uuuuuuuuuuuuuuuuu

Loyola eCommons
Computer Science: Faculty Publications and Faculty Publications and Other Works by
Other Works Department
7-5-2022

Using Magic to Teach Computer Programming

Dale F. Reed
University of lllinois at Chicago, reed@uic.edu

Ronald I. Greenberg
Loyola University Chicago, Rgreen@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

Loyola University Chicago

b Part of the Discrete Mathematics and Combinatorics Commons, Other Computer Sciences Commons,

and the Other Education Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation

Dale F. Reed and Ronald I. Greenberg. Using magic to teach computer programming. In EDULEARN22
Proceedings, 14th International Conference on Education and New Learning Technologies, pages
3240--3248. IATED, July 2022.

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@Iluc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
© 2022, IATED.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/811?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

USING MAGIC TO TEACH COMPUTER PROGRAMMING

Dale F. Reed', Ronald I. Greenberg?

"University of lllinois Chicago (UNITED STATES)
2| oyola University Chicago (UNITED STATES)

Abstract

Magic can be used in project-based instruction to motivate students and provide a meaningful context
for learning computer programming. This work describes several magic programs of the “Choose a
Number” and “Pick a Card” varieties, making connections to underlying computing concepts.

Magic tricks presented as demonstrations and programming assignments elicit wonder and captivate
students’ attention, so that students want to understand and replicate the work to show it to friends
and family members. Capturing student interest and curiosity motivates them to learn the underlying
programming concepts.

Two “Choose a Number” programs are shown where the computer is able to identify a user’s choice
among many alternatives:

1. Magic Letter: A table of numbers with associated random letters is displayed. Participants
make choices and the computer identifies their chosen letter.

2. Number Boxes: The user chooses a secret number, for example the age at which their
business becomes successful and is sold. The user indicates which boxes displayed on the
screen contain their age, and the computer then identifies their secret number.

Two “Pick a Card” varieties are shown, where board pieces represent cards, the user selecting one of
them that the computer later identifies:

1. Secret Tile: A grid of black/white tiles are displayed, where the computer verifies which secret
tile selected by a volunteer has been flipped.

2. Twenty-one Card Magic: Twenty-one cards are selected from a shuffled deck and displayed
face-up, with a volunteer choosing a secret card. After repeated stacking and re-dealing, the
secret card is identified.

These examples illustrate computing concepts and can be used in classroom explanations and
programming assignments. Links are given to online playable versions, assignment descriptions, and
magic-themed resources in computing.

Keywords: Magic, Computer Programming, STEM education, Binary, Parity, Search, Number Guess

1 INTRODUCTION

The science fiction writer Arthur C. Clarke [1] wrote that “any sufficiently advanced technology is
indistinguishable from magic.” As technology continues to grow at an exponential rate, new
applications regularly arise that surprise us in what they can do. The term “magic” used in our context,
means tricks, where misdirection and unexpected results suggest abilities and features that are not
really there, relying not on “sleight of hand” but rather “sleight of mind”.

Curzon and McOwan [2] point out that magic tricks can arouse curiosity and give a sense of delight,
pointing out that advanced technology has been and continues to be the basis for magic illusions [3].
Teaching math using curious properties of numbers and using discrepant events in physics instruction
have long been used to “to stimulate interest, motivate students ... and promote higher-order thinking
skills” [4]. We want to capitalize on this student interest to have them practice basic programming
skills using variables, loops, decision statements, input and output. The “Choose a Number” and “Pick
a Card” programs using these basic skills are presented in turn below.

2 CHOOSE A NUMBER

In these problems, multiple values are displayed or described, with the user making an undisclosed
choice. After some interaction the computer mysteriously is able to reveal the user’s choice.

2.1 Macic LETTER

In Magic Letter, a table of numbers and associated letters are displayed. The user is invited to select
a position in the table and then follow the instructions given, as shown in Fig. 1:

90:F 89:f 88:1i 87:s 86:m 85:m
84:U 83:K 82:P 81:F 80:E 79:W
78:J3 77:d 76:X 75:1 74:h
72:F 71:v 70:e 69:m 68:f/67:y
66:k 65:n 64: < 61:0
60:j 59:U 58:d 57:7 56:E 55:d
54:F 53:r 52:X 51:V 50:p 49:w
48:D 47:z 46:U 45:F 44:c 43:M
42:0 41:u 40:K 39:s 38:w 37:z
36:F 35:U 34:p 33:v 32:p 31:Z
30:R 29:h 28:r 27:F 26:c 25:r
24:1 23:z 22:d 21:E 20:m 19:i
18:F 17:E 16:I 15:H 14:N 13:A
12:b 11:W 10:g 9:F 8:B 7T:N
6:¢ 5:M 4:n 3:d 2:U 1l:c

Select a number in the table above (e.g. 64).
Subtract the digits of the number from itself (e.g.
64 - 6 - 4 = 54). Find that number in the table and
remember the letter next to it. When ready, press
the "Click evenly" button at least three times.

—
‘ ’ ‘() ’ Letter is:
e -

Good! Analyzing click pattern

‘ Letter is:

Figure 1. Magic Letter playable online at bit.ly/uicmindreader

Let's say the user chose position 73:1, which is circled in Fig. 1. The instructions then indicate to
subtract the digits in the selected number to find a new location, so for 73 we subtract 7 and subtract
3, giving: 73 - 7 - 3 = 63, making note of the letter in this new location, which in this case is ‘F’. The
user is prompted to press the “Click evenly” button at even intervals, showing the second screen in
Fig. 1. Finally in the last screen the program reveals the user’s letter.

Before giving away the secret, we encourage you to give it a try yourself a few times!

The secret to the program (shh... don't tell!) is that the program itself chooses a random "special
character" ahead of time, which in the case of the table above is the character 'F'. This is coupled with
the mathematical fact that for any positive integer, if you subtract its individual digits from itself, you
end up with a number that is evenly divisible by 9. Thus 29-2-9=18, whichis9x2,and61-6-1=

http://bit.ly/uicmindreader

54, which is 9 x 6, and so on. When the table is created, all the numbered locations below 90 where 9
is a factor (9, 18, 27, 36, 45, 54, 63,72, 81) are set to the special character 'F' that was chosen ahead
of time. For all the rest of the characters, a random character is chosen. The whole notion of “clicking
evenly” so the program can “analyze the click pattern” is just misdirection.

Likewise a purely text-based version (Fig. 2) is readily accessible to beginning programmers, requiring
knowledge of Input/Output, variables, assignment, a decision (if) statement, and a loop. The most
complicated part of the program is how to use a random number generator to give random characters.
Brief replicable examples can be provided of how to generate random numbers and how to use them
to get a random upper or lower-case character. In the experience of the authors, students are excited
to get the program to work so they can show their friends. The text-based version can simply be
printed or displayed for one-time use, omitting the final reveal of the secret letter, which the presenting
“magician” can provide.

Program #3: Mind Reader
BTT CS 111: Program Design I in Python

Our subconscious get expressed in different ways, including
through choices we make, how we type, and how quickly we type.
Python libraries include Artificial Intelligence (AI) neural
network tools that can recognize patterns.

For this program choose the algorithm analysis level. Higher
levels take longer, but are more accurate. Level 4 works most
of the time.

Enter level > 1l: 0

99:y 98:1 97:P 96:0 95:u 94:g 93:p 92:m 91:T 90:y

89:w 88:I 87:H 86:D 85:k 84:a 83:U 82:A 81:E 80:M

79:G 78:N 77:A 76:H 75:0 74:P 73:h 72:E 71:H 70:H

69:0 68:J 67:a 66:R 65:u 64:F 63:E 62:X 61:j 60:x

59:X 58:W 57:N 56:v 55:J 54:E 53:S 52:P 51:q 50:8

49:b 48:H 47:m 46:v 45:E 44:L 43:W 42:V 41:1 40:0

39:q 38:y 37:0 36:E 35:m 34:P 33:a 32:b 31:W 30:T

29:s 28:u 27:E 26:F 25:H 24:A 23:G 22:r 21:M 20:L

19:s 18:E 17:0 16:I 15:R 14:x 13:M 12:X 11:E 10:Y

9:E 8:g 7:b 6:L 5:r 4:q 3:P 2:1 1:1 O0:E

1. Choose any two-digit number in the table above (e.g. 73).
2. Subtract its two digits from itself (e.g. 73 - 7 - 3 = 63)
3. Find this new number (e.g. 63) and remember the letter next to it.
4. Now press 'a' to analyze responses: a

Your letter is: E

Figure 2. Magic Letter Text Version

At [5] see videos of the regular and extra-credit versions of this program running, along with a sample
assignment write-up. The extra-credit version introduces a delay between the user’s input and the
program revealing the secret letter, supposedly using this time to “build a neural network”. In reality
this additional time is unnecessary and is an example of misdirection that students are encouraged to
incorporate into their programs.

2.2 NumBER BoxEs

A second “Choose a Number’ example involves inviting a student volunteer to imagine that after
graduation they start a tech company and build it up over some years, finally going public and selling it
to investors. The question is “At what age do you sell your company?” A similar guessing game using

number boxes has appeared in various places [6] [7]. Screen captures from an interactive example of
this can be seen in Fig. 3:

13 5 7 9 1 36 7w 1lals|[7]9 | 2]al6|7 10
1 o 11315 17 | 19 11|14 15| 18 |19
2 a0 2123|258 27|29 2223 26 27|30

Imagine that after t |
31 3 graduation you starta |' ¥ 313335 37 39 | 313435 38|39
414} tech company that ' 50 41 | 43 | 45 |47 |49 | 42 |43 46 | 47 | S0
51] grows and becomes 1 %9 51|53 55 | 57 | 59 51|54 55|58 |59

successful, that you L
18 svqntualy sell. 3 4 56 | T 12 g9 |10 11|12
31 i 23 13 14|15 20|21 13|14 15 |24 | 25
i et o e il eI | EYFaEIEaET
TBE a3 3136 37 |38 39 31 40 (41 42 |43
44 4 Click the button bel T 44 45| 46 | 47 | 52 44 | 45 | 46 47 | 56

[{= e Du n ow ° 1 1 T

53 54|55 6D - 9 -

53 51 after you've chosen |! - 57158 |59 | 60

our age. T I T T
T3 ¥ 9 . 1617 18 19| 20 32 (333435 36
eI e 21 21_13’24 25| (37[38)39 40 4
IECALT e 26 (27 28 29 |30 || [42 43 |44 45 46
:"' o 2:] “_: :" 31|48 49 | 50 | 51| | 47 |48 |49 S0 | 51

l T ! .
|:1:i4<|= ‘,-":-:*-'q':-'_’ 5253|5455 56| 52|53 54 55 56
36|53 | S41SS 156 f (9233 [S)55 57|58 59|60 - 57058 59 60 -
57 58 59 o0 - 57 SE 59| &0 = ¢
Select each box that has your
number, then click here.

‘ Doing eye-tracking . ..

Selected age was: 30
Click to reset

Figure 3: Number Boxes playable online at bit.ly/magicnumberboxes

In the above example the sequential screens in running the app are shown, starting from the left,
where the user chooses a number. In this case let's assume the user thought of the secret number
30. On the next screen the user selects all the boxes that include the number 30, where selected
boxes show up with a darker outline. To help in this selection, numbers in each box are displayed in
order. Lastly, clicking on the button at the bottom leads to a message about “eye-tracking” and then
displays the number the user was thinking of.

Like the previous Magic Letter example, this one can also be done statically using a print-out such as
the six squares shown in Fig. 4. First a volunteer can be asked to choose the age after graduation at
which they sell their company, writing it down on a hidden piece of paper. This narrative helps cast
choices into the range of values less than 60. Then the presenter points to squares one at a time,
successively asking “Is your number in this square?” Each time the volunteer says “yes” the presenter
remembers and sums the value in the upper-left corner of that box, until all boxes have been
considered. The order in which the boxes are considered doesn’t matter.

https://bit.ly/magicnumberboxes

(a) s |67 |12) [(2) 3|6 |7 |20 [A[3][s5]7]9
13 M4 | 15[20 [21| |11\ 14|15 18 19 11| 13| 15| 17| 19
22 |23\ 28|29 (30| |22 [23| 26|27 30 21| 23| 25| 27 29
31|36 /37|38 39| [31]34]35 3839 31| 33| 35/ 37| 39
44 | a5 | a6\ a7 [52| |42 |43\ 46|47 50 41| 43| a5 | 47| a9
53 | 54 | 55 [\60 | - 51 | 54 \55 58 | 59 51| 53| 55| 57| 59

Add place values with a 1 on top:

Selected age: 30 _ —

32 4 _2_1 0+16+8+4+2+0=30
32] 3 (15) 17| 18 | 19 | 20 (8) 9 10| 11] 12
37 38|39 | 40 |41 2223|2425 |13|14|15] 2425

42 | 43 | 44 | 45 | 46 26 (27 | 28 | 29 | 30 26 | 27 | 28 | 29 | 30
47 | 48 | 49 | 50 | 51 31 |48 |49 |50 | 51 31|40 |41 | 42 | 43
52 (|53 | 54 | 55 | 56 52 (53 | 54 | 55 | 56 44 | 45 | 46 | 47 | 56
57 |58 | 59 | 60 | - 57 |58 | 59 | 60 | - 57 | 58 | 59 | 60 | -

Figure 4: Number Boxes Process

In the example shown in Fig. 4 let us suppose the volunteer chose 30 as their secret age. (Under
normal circumstances only the six boxes with numbers are shown, since the other markings and
values shown here in the center are for explanation purposes only.) The presenter first points to the
box in the lower-left, asking “Is your number in this box?” and the volunteer would say “no”, since 30 is
not in that box. This “no” answer means the box upper-left corner value (32 in this case) can be
ignored, representing a 0 in the 32’s place in the binary number being constructed.

Next the presenter would point to the bottom-middle box, again asking “Is your number in this box?”
and this time the volunteer would answer “yes”, since 30 is in this box. The “yes” answer means this
position value in the binary number, the 16's place, would be a 1, so now the presenter sums the box
upper-left corner value (16 in this case), giving a total of 0 + 16 = 16 so far. Next up is the lower-right
box, again eliciting a “yes” answer from the volunteer since 30 is again present, so the presenter now
sums this box upper-left corner value (8 in this case) giving a total of 16 + 8 = 24 so far. This process
continues, summing the upper-left corner values for all boxes where 30 is found, resulting in 16 + 8 + 4
+2 = 30.

This problem is an excellent introduction to the idea of binary numbers. After doing the trick a couple
of times to arouse students’ curiosity, a more in depth explanation of binary numbers can be given,
culminating at the end in the explanation of how to do the trick.

2.3 REsources AND VARIATIONS

An important part of many magic tricks is misdirection, where extra information or actions divert the
audience's attention away from what is really going on. In the Number Boxes example above, the
presenter could pretend to ponder and then suggest that subconscious cues influenced the choice of
the number, suggesting that “3” may be one of the values since there are 3 columns, and “0” may be
another part of the answer since 0 rows have been skipped, resulting in the value “30”.

If audience members start feeling this is a stall tactic and the trick isn't so hard if they have enough
time to examine possible answers, then the magician can instead begin to give "lightning" fast
answers. Such an approach can be especially impressive in a larger version of the trick in which
audience members are asked to pick a secret number between 1 and 125. A static printout for this
version can be found at rig.cs.luc.edu/~rig/1t0125.pdf.

http://rig.cs.luc.edu/~rig/1to125.pdf

A variation of the Number Boxes example at cs4fn.org [8] has a combination of numbers and letters in
each box. That version also explains how the numbers in each box are half of the overall set, namely
those that have a 1 in a particular binary number place value.

Mind Reader Mind Reader Mind Reader Mind Reader
Think of a number between Think of a number between Think of a number between Think of \umber betwe
1..50,000 for me to guess. 1..50,000 for me to guess. 1..50,000 for me to guess. 150,000 for me £o guese.

32768 ee e @ 20000
I'm still learning, so | need a I'm still learning, so | need a I'm still learning, so | need a I'm still learning, so | need a
few guesses. few guesses. few guesses. few guesses.
Guesses Remaining: 16 Guesses Remaining: 15 Guesses Remaining: 14 Guesses Remaining: 6

Figure 5: Guess a Number between 1 and 50,000 playable online at bit.ly/uicbinarysearch

We can use “guessing a secret number” as an introduction to binary search, as shown in Fig. 5. Here
a volunteer selects some integer number between 0 and 50,000. Imagine they pick 20,000. The
computer then makes up to 16 guesses, halving the search field on each guess by having the
volunteer indicate if their secret number is “higher” or “lower” than the computer guess currently
displayed. Again, this can easily be implemented as a text-based version. In our experience only a
fraction of students immediately understand how this is working, so small group discussion helps all
students understand, where the instructor can challenge students to consider what is the smallest
possible problem they could use to explain the concept to each other.

Another properties-of-numbers example is called Reversing Numbers. Here the user is prompted for a
3 digit positive integer with unique digits. Subsequently subtracting and then summing the reverse of
the digits always results in the same final value. To enhance this trick it helps for the presenter to write
down the value 1089 on a folded slip of paper ahead of time. The presenter could then ask a volunteer
to suggest a three digit number, asking that the digits all be distinct, to “make it as hard as possible.”
Imagine the volunteer chooses 457. The presenter reverses that number, giving 754, and does a
subtraction starting with the largest of the two numbers, giving 754 - 457 = 297. The resulting number
is again reversed, giving 792, and this time the two numbers are added, giving 297 + 792 = 1089. You
then unfold the slip of paper, revealing this as the correct forecast. A description of this implemented
as a text-based introductory programming project is given at [11]. A sample run of this program is
shown below in Fig. 6.

Welcome to the number guessing game!

If you concentrate, sometimes you can connect to the electrons in the computer!
Let's try it. Think of a three digit number. (To make it harder, make the digits
all different from each other). Type in your number: 275

I'll help you with the math. Lets randomize those digits by reversing them, and do a subtraction:
572 (The reversed digits)
- 275 (The original number)

Press 'Y' to continue or 'X' to exit... y

Now lets again scramble the numbers by reversing them, and adding them this time:
297

Before you continue, take a look at my number guess written down on paper.

Press 'D' to display the answer or 'X' to exit... d
Answer is 1089.

Figure 6: Reversing Numbers

https://bit.ly/uicbinarysearch

3 PICKACARD

“Pick a Card” tricks can be done using a deck of cards or can be simulated in a program using an
array of tiles, where cards’ front and back are represented by black or white tiles on the screen.

3.1 Secret TILE

Many versions of the Secret Tile problem have been inspired by the excellent CS Unplugged
error-detection card trick [10]. Successively complex versions of this idea developed by Greenberg
[11] [12] are described and are playable online [13], where a volunteer selects a single square that the
computer later can verify. Part of the sequence of stepping through this program is shown in Fig. 7.

0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 i
N H B ' Bl H B B H B
i H B H B . u
R N N I H N
Al HEE H

N EE L N
- HENN HERN
N EBem B EEm
HEE Bl o o ' BEE BEE

a. Board created, Prompts for tile flips b. Volunteer selects secret tile ¢. Computer identifies secret tile

5

1

Figure 7: Pick a Secret Tile, playabler online as version 2a at bit.ly/tileflip

First (Fig. 7a) a randomized board is created with the help of a volunteer. The computer then identifies
at most three tiles that “offend its sense of organization”, and the user is prompted to click on them to
flip them. Next (Fig. 7b) the presenter turns away from the screen, and the volunteer selects a secret
tile. Finally (Fig. 7c) the computer gives feedback on whether or not the presenter was able to
correctly select the secret tile. The underlying CS concept is the notion of parity, represented by
whether a row or column has an even or odd number of black tiles. The computer-prompted tile flips
are chosen to be the minimum changes necessary to ensure that the first seven rows have the same
parity and the first seven columns have the same parity. Subsequent flipping of a single tile by a
volunteer then breaks this pattern for a single row or must have occurred in the last row, and similarly
for the columns. The intersection of the relevant row and column indicates the tile flipped. In Fig. 7b,
each of the first seven rows had an even number of black tiles. Flipping the tile at row 4, column 4
then creates odd parity for only that row. Similarly, each of the first seven columns had an odd number
of black tiles, and flipping the tile at row 4, column 4 creates even parity for only that column.

Versions of this “Pick a Card” program disguised as “Memory Trainer’ apps can be played online
either with a friend or solo, shown in Fig. 8. In both Memory Trainer versions the board is randomized
and then the user tries to memorize what it looks like. The user then looks away while a partner flips a
single square (on the left in Fig. 8) or the computer chooses one (on the right in Fig. 8). The user then
has to figure out which square has been flipped. In reality it is possible to figure out which square has
been flipped by noticing that the rows and columns have alternating even/odd parity. For instance in
Fig. 8 Memory Trainer Solo the left (first) column has an even number of gray pieces (2), the second
column has an odd number (3), the third again has an even number (4), and so on alternating between
even and odd. The flipped square uniquely breaks the even-odd pattern for the row and column that
intersect at the flipped piece.

This example can alternatively be implemented as a text-based program by clearing the screen and
reprinting each new board displayed using ‘X’ and ‘O’ pieces as play progresses.

https://bit.ly/tileflip

Memory Trainer Memory Trainer Solo

| SEEs || -OJOs
{ AEEEN | BE 88
‘3LE SN ||-EEE =S
LB]S B SEE
RN | . ENEEN
201§ || (eSS

.

=g 5 seconds

| o

Built on Code Studio Built on Code Studio

Figure 8: Memory Trainer playable versions online at bit.ly/cstamem

3.2 TwenTtY-ONE CARD Maaic

We can use a computer program to replicate what would normally be done using a deck of cards.
Twenty-one cards are selected from a shuffled deck and dealt face-down into three stacks. The
presenter asks the volunteer to select a stack and to look at those cards and choose one. The
presenter then picks up all three stacks, making sure to put the stack with the selected secret card in
the middle of the other two. Now, a second time, the pile is dealt into three stacks, left to right. Each
stack is picked up and displayed to the volunteer, without the presenter seeing the card faces, and the
volunteer this second time indicates which stack their card is in. The presenter again picks up all three
stacks, putting the stack with the selected secret card in the middle of the other two. The process is
repeated a third time, after which the user selected card is the 11th card in the deck, which the
presenter can unveil with a flourish. Twenty-one Card Magic is described as a text-based assignment

at bit.ly/cardtrick21.

4 RESOURCES

A treasure trove of CS-related tricks have been collected and described at cs4fn.org/magic. These
include picking a card using mass hypnosis, using direction cards for a treasure hunt, pulling out cards
to match a secret chosen card, and guessing how many cards a person has taken out of a card deck,
and many mental math tricks. The site csunplugged.org/en/at-home connects CS concepts to
mind-reading magic, guessing a number, binary search, and activities that have to do with information
theory.

5 CONCLUSIONS

The Number Boxes (Fig. 4) and Secret Tile (Fig. 7) tricks were used in some of the outreach
presentations [16] that reached several thousand students. Students generally expressed great
fascination with these tricks and typically wanted them repeated. In surveys of over 200 students, 79%
rated the “magic tricks” portion of these presentations as “Good” or “Very Good” (as opposed to “Poor”
or “Fair”). Anecdotal evidence from the authors using magic tricks as programming assignments
suggests students are motivated by this type of problem. They talk about them years later.

Computer programs that incorporate magic are both educational and fun, and liven up classroom
discussions and assignments.

ACKNOWLEDGEMENTS
This work is supported in part by Break Through Tech (BTT) Chicago (chicago.breakthroughtech.org).

http://bit.ly/cstamem
https://bit.ly/cardtrick21
http://www.cs4fn.org/magic/
http://csunplugged.org/en/at-home
https://chicago.breakthroughtech.org/

REFERENCES

[1] A. Clark, Profiles of the Future: An Inquiry into the Limits of the Possible. Orion Publishing, 1962.
Reprinted 2000.

[2] P. Curzon and P. McOwan, "Engaging with Computer Science Through Magic Shows," in ACM
SIGCSE Bulletin, vol. 40 no. 3, pp. 179-183, 2010. Retrieved from
https://dl.acm.org/doi/10.1145/1597849.1384320

[3] J. Steinmeyer, Hiding the Elephant. Da Capo Press, 2004.

[4] Wilson J. Gonzalez-Espada, Jennifer Birriel, and Ignacio Birriel. “Discrepant Events: A Challenge to

Students' Intuition,” in The Physics Teacher 48, p. 508, 2010. Retrieved from
https://doi.org/10.1119/1.3502499

[5] D. Reed, Assignment write-up for Magic Letter programming assignment. Accessed 5/4/2022.
Retrieved from sites. le.com/view 111sp22 ignments/program-3-magic-

[6] W. Rapaport, Binary Magic. Accessed 5/4/22. Retrieved from
http://www.cse.buffalo.edu/~rapaport/111F04/binarymagic.html

[7] Binary Magic, Accessed 5/4/22. Retrieved from
http://www.mathmaniacs.org/lessons/01-binary/Maqic_Trick/

[8] Letters and numbers variation of Binary Magic number boxes, Accessed 5/4/22. Retrieved from
http://www.cs4fn.org/mentalism/cardsonyourmind.ph

[9] D. Reed. Difference and sum of reversed digits gives 1089. Accessed 5/4/22. Retrieved from
https://sites.google.com/site/cs141spring2017/programs/prog-1-guess-num

[10] CSUnplugged, Flip over a card trick using parity. Accessed 5/4/22. Retrieved from

https://www.csunplugged.org/en/topics/error-detection-and-correction/integrations/quick-card-flip-m
agic/

[11] R. Greenberg, “Educational magic tricks based on error-detection schemes,” in Proceedings of the
22nd Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE), pp. 170-175. ACM SIGCSE, 2017. https://doi.org/10.1145/3059009.3059034

[12] R. Greenberg and D. Reed, “Using Magic in Computing Education and Outreach,” in Frontiers in
Education (FIE), San Jose, CA, 2018. https://doi.org/10.1109/FIE.2018.8658626

[13] R. Greenberg, Online playable versions of using parity to identify a user-selected card, Accessed
5/4/22. Retrieved from https://rig.cs.luc. ~rig/errdetectmagic
https://doi.org/10.114 . 4

[14] S. McGee, R. Greenberg, D. Reed, and J. Duck, “Evaluation of the IMPACTS Computer Science
Presentations,” The Journal for Computing Teachers, vol. 26, pp. 26—40, 2013. International
Society for Technology in Education.

https://dl.acm.org/doi/10.1145/1597849.1384320
https://aapt.scitation.org/author/Gonz%C3%A1lez-Espada%2C+Wilson+J
https://aapt.scitation.org/author/Birriel%2C+Jennifer
https://aapt.scitation.org/author/Birriel%2C+Ignacio
https://doi.org/10.1119/1.3502499
https://sites.google.com/view/bttcs111sp22/assignments/program-3-magic-square
http://www.cse.buffalo.edu/~rapaport/111F04/binarymagic.html
http://www.mathmaniacs.org/lessons/01-binary/Magic_Trick/
http://www.cs4fn.org/mentalism/cardsonyourmind.php
https://sites.google.com/site/cs141spring2017/programs/prog-1-guess-num
https://www.csunplugged.org/en/topics/error-detection-and-correction/integrations/quick-card-flip-magic/
https://www.csunplugged.org/en/topics/error-detection-and-correction/integrations/quick-card-flip-magic/
https://doi.org/10.1145/3059009.3059034
https://doi.org/10.1109/FIE.2018.8658626
https://rig.cs.luc.edu/~rig/errdetectmagic
https://doi.org/10.1145/3059009.3059034
https://ecommons.luc.edu/cgi/viewcontent.cgi?article=1172&context=cs_facpubs
https://ecommons.luc.edu/cgi/viewcontent.cgi?article=1172&context=cs_facpubs

	Using Magic to Teach Computer Programming
	Author Manuscript
	Recommended Citation

	EDULEARN22 Paper Draft.docx

