
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

6-2023

Tree-based Unidirectional Neural Networks for Low-Power Tree-based Unidirectional Neural Networks for Low-Power

Computer Vision Computer Vision

Abhinav Goel
Purdue University

Caleb Tung
Purdue University

Nick Eliopoulos
Purdue University

Amy Wang
West Lafayette Junior-Senior High School

Jamie C. Davis
Purdue University

See next page for additional authors

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Artificial Intelligence and Robotics Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation Recommended Citation
A. Goel, C. Tung, N. Eliopoulos, A. Wang, J.C. Davis, G.K. Thiruvathukal, and Y.-H. Lu, "Tree-based
Unidirectional Neural Networks for Low-Power Computer Vision," in IEEE Design & Test, 2022, doi:
10.1109/MDAT.2022.3217016.

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Author Posting © IEEE 2023.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F317&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F317&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Authors Authors
Abhinav Goel, Caleb Tung, Nick Eliopoulos, Amy Wang, Jamie C. Davis, George K. Thiruvathukal, and Yung-
Hisang Lu

This article is available at Loyola eCommons: https://ecommons.luc.edu/cs_facpubs/317

https://ecommons.luc.edu/cs_facpubs/317

1

Tree-based Unidirectional Neural Networks for
Low-Power Computer Vision

Abhinav Goel, Caleb Tung, Nick Eliopoulos, Amy Wang∗, James C. Davis,
George K. Thiruvathukal†, and Yung-Hsiang Lu

Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN, USA
∗West Lafayette Junior-Senior High School, West Lafayette, IN, USA

†Loyola University Chicago, Department of Computer Science, Chicago, IL, USA

Abstract—This article describes the novel Tree-based Unidirec-
tional Neural Network (TRUNK) architecture. This architecture
improves computer vision efficiency by using a hierarchy of
multiple shallow Convolutional Neural Networks (CNNs), instead
of a single very deep CNN. We demonstrate this architecture’s
versatility in performing different computer vision tasks effi-
ciently on embedded devices. Across various computer vision
tasks, the TRUNK architecture consumes 65% less energy and
requires 50% less memory than representative low-power CNN
architectures, e.g., MobileNet v2, when deployed on the NVIDIA
Jetson Nano.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have led to sig-
nificant breakthroughs in many computer vision tasks [1].
The high accuracy of CNNs on computer vision is mainly
attributed to their ability to train billions of parameters for
learning complex functions [2]. The trend in computer vision
research is to improve accuracy by using more resources —
making CNNs deeper, wider, and more strongly connected [2].
Thus, the accuracy gains come with high energy consumption,
memory, and computation overheads.

The state-of-the-art CNNs require several seconds to run
on most embedded devices, e.g., Raspberry Pi [3]. To use
such CNNs to process data captured by cameras on em-
bedded devices, the computation is often offloaded to the
cloud. However, many applications cannot be offloaded, e.g.,
computer vision deployed on drones in areas without high-
speed networks. Privacy concerns also limit the applicability
of cloud-based solutions [3].

Most existing CNNs like ResNet [4] use large monolithic
architectures as seen in Fig. 1(a). Such architectures contain
a single CNN to identify every feature associated with all
categories to make decisions. To understand the shortcomings
of monolithic architectures, consider the image classification
problem: assign a single label from a set of categories to every
input image. These CNNs require a large number of layers to
extract the features associated with every category. However,
when classifying a single image, only a small fraction of the
CNN activations have non-zero values [5]. Since all the CNN
operations have to be performed, there are many redundant
operations. These redundancies decrease the efficiency of
CNNs considerably.

Our work develops Tree-based Unidirectional Neural Net-
work (TRUNK), a new CNN architecture that improves ef-

ficiency [6, 7, 8]. Instead of a single very deep CNN, mul-
tiple shallow CNNs in the form of a tree work together to
perform computer vision tasks. TRUNK finds the similarity
between different categories. Similar categories are grouped
into clusters. Similar clusters are then grouped to form a tree.
The shallow CNNs at every node of TRUNK classify between
different clusters. Fig. 1(b) illustrates the TRUNK architecture,
where the categories are cat, dog, etc. During inference, each
image is first processed by the root CNN. Once a cluster is
selected by the root, another CNN further classifies among the
children of the chosen cluster. This process continues until one
of the leaves of the tree are reached. The CNNs associated with
other clusters are not used during the inference of that image,
thus avoiding redundant arithmetic and memory operations.

Hierarchical computer vision techniques can be categorized
as (a) ensemble or (b) divide-and-conquer. Existing ensemble
techniques combine the output of multiple large CNNs to
increase accuracy at the expense of efficiency [9]. Existing
divide-and-conquer techniques improve efficiency, but result in
significant accuracy losses [10]. This article presents methods
to combine visual similarities with Neural Architecture Search
to construct divide-and-conquer hierarchies that achieve high
efficiency and high accuracy.

(a) (b)

Fig. 1: (a) Existing CNN Architectures: A single monolithic
architecture classifies images into their categories. (b) Pro-
posed TRUNK: The input image is processed incrementally
using small CNNs. After detecting the type of images, finer
classifications are made.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3217016

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Loyola University Chicago. Downloaded on November 04,2022 at 18:38:14 UTC from IEEE Xplore. Restrictions apply.

2

II. TREE-BASED UNIDIRECTIONAL NEURAL NETWORKS

This section describes the proposed Tree-based Unidirec-
tional Neural Network (TRUNK) architecture. We use image
classification to explain the architecture in more detail.

As seen in Fig. 1(b), the proposed architecture contains
multiple small CNNs in the form of a tree. Note that (1) each
input follows a single root-leaf path, and (2) the output of the
parent is the input to the child, ensuring that the operations
performed by a CNN are not repeated multiple times. There-
fore, each root-leaf path of TRUNK acts like an independent
CNN with several layers (divided into small CNNs), leading
to an architecture with fewer redundant operations.

A. Properties Required for TRUNK

Before TRUNK can be used, the hierarchy structure must be
selected. We highlight two properties that TRUNK hierarchies
must satisfy to be both accurate and efficient.

Property 1: The hierarchy structure should perform easy
classifications near the root, and hard classifications near the
leaves. By doing so, the difficult classifications are performed
after more layers have processed the input to extract infor-
mative features. Generally, such hierarchies can achieve high
accuracy even when using smaller CNNs for high efficiency.

When forming the clusters in TRUNK, we can use two main
types of similarity metrics: (a) semantic: objects are linked to
one another using conceptual and lexical relations e.g., cats
and dogs as animals, and (b) visual: objects are linked based
on their appearances e.g., pizzas and plates because of their
circular shape. Our experiments find that visual and semantic
similarities do not always overlap [6].

When using semantic similarities, visually similar categories
like plates and pizzas may belong to different clusters. In this
case, the CNNs close to the root face the difficult task of
distinguishing between pizzas and plates. To perform such
operations accurately, larger and inefficient CNNs may be
required. In comparison, with visual similarities, the CNNs
near the root encounter a relatively easy task. They distinguish
between clusters of visually similar categories. The more
difficult classifications between the visually similar categories
within clusters are performed farther from the root.

Property 2: The hierarchy should have an intermediate
structure, that is neither too wide or too tall. Different
visual similarity metrics may result in different hierarchies
with varying structures. Each hierarchy structure provides a
different accuracy-efficiency tradeoff. For a given hardware
configuration and accuracy requirement, TRUNK hierarchies
should have a hierarchy with appropriate width and height.

Consider a tall-and-narrow hierarchy, with multiple nodes
in each root-leaf path and few children under each node.
This hierarchy uses smaller CNNs at each node because each
CNN only classifies between a small number of clusters (thus,
few children). Although the CNNs perform relatively easy
tasks, they usually do not obtain 100% accuracy. As a result,
the error in each level of the hierarchy gets compounded,
resulting in lower overall accuracy. On the other extreme, a
short-and-wide hierarchy has many children at each node. To
classify more children accurately, larger and more complex

CNNs are required. Such CNNs may resemble the existing
monolithic CNNs that TRUNK aims to replace. If short-and-
wide hierarchies use large CNNs at each node, then TRUNK
can achieve high accuracy, at the cost of lower efficiency.

B. Constructing Efficient and Accurate TRUNK Hierarchies

We now present a method to build TRUNK hierarchies that
follow these properties. Our work finds that most existing
visual similarity metrics require extensive manual fine-tuning
for different datasets, or have constraints on the number of
possible clusters, or are inconsistent in reporting the simi-
larity between objects. Thus, we first develop a novel visual
similarity metric that can solve these problems. We then vary
the parameters of this visual similarity metric to control the
hierarchy structure.

1) Confusion Between Categories: Our work [6] develops
a new visual similarity metric called the Averaged Softmax
Likelihood (ASL). The softmax layer is the CNN’s output
layer that assigns the prediction confidence to each possible
output. Analyzing a CNN’s softmax outputs helps us identify
the categories that are often confused by the CNN. This
CNN confusion is a measure of the visual similarity between
categories. The greater the confusion between categories, the
more visually similar they are.

The use of ASL can be understood with the example in
Fig. 2. Suppose horse and cow are two categories in the
training data. Eqt. (1) describes how the ASL is computed:
the term softmaxC(H) denotes the value obtained at the output
(softmax) layer of the CNN corresponding to the object cow,
when the input actually contains a horse. |H| represents the
number of input samples labeled as horses. Eqt. (1) is the
CNN’s average output for object category cow, when the
inputs are horses. A large LC(H) implies that the CNN
often mispredicts (with high confidence) that images of horses
are cows. In other words, a larger LC(H) implies greater
confusion between categories.

LC(H) =

∑
H

softmaxC(H)

|H|
(1)

The ASL technique described so far can find similarities
between categories only for image classification datasets (each
image has only one object); it cannot be used for images
containing multiple objects (e.g., object counting and detection

Fig. 2: Workflow to use the Averaged Softmax Likelihood to
automatically identify clusters of visually similar categories.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3217016

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Loyola University Chicago. Downloaded on November 04,2022 at 18:38:14 UTC from IEEE Xplore. Restrictions apply.

3

tasks). In a subsequent study [7], we find that a Region
Proposal Network (RPN) can be used to extend the ASL
similarity metric to images with multiple objects. RPNs are
small CNNs that propose regions-of-interest (RoIs): areas in
images that may contain objects. By doing so, the RPN isolates
each object in the image. Since CNNs accept only fixed
sized images, we use a technique called RoI-Pooling to resize
the RoIs without distorting their features. ASL can now be
used with the labeled and resized RoIs to find the similarity
between categories. The workflow for using ASL for images
with a single object and for images with multiple objects is
depicted in Fig. 2. Details about the implementation of ASL
are available in our prior publications [6, 7].

2) Varying Similarity Metric Parameters to Control Hierar-
chy Structure: The similarity metric parameter is a measure
of the strictness of the similarity metric. The similarity metric
parameter decides how similar categories should be to get
grouped into a single cluster. By tuning the parameter to
increase the strictness, the similarity metric enforces small
intra-cluster distances and large inter-cluster distances. In such
cases, small clusters are formed only between highly similar
categories, resulting in a short-and-wide hierarchy. On the
other hand, tuning the parameter to reduce the similarity
metric strictness will make the similarity metric group many
categories to form fewer but larger clusters. This leads to a
tall-and-narrow hierarchy.

By changing the CNN architecture used to compute ASL,
we can tune the similarity metric parameter. The CNN’s
confusion is used to identify clusters of similar categories,
e.g., horse and cow in Fig. 2. Larger and more complex
CNNs are more accurate, and hence are less confused between
categories. Using ASL with larger CNNs tunes the parameter
to increase the strictness of the visual similarity metric, and
consequently makes the hierarchy shorter and wider.

We use an architecture search technique that progressively
grows the CNN, until it finds an architecture until the similarity
metric parameter is tuned appropriately. In the following
section, we describe how to find appropriate similarity metric
parameters for different application requirements. Using this
technique, TRUNK is constructed in a root-down fashion.
First, a CNN architecture is found at the root. Then ASL
groups categories and finds the first level of children. This pro-
cess continues to grow the TRUNK. Finally, back-propagation
is used to train the root CNN to classify between its children.
For each newly formed child node, the process is repeated,
continuing until all categories have been placed as leaves in the
hierarchy. The algorithm to build TRUNK using this technique
is beyond the scope of this article and is available in our prior
publication [6].

C. Adaptation for Different Hardware Configurations

In this section, we describe how to control the attributes
of TRUNK to meet different hardware constraints and ac-
curacy requirements. Edge devices have different computing
resources. The following examples present different scenar-
ios where different TRUNK architectures may be beneficial.
(a) On a powerful edge device equipped with a GPU (e.g.,

TABLE I: Symbols reference.

Symbol Definition

P Similarity metric parameter
F Average fan-out at each node
A Average accuracy on each CNN
S Average workload size on each CNN
L Average hierarchy path length

AT Overall TRUNK accuracy
WT Overall TRUNK workload size

NVIDIA Jetson Nano with 4GB GPU memory), it may be
acceptable to use a shorter-wider hierarchy to increase the
overall accuracy at the expense of an increased computing
workload due to the larger CNNs at each node. (b) On
resource-scarce IoT devices with limited memory and no GPU
(e.g., ARM Cortex M with 500KB memory), the small CNNs
in a taller-narrower hierarchy may be required. (c) If TRUNK
is unable to achieve the target accuracy on a given device,
then an alternate device with more memory may be required.
The larger memory would be able to accommodate larger
CNNs, thus allowing a more accurate shorter-wider (also less
efficient) hierarchy.

To understand how to adapt TRUNK for varying require-
ments, we build two mathematical models that describe the
TRUNK accuracy (AT) and TRUNK workload size (WT).
The overall workload size represents the overall memory
requirement, number of operations, or energy consumption.
For simplicity, our experiments measure the overall memory
requirement of TRUNK. Since the CNN’s number of op-
erations, energy consumption, and memory requirement are
related, the same mathematical model and analysis can be
extended for the other metrics [2, 3]. These models are built
using five key attributes (listed in TABLE I) that impact
TRUNK’s performance.

The overall TRUNK accuracy (AT) depends on the average
CNN accuracy (A) and the average path length (L). The
following example presents a simple analysis. Suppose A is
95% and there are 100 images in the test set. At the root,
we can expect that 95/100 images are classified correctly. At
the next level of the hierarchy, 95% of these 95 images are
correctly classified again. For an entire hierarchy with depth,
L, the expected overall test accuracy is modeled by eqt. (2).

AT = AL (2)

Here, we see that TRUNK’s accuracy decreases as the depth
of the hierarchy increases. When L is large, A→ 1.0 is needed
to achieve high accuracy. For example, to achieve AT > 0.95,
with L = 2, A must exceed 0.97. However, prior research
shows that in order to achieve A → 1.0, the CNN model, S,
needs to increase significantly [2]. In most cases, we can say
that A and S are positively correlated. Thus, increasing A may
not be always be useful. We may need to decrease L.
L can be controlled by varying the similarity metric pa-

rameter (P) and the average fan-out (F) at each node of the
hierarchy. P is a measure that decides if categories are similar
enough to be grouped into a cluster. A large P leads to the
formation of many small clusters of highly similar categories.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3217016

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Loyola University Chicago. Downloaded on November 04,2022 at 18:38:14 UTC from IEEE Xplore. Restrictions apply.

4

This results in a short-and-wide hierarchy with a large fan-
out (F). A smaller P reduces the strictness of the similarity
metrics and forms fewer but larger clusters, resulting in a tall-
and-narrow hierarchy. In tall hierarchies, the paths are longer
and hence we can see that P and F are positively correlated
with one another, and they are negatively correlated with L.

The TRUNK overall workload size (WT) can also be
modeled. Thus, worst-case WT is the sum of the individual
CNN workloads along the longest root-leaf path. Thus, WT

depends on L and the average workload size of each CNN,
S; and is modeled by eqt. (3). Our analysis uses the memory
requirement of TRUNK as a proxy for the workload size, be-
cause prior research shows that the CNN number of operations,
energy consumption, and memory requirement are related [2,
3].

WT = S × L (3)

Similar to L, S can also be controlled by varying P and
F . As P and F increase, the problem at each CNN becomes
larger and more complex. A large F resembles the existing
monolithic CNNs like ResNet [4], and requires large CNNs
for high accuracy. Thus, as F increases the CNN workload
size (S) needs to increase to maintain the same accuracy A.

An ideal TRUNK hierarchy increases AT and simultane-
ously decreases WT . To increase AT the hierarchy needs a
small depth (L) and consequently a large fan-out (F) (L and
F are negatively correlated). A large F requires large CNNs
(S) to ensure no change in the accuracy at each node (A).
This in turn increases WT significantly. Thus, using these
models, the TRUNK attributes can be tuned to achieve the
desired tradeoff after considering the hardware constraints and
accuracy requirements. We describe experiments in Section IV
to validate these relationships.

III. TRUNK FOR EFFICIENT COMPUTER VISION
APPLICATIONS

In this section, we use the object counting and re-
identification (reID) problems to show how Tree-based Uni-
directional Neural Network (TRUNK) can solve different
computer vision tasks beyond image classification. In the
object counting problem, the goal is to report the number of
occurrences of a queried object category in an image with
multiple objects. To avoid counting the same object multiple
times, object counting is commonly combined with object
reID. In the object reID problem, the goal is to identify if an
image contains an object that has been seen before (possibly
from a different angle or camera).

A. Object Counting

Existing object counters are based on object detectors. Most
techniques use Region Proposal Networks (RPNs) to propose
regions-of-interest (RoIs) in an image [11]. These methods
then process all the RoIs with large CNNs to find all objects;
finally, the occurrences of the queried object are counted.
This process is highly redundant, because if we are only
interested in counting workers wearing hard hats in an image,

(a)

(b)

Fig. 3: TRUNK used for different computer vision applica-
tions. (a) Object Counting: When attempting to count the
number of workers wearing hard hats, only the RoIs classified
into Cluster 1 and subsequently Cluster 4 are processed. All
other RoIs are discarded to improve efficiency. (b) Object re-
identification: Each small CNN identifies an attribute in the
query image. With TRUNK we only rank gallery images with
the same attributes as the query. Image source: Market-1501
dataset.

the computation involved in using large CNNs to detect every
single object is not required.

TRUNK can perform object counting more efficiently than
existing techniques, as seen in Fig. 3(a). A RPN is used to find
RoIs (shown with red bounding boxes) in the image. Instead of
processing each RoI with a large CNN, when using TRUNK,
the RoIs are processed by the small CNN at the root. Only the
RoIs that get classified onto the root-leaf path that contains the
queried object (e.g., workers wearing hard hats) are processed
by the next CNN. The other RoIs are not processed further,
thus allowing us to increase efficiency.

B. Object Re-identification

Most existing reID techniques use large CNNs to extract
features from the query image. The Euclidean Distance is
used to compare these features with the features of every
gallery image. The gallery images are ranked based on their
distance from the query image. This typical approach performs
many redundant operations because query images need not be
compared with every gallery image. For example, the query
image in Fig. 3(b) (a person with long hair and a bag) could
be compared only to other people with long hair and bags —
gallery images (b) and (f).

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3217016

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Loyola University Chicago. Downloaded on November 04,2022 at 18:38:14 UTC from IEEE Xplore. Restrictions apply.

5

When using TRUNK for object reID, each small CNN of
the hierarchy extracts features from the query and routes the
query among its subsequent branches. Fig. 3(b) illustrates
this approach. The query image of a pedestrian is processed
by the root CNN to determine if the person has long hair.
After the first attribute identification, the gallery reduces to
images (a), (b), and (f). The next CNN continues to process
the image and identifies if the person is carrying a bag. This
attribute identification reduces the gallery to images (b) and
(f). This process continues until a leaf CNN is reached. The
features from the leaf CNN are used to perform comparisons
with the remaining gallery images to re-identify the person.
Because each node specializes in processing images with
specific attributes, small, efficient CNNs can be used to obtain
high accuracy.

IV. EXPERIMENTAL EVALUATION

We conduct experiments to evaluate the TRUNK archi-
tecture for three computer vision applications: image clas-
sification, object counting, and object re-identification. We
implement TRUNK using PyTorch. More details about the
experimental setup and backbone architectures are available
in our prior publications [6, 7, 8], and links to the prototypes.

TABLE II compares the test error of the proposed approach
with existing techniques: hierarchical clustering, semantic sim-
ilarities, and random grouping. Using ASL with NAS, TRUNK
has the lowest error when the model sizes are the same.

TABLE III compares TRUNK with representative energy-
efficient techniques: MobileNet v2 [1] for image classification
on the CIFAR-10 dataset, YOLOv3 [12] for object counting
on the PASCAL-VOC dataset, and ResNet50 [4] for object
reID on the Market-1501 dataset. These techniques are existing
(non-hierarchical) architectures that consume the least energy.
The techniques are evaluated in terms of test error, memory

TABLE II: Comparison of test error with different hierarchy
construction techniques. Blue font indicates best result.

Classification
CIFAR-10

Counting
PASCAL-VOC

reID
Market-1501

Clustering TRUNK Semantic TRUNK Random TRUNK

Test
Error 0.231 0.079 2.560 1.800 0.212 0.115

TABLE III: Comparison of TRUNK with existing techniques.
Blue font indicates best result for each application and metric.

Classification
CIFAR-10

Counting
PASCAL-VOC

reID
Market-1501

MobileNet TRUNK YOLOv3 TRUNK ResNet TRUNK

Test
Error 0.060 0.079 1.610 1.800 0.128 0.115

Mem.
(MB) 8.80 0.80 248.00 16.00 103.00 14.00

#Ops
(×106) 100 28 141,000 44,000 3,882 808

Energy
(J/img) 5.50 1.05 162.00 8.10 21.63 2.70

Fig. 4: As the fan-out (F) increases, the required workload size
at one node (S) increases super-linearly and the hierarchy path
length (L) decreases. Note that F is plotted on a logarithmic
scale.

requirement (in MB), number of arithmetic operations, and
energy consumption when deployed on a NVIDIA Jetson
Nano. The test error for classification, counting, and reID are
measured as 1− test accuracy, Root Mean Squared Error [7],
and Rank-1 error [8] metrics, respectively. For TRUNK, we
report the worst case memory, operations, and energy require-
ment per image, i.e., the sum of the values along the longest
root-leaf path. Experiments in our prior publications show that
TRUNK can be used to improve efficiency on larger datasets,
e.g., ImageNet, MS COCO, and VRAI [6]. On the larger
datasets, TRUNK requires 70% less energy and memory, but
achieves ∼3% lower accuracy.

TRUNK consistently requires less memory and arithmetic
operations, thus indicating higher efficiency. The performance
gains come with a marginal loss in accuracy when compared
with the state-of-the-art. Our experiments on the popular
NVIDIA Jetson Nano reveals that the energy consumption and
processing time of TRUNK is 80% to 95% lower than existing
techniques across different computer vision applications and
datasets. Our prior publications contain more experiments that
analyze the impact of similarity metrics, thermal throttling, and
embedded device hardware on overall performance [6, 7, 8].
Due to space constraints, we do not tabulate all the results [13].

Fig. 4 experimentally validates the mathematical models
presented in eqt. (2) and (3). As mentioned in Section II-C,
the overall workload size represents the overall memory
requirement, number of operations, or energy consumption.
For simplicity, our experiments measure the overall memory
requirement of TRUNK. We construct hierarchies with varying
fan-out (F) and plot the average CNN workload size (S) and
hierarchy path length (L). For the CIFAR-100 dataset, we find
that F is negatively correlated with L; depicted in Fig. 4 (white
circles). The black circles in Fig. 4) show that as F increases
the S grows super-linearly. Thus, these experiments show that
decreasing L to increase accuracy (AT) increases the workload

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3217016

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Loyola University Chicago. Downloaded on November 04,2022 at 18:38:14 UTC from IEEE Xplore. Restrictions apply.

6

size (WT) significantly. Thus, we use eqt. (2) and (3) to find
appropriate hierarchy structures.

V. DISCUSSION AND CONCLUSION

In this article, we describe the Tree-based Unidirectional
Neural Network (TRUNK) architecture that organizes multiple
small CNNs in the form of a hierarchy. We present two
important properties that are required by TRUNK to ensure
high efficiency with high accuracy. Using those properties
we develop a method to combine our novel visual similarity
metric with neural architecture search to define hierarchy
structures. We then build mathematical models that help adapt
the TRUNK hierarchy structure to meet different hardware
constraints and accuracy requirements. Finally, we also show
the versatility of TRUNK to accurately perform different com-
puter vision problems accurately on embedded devices. Our
experiments confirm that TRUNK improves the deployability
of computer vision systems.

This article highlights the application of TRUNK in three
selected computer vision tasks. Looking forward, TRUNK can
improve the efficiency of any deep learning task that benefits
from a smaller search space, which is often the case in the real-
world, where we are looking for very specific categories. The
hierarchy structure effectively reduces the problem size, thus
allowing smaller CNNs to complete the same task with fewer
computational resources. Furthermore, this approach can be
useful in other application scenarios. (a) Incremental learning:
where new categories are discovered incrementally over time.
When using TRUNK, only a small subset of CNNs need
to be re-trained to accommodate a new object category. The
other CNNs can be left unchanged. (b) Imbalanced datasets:
some categories appear more often than others. The more
frequently occurring objects can be placed closer to the root,
thus allowing the objects to get classified faster.

The TRUNK approach represents a promising step for
processing visual data on embedded devices. Future research
could improve the utility of TRUNK by increasing its accuracy
and versatility, without sacrificing efficiency.

Abhinav Goel received the Ph.D. degree from the Elmore Family School of
Electrical and Computer Engineering at Purdue University in May 2022. His
primary research focus is on efficient and low-power computer vision systems.

Caleb Tung is a doctoral student in the Elmore Family School of Electrical
and Computer Engineering at Purdue University. Caleb’s research is on
energy-efficient computer vision on embedded devices.

Nick Eliopoulos is a doctoral student in the Elmore Family School of
Electrical and Computer Engineering at Purdue University. Nick’s research
interest is in real-time computer vision and remote sensing.

Amy Wang is a high school student at West Lafayette Junior-Senior High
School. She is interested in pursuing research in a computer science field.

James C. Davis is an assistant professor in the Elmore Family School of
Electrical and Computer Engineering at Purdue University. His research is in
empirical software engineering, focused on factors influencing the security of
cyber- and cyber-physical systems.

George K. Thiruvathukal is a professor and chairperson in the Department
of Computer Science of Loyola University Chicago. His research interests
include parallel computing, software engineering, and computer vision.

Yung-Hsiang Lu is a professor in the Elmore Family School of Electrical
and Computer Engineering at Purdue University. He is a fellow of the IEEE
and distinguished scientist of the ACM.

REFERENCES

[1] A. G. Howard et al. “MobileNets: Efficient Convo-
lutional Neural Networks for Mobile Vision Applica-
tions”. In: 2017 arXiv:1704.04861.

[2] S. Bianco et al. “Benchmark Analysis of Representative
Deep Neural Network Architectures”. In: 2018 IEEE
Access.

[3] G K. Thiruvathukal et al. Low-Power Computer Vision:
Improve the Efficiency of Artificial Intelligence. CRC
Press, 2022.

[4] K. He et al. “Deep Residual Learning for Image Recog-
nition”. In: 2016 IEEE CVPR.

[5] S. Han et al. “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization
and Huffman Coding”. In: 2015 arXiv:1510.00149.

[6] A. Goel et al. “Modular Neural Networks for Low-
Power Image Classification on Embedded Devices”. In:

[7] A. Goel et al. “Low-Power Object Counting with
Hierarchical Neural Networks”. In: 2020 ACM/IEEE
ISLPED.

[8] A. Goel et al. “Low-Power Multi-Camera Object Re-
Identification using Hierarchical Neural Networks”. In:
2021 IEEE/ACM ISLPED.

[9] Z. Yan et al. “HD-CNN: Hierarchical Deep Convolu-
tional Neural Networks for Large Scale Visual Recog-
nition”. In: 2015 IEEE ICCV.

[10] X. Zhu et al. “B-CNN: Branch Convolutional Neu-
ral Network for Hierarchical Classification”. In: 2017
arXiv:1709.09890.

[11] S. Ren et al. “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks”. In: 2016
arXiv:1506.01497.

[12] J Redmon et al. “YOLOv3: An Incremental Improve-
ment”. In: 2018 arXiv:1804.02767.

[13] URL: https://github.com/abhinavgoel95/TRUNK.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3217016

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Loyola University Chicago. Downloaded on November 04,2022 at 18:38:14 UTC from IEEE Xplore. Restrictions apply.

	Tree-based Unidirectional Neural Networks for Low-Power Computer Vision
	Author Manuscript
	Recommended Citation
	Authors

	Tree-based Unidirectional Neural Networks for Low-Power Computer Vision

