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PeaTMOSS: Mining Pre-Trained Models in
Open-Source Software
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∗
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∗
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∗
, Nicholas Synovic3, Rajeev Sashti1, Sophie Chen4,

George K. Thiruvathukal3, Yuan Tian2, James C. Davis1
Purdue University1 ; Queen’s University2 ; Loyola University–Chicago3 ; and University of Michigan–Ann Arbor4

West Lafayette, Indiana, USA1 ; Kingston, Ontario, CA2 ; Chicago, Illinois, USA3 ; and Ann Arbor, Michigan, USA4

Abstract—Developing and training deep learning models is
expensive, so software engineers have begun to reuse pre-trained
deep learning models (PTMs) and fine-tune them for downstream
tasks. Despite the wide-spread use of PTMs, we know little about
the corresponding software engineering behaviors and challenges.

To enable the study of software engineering with PTMs, we
present the PeaTMOSS dataset: Pre-Trained Models in Open-
Source Software. PeaTMOSS has three parts: a snapshot of
(1) 281,638 PTMs, (2) 27,270 open-source software repositories
that use PTMs, and (3) a mapping between PTMs and the
projects that use them. We challenge PeaTMOSS miners to
discover software engineering practices around PTMs. A demo
and link to the full dataset are available at: https://github.com/
PurdueDualityLab/PeaTMOSS-Demos.

I. HIGH-LEVEL OVERVIEW

Motivation: Deep Neural Networks (DNNs) have become a
common component in software systems over the past decade.
While some software engineers develop DNNs from scratch,
many others integrate DNNs into their software following
a typical re-use pattern: (1) pre-trained DNN models are
published to registries such as Hugging Face, similar to tradi-
tional software package registries (e.g., NPM, PyPI); and (2)
other software depends on these Pre-Trained Models (PTMs),
accessed via libraries or web APIs.

Despite wide-spread adoption of PTMs, we know relatively
little about how PTMs are integrated into software systems.

Challenge: We propose the PeaTMOSS challenge to learn
more about Pre-Trained Models in Open-Source Software
(Figure 1).

Downstream GitHub

Dependency

Code
Commits
PRs
Issues

Dependencies
...

PTM

Framework
Architecture
Dataset

Discussion
Configuration

...

PTM
Package

Fig. 1: Data for Pre-Trained Models in Open-Source Software.

The PeaTMOSS dataset comprises snapshots of PTMs and
open-source repositories utilizing PTMs, as well as a mapping

*These authors contributed equally and are listed alphabetically.

of PTMs to projects. PeaTMOSS contains 281,638 PTM pack-
ages, 27,270 GitHub projects that use PTMs as dependencies,
and 44,337 links from these GitHub repositories to the PTMs
they depend on. For both PTMs and GitHub projects, PeaT-
MOSS contains metadata (commits, issues, pull requests) and
data (e.g., model architecture and weights; git repositories).
A uniform schema for retrieving PTM and project metadata
is provided to assist in mining efforts. Most information is
indexed; some is stored as blobs.

The dataset can be accessed in two formats. The “metadata”
version of PeaTMOSS is 7.12 GB and contains only the
metadata of the PTM packages and a subset of the GitHub
project metadata. The “full” version is 48.2 TB, adding (1)
the PTM package contents in each published version, and (2)
git history of the main branches of the GitHub projects.

II. PEATMOSS DATASET STRUCTURE

The metadata version of PeaTMOSS is stored in a SQLite
database. The tables include hyperlinks to tarred copies of
the PTM package or GitHub repository. Dataset schemas are
described in §A.

The mapping between GitHub projects and PTMs are cases
where a GitHub repository is known to depend on a particular
PTM. Additional detail is given in §B-B.

III. ACCESSING AND WORKING WITH PEATMOSS

Access: The metadata and full versions of PeaTMOSS are
available through a Globus share hosted at Purdue University.
PeaTMOSS can be downloaded via the official Globus Connect
application, which is available for all major operating systems,
e.g., Linux, MacOS, and Windows. We include a Python
script to download and configure an SQLite instance of the
metadata version. For more instructions, see https://github.
com/PurdueDualityLab/PeaTMOSS-Demos.
Working with PeaTMOSS: To interact with PeaTMOSS, we
recommend ORM or SQL. Examples are provided in §C.
Required Skills: PeaTMOSS is accessible to miners with a
range of skills and interests. PeaTMOSS includes both standard
mining artifacts from GitHub (e.g., git repositories, issues,
PRs) and unusual artifacts from PTMs (e.g., neural networks,
weights, model cards). Miners interested in program analysis,
software repository mining, and natural language processing,
etc. may apply these techniques to GitHub data, PTM data, or
both.

ar
X

iv
:2

31
0.

03
62

0v
1 

 [
cs

.S
E

] 
 5

 O
ct

 2
02

3

https://github.com/PurdueDualityLab/PeaTMOSS-Demos
https://github.com/PurdueDualityLab/PeaTMOSS-Demos
https://github.com/PurdueDualityLab/PeaTMOSS-Demos
https://github.com/PurdueDualityLab/PeaTMOSS-Demos


Neither expertise in deep learning nor access to hardware
such as GPUs is necessary for use of PeaTMOSS. Of course,
miners with deep learning expertise or hardware resources
could explore more advanced questions about PTM usage on
GitHub or delve deeper into the PTM data.
Data Samples: We offer a subset of samples from PeaTMOSS
at: https://github.com/PurdueDualityLab/PeaTMOSS-Demos.

IV. POSSIBLE RESEARCH QUESTIONS

Table I presents sample research questions for miners to in-
vestigate. This table includes questions focused on the GitHub
portion of the dataset, on the PTM portion of the dataset, and
on both parts. It notes some prior work as starting points for
miners.

TABLE I: Example questions for miners to investigate. These questions are divided into three groups. The first group of questions makes
use of the GitHub portion of the dataset (GH). The second group uses the Pre-Trained Model portion of the dataset (PTM). The third group
asks questions that require Integrating both parts of the dataset (I).

Research questions Related work

GH1: What kinds of defects are opened related to PTM use in the GitHub projects? How do these defects differ from
defects opened on other aspects of the GitHub projects?

[1]

GH2: What do developers on GitHub discuss related to PTM use, e.g., in issues, and pull requests? What are developers’
sentiments regarding PTM use? Do the people do pull requests of PTMs have the right expertise?

[2, 3]

GH3: How commonly do developers change the specific PTM they use to implement a feature? What factors influence
these changes?

[4]

GH4: Sometimes a PTM is introduced into a GitHub repository as part of the initial implementation of a software feature,
but other times a PTM is introduced to replace part or all of an existing feature implementation. How common are these
two modes of PTM adoption? In the second kind, how does the feature’s defect types or defect rates change after the
PTM is introduced?

[5–8]

PTM1: What factors predict the popularity of a PTM, and what is their relative importance? Intuition suggests that
performance aspects such as accuracy and latency may dominate; what is the role played by other factors such as engineering
quality?

[9, 10]

PTM2: Recent qualitative work determined that software engineers struggle to re-use PTMs because of their limited
documentation. What are the typical characteristics of this documentation? Can natural-language model cards be
automatically parsed into a structured schema?

[10–12]

PTM3: One aspect of re-use is finding a candidate model. What naming conventions do PTMs follow? Are they consistent
enough (within an architecture family? across families?) to support engineers looking for similar models? When do PTM
maintainers release a model under a new name, and when do they simply bump the version number?

[13]

PTM4: PTM authors may reuse each others’ work, e.g., building off of model checkpoints or incorporating architectural
building blocks. This might be viewed as an extreme form of “forking” from open-source software, but it may also reflect
a novel form of software exchange. What is the phylogeny, or perhaps the “supply chain”, of the major families of PTMs?

[11]

PTM5: Many research papers describe techniques for identifying DNNs with unexpected behavior, e.g., hidden malicious
behaviors. How common are such DNNs in the PTM dataset?

[10, 14–16]

I1: It can be difficult to interpret model popularity numbers by download rates. To what extent does a PTM’s download
rates correlate with the number of GitHub projects that rely on it, or the popularity of the GitHub projects?

[17]

I2: What are the code smells related to PTM in the downstream projects, and how do they affect theses projects? [18–21]
I3: When PTMs are used in GitHub repositories, what are engineers’ testing practices for the PTMs they add as
dependencies? Is there any correlation between the tests of the PTM by its maintainers, and the tests of the PTM by
the downstream users? Do practices vary based on the purpose of the PTM, e.g., computer vision vs. natural language
processing? How do PTM downstream users deal with flakiness when testing a PTM?

[8, 22–24]

I4: Updating dependencies is a core software engineering activity. Suppose a GitHub repository depends on a PTM. How
often does the GitHub repository update the dependency when that PTM is changed, e.g., due to (1) PTM deprecation,
(2) PTM improvement via a new version, or (3) PTM being made outdated by the release of a new model? What is the
typical lag time for such updates?

[25, 26]

I5: Software engineers often communicate through filing issue reports. What are the characteristics of issue reports on
the PTM packages, e.g., in terms of the kinds of questions asked, responsiveness of maintainers, issue density, and issue
staleness? How often does the topic of reproducibility come up (cf. the “ML reproducibility crisis”)? How do these
attributes differ from the characteristics of issue reports in GitHub repositories?

[27, 28]

I6: When engineers deploy software applications that make use of PTMs, they may prefer to use a deployment framework,
e.g., the ONNX RunTime, rather than a development framework such as PyTorch. Which of the several competing
deployment frameworks (ONNX RunTime, MM-DNN, NNET, TFLite, etc.) is the most popular, and is there any evidence of
why? Do GitHub users make the transformation to deployment themselves or do the PTM authors provide the deployment-
ready version?

[29–31]
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APPENDIX A
DATASET SCHEMA

The detailed schema is shown in Figure 2. The definition in
SQL is available to miners.

Metadata
Joining Table

GitHub Project Metadata

PTM Metadata

reuse_file

PK id

path

FK1 model_id

FK2 reuse_repository_id

github_user

PK id

login

email

github_comment

PK id

author_id

author_association

body

created_at

includes_created_edit

is_minimized

minimized_reason

issue_id

pull_request_id

github_commit

PK id

authored_date

committed_date

message_body

message_headline

oid

pull_request_id

github_reaction_group

PK id

content

total_count

issue_id

pull_request_id

github_comment_id

review_id

github_merge_commit

PK id

commit_id

github_review

PK id

author_id

author_association

body

submitted_at

includes_created_edit

state

pull_request_id

github_pull_request_file

PK id

path

additions

deletions

pull_request_id

github_issue

PK id

author_id

body

closed

closed_at

created_at

comment_id

milestone_id

number

project_cards

state

title

updated_at

url

github_pull_request

PK id

additions

author_id

base_ref_name

body

changed_files

closed

closed_at

created_at

deletions

head_ref_name

head_repository_id

head_repository_owner_id

is_cross_repository

is_draft

maintainer_can_modify

merge_commit_id

merge_state_status

mergeable

merged_at

merged_by_id

milestone_id

number

potential_merge_commit_id

project_cards

review_decision

state

title

updated_at

url

github_label

PK id

name

description

color

issue_id

pull_request_id

github_repository

PK id

name

url

github_status_check_rollup

PK id

name

status

conclusion

started_at

completed_at

details_url

pull_request_id

model

PK id

context_id

FK1 model_hub_d

sha

repo_url

downloads

likes

has_snapshot

FK2 ptm_issues_id

FK3 ptm_pull_requests_id

reuse_repository

PK id

name

url
model_to_reuse_repository

PK,FK1 model_id

PK,FK2 reuse_repository_id

model_to_architecture

PK,FK1 model_id

PK,FK2 architecture_id

model_to_framework

PK,FK1 model_id

PK,FK2 framework_id

model_to_dataset

PK,FK1 model_id

PK,FK2 dataset_id

model_to_language

PK,FK1 model_id

PK,FK2 language_id

model_to_library

PK,FK1 model_id

PK,FK2 library_id

model_to_license

PK,FK1 model_id

PK,FK2 license_id

model_to_paper

PK,FK1 model_id

PK,FK2 paper_id

model_to_tag

PK,FK1 model_id

PK,FK2 tag_id

tag

PK id

name

paper

PK id

name

license

PK id

name

library

PK id

name

language

PK id

name

dataset

PK id

name

framework

PK id

name

architecture

PK id

name

github_milestone

PK id

number

title

description

due_on

pull_request_to_assignee

PK,FK1 pull_request_id

PK,FK2 assignee_id

pull_request_to_review_request

PK,FK1 pull_request_id

PK,FK2 review_request_id

issue_to_assignee

PK,FK1 issue_id

PK,FK2 assignee_id

commit_to_author

PK,FK1 commit_id

PK,FK2 author_id

discussion

PK id

title

status

num

repo_id

repo_type

is_pull_request

created_at

endpoint

target_branch

merge_commit_oid

diff

model_id

discussion_event

PK id

event_id

type

created_at

author

content

edited

hidden

new_status

summary

oid

oid_title

new_title

discussion_id

file_path

PK id

path

discussion_id

model_to_author

PK,FK1 model_id

PK,FK2 author_id

author

PK id

name
ptm_issues

PK id

repo_url

ptm_pull_requests

PK id

repo_url

hf_git_ref_info

PK id

name

ref

target_commit

model_hub

PK id

name

url

ptm_pull_request_to_pull_request

PK,FK1 ptm_pull_request_id

PK,FK2 github_pull_request_id

ptm_issue_to_issue

PK,FK1 ptm_issue_id

PK,FK2 github_issue_id

reuse_repo_to_pull_request

PK,FK1 reuse_repository_id

PK,FK2 github_pull_request_id

hf_commit

PK id

commit_id

created_at

title

message

FK model_id

hf_git_ref

PK id

FK model_id

reuse_repo_to_issue

PK,FK1 reuse_repository_id

PK,FK2 github_issue_id

hf_commit_to_author

PK,FK1 hf_commit_id

PK,FK2 author_id

hf_git_ref_to_tag

PK,FK1 hf_git_ref_id

PK,FK2 hf_git_ref_info_id

hf_git_ref_to_branch

PK,FK1 hf_git_ref_id

PK,FK2 hf_git_ref_info_id

discussion_to_author

PK,FK1 discussion_id

PK,FK2 author_id

Fig. 2: The PeaTMOSS data schema. The database has three regions: one set of tables for PTMs, one set of tables for GitHub projects, and
one table linking the two. The underlying PTMs and GitHub repositories are stored in the Globus share and can be fetched on demand. A
more navigable version of the schema is available in the demo repository.
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APPENDIX B
DATA COLLECTION

A. PTMs
1) What is a PTM and PTM package?
Pre-trained deep learning models (PTMs) are often shared
through deep learning model registries, such as Hugging Face.
Engineers can directly reuse these PTMs, or fine-tune them for
specific downstream tasks. A PTM package typically includes
a model card (a form of README), as well as the model’s
architecture and weights [10]. In recent years, the popularity
of PTMs has been steadily rising [32, 33]. As illustrated in
Figure 3, the total number of Hugging Face models has
seen a consistent increase on a monthly basis. Recent work
shows increasing interest from the software engineering min-
ing community in PTMs [10, 11, 34, 35]. These works have
identified the potential mining data that the community can
take advantage of. In the past year the first mining efforts of
PTMs and software engineering practices have begun [32, 33].

Fig. 3: Evolution of the total number of Hugging Face models per
month. This figure is reused from [33].

2) PTM Collection
Our PTM data collection includes three parts: (1) We saved
15,250 PTM snapshots. This included the most popular PTM
packages (i.e., with over 10K downloads) on Hugging Face,
which resemble a “git-like” structure, and all PTMs on Py-
Torch. This part of the data can provide a comprehensive view
of PTM packages. (2) Among these “full” metadata, 44,337
links from the PTMs to the downstream GitHub repositories
have been identified. This part of the data can be connected
to downstream GitHub data and allow miners to analyze
the relationship between them. (3) For all PTMs hosted on
Hugging Face and PyTorch, we retrieved their metadata,
resulting in a total number of 281,638 PTM package metadata
being included in PeaTMOSS. The miners can answer research
questions based on metadata only, such as analyzing PTM
naming conventions.
3) Soundness and Completeness
PeaTMOSS is comprehensive in terms of popular PTM pack-
ages, as it includes snapshots of those with over 10,000 down-
loads on Hugging Face. This provides a full view of widely-
used PTMs and their connections to downstream GitHub

projects, facilitating in-depth analysis. Additionally, the dataset
includes metadata from all other PTMs on Hugging Face,
which can be used for metadata-based analyses. PeaTMOSS
enhances the diversity of PTM data by incorporating PTM
packages from PyTorch Hub, including all available model
repositories and their associated pull requests and issues.
4) Implementation

Metadata is collected using an Extract-Translate-Load (ETL)
pipeline for each model hub. The ETL pipeline can be gener-
alized to the following steps:

• Extract: Obtain metadata that is available from each
model hub’s API.

• Transform: Use metadata to collect more information
about PTMs (i.e., examine Github Metadata for a linked
repository) as well as download PTM package of GitHub
repository snapshot. Transform the data into intermediate
representation to simplify Loading.

• Load: Load the transformed data into a database for long-
term storage and retrieval

Each model hub has a unique implementation of the Extract
stage, but the functionality is the same.

• Hugging Face: PTM package metadata is downloaded
using the HuggingFace_hub Python library.

• PyTorch: The markdown files in the root of the Py-
Torch GitHub repository, which correspond to each PTM
package’s repository, are downloaded and subsequently
scraped for metadata.

During the Transform stage, data that matches the
PeaTMOSS.db metadata schema is transformed into an in-
termediate representation, while data that doesn’t match the
schema is transformed into a JSONB blob. This is to allow
for both consistency across model hubs, as well as maintaining
hub specific metadata.

B. Mapping GitHub projects to PTMs

To evaluate PTM usage within projects, a PTM must be
mapped back to a GitHub project. While it is possible to
use Hugging Face and PyTorch Hub hosted projects with
libraries outside of the Python ecosystem, we filtered on
GitHub projects that utilize Python libraries to interface with
PTMs as the vast majority of projects we found utilized Python
libraries. As Hugging Face and PyTorch hub do not provide
metadata or a method to retrieve PTM usage within projects,
by analyzing the source code of a GitHub project, it is possible
to map the two. The whole methodology has been described
below:
1) Signature Collection

For leveraging Hugging Face PTMs, dedicated func-
tions/methods specific to each library are available. These
functions/methods allow loading PTMs by inputting their
names as arguments. In this step, we manually retrieve the
libraries, along with their corresponding import identifiers
and the necessary function/method names essential for PTM
loading. This compilation process is guided by Hugging Face’s
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official documentation.* The culmination of import identifiers
and the essential function/method names is referred to as a
Signature. For example, when accessing the PTMs provided by
the Diffusers library, the corresponding signature encompasses
diffusers and from_pretrained. Note that some libraries
offer multiple methods to load PTMs, and we have taken all of
these methods into account. For instance, the transformers

library presents two distinct approaches: from_pretrained
and pipeline, both of which can be utilized to load PTMs.
Figure 4 shows an example code snippet to load the PTMs
provided by Transformers library.

Throughout this process, we exclude libraries not visible
on the website (such as k2, doctr, mindspore), as well
as those unsuitable for downstream projects. An example of
such incompatibility is when PTMs can only be used via
command line or download, or when they lack the "use in
library" feature†. After filtering, a total of 23 libraries remain
in the compilation.

To use PyTorch PTMs, there are two approaches: (1)
torch.hub.load function that provides a way to load PTMs
by specifying their names as arguments. and (2) Alterna-
tively, one can utilize library-specific classes provided by
torchvision or instances provided by torchaudio and
torchtext. These classes and instances are tailored to rep-
resent individual PTMs. The first approach and alternative
approach provided by the torchvision library contain key-
word based parameters i.e., pretrained/weights to control the
model usage with pretrained weights or random initialization.
The above mentioned two approaches give us a total of 163
signatures. Figure 5 shows an example code snippet to load
the PTMs provided by the PyTorch library.

Fig. 4: An Example Code Snippet to Use PTMs from Hugging Face
Hub

Fig. 5: An Example Code Snippet to Use PTMs from PyTorch Hub

2) Preliminary repository collection based on Sourcegraph
Search

The subsequent task involves locating these signatures within
the code. Although we attempted to use GitHub search, it
does not facilitate a comprehensive search as it provides the
top 1000 results. Instead, we utilize the Sourcegraph command
line interface, src‡, to detect projects containing pertinent files

*https://github.com/HuggingFace/hub-docs/blob/main/js/src/lib\/interfaces/
Libraries.ts

†https://HuggingFace.co/facebook/musicgen-large
‡https://docs.sourcegraph.com/cli

that employ the gathered signatures to interact with Hugging
Face and PyTorch Hub.

Our search pattern incorporates the signatures gathered
earlier, and we match them against the content of files
within GitHub repositories. Our search criteria encompass
repositories that are not archived (default behavior), not
forked (default behavior), and publicly accessible, specifically
focusing on Python files. For example, a query for Diffusers
is structured as “src select:file visibility:public

count:all lang:Python content:‘from diffusers’

AND from_pretrained(”. Our search query accommodates
both ‘from import’ and ‘import’ statements. Our search results
include the corresponding code snippets, file names, and
repository names. The projects were identified during July
5-12. Based on the count of the repositories, we select the
top 5 Hugging Face libraries for our data collection including
Transformers, Spacy, Sentence-Transformers,
Diffusers, and Timm. For PyTorch, we consider all of
the corresponding signatures. Our dataset comprises well-
recognized GitHub repositories with an average star count of
201.

We have obtained local copies of the GitHub repositories by
using the git clone command. This process took approximately
12 days to complete and resulted in the download of 36,251
repositories, collectively amounting to a total size of 3.5 TB.
3) Extracting PTMs via Static Analysis

As Sourcegraph’s search feature relies on text-based patterns,
the possibility of encountering false positive results exists. To
mitigate this concern, we perform static analysis on GitHub
repositories with the Scalpel framework [36]. For each relevant
source code file associated with a specific function signature,
we construct an abstract syntax tree and extract the function
calls contained within the file. Subsequently, we retrieve the
complete and qualified names of each identified function call
and cross-reference them with our predefined signatures which
gives us a total of 28,575 repositories. Additionally, we go
a step further by extracting both the positional and keyword
arguments that are associated with the function calls that match
our target signatures. Our analysis is equipped to capture any
argument that possesses a static value. We then utilize the list
of PTMs from PTM Torrent V2 to identify the repositories
that statically call PTMs which gives us a total of 15,129
repositories. We store the corresponding repositories and files
for each of the matched PTMs. It is important to note that a
single repository can utilize multiple PTMs, and similarly, a
single PTM can be employed across multiple repositories.
4) Soundness and Completeness of Collected Repositories

For the PTMs hosted on the Hugging Face hub, our
dataset provides usage considering the five libraries, i.e.,
Transformers, Spacy, Timm, Sentence-Transformers,
and Diffusers. These libraries were chosen because they
comprise the top five libraries used in GitHub projects as
shown in Figure 6. For the PTMs from the PyTorch hub,
we did not filter by the library. Our dataset comprises
torchvision, torchaudio, torchtext, along with Py-
Torch hub.

5

https://github.com/HuggingFace/hub-docs/blob/main/js/src/lib\/interfaces/Libraries.ts
https://github.com/HuggingFace/hub-docs/blob/main/js/src/lib\/interfaces/Libraries.ts
https://HuggingFace.co/facebook/musicgen-large
https://docs.sourcegraph.com/cli


TABLE II: JSON response fields captured when collecting issues
and pull requests for 28,575 GitHub repositories.

Request Type Response Fields
Issue Metadata assignees, author, body, closed, closedAt,

comments, createdAt, id, labels, milestone,
number, projectCards, reactionGroups, state,
title, updatedAt, url

Pull Request Metadata additions, assignees, author, baseRefName,
body, changedFiles, closed, closedAt, com-
ments, commits, createdAt, deletions, files,
headRefName, headRepository, headRepos-
itoryOwner, id, isCrossRepository, isDraft,
labels, maintainerCanModify, mergeCom-
mit, mergeStateStatus, mergeable, merge-
dAt, mergedBy, milestone, number, poten-
tialMergeCommit, projectCards, reaction-
Groups, reviewDecision, reviewRequests,
reviews, state, statusCheckRollup, title, up-
datedAt, url

Static analysis was carried out due to the limitations of
the text search conducted using Sourcegraph. We resolve the
fully qualified names for each function call to accurately
identify True Positive results. This results in a total of 28,575
repositories that genuinely contain the practical utilization of
the PTMs. Our dataset encompasses projects created up until
July 10, 2023.
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Fig. 6: Number of projects that use a specific library as captured via
Sourcegraph code search

5) Extracting GitHub Issues and Pull Requests

By analyzing the discussions that community members have
about the project within the project’s issue tracker, it is possi-
ble to identify not only PTMs of interest w.r.t the project, but
the potential future direction of a project w.r.t the techniques
implemented by the PTM.

To collect the issues and pull requests associated with the
GitHub repositories, we use GitHub’s official command line
interface gh. We consider all states (i.e., open and closed)
while collecting the issues and pull requests associated with
each repository. Each of the issue and pull request metadata
responses contain all available relevant fields provided by
GitHub CLI. Specific response fields are listed in Table II.
Example commands to retrieve relevant data can be found in
PeaTMOSS GitHub repository. Targeting 28,575 repositories,
we retrieve the issues or pull requests resulting in 19,507
repositories with issues and 12,159 repositories with pull
requests.

Altogether, our dataset encompasses a total of 27,270 repos-
itories, which involve occurrences of issues, pull requests or
static utilization of PTMs.

APPENDIX C
DATA ACCESS EXAMPLES

To answer several of the proposed research questions in
Table I, we have released examples on how to interface with
PeaTMOSS. ORM methods and SQL examples for interfacing
with the PeaTMOSS.db database are provided. Code snippets
for these examples are made available via the /Examples/

filepath in our GitHub repository.
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