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Abstract. The Similarity Join (SJ) has become one of the most popular and 
valuable data processing operators in analyzing large amounts of data. Various 
types of similarity join operators have been effectively used in multiple scenari-
os. However, these operators usually generate a large output size and many sim-
ilar output pairs that represent almost the same information. In previous work, a 
new operator called Diversity Similarity Join (DSJ) has been proposed to ad-
dress these issues. DSJ generates a smaller scale output and more meaningful 
and diverse result pairs. This operator, however, was proposed as a single node 
operator crucially limiting its scalability properties. In this paper, we propose 
the Distributed Diversity Similarity Join (D2SJ) operator, an approach that ena-
bles SJ diversification on big datasets. We present the design guidelines and 
implementation details on Apache Spark, a popular big data processing frame-
work. Our experimental results with real-world high-dimensional data show 
that the proposed operator has excellent performance and scalability properties. 

Keywords: Diversity Similarity Join, Big Data, Performance Evaluation, 
Spark, MapReduce. 

1 Introduction 

Today, big data has unprecedentedly spread to all kinds of industries. Big Data-driven 
decision-making has become very popular, and many applications produce and pro-
cess massive amounts of data. While operators with exact-based semantics, such as 
the Natural Join and grouping/aggregation operators are widely used, many applica-
tion scenarios, such as social-media platforms, biomedical information processing, 
and sensor data processing, can significantly benefit from similarity-aware operators 
(operators that identify and leverage similarities in the data). One of the most useful 
types of similarity operators is the distance range join (or sometimes referred to simp-
ly as the similarity join). This operator finds the pairs of records from two datasets 
that are separated at most by a distance threshold provided as a parameter (Ɛ) [1]. 
Multiple similarity join implementation algorithms have been previously proposed. 
Some of them rely on distributed frameworks and can process massive datasets. How-
ever, the similarity join operator can generate a massive amount of result pairs. More-
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over, many of these output pairs can be very similar to others adding little value to the 
analysis process, and the output size can grow quickly when the distance threshold 
grows. These characteristics generate the need to diversify the output of this operator.  

The idea of output diversification has been studied primarily in the context of other 
data operators such as range and k-nearest-neighbor search. To the best of our 
knowledge, the only paper directly addressing the problem of diversifying the output 
of the similarity join was proposed by Santos et al. [2]. This previous work proposed 
the Diversity Similarity Join algorithm which integrates two phases. In the first phase, 
the standard output of the similarity join between two datasets R and S is computed. 
In the second phase, the records from S that are within the distance threshold from a 
given record in R are processed to identify a diversified subset. Crucially, however, 
this previous algorithm was proposed for a single-node scenario and cannot directly 
scale to multiple nodes to process big datasets. In this paper, we propose the Distrib-
uted Diversity Similarity join (D2SJ) operator, a fully distributed approach to diversi-
fy the similarity join output that can be used with big datasets and multiple data types 
and distance metrics. The main contributions of this paper are: 

 We introduce the design elements of D2SJ. A distributed operator to diversify the 
output of the similarity join suitable to process big datasets.    

 We present the implementation details for Apache Spark [3], one of the most 
popular big data frameworks. 

 We comprehensively assess the performance and scalability properties of D2SJ 
and a baseline solution. We study the performance of the operators when key pa-
rameters are increased (data size, number of nodes, dimensionality, and similarity 
distance threshold). 

 The source code of our implementation is publicly available [4].  

The remainder of the paper is organized as follows: Section 2 describes the related 
work, Section 3 presents the general D2SJ algorithm, Section 4 describes the imple-
mentation details in Apache Spark, Section 5 reports the performance/scalability 
evaluation results, and Section 6 presents paths for future work. 

2 Related Work 

In the field of similarity-aware data processing, various types of similarity joins have 
been proposed. These include the distance range join, which identifies pairs with dis-
tances below a predefined threshold Ɛ [1, 5, 6, 7, 8], the k-Distance join that returns 
the k most-similar pairs [9], and the kNN-join which retrieves the k nearest neighbors 
in one dataset for each record in another dataset [10]. The distance range join has 
been extensively studied and is recognized as one of the most valuable similarity-
aware operators. Because of this, it is usually referred to simply as similarity join.   

In the realm of Big Data systems, Hadoop [11] and Spark [3] are two commonly 
used platforms. Hadoop, along with its programming framework MapReduce [12], 
facilitates two fundamental operations, namely map and reduce. The input data is 
divided into multiple map tasks that process the input data chunks in parallel. Each 
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map call takes a pair (k1,v1) and produces a list of (k2,v2) pairs. The output of the 
map calls is subsequently transferred to reduce nodes, ensuring that all intermediate 
records with the same intermediate key (k2) are routed to the same reducer node 
(shuffle phase). At each reducer node, the intermediate records corresponding to a 
given key k2, are grouped and processed in a single reduce call. Spark, a more recent 
framework and considered a successor of Hadoop, uses Resilient Distributed Datasets 
(RDDs) as its fundamental data structure and supports a broader range of operations 
that include various types of map, reduce, grouping, filtering, and set operations. 
Spark operations are primarily executed in a distributed fashion utilizing the main-
memory resources of a computer cluster [3].  

Multiple techniques have been proposed to implement the similarity join operator 
on big data frameworks such as Hadoop and Spark. Several of them were experimen-
tally compared in [13, 14]. Some of these techniques such as the Ball Hashing, Sub-
sequence, Splitting, Hamming Code, and Anchor Points approaches [15] support 
string/text data and the Hamming and Edit distance functions. Other techniques such 
as the MRSetJoin [16] and the V-Smart-Online Aggregation [17] were proposed for 
set-based data and applicable distance functions such as the Jaccard and Dice Similar-
ity. More versatile techniques such as the MRSimJoin [8, 18] and MRThetaJoin [19] 
can be used with a wide range of data types and distance functions.  

Several approaches have also been studied to diversify the output of common data 
analysis operators. Most of them consider the case of the range and k-NN search op-
erations. Drosou and Pitoura proposed DisC diversity [20], an approach to identify the 
representatives of a set of tuples considering coverage and dissimilarity. Both proper-
ties are defined using a distance threshold r. In this approach, each record a in the 
original set is represented by a record d in the diverse set, i.e., dist(a, d) ≤ r). Also, the 
objects in the diverse set should be dissimilar to each other, i.e., for every pair of rec-
ords d1 and d2 in the diverse set, dist(d1, d2) > r. Vieira et al. proposed two approaches 
to diversify k-NN search queries [21]. These approaches are based on the use of a 
ranking framework that includes a component measuring the level of relevance (with 
respect to the query) of the selected k records and another one measuring the diversity 
(distance) among these records. The framework allows the user to set a parameter to 
specify the relative importance of each component. More recently, Ge and Chrysan-
this proposed PrefDiv [22], a technique that aims at identifying a set of dissimilar 
records based on user-provided distance functions and diversity thresholds on specific 
attributes. For instance, given two records a and b, two specified attributes A1 and A2, 
their corresponding distance functions, f1 and f2, and thresholds, t1 and t2, a and b are 
considered diverse if f1(a.A1, b.A1)>t1 and f2(a.A2, b.A2)>t2. This approach also aims to 
maximize relevance using a utility function that measures the benefit of selecting a 
certain record. While these diversification approaches can be used in top-k search and 
range search operators, the authors did not explore how these techniques can be ap-
plied to the case of similarity join operators which link elements of two sets.  

To the best of our knowledge, the only previous work directly addressing the prob-
lem of diversification in the context of similarity join was proposed by Santos et al. 
[2]. In this approach, given two sets of records R and S, for every record r ∈ R, the 
algorithm  identifies  all  records  s ∈ S  that are within Ɛ from  r.  Then,  all  identified  
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Fig. 1. Example of D2SJ partitioning and output generation using two pivots. 

records s are processed one by one in order of distance from r. At this point, each 
record s is added to the diverse set of records in connection to r, denoted as DivSet(r), 
if s does not belong to the area of influence (neighborhood) of any previously added 
record. This ensures that any added record s is sufficiently different than the previous-
ly added records. In our work, we use a similar notion of diversity but propose a fully 
distributed algorithm that is suitable to process big datasets. 

3 Distributed Diversity Similarity Join (D2SJ) Algorithm 

The distributed diversity similarity join (D2SJ) algorithm presented in this section 
addresses the problem of generating a diversified subset of the similarity join output. 
D2SJ adopts a similar notion of diversity as the work in [2] but uses a fully distributed 
and parallelized approach that enables it to process very large datasets. D2SJ can be 
used with any data type and metric-space distance function, and is deterministic (mul-
tiple executions with the same input data and Ɛ generate the same output). 

Given two datasets that are joined (R and S), D2SJ identifies first the records in S 
that are located withing the distance threshold (Ɛ) from the records in R. For every 
record r ∈ R, the algorithm identifies the similarity ball around it (set of records s ∈ S 
that are within Ɛ from r, i.e., dist(s, r) ≤ Ɛ). This process is performed in a distributed 
fashion but ensuring that each ball is eventually processed on a single node (to avoid 
duplicates in the output). In a second stage, the algorithm processes each ball (also in 
a parallel fashion) identifying the diverse set of records s' around each record r ∈ R. 
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For D2SJ to function across a cluster of computers to process vast amounts of data, 
the algorithm uses pivot-based partitioning to evenly distribute and parallelize the 
workload. Similar pivot-based partitioning was used in previous distributed algo-
rithms, e.g., [7, 8, 23]. To make sure the algorithm identifies all the records in each 
similarity ball, in stage one, it duplicates some records from neighboring partitions.  

Fig. 1 shows an example of how D2SJ partitions and identifies the diversified simi-
larity join pairs using 2D data and two pivots (P0 and P1). The top-left image repre-
sents the input datasets (R and S). This image shows the similarity ball around each 
element in R (B1 to B7). The bottom-left image represents the two generated partitions 
(Part0 and Part1). Observe that regions A1 and A2 contain the records that are closer 
to P0 than to P1, while A3 and A4 the ones that are closer to P1 than to P0. The regions 
A1+A2 and A3+A4 are referred to as base regions. Observe that the records in A1+A2 
and A3+A4 are assigned to partitions Part0 and Part1, respectively. Additionally, the 
regions at the boundary between the two base regions (points within 2Ɛ from the 
boundary) are replicated. In this example, region A3 is added to Part0 and A2 to 
Part1. Regions A2 and A3 are referred to as window regions. The final content of 
Part0 and Part1 are A1+A2+A3 and A2+A3+A4, respectively. Observe that all the 
similarity balls (B1 to B7) are fully contained in at least one of the partitions. The two 
partitions could now be sent to and processed by two different computers. The only 
problem is that some of the balls (B2 to B6) are partially or fully contained in both 
partitions. The approach needs a mechanism to process each similarity ball only once 
and ensure that a similarity ball is processed in the partition that contains the entire 
ball. To this end, D2SJ applies the following guidelines: (1) during partitioning, each 
record x in partition P is augmented with information of its closest pivot (cPiv) and 
assigned partition (P), and (2) given any generated similarity ball B, the ball will be 
processed only in the partition corresponding to the smallest cPiv among all the rec-
ords in B. In Fig. 1, B4 (which appears in Part0 and Part1) contains some records that 
have P0 as their closes pivot and others that have P1 as their closest one. Since the 
smallest one (based on index) is P0, B4 is processed in the partition linked to this pivot 
(Part0). Observe that while D2SJ requires replicating the records in the window re-
gions, most useful queries involve a small Ɛ with a small effect on performance. 

Alg. 1 presents D2SJ’s main algorithmic steps. Two sets of input data, R and S, are 
merged into one dataset (line 1), with pivots being selected from this combined set 
(line 2). After selecting the pivots, the algorithm partitions the data (lines 3-12), al-
lowing for an even distribution of the data to be processed in each cluster node. Every 
input record rec is assigned to the partition of its closest pivot pc (lines 5-6) and all the 
partitions of pivots p where rec belongs to the window regions between the partitions 
of p and pc (lines 7-11). In general, the records in the window regions between two 
partitions (corresponding to pivots p1 and p2) should be a superset of all the records 
within 2Ɛ from the hyperplane that separates the partitions. However, this hyperplane 
does not always explicitly exist in a metric space. Instead, it is implicit and known as 
the generalized hyperplane. Since the distance of a record rec to the generalized hy-
perplane between two partitions for pivots p1 and p2 cannot always be computed 
exactly, a lower bound is used following [25] (line 8): genHyperplaneDist(rec, p1, 
p2) = (dist(rec, p1)  -  dist(rec, p2)) / 2.  This expression can  be replaced  by the exact  
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Alg. 1. Main D2SJ algorithm. 

distance when this can be computed, e.g., for the Euclidean distance, genHyper-
planeDist can be replaced by euclideanHyperplaneDist(rec, p1, p2) = |(dist(rec, p1)2 - 
dist(rec, p2)2| / (2 ൈ dist(p1, p2). The partitioning phase also records the information 
of the closest pivot and assigned partition of each record (sequence of closest pivots 
and partitions if the execution requires multiple rounds). This information is used later 
in the process. The partitioning phase of D2SJ can be implemented using the map 
operations in Spark or Hadoop. 

Algorithm 1: DistDivSimJoin_Main 

Input: input_R (input dataset R), input_S (input dataset S), eps (radius),  
            part_num (number of partitions), mem_T (memory threshold) 

Output: diversified set of similaritry join pairs 

1 input = input_R ∪ input_S  
2 pivots = selectPivots(part_num, input) 
3 //Partitioning - // rec: 〈ID, dataset, value, assignedPartitionSeq, closestPivotSeq〉 
4 for each record rec in input do 
5         pc = getClosestPivot(rec, pivots) 
6         output 〈pc, rec〉 //intermediate output – base region 
7         for each pivot p in pivots do 
8                 if ((distance(rec, p) - distance(rec, pc)) / 2 ≤ 2eps) then 
9                         output 〈p, rec〉 //intermediate output - window region 
10                 end if 
11         end for 
12 end for 

13 //Shuffle: all the records sharing the same key will form a partition 

14 //Similarity ball generation and diversification 
15 for each partition Pi do //each partition may be processeed in a different node  
16         if (Pi.memSize() > mem_T) do 
17                 store Pi for processing in subsequent round 
18         else 
19                 Bi = IdentifySimBalls(Pi, eps) //Bi (ball set) format: {Bi_k} 
20                               //Bi_k: 〈centerPoint, records, flags〉, flags contains partitioning data 
21                 //Output Generation (preventing duplication) 
22                 for each similarity ball Bi_k in Bi do 
23                         generate minFlags for Balli_k //minFlags[q] = {index of first element in  
24                                                                        //Balli_k.flags[q] equal to 1} 
25                         aPartitioningSeq = s.assignedPartitionSeq() //s is any record in Bi_k 
26                         if ሺ∀q, minFlags[q] = aPartitioningSeq[q]) then //if we are in the  
27                                         //selected partition to process this similarity ball 
28                                divBi_k = Diversify(Bi_k) //diversify this similarity ball 
29                                output divBi_k //final output 
30                         end if 
31                 end for 
32         end if 
33 end for 
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The intermediate records generated in the partitioning phase are grouped in the 
shuffle phase (line 13) such that all the records that belong to the same partition will 
form a single group. This task is implemented using the grouping operator in Spark 
and would be automatically performed in the shuffle phase of a Hadoop job. In the 
next phase, partitions are processed (1) identifying the similarity balls contained in 
each partition, (2) determining if a similarity ball should be processed on a given clus-
ter node, and (3) diversifying and outputting the selected similarity ball (lines 14-33). 
Different partitions could be processed on different nodes. For a given partition, the 
algorithm first checks if the partition is small enough to be efficiently processed in a 
single node (line 16). If this is not the case, the partition is stored for further pro-
cessing using the same D2SJ algorithm but applied to this single partition (line 17). 
This feature makes D2SJ a multi-round algorithm where at every round the small 
partitions are directly processed, and the large partitions are stored for processing in 
subsequent rounds. It is important to observe, however, that while D2SJ can be exe-
cuted in multiple rounds, the best execution times in our experimental tests were ob-
tained by increasing the number of pivots to generate a single round (with smaller 
partitions). When the partition is small enough to be processed in the current round, 
the algorithm identifies first the similarity balls contained in this partition (line 19). 
The details of this process are described later (Algorithm 2: IdentifySimBalls). Each 
similarity ball contains the records s within eps (Ɛ) from a given record r used as a 
center point. The output of IdentifySimBalls is a set of similarity balls where each ball 
is composed of a center point (from R), the data records (from S), and information 
needed to ensure non-duplicated ball processing (flags). The flags component of a 
given ball B contains a sequence of flag arrays (one array per round that processed 
data that included this ball). This component is used to determine if the ball should be 
processed in the node processing the current partition or not (lines 23-30). For exam-
ple, if four pivots are being used (p0, p1, p2, p3) and a single round is needed, B.flags 
has the form {[f0, f1, f2, f3]} and the content could be {[0, 0, 1, 1]}. A value of 1 at 
index i indicates that ball B contains at least one record whose closest pivot is pi. In 
this example, B contains records with base region equal to p2 and others with base 
region equal to p3. A given ball of partition Pi (corresponding to pivot pi) will be pro-
cessed in the current node only if the minimum index of 1 in the flag array of this ball 
matches i. In the example, ball B will be processed only when this ball is detected in 
the partition of p2 (because the smallest index with a value of 1 is 2). If a ball should 
be processed in the current node, the algorithm applies the diversification method 
(Algorithm 3: Diversify). This method processes a similarity ball and generates the 
subset of diversified similarity join pairs, where each pair is composed of the center 
point and one of the (S) records in the ball. The set of diverse SJ pairs is then added to 
the final output of D2SJ (line 29). The similarity ball generation and diversification 
phase can be performed using the reduce operations in Spark or Hadoop. 

The details of IdentifySimBalls are presented in Alg. 2. This algorithm identifies 
the similarity balls in an input partition. Each similarity ball is composed of a center 
point r (a record in R), a set of records (records in S within Ɛ from r) and a set of flags 
which contain partitioning information. The algorithm separates first the records from 
R and S (lines 4-11). In our implementation, we use an initial algorithm to identify the 
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  Alg. 2. Identification of Similarity Balls.             Alg. 3. Diversification of Similarity Balls. 

similarity balls as this will be executed on a relatively small set of records and on a 
single node. Any other single-node similarity join algorithm could be integrated to 
identify the balls. In our case, a data structure for a ball is initialized in line 15. For 
each record r (from R) in the partition, the algorithm checks if the available records 
from S are within Ɛ from r. All the qualifying records are added the ball of r (lines 16-
21). The algorithm, then, generates the flags component of the ball using the closet-
pivot information of the records in the ball (line 22). After this, the generated ball is 
added to the set of balls identified in the current partition (line 23). 

Alg. 3 presents the details of the Diversify subroutine. The goal of this algorithm is 
to diversify the records of a similarity ball using a similar notion of diversity as in [2]. 
This algorithm receives a similarity ball (b) and returns a similarity ball (b') that con-
tains a diverse subset of the records. The algorithm sorts first the records in the input 
ball as they will need to be processed in increasing distance from the center point (line 
3). The structure for the diversified ball is initialized in line 6. The set of diverse rec-
ords (b'.records) is initially empty. Then, the algorithm processes each record s from 
the input ball (lines 8-24). In each iteration, the algorithm verifies that s is diverse 
from every other record already in the diverse set (lines 10-20).  If this is the case, s is 

Algorithm 2: IdentifySimBalls 

Input: Pi (a partition), eps (radius) 

Output: Bi (similarity balls in partition Pi,  
    ball structure: 〈centerPoint, records, flags〉) 

1 inputR = {} 
2 inputS = {} 
3 Bi = {} 
4 for each record rec in Pi do  
5         if (rec.dataset = 0) then //dataset 
6                                    //values: 0 (R), 1(S) 
7                 inputR.add(rec) 
8         else 
9                 inputS.add(rec) 
10         end if 
11 end for 
12 //Generation of similarity join balls 
13 for each record r in inputR do //creates a  
14                  //ball around each records in R 
15         b = {r, [], []}//r is the center point 
16         for each record s in inputS do //find  
17                    //the records in S similar to r  
18                 if distance(r, s) ≤ eps then 
19                         b.records.add(s) 
20                 end if 
21         end for 
22         generateFlags(b) //updates b.flags 
23         Bi.add(b) //adds the ball to the set  
24 end for 
25 return Bi 

Algorithm 3: Diversify 

Input: b (a similarity ball) 

Output: b' (diversified similarity ball) 

1 c = b.centerPoint 
2 f = b.flags 
3 sort(b.records, c) //sort the records in the 
4       //ball in increasing distance from the     
5       //center point c 
6 b' = {c, [],  f} //initializing the  
7                       //diversified ball 
8 for every record s in b.records do  
9      isDiverse = True 
10      for each record d in b'.records do //this 
11          //will be empty initially, but will  
12          //get filled as diverse elements 
13          //are discovered  
14        if inInfluenceArea(s, d, c) then //if  
15          //s is too similar to the diversified 
16          //record d 
17           isDiverse = False 
18                 break 
19          end if 
20      end for 
21      if (isDiverse = True) then 
22       b'.records.add(s) 
23      end if 
24 end for 
25 return b' 
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Fig. 2. Examples of different outcomes of inInfluenceArea with 2D data. 

added to the diverse set b'.records (lines 21-23). Observe that if s fails the diversity 
test with an already added diverse record d in line 14, s is considered not diverse 
enough and the algorithm stops the process of checking with additional diverse rec-
ords (lines 17-18). At the end, the method returns the diversity similarity ball b'.  

A key aspect of this algorithm is checking if a record s (that belongs to a ball cen-
tered in c) is contained in the area of influence of an already added diverse record d. 
This check is performed by inInfluenceArea(s,d,c). Building on the work in [2], inIn-
fluenceArea(s,d,c) returns True if I(d,s) ≥ I(d,c) and I(d,s) ≥ I(s,c), where I is the in-
verse of the distance function. Thus, inInfluenceArea(s, d, c) returns True if: 

ቀ
ଵ

ௗ௜௦௧ሺௗ,௦ሻ
൒

ଵ

ௗ௜௦௧ሺௗ,௖ሻ
ቁ ∧ ቀ

ଵ

ௗ௜௦௧ሺௗ,௦ሻ
൒

ଵ

ௗ௜௦௧ሺ௦,௖ሻ
ቁ, 

or, equivalently, if (dist(d,c) ≥ dist(d,s) ∧ dist(s,c) ≥ dist(d,s)). 
The intuition is that this check will return true if s (a record of a ball centered in c) 

belongs to the neighborhood of d. Figures 2.a and 2.b show examples of the two dif-
ferent outcomes for the case of 2D data and the Euclidean distance. Observe that in 
this case, the first condition (dist(d,c) ≥ dist(d,s)) checks if s is contained in the circle 
centered in d with radius 𝑑𝑐, and the second one (dist(s,c) ≥ dist(d,s)) checks if s is 
closer to d than to c. The shaded area in both images is the area that would be consid-
ered the area of influence of record d. In Fig. 2.a, s belongs to this area and will be 
considered not diverse enough. In Fig. 2.b, s does not belong to the area of influence  

4 Implementation 

Section 3 presented the algorithmic steps of D2SJ. This algorithm could be imple-
mented on any MapReduce-based framework, e.g., Hadoop and Spark. Section 3 also 
indicated the main Spark and Hadoop operations for the core phases of the algorithm. 
As Spark is broadly considered a more efficient successor of Hadoop, we implement-
ed the algorithm in Spark. The source code is available in [4]. 

In this section, we provide some additional implementation details. The implemen-
tation in Spark uses the RDD API. Spark’s robust array of data processing operations 
enables a compact implementation.  The takeSample operation is used to randomly se- 
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Fig. 3. Effect of the number of pivots (partitions) on execution time. 

lect the pivots. Then, the flatMapToPair operation is used to implement the partition-
ing phase and the partitionBy operation to group the records that belong to the same 
partition (Shuffle phase). After this, mapPartitionsToPair is used in the implementa-
tion of IdentifySimBalls, which identified the similarity balls in a partition. Finally, 
map and saveAsTextFile are used to generate the final output. 

5 Performance Evaluation 

5.1 Test Configuration 

In this section we evaluate the performance and scalability properties of D2SJ. We 
also compare D2SJ with DSJ-CP, a direct Spark extension of the single-node algo-
rithm presented in [2] (which uses a cartesian product to perform the similarity join). 
Both algorithms were implemented in Spark 3.0. Unless otherwise stated, all tests 
were executed using a cluster composed of 1 master and 20 worker nodes on the 
Google Cloud Platform. Each node used the Cloud Dataproc 2.0 image and had 4 
virtual CPUs, 15GB of memory, and 500GB of disk space. The number of splits per 
Spark job was set to 2 ൈ (# of worker nodes) ൈ (# of vCPUs). 

We used real data to perform our experiments. Specifically, we used the CoPhIR 
data collection [24], which is composed of visual descriptors extracted from 100 mil-
lion images from Flickr. We used the following collections: Color Structure (CS, 
64D), Scalable Color (SC, 64D), Edge Histogram (EH, 80D), Color Layout (CL, 
12D), and Homogeneous Texture (HT, 62D). The datasets for different dimensionali-
ties were generated as follows: 16D, 32D, and 64D: first 16, 32, and 64 attributes of 
CS, 128D: CS+SC, 208D: CS+SC+EH, and 282D: CS+SC+EH+CL+HT. The dataset 
for scale factor N (SFN) had 1,000,000 × N records. These records were equally di-
vided to form the R and S datasets. The value of Ɛ is expressed as the percentage of 
the maximum potential distance between two records.  

Next, we compare how the various parameters affect D2SJ and DSJ-CP (except for 
varying  the pivot count  which is only  applicable  to D2SJ).  Since DSJ-CP  does not  
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(a) D2SJ vs DSJ-CP                                           (b) D2SJ with larger datasets 

Fig. 4. Execution time when increasing dataset size. 

scale as well as D2SJ, we provide two graphs in each case. In the first, we scale down 
the experimental settings to maintain execution times under 10h and avoid stack over-
flow errors in DSJ-CP’s cartesian product. In the second, we evaluate D2SJ under 
larger workloads. The settings of each test appear in the top-right label of the figure. 

5.2 Performance Evaluation Results 

Optimal Pivot Count. Fig. 3 shows how D2SJ’s execution time changes when the 
number of pivots increases (since a partition is generated for each pivot, this is equal 
to the number of partitions). This test uses the 282D SF5 dataset, a cluster with 20 
worked nodes, and a large distance threshold (Ɛ = 10%). We observe that the execu-
tion time quickly decreases when the number of pivots increases initially. In general, 
larger numbers of pivots generate smaller execution times. However, exceeding 4,000 
pivots leads to excessive replication in the window regions and increased execution 
times. The optimal pivot count is between 800 and 3500. These pivot counts solve the 
job in a single round. We use numPivots=400ൈSF in the remaining tests. 

Increasing Scale Factor. Fig. 4.a shows how the execution times of D2SJ and DSJ-
CP (lines) and the output size (bars) vary when the scale factor (data size) increases. 
These tests used scaled-down parameters to enable the comparison (Ɛ=1%, SF:[0.1-
0.2]). We can observe that the execution times of D2SJ increase slowly as the scale 
factor increases. DSJ-CP’s execution times, on the other hand, are significantly larger 
than those of D2SJ and grow rapidly. In fact, the execution time of DSJ-CP grows 
from being 29 times the execution time of D2SJ for SF 0.1 to 70 times for SF 0.2. Fig. 
4.b shows D2SJ’s execution times with heavier settings (Ɛ=5% and SF:[1-5]). D2SJ’s 
execution time grows gracefully following a semi-linear pattern. In this case, none of 
the DSJ-CP jobs were able to finish in under 10 hours. 

Increasing Scale Factor and Number of Cluster Nodes. A desired property in dis-
tributed algorithms is to have good scalability when the data size and number of 
nodes increase proportionally. While some overhead is expected with larger loads, a 
reduced overhead is desired. Fig. 5.a shows the execution times of D2SJ and DSJ-CP 
as the data size and number of worker nodes increase from (4 nodes, SF 0.05) to (16 
nodes, SF 0.2).  The  results  with  these scale-down  settings  show  that  D2SJ  scales  
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             (a) D2SJ vs DSJ-CP                                  (b) D2SJ with larger clusters and datasets 

Fig. 5. Execution time when increasing dataset size and number of worker nodes. 

     
               (a) D2SJ vs DSJ-CP                                 (b) D2SJ with higher dimensionality 

Fig. 6. Execution time when increasing the number of dimensions. 

significantly better than DSJ-CP. The execution time of DSJ-CP with the largest SF is 
11 times the one with the smallest SF. In the case of D2SJ, the increase is only 2.8 
times. Fig. 5.b presents D2SJ’s execution time with larger workloads increasing from 
(4 nodes, SF 1) to (20 nodes, SF 5). We can observe that D2SJ scales well producing 
an execution time that is linear with a relatively small slope. D2SJ’s execution time 
with SF5 (and 20 nodes) is only 2.2 times its execution time with SF1 (and 4 nodes). 

Increasing Number of Dimensions. To evaluate the effect of data dimensionality on 
execution time, we executed each algorithm with datasets of varying dimensionality 
while fixing the scale factor. Fig. 6.a shows the execution time of both algorithms 
using SF 0.2 and 16D-128D datasets. In general, the execution time of both algo-
rithms increases when dimensionality increases. D2SJ, however, has better scalability. 
While DSJ-CP’s execution time with 128D represents an increase of 16% with re-
spect to the 16D dataset, the increase is only of 2% for D2SJ. Fig. 6.b shows the exe-
cution time of D2SJ with larger workloads (SF2 and 64D-282D). This figure shows 
that the execution time of D2SJ increases sublinearly in this dimensionality range.   

Increasing Distance Threshold (Ɛ). The use of diversification was motivated in part 
due to the large number of output records generated by traditional similarity join op-
erations (with many output records being very similar to others). The work in [2] 
showed that the output of the diversified similarity join returns a very small fraction 
of the output of the standard similarity join.  However,  increasing the distance thresh-  
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               (a) D2SJ vs DSJ-CP                                (b) D2SJ with larger distance thresholds 

Fig. 7. Execution time when increasing the similarity join distance threshold. 

old (Ɛ), still has a significant effect on the overall output size and execution time. In 
this experiment, we evaluate the execution time of both algorithms when Ɛ increases. 
Fig. 7.a shows the execution time of D2SJ and DSJ-CP when Ɛ increases from 0.25% 
to 1%. We can observe that the execution time of D2SJ is significantly better than that 
of DSJ-CP. D2SJ’s execution time grows from 67s (Ɛ=0.25%) to 75s (Ɛ=1%), while 
the growth for DSJ-CP is from 4680s to 5220s. Fig 7.b shows D2SJ’s execution time 
with larger workloads (Ɛ:[1%-10%]). In this case, we observe that D2SJ’s execution 
time for Ɛ=10% is 4.2 times the one for Ɛ=1% while the output size for Ɛ=10% is 51.7 
times the one for Ɛ=1%. 

6 Conclusion and Future Work 

Many organizations are collecting vast amounts of data that often include very similar 
data items. When data operators such as the Similarity Join, are executed on these 
datasets, the results include many similar output pairs that do not add much value to 
the understanding of data patterns. To address this problem in the case of similarity 
joins, previous work explored the integration of a diversification step. This previous 
work, however, was proposed for small data on a single computer. In this paper, we 
present D2SJ, a distributed approach to solve the diversity similarity join problem 
with big data. D2SJ can be used with multiple data types and distance functions. We 
present a detailed description of D2SJ as well as implementation details in Apache 
Spark. Moreover, we also present experimental results with real datasets that show 
strong performance and scalability properties. Future areas of research building on the 
results of this work could include (1) the comparative study of additional ways to 
diversify the output of different types of similarity join for big data and (2) the devel-
opment of efficient distributed algorithms supporting these new notions of diversity.  
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