Phishing for Fun

Madeline Moran
Loyola University Chicago

Anna Hart
Loyola University Chicago

Loretta Stalans
Loyola University Chicago

Eric Chan-Tin
Loyola University Chicago, dchantin@luc.edu

Shelia Kennison
Oklahoma State University

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

Part of the Computer Sciences Commons, and the Psychology Commons

Recommended Citation
Moran, Madeline; Hart, Anna; Stalans, Loretta; Chan-Tin, Eric; and Kennison, Shelia. Phishing for Fun. CAE Symposium, , :, 2022. Retrieved from Loyola eCommons, Computer Science: Faculty Publications and Other Works,

This work is licensed under a [Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License](https://creativecommons.org/licenses/by-nc-nd/3.0/). © The Authors, 2022.
Abstract: Perform a phishing experiment to see how many people fall victim. This study was approved by the Loyola IRB

Step One: Survey
We conducted a paid survey advertised on Facebook that assessed participants:
- Knowledge of or experience with phishing emails
- Their thinking styles (intuitive, systematic, anxiety level, decision making)
- If they utilized any protective strategies (update regularly, check email sender)
- If they had vulnerable practices (reuse passwords, share passwords)
From this survey we collected their email. Each participants was compensated $3.

Email

Website

Step Two: Creating Phishing Material
We created a phishing email and website to send out to participants which claimed to be for a Covid-19 lottery to win 10,000 dollars

Step Three: Logging activity
In order to gauge each individual’s level of interaction with the phishing scam we had to be able to determine if they had clicked on the email, clicked on the link to the website, and if they had attempted to submit their personal information to the site. In each phishing, we embedded an invisible (1x1 pixel) image with a unique image name.

Step Four: Authenticity
We struggled to get our Gmail account, and subsequently our Python program, to be recognized as legitimate rather than spam. We resolved this issue by implementing SPF, DKIM, and DMARC which gave our program authenticity enough to appear in inboxes.

SPF – Defines what mail servers can send through our domain. This allows us to define our servers IP address as a safe domain to send out emails.

DKIM – Provides a digital signature on to each email to allow recipient servers to verify its authenticity. This helps prevent our email from being labeled as spam.

DMARC – If the email is still caught in spam filters despite SPF and DKIM, DMARC provides instructions for recipient servers on what to do with the email. In this case it allows us to tell other servers not to filter our email.

Step Five: Participant Interaction
We initially sent out our first phishing email to all participants on October 29th along with their virtual gift card to ensure they were looking at their email. We then sent out a secondary email 2 weeks later with a more urgent message ‘Don’t Miss Out!’ to see if more people would respond. Finally, 2 weeks after our final phishing attempt, we sent all participants a debriefing message explaining the purpose of the survey.

Results:
Out of 597 participants who took the survey:
28.3% viewed the phishing email.
13.6% of those who viewed the email clicked on the link to the website.
56.5% of those who went to the website would have submitted their information to the site.
In the future we will attempt to discern if there is any relation between the survey results and the phishing experiments results.

A Special Thank You the Mulcahy Fellowship, an ORS Research Support Grant, and NSF DGE-1918591 and DGE-1919004 for funding this research.