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ABSTRACT
Deep Learning models often exhibit undue confidence when en-
countering out-of-distribution (OOD) inputs, misclassifying with
high confidence. The ideal outcome, in these cases, would be an "I
do not know" verdict. We enhance the trustworthiness of our mod-
els through selective classification, allowing the model to abstain
from making predictions when facing uncertainty. Rather than a
singular prediction, the model offers a prediction distribution, en-
abling users to gauge the model’s trustworthiness and determine
the need for human intervention. We assess uncertainty in two
baseline models: a Convolutional Neural Network (CNN) and a
Vision Transformer (ViT). By leveraging these uncertainty values,
we minimize errors by refraining from predictions during high
uncertainty. Additionally, we evaluate these models across various
distributed architectures, including new AI architectures, Cerebras
CS-2, and SambaNova SN30.
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1 INTRODUCTION
Selective classification in deep learning (DL) [6] addresses the chal-
lenge of overconfident misclassifications by enabling models to
abstain from predictions during uncertain scenarios. Uncertainty
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evaluation is critical for some DL tasks, for example, for pedestrian
detection in self-driving cars [2] where an AI model may not rec-
ognize a human since he is partially covered by a bicycle or any
new (for training) situation like this. In [13], researchers train a
path-planning robot to ask for help when it does not understand
the command by measuring the uncertainty of Large Language
Models (LLM). In [12], the authors benchmarked one pointwise
and three approximate Bayesian DL models to predict uncertainty
in the classification of cancer of unknown primary, using three
RNA-seq datasets. Evaluation of uncertainty is crucial, and being
able to output "I do not know" and ask for help is as important as
having high accuracy.

Numerous techniques have been developed to quantify uncer-
tainties in DL. For instance, Temperature Scaling [7] is a post-
processing technique to calibrate neural networks. A limitation of
this method is the need for the scaling parameter to be learned
during DL training. Bayesian Neural Networks (BNN) [5], which
transform neuron weights into probability distributions, can some-
times yield subpar results, especially when employing Monte Carlo
dropout [5]. In [11], researchers present Peer Loss Functions; this
approach enables models to learn even from noisy labels.

This paper focuses on deep ensembles and evidential learning
for uncertainty quantification. While ensembles are recognized for
their comprehensive uncertainty data, evidential learning stands
out for its computational efficiency and lack of need for extra train-
ing stages. The main contributions of our study are the introduc-
tion of uncertainty evaluations to ViTs, a detailed comparison of
select uncertainty estimation techniques tailored to our context, and
a cursory examination of optimizing uncertainty calculation with
High-Performance Computing (HPC) paradigms. Figure 1 high-
lights an example where a ViT-based classifier misclassifies under
adversarial conditions. While the mean cams for both images are
very similar, there is a significant discrepancy in the uncertainty. In
the adversarial case, the high uncertainty indicates potential mis-
classification, allowing for intervention or rejection of the result.

The paper is organized as follows. In Section 2, we describe the
datasets, uncertainty evaluation methods, and accelerations we
performed; in Section 3, we present a summary of our results; and
in Sections 4 and 5 we present our conclusion and future work
respectively.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 METHODS

Figure 1: Class Activation Maps (CAM), first four images, for
ViT Classifier (axis represents pixel values). The uncertainty
of the adversarial cam is high despite the mean being similar
to the benign one (last two images). The classifier misclas-
sifies under Adversarial attack, but the uncertainty is high
and is rejected by the classifier.

We explored multiple uncertainty estimation methods, with en-
sembles and evidential learning emerging as the most promising
due to their reliability and efficiency, respectively.

2.1 Ensembles
Ensembles [15] aggregate outputs from several models trained in-
dependently on identical data. These models arise from Hyper-
Parameter Optimization (HPO), thus negating extra computational
time. By aggregating the 𝑀 best models, we yield optimal hy-
perparameters and uncertainty estimations. With input 𝑥 and la-
bel 𝑦, a neural network (NN) predicts the distribution 𝑝𝜃 (𝑦 | 𝑥)

where 𝜃 represents the NN’s parameters. We harness an ensem-
ble of 𝑀 models and their hyperparameters, (𝜃𝑚)𝑀

𝑚=1, training
them in parallel on the same dataset. The combined prediction is:
𝑝 (𝑦 | 𝑥) = 𝑀−1∑𝑀

𝑚=1 𝑝𝜃𝑚 (𝑦 | 𝑥, 𝜃𝑚). Uncertainties are calculated
from the standard deviation of predicted probabilities across the
ensemble.

2.2 Evidential Learning
Evidential Learning [1, 14] differentiates itself by replacing a clas-
sical NN’s softmax layer with an evidence vector, predicting the
Dirichlet distribution parameters. For a given sample 𝑥𝑖 for a K-class
classification problem, the cross entropy loss to be minimized for
learning evidence 𝑒𝑖 is L(𝑖𝑖 , 𝑒𝑖 , 𝜃 ) =

∑𝐾
𝑘=1 𝑦

𝑘
𝑖
(𝑙𝑜𝑔𝑆𝑖 − 𝑙𝑜𝑔(𝑒𝑘

𝑖
+ 1)) ;

where𝑦𝑖 is the one-hot k-dimmensional label, 𝑆 is the total strength
of the Dirichlet function 𝐷𝐼𝑅(𝑝 | 𝛼) which is parametrized by
𝛼 ∈ R and 𝑆 =

∑𝑘
𝑘=1 𝛼𝑘 , 𝑒𝑖 = 𝑔(𝑓 (𝑥𝑖 ;𝜃 )) with 𝑓 as the output of

the NN parametrized by 𝜃 and g as the evidence function to keep
𝑒𝑘 non-negative. Based on [14] 𝛼𝑘 = 𝑒𝑘 + 1. For the inference step,
the probabilities for each class 𝑘 are then given by 𝑝𝑘 =

𝛼𝑘
𝑆
. The

uncertainty for each sample is 𝑢 = 𝐾
𝑆
. For more information [1, 14]

and the code provided in Appendix A.
Obtaining an overall uncertainty instead of per-class values was

a significant limitation. To address this, we introduced in this paper
what we call Binary Evidential Learning: a method that trains 𝑘
binary classifiers, with calculations resembling standard evidential
learning, but for 𝑘 = 2 classes. For example, if classifying digit 1,
one class will be "yes" if the image contains one and "no" for any
other digit.

Selective Classification enhances accuracy in scenarios de-
manding robustness by allowing experts to review uncertain predic-
tions. We propose a selective classification algorithm that delegates
predictions to experts when uncertainty exceeds a predetermined
threshold. Incorrect predictions corrected post-review are labeled
correct, while unnecessary deferrals are deemed incorrect. This
strategy discourages excessive deferrals, promoting a balance be-
tween human expertise and automated efficiency.

2.3 Models and DataSets
In our experimentation, we employed the MNIST dataset [9] with
Convolutional Neural Networks (CNN) and the ImageNet1KDataset
with Visual Transformers (ViT) [3] under a Projected Gradient De-
scent (PGD) adversarial attack. Model specifics are elaborated on
in Appendix A (code files).

3 RESULTS
Our research emphasizes the efficiency and accuracy of various
uncertainty quantification methods implemented across diverse AI
platforms. We analyzed their performance on Polaris, Cerebras CS-
2, and SambaNova DataScale. Polaris is a traditional supercomputer
using AMD EPYC processors and NVIDIA A100 GPUs, whereas
Cerebras CS-2 and SambaNova Datascale are AI accelerators fea-
turing wafer-scale architecture and reconfigurable dataflow, re-
spectively. We recorded the accuracy enhancements these methods
furnished.
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Figure 2: Uncertainty Quantification Performance Across HPC Systems. Parameters processed per second (PPS) at different
node counts for Polaris, SambaNova DataScale, and Cerebras CS-2. Polaris scales linearly, SambaNova delivers rapid initial
growth, while Cerebras achieves remarkable PPS on a single node.

3.1 Platform-Specific Performance
For specifics regarding the platforms we employed, readers are
invited to look into the works on Polaris [8], Cerebras [10], and
SambaNova [4]. Figure 2 compares each system’s performance
when processing one epoch of ImageNet-1K’s training dataset, with
uncertainty calculations included. Ensemble learning shines with
its parallel scaling capabilities on distributed systems like Polaris,
as seen in Table 1. Polaris has 4 GPUs per node; we have to make
sure we run the script for the GPU affinity that will assign to each
MPI rank node a GPU, and we use several different nodes and
GPU combinations to show we can scale. However, its scalability
is tested on platforms like Cerebras and SambaNova, which are
optimized for extensive models rather than managing multiple
processes simultaneously. Conversely, since it only trains once,
evidential learning runs on average ten times faster than ensembles.
However, it can only use one node and does not provide a robust
uncertainty outcome.

N.Ensembles N.Nodes N.GPUs Time(sec)

4 1 4 3min17sec
4 2 8 2min27sec
8 1 4 4min35sec
8 2 8 3min14sec
16 1 4 5min58sec
16 2 8 4min55sec
16 4 16 3min25sec

Table 1: MNIST Dataset Timings on Polaris Using Ensembles

3.2 Accuracy
Each uncertainty methodology – ensembles, evidential learning,
and binary evidential – has advantages and limitations. Ensem-
bles, benefiting from the insights of multiple models, are reliable in
uncertainty metrics but are computationally intensive. Evidential
learning stands out for its efficiency but often correlates probabil-
ity directly with uncertainty, lacking class-specific details. Binary
evidential rectifies this by offering class-specific uncertainty but in-
creases training overhead, especially as class numbers grow. When
we integrated these uncertainty estimates into our selective clas-
sification framework, we observed a spectrum of accuracy levels
juxtaposed against the base models. This variation emerges primar-
ily because of the deferment strategy applied to uncertain predic-
tions. Our method accentuates the correlation between the level
of uncertainty and the accuracy of the prediction. Our selective
classification often mirrored or bettered the benchmark accuracy,
as represented in Figure 3. It is worth noting that evidential learn-
ing, despite its occasional lower accuracy metric, has the potential
to match or even surpass ensemble methods in specific contexts.
The improvements in accuracy by binary evidential on MNIST and
ensembles on ImageNet were noteworthy, standing at 12.78% and
2.73%, respectively.

4 CONCLUSION
In this work, we delved into the characterization of uncertainty
in DL, emphasizing the two predominant uncertainty evaluations
(ensembles and evidential learning). Our research demonstrates the
potential acceleration benefits of employing HPC and distributed
systems for uncertainty evaluations. These evaluations, as shown,
can be essential for DL models, offering avenues for distribution
if computational constraints arise. For scenarios with limited HPC
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Figure 3: Model uncertainty/probability distributions and
their respective selective classification accuracies. First col-
umn: Comparison of Binary-Evidential, Evidential, and En-
semble probability/uncertainty distributions. Correct predic-
tions are green, and incorrect are red. Second Column: Se-
lective Classification accuracies over a range of uncertainty
thresholds (blue) vs. the original model accuracy (red)

resources, evidential learning emerges as a viable alternative, grant-
ing uncertainty insights with minimal overhead. We demonstrated
how valuable uncertainty evaluations can be in the particular case
where a ViT-based classifier misclassifies under adversarial condi-
tions, but when using uncertainty evaluation, the high uncertainty
obtained on the perturbed images indicates potential misclassifi-
cation, allowing for intervention or rejection of the result (Figure
1).

5 FUTUREWORK
To better exploit the capabilities of new AI Architectures, we would
like to explore the transformation of ensembles into network fusion
and multi-input multi-output to improve ensemble performance
and accuracy. We would also like to extend the uncertainty study
to partial differential equation acceleration. Finally, we would like
to explore how to evaluate uncertainty when we cannot access the
model.
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Appendix A AVAILABILITY OF DATA
Access our experimental code at :
https://github.com/epautsch/UncertaintyANL.
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