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ABSTRACT
Deep Learning (DL) methods have shown substantial efficacy in
computer vision (CV) and natural language processing (NLP). De-
spite their proficiency, the inconsistency in input data distributions
can compromise prediction reliability. This study mitigates this
issue by introducing uncertainty evaluations in DL models, thereby
enhancing dependability through a distribution of predictions. Our
focus lies on the Vision Transformer (ViT), a DL model that har-
monizes both local and global behavior. We conduct extensive ex-
periments on the ImageNet-1K dataset, a vast resource with over a
million images across 1,000 categories. ViTs, while competitive, are
vulnerable to adversarial attacks, making uncertainty estimation
crucial for robust predictions.

Our research advances the field by integrating uncertainty evalu-
ations into ViTs, comparing two significant uncertainty estimation
methodologies, and expediting uncertainty computations on high-
performance computing (HPC) architectures, such as the Cerebras
CS-2, SambaNova DataScale, and the Polaris supercomputer, utiliz-
ing the MPI4PY package for efficient distributed training.
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1 PREVIOUS WORK
Numerous techniques have been developed to quantify uncertain-
ties in DL. For instance, Temperature Scaling [5] is a post-processing
technique to calibrate neural networks. A limitation of this method
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is the need for the scaling parameter to be learned during DL train-
ing. Bayesian Neural Networks (BNN) [3], which transform neuron
weights into probability distributions, can sometimes yield subpar
results, especially when employing Monte Carlo dropout [4]. In
this paper, we focus on deep ensembles and evidential learning
for uncertainty quantification. While ensembles are recognized for
their comprehensive uncertainty data, evidential learning stands
out for its computational efficiency and lack of need for extra train-
ing stages. In [8] researchers present Peer Loss Functions, in this
approach enables models to learn even from noisy labels.

2 METHODS
Among various uncertainty estimation techniques, we identified
ensembles [9] and evidential learning [1] as the most promising.

2.1 Ensembles
Ensembles aggregate outputs from several independently trained
models on the same data. These intermediate models, optimized
using Hyper-parameter Optimization (HPO), alleviate the compu-
tational burden of uncertainty evaluation. Given a classification
task with input 𝑥 and label 𝑦, the ensemble employs the predic-
tive distribution 𝑝𝜃 (𝑦 | 𝑥), with 𝜃 denoting the neural network’s
(NN) parameters. Predictions are then aggregated as 𝑝 (𝑦 | 𝑥) =

𝑀−1∑𝑀
𝑚=1 𝑝𝜃𝑚 (𝑦 | 𝑥, 𝜃𝑚).

2.2 Evidential Learning
In Evidential learning the softmax layer is substituted with an
activation layer, generating an evidence vector that informs the
predicted Dirichlet distribution. Given the evidence vector as 𝑓 (𝑥𝑖 |
𝜃 ), the Dirichlet distribution’s parameters are 𝛼𝑖 = 𝑓 (𝑥𝑖 | 𝜃 ) + 1,
which approximate the class probabilities.

2.3 Binary Evidential Learning
Additionally, our Binary evidential learning method employs 𝑛
binary classifiers for individual class probability and uncertainty
estimation. We favored ensembles for their robust and comprehen-
sive uncertainty assessment, whereas evidential learning stands
out for its efficiency and bypassing of redundant training/inference
cycles.

Our experiments used the ImageNet-1K dataset and a Projected
Gradient Descent (PGD) adversarial attack. ImageNet-1K offers
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diverse data for extensive uncertainty evaluation, while PGD, a
common adversarial attack in DL, perturbs input data to mislead
the model’s predictions, testing the uncertainty methods’ resilience
under hostile conditions.

Our goal is to integrate these uncertainty estimation methods
with the ViT, expose it to PGD attacks, and thoroughly evaluate the
model’s uncertainty estimation ability, interpretability, robustness,
and real-world application utility.

3 RESULTS
Our comprehensive experiments on the MNIST and ImageNet-1K
datasets with Convolutional Neural Networks (CNN) and ViTs,
evaluated on three different system architectures (Polaris super-
computer [6], SambaNova DataScale [2], and Cerebras CS-2[7]),
have yielded significant insights into the quantification of uncer-
tainty in DL models.

Ensembles and evidential learning demonstrated distinct advan-
tages and limitations. Ensembles, leveragingmultiple independently
trained models, provided robust insights into uncertainty but re-
quired up to𝑛 timesmore resources with an ensemble of size𝑛when
compared to evidential learning. Evidential learning, despite being
computationally efficient and requiring fewer resources, demon-
strated a lack of robustness, leading to significantly decreased ro-
bustness compared to ensembles. We theorize that this is due to
evidential learning’s high correlation between probability and un-
certainty. Further, we applied adversarial perturbations, using a
PGD attack, to the ImageNet-1K data, revealing that such attacks
significantly influence the uncertainty in DL models. We found an
approximate 30% increase in uncertainty and a 31.8% decrease in ac-
curacy. Despite a significant increase in the uncertainty of the class
activation maps (CAM) compared to benign images, this increase in
uncertainty was not clearly reflected in the probability/uncertainty
distribution. Contrary to expectations, this distribution displayed
higher accuracy for images with high uncertainty, and lower accu-
racy for lower uncertainty.

The testing of the system architectures revealed important dis-
tinctions. Established distributed supercomputers like Polaris pro-
vided scalable and well-understood paradigms for GPU use in train-
ing and inference, making them reliable choices for uncertainty
quantification in DL. In contrast, emerging systems like SambaNova
DataScale and Cerebras CS-2 presented certain challenges, includ-
ing software bugs and limited parallelization capabilities. Despite
these challenges, they promise potential efficiency gains in scaling
uncertainty computations.

Our results underline the practical value of evaluating uncer-
tainty in DL models. They highlight the trade-off between the
detailed insights provided by ensemble methods and the computa-
tional efficiency of evidential learning, while also addressing the
opportunities and challenges presented by different HPC architec-
tures.

4 CONCLUSION
This study gauges the robustness of ensemble and evidential uncer-
tainty evaluation methods on ViTs with adversarial attacks. Ensem-
bles delivered broad uncertainty insights, unaffected by class proba-
bilities. We found evidential learning was fast yet less specific with

a clear uncertainty-probability correlation, while binary evidential
was infeasible for datasets with many classes like ImageNet-1K. We
also highlighted the vulnerability of ViTs: adversarial images had
higher uncertainty but misclassified ones showed lower values than
correctly labeled counterparts. Distinct CAM uncertainty patterns
emerged between benign and adversarial images.

5 FUTUREWORK
Future work may explore Multi-Input Multi-Output (MIMO) en-
sembles, enhanced classification via aggregated CAMs, and uncer-
tainty in AI-powered differential solvers. The value of uncertainty
analysis in DL is underscored. Access our experimental code at
https://github.com/epautsch/UncertaintyANL.
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