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Abstract. Scaling complexity and appropriate data sets availability for training current Computer 

Vision (CV) applications poses major challenges. We tackle these challenges finding inspiration in 

biology and introducing a Self-supervised (SS) active foveated approach for CV. In this paper we 

present our solution to achieve portability and reproducibility by means of containerization utilizing 

Singularity. We also show the parallelization scheme used to run our models on ThetaGPU–an Argonne 

Leadership Computing Facility (ALCF) machine of 24 NVIDIA DGX A100 nodes. We describe how 

to use mpi4py to provide DistributedDataParallel (DDP) with all the needed information about world 

size as well as global and local ranks. We also show our dual pipe implementation of a foveator using 

NVIDIA Data Loading Library (DALI). Finally we conduct a series of strong scaling tests on up to 16 

ThetaGPU nodes (128 GPUs), and show some variability trends in parallel scaling efficiency.  

Keywords: Singularity Containerization, NVIDIA DALI, Data Loading and Pre-processing Library, 

High Performance Computing, Strong Scaling. 

1   Introduction 

Today’s CV main implementation challenges has two sources. First, inference requires substantial 

processing power. Second, training procedures demand extremely large high-quality labeled data sets. On 

the one hand, near real-time analytics surpasses the latency limitations found on centralized cloud 

computing by deploying models to the edge (Preuss, 2018). Nevertheless, CV models are big, therefore 

difficult to fit in edge devices. On the other hand, as is the case in medical imaging, data sets collection and 

labelling could require extremely skillful staff resulting in data scarcity to train the models (Castro et al., 

2020). In order to overcome such difficulties we propose a strategy which gains inspiration from biological 

and developmental aspects found in humans an other mammals. 

From a biological point of view, the retinas of some mammals do not sample the scene uniformly (Provis 

et al., 1998). Instead, they sample the visual field with a very high resolution in a tiny portion called the 

fovea and with very low resolution in the periphery (Purves et al., 2004). Thanks to foveated vision it is not 

necessary for the brain to process all the scene at high resolution, reducing computational (metabolic) cost. 

In order to compensate possible information losses, foveated animals need to scan images utilizing 

successive saccades and fixations. 

From a developmental viewpoint, certain changes affect the characteristics of visual attention throughout 

early childhood in humans (Ross-Sheehy et al., 2015). Basically, important changes are produced in the 

saccadic behavior from childhood to adulthood, which range from reflexive saccades to the acquisition of 

the ability to control volitional saccadic eye movements (Johnson, 1995; Canfield & Haith, Young infants' 
visual expectations for symmetric and asymmetric stimulus sequences, 1991; Canfield & Kirkham, Infant 

Cortical Development and the Prospective Control of Saccadic Eye Movements, 2001). Furthermore, adults 

volitional saccades show some characteristics that differ from those of infants showing even further 

development and control towards adulthood (Weber & Daroff, 1972; Salapatek et al., 1980). 

In Fig. 1 we show the strategy followed in this work. First of all we developed a foveated system and 

utilized it as a natural augmentation approach for self-supervised learning (Fig. 1 A). We advanced a 

strategy utilized in SimCLR (Chen et al., 2020), where a new approach to contrastive self-supervised 

learning algorithm is proposed. As shown in Fig. 1 A, we train a network called Backbone to classify 

different foveated fixations as the same when they come from the same image. When fixations come from 
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different images, the agreement in the output from the backbone has to be minimum. This strategy is called 

Contrastive Learning (CL). Originally, CL uses different augmentations such as crop-resize, Gaussian blur, 

Gaussian Noise, Color distortions, flipping, rotations, cutouts, etc. Our novel contribution here is that we 

use foveation as a bio-inspired augmentation mechanism in CL. Foveation and random fixations, acting in 

tandem with a proprioceptive system could result in a productive augmentation strategy in biological agents 

to understand the visual world around them. At the same time this scheme drastically mitigates the demands 

on high quality labelled data sets. As some animals do in their early lives, the backbone in Fig. 1 A learns 

visual features without labels, randomly wandering around scenes with erratic saccades and fixations. 

 

Figure 1. Active foveated developmental strategic scheme to solve CV problems such as the labeled data sets scarcity 

and the high computational complexity demanded by the models implementation. (A) Self-supervised contrastive 

learning approach using foveated vision as a biologically-inspired augmentation strategy. With this strategy we aim to 

mitigate labeled data sets scarcity. (B) A transformer architecture processing a sequence of outputs from a pre-trained 

backbone which process foveated fixations. Positional embeddings are determined by individual fixations and not by 

image patches, which saves great computing power demands from the transformer architecture perspective. (C) A RL 

architecture–a DQN–is added to the architecture to learn the saccadic behavior which is supposed to generate more 

effective fixation coordinates in order to increment the classification performance from the transformer. 

Following this developmental trend found in biological agents, in Fig. 1 B we tested which additional 

features a sequence of fixations could bring to performance in CV tasks. We incorporated a transformer 

architecture utilizing our pre-trained backbone as a pre-processing stage of each successive fixation. To 

that end we adapted the original architecture developed by Facebook AI Research Group called DEtection 

TRansformer (DETR) (Carion et al., 2020). We eliminated several losses concerning detection, keeping 

only losses concerned with classification. In DETR, the transformer is used to encode an image pixel by 

pixel from the backbone output. We also adapted the positional encoder of the network and instead of 

encoding the position of every component from the backbone output we encoded the position of each 

fixation from our pretrained backbone. 

Self-attention mechanisms have quadratic complexity (Vaswani et al., 2017). In a patch by patch 

scenario–as is the case in image Transformers (Dosovitskiy et al., 2021)–this situation represents a great 
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obstacle in the implementation of these kinds of architectures when trying to process big or 3D high 

resolution images. We address this by changing the strategy of giving each patch a position. We instead 

give each fixation a position in the network. The number of fixations will be considerable smaller than the 

number of patches in an image. For instance, for humans only two fixations suffice to recognize faces 

(Hsiao & Cottrell, 2008). This is a huge advantage in computational load terms. 

The idea behind the incorporation of a transformer in the scheme is to give the system the capacity of 

attributing to a set of fixations a sequential nature. The transformer would extract any possible statistical 

structure if it exists inside a sequence. This is a step forward in our bio-inspired developmental approach 

since, in this stage, fixations evolve from being mere isolated entities to be part of a more complex 

structure–such as a sequence of fixations. 

Nevertheless, fixation locations in our models are random so far. Yet the behavioral patterns found in 

saccades of biological systems are far from random (Ross-Sheehy et al., 2020; Castro et al., 2015; Spotorno 

et al., 2014; Alahyane et al., 2016). Optimization mechanisms from oculomotor behavior emergence in 

biological systems seems to be behind the reward dopamine system (Kato et al., 1995; Hikosaka et al., 

2006; Ikeda & Hikosaka, 2003). Hence, RL in saccadic behavior is supported by biological evidence. As 

shown in Fig. 1 C, we incorporated a RL mechanism in our model with the aim of learning an effective 

saccadic behavior. Basically we trained a DQN, which treated the dynamic of the Transformer classifier as 

the environment. The observation of the state of the environment was the output from our foveated system, 

the actions taken by our network were the coordinates of the next fixation which gave rise to the next state 

from our foveator. Finally the classification performance from DETR was taken as the reward in this RL 

scenario. 

2   Parallelization scheme 

2.1   Pre-processing (foveation) 

This stage in the Machine Learning (ML) workflow involves data loading and pre-processing. We 

incorporate fovetion here given its appropriateness for the pre-processing (augmentation) stages in the 

workflow. We use the NVIDIA Data Loading Library (DALI)1. DALI is a library for data loading and pre-

processing to accelerate Deep Learning (DL) applications. DALI provides a collection of highly optimized 

building blocks for loading and processing image, video and audio data. 

DL applications require complex, multi-stage preprocessing pipelines, (i.e., loading, decoding, cropping, 

resizing, and many other augmentations). Such data preprocessing stages are usually executed on Central 

Processing Units (CPUs). Hence they entail a bottleneck, limiting the performance and scalability of ML 

workflows in general. 

Basically, DALI approaches the problem of the CPU bottleneck by offloading data pre-processing stages 

into Graphical Processing Units (GPUs). Additionally, DALI maximizes the throughput of the input 

pipeline autonomously, pre-fetching information, conducting parallel execution and by means of batch 

processing strategies which are all handled transparently for the user. 

As Fig. 2 B shows, we developed our foveator as a dual DALI pipeline structure. One pipeline for reading 

an decoding a batch of images and the other for foveating and augmenting such batch. This is not the general 

strategy recommended in DALI in which the idea is to deploy a unique pipeline which gathers, decodes 

and applies all the necessary augmentations to the batch. In this way DALI applies all the optimization 

strategies such as pre-fetching information, parallel execution of several batches, etc. In our case, we use 

Pipe 1 to bring a batch and then Pipe 2 is the one which produces several foveated fixations and 

augmentations to the batch of images brought by Pipe 1. 

Our main idea is to bring only one batch, and then apply several fixations to such a batch. Pipe 1 and 

Pipe 2 do not run in parallel. Such a feature will be implemented in the future. 

With Pipe 1 we load and decode the images from the data set. As can be seen in Fig. 2 A, DALI split the 

data set in s shards–one shard per rank–each shard has m batches which are loaded and pre-processed 

sequentially by DALI. 

For each batch loaded and decoded by Pipe 1, Pipe 2 produces a series of f foveations for each image in 

each batch. Each foveation has its own angle and fixation position in the image. Nevertheless, beyond the 
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foveation, Pipe 2 conducts a series of random augmentation on each image in the batch. For instance, before 

the foveation Pipe 2 produces crop and resize, flipping, color distortion, Gaussian noise and grid mask. 

For each epoch, the shards are composed by a different set of batches of images as seen in the different 

colors chosen for different epochs in Fig. 2 A. This strategy is used to achieve certain variance in the input 

of each model from the data set, i.e., each model replica in the each rank will use all the images in the data 

set for training. At each epoch, each model replica will receive a different shard, in a rotation of the shards 

epoch by epoch. 

 

Figure 2. This is the parallelism scheme generally used in pytorch. The idea is to produce a model replica for each rank 

and to split the data set in different shards, each of which is processed by each model replica independently. Each 

square in A represents a batch of images. From one epoch to the following, the set of batches belonging to a shard 

rotates in a way that each model replica will process all batches in the data set. B shows how our foveator is build using 

two DALI pipes. Pipe 1 loads and decodes a complete batch of images while Pipe 2 produces a set of f fixations from 

such a batch. C shows how training proceeds. First, each model replica produces a forward pass of its respective batch 

and compute its loss and gradients, second, the gradients are communicated among all ranks and averaged in each rank. 

Consequently, each model replica will have the same gradients even when they processed different mini-batches. Using 

the averaged gradients, each model replica updates its weights and the process repeats. 

2.1   DistributedDataParallel (DDP) 

Once the model is build and occasionally brought from a checkpoint it has to be wrapped by DDP. By 

simply replacing the model with DDP(model), DDP will synchronize the weights and, during training, all 

reduce gradients before applying updates. DDP handles it transparently for the user. In our repository we 

use exactly the following code: 
 

model = DDP(model, device_ids=[args.gpu], output_device=args.gpu) 

 

This code sentence applies data parallelization. As shown in Fig. 2 C, with this scheme, all the ranks 

have their own replica of the model. As already shown in Fig. 2 A, the global batch of data is split into 

multiple mini-batches, and processed by different ranks. Each rank computes the corresponding loss and 

gradients with respect to the data it processes. Before updating the parameters at each epoch, the loss and 

gradients are communicated and then averaged among all the ranks through a collective operation. This 

scheme is relatively simple to implement. MPI_Allreduce is the communication operation used to 

communicate all gradients to all ranks in the run. 
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3   Implementation Technical Challenges 

3.1   Containerization 

Containerization is the procedure of building a light-weight executable file–called container–which 

contains only the operating system as well as some libraries and dependencies to run code consistently on 

any infrastructure. Singularity is a containerization platform that provides the capability of packaging 

software in a portable and reproducible way. The general procedure is to build a container on a local 

machine–on a computer where the researcher or developer has administrator (i.e. super user or root) 

privileges–and then to use its portability to run it on any largest High Performance Computing (HPC) 

system. One of the most important features of Singularity containers is that they run fluently using GPUs, 

high speed networks and parallel file systems on clusters. In order to achieve this portability, containers 

systems, such as Singularity, have a user space which is platform independent, containing all the necessary 

programs, custom configurations and environment needed to run in any kernel space. 

For our case we first converted an NVIDIA NGC Docker Image to Singularity: 
 

sudo singularity pull 

pytorch_21.04-py3.sif 

docker://nvcr.io/nvidia/pytorch:21.04-py3 

 

Then we adapted our Singularity image to our needs. Basically we created a writeable sandboxed 

directory from our pytorch_21.04-py3.sif image, entered, modified, and finally created an updated version 

of our image. For instance adding a package–here mpi4py–can be done with: 
 

sudo singularity build --sandbox 

pytorch_21.04-py3 pytorch_21.04-py3.sif 

sudo singularity shell --writable 

pytorch_21.04-py3/ 

Singularity pytorch_21.04-py3/:∼> pip 
install mpi4py 

Singularity pytorch_21.04-py3/:∼> exit 
sudo singularity build 

pytorch_21.04-py3_v2.sif pytorch_21.04-py3 

 

At this point, the container called pytorch_21.04-py3_v2.sif has all the packages we need to run our 

workflows. 

Any installations can be done into the image, including with apt-get (in the case of Debian GNU/Linux), 

pip (as we proceeded) or using the container image OS native build tools (such as gcc etc.) to manually 
build and install whatever software is needed. 

3.1 Submitting jobs on Theta GPUs 

Theta GPU nodes are NVIDIA DGX A100. The DGX A100 comprises eight NVIDIA A100 GPUs that 

provide a total of 320 gigabytes of memory for training Artificial Intelligence (AI) datasets, as well as high-

speed NVIDIA Mellanox ConnectX-6 network interfaces. 

The system used for submitting jobs at ALCF is Cobalt. Cobalt is a scheduler and resource manager for 

HPC systems. Cobalt jobs may run either as script jobs or interactive mode jobs. We run our jobs using 

three scripts. The first script uses the Cobalt environment variables to launch the jobs. Typical Cobalt 

variables are the number of nodes, the time allocated, the project name, etc. 

It is important to know that data access between centre storage such as /home or /projects and the Theta 

GPU compute nodes is not suitable for I/O intensive loads of small random-read/write character common 

in for instance ML. Accessing data sets from network file systems is slow and undetermined. Consequently, 

the Theta GPU nodes are equipped with local scratch solid state drives, which are faster compared to other 

network file system Theta nodes. These disks are suitable for this type of I/O load and are available to each 
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job under /local/scratch like all scratch disks on Theta GPU. Just as on the rest of Theta GPU, this scratch 

space is volatile, accessible on a per-job basis, and will be cleared after each Cobalt job. 

Transferring data sets to the node local scratch space should be done in large contiguous chunks to 

maximize transfer speed. A good strategy to achieve this is to store your data set on centre storage (i.e., 

/projects) in an uncompressed tar archive, transfer this to scratch and finally unpacking there in the Cobalt 

job on the allocated GPU node. 

Therefore, the first script launches a second script which copies all the data set–imagenet ILSVRC 2012–

on a local node scratch during run. The task for this second script is to copy all the data set into such a 

space. Initially the script copies all the tar balls in the scratch space and finally untars all the images there. 

First, copying the train tarballs to scratch is something like: 
 

cp -rv /lus/theta-fs0/software 

/datascience/datasets/tar_balls 

/train/*.tar ./train 

Then untaring the train tarballs in scratch is like: 

cd train 
for f in ‘ls *.tar‘; do echo $f; mkdir 

${f%.tar}; tar -xf $f -C ${f%.tar}; done 

cd .. 

 

The first script launches one second script per node to copy all the data sets on the respective scratch file 

drives in each node. In order to do so, the first script uses mpirun command in the following way: 
 

mpirun -n $N_NODES -hostfile 

${COBALT_NODEFILE} -map-by node 

$SSD_SCRIPT 

 

Where N_NODES is the number of nodes and SSD_SCRIPT is the second script, the one that copies the 

data set on the scratch space. This command launches one process (i.e., rank) per node, and each rank runs 

the second script which copies and untars the data set on the scratch space. 

Finally the first script launches the third script containerized, like: 
 

mpirun -n $N_RANKS -hostfile 

${COBALT_NODEFILE} -map-by 

node singularity run --nv -B 

/lus:/lus,/raid:/raid $CONTAINER $SCRIPT 

 

where N_RANKS is the number of ranks, which in this case is 
 

N_RANKS=${RANKS_PER_NODE}*${N_NODES}. 

 

Cobalt script (the first script) which runs on one node, and uses mpirun, launches n singularity instances, 

in our case 8 per node as can be seen in Fig. 3. Each singularity instance launches the same shell script (the 

third script). Each shell script sets up a virtual environment, and then executes the main python script. The 

variable CONTAINER holds the container path and SCRIPT holds the path to the third script. 

3.2 Model parallelization 

DDP from Pytorch and mpi4py were used to manage data set parallel processing. Basically we distributed 

n Message Passing Interface (MPI) processes (ranks) in n GPUs as shown in Fig. 3. For collective 

communication, we set DDP to use NCCL on GPUs–gloo can be used on CPUs. DDP replicates the whole 

model in each rank. Each model replica processes a different part of the data set. Gradients computed during 

the backward pass in each model replica are communicated, averaged and used to conduct weight 

adjustments in each model. 
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Figure 3. Distribution of global and local ranks on Theta GPU devices for 2 nodes. The organization is the same for 

more than 2 nodes i.e., ranks are distributed alternatively per compute node. There are 16 ranks, which are distributed 

per node, i.e., global rank 0 in node 0, global rank 1 in node 1, global rank 2 in node 0, global rank 3 in node 1, and so 

on. Local ranks numbers map device numbers matching their ids inside a node, i.e. local rank 0 in GPU 0, local rank 1 

in GPU 1, and so forth. 

We start DDP by calling pytorch’s init_process_group function from the DistributedDataParallel (DDP) 

package. This function has some options, but the easiest is typically to use the environment variables. It is 

also needed to assign each script a rank and world size. Luckily, DDP is compatible with MPI, therefore 

all the information for each process identification can be obtained from mpi4py. 

First, we used openmpi environment variables to read the local rank: 
 

local_rank = 

os.environ[’OMPI_COMM_WORLD_LOCAL_RANK’] 

# Use MPI to get the world size 

# and the global rank: 

size = MPI.COMM_WORLD.Get_size() 

rank = MPI.COMM_WORLD.Get_rank() 

Then set the Pytorch environment: 
os.environ["RANK"] = str(rank) 

os.environ["WORLD_SIZE"] = str(size) 

os.environ[’CUDA_VISIBLE_DEVICES’] = 

str(local_rank) 

 

Then get the hostname of the master node, and broadcast it to all other nodes. 
 

if rank == 0: 

master_addr = socket.gethostname() 

else: 

master_addr = None 

master_addr = 

MPI.COMM_WORLD.bcast(master_addr, 

root=0) 

 

Finally set the master address on all node’s environments: 
 

os.environ["MASTER_ADDR"] = master_addr 

Port can be any open port. 

os.environ["MASTER_PORT"] = str(2345) 
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After this, we use the init_method=’env:// argument 
 

in init_process, something like: 

torch.distributed.init_process_group 

(backend=’nccl’, init_method=’env://’) 

4   Strong Scaling Tests 

We tested the parallelization efficiency of our Contrastive Learning (CL) model by means of a strong 

scaling efficiency approach. Basically, we measured the number of images processed per second as a 

function of the number of nodes utilized for the run for different batch sizes. We used this metric to measure 

the scaling efficiency of the model processing different mini-batch sizes with different number of nodes. 

The efficiency is the quotient between the real and ideal speedup, Speedup = p(n)/p(1), where 

p(n) is the performance–in processed images per second–when n nodes are used. 

In Fig. 4 we can see the efficiency for different number of nodes and for different mini-batch sizes. As 

can be seen in the figure, on the one hand, as expected, efficiency declines as the number of nodes increases. 

It could be originated by the increase in the communication traffic among ranks located in different nodes 

(i.e., network originated delays). 

 

Figure 4. This is a chart showing strong scaling efficiency plots as a function of the mini-batch size with different 

series for different number of nodes. Efficiency tends to increase with the mini-batch size and decreases when the 

number of nodes increases. 

On the other hand, efficiency tends to improve as the mini-batch size increases. The reason behind such 

improvement could be related to the I/O bandwidth available in the scratch solid state drives. That is, the 

larger the batch sizes, the larger the continuous chunks of data to transmit from the disks and the better the 

data transmission rate. 

5   Conclusion 

In this paper we introduced our biologically inspired proposal to solve major problems found in today’s 

CV applications. We showed how to achieve portability and reproducibility of our experimental profile 
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using containerization. We run our applications on up to 16 NVIDIA DGX A100 nodes, each with several 

GPUs, combining mpi4py with DistributedDataParallel (DDP) and utilizing one solid state scratch device 

per node in order to accelerate executions. We also showed our approach to develop a foveator using 

NVIDIA Data Loading Library (DALI) with two pipes: one for loading plus decoding and the other for 

augmenting. Finally we run a series of strong scaling efficiency tests using the number of images processed 

per second by our implementation as a performance metric. Results show clear variation trends with respect 

to the number of nodes and the mini-batch sizes which will be further analysed in future works utilizing 

profiling tools. 
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