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Foreword

Whereas electronics and computing have provided our society with un-
precedented means of advancing services in this millennium, the environ-
mental cost of using electronic technology is becoming significant. For
this reason, low-energy and low-power computing has become an impor-
tant area of research and development. Moreover, the miniaturization of
devices, for example phones and drones, requires small energy reservoirs
(i.e., low-volume, low-weight batteries). The pioneering work on digital
watches of the eighties has grown up by now to a full array of hardware
and software design technologies to mitigate the energy consumption of
processing and storage elements in many areas.

From an application perspective, the ability of recognizing situations
and actors, possibly within a complex environment, has become the key
element in creating advanced systems in many domains, such as security,
automated driving, and surveying. There has been a tremendous growth
in the capabilities of image recognition systems in both hardware and
software, and the presence of such systems is now almost ubiquitous. Nev-
ertheless, the complexity of recognition requires a corresponding energy
cost. As in the case of other electronic systems, the energy consumption
may be significantly high and be an impediment to a wide use of image
recognition in some domains.

As a result of the aforementioned considerations, the search for low-
power computer vision systems is a key problem in both the research
and development fields. There is a wide gap between the ideal minimum
energy cost solutions and the current realizations. This gap is hard
to quantify, as many factors come into play, ranging from the non-
ideality of electronic devices (e.g., leakage current) to the choice of
heuristic algorithms that approximate solutions because of the inherent
computational complexity. On the bright side, this wide gap enables
a continuous search for improvements within the entire design space
spectrum, from circuits to algorithms, from hardware architectures to
software programs.

xvii



xviii � Foreword

The search for bettering energy efficiency would not be possible
without realistic drivers and a world-wide participation of researchers.
This is why the low-power computer vision challenge has been, and
currently is, an important instrument for advancing the state of the art.
The challenge was taken by some of the best groups in the world, and
their effort has tackled the problem with different means and perspectives.
Overall, this challenge has brought us very important results, that are
fully documented in this book, and that will provide a strong impact on
industry and academia.

Lausanne, March 2021
Giovanni De Micheli



Rebooting Computing
and Low-Power
Computer Vision

Since its start in 2013 as an initiative of IEEE Future Directions Com-
mittee, “Rebooting Computing” has provided an international, interdis-
ciplinary environment where experts from a wide variety of computer-
related fields can come together to explore novel approaches to future
computing. The need for Rebooting Computing follows from the recog-
nition that the exponential improvement in computing performance in
previous decades was due primarily to transistor scaling in Moore’s Law,
but this is coming to an end. Radical alternative approaches are needed
over the entire technology landscape, from basic devices and circuits
to architectures to software, with applications from supercomputers to
smartphones. Some possible newer approaches that are being explored
include neuromorphic computing, approximate and stochastic computing,
quantum and cryogenic computing, low-power reversible and adiabatic
computing, and computing based on non-volatile memories, analog and
optical systems. The initiative has now evolved to become a Task Force
within the Computer Society of IEEE and continues its mission unabated.

“Rebooting Computing” spawned many innovations, including the
Low-Power Image Recognition Challenge (LPIRC) in 2015, the brainchild
of Prof. Yung-Hsiang Lu. LPIRC ran for several years with ever-improving
performance by the teams demonstrating subsystems for image recogni-
tion at the lowest possible power. Importantly, the competition involved
a multitude of students, providing inspiration and motivation to students
worldwide. LPIRC was renamed as the Low-Power Computer Vision
Challenge (LPCVC) in 2020 when video was also included. These chal-
lenges evaluate both accuracy and energy consumption of systems that
can recognize and understand images or videos. Over the six years since

xix



xx � Rebooting Computing and Low-Power Computer Vision

the inception of the Challenge, more than 100 teams have participated.
The teams have sponsorship and participation from industry, including
Facebook, Google, Xilinx, ELAN Microelectronics, Amazon, Qualcomm,
and Bytedance.

This book contains the collection of the solutions of the winners of
the Challenge. The authors compare different options, making computer
vision more efficient and explaining important design decisions. The
information provides deep insight for researchers and practitioners.

Elie K. Track, CEO of nVizix LLC,
Founding Co-Chair of the IEEE Rebooting Initiative
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1.1 ABOUT THE BOOK

The first IEEE Low-Power Image Recognition Challenge was held in 2015.
Since then, winners have presented their solutions in conferences and
published detailed studies in journals. After six years of competitions,
there is a rich set of knowledge about how to make computer vision
efficient running on embedded computers. The organizers decided to put
together this book so that researchers, engineers, and practitioners can
understand what methods worked well for winning the competitions.

The book is composed of three parts: Introduction, Winners’ Solu-
tions, and Invited Articles. The first part provides a brief history of the
competitions and a survey of literature. The second part includes the arti-
cles from the winners. All winners were invited to contribute to this book;
this part of the book includes the articles from the winners that accepted
the invitations. The third part contains articles from leaders in low-power
computer vision, including authors from industry and academia.

1.2 CHAPTER SUMMARIES

1.2.1 History of Low-Power Computer Vision Challenge

Yung-Hsiang Lu (Purdue University); Xiao Hu (Purdue University);
Yiran Chen (Duke University); Joe Spisak (Facebook); Gaurav Aggar-
wal (Facebook); Mike Zheng Shou (Facebook Research), and George K.
Thiruvathukal (Loyola University Chicago)

Abstract

This chapter describes the history of IEEE History of Low-Power Com-
puter Vision Challenge 2015–2020.



Book Introduction � 5

Take-aways

• Describes the history of the IEEE Low-Power Computer Vision
Challenge between 2015 and 2020.

• Explains the methods to select winners and lists the winners over
these years.

1.2.2 Survey on Energy-Efficient Deep Neural Networks for Computer
Vision

Abhinav Goel (Purdue University); Caleb Tung (Purdue University);
Xiao Hu (Purdue University); Haobo Wang (Purdue University); George
Thiruvathukal (Loyola University Chicago); Yung-Hsiang Lu (Purdue
University)

Abstract

Deep Neural Networks (DNNs) are greatly successful in performing many
different computer vision tasks. However, the state-of-the-art DNNs are
too energy, computation, and memory-intensive to be deployed on most
computing devices and embedded systems. DNNs usually require server-
grade CPUs and GPUs. To make computer vision more ubiquitous, recent
research has focused on making DNNs more efficient. These techniques
make DNNs smaller and faster through various refinements and thus are
enabling computer vision on battery-powered mobile devices. Through
this article, we survey the recent progress in low-power deep learning
to discuss and analyze the advantages, limitations, and potential im-
provements to the different techniques. We particularly focus on the
software-based techniques for low-power DNN inference. This survey
classifies the energy-efficient DNN techniques into six broad categories:
(1)Quantization, (2)Pruning, (3)Layer and Filter Compression, (4)Matrix
Decomposition, (5)Neural Architecture Search, and (6)Knowledge Distil-
lation. The techniques in each category are discussed in greater detail in
this chapter.

Take-aways

• Surveys the recent progress in low-power deep learning to analyze
the advantages, limitations, and potential improvements to the
different techniques.

• Focus on the software-based techniques for low-power DNN infer-
ence
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1.2.3 Hardware Design and Software Practices for Efficient Neural Net-
work Inference

Yu Wang (Tsinghua University); Xuefei Ning (Tsinghua University);
Shulin Zeng (Tsinghua University); Changcheng Tang (Novauto); Yi
Cai (Tsinghua University); Kaiyuan Guo (Tsinghua University); Shuang
Liang (Novauto); Tianyi Lu (Novauto); Hanbo Sun (Tsinghua University);
Tianchen Zhao (Beihang University)

Abstract

In this chapter, we introduce our efforts in accelerating neural network
inference. From the hardware design aspect, we introduce the instructions-
set-architecture deep learning accelerator to support all kinds of DNN
models with customized ISA and optimized software compiler. And
from the algorithm aspect, we introduce several practices we have used:
sensitivity-based pruning without hardware model, quantization, iterative
pruning with hardware model, and neural architecture search.

Take-aways

• Discusses hardware design: An instructions-set-architecture deep
learning accelerator to support all kinds of DNN models with
customized ISA and optimized software compile

• Discusses software practices: Sensitivity-based pruning without
hardware model, quantization, iterative pruning with hardware
model, neural architecture search.

1.2.4 Progressive Automatic Design of Search Space for One-Shot Neu-
ral Architecture

Xin Xia (Bytedance Inc); Xuefeng Xiao (ByteDance Inc); XING WANG
(Bytedance AI Lab)

Abstract

Neural Architecture Search (NAS) has attracted growing interest. To
reduce the search cost, recent work has explored weight sharing across
models and made major progress in One-Shot NAS. However, it has been
observed that a model with higher one-shot model accuracy does not
necessarily perform better when stand-alone trained. To address this
issue, in this paper, we propose Progressive Automatic Design of search
space, named PAD-NAS. Unlike previous approaches where the same
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operation search space is shared by all the layers in the supernet, we
formulate a progressive search strategy based on operation pruning and
build a layer-wise operation search space. In this way, PAD-NAS can
automatically design the operations for each layer. During the search, we
also take the hardware platform constraints into consideration for efficient
neural network model deployment. Extensive experiments on ImageNet
show that our method can achieve state-of-the-art performance.

Take-aways

• Uses network architecture search methods to find better architec-
tures for lower latencies and higher accuracy

• Formulates a search strategy to build a layer-wise operation search
space through hierarchical operation pruning and mitigates weight
coupling issue in One-Shot NAS.

• Compares the effects of different parameters on memory sizes,
latency, and accuracy

1.2.5 Fast Adjustable Threshold for Uniform Neural Network Quantization

Alexander Goncharenko (Novosibirsk State University); Andrey Denisov
(Expasoft); Sergey Alyamkin (Expasoft)

Abstract

The neural network quantization is highly desired procedure to perform
before running neural networks on mobile devices. Quantization without
fine-tuning leads to accuracy drop of the model, whereas commonly used
training with quantization is done on the full set of the labeled data and
therefore is both time- and resource-consuming. Real-life applications
require simplification and acceleration of quantization procedure that will
maintain the accuracy of full-precision neural network, especially for mod-
ern mobile neural network architectures like Mobilenet-v1, MobileNet-v2,
and MNAS. Here we present two methods to significantly optimize the
training with quantization procedure. The first one is introducing the
trained scale factors for discretization thresholds that are separate for
each filter. The second one is based on mutual rescaling of consequent
depth-wise separable convolution and convolution layers. Using the pro-
posed techniques, we quantize the modern mobile architectures of neural
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networks with the set of train data of only 10% of the total ImageNet
2012 sample. Such reduction of train dataset size and small number of
trainable parameters allow to fine-tune the network for several hours
while maintaining the high accuracy of quantized model (accuracy drop
was less than 0.5%). Ready-for-use models and code are available at:
https://github.com/agoncharenko1992/FAT-fast-adjustable-threshold.

Take-aways

• Describes ways how to get an 8-bit quantized network.

• The main idea is that simple min/max quantization with cali-
bration works poor because of outliers which spoils thresholds of
quantization.

• We can adjust this thresholds by using Straight-Through Estimators.
Using some tips such as Batch Normalization folding and, channel
equalization (more details you can found in the paper) we can get
solution as good as training with quantization from scratch but
with less data and way faster.

1.2.6 Power-efficient Neural Network Scheduling on Heterogeneous sys-
tem on chips (SoCs)

Ying Wang (Institute of Computing Technology, Chinese Academy of Sci-
ences); Xuyi Cai (Institute of Computing Technology, Chinese Academy of
Sciences ); Xiandong Zhao (Institute of Computing Technology, Chinese
Academy of Sciences)

Abstract

The powerful deep neural networks (DNNs) have been propelling the
development of efficient computer vision technologies for mobile systems
such as phones and drones. To enable power-efficient image processing on
resource-constrained devices, many studies have been dedicated to the
field of low-power DNNs from different layers of the systems. Amongst
the deep stack of low-power DNN systems, task scheduling also plays an
essential role as the interfacing middleware between the algorithms and
the underlying hardware. Especially when heterogeneous SoCs have been
widely adopted in edge and mobile scenarios as the hardware solution,
an efficient DNN task scheduler is needed to reduce the implementation

https://github.com
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overhead of DNN-based task and extract the most power from the
SoC platform. This chapter will firstly exemplify DNN scheduling with
the image recognition solution of LPIRC-2016 and introduce how to
efficiently schedule a DNN-based visual processing task onto a typical
heterogeneous SoC composed of general-purpose and specialized cores.
After the elaborate task-level scheduling strategy, we will discuss the
fine-grained DNN-wise scheduling policy on specialized DNN cores and
show the effectiveness of memory-oriented DNN-layer scheduling. Last,
since model quantization is an indispensable step to map a large-size
neural network model onto the resource-thrifty mobile SoCs, we will
discuss the implication of DNN quantization on the heterogeneous SoCs
integrated with both integer and float-point cores, and then introduce the
scheduler-friendly DNN quantizer for pure-integer hardware. Although
most prior works on low-power DNNs focused their attention on efficient
network and hardware architectures, it is shown that the scheduler-level
optimization technology will also be critical to the energy-efficiency of
the system, particularly when the algorithmic implementation is fixed
and off-the-shelf hardware devices are adopted.

Take-aways

• Demonstrates the rank-1 solution of LPIRC2016 as a case study
to introduce the basic coarse-grained scheduling techniques for
DNN-based applications.

• Presents the memory-efficient fine-grained neural network scheduler
on DNN processors.

• Introduces the scheduler-friendly quantization technique to reduce
the overhead of neural network implementation on embedded SoCs.

1.2.7 Efficient Neural Architecture Search

Han Cai and Song Han (MIT)

Abstract

Designing efficient neural network architectures is a widely adopted ap-
proach to improve efficiency, besides compressing an existing deep neural
network. A CNN (Convolutional Neural Network ) model typically con-
sists of convolution layers, pooling layers, and fully-connected layers,
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where most of the computation comes from convolution layers. For exam-
ple in ResNet-50, more than 99% multiply-accumulate operations (MACs)
are from convolution layers. Therefore, designing efficient convolution
layers is the core of building efficient CNN architectures. This chapter
first describes the standard convolution layer and then describes three
efficient variants of the standard convolution layer. Next, we present three
representative manually design efficient CNN architectures, including
SqueezeNet, MobileNets, and ShuffleNets. Finally, we describe automated
methods for designing efficient CNN architectures.

Take-aways

• Describes the standard convolution layer and then describes three
efficient variants of the standard convolution layer.

• Presents three representative manually designed efficient CNN
architectures, including SqueezeNet, MobileNets, and ShuffleNets.

• Describes automated methods for designing efficient CNN architec-
tures.

1.2.8 Design Methodology for Low-Power Image Recognition Systems
Design

Soonhoi Ha (Seoul National University); EunJin Jeong (Seoul National
University); Duseok Kang (Seoul National University); Jangryul Kim
(Seoul National University); Donghyun Kang (Seoul National University)

Abstract

In the development of an embedded image recognition system, there are
many issues to consider, such as which hardware platform and algorithm
to use, how to optimize the software with resource constraints and how
to optimize multiple design objectives, and so on. This chapter presents
a systematic design methodology that could be applied to the design of
embedded systems with a concrete example of image recognition systems.
Based on the proposed methodology, we could win the first prize in LPIRC
(Low-Power Image Recognition Challenge) 2017. After selecting NVIDIA
Jetson TX2 as the hardware platform and Tiny YOLO as the detection
algorithm, we applied the well-known software optimization techniques
in a systematic way, aiming to jointly optimize speed, accuracy, and



Book Introduction � 11

energy. We have refined the methodology to choose a different algorithm
on the same hardware platform and could build another winning solution
in track 2 of LPIRC 2018. Recently new hardware platforms have been
developed that contain CNN hardware accelerators as well as GPU
(Graphics Processing Units), among which NVIDIA Jetson AGX Xavier
is a representative example. Since it is a heterogeneous system that
contains multiple hardware accelerators, how to exploit the computing
power of those accelerators maximally becomes an important issue to
consider in the proposed design methodology. We have developed a novel
technique to maximally utilize multiple accelerators to achieve 21.7 times
better score than our previous solution in LPIRC 2018, which is also
presented in this chapter.

Take-aways

• First prize winning solution in LPIRC 2017 and in track2 of LPIRC
2018.

• Presents a systematic design methodology for the design of low-
power image recognition systems.

• Demonstrates how to select the hardware platform and a neural
network by considering the estimated performance.

• Demonstrates how to map the network onto the hardware platform
aiming to maximize the throughput by pipelining.

• Shows how various software optimization techniques are then ap-
plied to each processing element.

1.2.9 Guided Design for Efficient On-device Object Detection Model

Tao Sheng and Yang Liu (Amazon)
The low-power computer vision (LPCV) challenge is an annual compe-

tition for the best technologies in image classification and object detection
measured by both efficiency (execution time and energy consumption)
and accuracy (precision/recall). Our Amazon team has won three awards
from LPCV challenges: 1st prize for interactive object detection challenge
in 2018 and 2019 and 2nd prize for interactive image classification chal-
lenge in 2018. This paper is to share our award-winning methods, which
can be summarized as four major steps. First, 8-bit quantization friendly
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model is one of the key winning points to achieve the short execution time
while maintaining the high accuracy on edge devices. Second, network
architecture optimization is another winning keypoint. We optimized the
network architecture to meet the 100ms latency requirement on Pixel2
phone. The third one is dataset filtering. We removed the images with
small objects from the training dataset after deeply analyzing the training
curves, which significantly improved the overall accuracy. And the forth
one is non-maximum suppression optimization. By combining all the
above steps together with the other training techniques, for example,
cosine learning function and transfer learning, our final solutions were
able to win the top prizes out of large number of submitted solutions
across worldwide.

Take-aways:

• Discusses the methods involved in the winning solutions over the
years.

• Explains the impacts of each method (quantization, architecture
search, hyperparameter tuning)

• Reduces the resolutions to improve performance

1.2.10 Quantizing Neural Networks for Low-Power Computer Vision

Markus Nagel (Qualcomm); Marios Fournarakis (Qualcomm); Rana Ali
Amjad (Qualcomm); Yelysei Bondarenko (Qualcomm); Mart van Baalen
(Qualcomm); Tijmen Blankevoort (Qualcomm)

Abstract

Over the last years, Neural Networks (NNs) have been widely adapted
in Computer Vision (CV) applications. While for many tasks they out-
perform traditional CV algorithms they often come at a high compute
cost. Even mobile friendly architectures such as MobileNet still require
hundreds of million floating point operations. To further reduce the
energy efficiency and latency of NNs, quantization can be used to replace
the original floating-point operations with low bit fixed-point operations.
In this chapter we introduce NN quantization for low-power computer
vision. Afterward we highlight recent advances in post-training quanti-
zation, a class of algorithms that can be applied to pretrained NNs and
do not require any expert knowledge. In the last part we will focus on
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quantization-aware training, a technique that trains NNs with simulated
quantization operations.

Take-aways

• Introduces neural network quantization

• Serves as a practical guide to quantization simulation with HW
considerations

• Introduces state-of-the-art post-training quantization (PTQ) tech-
niques that are easy to use.

• Introduces state-of-the-art quantization-aware training (QAT) ap-
proaches that result in best performance.

• Defines standard PTQ and QAT pipeline and evaluates them on
several computer vision models and tasks.

1.2.11 A Practical Guide to Designing Efficient Mobile Architectures

Mark Sandler and Andrew Howard (Google)

Abstract

In this chapter we overview a set of basic techniques that can be applied
when designing and fine-tuning efficient architectures. We establish basic
principles that practitioners can use when adapting existing architectures
to particular applications. While a lot of modern research has been
dedicated to network architecture search, the basic design principles are
often poorly understood. Our goal here is to build a solid foundation and
demystify the reasoning about image neural networks from a practical
perspective. From our experience, such a foundation is indispensable for
both designing new architecture search spaces, as well as for practical
tuning of existing architectures to new hardware and/or problems, without
relying on opaque Network Architecture Search (NAS) techniques.

Take-aways

• Introduces a set of basic techniques for adapting and fine-tuning
existing model architectures to different hardware and problems.
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• Provides an in-depth overview of several types of multipliers that
enable a user to independently adjust resource consumption such
as model size, memory requirements, and energy consumption.

• Demonstrates more specialized ways to fine-tune individual layers.

• Demonstrates ways to phase in custom nonlinearities that have
limited support on existing hardware.

1.2.12 A Survey of Quantization Methods for Efficient Neural Network
Inference

Amir Gholami (UC Berkeley); Sehoon Kim (University of California,
Berkeley); Zhen Dong (UC Berkeley); Zhewei Yao (University of Cali-
fornia, Berkeley); Michael Mahoney (University of California, Berkeley);
Kurt Keutzer (EECS, UC Berkeley)

Abstract

As soon as abstract mathematical computations were adapted to com-
putation on digital computers, the problem of efficient representation,
manipulation, and communication of the numerical values in those compu-
tations arose. Strongly related to the problem of numerical representation
is the problem of quantization: in what manner should a set of continuous
real-valued numbers be distributed over a fixed discrete set of numbers to
minimize the number of bits required and also to maximize the accuracy
of the attendant computations? This perennial problem of quantization is
particularly relevant whenever memory and/or computational resources
are severely restricted, and it has come to the forefront in recent years
due to the remarkable performance of Neural Network models in com-
puter vision, natural language processing, and related areas. Moving
from floating-point representations to low-precision fixed integer values
represented in four bits or less holds the potential to reduce the memory
footprint and latency by a factor of 16x; and, in fact, reductions of 4x
to 8x are often realized in practice in these applications. Thus, it is
not surprising that quantization has emerged recently as an important
and very active sub-area of research in the efficient implementation of
computations associated with Neural Networks. In this article, we survey
approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of
current methods. With this survey and its organization, we hope to have
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presented a useful snapshot of the current research in quantization for
Neural Networks and to have given an intelligent organization to ease
the evaluation of future research in this area.

Take-aways

• As soon as abstract mathematical computations were adapted to
computation on digital computers, the problem of efficient represen-
tation, manipulation, and communication of the numerical values
in those computations arose.

• Strongly related to the problem of numerical representation is the
problem of quantization, which is the main focus of this chapter.

• We will first introduce the basic concepts of quantization, and then
discuss the advanced methods, as well as open problems in this
area.
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