the websites contain Network Camera data hard-coded into JavaScript files instead of

a JSON or XML file.

In 12 sites that use JavaScript API, the geospatial data is generated dynamically and not loaded

in XHR files. If the XHR file was found but contained no data links, the link is usually created for

each camera using camera IDs from the XHR file. For 5 sites, user interaction is required before the

XHR request is sent. For the South African National Roads Agency [22], as the user zooms and pans

the map, XHR requests are sent, loading small sections of the camera data at a time. Zooming and

panning operations occur on only this site, but are important to note as they are more complicated

for an automated solution to preform.

Two of sites did not use JavaScript API to map the data. Instead these sites display maps as

images embedded in the HTML of the web pages. Figure 9d shows one example of this type of map.

These maps do not use XHR files to load the data. Instead, they load small markers in the HTML

and overlay them on the map image. For these sites, clicking on the marker images will bring the

user to another web page where the camera data is loaded.
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Fig. 10. The Web Crawler module: This module searches every page for links to other pages and visual data
links. The Web Crawler module then sends visual data links to the Network Camera Identification module
(Figure 12).

4 AUTOMATED NETWORK CAMERA DISCOVERY SYSTEM
This section outlines our system which automatically discovers Network Camera data using

common characteristics found from the sample websites in Section 3. Unlike methods described in

our previous work [10], the network camera data collection is done automatically.

Previous work required a detailed analysis of the website structure to identify where the net-

work camera data links appeared. For each website, the format and site organization described

in Section 3 would need to be manually determined. This work automates the discovery process

using the similarities in the structure of network camera websites. The format and site organization

categorizations in Section 3 are used to identify patterns within the website that might contain

network camera data.

Instead of extracting only known network camera data links, we extract all data links that match

the structures and formats outlined in Section 3. Then we filter out data links that match our

definition of a network camera. By filtering out the data the method no longer depends on knowing

where in the webpage structure the network camera data links are present.

The system has two parts: Section 4.1 The Web Crawling module responsible for searching the

website for potential Network Camera data links and Section 4.2 The Network Camera Identification

module that downloads and compares data from the data links found by the crawler.

4.1 Web Crawler
If an IP address responds to an HTTP requests with a web page, then the address points to a website

that may contain many Network Cameras. The flowchart in Figure 10 describes how the Web

Crawler aggregates links to potential Network Camera data.

For each data link found on a web page, the Web Crawler module downloads the web page and

parses the HTML. Some pages contain JavaScript code. Thus, each page is rendered in a browser

environment to ensure all the page assets are loaded properly. Figure 11 shows that the rendering

step is important because not executing the JavaScript can substantially reduce the information

loaded into the web page. In many cases, Network Camera data is loaded into the site during this

time using XHR requests as discussed in Section 3. Without this step, Network Camera data can

potentially be lost.
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(a) JavaScript disabled (b) JavaScript enabled

Fig. 11. Screenshots of Oregon Department of Transportation website [41] show the importance of JavaScript
rendering for many Network Camera websites. If JavaScript rendering is not enabled, the Network Camera
data in the map is not loaded.
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Sample	Data
Changes

Mark	as	
Camera
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Fig. 12. Network Camera Identification module: Each data link found by the Web Crawler module (Figure 10)
is processed by this module to determine if a given link is to a Network Camera.

After the web page has been downloaded and rendered, the crawler will parse the HTML response

and look for types of data links common to Network Cameras such as image and video links. The

crawler will look for .jpg or .png file extensions, as these are the most common data formats

found in Section 3.1. For streaming cameras, the crawler will look for .m3u, rtmp://, rtsp://, and
.mjpg links.
While the browser environment is loading the page, our system will monitor all XHR requests

sent by the site. This will identify network camera data links loaded in the map views described in

Section 3.2.2. The Web Crawler module will then parse the request URLs to look for common map

API database files with extensions such as .json, .geojson, and .xml. These files are parsed for

common Network Camera data links and links to HTML pages.

The Web Crawler module records all links found to ensure duplicate links are not checked twice.

Links to other web pages are filtered to ensure the page has not been previously crawled and then

sent to the crawler. At this stage, the extracted links have either been identified as new web pages

and sent to the crawler, point to camera data formats (images or video), or discarded. The next

step is to determine which of the data links are Network Cameras using the Network Camera

Identification module.

4.2 Network Camera Identification
After potential Network Camera data links have been aggregated, the Network Camera Identifica-

tion module determines if a given data link references Network Camera data by distinguishing
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between Network Cameras (Figure 5) and web assets (Figure 7). The real-time data from Network

Camera changes often; in contrast, web assets rarely change. For each data link, the Camera Identi-

fication module downloads several frames from the data link at different times. After each frame is

downloaded, they are compared to determine if there is any change.

We present three different comparison methods for determining if a data link is a Network

Camera. (1) Checksum Method: compare the file checksum across sample frames downloaded by the

Network Camera Identification Module. (2) Percent Difference Method: compare the percent of pixels

changed between frames. (3) Luminance Difference Method: compare the mean pixel luminance

change between frames. Each of these comparison methods are evaluated on a manually labeled

dataset in Section 7.1.

The first and simplest method is to compare the checksum on the frames. For this method, the

Network Camera Identification Module simply compares the MD5 checksum between different

frames taken from the visual data link. If the checksum changes between the frames taken at t0 and
t0+∆t we classify the data link as a Network Camera. Although this method is simple to implement,

it does not look at the content of the frame to predict if it came from a Network Camera. The next

two methods we use statistics that provide more information about the content of the frame.

The Percent Difference Method compares the percentage of pixels that change between the

frames. Algorithm 1 shows how this value is calculated. To determine if a visual data link is from a

Network Camera, a threshold value is determined experimentally. If the percentage of pixels that

changed is above the threshold, we classify the visual data link as a Network Camera. This method

provides more insight to how the content of the visual data link changes between sample frames.

For each frame, a small percentage change may indicate that only a few pixels changed. Real-time

data changes significantly over time. This would not be true of computer generated images like

those in Figure 7. Unlike the Checksum Method, this method takes the content of the frame into

account.

The final method we introduce is the Luminance Difference Method. This method uses the

average difference in luminance between sample frames. For this method, shown in Algorithm 2,

the mean pixel value of the frame is taken. The difference between the luminance of the initial frame

(t0) and a second frame (t0+∆t ) is used to identify Network Cameras. We determine an experimental

threshold to classify Network Cameras in Section 7.1. If the overall luminance difference between

the sample frames is greater than this threshold, we classify the visual data link as a Network

Camera.

This method uses the fact that many Network Cameras are positioned outdoors. Network

Cameras will have a greater difference in luminance over the course of a day as the sun changes

position. This should also provide some insight into the content of the image and improve the

overall accuracy of our classification.

Streaming camera links aggregated by the Web Crawler module are processed differently by the

Network Camera Identification module. For these data links, the module will attempt to establish a

connection to the stream. The method used to establish this connection changes depending on the

type of stream. For example, if the link is to an HLS stream, the Camera Identification module will

send an HTTP request to download the .m3u playlist file. Using this playlist file, the module will

connect to the stream and download camera data. The Camera Identification module will determine

if the link is to a real-time data stream by checking the duration and start time information

for the video. The way this information is obtained depends on the streaming format used. A

streaming camera will have a start time greater than zero and no duration. If the data link

passes these checks, it is considered a Network Camera. Frames can also be taken from streaming

cameras that pass the first checks. These frames can be compared using one of the three methods

for non-streaming cameras.
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Algorithm 1 Percentage Difference

procedure percentDiff(img1, img2)

count← 0

for px = 0, 1, . . . ,size(img1) do
count← count+|img1[px] - img2[px]| > 0

return count/size(img1)

if percentDiff(frame0,frame1) > threshold then
return True ▷ visual data link is a Network Camera

else
return False ▷ visual data link is not a Network Camera

Algorithm 2 Luminance Difference

procedure luminanceDiff(img1, img2)

img1Lum← mean(img1)

img2Lum← mean(img2)

return abs(img1Lum - img2Lum)

if luminanceDiff(frame0, frame1) > threshold then
return True ▷ visual data link is a Network Camera

else
return False ▷ visual data link is not a Network Camera

5 IMPLEMENTATION
This section outlines the implementation of the proposed system for automated Network Camera

discovery.

5.1 Web Crawler Implementation
The Web Crawler Module is implemented using the Scrapy web crawler framework [45] and

uses Splash web browser [46] to render the JavaScript on the crawled web pages. The aggregated

meta-data found by the crawler is stored in a MongoDB [28] unstructured database.

The Splash rendering engine is responsible for sending the HTTP requests to the target web

page. If Splash could not establish a connection to a page within 180 seconds, the page is discarded

and the crawler moves on. After the crawler connects to the server and downloads the web page,

the JavaScript render engine waits for 8 seconds for the page to finish loading. This step ensures

JavaScript assets are loaded into the page before the rendered HTML is sent to the HTML parser.

The HTML parser finds new pages within the seed domain by extracting the <a href="...">
tags. The contents of these tags link to other web pages. The crawler is restricted to following

<a href="..."> tags that link to same domain. For example, if the seed website has the domain

of www.example.com then the crawler would follow links to www.example.com/cameras/ and

www.subdomain.example.com/cameras/ but would not follow links to www.facebook.com/. This
restriction prevents the crawler from spending time crawling large websites outside the target

domain. In addition, as several sites discussed in Section 3 do not host or embed camera data on

their servers, this restriction on the crawler will also prevent it from finding camera data that is

not embedded on the target domain. This restriction could be lifted for future crawls enabling the

crawler to discover new domains that host Network Camera data.
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In this implementation, the parameters given in each web server’s robots.txt file are respected.
If the robots.txt file does not exist for a domain or if the site did not have specific crawling

directives, the following default parameters are used:

• The crawler is limited to 32 connections per domain so as not to overwhelm the web servers.

• The crawler waits 3 seconds between requests to the same target domain.

The crawler traverses sites in breadth first order starting on the seed page and reaching a

maximum depth of 15 pages from the seed page. Once the crawler has visited all the available links

within the seed domain or has reached a depth of 15, the crawler stops crawling that domain. The

crawler keeps detailed information on the data aggregated. In addition to the absolute links to the

images discovered by the crawler, the HTML data of each web page and other statistics are stored

in the Crawler Database.

5.2 Camera Identification Module Implementation
The Camera Identification Module takes the links discovered by the Web Crawler Module and

determines whether or not they contain Network Camera data. When a new data link is aggregated

by the crawler, the Camera Identification Module downloads a copy of that image and stores it in

the database. The Identification Module downloads a frame from each data link 4 times.

Several different algorithms were tested to determine if an image was from a Network Camera.

Detailed discussion of the luminance and other methods tested can be found in Section 7.1. In total,

4 frames were downloaded from each data link at the following times:

t0 (Time when the data link is first aggregated by the Web Crawler)

t0 + 5min
t0 + 60min
t0 + 12hrs

The range of time from the first frame at time t0 to time t0 + 12hrs is chosen to provide a significant

change in luminance that is often seen in outdoor Network Cameras. In the next section we discuss

the results of this implementation on the sample of 73 example websites introduced in Section 3.

6 RESULTS
The Network Camera Discovery module is tested on the sample of 73 Network Camera sites

introduced in Section 3. We run the Network Camera Discovery module for 55 days and find

523,696 visual data links. During the run, the module crawls 237,257 unique web pages in total.

Figure 14 shows the total number of pages and visual data links found by the crawler during the

run. Of the 73 sample websites, 4 websites were not crawled successfully. This error is because the

web pages are unreachable at the start of the crawl, and no new links are generated.

Potential cameras are found on 47 of the 73 websites. Figure 15 shows when different cameras

are found during the crawl. Most cameras are found at the beginning of the crawl, because the Web

Crawler starts on the page linking directly to the camera data for most sites.

A breakdown of the data links found for streaming cameras can be found in Table 5. Of the

data links found, less than 1% are links to video data. Only 3,974 video data links are discovered

by the crawler and 99% of these links are found in XHR files. Only 25 cameras are found to be

embedded in the page HTML. All 25 of the embedded links are for .mjpg cameras and 17 of the

25 are working Network Cameras. Of the 3,949 streaming data links found in XHR files, about

43% are links to Network Cameras. In total 1,745 streaming Network Cameras are found from 8

different websites. These streaming Network Cameras were validated using a combination of the

start time and duration check and the Luminance Difference method described below with the

optimal experimental threshold.
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Fig. 13. The percentage of cameras and pages found at each page depth during the crawl.

Fig. 14. Total number of images and pages found during the Network Camera Web Crawler experiment.

Table 4 shows where the Network Camera data links were found. Of the 465,249 unique image

links found, 89% are embedded in the HTML files, and the remaining 11% are found in the XHR

files. The images found in XHR files are much more likely to be Network Cameras then those

embedded in the HTML pages. Almost 30% of images found in XHR files are found to be from

Network Camera while less than 4% of HTML embedded images come from Network Cameras.

Static image camera data is found using the average image luminance method, which is discussed

in further detail in the Section 7.

In some websites, more cameras are found by the Camera Discovery module than manual

estimation. In some cases i.e. the California Department of Transportation site [34], the site contains

links to static camera images and streaming links, both of which would be caught by the Camera

Discovery module. In other cases, for example the USGS geological monitoring site [49], each

camera image has an associated thumbnail image posted to a different URL. More examples and

analysis of the sites can be found in Section 7.

Figure 13 shows the crawler does not traverse websites very deeply and only reached a max

depth of 3. In this implementation, the scheduler preformed a breadth first traversal of each site.

On our target sites, pages containing network cameras could be reached within a traversal depth of

3 in most cases. Although many more pages are crawled at depth 3, a majority of the cameras are

found at a depth of 2.

, Vol. 1, No. 1, Article 1. Publication date: February 2021.



Automated Discovery of Network Cameras in Heterogeneous Web Pages 1:17

Fig. 15. The number of cameras found over the length of the crawl.

Static Images Num. of Links found Num. of Cameras found
From HTML 466,983 16,998

From XHR 55,636 15,960

Total 522,619 32,958

Table 4. Static images and cameras found during the crawl.

Streaming Num. of Links found Num. of Cameras found
From HTML 25 17

From XHR 3,949 1,728

Total 3,974 1,745

Table 5. Streaming videos and cameras found during the crawl.

7 ANALYSIS
In this section, we will analyze the results of our system in more detail. In Section 7.1, we discuss

methods tested to differentiate between Static Image Cameras and other web assets. In Section 7.2,

we give a few in-depth examples of the successes and failures of the Camera Discovery module.

7.1 Network Camera Identification Metric Analysis
This section discusses different methods that can be used to differentiate between Network Cameras

and other images aggregated by the Web Crawler. The three methods presented in Section 4.2

are tested using precision and recall. Precision is a measure of proportion of Network Cameras

correctly identified by our system (true-positives) divided by the total number of cameras identified

(true-positives + false-positives). Recall is the percentage of cameras correctly identified by our

system (true-positives) divided by the total number of cameras (true-positives + false-negatives).

We show that the luminance change method has the highest precision and recall on the test

dataset. The test dataset is created using a subset randomly chosen from data aggregated by the

Web Crawler. For each data link, 4 frames are taken by the Network Camera Identification module.

These frames are then manually identified by a person.

Each set of frames from one data link is given a single label of one of the following categories:

(1) Network Camera - Any chosen data link where images change between frames. The frames

from the link also have to resemble Network Camera images. See Figure 16a.
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(a)
(b) (c)

Fig. 16. Examples of labeled data. Each set of images (from left to right) shows: initial frame taken, 5min
after, 60min after, and 12hours after. Images in (a) show links that were labeled Network Camera. (b) and (c)
links labeled Other Web Assets.

(a)

(b)

Fig. 17. Above are examples of images incorrectly classified as Network Cameras using the Luminance
Difference Method. More sophisticated methods are needed to identify these false positive classifications.

(2) Other Web Assets - Any other data link where sample frames do not resemble a Network

Camera. See Figure 16c. In some cases the web assets change over time but the data does not

appear to be from a Network Camera. Figure 17 shows examples of such data.

Fig. 18. Figure 18a shows the precision and recall evaluated for the percentage difference method presented
in Section 4.2. The threshold of this method is the average percentage of pixels that changed over the sample
frames. Figure 18b shows the precision and recall of the Luminance Difference Method from Section 4.2. Both
methods are evaluated on the set of manually labeled data.

During the labeling process, the person is shown all the frames taken by the Network Camera

Identification module side by side, along with an indication of the number of pixels that changed

between the frames. If no pixels changed over the from frame t0 to frame t0 + 12hours , the data
link could not be labeled as a Network Camera. The person labeling the image would then look

for large changes in light level over the sample period. If the image appeared to be taken from a

static camera, was not computer generated, and had visible changes to the scene such as light level
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change, the image would be labeled as a Network Camera. If the changes were too subtle to see

across the samples, the data link could also be analyzed for words such as "webcam", "camera", etc.

In total, 9,165 images are manually labeled. This sample represents about 2% of the total visual

data links aggregated by the crawler. In the labeled dataset 1,645 (18%) of the images are found to

be from Network Cameras. The remaining 7,520 (82%) of images are other web assets.

The first method outlined in Section 4.2, the Checksum Method, uses only the checksum of the

frame to determine if the data has changed. This method identifies 818 of the labeled images as

Network Cameras. The recall of this method is 100% because an image has to change to be classified

as a Network Camera. However, there is a high number of false positives (images that changed but

were not from Network Cameras); as a result, the precision is 75.0%.

The Percent Difference Method outlined in Section 4.2 finds the percentage of pixels that change

between the frames. For this method, we use a linear combination of the differences from each

frame relative to the initial frame. This average difference across frames is used to determine a

threshold. Figure 18a shows a graph of the precision recall over different thresholds.

If we treat precision and recall as having equal importance for our classifier, the threshold is 0.11.

This threshold identifies 1,683 of the labeled data links as Network Cameras. The overall accuracy

of this method for the manually labeled dataset was 99.1%. The precision and recall of this method

is 96.3% and 98.5% respectively. If we apply this method to all the visual data links found by the

Web Crawler we classify 55,365 visual data links as Network Cameras.

The Luminance Difference Method from Section 4.2 was found to be the most accurate of the

three methods tested on the labeled dataset. For this method, the mean pixel value of the image

is taken from the t0 frame and subtracted from the frame at t0 + 12 hours . The resulting value

is compared to an experimental threshold. The frame taken at 12 hours is chosen to capture the

day/night cycle of outdoor cameras.

If we treat precision and recall as having equal value, the threshold for the Luminance Difference

Method is 1.3. At this threshold, this method has a precision of 98.7% and a recall of 98.2% on the

labeled dataset. A graph of the precision and recall for this method can be found in Figure 18b. If

we apply this method with a threshold of 1.3 to the entire set of visual data links found by the Web

Crawler Module, the total number of cameras identified is 55,619.

A full comparison of the results of the three methods can be found in Table 6. Here we see

that the Luminance Difference Method has the best accuracy on the labeled dataset. Figure 19

shows the precision and recall for the Luminance Difference Method for the frames taken at 5min,

60min, and 12hrs after the initial image was discovered. The difference between frame t0 and frame

t0 + 12 hours has the best trade off between precision and recall. This is likely due to the large

change in luminance from day to night over a 12 hour period.

Table 6 also shows the number of visual data links that are classified as Network Cameras for

each method evaluated on the manually labeled dataset. We see that the Checksum Method labeled

the most visual data links as Network Cameras. The manually labeled dataset contained 1,645

Network Cameras but the Checksum Method identified 2,061 visual data links as Network Cameras.

This means that 416 visual data links that changed in the test dataset were not from Network

Cameras. The Percent Difference Method and the Luminance Difference Method had a better overall

precision meaning that the content of the frames can be used to help identify Network Cameras.

We select the Luminance Difference Method as the best method for our classifier and apply this

method to all visual data links collected by the Web Crawler Module. We find that 55,619 Network

Cameras are identified. We add the 1,745 streaming Network Cameras to determine a final total

of 57,364 Network Cameras. This number is close to the manually estimated number of cameras

in Section 3. We will further discuss the results on specific sample websites in Section 7.2. Next,
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Fig. 19. Comparison of the precision and recall using the mean Luminance Difference between the first frame
and frames downloaded 5min after, 60min after, and 12hrs after the first frame.

Precision Recall Accuracy
Num. of

Cams. Found
(Labeled)

Num. of
Cams. Found
(All Links)

Checksum 0.750 1.000 0.978 2,061 71,471

% Diff. 0.963 0.985 0.991 1,683 55,365

Lum. Diff. 0.987 0.982 0.994 1.637 55,619

Table 6. Comparison of the results of the Network Camera classification methods introduced in Section 7.1.
For the Percent Difference Method, a threshold of 0.11 was used. For the Luminance Difference Method, a
threshold of 1.3 was used. The number of visual data links classified as Network Camera using each method
is shown for the manually labeled dataset. The last column shows the number of cameras that are found if
each method is applied to all visual data links found by the Web Crawler Module.

we look at some examples of visual data links that are incorrectly classified by the Luminance

Difference Method.

Figure 17 shows some examples of false-positive classifications of the image luminance method.

CAPTCHA errors (Figure 17a) are a common false-positive classification for the change in luminance.

These images are hard to classify correctly without more advanced computer vision metrics. A few

computer generated images are also incorrectly classified as Network Cameras by the luminance

metric. Figure 17b shows one such example that is updated to the same URL like a Network Camera,

but instead depicts the movement of the sun on the earth. In addition to the accuracy of the methods,

the computational cost of the 3 proposed methods was also analyzed. The results of this analysis can

be seen in Figure 20. Each method was timed on the same machine on a set of 1000 sample images.

For each method, the average was used across 20 runs of the same data. The Checksum Method

was the fastest of the proposed methods and was more then 5 times faster then the Luminance

Difference Method. The average runtime of the chosen method for identifying network camera data

links (the Lumianance Difference method) was found to be 3.61 s ± 55.9 ms. For a large deployment

of the proposed solution where reducing computational cost was important, the Checksum method

could be used first followed by the Luminance Difference Method only on the image sets that

changed for the Checksum method.
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Fig. 20. Runtime on a sample of 1000 images of the proposed network camera identification methods.

These errors show that the metrics used to determine if a data link is from a Network Camera

can improve. Potential solutions to these problems are discussed in Section 8.

In the future, more frames can be taken to further improve the accuracy of the Network Camera

identification. Next we will discuss a few sample websites from the crawl.

7.2 Website Result Analysis
In this section, we review examples from two categories of the 73 tested domains. In 7.2.1 we will

discuss sites where the crawler does not find any camera data. In 7.2.2 we will discuss the sites

where the Camera Discovery module collects significantly more data then expected, given the

manual estimate. In these examples, duplicate data links are found on the site.

7.2.1 Few Cameras Found. No camera data is found on 26 of the 73 sites studied. For 9 of these

sites, the Web Crawler is unable to identify any camera data or streaming links on any pages. In

many cases, this is because the site did not properly load in the browser, or the website would

exceed the 180 second timeout of the crawler.

In a few cases, the crawler is able to identify the camera data but the data does not change during

the crawl. This is the case for the Indiana Department of Transportation website [19]. During

the crawl, the links to the camera data on the site are discovered by the crawler. No cameras are

identified from the site because the cameras stop updating before the frames are taken. The site

later went offline for maintenance.

On The Snow [9], a travel camera website, is another example of a site where no cameras are

found even though 5,743 pages are crawled and 20,264 images are discovered. Many of the cameras

are not directly embedded in the site and the user must click on a play button where a time-lapse

of images from the last 24 hours are shown in a short video.

Another site that the crawler is unable to collect all the camera data is theWorldCamwebsite [15].

This site has 14,847 cameras listed, many of which come from the community posting links to

the cameras. Almost none of the cameras on this site are embedded directly on the site. Only 164

cameras are found on this site. This is because the crawler is limited to following links only from

the initial domain.

In three websites, the method used to distribute the Network Camera data is different then those

discussed in Section 3.1. On these three sites the format of the URL is similar to URL format (2)

from Section 3.1 however, an HTTP request sent t0 + ∆t will return the same data as a request

sent at time t0. These sites follow the URL format shown in (3). Where the <date-time> field is

updated each time a new image is posted. For example, on Montana Department of Transportation’s
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Fig. 21. Example of thumbnail images in a list are shown in on the left. The image on the right shows the
actual feed of the camera. The thumbnail image has a different data link then the full size image.

website [39], to get data from November, 4th, 2018 at 6:08 PM, the <date-time> field of the URL

in (3) must be set to 2018-11-04_18-08-00.jpg.

<base URL>/<id>_<date-time>.jpg (3)
<base URL>?<id>_<date-time>.jpg (4)

Another example can be seen on oktraffic.org [13]. The format of the data links on this site can

be seen in (4). Here, a date-time is incremented in the query string for each new image. Changes

like these are imperceptible to the user because a JavaScript function automatically generates a

new data link each second and updates the image on the page. The format of examples (3) and (4)

does not follow our definition of a Network Camera because new HTTP requests to these data

links will not yield new image data. The only way to tell if a data link behaves like (2) or like (4) is

to send an HTTP request with and without the query string and see what kind of data is returned.

This behavior in these examples does not follow our definition of a Network Camera from Section 1

so these Network Cameras will not be found by our system.

These examples showcase the most prevalent errors with the proof-of-concept experiment. In

some cases, finding the cameras on these websites relies on giving the Web Crawler permission

to visit additional domains. In other cases, the crawler will need to be outfitted with additional

methods of extracting and identifying camera data.

7.2.2 Duplicate Cameras Found. On 23 sites, the number of cameras aggregated by our system

was greater than the expected number of cameras on that site. This usually happens because the

camera data is assigned multiple different links across the site. The most common example of this

are sites that have query strings in the image links, like those discussed in Section 3. For example,

[31, 40, 44, 60] all have a random number or time-stamp after the camera link.

Figure 21 shows an example of thumbnails, another common aspect that causes errors in the

Camera Discovery module. Sites with thumbnails [37, 44, 49, 50] may have multiple links to the

same data. Some are re-sized for display in a list that links to the full size image. Some sites, 511

South Carolina site [6] and California Department of Transportation Site [34], have links to both

streaming and static camera data or cameras that have streams available in multiple formats. The

Camera Discovery module will aggregate a new camera for every data link found.

, Vol. 1, No. 1, Article 1. Publication date: February 2021.
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Another common reason that the Camera Discovery module may have found too many cameras

on a site is that links to the previous static frames are also found on the site. For example, California

Department of Transportation [34] has links to the past 12 updates listed on the site. The Camera

Discovery module counted a new camera for each of these links causing an overestimate of the

cameras found.

The root of this problem is that the Camera Discovery module can only tell if two potential

camera links are the same by looking at the URL to the image data. The current method offers no

way to tell if a camera has been found before on the same site or a different site. Possible solutions

to this problem are discussed in Section 8.

8 FUTUREWORK
In future work, we plan to implement several improvements into the Network Camera Discovery

System presented in this work. Improvements could be made to allow the crawler to achieve a

higher accuracy of camera classification. The current method of comparing image luminance is

simple and a more sophisticated algorithm could be created that would reduce false-positives like

those in Figure 17. This problem could also be solved by taking more frames from the data links or

by training a machine learning model to recognize Network Camera images. The current Camera

Discovery module has no way of checking if two data links point to the same camera data. This

problem is difficult to solve as some cameras are not static and move their viewpoint over time.

9 CONCLUSION
In conclusion, this work provides an in-depth look at how Network Camera information is dis-

tributed on the Internet. We provide a method for aggregating this valuable data source automati-

cally and methods to determine on a given web page, what data on the page is from a Network

Camera. We present a proof-of-concept version of the Network Camera discovery system that was

successfully able to identify 57,364 Network Camera data links from 237,257 unique web pages over

a 55 day test run. The data found by the Automated Network Camera Discovery system presented

in this work can create a central repository of the thousands of public Network Cameras all around

the world. This data can be beneficial for a variety of applications that need real-time data.
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