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Chapter 15
Image Provenance Analysis

Daniel Moreira, William Theisen, Walter Scheirer, Aparna Bharati,
Joel Brogan, and Anderson Rocha

The literature of multimedia forensics is mainly dedicated to the analysis of sin-
gle assets (such as sole image or video files), aiming at individually assessing their
authenticity. Different from this, image provenance analysis is devoted to the joint
examination of multiple assets, intending to ascertain their history of edits, by eval-
uating pairwise relationships. Each relationship, thus, expresses the probability of
one asset giving rise to the other, through either global or local operations, such as
data compression, resizing, color-space modifications, content blurring, and content
splicing. The principled combination of these relationships unveils the provenance
of the assets, also constituting an important forensic tool for authenticity verification.
This chapter introduces the problem of provenance analysis, discussing its impor-
tance and delving into the state-of-the-art techniques to solve it.

15.1 The Problem

Consider a questioned media asset, namely a query (such as a digital image whose
authenticity is suspect), and a large corpus of media assets (such as the Internet).
Provenance analysis comprises the problemof (i) finding,within the available corpus,

D. Moreira · W. Theisen · W. Scheirer (B)
University of Notre Dame, Notre Dame, IN, USA
e-mail: walter.scheirer@nd.edu

A. Bharati
Lehigh University, Bethlehem, PA, USA

J. Brogan
Oak Ridge National Laboratory, Oak Ridge, TN, USA

A. Rocha
University of Campinas, Campinas, Brazil

© The Author(s) 2022
H. T. Sencar et al. (eds.),Multimedia Forensics, Advances in Computer Vision and Pattern
Recognition, https://doi.org/10.1007/978-981-16-7621-5_15

389

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-7621-5_15&domain=pdf
mailto:walter.scheirer@nd.edu
https://doi.org/10.1007/978-981-16-7621-5_15


390 D. Moreira et al.

Fig. 15.1 Images that became viral on the web in the last decade, all with unknown sources.
In a, the claimed world’s first dab, supposedly captured during WWII. The dabbing soldier was
highlighted, to make himmore noticeable. In b, the claimed proof of an unlikely friendship between
the Notorious B.I.G., on the left, and Kurt Cobain, on the right. In c, a photo of a supposed NATO
meeting aimed at supporting a particular political narrative

Fig. 15.2 A reverse image search of Fig. 15.1a leads to the retrieval of these two images, among
others. Figure15.1a is probably the result of cropping (a), which in turn is a color transformation
of (b). The dabbing soldier was highlighted in a, to make him more noticeable. Image (b) is, thus,
the source, comprising a behind-the-scenes picture from Dunkirk (2017)

the assets that directly and transitively share content with the query, as well as of (ii)
establishing the derivation and content-donation processes that explain the existence
of the query. Take, for example, the three queries depicted in Fig. 15.1, which became
viral images in the last decade. Reasons for their virality range from the popularity of
harmless pop-culture jokes and historical oddities (such as in the case of Fig. 15.1a,
b) to interest in more critical political narratives and agendas (such as in Fig. 15.1c).
Provenance analysis offers a principled and automated framework to debunk such
media types by retrieving and associating other assets that help to elucidate their
authenticity.

To get a glimpse of the expected outcome of performing provenance analysis,
one could manually submit each one of the three queries depicted in Fig. 15.1 to a
reverse image search engine, such asTinEye (2021), and try to select and associate the
retrieved images to the queries by hand. This process is illustrated through Figs. 15.2,
15.3, and 15.4. Based on Fig. 15.2, for instance, one can figure out that the claimed
world’s first dab, supposedly captured during WWII, is a crop of Fig. 15.2a, which
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Fig. 15.3 A reverse image search of Fig. 15.1b leads to the retrieval of these two images, among
others. Figure15.1b is probably a composition of (a) and (b), where a donates the background,
while b donates the Notorious B.I.G. on his car’s seat. Cropping and color corrections are also
performed to complete the forgery

Fig. 15.4 A typical reverse image search of Fig. 15.1c leads to the retrieval of a but not b. Image
b was obtained through one of the content retrieval techniques presented in Sect. 15.2 (context
incorporation). Figure15.1c is, thus, a composition of a and b, where a donates the background
and b donates Vladimir Putin. Cropping and color corrections are also performed to complete the
forgery

in turn is a color modified version of Fig. 15.2b, a well-known picture of the cast of
the Hollywood movie Dunkirk (2017).

Figure15.3, in turn, helps to reveal that Fig. 15.1b is actually a forgery (com-
position), where Fig. 15.3a probably serves as the background for the splicing of
the Notorious B.I.G. on his car’s seat, taken from Fig. 15.3a. In a similar fashion,
Fig. 15.4 points out that Fig. 15.1c is also a composition, this time using Fig. 15.4a
as background, and Fig. 15.4b as the donor of the portrayed individual. In this par-
ticular case, Fig. 15.4b is not easily found by a typical reverse image search. To do
so, we had to perform context incorporation, a content retrieval strategy adapted to
provenance analysis that is explained in Sect. 15.2.

In the era of misinformation and “fake news”, there is a symptomatic crisis of trust
in the media assets shared online. People are aware of editing software, with which
even unskilled users can quickly fabricate andmanipulate content. Althoughmany of
these manipulations have benign purposes (no, there is nothing wrong with the silly
memes you share), some content is generated with malicious intent (general public
deception and propaganda), and some modifications may undermine the ownership
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of the media assets. Under this scenario, provenance analysis reveals itself as a
convenient tool to expose the provenance of the assets, aiding in the verification of
their authenticity, protecting their ownership, and restoring credibility.

In the face of the massive amount of data produced and shared online, though,
there is no space for performing provenance analysis manually, such as formerly
described. Besides the need for particular adaptations such as context incorporation
(see Sect. 15.2), provenance analysis must also be performed at scale automati-
cally and efficiently. By combining ideas from image processing, computer vision,
graph theory, and multimedia forensics, provenance analysis constitutes an interest-
ing interdisciplinary endeavor, into which we delve into in detail in the following
sections.

15.1.1 The Provenance Framework

Provenance analysis can be executed at scale and fully automated by following a basic
framework that involves two stages. Such a framework is depicted in Fig. 15.5. As
one might observe, the first stage is always related to the activity of content retrieval,
which incorporates a questioned media asset (a.k.a. the query) and a corpus of media
assets to retrieve a selection of assets of interest that are related to the query.

Figure15.6 depicts the expected outcome of content retrieval for Fig. 15.1b as the
query. In the case of provenance analysis, the content retrieval activity must retrieve
not only the objects that directly share content with the query but also transitively.
Take, for example, images 1, 2, and 3 within Fig. 15.6, which all share some visual

Fig. 15.5 The provenance framework. Provenance analysis is usually executed in two stages.
Starting from a given query and a corpus of media assets, the first stage is always related to the
content retrieval activity, which is herein explained in Sect. 15.2. The first stage’s output is a list
of assets of interest (content list), which is fed to the second stage. The second stage, in turn, may
either comprise the activity of graph construction (discussed within Sect. 15.3) or the activity of
content clustering (discussed within Sect. 15.4). While the former activity aims at organizing the
retrieved assets in a provenance graph, the latter focuses on establishing meaningful asset clusters
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Fig. 15.6 Content retrieval example for a given query. The desired output of content retrieval for
provenance analysis is a list of media assets that share content with the query, either directly (such as
objects 1, 2, and 3) or transitively (object 4, through object 1). Methods to perform content retrieval
are discussed in Sect. 15.2

elements with the query. Image 4, however, has nothing in common with the query.
But its retrieval is still desirable because it shares visual content with image 1 (the
head of Tupac Shakur, on the right), hence it is related to the query transitively.
Techniques to perform content retrieval for the provenance analysis of images are
presented and discussed in Sect. 15.2.

Once a list of relatedmedia assets is available, the provenance framework’s typical
execution moves forward to the second stage, which has two alternate modes. The
first, provenance graph construction, aims at computing the directed acyclic graph
whose nodes individually represent the query and the related media assets and whose
edges express the edit and content-donation story (e.g., cropping, blurring, splicing,
etc.) between pairs of assets, linking seminal to derived elements. It, thus, embodies
the provenance of the objects it contains. Figure15.7 provides an example of prove-
nance graph, constructed for the media assets depicted in Fig. 15.6. As shown, the
query is probably a crop of image 1, which is a composition. It uses image 2 as back-
ground and splicing objects from images 3 and 4 to complete the forgery. Methods
to construct provenance graphs from sets of images are presented in Sect. 15.3.

The provenance framework may be changed by replacing the second stage of
graph construction with a content clustering approach. This setup is sound in the
study of contemporary communication on the Internet, such as exchanging memes
and the reproduction of viral movements. Dabbing (see Fig. 15.1a), for instance, is an
example of this phenomenon. In these cases, the users’ intent is not limited to retriev-
ing near-duplicate variants or compositions that make use of a given query. They are
also interested in the retrieval and grouping of semantically similar objects, which
may greatly vary in appearance to elucidate the provenance of a trend. This situation
is represented in Fig. 15.8. Since graph construction may not be the best approach to
organize semantically similar media assets obtained during content retrieval, content
clustering reveals itself as an interesting option, as we discuss in Sect. 15.4.
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Fig. 15.7 Provenance graph example. This graph is constructed using the media assets retrieved
in the example given through Fig. 15.6. In a nutshell, it expresses that the query is probably a crop
of image 1, which in turn is a composition forged by combining the contents of images 2, 3, and 4.
Methods to perform provenance graph construction are presented in Sect. 15.3

Fig. 15.8 Content retrieval of semantically similar assets. Some applications might aim at identify-
ing particular behaviors or gestures that are depicted in a meme-style viral query. That might be the
case for someone trying to understand the trend of dabbing, which is reproduced in all of the images
above. In such a case, provenance content retrieval might still be helpful to fetch related objects.
Graph construction, however, may be rendered useless due to the dominant presence of semantically
similar objects rather than near-duplicates or compositions. In such a situation, we propose using
content clustering as the second stage of the provenance framework, which we discuss in Sect. 15.4

15.1.2 Previous Work

Early Work: De Rosa et al. (2010) have mentioned the importance of considering
groups of images instead of single images while performing media forensics. Start-
ing with a set of images of interest, they have proposed to express pairwise image
dependencies through the analysis of the mutual information between every pair of
images. By combining these dependencies into a single correlation adjacency matrix
for the entire image set, they have suggested the generation of a dependency graph,
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whose edges should be individually evaluated as being in accordance with a partic-
ular set of image transformation assumptions. These assumptions should presume
a known set of operations, such as rotation, scaling, and JPEG compression. Edges
unfit to these assumptions should be removed.

Similarly, Kennedy and Chang (2008) have explored solutions to uncover the
processes through which near-duplicate images have been copied or manipulated.
By relying on the detection of a closed set of image manipulation operations (such
as cropping, text overlaying, and color changing), they have proposed a system
to construct visual migration maps: graph data structures devised to express the
parent-child derivation operations between pairs of images, being equivalent to the
dependency graphs proposed in De Rosa et al. (2010).

Image Phylogeny Trees: Rather than modeling an exhaustive set of possible oper-
ations between near-duplicate images, Dias et al. (2012) designed and adopted a
robust image similarity function to compute a pairwise image similarity matrix M.
For that, they have introduced an image similarity calculation protocol to generate
M, which is widely used across the literature, including provenance analysis. This
method is detailed in Sect. 15.3. To obtain a meaningful image phylogeny tree from
M, to represent the evolution of the near-duplicate images of interest, they have intro-
duced oriented Kruskal, a variation of Kruskal’s algorithm that extracts an oriented
optimum spanning tree from M. As expected, phylogeny trees are analogous to the
aforementioned dependency graphs and visual migration maps.

In subsequentwork,Dias et al. (2013) have reported a large set of experimentswith
their methodology in the face of a family of six possible image operations, namely
scaling, warping, cropping, brightness and contrast changes, and lossy compression.
Moreover, Dias et al. (2013) have also explored the replacement of oriented Kruskal
with other phylogeny tree-building methods, such as oriented Prim and Edmond’s
optimum branching.

Melloni et al. (2014) have contributed to the topic of image phylogeny tree
reconstruction by investigating ways to combine different image similarity metrics.
Bestagini et al. (2016) have focused on the clues left by local image operations (such
as object splicing, object removal, and logo insertion) to reconstruct the phylogeny
trees of near-duplicates. More recently, Zhu and Shen (2019) have proposed heuris-
tics to improve phylogeny trees by correcting local image inheritance relationship
edges. Castelletto et al. (2020), in turn, have advanced the state of the art by training a
denoising convolutional autoencoder that takes an image similarity adjacency matrix
as input and returns an optimum spanning tree as the desired output.

Image Phylogeny Forests: All the techniques mentioned so far were conceived to
handle near-duplicates. Aiming at providing a solution to deal with semantically
similar images, Dias et al. (2013) have extended the oriented Kruskal method pro-
posed in Dias et al. (2012) to what they named the automatic oriented Kruskal. This
technique is an algorithm to compute a family of disjoint phylogeny trees (hence a
phylogeny forest) from a given set of near-duplicate and semantically similar images,
such that each disjoint tree describes the relationships of a particular group of near-
duplicates.
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In the same direction, Costa et al. (2014) have provided two extensions to the
optimum branching algorithm proposed in Dias et al. (2013), namely automatic
optimum branching and extended automatic optimum branching. Both solutions are
based on the automatic calculation of branching cut-off execution points. Alter-
natively, Oikawa et al. (2015) have proposed the use of clustering techniques for
finding the various disjoint phylogeny trees. Images coming from the same source
(near-duplicates) should be placed in the same cluster, while semantically similar
images should be placed in different clusters.

Milani et al. (2016), in turn, have suggested relying on the estimation of the
geometric localization of captured viewpoints within the images as a manner to dis-
tinguish between near-duplicates (which should share viewpoints) from semantically
similar objects (which should present different viewpoints). Lastly, Costa et al. (2017)
have introduced solutions to improve the creation of the pairwise image similarity
matrices, even in the presence of semantically similar images and regardless of the
graph algorithm used to construct the phylogeny trees.

Multiple Parenting: Previously mentioned phylogeny work did not address the crit-
ical scenario of image compositions, in which objects from one image are spliced
into another. Aiming at dealing with these cases, de Oliveira et al. (2015) have
modeled every composition as the outcome of two parents (one donor, which pro-
vides the spliced object, and one host, which provides the composition background).
Extended automatic optimum branching, proposed in Costa et al. (2014), should
then be applied for the reconstruction of ideally three phylogeny trees: one for the
near-duplicates of the donor, one for the near-duplicates of the host, and one for the
near-duplicates of the composite.

Other Types ofMedia:Besides processing still images, someworks in the literature
have addressed the phylogeny reconstruction of assets belonging to other types of
media, such as video (seeDias et al. 2011; Lameri et al. 2014; Costa et al. 2015, 2016;
Milani et al. 2017) and even audio (see Verde et al. 2017). In particular, Oikawa et
al. (2016) have investigated the role of similarity computation between digital objects
(such as images, video, and audio) in multimedia phylogeny.

Provenance Analysis: The herein-mentioned literature of media phylogeny has
made use of diverse metrics, individually focused on retrieving either the root, the
leaves, or the ancestors of a node within a reconstructed phylogeny tree, evaluating
the tree as a whole. Moreover, the datasets used in the experiments presented dif-
ferent types of limitations, such as either containing only images in JPEG format or
lacking compositions with more than two sources (cf. object 1 depicted in Fig. 15.7).

Aware of these limitations and aiming to foster more research in the topic of
multi-asset forensic analysis, the American Defense Advanced Research Projects
Agency (DARPA) and the National Institute of Standards and Technology (NIST)
have joined forces to introduce new terminology, metrics, and datasets (all herein
presented, in the following sections), within the context of the Media Forensics
(MediFor) project (see Turek 2021). Therefore, they coined the term Provenance
Analysis to express a broader notion of phylogeny reconstruction, in the sense of
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including not only the task of reconstructing the derivation stories of the assets of
interest but also the fundamental step of retrieving these assets (as we discuss in
Sect. 15.2). Furthermore, DARPA and NIST have suggested the use of directed
acyclic graphs (a.k.a. provenance graphs), instead of groups of trees, to represent
the derivation story of the assets better.

15.2 Content Retrieval

With the amount of content on the Internet being so vast, performing almost any
type of computationally expensive analysis across the web’s entirety or even smaller
subsets for that matter is simply intractable. Therefore, when setting out to tackle the
task of provenance analysis, a solution must start with an algorithm for retrieving a
reasonably-sized subset of relevant data from a larger corpus of media. With this in
mind, effective strategies for content retrieval become an integral module within the
provenance analysis framework.

This section will focus specifically on image retrieval algorithms that provide
results contingent on one or multiple images as queries into the system. This image
retrieval is commonly known as reverse image search or more technically Content-
Based Image Retrieval (CBIR). For provenance analysis, an appropriate CBIR algo-
rithm should produce a corpus subset that contains a rich collection of images with
relationships relevant to the provenance of the query image.

15.2.1 Approaches

Typical CBIR: Typical CBIR solutions employ multi-level representations of the
processed images to reduce the semantic gap between the image pixel values (in
the low level) and the system user’s retrieval intent (in the highlevel, see Liu et al.
2007). Having provenance analysis inmind, the primary intent is to trace connections
between images that mutually share visual content. For instance, when performing
the query from Fig. 15.6, one would want a system to retrieve images that contain
identical or near-identical structural elements (such as the corresponding images,
respectively, depicting the Notorious B.I.G. and Kurt Cobain, both used to generate
the composite query, but not other images of unrelated people sitting in cars). Con-
sidering that, we can describe an initial concrete example of a CBIR system that is
not entirely suited to provenance analysis and further gradually provide methods to
make it more suitable to the problem at hand.

A typical and moderately useful CBIR system for provenance analysis may rely
on local features (a.k.a. keypoints) to obtain a low-level representation of the image
content. Hence, it may consist of four steps, namely: (1) feature extraction, (2)
feature compression, (3) feature retrieval, and (4) result ranking. Feature extraction
comprises the task of computing thousands of n-dimensional representations for
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Fig. 15.9 SURF keypoints extracted from a given image. Each yellow circle represents a keypoint
location, whose pixel values generate an n-dimensional feature vector. In a, a regular extraction
of SURF keypoints, as defined by Bay et al. (2008). In b, a modified keypoint extraction dubbed
distributed keypoints, proposed byMoreira et al. (2018), whose intention is also to describe homoge-
neous regions, such as the wrist skin and clapboard in the background. Images adapted from Daniel
Moreira et al. (2018)

each image, ranging from classical handcrafted technologies, such as Scale Invariant
Feature Transform (SIFT, see Lowe 2004) and Speeded-up Robust Features (SURF,
see Bay et al. 2008), to neural network learned methods, such as Learned Invariant
Feature Transform (LIFT, see Yi et al. 2016) and Deep Local Features (DELF, see
Noh et al. 2017). Figure15.9a depicts an example of SURF keypoints extracted from
a target image.

Although the feature-based representation of images drastically reduces the
amount of space needed to store their content, there is still a necessity for reduc-
ing their size, a task performed during the second CBIR step of feature compression.
Take, for example, a CBIR system that extracts 1,000 64-dimensional floating-point
SURF features from each image. Using 4 bytes for each dimension, each image
occupies a total of 4 × 64 × 1000 = 256,000 bytes (or 256kB) of memory space.
While that may seem relatively low from a single-image standpoint, consider an
image database containing ten million images (which is far from being an unrealis-
tic number, considering the scale of the Internet). This would mean the need for an
image index on the order of 25 terabytes. Instead, we recommend utilizingOptimized
Product Quantization (OPQ, see Ge et al. 2013) to reduce the size of each feature
vector. In summary, OPQ learns grids of bins arranged along different axes within the
feature vector space. These bin grids are rotated and scaled within the feature vector
space to distribute optimally feature vectors extracted from an example training set.
This provides a significant reduction in the number of bits required to describe a
vector while keeping relatively high fidelity. For the sake of illustration, a simplified
two-dimensional example of OPQ bins is provided in Fig. 15.10.

The third CBIR step (feature retrieval) aims at using the local features to index
and compare, within the optimized n-dimensional space they constitute, and through
Euclidean distance or similar method, pairs of image localities. Inverted File Indices
(IVF, see Baeza-Yates and Ribeiro-Neto 1999) are the index structure commonly
used in the feature retrieval step. Utilizing a feature vector binning scheme, such
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Fig. 15.10 A simplified 2D representation of OPQ. A set of points in the feature space a is re-
described by rotating and translating grids of m bins to high-density areas (b), in red. The grid
intervals and axis are learned separately for each dimension. Each dimension of a feature point can
then be described using only m bits

as that of OPQ, an index is generated such that it stores a list of features contained
within each bin. Each stored feature, in turn, points back to the image it was extracted
from (hence the inverted terminology). The only calculation required is to determine
the query feature’s respective bin within the IVF to retrieve the nearest neighbors to
a given query feature. Once this bin is known, the IVF can return the feature vectors’
list in that bin and the nearest surrounding neighbor bins. Given that each feature
vector points back to its source image, one can trace back the database images that
are similar to the query. This simple yet powerful method provides easy scalability
and distributability to index search. This is the main storage and retrieval structure
used within powerful state-of-the-art search frameworks, such as the open-source
Facebook Artificial Intelligence Similarity Search (FAISS) library introduced by
Jeff Johnson et al. (2019).

Lastly, the result ranking step takes care of polling the feature-wise most similar
database images to the query. The simplest metric with which one can rank the
relatedness of the query image with the other images is feature voting (see Pinto et
al. 2017). To perform it, one must iterate through each query feature and its retrieved
nearest neighbor features. Then, by checking which database image each returned
feature belongs to, one must accumulate a tally of how many features are matched
to the query for each image. This final tally is then utilized as the votes for each
database image, and these images are ranked (or ordered) accordingly. An example
of this method can be seen in Fig. 15.11.

With these four steps implemented, one already has access to a rudimentary image
search system capable of retrieving both near-duplicates and semantically similar
images. While operational, this system is not particularly powerful when tasked
with finding images with nuanced inter-image relationships relevant to provenance
analysis. In particular, images that share only small amounts of contentwith the query
image will not receive many votes in the matching process and may not be retrieved
as a relevant result. Instead, this system can be utilized as a foundation for a retrieval
system more fine-tuned to the task of image provenance analysis. In this regard, four
methods to improve a typical CBIR solution are discussed in the following.
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Fig. 15.11 A 2D simplified representation of IVF and feature voting. Local features are extracted
from three images, representing a small gallery. The feature vector space is partitioned into a
grid, and gallery features are indexed within this grid. Local features are then extracted from the
query image of Reddit Superman (whose chest symbol and underwear are modified versions of the
yawning cat’s mouth depicted within the first item of the gallery). Each local query feature is fed
to the index, and nearest neighbors are retrieved. Colored lines represent how each local feature
matches the IVF features and subsequently map back to individual gallery features. We see how
these feature matches can be used in a voting scheme to rank image similarities in the bottom left

Distributed Keypoints: To take the best advantage of these concepts, we must
ensure that the extracted keypoints for the local features used within the indexing and
retrieval pipeline do a good job describing the entire image. Most keypoint detectors
return points that lie on corners, edges, or other high-entropy patches containing
visual information. This, unfortunately, means that some areas within an image may
be given too many vital points and may be over-described, while other areas may be
entirely left out, receiving no keypoints at all. An area with no keypoints and, thus,
no representation within the database image index has no chance of being correctly
retrieved if a query with similar features comes along.

To mitigate over-description and under-description of image areas, Moreira et
al. (2018) proposed an additional step in the keypoint detection process, which is
the avoidance and removal of keypoints that present too much overlap with others.
Such elements are then replaced with keypoints coming from weaker-entropy image
regions, allowing for a more distributed content description. Figure15.9b depicts an
example of applying this strategy, in comparison with the regular SURF extraction
approach.

Context Incorporation: One of the main reasons a typical CBIR solution performs
poorly in an image provenance scenario is the nature behind many image manip-
ulations within provenance cases. These manipulations often consist of composite
images with small objects coming from donor images. An example of these types of
relationships is shown in Fig. 15.12.
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Fig. 15.12 An example of composite from the r/photoshopbattles subreddit. The relations of the
composite with the images donating small objects, such as the hummingbird and the squirrel,
challenge the retrieval capabilities of a typical CBIR solution. Context incorporation comes in
handy in these situations. Image adapted from Joel Brogan et al. (2021)

These types of image relationships do not lend themselves to a naive feature voting
strategy, as the size of the donated objects is often too small to garner enough local
feature matches to impart a high vote score with the query image. We can augment
the typical CBIR pipeline with an additional step, namely context incorporation,
to solve this problem. Context incorporation takes into consideration the top N
retrieved images for a given query, to accurately localize areas within the query and
the retrieved images that differ from each other (most likely due to a composite or
manipulation), to generate attention masks, and to re-extract features over only the
distinct regions of the query, for a second retrieval execution. By using only these
features, the idea is that the additional retrieval and voting stepswill be driven towards
finding the images that have donated small regions to the query due to the absence
of distractors.

Figure15.13 depicts an example where context incorporation is crucial to obtain
the image that has donated Vladimir Putin (Fig. 15.13d) to a questioned query
(Fig. 15.13a), in the first positions of the result rank. Different approaches for per-
forming context incorporation, including attention mask generation, were proposed
and benchmarked by Brogan et al. (2017), while an end-to-end CBIR pipeline
employing such a strategy was discussed by Pinto et al. (2017).

IterativeFiltering:Another requirement of content retrievalwithin provenance anal-
ysis is the recovery of images directly related to the query and transitively related to
it. That is the case of image 4 depicted within Fig. 15.6, which does not share content



402 D. Moreira et al.

Fig. 15.13 Context incorporation example. In a, the query image. In b, the most similar retrieved
near-duplicate (top 1 image) through a typical CBIR solution. In c, the attention mask highlighting
the different areas between a and b, after proper content registration. In d, the top 1 retrieved image
after using c as a newquery (a.k.a., context incorporation). Thefinal result rankmaybe a combination
of the two ranks after using a and c as a query, respectively. Image d is only properly retrieved,
from the standpoint of provenance analysis, thanks to the execution of context incorporation

directly with the query, but is related to it through image 1. Indeed, any other near-
duplicates of image 4 should ideally be retrieved by a flawless provenance-aware
CBIR solution. Aiming at also retrieving transitively related content to the query,
Moreira et al. (2018) introduced iterative filtering. After retrieving the first rank of
images, the results are iteratively refined by suppressing near-duplicates of the query
and promoting non-near-duplicates as new queries to the next retrieval iteration.
This process is executed a number of times, leading to a set of image ranks for each
iteration, which are then combined into a single one, at the end of the process.

Object-Level Retrieval: Despite the modifications above to improve typical CBIR
solutions towards provenance analysis, local-feature-based retrieval systems do not
inherently incorporate structural aspects into the description and matching process.
For instance, any retrieved image with a high match vote score could still, in fact,
be completely dissimilar to the query image. That happens because the matching
process does not take into account the position of local features with respect to each
other within an image. As a consequence, unwanted database images that contain
features individually similar to the query’s features, but in a different pattern, may
still be ranked highly.
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Fig. 15.14 An example of howOS2OSmatching is accomplished. In a, a query image has the local
feature keypoints mapped relative to a computed centroid location. In b, matching features from a
database image are projected to an estimated centroid location using the vectors shown in a. In c,
the subsequent vote accumulation matrix is created. In d, the accumulation matrix is overlayed on
the database image. The red area containing many votes shows that the query and database images
most likely share an object in that location

To avoid this behavior, Brogan et al. (2021) modified the retrieval pipeline to
account for the structural layout of local features. To do so, they proposed a method
to leverage the scale and orientation components calculated as part of the SURF key-
point extraction mechanism and to perform a transform estimation similar to the gen-
eralized Hough voting (see Ballard 1981), relative to a computed centroid. Because
each feature’s scale and orientation are known, for both the query’s and database
images’ features, database features can be projected to the query keypoint layout
space. Areas that contain similar structures accumulate votes in a given location on
a Hough accumulator matrix. By clustering highly active accumulation areas, one
is able to quickly determine local areas shared between images that have structural
consistency with each other. A novel ranking algorithm then leverages these areas
within the accumulator to subsequently score the relationship between images. This
entire process is called “objects in scenes to objects in scenes” (OS2OS) matching.
An example of how the voting accumulation works is depicted in Fig. 15.14.
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15.2.2 Datasets and Evaluation

The literature for provenance analysis has reported results of content retrieval over
two major datasets, namely the Nimble Challenge (NC17, 2017) and the Media
Forensics Challenge (MFC18, 2018) datasets.

NC17 (2017): On the occasion of promoting the Nimble Challenge 2017, NIST
released an image dataset containing a development partition (Dev1-Beta4) specifi-
cally curated to support both research tasks for provenance analysis. Namely, prove-
nance content retrieval (named provenance filtering by the agency) and provenance
graph construction. This partition contains 65 image queries and 11,040 images either
related to the queries through provenance graphs, or completely unrelated material
(named distractors). The provenance graphs were manually created by image edition
experts and include operations such as splicing, removal, cropping, scaling, blurring,
and color transformations. As a consequence, the partition offers content retrieval
ground truth composed of 65 expected image ranks. Aiming to increase the chal-
lenge offered by this partition, Moreira et al. (2018) extended the set of distractors
by adding one million unrelated images, which were randomly sampled from Eval-
Ver1, another partition released by NIST as part of the 2017 challenge. We rely on
this configuration to provide some results of content retrieval and explain how the
different provenance CBIR add-ons explained in Sect. 15.2.1 contribute to solve the
problem at hand.

MFC18 (2018): Similar to the 2017 challenge, NIST released another image
dataset in 2018, with a partition (Eval-Ver1-Part1) also useful for provenance content
retrieval. Used to officially evaluate the participants of the MediFor program (see
Turek 2021), this set contains 3,300 query images and over one million images,
including content related to the queries and distractors. Many of these queries are
composites, with the expected content retrieval image ranks provided as ground truth.
Moreover, this dataset also provides ground-truth annotations as to whether a related
image contributes only a particular small object to the query (such as in the case of
image 4 donating Tupac Shakur’s head to image 1, within Fig. 15.7), instead of an
entire large background. These cases are particularly helpful to assess the advantages
of using the object-level retrieval approach presented in Sect. 15.2.1 in comparison
to the other methods.

As suggested in the protocol introduced by NIST (2017), the metric used to
evaluate the performance of a provenance content retrieval solution is the CBIR
recall of the images belonging to the ground truth rank, at three specific cut-off
points. Namely, (i) R@50 (i.e., the percentage of ground-truth expected images that
are retrieved among the top 50 assets returned by the content retrieval solution), (ii)
R@100 (i.e., the percentage of ground truth images retrieved among the top 100
assets returned by the solution), and (iii) R@200 (i.e., the percentage of ground truth
images retrieved among the top 200 assets returned by the solution). Since the recall
expresses the percentage of relevant images being effectively retrieved, the method
delivering higher recall is considered better.
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In the following section, results in terms of a recall are reported for the different
solutions presented in Sect. 15.2.1, over the aforementioned datasets.

15.2.3 Results

Table15.1 summarizes the results of provenance content retrieval reportedbyMoreira
et al. (2018) over the NC17 dataset. It helps to put into perspective some of the
techniques detailed in Sect. 15.2.1. As one might observe, by comparing rows 1 and
2 of Table15.1, the simplemodification of usingmore keypoints (from 2,000 to 5,000
features) to describe the images within the CBIR base module already provides a
significant improvement on the system recall. DistributedKeypoints, in turn, improve
the recall of larger ranks (for R@100 and R@200), while Iterative Filtering alone
allows the system to reach an impressive recall of 90% of the expected images among
the top 50 retrieved ones. At the time of their publication, Moreira et al. (2018) found
that a combination of Distributed Keypoints and Iterative Filtering led to the best
content retrieval solution, represented by the last row of Table15.1.

More recently, Brogan et al. (2021) performed new experiments on the MFC18
dataset, this time aiming at evaluating the performance of their proposed OS2OS
approach. Table15.2 compares the results of the best solution previously identified
by Moreira et al. (2018), in row 1, with the addition of OS2OS, in row 2, and

Table 15.1 Results of provenance content retrieval over the NC17 dataset. Reported here are the
average recall values of 65 queries at the top 50 (R@50), top 100 (R@100), and top 200 (R@200)
retrieved images. Provenance add-ons on top of theCBIRbasemodulewere presented in Sect. 15.2.1

CBIR Base Provenance
Add-ons

R@50 R@100 R@200 Source

2,000 SURF features,
OPQ

Context
Incorpora-
tion

71% 72% 74% Daniel
Moreira
et al. (2018)

5,000 SURF features,
OPQ

Context
Incorpora-
tion

88% 88% 88% Daniel
Moreira
et al. (2018)

5,000 SURF features,
OPQ

Distributed
Keypoints

88% 90% 90% Daniel
Moreira
et al. (2018)

5,000 SURF features,
OPQ

Iterative
Filtering

90% 90% 92% Daniel
Moreira
et al. (2018)

5,000 SURF features,
OPQ

Distrib. Key-
points,
Iterative
Filtering

91% 91% 92% Daniel
Moreira
et al. (2018)
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Table 15.2 Results of provenance content retrieval over the MFC18 dataset. Reported here are
the average recall values of 3,300 queries at the top 50 (R@50), top 100 (R@100), and top 200
(R@200) retrieved images. Provenance add-ons on top of the CBIR base module were presented
in Sect. 15.2.1. OS2OS stands for “objects in scene to objects in scene”, previously presented as
object-level retrieval

CBIR Base Provenance
Add-ons

R@50 R@100 R@200 Source

5,000 SURF features,
OPQ

Distrib. Key-
points,
Iterative
Filtering

77% 81% 82% Joel Brogan
et al. (2021)

5,000 SURF features,
OPQ

Distrib. Key-
points,
OS2OS

83% 83% 84% Joel Brogan
et al. (2021)

1,000 DELF features,
OPQ

Iterative
Filtering

87% 90% 91% Joel Brogan
et al. (2021)

1,000 DELF features,
OPQ

OS2OS 91% 93% 95% Joel Brogan
et al. (2021)

replacement of the SURF features with DELF (see Noh et al. 2017) features, in rows
3 and 4, over theMFC18 dataset. OS2OS alone (compare rows 1 and 2) improves the
system recall for all the three rank cut-off points. Also, the usage of only 1,000 DELF
features (a data-driven image description approach that relies on learned attention
models, in contrast to the 5,000 handcrafted SURF features) significantly improves
the system recall (compare rows 1 and 3). In the end, the combination of a DELF-
based CBIR system and OS2OS leads to the best content retrieval approach, whose
recall values are shown in the last row of Table15.2.

Lastly, as explained before, the MFC18 dataset offers a unique opportunity to
understand how the content retrieval solutionswork for the recovery of dataset images
that eventually donated small objects to the queries at hand since it contains specific
annotations in this regard. Table15.3 summarizes the results obtained by Brogan et
al. (2021) when evaluating this aspect. As expected, the usage of OS2OS greatly
improves the recall of small-content donors, as it can be seen through rows 2 and 4
of Table15.3. Overall, the best content retrieval approach (a combination of DELF
features and OS2OS) is able to retrieve only 55% of the expected small-content
donors among the top 200 retrieved assets (see the last row of Table15.3). This result
indicates that more work still needs to be done in this specific aspect: improving the
provenance content retrieval of small-content donor images.
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Table 15.3 Results of provenance content retrieval over the MFC18 dataset, with focus on the
retrieval of images that donated small objects to the queries. Reported here are the average recall
values of 3,300 queries at the top 50 (R@50), top 100 (R@100), and top 200 (R@200) retrieved
images. Provenance add-ons on top of the CBIR basemodulewere presented in Sect. 15.2.1. OS2OS
stands for “objects in scene to objects in scene”, previously presented as object-level retrieval

CBIR Base Provenance
Add-ons

R@50 R@100 R@200 Source

5,000 SURF features,
OPQ

Distrib. Key-
points,
Iterative
Filtering

28% 34% 42% Joel Brogan
et al. (2021)

5,000 SURF features,
OPQ

Distrib. Key-
points,
OS2OS

45% 48% 52% Joel Brogan
et al. (2021)

1,000 DELF features,
OPQ

Iterative
Filtering

41% 45% 49% Joel Brogan
et al. (2021)

1,000 DELF features,
OPQ

OS2OS 51% 54% 55% Joel Brogan
et al. (2021)

15.3 Graph Construction

A provenance graph depicts the story of edits and manipulations underwent by a
media asset. This section focuses on the provenance graph of images, whose vertices
individually represent the image variants and whose edges represent the direct pair-
wise image relationships. Depending on the transformations applied to one image
to obtain another, the two connected images can share partial to full visual content.
In the case of partial content sharing, the source images of the shared content are
called the donor images (or simply donors), while the resultant manipulated image is
called the composite image. In full-content sharing, we have near-duplicate variants
when one image is created from another through a series of transformations such as
cropping, blurring, and color changes. Once a set of related images is collected from
the first stage of content retrieval (see Sect. 15.2), a fine-grained analysis of pairwise
relationships is required to obtain the full provenance graph. This analysis involves
two major steps, namely (1) image similarity computation and (2) graph building.

Similarity computation involves understanding the degree of similarity between
two images. It is a fundamental task for any visual recognition problem. Image
matching methods are at the core of vision-based applications, ranging from hand-
crafted approaches to modern deep-learning-based solutions. A matching method is
a similarity (or dissimilarity) score that can be used for further decision-making and
classification. For provenance analysis, computing pairwise image similarity helps
distinguish between direct versus indirect relationships. A selection of a feasible set
of pairwise relationships creates a provenance graph. To analyze the closest prove-
nance match to an image in the provenance graph, pairwise matching is performed
for all possible image pairs in the set of k retrieved images. The similarity scores are
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then recorded in a matrixM of size k × k where each cell indexedM(i, j) represents
the similarity between image Ii and image I j .

Graph building, in turn, comprises the task of constructing the provenance graph
after similarity computation. The matrix containing the similarity scores for all pairs
of images involved in the provenance analysis for each case can be interpreted as an
adjacency matrix. This implies that each similarity score in this matrix is the weight
of an edge in a complete graph of k vertices. Extracting a provenance graph requires
selecting a minimal set of edges that span the entire set of relevant images or vertices
(this can be different from k). If the similarity measure used for the previous stage is
symmetric, the final graph will be undirected, whereas an asymmetric measure of the
similarity will lead to a directed provenance graph. The provenance cases considered
in the literature, so far, are spanning trees. This implies that there are no cycles within
graphs, and there is at most one path to get from one vertex to another.

15.3.1 Approaches

There are multiple aspects of a provenance graph. Vertices represent the different
variants of an image or visual subject, pairwise relationships between images (i.e.,
undirected edges) represent atomic manipulations that led to the evolution of the
manipulated image, and directions for these relationships providemore precise infor-
mation about the change. Finally, the last details are the specific operations performed
on one image to create the other. The fundamental task for an image-based prove-
nance analysis is, thus, performing image comparison. This stage requires describing
an image using a global or a set of local descriptors. Depending on the methods used
for image description and matching, the similarity computation stage can create dif-
ferent types of adjacencyweightmatrices. The edge selection algorithm then depends
on the nature of the computed image similarity. In the rest of this section, we present
a series of six graph construction techniques that have been proposed in the literature
and represent the current state of the art in image provenance analysis.

Undirected Graphs: A simple and yet-effective graph construction solution was
proposed by Bharati et al. (2017). It takes the top k retrieved images for the given
query and computes the similarity between the two elements of every image pair,
including the query, through keypoint extraction, description, and matching. Key-
point extractors and descriptors, such as SIFT (see Lowe 2004) or SURF (see Bay et
al. 2008), offer a manner to highlight the important regions within the images (such
as corners and edges), and to describe their content in a way that is robust to several
of the transformations manipulated images might have been through (such as scal-
ing, rotating, and blurring.). The quantity of keypoint matches that are geometrically
consistent with the others in the match set can act as an image similarity score for
each image pair.

As depicted in Fig. 15.15, two images that share visual content will present more
keypoint matches (see Fig. 15.15a) than the ones that have nothing in common (see
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Fig. 15.15 Examples of geometrically consistent keypoint matching. In a, the matching of key-
points over two images that share visual content. In b, the absence of matches between images that
do not look alike. The number of matching keypoint pairs can be used to express the similarity
between two images

Fig. 15.15b). Consequently, a symmetric pairwise image adjacency matrix can be
built by simply using the number of keypoint matches between every image pair.
Ultimately, a maximum spanning tree algorithm, such as Kruskal’s (1956) or Prim’s
(1957), can be used to generate the final undirected image provenance graph.

Directed Graphs: The previously described method has the limitation of generating
only symmetric adjacency matrices, therefore, not providing enough information to
compute the direction of the provenance graphs’ edges. As explained in Sect. 15.1,
within the problem of provenance analysis, the direction of an edge within a prove-
nance graph expresses the important information of which asset gives rise to the
other.

Aiming to mitigate this limitation and inspired by the early work of Dias et
al. (2012), Moreira et al. (2018) proposed an extension to the keypoint-based image
similarity computation alternative. After finding the geometrically consistent key-
point matches for each pair of images (Ii , I j ), the obtained keypoints can be used for
estimating the homography Hi j that guides the registration of image Ii onto image
I j , as well as the homography Hji that analogously guides the registration of image
I j onto image Ii .

In the particular case of Hi j , after obtaining the transformation Tj (Ii ) of image
Ii towards I j , Tj (Ii ) and I j are properly registered, with Tj (Ii ) presenting the same
size of I j and the matched keypoints relying on the same position. One can, thus,
compute the bounding boxes that enclose all the matched keypoints within each
image, obtaining two correspondent patches R1, within Tj (Ii ), and R2, within I j .
With the two aligned patches at hand, the distribution of the pixel values of R1 can be
matched to the distribution of R2, before calculating the similarity (or dissimilarity)
between them.

Considering that patches R1 and R2 have the same width W and height H after
content registration, one possible method of patch dissimilarity computation is the
pixel-wise mean squared error (M SE):

M SE(R1, R2) =
∑W

w

∑H
h (R1(w, h) − R2(w, h))2

H × W
, (15.1)
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where R1(w, h) ∈ [0, 255] and R2(w, h) ∈ [0, 255] are the pixel values of R1 and
R2 at position (w, h), respectively.

Alternatively to M SE , one can express the similarity between R1 and R2 as the
mutual information (M I ) between them. From the perspective of information theory,
M I is the amount of information that one random variable contains about another.
From the point of view of probability theory, it measures the statistical dependence
of two random variables. In practical terms, assuming each random variable as,
respectively, the aligned and color-corrected patches R1 and R2, the value of M I can
be given by the entropy of discrete random variables:

M I (R1, R2) =
∑

x∈R1

∑

y∈R2

p(x, y) log

(
p(x, y)

∑
x p(x, y)

∑
y p(x, y)

)

, (15.2)

where x ∈ [0, 255] refers to the pixel values of R1, and y ∈ [0, 255] refers to the pixel
values of R2. The p(x, y) value regards the joint probability distribution function of
R1 and R2. As explained by Costa et al. (2017), it can be satisfactorily approximated
by

p(x, y) = h(x, y)
∑

x,y h(x, y)
, (15.3)

where h(x, y) is the joint histogram that counts the number of occurrences for each
possible value of the pair (x, y), evaluated on the corresponding pixels for both
patches R1 and R2.

As a consequence of their respective natures, while M SE is inversely proportional
to the two patches’ similarity, M I is directly proportional. Aware of this, one can
either use (i) the inverse of the M SE scores or (ii) the M I scores directly as the
similarity elements si j within the pairwise image adjacency matrix M, to represent
the similarity between image I j and the transformed version of image Ii towards I j ,
namely Tj (Ii ).

The homography Hji is calculated in an analogous way to Hi j with the difference
that Ti (I j ) is manipulated by transforming I j towards Ii . Due to this, the size of
the registered images, the format of the matched patches, and the matched color
distributions will be different, leading to unique M SE (or M I ) values for setting s ji .
Since si j �= s ji , the resulting similarity matrix M will be asymmetric. Figure15.16
depicts this process.

Upon computing the full matrix, the assumption introduced by Dias et al. (2012)
is that, in the case of si j > s ji , it would be easier to transform image Ii towards
image I j , than the contrary (i.e., I j towards Ii ). Analogously, si j < s ji would mean
the opposite. This information can, thus, be used for edge selection. The oriented
Kruskal (2012) solution (with a preference for higher adjacency weights) would help
construct the final provenance graph.
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Fig. 15.16 Generationof an asymmetric pairwise image adjacencymatrix.Basedon the comparison
of two distinct content transformations for each image pair (Ii , I j ), namely Ii towards I j and vice-
versa, this method allows the generation of an asymmetric pairwise image similarity matrix, which
is useful for computing provenance graphs with directed edges

Clustered Graph Construction: As an alternative to the oriented Kruskal, Moreira
et al. (2018) introduced a method of directed provenance graph building, which
leverages both symmetric keypoint-based and asymmetricmutual-information-based
image similarity matrices.

Inspired by Oikawa et al. (2015) and dubbed clustered graph construction, the
idea behind such a solution is to group the available retrieved images in a way that
only near-duplicates of a common image are added to the same cluster. Starting from
the image query Iq as the initial expansion point, the remaining images are sorted
according to the number of geometrically consistent matches shared with Iq , from
the largest to the smallest. The solution then clusters probable near-duplicates around
Iq , as long as they share enough content, which is decided based upon the number
of keypoint matches (see Daniel Moreira et al. 2018). Once the query’s cluster is
finished (i.e., the remaining images do not share enough keypoint matches with the
query), a new cluster is computed over the remaining unclustered images, taking
another image of the query’s cluster as the new expansion point. This process is
repeated iteratively by trying different images as the expansion point until every
image belongs to a near-duplicate cluster.

Once all images are clustered, it is time to establish the graph edges. Images
belonging to the same cluster are sequentially connected into a single path without
branches. This makes sense in scenarios containing sequential image edits where
one near-duplicate is obtained on top of the other. As a consequence of the iterative
execution and selection of different images as expansion points, the successful ones
(i.e., the images that were helpful in the generation of new image clusters) fatally
belong to more than one cluster, hence serving as graph bifurcation points. Orthogo-
nal edges are established in such cases, allowing every near-duplicate image branch
to be connected to the final provenance graph through an expansion point image as a
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Fig. 15.17 Usage of metadata information to refine the direction of pairwise image provenance
relationships. For the presented images, the executed manipulation operation could be either the
splicing or the removal of the male lion. According to the image generation date metadata, the
operation is revealed to be a splice since the image on the left is older. Adapted from Aparna
Bharati et al. (2019)

joint. To determine the direction of every single edge,Moreira et al. (2018) suggested
using the mutual information similarity asymmetry in the same way as depicted in
Fig. 15.16.

Leveraging Metadata: Image comparison techniques may be limited depending
upon the transformations involved in any given image’s provenance analysis. In cases
where the transformations are reversible or collapsible, the visual content analysis
may not suffice for edge selection during graph building. Specifically, the homogra-
phy estimation and color mapping steps involved in asymmetric matrix computation
for edge direction inference could be noisy. To make this process more robust, it
is pertinent to utilize other evidence sources to determine connections. As can be
seen from the example in Fig. 15.17, it is difficult to point out the plausible direction
of manipulation with visual correspondence, but auxiliary information related to the
image, mostly accessible within the image files (a.k.a. image metadata), can increase
confidence in predicting the directions.

Image metadata, when available, can provide additional evidence for directed
edge inference. Bharati et al. (2019) identify highly relevant tags for the task. Spe-
cific tags that provide the time of image acquisition and editing, location, editing
operation, etc. can be used for metadata analysis that corroborates visual evidence
for provenance analysis. An asymmetric heuristic-based metadata comparison par-
allel to a symmetric visual comparison is proposed. The metadata comparison sim-
ilarity scores are higher for image pairs (ordered) with consistency from more sets
of metadata tags. The resulting visual adjacency matrix is used for edge selection,
while the metadata-based comparison scores are used for edge direction inference.
As explained in clustered graph construction, there are three parts of the graph build-
ing method, namely node cluster expansion, edge selection, and assigning directions
to edges. The metadata information can supplement the last two depending on the
specific stage at which it is incorporated. As metadata tags can be volatile in the
world of intelligent forgeries, a conservative approach is to use them to improve the
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confidence of the provenance graph obtained through visual analysis. The proposed
design enables the usage of metadata when available and consistent.

Transformation-Aware Embeddings: While metadata analysis can improve the
fidelity of edge directions in provenance graphs when available and not tampered
with, local keypoint matching for visual correspondence faces challenges in image
ordering for provenance analysis. Local matching is efficient and robust to finding
shared regions between related images. This works well for connecting donors with
composite images but can be insufficient in capturing subtle differences between
near-duplicate images, which affect the ordering of long chains of operations. Estab-
lishing sequences of images that vary slightly based on the transformations requires
differentiating between slightly modified versions of the same content.

Towards improving the reconstructions of globally-related image chains in prove-
nance graphs, Bharati et al. (2021) proposed encoding awareness of the transforma-
tion sequence in the image comparison stage. Specifically, the devised method learns
transformation-aware embeddings to better order related images in an edit sequence
or provenance chain. The framework uses a patch-based siamese structure trained
with an Edit Sequence Loss (E SL) using sets of four image patches. Each set is
expressed as quadruplets or edit sequences, namely (i) the anchor patch, which rep-
resents the original content, (ii) the positive patch, a near-duplicate of the anchor
after M image processing transformations, (iii) the weak positive patch, the positive
patch after N transformations, and (iv) the negative patch, a patch that is unrelated
to the others. The quadruplets of patches are obtained for training using a specific set
of image transformations that are of interest to image forensics, particularly image
phylogeny and provenance analysis, as suggested in Dias et al. (2012). For each
anchor patch, random unit transformations are sequentially applied, one on top of
the other’s result, allowing to generate positive and weak positive patches from the
anchor, after M and M + N transformations, respectively. The framework aims at
providing distance scores to pairs of patches, where the output score between the
anchor and the positive patch is smaller than the one between the anchor and the
weak positive, which, in turn, is smaller than the score between the anchor and the
negative patch (as shown in Fig. 15.18).

Given a feature vector for an anchor image patch a, two transformed derivatives
of the anchor patch p (positive) and p′ (weak positive) where p = TM(a) and p′ =
TN (TM(a)), and an unrelated image patch from a different image n, E SL is a pairwise
margin ranking loss computed as follows:

SL(a, p, p′, n) =max(0,−y × (d(a, p′) − d(a, n)) + µ1)+
max(0,−y × (d(p, p′) − d(p, n)) + µ2)+
max(0,−y × (d(a, p) − d(a, p′)) + µ3)

(15.4)

Here, y is the truth function which determines the rank order (see Rudin and
Schapire 2009) and µ1, µ2, and µ3 are margins corresponding to each pairwise
distance term and are treated as hyperparameters. Both terms having the same sign
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Fig. 15.18 Framework to learn transformation-aware embeddings in the context of ordering image
sequences for provenance. Specifically, to satisfy an edit-based similarity precision constraint, i.e.,
d(a, p) < d(a, p′) < d(a, n). Adapted from Aparna Bharati et al. (2021)

implies ordering is correct, and the loss is zero. A positive loss is accumulated when
the ordering is wrong, and they are of opposite signs.

The above loss is optimized, and the model corresponding to the best measure for
validation is used for feature extraction from patches of test images. Features learned
with the proposed technique are used to provide pairwise image similarity scores.
The value di j between images Ii and I j is computed by matching the set of features
(extracted from patches) from one image to the other using an iterative greedy brute-
force matching strategy. At each iteration, the best match is selected as the pair
of patches between image Ii and image I j whose l2-distance is the smallest and
whose patches did not participate in a match on previous iterations. This guarantees
a deterministic behavior regardless of the order of the images, meaning that either
comparing the patches of Ii against I j or vice-versawill lead to the same consistent set
of patch pairs. Once all patch pairs are selected, the average l2-distance is calculated
and finally set as di j . The inverse of di j is then used to set both si j and s ji within the
pairwise image similarity matrix M, which in this case is a symmetric one. Upon
computing all values withinM for all possible image pairs, a greedy algorithm (such
asKruskal’s 1956) is employed to order these pairwise values and create an optimally
connected undirected graph of images.

Leveraging Manipulation Detectors: A challenging aspect of image provenance
analysis is establishing high-confidence direct relationships between images that
share a small portion of content. Keypoint-based approaches may not suffice as there
may not be enough keypoints in the shared regions, and global matching approaches
may not appropriately capture thematching region’s importance. To improve analysis
of composite images where source images have only contributed a small region and
determine the source image among a group of image variants, Zhang et al. (2020) pro-
posed to combine a pairwise ancestor-offspring classifierwithmanipulation detection
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approaches. They build the graph by combining edges based on both local feature
matching and pixel similarity.

Their proposed algorithm attempts to balance global and local features andmatch-
ing scores to boost performance. They start by using a weighted combination of
the matched SIFT keypoints and the matched pixel values for image pairs that can
be aligned, and null for the ones that cannot be aligned. A hierarchical cluster-
ing approach is used to group images coming from the same source together. For
graph building within each determined cluster, the authors combine the likelihood
of images being manipulated or extracted from a holistic image manipulation detec-
tor (see Zhang et al. 2020) and the pairwise ancestor score extracted by an L2-Net
(see Tian et al. 2017). The image manipulation detector uses a patch-based con-
volutional neural network (CNN) to predict manipulations from a median-filtered
residual image. For ambiguous cases where the integrity score may not be assigned
accurately, a lightweight CNN-based ancestor-offspring network takes patch pairs
as input and predicts one’s scores to be derived from the other. The similarity scores
used as edge weights are the average of the integrity and the ancestor scores from
the two used networks. The image with the highest score among the smaller set of
images is considered as the source. All incoming links to this vertex are removed to
reduce confusion in directions. This one is then treated as the root of the arborescence
built by applying Chu-Liu/Edmonds’ algorithm (see Chu 1965; Edmonds 1967) on
pairwise image similarities.

The different arborescences are connected by finding the best-matched image
pair among the image clusters. If the matched keypoints are above a threshold,
these images are connected, indicating a splicing or composition possibility. As
reported in the following section, this method obtains state-of-the-art results on the
NIST challenges (MFC18 2018 and MFC19 2019), and it significantly improves
the computation of the edges of the provenance graphs over the Reddit Photoshop
Battles dataset (see Brogan 2021).

15.3.2 Datasets and Evaluation

With respect to the step of provenance graph construction, four datasets stand out
as publicly available and helpful benchmarks, namely NC17 (2017), MFC18 (2018)
(both discussed in Sect. 15.2.2), MFC19 (2019), and the Reddit Photoshop Battles
dataset (2021).

NC17 (2017): As mentioned in Sect. 15.2.2, this dataset contains an interesting
development partition (Dev1-Beta4), which presents 65 image queries, each one
belonging to a particular manually curated provenance graph. As expected, these
provenance graphs are provided within the partition as ground truth. The number of
images per provenance graph ranges from two to 81, with the average graph order
being equal to 13.6 images.

MFC18 (2018): Besides providing images and ground truth for content retrieval
(as explained in Sect. 15.2.2), the Eval-Ver1-Part1 partition of this dataset also pro-
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(a) (b)

Fig. 15.19 A representation of how provenance graphs were obtained from the users’ interactions
within the Reddit r/photoshopbattles subreddit. In a, the parent-child posting structure of comments,
which are used to generate the provenance graph depicted in b. Equivalent edges across the two
images have the same color (either green, purple, blue, or red). Adapted from Daniel Moreira et al.
(2018)

vides provenance graphs and 897 queries aiming at evaluating graph construction.
For this dataset, the average graph order is 14.3 images, and the resolution of its
images is larger, on an average, when compared to NC17. Moreover, its provenance
cases encompass a larger set of applied image manipulations.

MFC19 (2019): A more recent edition of the NIST challenge released a larger set
of provenance graphs. The Eval-Part1 partition within theMFC19 (2019) dataset has
1,027 image queries, and the average order of the provided ground truth provenance
graphs is equal to 12.7 image vertices. In this group, the number of types of image
manipulations used to generate the edges of the graphs was almost twice the number
of MFC18.

Reddit Photoshop Battles (2021): Aiming at testing the image provenance anal-
ysis solutions over more realistic scenarios, Moreira et al. (2018) introduced the
Reddit Photoshop Battles dataset. This dataset was collected from images posted to
the Reddit community known as r/photoshopbattles (2012), where professional and
amateur imagemanipulators share doctored images. Each “battle” starts with a teaser
image posted by a user. Subsequent users post modifications of either the teaser or
previously submitted manipulations in comments to the related posts. By using the
underlying tree comment structure, Moreira et al. (2018) were able to infer and col-
lect 184 provenance graphs, which together contain 10,421 original and composite
images. Figure15.19 illustrates this provenance graph inference process.



15 Image Provenance Analysis 417

To evaluate the available graph construction solutions, two configurations are
proposed by the NIST challenge (2017). In the first one, named the “oracle” scenario,
there is a strong focus on the graph construction task. It assumes that a flawless
content retrieval solution is available, thus, starting from the ground-truth content
retrieval image ranks to build the provenance graphs, with neithermissing images nor
distractors. In the second one, named “end-to-end” scenario, content retrievalmust be
performed before graph construction, thus, delivering imperfect image ranks (with
missing images or distractors) to the step of graph construction. We rely on both
configurations and on the aforementioned datasets to report results of provenance
graph construction, in the following section.

Metrics: As suggested byNIST (2017), given a provenance graph G(V, E) gener-
ated by a solutionwhose performancewewant to assess,we compute the F1-measure
(i.e., the harmonic mean of precision and recall) of the (i) retrieved image vertices
V and of the (ii) established edges E , when compared to the ground truth graph
G ′(V ′, E ′), with its V ′ and E ′ homologous components. The first metric is named
vertex overlap (V O) and the second one is named edge overlap (E O), respectively:

V O(G ′,G) = 2 × |V ′ ∩ V |
|V ′| + |V | , (15.5)

E O(G ′,G) = 2 × |E ′ ∩ E |
|E ′| + |E | . (15.6)

Moreover, we compute the vertex and edge overlap (V E O), which is the F1-measure
of retrieving both vertices and edges simultaneously:

V E O(G ′,G) = 2 × |V ′ ∩ V | + |E ′ ∩ E |
|V ′| + |V | + |E ′| + |E | . (15.7)

In a nutshell, these metrics aim at assessing the overlap between G and G ′. The
higher the values of V O , E O , and V E O , the better the performance of the solution.
Finally, in the particular case of E O and V E O , when they are both assessed for
an approach that does not generate directed graphs (such as Undirected Graphs and
Transformation-Aware Embeddings, presented in Sect. 15.3.1), an edge within E is
considered a hit (i.e., a correct edge) when there is a homologous edge within E ′ that
connects equivalent image vertices, regardless of the edges’ directions.

15.3.3 Results

Table15.4 puts in perspective the different provenance graph construction approaches
explained in Sect. 15.3.1, when executed over the NC17 dataset. The provided results
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were all collected in oracle mode, hence the high values of V O (above 0.9), since
there are neither distractors nor missing images in the rank lists used to build the
provenance graphs. A comparison between rows 1 and 2 within this table shows
the efficacy of leveraging image metadata as additional information to compute the
edges of the provenance graphs. The values of E O (and V E O , consequently) have
a significant increase (from 0.12 to 0.45, and from 0.55 to 0.70, respectively), when
metadata is available. In addition, by comparing rows 3 and 4, one can observe the
contribution of the data-driven Transformation-Aware Embeddings approach, in the
scenario where only undirected graphs are being generated. In both cases, the gener-
ated edges have no direction by design, making their edge overlap conditions easier
to be achieved (since the order of the vertices within the edges become irrelevant for
the computation of E O and V E O , justifying their higher values when compared
to rows 1 and 2). Nevertheless, contrary to the first two approaches, these solutions
are not able to define which image gives rise to the other within the established
provenance edges.

Table15.5 compares the current state-of-the-art solution (Leveraging Manipula-
tionDetectors byXuZhang et al. 2020)with the official NIST challenge participation
results of the Purdue-NotreDame team (2018), for bothMFC18 andMFC19 datasets.
In both cases, the reported results refer to the more realistic end-to-end scenario,
where performers must execute content retrieval prior to building the provenance
graphs. As a consequence, the image ranks fed to the graph construction step are
noisy, since they contain both missing images and distractors. For all the reported
cases, the image ranks had 50 images and presented an average R@50 of around
90% (i.e., nearly 10% of the needed images are missing). Moreover, nearly 35% of
the images within the 50 available ones in a rank are distractors, on average. The

Table 15.4 Results of provenance graph construction over the NC17 dataset. Reported here are
the average vertex overlap (V O), edge overlap (E O), and vertex and edge overlap (V E O) values
of 65 queries. These experiments were executed in the “oracle” scenario, where the image ranks
fed to the graph construction step are perfect (i.e., with neither distractors nor missing images)

Graph
construction
approach

VO EO VEO Source

Clustered graph
construction

0.93 0.12 0.55 Daniel Moreira
et al. (2018)

Clust. Graph
Const.,
Leveraging
Metadata

0.93 0.45 0.70 Aparna Bharati
et al. (2019)

Undirected
Graphs

0.90 †0.65 †0.78 Aparna Bharati
et al. (2021)

Transformation-
Aware
Embeddings

1.00 †0.68 †0.85 Aparna Bharati
et al. (2021)

†Values collected over undirected edges
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Table 15.5 Results of provenance graph construction over the MFC18 and MFC19 datasets.
Reported here are the average vertex overlap (V O), edge overlap (E O), and vertex and edge
overlap (V E O) values of 897 queries, in the case of MFC18, and of 1,027 queries, in the case of
MFC19. These experiments were executed in the “end-to-end” scenario, thus, building graphs upon
imperfect image ranks (i.e., with distractors or missing images)

Dataset Graph
Const. approach

VO EO VEO Source

MFC18 Clustered Graph
Construction

0.80 0.27 0.54 MFC19
(2019)

Leveraging
Manipulation
Detectors

0.82 0.40 0.61 Xu Zhang
et al. (2020)

MFC19 Clustered Graph
Construction

0.70 0.30 0.52 MFC19
(2019)

Leveraging
Manipulation
Detectors

0.85 0.42 0.65 Xu Zhang
et al. (2020)

Table 15.6 Results of provenance graph construction over the Reddit Photoshop Battles dataset.
Reported here are the average vertex overlap (V O), edge overlap (E O), and vertex and edge overlap
(V E O) values of 184 queries. These experiments were executed in the “oracle” scenario, where the
image ranks fed to the graph construction step are perfect. “N.R.” stands for not-reported values

Graph
construction
approach

VO EO VEO Source

Clustered Graph
Construction

0.76 0.04 0.40 Daniel Moreira
et al. (2018)

Clust. Graph
Const.,
Leveraging
Metadata

0.76 0.09 0.42 Aparna Bharati
et al. (2019)

Leveraging
Manipulation
Detectors

N.R. 0.21 N.R. Xu Zhang et al.
(2020)

best solution (contained in rows 2 and 4 within Table15.5) still delivers low values
of E O when compared to V O , revealing an important limitation of the available
approaches.

Table15.6, in turn, reports results on the Reddit Photoshop Battles dataset. As one
might observe, especially in terms of E O , this set is a more challenging one for the
graph construction approaches, except for the state-of-the-art solution (Leveraging
Manipulation Detectors by Xu Zhang et al. (2020). While methods that have worked
fairly well on the NC17, MFC18, and MFC19 datasets drastically fail in the case
of the Reddit dataset (see E O values below 0.10 in the case of rows 1 and 2), the
state-of-the-art approach (in the last row of the table) more than doubles the results
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of E O . Again, even with this improvement, increasing the values of E O within
graph construction solutions is still an open problem that deserves attention from
researchers.

15.4 Content Clustering

In the study of human communication on the Internet and the understanding of the
provenance of trending assets, such as memes and other forms of viral content,
the users’ intent is mainly focused on the retrieval, selection, and organization of
semantically similar objects, rather than the gathering of near-duplicate variants or
compositions that are related to a query. Under this scenario, although the step of
content retrieval may be useful, the step of graph construction loses its purpose,
since the available content is preferably related through semantics (e.g., different
people on diverse scenes doing the same action, such as the “dabbing” trend depicted
on Fig. 15.8), greatly varying in appearance, making the techniques presented on
Sect. 15.3 less suitable.

Humans can only process somuch data at once—if toomuch is present, they begin
to be overwhelmed. In order to help facilitate the human processing and perception
of the retrieved content, Theisen et al. (2020) proposed a new stage to the provenance
pipeline focused on image clustering.Clustering the images based on shared elements
helps triage themassive amounts of data that the pipeline has grown to accommodate.
Nobody can reasonably review several million images to find emerging trends and
similarities, especiallywithout ordering in the image collection.However,when these
images are grouped based on shared elements using the provenance pipeline, the
number of items a reviewer would have to look at can decrease by several magnitude
orders.

15.4.1 Approach

Object-Level Content Indexing: From the content retrieval techniques discussed
in Sect. 15.2, Theisen et al. (2020) recommended the use of OS2OS matching (see
Brogan et al. 2021) to index the millions of images eventually available, due to two
major reasons. Firstly, to obtain a fast and scalable content retrieval engine. Secondly,
to benefit from the OS2OS capability of comparing images through either large and
global content matching or through many small object-wise local matches.

Affinity Matrix Creation: In the task of analyzing a large corpus of assets shared
on the web to understand the provenance of a trend, the definition of a query (i.e.,
a questioned asset) is not always as straightforward as it is in the image provenance
analysis case. For example, the memes shared during the 2019 Indonesian elections
and discussed inWilliamTheisen et al. (2020). In such cases, a natural question to ask



15 Image Provenance Analysis 421

would be which memes in the dataset one should use as the queries, for performing
the first step of content retrieval.

Inspired by a simplification of iterative filtering (see Sect. 15.2.1), Theisen et
al. (2020) identified the cheapest option as being randomly sampling images from
the dataset and iteratively using them as queries, for executing content retrieval until
all the dataset images (or a sufficient number of them) are “touched” (i.e., they are
retrieved by the content retrieval engine). There are several advantages to this, other
than being easy to implement. Randomly sampling means that end-users would need
to have no prior knowledge of the dataset and potential trends they are looking for.
The cluster created at the end of the process would show “emergent” trends, which
could even surprise the reviewer.

On the other hand, from a more forensics-driven perspective, it is straightforward
to imagine a system in which “informed queries” are used. If the users already
suspect that several specific trends may exist in the data, cropped images of the
objects pertaining to a trend may be used as a query, thus, prioritizing the content
that the reviewers are looking for. This might be a demanding process because the
user must already have some sort of idea of the landscape of the data and must
produce the query images themselves.

Following the suit in the solution proposed in William Theisen et al. (2020),
prior to performing clustering, a particular type of image pairwise adjacency matrix
(dubbed affinity matrix) must first be generated. By leveraging the provenance
pipeline’s pre-existing steps, this matrix can be constructed based on the retrieval of
themany selected queries. To prepare for the clustering step, a number of queries need
to be run through the content retrieval system, the number of queries, and the recall
of them depending on what type of graph the user wants to model for the analyzed
dataset. Using the retrieval step’s output, a number of query-wise “hub” nodes are
naturally generated, each of them having many connections. Consider, for example,
that the user has decided to have a recall of the top 100 best matches for any selected
query. This means that for every query submitted, there are 100 connections to other
assets. These connections link the query image to each of the 100 matches, thus,
imposing a “hubness” onto the query image. For the sake of illustration, Fig. 15.20
shows an example of this process, for the case of memes shared during the 2019
Indonesian elections.

By varying the recall and number of queries, the affinity matrix can be generated,
and an order can be imposed. Lowering the recall will result in a decrease in hub-
like nodes in the structure but will require more queries to be run to connect all the
available images. The converse is also true. Once enough queries have been run, the
final step of clustering can be executed.

Spectral Clustering: After the affinity matrix has been generated, Theisen et
al. (2020) suggested the use of multiclass spectral clustering (see Stella and Shi
2003) to organize the available images. In the case of memes, this step has the effect
of assigning each image to a hypothesized meme genre, similar to the definition pre-
sented by Shifman (2014). The most important and perhaps trickiest part is deciding
on a number of clusters to create. While more clusters may allow for a more targeted
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Fig. 15.20 A demonstration of the type of structure that may be inferred from the output of content
retrieval, with many selected image queries. According to global and object-level local similarity,
images with similar sub-components should be clustered together, presenting connections to their
respective queries. Image adapted from William Theisen et al. (2020)

look into the dataset, it increases processing time for both the computer generating
the clusters and the human reviewing them at the end. In their studies, Theisen et
al. (2020) pointed out that 150 clusters appeared sufficient when the number of total
dataset available images was on the order of millions of samples. This allowed for a
maximum amount of images per cluster that a human could briefly review, but not
so few images that trends could not be noticed.

15.4.2 Datasets and Evaluation

Indonesian Elections Dataset: The alternative content clustering stage inside the
framework of provenance analysis aims to unveil emerging trends in large image
datasets collected around a topic or an event of interest. To evaluate the capability
of the proposed solutions, Theisen et al. (2020) collected over two million images
from social media, concentrated around the 2019 Indonesian presidential elections.
Harvested from Twitter (2021) and Instagram (2021) over 13months (from March
31, 2018, to April 30, 2019), this dataset spans an extensive range of emotion and
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Fig. 15.21 Imposter-host test to measure the quality of the computed image clusters. Five images
are presented at a time to a human subject, four of which belong to the same host cluster. The
remaining one belongs to an unrelated cluster, therefore, being named imposter. The human subject
is always asked to identify the imposter, which in this example is the last image. A high number
of correct answers given by humans indicate that the clustering solution was successful. Image
adapted from William Theisen et al. (2020)

thought surrounding the elections. The images are publicly available at https://bit.
ly/2Rj0odI.

Human Understanding Assessments: Keeping the objective of aiding the human
understanding of large image datasets in mind, a metric is needed to measure how
meaningful an image cluster is for a human. Inspired by the work of Weninger et
al. (2012), Theisen et al. (2020) proposed an imposter-host test, which is performed
by showing a person a collection of N images, all but one of which are from a
common “host” cluster, which was previously computed by the proposed solution,
whose quality needs to be measured. The other item, the “imposter”, is randomly
selected from one of the other established clusters. The idea is that the more related
the images in a single cluster are, the easier it should be for a human to pick out
the imposter image. Figure15.21 depicts an example of this configuration. To test
the results of their studies, Theisen et al. (2020) hired Amazon Mechanical Turk
workers (2021) to perform 25 of these imposter-host tasks each subject, with N
equal to 5 images, in order to measure the ease with which a human can pick out an
imposter from the clusters that were generated.

https://bit.ly/2Rj0odI
https://bit.ly/2Rj0odI
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Fig. 15.22 Accuracy of the imposter-host tasks given toAmazonMechanical Turkworkers, relative
to cluster size. The larger the point on the accuracy axis, the more images were in the cluster. The
largest cluster is indicated as having 15.89% of all the dataset images. Image adapted fromWilliam
Theisen et al. (2020)

15.4.3 Results

TheAmazonMechanical Turk experiments reported by Theisen et al. (2020) demon-
strated that the provenance pipeline’s clustering step can produce human interpretable
clusters while minimizing the average cluster size. The average accuracy for the
imposter-host test was 62.42%. If the worker is shown five images, the chance of
correctly guessing would be 1/5 (20%). Therefore, the reported average is far above
the baseline, thus, demonstrating the salience of the trends discovered in the clus-
ters to human reviewers. The median cluster size was only 132 images per cluster.
A spread of the cluster sizes as related to the worker accuracy for a cluster can be
seen in Fig. 15.22. Surprisingly even the largest cluster, containing 15.89% of all the
images, has an accuracy still higher than random chance. Three examples of what
an individual cluster could look like can be seen in Fig. 15.23.

15.5 Open Issues and Research Directions

State of the Art: Based on the results presented and discussed in the previous
sections within this chapter, one can safely conclude that, in the current state of the
art of provenance analysis, the available solutions are indeed proven to be effective
for at least two tasks, namely (1) authenticity verification of images and (2) the
understanding of image-sharing trends online.

As for the verification of the authenticity of a questioned image (i.e. the query),
this is done through the principled inspection of a given corpus of potentially related
images to the query. In this case, whenever a non-empty set of related images is
retrieved and a non-empty provenance graph (either directed or undirected) is gen-
erated and presented, one might infer the edit history of the query and take it as
evidence of potential conflicts that might attest against its authenticity, such as inad-
vertent manipulations or source misattributions.

Regarding the understanding of trending content online, this can be done during
the unfolding of a target event, such as national elections or international sports
competitions. In this case, the quick retrieval of related images and subsequent
content-based clustering have the potential to unveil emergent trends and surface
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Fig. 15.23 Three examples of what the obtained clusters may look like. In a and b, it is very easy
to see the similarity shared among all the images. In c, it is not quite as clear, but if one were to look
a little more closely, they might notice the stylized “01” logo in each of the images. This smaller,
shared component is what makes object-level matching and local feature analysis a compelling tool.
Image adapted from William Theisen et al. (2020)
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their provenance, allowing for a better comprehension of the event itself, as well
as its relevance. A summary of what the public is thinking about an event and who
the actors are trying to steer public opinion is only a couple of the possibilities that
provenance content clustering may allow one to do.

While results have been very promising, no solution is without flaws, and much
work is left to be done. In particular, imageprovenance analysis still hasmany caveats,
which are briefly described below. Similarly, multimodal provenance analysis is an
unexplored field, which deserves a great deal of attention from researchers shortly.

Image Provenance Analysis Caveats: There are open problems in image prove-
nance analysis that still need attention from the scientific community. For instance,
the solutions proposed to compute the directions of the edges of the provenance
graphs still deliver values of edge overlap that are inferior to the results for vertex
recall and vertex overlap. This aspect indicates that the proposed solutions are better
at determining which images must be added to the provenance graphs as vertices, but
there is still plenty of room to improve the computation of how these vertices must be
connected. In this regard, novel techniques of learning which image might have been
acquired or generated first and leveraging the output of single-image manipulation
detectors (tackled throughout this book) are desired.

Moreover, an unexplored aspect of image provenance analysis is understanding,
representing, and detecting the space of image transformations used to generate
one image from the other. By doing so, one will determine what transformations
might have been performed during the establishment of an edge, a problem that
currently still lacks solutions. Thankfully, through the recent joint efforts of DARPA
and NIST within the MediFor program (2021), a viable regime for data generation
and annotation at the level of registering the precisely applied image transformations
that have been performed from one asset to the other has emerged. This regime’s
outcome is available to the scientific community as a useful benchmark (see Guan
et al. 2019) for further research.

Multimodal Provenance Analysis:As explained in Sect. 15.3, we have already wit-
nessed that additional information such as image metadata helps to improve prove-
nance analysis. Moving forward, another important research direction that requires
progress is the identification and principled usage of information coming from other
asset modalities (such as the text of image captions, in the case of questionable
assets that are rich documents), as well as the development of provenance analysis
for media types other than images (e.g., the provenance of text documents, videos,
audios, etc.).

When one considers the multimodal aspect, many questions appear and are open
for research. One of them is how to analyze complex assets, such as the texts coming
from different suspect documents (looking for cases of plagiarism and attribution
to the original author), or the images extracted from scientific papers (which may
be inadvertently reused to fabricate scientific findings, such as what was recently
described inPubPeerFoundation (2020)).Another question is how to leverage images
and captions in a document, or the video frames and their respective audio subtitles,
within a movie.
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Video provenance analysis, in particular, is a topic that deserves a great deal
of attention. While one might assume image-based methods could be extended to
video by being run over multiple frames, such a solution would fail to glean videos’
inherent temporal dimension. Sometimes videos shared on social media such as
Instagram (2021) or TikTok (2021) are composites of one or more pieces of viral
footage. Tracking the provenance of videos is as important as tracking the provenance
of still images.

Document provenance analysis, in turn, has also gained attention lately due to
the recent pandemic of bad science (see Scheirer 2020). The COVID-19 crisis has
caused a subsequent explosion in scientific publications surrounding the pandemic,
not all of which might be considered highly rigorous. Using a provenance pipeline
to aid in document analysis could allow reviewers to find repeated figures across
many publications. It would be the reviewers’ decision, though, to determine if the
repetition is something as simple as citing the previous work or something more
nefarious like trying to claim pre-existing work as one’s own.

Towards an End-user Provenance Analysis System: Finally, for the solutions
discussed in this chapter to be truly useful, they require front-end development and
back-end integration, which are currently missing. Such a system would allow users
to perform tasks similar to reverse image search, with the explicit intent of finding
the origins of all related content within the query asset in question. If a front-end
requiring minimal user skill to use could be designed, provenance analysis could be
consolidated as a powerful tool for fighting fake news and misinformation.

Table 15.7 List of datasets useful for provenance analysis
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15.6 Summary

The current state of the art of provenance analysis is mature enough for aiding
image authenticity verification by processing a corpus of images rather than the
processing of a single and isolated asset. However, more work needs to be done to
improve the quality of the generated provenance graphs concerning the direction and
identification of image transformations associated with the graphs’ edges. Besides,
provenance analysis still needs to be extended tomedia types other than images, such
as video, audio, and text. In this regard, both the development of algorithms and the
collection of datasets are yet to be done, revealing a unique research opportunity.

Provenance Analysis Datasets: Table15.7 enlists the currently available and useful
datasets for image provenance analysis.

Table 15.8 List of implementations of provenance analysis solutions
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Provenance Analysis Source Code: Table15.8 summarizes the currently available
source code for image provenance analysis.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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