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Abstract

Context Many engineering organizations are reimplementing and extending deep neural
networks from the research community. We describe this process as deep learning model
reengineering. Deep learning model reengineering — reusing, replicating, adapting, and
enhancing state-of-the-art deep learning approaches — is challenging for reasons including
under-documented reference models, changing requirements, and the cost of implementation
and testing.

Objective Prior work has characterized the challenges of deep learning model development,
but as yet we know little about the deep learning model reengineering process and its com-
mon challenges. Prior work has examined DL systems from a “product” view, examining
defects from projects regardless of the engineers’ purpose. Our study is focused on reengi-
neering activities from a “process” view, and focuses on engineers specifically engaged in
the reengineering process.

Method Our goal is to understand the characteristics and challenges of deep learning model
reengineering. We conducted a mixed-methods case study of this phenomenon, focusing on
the context of computer vision. Our results draw from two data sources: defects reported
in open-source reeengineering projects, and interviews conducted with practitioners and the
leaders of a reengineering team. From the defect data source, we analyzed 348 defects from
27 open-source deep learning projects. Meanwhile, our reengineering team replicated 7 deep
learning models over two years; we interviewed 2 open-source contributors, 4 practitioners,
and 6 reengineering team leaders to understand their experiences.

Results Our results describe how deep learning-based computer vision techniques are reengi-
neered, quantitatively analyze the distribution of defects in this process, and qualitatively
discuss challenges and practices. We found that most defects (58%) are reported by re-users,
and that reproducibility-related defects tend to be discovered during training (68% of them
are). Our analysis shows that most environment defects (88%) are interface defects, and most
environment defects (46%) are caused by API defects. We found that training defects have
diverse symptoms and root causes. We identified four main challenges in the DL reengineer-
ing process: model operationalization, performance debugging, portability of DL operations,
and customized data pipeline. Integrating our quantitative and qualitative data, we propose a
novel reengineering workflow.
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Conclusions Our findings inform several conclusion, including: standardizing model reengi-
neering practices, developing validation tools to support model reengineering, automated
support beyond manual model reengineering, and measuring additional unknown aspects of
model reengineering.

Keywords Empirical software engineering - Machine learning - Deep learning - Deep
neural networks - Computer vision - Software reliability - Failure analysis - Bug study -
Mixed methods - Case study

1 Introduction

Deep learning (DL) over neural networks achieves state-of-the-art performance on diverse
tasks (Schmidhuber 2015), including games (Berner et al. 2019; Vinyals et al. 2019), language
translation (Bahdanau et al. 2015; Wu et al. 2016), and computer vision (Ren et al. 2017;
Redmon et al. 2016). After researchers demonstrate the potential of a DL approach in solving
a problem, engineering organizations may incorporate it into their products.

This DL software reengineering task — of engineering activities for reusing, replicating,
adapting, or enhancing an existing DL model using state-of-the-art DL approaches — is chal-
lenging for reasons including mismatch between the needs of research and practice (Tatman
et al. 2018; Hutson 2018), variation in DL libraries (Pham et al. 2020) and other environmen-
tal aspects (Unceta et al. 2020), and the high cost of model training and evaluation (Goyal
etal. 2018). An improved understanding of the DL engineering process will help engineering
organizations benefit from the capabilities of deep neural networks.

As illustrated in Fig. 1, prior empirical studies have not fully explored the DL engineering
process. These works have focused on understanding the characteristics of defects during
DL development. These works consider defect characteristics and fix patterns, both in gen-
eral (Humbatovaetal. 2020; Sunetal. 2017; Zhang et al. 2020b) and by DL framework (Zhang
et al. 2018; Islam et al. 2019). In addition, these works focused primarily on the “product”
view of DL systems, which provides an incomplete view of software engineering practice.

Prior work conducted a literature review of existing failure studies and revealed a gap
in the understanding of the causal chain of defects (Amusuo et al. 2022; Anandayuvaraj
and Davis 2022). This gap suggests the need for failure analysis approaches that go beyond
simply analyzing the product itself. A “beyond-the-product” interpretation of failures is
needed to gain a more detailed understanding of how defects arise. To this end, a “process”
view encapsulates the practices, activities, and procedures undertaken in the course of soft-
ware development (Pressman 2005). It illuminates the steps followed, strategies employed,
and challenges encountered during the process of creating software. While the “product”
view focuses on the resulting defects in a DL system, the “process” view would allow us
to understand the steps that led to those defects (Leveson 2016, 1995) and the practices
that contributed to their resolution. This perspective also offers a deeper understanding of
reengineering DL models, including how existing models are reused, adapted, or enhanced. It
provides a framework to analyze not just the final product, but the entire journey of software
development, offering more holistic insights.

reusing, replicating, adapting, or enhancing an existing DL model.

Definition: We define DL model reengineering process as: engineering activities for]

@ Springer



Empirical Software Engineering (2024) 29:142 Page3of61 142

Model Development
(focus of prior works)

1 1
1 Implementation 1
! [ Environment 1
: [ Data pipeline !
. [ Modeling :
Mfi)del Reengineering [Training & Evaluation I
(focus of our study) T .
T =
1 Papers I
1 | Prototypes | 1
1 Enhance Adapt
! l Replicate, Reuse l I
I ) v N [
I Reengineered E‘% I
1 Models El I
. _
New features (e.g. modified | o New dataset:
layers, hyper-parameter tuning, Optimize
hardware configuration) !
|
1 |
e |

Fig.1 High-level overview of a DL model development and application life cycle. Prior work (blue box) may
have accidentally captured reengineering activities, but it did not describe reengineering activities as a distinct
activity and was generally from “product” view. We specifically focus on model reengineering activities and
“process” view (red box). Dashed lines implies that prior work does not distinguish these two kinds of activities.
We define DL reengineering as reusing, replicating, adapting or enhancing existing DL models

In this paper, we examined the Deep Learning reengineering process: engineering activ-
ities for reusing, replicating, adapting, or enhancing an existing DL model. We scoped our
work to Computer Vision, resulting in a case study of DL reengineering in a particular
DL application domain (Ralph et al. 2021). We used a mixed-methods approach and drew
from two complementary data sources (Johnson and Onwuegbuzie 2004). First, to explore
the characteristics, challenges, and practices of CV reengineering, we analyzed 348 defects
from 27 open-source DL projects (§5.1). Second, we describe the qualitative reengineering
experiences of two open-source engineers and four industry practitioners, as well as a DL
reengineering team (§5.2).

Combining these data, we report the challenges and practices of DL reengineering from
a “process” view (§6). From our defect study, we observed that DL reengineering defects
varied by DL stage (§6.1): environmental configuration is dominated by API defects (§6.4);
the data pipeline and modeling stages are dominated by errors in assignment and initial-
ization (§6.2); and errors in the training stage take diverse forms (§6.4). The performance
defects discovered in the training stage appear to be the most difficult to repair (§6.3). From
our interview study we identified similar challenges, notably in model implementation and
in performance debugging (§6.5). These problems often arose from a lack of portability,
e.g., to different hardware, operating environment, or library versions. Interview subjects
described their testing and debugging techniques to address these challenges. Synthesizing
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these data sources, we propose an idealized DL reengineering workflow §7. The difficulties
we identify in DL reengineering suggest that the community needs further empirical studies,
and researchers should investigate more on DL software testing. Comparing to traditional
reengineering and DL development, we suggest the necessity of developing techniques to
support the reuse of pre-trained models and improve standardized practice.

In summary, our main contributions are:

— We conducted the first study that takes a “process” view of DL reengineering activities
(§5).

— We quantitatively analyze 348 defects from 27 repositories in order to describe the char-
acteristics of the defects in DL reengineering projects (§6.1-§6.4).

— We complement this quantitative failure study with qualitative data on reengineering
practices and challenges (§6.5). Our subjects included 2 open-source contributors and 4
industry practitioners. To have a more comprehensive perspective, we also coordinated
a two-year engineering effort by a student team to enrich this part of the study. To the
best of our knowledge, this second approach is novel.

— We illustrate the challenges and practices of DL model reengineering with a novel reengi-
neering process workflow. We propose future directions for theoretical, empirical, and
practical research based on our results and analysis (§7).

2 Background and Related Work
2.1 Empirical Studies on Deep Learning Engineering Processes

DL models are being adopted across many companies. With the demand for engineers with
DL skills far exceeding supply (Nahar et al. 2022), companies are looking for practices that
can boost the productivity of their engineers. Google (Breck et al. 2017), Microsoft (Amershi
etal. 2019), and SAP (Rahman et al. 2019) have provided insights on the current state of the
DL development and indicate potential improvements. Breck et al. indicated that it is hard to
create reliable and production-level DL systems (Breck et al. 2017). Amershi et al. proposed
the requirements of model customization and reuse, i.e., adapting the model on different
datasets and domains (Amershi etal. 2019). Rahman et al. pointed out that knowledge transfer
is one of the major collaboration challenges between industry and academia (Rahman et al.
2019). Our work identifies challenges and practices of knowledge transfer from academia to
industry to help engineers create customized but reliable models.

In addition to views of the industry, academic researchers have conducted empirical stud-
ies and supplied strategies to solve some DL engineering challenges. Zhang et al. illustrated
the need for cross-framework differential testing and the demand for facilitating debugging
and profiling (Zhang et al. 2019). Serban et al. discussed the engineering challenges and
the support of development practices, and highlighted some effective practices on testing,
automating hyper-parameter optimization, and model selection (Serban et al. 2020). Loren-
zoni et al. showed how DL developers could benefit from a traditional software engineering
approach and proposed improvements in the ML development workflow (Lorenzoni et al.
2021). These studies and practices were based on “products” (e.g., engineers who develop
DL components) rather than “process” (a specific class of engineering work). Our focus is on
a particular engineering process (DL reengineering) rather than considering all DL engineer-
ing work. This perspective allowed us to bring novel insights specific to DL reengineering,
including common failure modes and problem-solving strategies.

@ Springer
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Figure 1 illustrates how our work differs from previous empirical studies. Although there
have been many software engineering studies on DL, they collect data from a “product”
view of DL systems (Islam et al. 2019; Shen et al. 2021; Chen et al. 2022b; Lorenzoni et al.
2021). These works sample open-source defects or Stack Overflow questions and report
on the features, functionalities, and quality of DL software. Some work mentioned specific
reengineering activities, such as model customization (Amershi et al. 2019) and knowledge
transfer of DL technologies (Rahman et al. 2019). However, there is no work focusing on the
“process” of these reengineering-related activities. We conduct the first empirical study of
DL software from a “process” view which focuses on the activities and processes involved in
creating the software product. We specifically examine the DL reengineering activities and
process by sampling the defects from open-source research prototypes and replications. We
also collected qualitative data about the activities and process by interviewing open-source
contributors and leaders of the student reengineering team.

2.2 Reengineering in Deep Learning

Historically, software reengineering referred to the process of replicating or improving an
existing implementation (Linda et al. 1996). Engineers undertake the reengineering process
for needs including optimization, adaptation, and enhancement (Jarzabek 1993; Byrne 1992;
Tucker and Devon 2010). Today, we specifically observe that DL engineers are reusing,
replicating, adapting, and enhancing existing DL models, to understand the algorithms and
improve their implementations (Amershi et al. 2019; Alahmari et al. 2020. The maintainers
of major DL frameworks, including TensorFlow and PyTorch, store reengineered models
within official GitHub repositories (Google 2022; Meta 2022). Many engineering companies,
including Amazon (Schelter et al. 2018), Google (Kim and Li 2020), and Meta (Pineau
2022) are likewise engaged in forms of DL reengineering. For example, Google sponsors the
TensorFlow Model Garden which provides “a centralized place to find code examples for
state-of-the-art models and reusable modeling libraries” (Kim and Li 2020). Many research
papers use PyTorch because it is easy to learn and has been rapidly adopted in research
community, but many companies have preferred TensorFlow versions because of available
tools (e.g., for visualization) and robust deployment (O’Connor 2023). Our work describes
some of the differences between traditional software reengineering and DL reengineering
process, in terms of the goals and its causal factors.

In this work we conceptualize reengineering a DL model as a distinct engineering activity
from developing a new DL model. Reengineering involves refining an existing DL model
implementation for improved performance, such as modifying architecture or tuning hyper-
parameters. Conversely, developing a new DL model usually involves building a model from
scratch, potentially drawing upon high-level concepts or algorithms from existing models
but not directly modifying their code. While the distinction is useful, the boundary can blur.
A prime example of the blurred boundary is seen in ultralytics/yolov5, where significant
enhancements to a replication of YOLOV3 codebase led to models considered “new” (the
YOLOV5 model) (Nepal and Eslamiat 2022). In the context of this study, our definition of
reengineering includes adaptation and enhancement, which can sometimes be considered as
developing a new DL model, specifically when a model from one domain is adapted to another
domain. An example is the adaptation of an R-CNN model for small object detection (Chen
et al. 2017). In our study, such adaptation is considered as part of the reengineering process.
Although there is a overlap between reengineering and developing new models, our study
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reveals unique challenges and practices specific to reengineering activities. We discuss these
distinct findings in our study on reengineering process in §7.2.1.

Reengineering in DL software has received much attention in the research commu-
nity (Bhatia et al. 2023; Hutson 2018; Pineau et al. 2020; Gundersen and Kjensmo 2018;
Gundersen et al. 2018). Pineau et al. noted three needed characteristics for ML software:
reproducibility, re-usability, and robustness. They also proposed two problems regarding
reproducibility: an insufficient exploration of experimental variables, and the need for proper
documentation (Pineau et al. 2020). Gundersen et al. surveyed 400 Al publications, and
indicated that documentation facilitates reproducibility. They proposed a reproducibility
checklist (Gundersen and Kjensmo 2018; Gundersen et al. 2018). Chen et al. highlights
that the reproducibility of DL models is still a challenging task as of 2022 (Chen et al.
2022a). Consequently, the characteristics of the reengineering process are significant for
both practitioners (Villa and Zimmerman 2018; Pineau 2022) and researchers (MLR 2020;
Ding et al. 2021). Previous research on machine learning research repositories on GitHub
explored contributions from forks by analyzing the commits and PRs, but found few actually
contributed back (Bhatia et al. 2023). Our study takes a different data collection approach by
examining defect reports from downstream users in the upstream repository, offering a new
perspective on the reengineering process and feedback from downstream engineers. The DL
reengineering process and its associated challenges and practices have been unexplored. Prior
work has used the concept of DL reengineering as a particular method of reusing DL mod-
els (Qi et al. 2023). Our research uniquely defines and investigates the process of DL model
reengineering. This reengineering process and its associated challenges and practices have
been previously unexplored in prior work, but we highlight its significance in the software
engineering field.

The combination of the software, hardware, and neural network problem domains exac-
erbates the difficulty of deep learning reengineering. The DL ecosystem is evolving, and
practitioners have varying software environments and hardware configurations (Boehm and
Beck 2010). This variation makes it hard to reproduce and adapt models (Goel et al. 2020).
Additionally, neural networks are reportedly harder to debug than traditional software, e.g.,
due to their lack of interpretability (Bibal and Frénay 2016; Doshi-Velez and Kim 2017). To
facilitate the reengineering of DL systems, researchers advise the community to increase the
level of portability and standardization in engineering processes and documentation (Gunder-
sen and Kjensmo 2018; Pineau et al. 2020; Liu et al. 2020). Microsoft indicated that existing
DL frameworks focus on runtime performance and expressiveness and neglect composability
and portability (Liu et al. 2020). The lack of standardization makes finding, testing, cus-
tomizing, and evaluating models a tedious task (Gundersen et al. 2018). These tasks require
engineers to “glue” libraries, reformat datasets, and debug unfamiliar code — a brittle, time-
consuming, and error-prone approach (Sculley et al. 2014). To support DL (re-)engineers,
we conducted a case study on the defects, challenges, and practices of DL reengineering.

2.3 The Reuse Paradigm of Deep Learning Models

DL model reuse has become an important part of software reuse in modern software sys-
tems. Concurrent empirical work reveals that engineers frequently employ pre-trained DL
models to minimize computational and engineering costs (Jiang et al. 2023b) In their review,
(Davis et al. 2023) describe three categories of DL model reuse: conceptual, adaptation, and
deployment (Davis et al. 2023). Each category presents unique complexities and require-
ments, which can complicate the reuse process and lead to various challenges. In those
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terms, DL model reengineering occurs during conceptual and adaptation reuse. Panchal et
al. have documented the difficulties in reengineering and deploying DL models in real-world
products, which often result in wasted time and effort (Panchal et al. 2023, 2024b). Further-
more, adapting DL models for constrained environments, such as in DL-based [oT devices,
is particularly challenging due to reduced performance, memory limitations, and a lack of
reengineering expertise (Gopalakrishna et al. 2022). Currently, there is no systematic study
on understanding the challenges during the DL model reuse and reengineering process, nor
a comprehensive exploration of how these models can be effectively adapted and optimized
for varying deployment contexts.

To support the model reuse process more effectively and reduce engineering costs, the
community has developed model zoos, or hubs, which are collections of open-source DL
models. These resources are categorized into platforms and libraries (Jiang et al. 2022a).
Model zoo platforms like Hugging Face (Wolf et al. 2020), PyTorch Hub (Pytorch 2021),
TensorFlow Hub (Ten 2021), and Model Zoo (Jing 2021) provide engineers with an orga-
nized and effective way to locate suitable open-source model repositories via a hierarchical
search system (Jiang et al. 2023b, b). Additionally, model zoo libraries developed by compa-
nies, such as detectron from (Meta 2024a,b), mmdetection from OpenMMLab (Chen et al.
2019), and timm from Hugging (Face 2024), offer more direct access to reusable resources.
However, the specific challenges associated with reusing individual open-source models or
those aggregated in model zoos remain underexplored.

Prior research underscores that, at a system level, the reuse process of DL models diverges
significantly from traditional software engineering practices, where reuse often entails direct,
copy-paste methods across projects (Jiang et al. 2023b). Such traditional approaches allow
developers to replicate entire software architectures and functionalities from one project to
another with minimal modifications (Gharehyazie et al. 2017). However, due to their complex
dependencies and specialized configurations, DL models require significant adaptation to
meet the demands of new applications and environments (Gopalakrishna et al. 2022; Jajal
et al. 2023; Jiang et al. 2023b). For example, downstream tasks frequently need different
datasets or hardware, necessitating a comprehensive reengineering process for effective DL
model reuse. To illuminate engineers’ considerations and challenges in DL model reuse
process, in this paper we conduct the first detailed study of DL reengineering activities.

Code forking remains one of the major reuse methods in the DL reuse paradigm. Bhatia
et al. empirically studied 1,346 ML research repositories and their 67,369 forks (the median
repository had 8 forks), indicating that forking of ML and DL projects is common (Bhatia et al.
2023). Engineers often adapt model training and serving pipelines, as well as reusable model
infrastructures in production, further indicating that code reuse remains a primary method
for DL model reuse (Panchal et al. 2024b). These practices persist despite the existence of
multiple model reuse approaches such as fine-tuning and transfer learning (Kéiding et al.
2017; Tan et al. 2018), indicating contexts where code-level reuse is preferred to model-level
reuse. Our work studies DL reengineering from a process perspective, based on forking as a
major reuse method.

2.4 Deep Learning Defects and Fix Patterns

Prior work focused on the general DL development process, studying the defects, character-
istics, and symptoms. Islam et al. demonstrated DL defect characteristics from 5 DL libraries
in GitHub and 2716 Stack Overflow posts (Islam et al. 2019). Humbatova et al. analyzed
data from Stack Overflow and GitHub to obtain a taxonomy of DL faults (Humbatova et al.
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2020). By surveying engineers and researchers, Nikanjam et al. specified eight design smells
in DL programs (Nikanjam and Khomh 2021).

Furthermore, researchers conducted works on DL fix patterns (Sun et al. 2017; Islam et al.
2020). Sun et al. analyzed 329 defects for their fix category, pattern, and duration (Sun et al.
2017). Islam et al. considered the distribution of DL fix patterns (Islam et al. 2020). Their
findings revealed a distinction between DL defects and traditional ones. They also identified
challenges in the development process: fault localization, reuse of trained models, and coping
with frequent changes in DL frameworks. Some development defects studied from prior work
are “wrong tensor shape” (Humbatova et al. 2020) and “ValueError when performing
matmul with TensorFlow” (Islam et al. 2019). Our study offers a “process” perspective on
the reengineering process. This viewpoint has enabled us to identify distinct types of defects,
as derived from issues such as “user’s training accuracy was lower than what was claimed”
or “training on a different hardware is very slow” (cf. Table 3).

Prior work considered the defects in the DL model development process, without dis-
tinguishing which part of the development process they were conducting. In this work, we
focus on defects arising specifically during the DL model reengineering process (Fig. 1).
We use defect data from GitHub repositories. We also collect interview data, providing an
unusual perspective — prior studies used data from Stack Overflow (Islam et al. 2019; Zhang
et al. 2018; Humbatova et al. 2020), open-source projects (Zhang et al. 2018; Islam et al.
2019; Sun et al. 2017; Humbatova et al. 2020; Shen et al. 2021; Garcia et al. 2020), and
surveys (Nikanjam and Khomh 2021).

3 Research Questions and Justification
3.1 Research Questions in light of the Previous Literature

To summarize the literature: Prior work has studied the problems of DL engineering, e.g.,
considering the characteristics of DL defects (Zhang et al. 2020c) sometimes distinguished
by DL framework (Zhang et al. 2018). DL reengineering is a common process in engineering
practice, but is challenging for reasons including (under-)documentation, shifting software
and hardware requirements, and unpredictable computational expense. Prior work has not
distinguished between the activities of DL development and DL reengineering, and has not
examined DL reengineering specifically.

Goal: The goal of this work is to provide the first systematic study of the characteristics,
challenges, and practices of DL model reengineering.

In this work, we define the DL model reengineering process as: engineering activities
for reusing, replicating, adapting, or enhancing an existing DL model.

We adopt a mixed-method approach to explore the challenges and characteristics of DL
reengineering. We integrate quantitative and qualitative methodologies to provide a compre-
hensive understanding of the topic. We ask:

Theme 1: Quantitative — Understanding defect characteristics

RQ1 What defect manifestations are most common in Deep Learning reengineering, in
terms of project type, reporter type, and DL stages?

RQ2 What types of general programming defects are most frequent during Deep Learning
reengineering?
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RQ3 What are the most common symptoms of Deep Learning reengineering defects and
how often do they occur?
RQ4 What are the most common Deep Learning specific reengineering defect types?

Theme 2: Qualitative — Underlying challenges and practices

RQS When software engineers perform Deep Learning reengineering, what are their
practices and challenges?

3.2 How the Answers are Expected to Advance the State of Knowledge

Here are the contributions made by each theme.

— Theme 1: The quantitative theme, addressed through RQ1-4, focuses on the typical
characteristics of DL reengineering defects, aiming to establish a baseline of empirical
data on how defects manifest across various project types, reporter types, and DL stages.
Like previous failure studies on DL software (Islam et al. 2019; Zhang et al. 2018; Shen
et al. 2021; Chen et al. 2022b; Jajal et al. 2023), this part of the study maps the landscape
of DL reengineering defects to foundational knowledge that guides subsequent defect
management and mitigation strategies. The detailed insights gained from analyzing the
types and symptoms of defects (RQ2-4) pinpoint specific areas where developers and
researchers can focus their efforts.

— Theme 2: The qualitative theme, in RQ5, seeks the “secret life of bugs” (Aranda and
Venolia 2009; Baysal et al. 2012). We leverage insights from the quantitative theme
to design a qualitative study — interviews designed to examine challenges not cap-
tured in artifacts such as open-source software repositories. By doing so, we bridge
the gap between empirical data and the underlying human experiences, offering deeper,
context-rich insights that provide a nuanced understanding of the challenges faced in DL
reengineering.

Together, these integrated quantitative and qualitative themes provide an empirical under-
standing of current DL reengineering practices and challenges.

To scope this research, we next present a model of DL reengineering as practiced in open-
source software (§4). Then, we outline our mixed-method approach to understanding DL
reengineering (§5), with quantitative §5.1 and qualitative §5.2.1 methodologies). Results for
each theme are in §6, with a synthesis in §7.

4 Model of Deep Learning Reengineering

As discussed in §2.2, the expected process of software reengineering includes replicating,
understanding, or improving an existing implementation (Linda et al. 1996). This process
is usually used for optimization, adaptation, and enhancement (Jarzabek 1993; Byrne 1992;
Tucker and Devon 2010). Software reengineering has not previously been used as a lens for
understanding DL engineering behavior. In this section we introduce a model of DL reengi-
neering, including the concepts of DL reengineering repositories (§4.1), and the concepts of
reengineering defect characteristics (§4.2).
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4.1 Concepts of DL Reengineering Repositories

Here we present the main concepts used in this study: relationships of open-source reengi-
neering projects §4.1.1, and reengineering repository types (§4.1.2).

4.1.1 Relationships Between DL Reengineering Repositories

Based on the typical open-source software collaboration process (Fitzgerald 2006), we mod-
eled the expected relationship between DL reengineering repositories — see Fig. 2. This
figure depicts the relationship between three types of projects:

— Research prototype: an original implementation of a model.

— Replications: a replication and possible evolution of the research prototype.

— User “fork”: a GitHub fork, clone, copy, etc. where users try to reuse or extend a model
of the previous two types.

We expect the existence of two actions, “REUSE (fork)” and “REPORT (defect)”, happen-
ing between different project types. The down-stream projects reuse up-stream projects, and
engineers report new issues when they encounter defects or identify necessary enhancements.
Typically the issues are reported in upstream projects, the maintainers explain the necessary
fix patterns for reengineers, and the defects are repaired in downstream ones. Our work con-
centrated on popular upstream projects, such as research prototypes and replications, because
these repositories are widely used and referenced and they contain a large number of issues.
Recognizing the limitations of using upstream repositories as a data source, we supplemented
our failure analysis with an interview study involving downstream users to provide a more
comprehensive perspective (§5.2).

4.1.2 DL Reengineering Repository Types

Based on our analysis of GitHub repositories (§5.1.2), we distinguish two types of DL repos-
itories: zoo repositories and solo repositories. Zoo repositories all contain implementations
of several models (Tsay et al. 2020). A zoo repository can be the combination of research

Research N: 10
prototypes

N: 60 N: 278

Replications

REPLICATOR REPLICATOR REUSER
ENHANCER ENHANCER ADAPTOR

Fig. 2 Relationship between CV reengineering repositories. The capitalized annotations indicate what types
of reporters commonly open issues in the above projects (cf.Table 1). Arrows indicate the dataflow of model
reuse between upstream and downstream projects. N: the number of defects resolved in each type of the
projects we analyzed
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Table 1 Reporter types in the DL reengineering ecosystem. The reporter types are determined by whether they
use the same code, dataset, and algorithm compared to the upstream project. The categories and descriptions
in this table are derived from our literature review. The source of each category is indicated as a reference

Reporter Category Description

Re-user (Amershi et al. 2019; Alah- Uses the same code and dataset. This is the common-case

mari et al. 2020) behavior associated with pure re-use.

Adaptor (Li et al. 2020) Adapts code to other tasks (different dataset) and finds
inconsistency compared to expectations.

Enhancer (Git 2020) Adds new features (e.g., layer modification, hyper-
parameter tuning, multi-GPU training configuration).

Replicator (Alahmari et al. 2020; Uses the same algorithm, data, and configuration, in dis-

Pineau et al. 2020) tinct implementation (e.g., TensorFlow vs. PyTorch).

prototypes and replications. For example, TensorFlow Model Garden contains differ-
ent versions of YOLO (Google 2022). These zoo repositories have been widely reused and
contain many relevant issues (Table 4). In this work, we define a solo repository as either the
research prototype from the authors of a new model or an independent replication.

4.2 Concepts of DL Reengineering Defects

Prior work shows that defect type(s), symptom(s), and root cause(s) are useful dimensions
for understanding a defect (Islam et al. 2019; Wang et al. 2017; Liu et al. 2014). To better
characterize DL reengineering defects, we first introduce the relevant concepts specific to
the DL reengineering process — defect reporters (§4.2.1, Table 1) and reengineering phases
(84.2.2, Table 2).

4.2.1 DL Reengineering Defect Reporters

Table 1 defines four different types of defect reporters based on their reengineering activities.
Prior work indicates some inconsistency in the meaning of these terms (Gundersen and
Kjensmo 2018), so we state here the definitions used in our study. Our definitions are based

Table 2 Reengineering phases and relevant definitions, determined by the runnability of code and the data
used to train the model. The categories and descriptions in this table are derived from our literature review.
The source of each category is indicated as a reference

Defect Category Description

Basic defects (Islametal. 2019; Zhang The code does notrun (e.g., it crashes, behaves very incor-
et al. 2018; Guan et al. 2023) rectly, or runs out of memory).

Reproducibility defects (Sculley et al. Using the same data, the code runs without basic defects,
2015; Liu et al. 2021) but does not match the documented performance (e.g.,

accuracy, latency).

Evolutionary defects (Git 2020) The code and/or data has been changed to adapt to the
user’s needs. It runs without basic defects, but does not
match the specification/desired performance.
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on prior work (Pineau et al. 2020; Li et al. 2020; Git 2020; Amershi et al. 2019; Alahmari
et al. 2020).

4.2.2 DL Reengineering Phases

Table 2 defines three types of reengineering phases. We followed prior work studying the
phases of defects in terms of activities (Saha et al. 2014). The most obvious phase during
reengineering process is the model crashing when it is executed. This is a common defect
when running any DL model (Islam et al. 2019; Zhang et al. 2018; Guan et al. 2023). Prior
work has also noted the difficulty in reproducing DL models, and we would like to understand
how these difficulties impact the reengineering process (Sculley et al. 2015; Liu et al. 2021).
Additionally, there are also a significant number of issues related to performance improvement
or new feature addition to the original implementation. Often labelled as “enhancement”
on GitHub, these issues typically emerge when features are added or when environments
change' (Git 2020). Since enhancements form an integral part of the reengineering process,
we included this as a category of the reengineering phase. The reengineering phases provide
a high-level view of the reengineering process by combining defect types, root causes, and
relevant contexts.

5 Methodology

To answer our research questions, we used a mixed-method approach (Johnson and Onwueg-
buzie 2004) which provides both quantitative and qualitative perspectives. For RQ1-RQ4, we
conducted a quantitative failure analysis. Systematically characterizing and critiquing engi-
neering defects is a crucial research activity (Amusuo et al. 2022). We specifically analyzed
DL reengineering defects in open-source reengineering projects. However, we acknowledge
that this data source may be constraining because GitHub issues are known to be limited
in the breadth of issue types and the depth of detail (Aranda and Venolia 2009). The role
of RQS5 is to address this limitation through a qualitative complement. To answer RQS5, we
designed an interview study, which was informed by the findings from the failure analysis,
and collected qualitative reengineering experiences from open-source contributors and from
the leaders of a student DL reengineering team. These two perspectives are complementary:
the open-source defects gave us broad insights into some kinds of reengineering defects,
and the interview data gives us deep insights into the reengineering challenges and process.
Figure 3 shows the relationship between our questions and methods. To promote replicability
and further analysis, all data is available in our artifact (§10).

Deep learning is a broad field with many sub-topics, including representation learning
and generative models (Goodfellow et al. 2016). At present the primary application domains
are (1) computer vision (e.g., for manufacturing (Wang et al. 2018) and for autonomous
vehicles (Kuutti et al. 2020)); and (2) natural language processing (e.g., automatic transla-
tion (Popel et al. 2020) and chatbots such as ChatGPT (Taecharungroj 2023)). One study
cannot hope to examine reengineering in all of these sub-areas. To scope our study, we applied
a case study approach (Perry et al. 2004; Runeson and Host 2009). This case study approach
gives us a comprehensive view of a particular DL application domain. Our phenomenon of

! Here are two examples of enhancement for environment changes: (1) rorch/vision #2148 improved error
message when newer versions of Torchvision or PyTorch were used; (2) tensorflow/models #1251 fixed issues
caused by a newer Python version.
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Understand Challenges & ’
Practices of DL Reengineering

[

Defects Challenges and practices
(RQ1 - RQ4) (RQ5)
_Interview
Proto_col Interview Study
: : Design # OSS contributors: 2
Failure Analysis i.\' #1nd - A
ﬁ # defects: 348 Existing L.! ndustry practitioners:
Literature [ ?Student Leaders: 6
Open-source projects Student reengineering team
@ # repositories: 27 X # projects: 7

o # members: 20

Fig. 3 Relationship of research questions to methodology. The failure analysis is conducted on open-source
GitHub projects that undertake DL reengineering. The interview study is conducted on 2 contributors to the
GitHub projects we studied, 4 industry practitioners who work on DL reengineering (recruited via social media
platforms), and 6 leaders from our student DL reengineering team

interest was DL reengineering, and we situated the study in the context of DL reengineering
for Computer Vision (CV). CV plays a critical role in our society, with applications address-
ing a wide range of problems from medical to industrial robotics (Xu et al. 2021). Although
case studies have limited generalizability, we suggest three reasons why our results may
generalize to other DL application domains.

1. As a major application domain of DL techniques (Voulodimos et al. 2018; CVE 2021;
Xu et al. 2021), CV serves as a microcosm of DL engineering processes (Amershi et al.
2019; Thiruvathukal et al. 2022).%

2. Techniques are shared between computer vision and other applications of deep learn-
ing. For example, the computer vision technique of Convolution Neural Networks
(CNNSs) (O’Shea and Nash 2015) has been adapted and applied to identify features and
patterns in Natural Language Processing and Audio recognition tasks (Li et al. 2021;
Alzubaidi et al. 2021). From other fields, neural network architectures such as transform-
ers and large language models were initially designed for Natural Language Processing
(NLP) and are now being applied to CV tasks (Cheng et al. 2022; Zou et al. 2023).

3. The engineering process for deep learning models, encompassing stages such as prob-
lem understanding, data preparation, model development, evaluation, and deployment, is
consistent across different domains, including both computer vision and natural language
processing, thus further supporting the potential generalizability of our findings (Sculley
et al. 2015; Amershi et al. 2019)

Additionally, our focus aligns with prior empirical software engineering studies of deep
learning, much of which has concentrated on the field of computer vision as a representative

2 We acknowledge that there are approaches to computer vision that do not leverage deep learning (Szeliski
2022; Forsyth and Ponce 2002). In this study, we focused on engineers applying deep learning to problems in
computer vision.
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domain for deep learning studies (Ma et al. 2018a, b; Wei et al. 2022; Pham et al. 2020). Our
case study will thus provide findings for computer vision reengineering projects, which are
important; and our results may generalize to other domains of deep learning. However, all
case studies provide depth in exchange for breadth, and so some aspects of DL reengineering
in the context of computer vision may not generalize (Perry et al. 2004; Runeson and Host
2009). For example, datasets, architectures, and problem definitions are different (Tajbakhsh
et al. 2020; Shrestha and Mahmood 2019; Khamparia and Singh 2019) and so the necessary
steps for data pipeline modification, architectural adaptation, and replication checks may
differ (§8).

Model
Architectures
Filters YOLO
Computer Vision LEESEOL N
n—> > 1K GitHub stars —> Fa;tetl.‘ R-CTN —> GitHub search
> 50 closed issues IS' |r;ar_1e
Modelzoo EEIX
CenterNet
Repo candidates
YOLO (38K) Filters
Mask R-CNN (3k)
Faster R-CNN (2k) = 1K GitHub stars
Retinanet (1K) 2 50 closed issues
Pix2pix (1K) 19S
olo repos
CenterNet (0.5K) 8 Zoo repos
Sampling
Filters 95% confidence
level with 5%
@4, > 10 comments ®% margin of error 9@
Desired #issues:
26786 1898 320/1898 427 samples
closed issues qualified issues'

—
Research # Defects: 10
Filters prototypes
Include
reengineering —> I’% ——— (Replications ) # Defects: 60
defects L
334 issues 348 defects
# Defects: 278

—

Fig. 4 Overview of defect collection and distribution of the collected defects in three project types, as well
as the number of projects and defects we got in each step. The number of each model architecture after
GitHub search (Most data were collected in 2021. The number of stars associated with “Repo candidates”
were collected in Feb. 2023.)
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5.1 RQ1-4: Failure Analysis on Computer Vision Reengineering

In designing our failure analysis (“bug study”), we adopted the guidance from Amusuo et
al., which provides a structured approach to examining failures. This framework includes
several key stages: defining the problem scope (§5.1.1), collecting defects (§5.1.2, §5.1.3),
and analyzing these defects (§5.1.4) (Amusuo et al. 2022). We also adapted previous failure
analysis methods (Islam et al. 2019; Zhang et al. 2018; Wang et al. 2020a; Eghbali and Pradel
2020) to identify and analyze defects in DL reengineering. Figure 4 shows the overview of
our data collection in the failure analysis.

5.1.1 Problem Scope

In our work, we focused on defect (Table 3) manifestation, general programming types,
defect symptoms, and DL-specific defect types. In total, we examined 348 defects from 27
repositories (Table 4). The rest of this section discusses our selection and analysis method.

5.1.2 Repository Selection

To find sufficient DL reengineering defects in this target —research prototypes and replication
projects — we chose to look at CV models with substantial popularity and GitHub issues.
We proceeded as follows, along the top row of Fig. 4:

1. We started by selecting popular CV models from ModelZoo (Jing 2021), a platform that
tracks state-of-the-art DL. models. We looked at relevant GitHub repository and chose
the CV models with over 1K GitHub stars and 50 closed issues.

2. We searched for implementations of these model architectures on GitHub. We utilized
GitHub’s code search feature, filtering by keywords associated with the model names.

3. For each architecture, we selected projects that implement the same model, each with a
minimum of 1,000 GitHub stars and 50 closed issues. The projects were selected based on
their popularity, as indicated by the number of stars (Borges and Valente 2018). However,
to maintain the diversity of our data, we only chose up to the top five repositories for
any given model. If there were more than five projects for a single model, we limited our
selection to the five most popular ones. This approach helps to prevent bias in our results,
such as over-representation of specific reproducibility issues or enhancements tied to a
single model or architecture family. If there was only one implementation matching our
criteria, we excluded that model in our analysis.

As shown in Table 4 (last 4 rows), for two architectures this process did not always yield
both prototypes and replications. For Pix2pix we retrieved two prototypical implemen-
tations in different programming languages (viz. Lua and Python). For CenterNet we
retrieved two prototypes for different model architectures that share the same model name.
However, on inspection we found that these four repositories were actively reused, had many
people engaged in the reengineering process, and had many reengineering defects. Therefore,
we included the issues from these repositories in our analysis.

The same model architecture can be found in either zoo repositories or solo repositories
during GitHub searching (§4.1.2). Most of the repositories (19/27) we identified during the
GitHub searching are solo repositories which only implement a single model. Both solo and
zoo repositories have DL reengineering defects reported by down-stream replicators or users.
Therefore, we applied the same data collection methods to them and put the data together.

Overall, we examined 19 Solo Repositories and 8 Zoo Repositories.

@ Springer



(2024) 29:142

Empirical Software Engineering

Page 16 of 61

142

VIN

VIN

‘1dAd woiy a3eyoed ay) [[eIsug
“UOTIB[BISUT JONOO(T ()

'Sy
uonen3yuod Junsixe asn 0} 3duos
Sururen mau Joj UONEIUIWNIOP PPy

‘syoodo Sururen
oY) 2onpar pue suononnsur papraoid
SUIMO[[0] AQ JUSWIUOIIAUD o) XTI

‘Sururen 210Joq
sJyS1om Jurodyoayd [eurLo Yy peo|

"SOIOZ Y)IM
Josud) ur dduanbes Aydws ay) ooejdoy

‘[opowr SunsIXo ue

Jo 1oddns ¥XNNO paisanbar 1asn ayJ,
"uorjOUNy SO B JO S[IBIAP UOT)
-gjuawa[dwr ay) Jnoqe payse Iasn Y[,

‘MO
-IOSUQ], JO UOISIOA JyIdads © [[eIsul
0] YoM jou seop TTeasutr drtd

1oddns ngo
9ARY JOU SP0p ATeIqI] goFFeD YL

(TweX " uey) oyjel A4 ") sa[y
Syuod mou oy 309321 03 pajepdn udaq
QARY 0} WIS JOU S0P UONLIUWNIO

“MOIS ST 6 UOISIOA ATRIqI] VD PIm
NdO 1L 080T XI¥ °y) uo Sururer,
"UOTJEIUOWNIOP oY}

ur Jojeorjdar ayy Aq powre[o sem jeym
uey) JoMOo[ sem KoeInooe Sururen) 10s()
"Josejep

pozruoIsno € SuIsn uoym onjea NeN
© paurejuod AJ[euoIsedd0 SIsso[ Ay,

109Jop-UON

109Jop-UoN

1093J9p 'SuSI-UON

100J0p "SuQdI-UON

‘Suooy

‘Juooy

‘Juaoy

‘Fuooy

{# CUOI)IAP /YOIBISAIY00GIIL]

1 2# 1PONIRIUR)) /noyziA3urx

8E€8T# S[OPOW/MOPIOSU)

0LE# U0I0319(J /YOILSAI[00qade]

GTTEHTUOIONAP /YOIBISAIN00qAOR]

8€61# NN seN/Hodionew

0T¢# ao[ok/sonkenin

€709# S[OPOW/MOJIOSU)

X1

uondrnsaq

odAg,

([ onss|

[opow Sururea] deop Funsixo ue Juroueyud 1o ‘Sundepe ‘Suneordar ‘Sursnal Jo $se001d oY) SuLINp SINJ0 ey} MEJ IO JOLIQ UB 0 SI9JAI

190Jop SuLIAUISUAAI Y "APNIS 9U) WOIJ POPNIIXA YIOq AIIM Jey]) S)O9JOP-UouU pue $)09Jop FurIeouISuadr-uou snid ‘Apnjs Ino ur papn[oul s309Jop SuLeauIsuaal jo sojdwexyq ¢ ajqel

pringer

As


https://github.com/tensorflow/models/issues/6043
https://github.com/ultralytics/yolov3/issues/310
https://github.com/matterport/Mask_RCNN/issues/1938
https://github.com/facebookresearch/detectron2/issues/3225
https://github.com/facebookresearch/Detectron/issues/370
https://github.com/tensorflow/models/issues/1838
https://github.com/xingyizhou/CenterNet/issues/241
https://github.com/facebookresearch/detectron2/issues/8

142

Page 17 of 61

(2024) 29:142

Empirical Software Engineering

99 L (L) €8 S0 81 ('1doy) ofos uuonysew-xw/ddwisny,
(M1 4 (2) s¢ 'l I'e ('1doy) ofos NNDWISLINISE/SuBySSa[Iey)
(CI9XY1 0c (29) £8L 01 60T (-oj014) 0]0§ NNDOY seN/modioneur
NND-Y JsEIN

(X3 ¢ (©) 911 A S¢ ('1doy) ofos €AOJOA-MOPIOSUR) /166 TSUBL UNK
(61) 81 (114 (92) LSS ST €9 ('1doy) ofos EAOTOX -YIIOLAJ/UDIOUIPUITLID
(€D €1 91 1) 9zC v'e 69 ('1day) ofos €o[o4-se1oy/000mmbb
(12 L1 0C (¥02) 1L91 0¢ 08 ('1day) oros ¢aoof/sonrenn
(12) 61 0c (6L2) S6LE €9 T8l (‘0101) o[o§ GaojoA/sonAenin
010X

(88 Tl (T L91 80 S¢ 007 S[opowW UONE)USWSs/[oAqnb
(81) 81 0C (T0) 9¢v 0T L9 007, (VIAIAN) sd1dwexgsurures1dood/VIAIAN
D #1 0T (6€1) HOST €¢ o1 007 (34009250, ) UOTSTA/Y2I0)Ad
©¢ I ap vy €T €yl 007 Lspopow-oSewr-yoro)Ad/ueunySims
91 91 0C (SST1) 81ed 19 I'L1 007 uono3jepuw/qe[ww-uado
€Nzl 0c (06) S09¢C 0¢ L8l 007 (400q221,]) TUONOIIP/YOIBISAINO0QIIE]
(S1 SI 0c (L2 €19 ¥’ 8T 007 (40042514 ) UONANR/YDTLISAN00GIE]
(ao 1¢ 8¢ (08S) 09S¢ 0S¥ 8TL 007 (218000 S[OPOWI/MO[IOSUD)
soday] 007

($309J9p) sonsst "Juaay sordweg (pay1enb) sansst paso[) (3]) sy0d 3]) sme1s adAL, K1oysodoy

pajordwod Apnis oy 19)je S TOpPOU-26euT -y2I103Ad /20T BUTHHNY 0) POJIGAUOD Sem STOPOU-26eWT -DI03Ad/ urewlybTm
K101150doY] . *$109JOp puE SANSSI SULIDAUITUIAI JO JOqUINU ) U2M)q 9SBIIOUT 0 SIUNOD Y] JO JWOS SUISNED ‘S109Jop JuLIoauISuaal 9[dn[nul paureIuod sansst NI SWoS J9Jp
SuLIo9UISUSAT SUO ISBI] JB PAqLIOSAP Jey) so[dwes 9y Woij sansst qNHID ¢ PIYNUIPI A[[enUBl 9M ‘BLIDILIO UOTII[IS ISAY) J)JY 'SINSSI paso[d payifenb oy woiy pajdures are
sapdwng *(S)UAWWOD ()] < ‘PIsO[d) SIA[Y 0M) SUIYOJBW ISOY) PUB SANSST PISO[O [BI0) Y SARIIPUL (payijpnb) sanss1 paso]) Y], "$199Jop pue sauojisodar parpmys Y], ¢ a|qel

pringer

Qs


https://github.com/tensorflow/models
https://github.com/facebookresearch/Detectron
https://github.com/facebookresearch/detectron2
https://github.com/open-mmlab/mmdetection
https://github.com/huggingface/pytorch-image-models
https://github.com/pytorch/vision
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/qubvel/segmentation_models
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov3
https://github.com/qqwweee/keras-yolo3
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/YunYang1994/tensorflow-yolov3
https://github.com/matterport/Mask_RCNN
https://github.com/CharlesShang/FastMaskRCNN
https://github.com/TuSimple/mx-maskrcnn

(2024) 29:142

Empirical Software Engineering

Page 18 of 61

142

(8v©) pee LTy (8681) 98L9T [e10L
@¢ 4 () 89 90 81 (‘o01g) ojos NI /uamIEyUEBN(]
(40X Ll LD evs L1 09 (‘o1014) ojos JONIOIUD/NOYZIATUIX
JONIIURD)

©s €1 (€D 61T 91 L8 (or019) o[0§ xtdgxidydiyd
(sH¢1 0T (8t) Lv8 67 (49 (o101d) ofos x1dgx1d-pue-NvD[0AD-yo101kd/zuekunf
xidgxid

@ 14 () 8L €0 81 ('1doy) ojos oueunRI-YoI0)Ad/uoUSyA

(8D 91 0T (06) Lzl 0T (%4 (0j019) ojog 1OUBUTIAI-SEIN/IAZY
JouRUNOY

Q@1 z Q) L9T 01 e ('1dey) ojos [21014d-uudi-1aysej-orduwis/ounAuayo
@ Sl (S1) 9 91 9'¢ ('1doy) ofos UU5I-19)5eJ-J1/H0IMOUISPUS
(8D) LT 0c (¥E) €9¢ (4 99 ('1dey) ofos yo101Ad uuor-roisey/Suehml
(Lo L1 0c (€¢) €5t I't S'L ('1doy) ojos uudI-10)sej-Kdporysisqr
&) ¥ S ((9X3Y Tl ST (-03014) o[og uuorIsej/uaysutboeys
NND-Y 19158

(s309J9p) sonsst "3uady sordweg (pay1renb) sansst pasor) (3]) syr0g (3]) s1e1s adA, K10y1s0doy

panunuod 3jqel

pringer

Ns


https://github.com/ShaoqingRen/faster_rcnn
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/jwyang/faster-rcnn.pytorch
https://github.com/endernewton/tf-faster-rcnn
https://github.com/chenyuntc/simple-faster-rcnn-pytorch
https://github.com/fizyr/keras-retinanet
https://github.com/yhenon/pytorch-retinanet
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/phillipi/pix2pix
https://github.com/xingyizhou/CenterNet
https://github.com/Duankaiwen/CenterNet

Empirical Software Engineering (2024) 29:142 Page 190of61 142

5.1.3 Issue Selection

As shown in the middle row of Fig. 4, we applied two filters on issues in these repositories:
(1) Issue status is closed with an associated fix, to understand the defect type and root
causes (Tan et al. 2014); (2) Issue has > 10 comments, providing enough information for
analysis. We first used the two filters to filter the full set of issues in each repository, and then
sampled the remainder. After applying these filters, there were 1898 qualifying issues across
27 repositories.

We have two goals during our issue selection. First, on the resulting distributions,
we want to achieve a confidence level of at least 95% with 5% margin of error. To
reach that goal, our sample must include at least 320 issues from the 1898 qualifying
issues.’ Second, we want to analyze at least 10% of the issues for each reengineer-
ing project, but this was balanced against the wide range of qualifying issues for
each repository. For example, ultralytics/yolov5 has 279 qualifying issues while
yhenon/pytorch-retinanet has only 4. We first conducted a pilot study on 5 solo
projects which includes 79 defects.* The pilot study indicated that choosing the 20 most-
commented issues would cover roughly 10% of the issues for these projects and give us
plenty of data for analysis. Our sampling approach resulted in 427 qualified issues that match
these sampling criteria, and we identified 334 reengineering issues (cf. Table 4). The number
of samples obtained is above the required size for the desired confidence level. We observed
that some GitHub issues contained multiple reengineering root causes and fixes. We treated
them as distinct defects. Finally, we identified 348 reengineering defects.

In order to achieve a sufficient confidence level from analyzing only 10% of issues, we
applied our filters uniformly across both solo and zoo repositories to prevent bias stemming
from specific models or zoos. This strategy increases our confidence that the insights derived
from this sample are reflective of the population of DL reengineering defects.

For two zoo repositories (tensorflow/models and pytorch/vision),issues hav-
ing the most comments are primarily controversial API change requests, not reengineering
defects, so we randomly sampled 10% of the closed issues instead. For some smaller repos-
itories, taking the top-20 qualifying issues consumed all available defects (Table 4).

For most of the selected repositories, we sorted the remaining issues by the number
of comments and examined the 20 issues with the most comments. This sample consti-
tuted > 10% of their issues. For the zoo repositories from two major DL frameworks,
tensorflow/models and pytorch/vision, the most-commented issues were API
change requests, not defects. Here, we randomly sampled 10% of issues that met the first
two filters.

Another critical aspect of our data collection was to distinguish between reengineering
and non-reengineering defects. The criterion for this differentiation was based on whether
the defect occurred during the process of reusing, replicating, adapting, or enhancing an
existing deep learning model (reengineering defects) or not (non-reengineering defects). In
other words, a reengineering defect directly related to the reengineering process and hindered
the correct function or performance of the model. For instance, a defect was considered as a
reengineering defect if it pertains to a problem such as the model producing incorrect results
when trained with a new dataset or the model failing to perform as expected after being
adapted to a new use case. Lastly, there are also some issues classified as non-defects that
we excluded from our study. Examples include development questions or feature requests.

3 Calculated using https://www.surveysystem.com/sscalc.html.
4 More details can be found in §5.1.4.
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These issues, although important in the broader software development process, are not directly
related to the reengineering process and hence were not included in our study. According to
these definitions, Table 3 provides examples of each kind of defect. From these samples, the
most experienced researcher manually filtered out 93 non-defect issues, e.g., development
questions and feature requests. 78% (334/427 of the sampled issues included a reengineering
defect.

5.1.4 Defect Analysis

Our issue classification and labeling process build on prior studies of DL defects (Islam et al.
2019; Humbatova et al. 2020). The rest of this section outlines the development of the original
instrument from a pilot study, the final instrument, and data collection details. Throughout
the issue analysis process, we monitored data quality using Cohen’s Kappa measure for
inter-rater agreement (Cohen 1960; McHugh 2012).

Instrument Development and Refinement We began by drafting an analysis instrument
based on taxonomies from prior work. Previous studies have proposed taxonomies to describe
DL defects, with respect to their general programming defect types, DL-specific defect types,
and root causes. As a starting point, we included all the defect categories from prior DL
taxonomies, recognizing that these could all theoretically occur in the reengineering pro-
cess (Islam et al. 2019; Zhang et al. 2018; Humbatova et al. 2020; Thung et al. 2012; Seaman
et al. 2008). By using existing taxonomies, we can compare the distribution we observed
against prior work (§7.2) (Amusuo et al. 2022). To provide more insights from a process
view, we enhanced the existing taxonomies to distinguish between four DL engineering
components (which may be developed and validated in different phases of a reengineering
process). These components are: environment, data pipeline, modeling, and training (Amer-
shi et al. 2019; MLO 2021). More details are described in Tables 5, 6 and 7).

We refined our instrument through (Table 8) two rounds of pilot studies. Our goals were
to improve inter-rater reliability and to assess the completeness of the instrument. In each
round, three pairs of undergraduate analysts analyzed the DL reengineering issues from 5
repositories identified in §5.1.3, supervised by a graduate student.

— In the first round (5 repositories, 78 defects), we made several changes to the instrument
as we analyzed the first three repositories, but these tailed off in the fourth repository and
we did not need to make any changes in the fifth repository. After this, we concluded that
our taxonomy had reached saturation (i.e., covered the range of DL reengineering defects
observed), and finalized the instrument. The pilot study confirmed that DL reengineering
defects are a subset of DL defects (as anticipated by Fig. 1) and that existing taxonomies
can categorize DL reengineering defects. After the first round, we found the taxonomy
had saturated but the inter-rater reliability was low. The Cohen’s Kappa value was 0.46
(“moderate”).

— In the second round (5 more repositories, 53 defects), our focus was on revising the
phrasing of the instrument to increase reliability. Modest changes were made to phrasing,
although no new categories were introduced.

Final Instrument Our final instrument is shown in Table 5 (defect symptoms), Table 6
(general programming defect types), and Table 7 (DL-specific defect types). Changes made
during data collection are indicated (see table captions for details). In our results, we mark
the categories with fewer than five observed defects as other for clarity.?
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Table 5 Taxonomy for defect symptoms

Defect Symptoms Category Description

Speed Below Expectations The code runs but the training/inference time does not match the
expectation.

Accuracy Below Expectations The code runs but the evaluation results do not match the expected
accuracy.

Numerical Error The results are Inf, NaN or Zero which are caused by division

(i.e., division by zero returns not-a-number value), logarithm (i.e.,
logarithm of zero returns -oo that could be transformed into not-a-
number); Or the results appear random for each running; Or floating
point overflow.

Crash The system stops unexpectedly.

Data Corruption The data is corrupted as it flows through the model and causes unex-
pected outputs.

Hang The system ceases to respond to inputs.

Incorrect functionality The system behaves in an unexpected way without any runtime or

compile-time error/warning.

Memory exhaustion The system halts due to unavailability of the memory resources. This
can be caused by, either the wrong model structure or not having
enough computing resources to train a particular model.

Other Other symptoms that do not fall into one of the above categories.

The symptoms were adapted from Islam et al. (2019) by distinguishing two types of Bad Performance: Accu-
racy/Speed Below Expectations, referring to the symptoms defined by Zhang et al. (2018). The expectations
can be different from the documentation if the code or data change. We also added Numerical Errors based
on Wardat et al. (2021). Bold: Changed categories

Data Collection After refining the instrument through the pilot study, the two seniormost
analysts used the instrument to analyze the data. They calibrated with one another by re-
analyzing issues from the first 5 repositories studied in the pilot, and measured inter-rater
agreement of 0.79 (“substantial agreement”). They then independently labeled half of the
remaining issues, with a Kappa value before resolution of 0.70 (“substantial agreement”).
They met to resolve disagreements.

Based on this level of agreement, and due to scheduling constraints, the remaining 132
issues were analyzed by just one of these senior analysts.® When needed, that analyst resolved
uncertainty with another analyst.

Data Analysis To address each research question, we employ specific metrics and data
analysis techniques:

— RQ1-RQ3: We quantified defects by categorizing them based on the specific research
question being addressed (§6.1-§6.3). The primary metric used is the frequency dis-
tribution of defects, which allows us to systematically identify and analyze prevalent
issues within each category. This distribution provides a clear view of the common and
rare defects, offering insights into both typical and atypical issues in the reengineering
process.

5 We use low [frequency categories to represent these categories in Figs. 8, 9 and 10.

6 That analyst had supervised the pilot study and analyzed half of the data already, so the expected effect is
consistent labels (due to his experience) but perhaps some bias in the remaining data (due to relying primarily
on his perspective). The accompanying artifact indicates which issues were examined solely by this analyst.
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Table 6 Taxonomy for general programming defect types

Generam  Programming
Defect Type Category

Description

Algorithm/method

Assignment/Initialization

Checking

Data

External Interface

Internal Interface

Logic

Timing/optimization

Non-functional Defects

Configuration (Thung et al. 2012)

Other

An error in the sequence or set of steps used to solve a particular
problem or computation, including mistakes in computations, incorrect
implementation of algorithms, or calls to an inappropriate function for
the algorithm being implemented.

A variable or data item that is assigned a value incorrectly or is not
initialized properly or where the initialization scenario is mishandled
(e.g., incorrect publish or subscribe, incorrect opening of file).

Inadequate checking for potential defect conditions, or an inappropri-
ate response is specified for defect conditions.

Defects in specifying or manipulating data items, incorrectly defined
data structure, pointer or memory allocation errors, or incorrect type

conversions.(i.e., Array, Linked List, Stack, Queue, Trees, Graphs)

Defects in the user interface (including usability problems) or the inter-
faces with other systems. (e.g. API defects)

Defects in the interfaces between system components, including mis-
matched calling sequences and incorrect opening, reading, writing, or

closing of files and databases.

Incorrect logical conditions, including incorrect blocks, incorrect
boundary conditions being applied, or incorrect expression.

Errors that will cause timing or performance problems.

Includes non-compliance with standards, failure to meet non-
functional requirements such as portability and performance con-
straints, and lack of clarity of the design or code to the reader.

Defects in non-code (e.g., configuration files) that affects functionality.

Other defects that do not fall into one of the above categories.

We reused a taxonomy of general programming defects from Seaman et al. (2008), adding the “Configuration”
category from Thung et al. (2012). For convenience, this table presents the combined taxonomy. No new
categories were added during our pilot study

— RQ4: To answer this question, we analyze the frequency distribution of DL-specific
defect types. To gain deeper insights into the prevalent symptoms associated with each
defect type, we also use a Sankey diagram. This method illustrates the relationships
between DL-specific defect types and their corresponding symptoms (§6.4.2). From it,
we can learn the flow and interconnections among various defect types and symptoms,
highlighting the distribution and prevalence of each defect type and symptom. The results
show both common and infrequent associations, suggesting areas for prioritization and
de-prioritization for further study.

These methods ensure a comprehensive and clear analysis of the data, aligning with our
objective to uncover both positive and negative evidence that will inform the DL reengineering

process.
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Table 7 Taxonomy for DL-specific defect types

DL Stage DL-specific Defect Type Category

Description

Data pipeline  Data preprocessing

Corrupt data (data flow bug)

Training data quality

Modeling Activation function

Layer properties

Missing/Redundant/Wrong layer

Training Optimizer
Loss function
Evaluation

Hyper-parameters

Training configuration

Other training process

Environment  API defect

GPU Usage bug

Wrong environment configuration

Other Insufficient/Incorrect documentation

If an input to the deep learning software is not
properly formatted, cleaned, well before supply-
ing it to the deep learning model.

Due to the type or shape mismatch of input data
after it has been fed to the DL model.

Due to the complexity of the data and the need for
manual effort to ensure a high quality of training
data (e.g., to label and clean the data, to remove
the outliers).

Incorrectly selecting the activation function of
neurons.

Some layer’s incorrect inner properties (e.g.,
input/output shape, input sample size, number of
neurons in it).
Adding, removing or changing the type of a spe-
cific layer was needed to remedy the low accuracy
of a network.

The selection of an unsuitable optimization func-
tion for model training.

Wrong selection and calculation of the loss func-
tion.

Problems caused by testing and validation (e.g.,
bad choice of performance metrics)

Incorrectly tuning the hyperparameters (e.g.,
learning rate, batch size, number of epochs) of
a DL model.

Wrong training scripts.

Other faults in the training process which do not
fall into one of the above categories (e.g., wrong
management of memory resources, wrong post-
processing of the output)

Caused by APIs, this includes API mismatch, API
misuse, API change, efc.

Wrong usage of GPU devices while working with
DL (e.g., wrong reference to GPU device, failed
parallelism, incorrect state sharing between sub-
processes, faulty transfer of data to a GPU device).

Incorrect setting of other configurations (e.g.,
wrong operating systems, internal interface
defects).

Engineers misunderstood the documentation or
they cannot find correct or sufficient instructions.

We adapted the taxonomy from Humbatova et al. (2020) by reorganizing the categories into four DL stages.
We distinguish the categories of data preprocessing and corrupt data (data flow bug) based on Islam et al.

(2019). Bold: changed/new categories
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Table 8 Participant demographics

1D SE skill DL skill Domain

P1 Expert Intermediate Cv

P2 Expert Expert CV, NLP

P3 Beginner Intermediate Audio, CV, NLP
P4 Expert Expert CV,RL, NLP
P5 Expert Intermediate CV, NLP, RL
P6 Expert Intermediate CV,RL

P1 and P2 are open-source contributors, P3-P6 are practitioners recruited from social media platforms. Most
participants self-reported here intermediate or expert skills in deep learning (DL) and software engineering
(SE). All participants have experience in reengineering Computer Vision (CV) models. Some of them have
also applied deep learning to Natural Language Processing (NLP), Reinforcement Learning (RL), and Audio.
Note that the subjects have DL experience beyond CV; we did not observe major differences across their
responses

5.2 RQ5: Interview Study on Computer Vision Reengineering

To enrich our understanding of DL reengineering challenges and practices, we triangulated
the failure analysis with a qualitative data source: interviews with engineers. Our population of
interest was engineers who are involved in reengineering activities in the context of computer
vision. We followed the standard recruiting methods of contacting open-source contributors
and advertising on social media platforms. We also complemented that data with interviews
of a DL reengineering team composed of Purdue University undergraduate students with
corporate sponsorship (cf. §5.2.2).

5.2.1 External Subjects: Open-source Contributors and Social Media Recruits

We recruited participants from open-source model contributors who had contributed to the
projects we studied in §5.1. Our recruitment process started by sending emails to the primary
contributors of each repository in Table 4. Due to a low response rate we subsequently
expanded our recruiting to popular web platforms, namely Hacker News’ and Reddit®. Out
of the 25 open-source contributors we contacted, we received responses from 2 of them,
giving us a response rate of 8%. We also received 7 responses from engineers via social
media platforms.

5.2.2 Internal Subjects: Purdue’s Computer Vision Reengineering Team

Inspired by the method of measuring software experiences in the software engineering labo-
ratory described by Valett and McGarry (1989), our lab organized a DL reengineering team.
This team worked to replicate research prototypes in computer vision. The goal of this team is
to provide high-quality implementations of state-of-the-art DL. models, porting these models
from research prototypes (implemented in the PyTorch framework) to Google’s TensorFlow
framework. Most team members are third- and fourth-year undergraduate students. Their
work was supervised and approved by Google engineers over weekly sync-ups. Our study
also collect the notes from weekly team meetings as one of our data source.

7 See https://news.ycombinator.com/.
8 See https://www.reddit.com/.
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We recognize that the use of engineering students as a data source may seem unsound. Here
we discuss some reasons why this data source may be relevant to industry. We specifically
interviewed the team leaders — each of the team’s projects had 1-2 student leaders. The
team leaders were fourth-year undergraduates, sometimes working for pay and sometimes
for their senior thesis. All team leaders contributed to at least two reengineering projects.
All team members received team-specific training via our team’s 6-week onboarding course
on DL reengineering. Team leaders typically worked for 15-20 hours per week over their
2 years on the team. Ultimately, the proof is in the pudding: the team’s industry sponsor
(Google) uses the team’s replication of 7 models in production in their ML applications, and
has published them open-source in one of the most popular zoo repository we studied in §5.1,
the TensorFlow Model Garden.

The completed models required 7,643 lines of code, measured using the cloc tool (AlDanial
2022). The estimated cost of the reengineering team’s work was ~$105K ($15K/model):
$40K on wages and $65K on computation ($5K for VM and storage, $60K for hardware
accelerator rental [e.g., GPU, TPU]).

5.2.3 Interview Data Collection

To design our interview, we followed the guideline of framework analysis which is flexible
during the analysis process (Srivastava and Thomson 2009). A typical framework analysis
include five steps: data familiarization, framework identification, indexing, charting, and
mapping (Ritchie and Spencer 2002). Our interview follows a three-step process modeled
on the framework analysis methodology:

Data Familiarization and Framework Identification We created a thematic framework
based on the reengineering challenges and practices we identified from our literature review
(§2) , as well as our findings from the open-source failure analysis (§5.1). This framework
includes the challenges and practices of bug identification and testing/debugging. We also
created a draft reengineering workflow for reference in our exploration of reengineering
practices.

Interview Design: We designed a semi-structured interview protocol with questions that
follow our identified themes of DL reengineering. We conducted two pilot interviews to
refine our framework and interview protocol. The final interview protocol includes four main
parts: demographic questions, reengineering process workflow, reengineering challenges, and
reengineering practices. Table 9 indicates the three main themes of our interview protocol.
Our research team developed an initial understanding of the challenges and practices of
DL reengineering from the failure analysis study. This experience informed the design of
the interview, especially some of our follow-up questions. For example, Q6 and Q7 on DL
stages, Q14 on DL model documentation, and Q16 on the acceptable trade-off between model
performance and engineering cost, were all shaped by the findings from our failure analysis
study. These interviews were technical and focused, more closely resembling a structured
interview than a semi-structured one. During the interview, we provided relevant themes and
showed the draft of the reengineering workflow in a slide deck.”

Filtering Interviews for Relevance: We applied three inclusion criteria for the interview
participants recruited from the social media platforms: (1) the participant should have industry
experience, (2) hold at least a bachelor’s degree, and (3) have experience in CV and/or DL

9 The final version of the reengineering workflow is shown in Fig. 12. The colored annotations on that figure
were not shown to the subjects.
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Table9 Interview protocol addressing RQS5

Themes Questions

Process Q1: Can you talk me through the process that your team follows to re-engineer a
machine learning model from research paper/existing implementation/another engi-
neer’s project?

Q2: Please take a look at our draft workflow. Can you tell me if you think this is an
accurate process workflow?

Q3: Would you like to add any back-edges in this diagram?

Q4: How does your team update new iterations of your model if it doesn’t work for the
first time?

Challenges Q5: Which parts do you think are challenging when re-engineering a model

Q6: Can you tell me about an error you found in TRAINING/MODELING/DATA
PIPELINE?

Q7: Can you describe any challenges you met when implementing TRAIN-
ING/MODELING/DATA PIPELINE?

Q8: How do you address these challenges?
Q9: Have you met any challenges when integrating all components?

Q10: Can you think about 1-2 changes to the reengineering process that would make
this process easier for you?

Practices Q11: How does your team work together to make the process more effective?
Q12: How do you decide an existing implementation is trustworthy?
Q13: What do you find is helpful/problematic in a DL research paper?
Q14: What do you find is helpful/problematic in the documentation of DL models?

Q15: Are there existing tools (or other technologies) you found valuable/problematic
for re-engineering?

Q16: How do you determine the acceptable trade-off between the performance of the
model (accuracy/speed) and the cost of your team (time/money, etc.)?

We answer RQS5 by combining results from four kinds of questions: demographic questions, process workflow,
challenges, and effective practices. Details of demographic questions can be found in our artifact (§10). The
interview is semi-structured. The questions in italics are questions that all participants were asked. The other
questions are examples of follow-up questions

reengineering. Four of the seven subjects from the social media platform group met these
requirements. The subjects recruited from open-source contributors and our CV reengineering
team had relevant experience.

Overall, our qualitative data comprised 6 external interviews (2 open-source contributors,
4 industry practitioners) and 6 internal interviews (leaders of CV reengineering team after
the team had been operating for 18 months). Table 8 summarizes the demographic data of
the 6 external participants.

5.2.4 Data Analysis

The interview recordings were transcribed by a third-party service.!? Themes were extracted
and mapped by one researcher, the same person who conducted the interviews. We com-
pared those parts of each transcript side-by-side, and noted challenges or practices that were

10 gee https://www.rev.com/. One of the interviews was conducted in Chinese by a researcher who is a native
speaker; that researcher listened to the recording and refined the transcript.
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discussed by multiple leaders and extracted illustrative quotes. By analyzing the interview
transcripts, we were able to understand the larger picture and summarize common challenges.
After completing the interviews, we performed member checking (Birt et al. 2016) with the
6 CV reengineering team leaders to validate our findings. They agreed with our analysis and
interpretations.

6 Results and Analysis

6.1 RQ1:What DL reengineering defect manifestations are more common, in terms
of project type, reporter type, and DL stages?

Finding 1: Project types: User “forks” contain the most basic (73%) (Fig. 5). Reporter
types: Most defects (58%) are reported by re-users. Defects reported by replicators
are rarely identified (<1%). Almost all reproducibility defects are reported by re-users
(Fig. 6). DL stages: 91% defects are reported during environment, training, and data
pipeline. However, 68% of reproducibility defects occur in the training stage (Fig. 7).

To understand the characteristics of DL model reengineering, we analyzed the distribution
of reengineering phases in terms of reporter types and DL stages.

Project types: Figure 5 shows that most defects are basic defects (73%) located in user
“forks”. Most of the basic defects in user “forks” are due to the misunderstanding of the
implementation, miscommunication, or insufficient documentation of the model(s) they are
using. In the discussions, we saw the owners of the repositories often tell the re-users to

User "fork" [0 17%, 46
0 11%,30

0

o . 37%, 22

> Major -

= replication S 529,31

B P N 12%,7 _

9 M Basic defects

O  Research _0%0 ;

3 Y s0% 8 M Evolutionary defects

o Prototype " .
| 10%, 1 m Reproducibility defects
0 50 100 150 200 250

Count of Defects

Fig. 5 Reengineering phases in different project types. Most defects (80%, 278/348) are identified in user
“forks”, among which 73% (202/278) are basic defects. In this and subsequent figures, the indicated percentages
are calculated relative to the corresponding type
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Fig. 6 Reengineering phases vs. Reporter types. 58% (203/348) of the defects are reported by re-users. Less
than 1% are reported by replicators. Almost all reproducibility defects (89%, 34/38) are reported by re-users

read the documentation, while the re-users would remark that the documentation is con-
fusing. This observation supports the suggestions from Gundersen et al. on documentation
improvement (Gundersen and Kjensmo 2018) and indicates there is still a need for detailed
documentation and tutorials, especially for the reengineering process (Pineau 2022).

Reporter types: Figure 6 indicates the distribution of reengineering phases based on the
reporter type. Most defects are reported by re-users, followed by adaptors and then enhancers.
Something to note here is that almost all reproducibility defects are reported by re-users. This

) D 85%, 134
Environment T 11%,17
M 1%, 6

o BN 36%, 32
Training T 36%, 32
P 29%, 26
o N 60%, 41
Data pipeline TR 349, 23
N 6% 4 W Basic defects

B 55%, 18 )
Modeling 00 39% 13 ™ Evolutionary defects
| e%2 B Reproducibility defects
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Count of Defects

Fig.7 Reengineering phases by DL stage. Most reproducibility (68%, 26/38) and evolutionary (38%, 32/85)
defects occur in Training stage. Data pipeline also has many evolutionary (34%) defects

Deep Learning Stages
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finding somewhat follows from our reporter type definitions — an adaptor uses a different
dataset, and an enhancer adds new features to the model, so neither seems likely to report a
reproducibility defect. However, the absence of reproducibility defects from replicators was
more surprising. Perhaps replicators are more experienced, and more likely to fix the problem
themselves than to open an issue. Alternatively, perhaps there are simply far more re-users
in this community.

DL stages: Figure 7 shows the distribution of reengineering phases by deep learning stage.
We observe that the modeling stage results in the fewest reported defects. Only 9% (33/348)
of defects are reported in the modeling stage. The plurality of defects (45% or 157/348)
occur in the environment, followed by 26% (90/348) of defects in the training stage and 20%
(68/348) in the data pipeline stage.

By type, 60% of defects in the data pipeline and 55% of defects in the modeling stages
are basic defects, which means that they are easy to identify. This kind of reengineering
phase can be identified from error messages or visualization of the input data. In contrast, the
majority (68%) of reproducibility defects we found were concentrated in the training stage.
Evolutionary defects occurred in each DL stage, with many (38%) manifesting in the training
stage.

The data indicates that the training stage introduces the most challenging debugging in
the reengineering process. Most of the training defects do not result in crashes, but lead to the
mismatches between the reimplementation and specification/documented performances. A
possible reason is that replicators may have less available data about training — they can refer
to the existing replications/prototypes to reuse the data pipeline or the same architecture (e.g.,
backbones) when dealing with similar tasks, but training records may not be available (Chen
et al. 2022a).

6.2 RQ2: What types of general programming defects are more frequent during
Deep Learning reengineering?

Finding 2: Most Environment defects are interface defects (88%). The Data Pipeline
and Modeling stages have similar distributions oriented towards assignment/initialization
defects. Training defects are diverse. (Figure 8)

Here we consider the defect types by DL stage (Fig. 8). 88% of the defects in the environ-
ment configuration are interface defects. These defects can be divided into external interface
defects (62%, 98/157), i.e., the user interface or the interfaces with other systems; and inter-
nal interface defects (25%, 40/157), i.e., the interface between different system components,
including files and datasets (Seaman et al. 2008). For the external environment, engineers
have to configure the DL APIs and hardware correctly before running the model. However,
there are often inconsistencies between different DL frameworks and different hardware,
leading to defects. For the internal environment, engineers need to set up the modules and
configure the internal paths, but the documentation or tutorials of the model are sometimes
incomprehensible and result in defects.

During training there are relatively more algorithm/method and timing/optimization
defects, compared to other stages. Engineers appear prone to make mistakes in algorithms
and methods when adapting the model to their own datasets, or to fail to optimize the model
in the training stage.
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Fig. 8 Defect types by DL stage. Most Environment defects are interface defects. The Data Pipeline and
Modeling stages have similar distributions oriented towards assignment/initialization defects. Training defects
are diverse

We observe that assignment/initialization defects account for 34% (23/68) in data pipeline
stage and 27% (9/33) in the modeling stage. Internal interface defects also account for 16%
(11/68) of the defects in the data pipeline. To fix assignment/initialization defects and internal
interface problems, engineers only need to change the values or set up the modules and paths
correctly. These are relatively simple defects and simple tool support could help.

6.3 RQ3: What are the most common symptoms of Deep Learning reengineering
defects and how often do they occur?

Finding 3: Across the environment, data pipeline, and modeling stages, the most fre-
quent symptom is crash (62-83%). Training appears to be the most challenging stage,
where Accuracy below expectations accounts for the largest proportion (34%) of defects.
(Figure 9)

Figure 9 shows the distribution of defect symptoms in different DL stages. Our data shows
that Crash is a common symptom. 83% (130/157) defects result in crashes in environment,
data pipeline, and modeling. Most crashes happen due to incorrect environment configuration,
e.g., internal interface, APIs, and hardware.

In contrast, 72% (65/90) of defects in the training stage do not result in crashes (34%
lead to Accuracy below expectations). The training defects are more likely to result in lower
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Fig. 9 Defect symptoms (Islam et al. 2019; Zhang et al. 2018) by DL stage. Across most stages, the most
frequent symptom is crash (62-82%). Meanwhile, in Training there are many symptoms, with Accuracy below
expectations accounting for the largest proportion (34%) of defects

accuracy and incorrect functionality which are harder to identify. Locating the defect could
be more time-consuming because the fixers have to train the model for many iterations and
compare the accuracy or other metrics to see whether the training works properly. Based on
this, we believe that training is the most challenging stage.

Similar to the distribution shown in Figs. 7 and 9 indicates that reproducibility and evolu-
tionary defects (e.g., lower accuracy and incorrect functionality) can be located in any of the
four stages. Reproducibility defects are hard to debug, especially when the reimplementation
is built from scratch. For evolutionary defects, since the code or data has been changed based
on the research prototypes or replications, the defects are more likely to be identified in the
changed parts which can be easily found.

6.4 RQ4: What are the most common Deep Learning-specific reengineering defect
types?

Finding 4: Most Environment defects are caused by API defects (46%, 73/157). In the )
Data Pipeline, data preprocessing defects predominate (38%, 26/68). Most Modeling
defects are due to model/weight operations (67%, 22/33). Training defects have diverse
causes. (Figure 10)

Finding 5: In DL reengineering, a given defect symptom can result from many distinct
DL-specific defect types (Fig. 11). That makes it challenging to diagnose a defect.

6.4.1 Distribution of DL-specific Defect Types
To answer RQ4, we analyzed the distributions of defect root causes (Fig. 10) and present our

findings by DL stage. In our study, all DL stages are determined based on the location where
the fix was made in.
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Fig. 10 DL-specific defect types by stage. In the Data Pipeline, data preprocessing, corrupt data and data qual-
ity predominate. Most Modeling defects are due to model/weight operations and network structure. Training
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Fig. 11 Sankey Diagram showing the relationship between DL-specific reengineering defect types (left side)
and symptoms (right side). DL reengineering defects are hard to diagnose because of the many distinct root
causes for most of the observed symptoms
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Environment Figure 10 shows that most of the environment defects are caused by API
defects (46%, 73/157), Wrong environment configuration (25%, 39/157), and GPU usage
defects (15%, 24/157). Many reusers reported defects due to API changes and mismatches.
Insufficient documentation can easily lead to misunderstandings and confusion. The porta-
bility of models is another problem, especially for the GPU configuration.

Data pipeline Figure 10 indicates three main root causes in the data pipeline: data pre-
processing (38%, 26/68), training data quality (19%, 13/68), and corrupt data (16%, 11/68).
Engineers are likely to have troubles in data processing and data quality. These defect types
are especially frequent for adaptors who are using their own datasets. Datasets vary in for-
mat and quality compared to the benchmark CV datasets (e.g., ImageNet (Krizhevsky et al.
2012), COCO (Lin et al. 2014)). Therefore, before adaptors feed the data into the model, they
have to first address the dataset format, shape, annotations, and labels. Moreover, customized
datasets are less likely to have enough data to ensure a comparable level of accuracy, so
it is necessary to use data augmentation in their data pipeline. However, as we observed,
some engineers did not realize the significance of data augmentation and data quality in their
reengineering tasks which lead to the lower accuracy.

Modeling The main root causes in the modeling stage are Model/weight (67%, 22/33),
layer properties (12%, 4/33), and network structure (9%, 5/33). These causes represent the
incorrect initialization, loading, or saving of models and weights. We observed that some
reengineering work involves moving a model from one DL framework to another. Though
some tools exist for the interoperability of models between DL frameworks (Liu et al. 2020;
Jajal et al. 2023), we did not see them in use, and engineers are still having troubles in the
modeling.

Training There are multiple defect types contributing to training defects. The top two
are training configurations and hyper-parameters. Training configurations include different
training algorithms (e.g., non-maximum suppression, anchor processing) and some specific
parameters which are used to configure the training, but different from the hyper parameters.
When engineers have different environment configurations or adapt the model to their own
datasets, it is necessary to modify the training algorithms and tune the hyper parameters in a
proper way so that the training results match their expectations.

6.4.2 Relationship between DL-specific Defect Types and Symptoms

Identifying defects during DL reengineering is challenging due to the complex interplay
between DL-specific defect types and manifest symptoms. Figure 11 maps the relationships
between DL reengineering defect DL-specific defect types and symptoms. As mentioned in
§5.1.3, we treat defects originating from various DL-specific defect types as separate entities,
thereby ensuring that each symptom is attributed to a singular cause. The three most common
symptom types — crash, low accuracy, and incorrect functionality — all have many possible
DL-specific defect types. Most system crashes stem from API defects, incorrect environment
configurations, and GPU usage bugs. Performance issues are spread across several causes,
including training configurations, hyperparameters, and many other causes in low frequent
types. Incorrect functionality emerges from a variety of causes across multiple stages of the
DL stages.
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6.5 RQ5: When software engineers perform Deep Learning reengineering, what are
their practices and challenges?

( Finding 6: Challenges: The four main challenges in the DL reengineering process are
model operationalization, performance debugging, portability of DL operations, and cus-
tomized data pipeline. Practices: (Interface): Interface can help unify and automate model
testing, especially testing of component integration. (Testing): Validation was a common
emphasis. Team employed complementary testing techniques (i.e., unit, differential, and
visual testing). (Debugging): Comparing evaluation metrics after just 25% of training is
a shortcut.

Our failure analysis shed some light on DL reengineering challenges, but little on the
guidelines for ML reengineering requested in prior works (Rahman et al. 2019; Devanbu
et al. 2020). In this section, we describe those aspects based on the experiences of our CV
reengineering team. First, we describe three main reengineering challenges we found in our
reengineering team. Then, in §6.5.2 we describe three practices we identified from interview
study to mitigate those challenges, including interface, testing, and debugging.

6.5.1 Reengineering Challenges

We interviewed 2 open-source contributors, 4 industry practitioners, and 6 leaders of the
team (§5.2). Our interview study identified 8 reengineering challenges within the process
(Table 10). We focus on the four challenges that were mentioned by at least three participants.

Challenge 1: Model Operationalization

Practitioner 1: “The only way to validate that your model is correct is to...train it, but
the pitfall is that many people only write the code for the model without any training
code...That, in my opinion, is the biggest pitfall.”

Practitioner 9: “I would say that understanding the previous work is often the most
difficult part ...translating that information and transmitting that information in an
efficient way can be very hard.”

Leader 2: “So one challenge...digging through their code and figuring out what is
being used and what isn’t being used.”

Leader 3: “And in the paper, they...give a pseudo code for just iterating through all...,
which they mentioned in the paper that is really inefficient. And they do mention that
they have an efficient version, but they never explain how they do it [in the paper].”

Leader 5: “A lot of the work is figuring out what they did from just the paper and the
implementation, which is not exactly clear what they’re doing.”

There may be multiple implementations or configurations of the target model. The
interview participants found it hard to distinguish between them, to identify the reported
algorithm(s), and to evaluate their trustworthiness. First, some research prototypes are not
officially published. To correctly replicate the model, it is hard to identify which implemen-
tation they could refer to. Moreover, the model may be different from the one in the paper.
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Table 10 Challenges during deep learning reengineering process

Challenge

Description

# Participants

Reeng. Activities

1. Model Operationalization

2. Performance Debugging

3. Portability of DL Operations

4. Customized data pipeline

5. Team collaboration

6. Code Readability

7. Evaluation Metrics

8. Data availability.

Unclear implementations,
configurations, or scripts of
the original model.

Debugging and achieving
expected end-to-end perfor-
mance metrics.

Discrepancies in  function
naming or signatures across
frameworks, inconsistencies
in behaviors of the ‘same’
operations, limitations on
specific hardware.

Data processing, quality assur-
ance, and pipeline implemen-
tation.

Inconsistent implementations
among multiple team mem-
bers.

Obfuscated code.

Identifying the best metric to
evaluate the model.

Unavailable training data.

8

1

Reuser, Replicator,
Adaptor, Enhancer

Reuser, Replicator,
Adaptor, Enhancer

Reuser, Replicator,
Enhancer

Replicator, Adap-
tor, Enhancer

Replicator,
Enhancer

Enhancer
Adaptor

Adaptor

The third column shows how many participants (of 12) mentioned the challenge. Relevant reengineering
activities identified in interview data are also incorporated

Leader 3 reported that the research prototype used a different but more efficient algorithm
without any explanation. Even for the original prototypes, the leaders reported that the proto-
type’s model or training configuration may differ from the documentation (e.g., the research
paper). These aspects made it hard for the reengineering team to understand which concepts
to implement and which configuration to follow.

Challenge 2: Performance Debugging

Practitioner 1: “If your data format is complicated then the code around it would also
be complicated and it would eventually lead to some hard to detect bugs.”

Practitioner 3: “[Performance bugs] are silent bugs. You will never know what hap-
pened until it goes to deployment.”

Leader 1: “You can take advantage of...differential testing but then someone shows
out a probabilistic process to this...it becomes really difficult because the testing is
dependent upon a random process, a random generation of information.”

Leader 4: “Sometimes it gets difficult when the existing implementation... [doesn’t]
have the implementation for the baseline. So we have to figure out by ourselves. Paper
also doesn’t have that much information about the baseline...if you’re not able to even

get the baseline, then going to the next part is hard...”

Another main challenge we observed is matching the performance metrics of existing
implementations, especially the original research prototype. These metrics include inference
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behavior (e.g., accuracy, memory consumption) and training behavior (e.g., time to train).
Multiple interview participants stated that performance debugging is difficult. Even after
replicating the model, performance still varies due to hardware, hyper-parameters, and algo-
rithmic stochasticity. Compared to Amershi et al.’s general ML workflow (Amershi et al.
2019), during reengineering we find that engineers focus less on neural network design, and
more on model analysis, operation conversions, and testing.

Challenge 3: Portability of DL Operations

Practitioner 2: “The biggest problem that we encounter now is that some methods
will depend on certain versions of the software...When you modify the version, it will
not be reproducible...For example, the early TensorFlow and later TensorFlow have
different back propagation when calculation gradient. Later updated versions will have
different results even when running with the same code...Running our current code with
CUDA 11.2 and PyTorch 11.9, the program can be executable, but the training will
have issues....The inconsistency between PyTorch and Numpy versions could make the
results the same every time.”

Leader 3: “There was basically [a] one-to-one [mapping of] functions from
DL_PLATFORM_1 [to our implementation in] DL_PLATFORM_2. But halfway
through...we realized we needed to make it TPU friendly ...had to figure out a way to
redesign...to work on TPU since the MODEL_COMPO NENTS in DL_PLATFORM_1
were all dynamically shaped.”

Leader 2: “They don’t talk about TPUs at all...If you’re in a GPU environment, it’s a
lot easier also, but in order to convert it to TPU, we had to put some design strategies
into place and test different possible prototypes.”

Leader 6: “The most challenging part for us is the data pipeline...a lot of the data
manipulation...in the original C implementation is...hard [in] Python.”

Though engineers can refer to existing implementations, the conversion of operations
between different DL frameworks is still challenging (Liu et al. 2020). The interview par-
ticipants described four kinds of problems. (1) Different DL frameworks may use different
names or signatures for the same behavior. (2) The “same” behavior may vary between
DL frameworks, e.g., the implementation of a “standard” optimizer.!! (3) Some APIs are
not supported on certain hardware (e.g., TPU), and the behavior must be composed from
building blocks. (4) Out of memory defects could happen in some model architectures when
using certain hardware (e.g., TPU). We opened the issue in a major DL framework and the
maintainers are investigating.'?

Challenge 4: Customized Data Pipeline

Practitioner 1: “If your data format is complicated then the code around it would also
be complicated and it would, eventually, lead to some hard to detect bugs.”

Practitioner 4: “Sometimes some data can mess the whole model prediction. We need
to get them out of our project...It probably consumed 30% of our entire project time.”

1T The reengineering team identified and disclosed three examples of this behavior to the owners of the DL
framework they used. The documentation of a major DL framework was improved based on our reports.

12 gee https://github.com/tensorflow/models/issues/10528.
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Practitioner 6: “[Data pipeline] is the most challenging part because it’s not like
there’s a formula of things that you can do...When it comes to data pipeline, it’s more
of an art than science”

Leader 1: “The data pipeline is the hardest to verify and check because testing it takes
so long. You need to train the model in order to test the data pipeline.”

Customizing the data pipeline is a challenging stage in the DL reengineering process,
especially when engineers want to adapt the original model to a new dataset. However, our
qualitative data also suggest that this can occur during the replication and enhancement
stages, where a customized data pipeline may be needed. For instance, replicating a model
in a different framework requires corresponding data preprocessing. Similarly, enhancing a
model to support different data formats also necessitates adjustments to the data pipeline.
The interview participants described challenges in data processing, data quality, and the
implementation of the data pipeline. First, the data processing is challenging because there is
no standardized solution. The practitioners, especially model adaptors, needs to process the
data properly to match the original model input. Second, the data quality can affect the model
performance a lot. For example, Practitioner 4 mentioned that some data can mess the whole
model prediction and it is time consuming to address these issues. Third, the data pipeline
can be very different when using different programming languages and DL frameworks.
Implementation and testing can be time-consuming.

6.5.2 Reengineering Practices

We also summarized three reengineering practices based on our interview analysis:

Practice 1: Starting with the Interface

Practitioner 2: “We will define the API for the [our own] interface first. In such case,
if something goes wrong during the component integration, we will easily localize the
defect.”

Practitioner 3: “We look for implementations which are very quick to start with, which
have a very good API to start.”

Leader 4: “If you're using existing implementations, you should take time to familiarize
with the existing things [code base] that we already have.”

Leader 6: “The DL_FRAMEWORK interface, for the MODEL_ZOO specifically, 1
think that’s very important.”

Interface can help unify and automate model testing. Typically, an existing code base has
a unified structure which includes the basic trainer and data loader of a model. The interface
is essential if the reengineering team is required to use existing code base or model zoos, such
as Banna et al. describe for the TensorFlow Model Garden (Banna et al. 2021). Practitioner
2 indicated that implementing interface APIs first can help a lot on bug localization during
component integration. Their team also combine agile method (Cohen et al. 2004) with the
use of interface APIs which makes the team collaboration more effective. Our reengineering
team shares similar experience by implementing interface API first. Leader 4 indicated that
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team members have to get familiar with the code base and relevant interface APIs first before
the real model implementation.

Practice 2: Testing

Leader 4: “Unit testing was eas[ier]....because if you're just trying to check what
you're writing, it is easier than always trying to differentiate your test and match it
with some other model.”

Leader 1: “You can load the...weights from the original paper. [It] might be a little
bit difficult to do but you could do that [and] test the entire model by...comparing the
outputs of each layer.”’

Based on the interviews and notes from weekly team meetings, we found that comple-
mentary testing approaches were helpful. We describe the team’s three test methods: unit
testing, differential testing, and visual testing.

Unit testing can ensure that each component works as intended. For the modeling stage, a
pass-through test for tensor shapes should be done first, to check whether the output shape of
each layer matches the input shape of the next. They also do a gradient test which calculates
the model’s gradient to ensure the output is differentiable.

Differential testing compares two supposedly-identical systems by checking whether they
are input-output compatible (Mckeeman 1998). This is most applicable in the Modeling
stage: the original weights/checkpoint can be loaded into the network, and the behavior of
original and reengineered model can be compared. This technique isolates assessment of the
model architecture from the stochastic training component (Pham et al. 2020).

Differential testing is also applicable in Environment and Training stages to ensure the
consistency of each function. For example, when testing the loss function in the training
stage, they generate random tensors, feed them into both implementations, and compare the
outputs. The outputs should match, up to a rounding error.

Leader 4: “Both...implementations, even though we are doing the same model, the way
they organized are very different....Differential testing can get difficult.”

Leader 5: “In the data pipeline, one of the big challenges is that the data pipeline is not
deterministic, it’s random. So it’s hard to make test cases for it nor to see if it matches
the digital limitation, because you can’t do differential testing because it’s random.”

However, differential testing does not apply to all DL components. For example, the data
pipeline has complex probabilistic outputs, where they found it simpler to do visual testing.
For data pipeline, each preprocessing operation can be tested by passing a sample image
through the original pipeline and the reengineering pipeline. They visually inspect the output
of two pipelines to identify noticeable differences. This approach is applicable in CV, but
may not generalize to other DL applications.

Unit, differential, and visual testing are complementary. At coarser code granularities,
automated differential tests are effective; at a fine-enough level of granularity the original and
replicated component may not be comparable, and unit tests are necessary. The characteristics
of a data pipeline are difficult to measure automatically, and visual testing helps here.

Practice 3: Performance Debugging

Leader 1: “I think the biggest thing is logging the accuracy after every single
change...then you know what changes are hurting your accuracy and which changes
are helping, which is immensely helpful.”
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Practitioner 1: “If your data format is complicated, then the code around it would also
be complicated and it would, eventually, lead to some hard to detect bugs.”

The most common way to detect reproducibility and evolutionary defects is to compare
model evaluation metrics. This approach can be costly due to the resources required for
training in a code-train-debug-fix cycle. However, as we noted from the team meetings, 70%
of the final results may be achieved within 10-25% of training. They thus check whether
evaluation metrics and trends are comparable after 25% of training, shortening the debugging
cycle.

Beyond this approach, they agree with prior works that record-keeping help model training
and management (Schelter et al. 2017; Vartak et al. 2016).

7 Discussion and Implications

In this section, we first triangulate our findings into a reengineering workflow (§7.1). Then
we compare our findings to prior works (§7.2) and propose future directions (§7.3).

7.1 Triangulating our findings

We compare (§7.1.1) and contrast (§7.1.2) the two prongs of our case study. Then we syn-
thesize them into a hypothesized DL reengineering workflow (§7.1.3).

7.1.1 Similar challenges (in model implementation and testing)

The two prongs of our case study identified similar challenges in model implementation and
testing, especially performance debugging, which we show below in Fig. 12. Our failure
analysis found that most reengineering defects are caused by DL APIs and hardware config-
uration (see Figs. 7 and 8), and we identified the similar challenge of portability from our
interview study. Moreover, in the failure analysis we suggested that the training stage would
be the most challenging because of the diversity of failure modes (cf. Figs. 8, 9, and 10). This
stage was also highlighted by our interview participants as the performance debugging chal-
lenge. In addition, we observed multiple testing strategies applied by engineers in the failure
analysis, and heard about some of them in more details in the interview study, including unit
testing, differential testing, and visual testing (§6.5.2).

7.1.2 Divergent findings (in model operationalization)

However, our two data sources were not fully in agreement. The interviews identified the
model operationalization challenge, while the failure analysis data provided no direct evi-
dence of this challenge. We believe that when engineers encounter model operationalization
defects, they may not open an issue about it, or may be unable to identify the defect until test-
ing. In this case, the operationalization challenge could manifest as a performance debugging
defect. This silence in the failure analysis part may be related to the low number of issues
that we attributed to the “Replicator” reported type (i.e., the persona most likely to encounter
this kind of issue).
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7.1.3 Observed DL Reengineering Workflow

To illustrate DL Reengineering challenges and practices, we developed an idealized reengi-
neering workflow (see Fig. 12 below) based on our failure analysis and interview data. To
develop this, we had one leader of the student DL reengineering team describe the reengi-
neering workflow that their sub-team followed. The other student leaders revised it until
agreement. Then we revised it based on our observations of the open-source failure data and
the interview data.

The resulting workflow has three main stages: (1) Model selection and analysis; (2) Imple-
mentation and testing; and (3) Review and release. In the first stage, a DL reengineering team
identifies a candidate model for the desired task (e.g., low-power object recognition), and
determines its suitability on the target DL framework and hardware. Existing implemen-
tations are examined as points of comparison. In the second stage, the components of the
system are implemented, integrated, and evaluated, possibly with different personnel work-
ing on each component. At the end of this stage, the model performance matches the paper
to a tolerance of 1-3%. In the third stage, the model is tailored for different platforms, e.g.,
servers or mobile devices, and appropriate checkpoint weights by platform and dataset are
published. We included example checklists for these tasks in the supplemental material.

The reader may note the relative linearity of the model given in Fig. 12. Our findings
from both the failure analysis and the interview study suggest that during DL reengineer-
ing, the system requirements and many design elements are well understood, reducing the
need for iteration. The development process can then be more plan-based rather than the
iterative (agile) approach common in software development (Keshta and Morgan 2017).
This finding contrasts with the DL model development and selection workflows identified in
prior work (Amershi et al. 2019; Jiang et al. 2023b), indicating that different kinds of DL
engineering work involve different degrees of uncertainty.

(1) Model selection & analysis (2) Model impl tation & ing : (3) Model review & release

|

|

| N
] Final training &

.

Challenge 3: Portability of DL Operations (6/12)
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|
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Fig. 12 Reengineering workflow, divided into three main stages. Forward edges denote the reengineering
workflow. Dotted line denotes optional (interface). Back edges denote points where errors are often identified.
Red arrows indicate the main location of each challenge, Blue text denotes the main root causes of failures in
each DL stage (see Fig. 10)
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Recall in Fig. 1, we described four sub-activities: reuse, replicate, adapt, enhance. Based
on our analysis, here is how they integrate into Fig. 12:

— Reuse: The reuse process is a sub-graph of the overall process, with minimal activity
needed within the second stage (i.e., model implementation & testing) Reusers typically
have precise requirements before selecting a model. During model reuse, significant
time is dedicated to analyzing the model, integrating it, and evaluating its performance.
This process mirrors the reuse dynamics discussed in prior work (Jiang et al. 2023b).
Challenges include operationalizing the model and assessing its performance effectively
(Table 10).

— Replicate: Our data sources were focused on the replication process. A critical component
of this process is leveraging the existing implementation for testing, with differential
testing being a prevalent and vital method. Challenges in replication may include issues
related to the portability of DL operations (Table 10).

— Adapt: The adaptation process needs additional activities in the implementation, specif-
ically data pipeline. During adaptation, changes in the downstream dataset (as defined in
Table 1) can necessitate adjustments to the implementation. Additionally, dataset modi-
fications often lead to challenges in developing a customized data pipeline, which may
include issues like poor training data quality or corrupted data (Table 7, Fig. 10).

— Enhance: The enhancement process includes additional activities in (1) selection and
analysis, and (2) implementation and testing. The enhancement usually initiates with the
existing implementations and requires a comprehensive understanding of pertinent topics,
such as state-of-the-art model architecture or training methods. Enhancers typically enter
this phase with a clear goal (§6.5) — such as adopting a different loss function or attaining
a specific performance target in a designated deployment environment — which guide
both the enhancement efforts and subsequent evaluations (Figs. 6 and 7).

As described in §5, our work is a case study on CV but it may generalize to other DL
application domains, such as Natural Language Processing and Audio. We observed no
domain-specific steps in the proposed process, so we believe our case study should apply
to other DL problem domains as well. The specific distribution of defects and problem-
solving strategies may vary from domain to domain (e.g., the available means of validation,
such as the feasibility of visually inspecting results as done in CV), but we expect this DL
reengineering process would not.

7.2 Comparison to Prior Works

We compare our work to three kinds of studies: those on DL model development, those on
traditional software reengineering, and those on pre-trained model reuse. In Table 11 we
summarize our analysis of the similarities and difficulties between our findings and these
domains.

7.2.1 Deep Learning Model Development

Our general findings on the CV reengineering process match some results from prior works.
For example, like prior bug studies on DL engineering (Islam et al. 2019; Humbatova et al.
2020), we observed a large percentage of API defects (21%, 74/348) within the CV reengi-
neering process. In line with the results from Zhang et al. (Zhang et al. 2018), we also found
basic defects are the most common phase.
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Table 11 Differences between our findings on DL reengineering and prior work
Aspect Prior findings Our findings
Goals Traditional software reengineer- DL reengineering aims to facilitate

Model Implementation

Defect Distribution

Testing Practice

ing focuses on improving system
quality, maintainability, and perfor-
mance (Rosenberg and Hyatt 1996;
Majthoub et al. 2018).

Prior work highlighted the chal-
lenges in selecting model hyperpa-
rameters and debugging training pro-
cess (Zhangetal. 2019, 2020b, 2018).

Previous studies found API and basic
defects common, with fewer hyper-
parameter and data quality defects
(Islam et al. 2016; Humbatova et al.
2020).

Pre-trained model reuse faces sim-
ilar testing challenges but specific
situations encountered are differ-
ent (Braiek and Khomh 2020; Zhang
et al. 2020a; Jiang et al. 2023b).

further software reuse and support the
ongoing evolution of the software. It
is also part of the research-to-practice
pipeline. (§4)

Performance debugging is also chall-
ging in DL reengineering process.
Additional Challenges exist in model
operationalization, portability = of
DL operations, and customized data
pipeline.(§6.5)

DL reengineering has more defects
related to hyper-parameter tuning and
training data quality. (§6.1-§6.4)

In DL reengineering, engineers can
leverage existing implementations, so
the application of effective testing
methods, such as differential testing
and metamorphic testing, is both fea-

sible and can yield significant benefits.
(86.5,87.1)

Within prior work, we consider DL development, traditional software reengineering, and pre-trained model
reuse

However, we observed notably different proportions of defects, e.g., by stage and by
cause. We found a higher proportion of hyper-parameter tuning defects (5%, 18/348) in the
DL reengineering process compared to the results of Islam et al., who reported a proportion
of less than 1% (Islam et al. 2019). Additionally, the results presented by Humbatova et al.
shows that 95% of survey participants had trouble with training data (Humbatova et al. 2020).
However, in our result, training data quality only accounts for 19% (13/68) of defects in data
pipeline! This difference may arise from context: 58% (203/348) of the defects we analyzed
were reported by re-users using benchmark datasets.

Qualitatively, our in-depth study of a CV reengineering team identified more detailed
challenges in DL reengineering. For model configuration, we observed challenges in distin-
guishing models, identifying reported algorithm(s), and evaluating of trustworthiness. These
were not mentioned in prior works (Islam et al. 2020). We also refined portability challenges
into three different types: different names/signatures for the same behavior, inconsistent and
undocumented behaviors, and different behavior on certain hardware. The latter two were
not identified before (Zhang et al. 2019). Finally, we noted the importance — and difficulty
— of performance debugging in DL reengineering.

Given these substantial differences, we provide a conjecture as to potential causes. DL
reengineering process involves unique problem-solving strategies distinct from those used in
normal DL development processes. These include the need to carefully review and modify
hyperparameters from existing models and the data format to fit new datasets, which introduce
additional complexity and the potential for data quality defects. Furthermore, identifying and
rectifying defects even when using the same dataset can require advanced analytical skills
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and understanding of the initial model’s behaviors. The reusability and trustworthiness of the
starting models also require careful assessment, requiring advanced knowledge of machine
learning principles and critical evaluation of existing implementations. In contrast, the typical
development process often focuses on designing and training a model from scratch, where
control over variables and initial conditions is more straightforward (Amershi et al. 2019;
Rahman et al. 2019). We conclude that problem-solving approaches in both the development
and reengineering processes present distinct challenges: adapting existing components is a
core engineering task; inventing new models leans more towards the realm of science.

7.2.2 Traditional Software Reengineering

We also compare the DL reengineering to other reengineering works in the software engineer-
ing literature (Singh et al. 2019; Bhavsar et al. 2020). We propose that the goal and focus are
two main differences: First, the goal of many reengineering projects is to improve software
functionality, performance, or implementation (Rosenberg and Hyatt 1996; Majthoub et al.
2018), while the main goal we saw in DL reengineering was to support further software reuse
and customization. Second, other reengineering studies focus on the maintenance/process
aspect, while in our study we saw that the DL reengineering activities focus on the imple-
mentation/evolution aspect (Bennett and Rajlich 2000). One possible causal factor here is
that the DL reengineering activities we observed were building on research products, while
general software reengineering is revisiting the output from engineering teams.

The research-to-practice pipeline has seen increasing adoption in the industry through the
rapid invention and deployment of DL techniques (Wang et al. 2020b; Bubeck et al. 2023;
Zhou et al. 2022; Dhanya et al. 2022). Our investigation reveals the role of DL reengineering
process in the research-to-practice pipeline (Grima-Farrell 2017). As Davis ef al. summarize,
the reuse paradigm of DL models encompasses conceptual, adaptation, and deployment
reuse (Davis et al. 2023). Our work draws attention to the significance of conceptual and
adaptation reuse in the model reengineering process. In particular, our study underscores
the ways in which practitioners transition knowledge from research prototypes into practical
engineering implementations, such as replicating models in different frameworks or adapting
models to custom datasets.

7.2.3 Pre-trained Deep Learning Model Reuse

Our insights on DL reengineering (§7.1) also highlight its similarities and differences com-
pared to DL model reuse (§2.3). Similar to DL reengineering, pre-trained model reuse also
encompasses several activities such as conceptual, adaptation, and deployment reuse (Davis
et al. 2023). Both share common hurdles including lack of information about original pro-
totypes, inconsistencies, and trust issues (Montes et al. 2022a; Jiang et al. 2023b). However,
we note two difference between DL reengineering and pre-trained model reuse. First, DL
reengineering can benefit significantly from effective differential and metamorphic testing
techniques (§6.5.2), as compared to pre-trained model reuse. The goal of reengineering a
model is to achieve the same performance when reusing or replicating models, while that
of reusing pre-trained models is mainly focused on downstream performances (Jiang et al.
2023b). Second, prior work has explored effective methods for identifying suitable pre-
trained models that can be adapted to specific downstream tasks (You et al. 2021b,a; Lu
et al. 2019). The reengineering process also requires this model selection step (Fig. 12), and
adaptation is a key component of the DL reengineering process. However, selecting a good
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research prototype is harder in the reengineering process because model operationalization
and portability of DL operations are the two most challenging parts. (§6.5.1).

Another emerging trend in reengineering models is the use of so-called “Foundation
Models” (Zhou et al. 2023; Yuan et al. 2021). These models have unique attributes in model
adaptation. For instance, large language models can be adapted using methods such as prompt-
ing or zero/few-shot learning (Touvron et al. 2023a, b; Brown et al. 2020; Liu et al. 2022; Wei
etal. 2021; Abdullah etal. 2022). This adaptability distinguishes them from the more extended
adaptation processes found in the DL reengineering techniques discussed in this work. The
key advantage is that they leverage the knowledge and generalization capabilities embedded
in their pretrained weights. This facilitates quicker and often more efficient adaptation to new
tasks without the need for prolonged retraining or a customized data pipeline (Wang et al.
2023; Shu et al. 2022). We therefore expect that the focus of reengineering with foundation
models will predominantly be on adaptation rather than reuse, replication, or enhancement.
This assertion is based on the primary objective of employing foundation models for down-
stream tasks (Zhou et al. 2023). The portability of these foundation models is still an active
area of research (Pan et al. 2023; Yuan 2023; Wu et al. 2023). Such unique characteristics
might necessitate different reengineering practices tailored to foundation models. Regret-
tably, the reengineering phenomena of foundation models were not captured in our study
because our data was collected in 2021, which was before the rise of foundation models such
as LLMs.

7.3 Implications for Practice and Future Research
Our empirical data motivates many directions for further research. We divide these directions

into suggestions for standardization (§7.3.1), opportunities for improved DL software testing
(§7.3.2), further empirical study (§7.3.4), and techniques to enable model reuse (§7.3.3).

7.3.1 Standardized Practices

Direction 1: The state of practice in DL reengineering involves many challenges that can
be tied to inadequate documentation and tooling. These challenges might be addressed
with standardized documentation, checklists for replication, and automation that analyzes
repositories and connects them to research papers.

As observed in the open-source defects, few of these reengineering efforts followed a
standard process, causing novices to get confused. We recommend step-by-step guidelines for
DL reengineering, starting with Fig. 12. Building on our findings, future studies could validate
our proposed reengineering workflow, confirm the challenges, and evaluate the effectiveness
of checklists and other process aids in improving DL reengineering.

Major companies have provided some practices to standardize the DL model documenta-
tion, such as model card proposed by Google (Mitchell et al. 2019) and metadata extraction
from IBM (Tsay et al. 2022), our analysis (Fig. 10) and recent work (Jiang et al. 2023b)
indicate that existing implementations still lack standardized documentation which results in
the challenge of model analysis and reuse. Therefore, we recommend engineers develop and
adhere to a standard template, e.g., stating environment configuration and hyper-parameter
tuning.

We also envision further studies on automated tools to extract the training scripts, hyperpa-
rameters, and evaluation results from open-source projects, aiming to enhance standardization
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in the documentation. As an initial step in this direction, recent work developed an automated
large-language model pipeline that can extract these metadata from model documenta-
tion (Jiang et al. 2024). However, their work shows the lack of metadata in the model cards.
To address this, we recommend extending the metadata extraction tool from documentation
to source code and to research papers, across which one might obtain more comprehensive
metadata such as all configuration parameters. Another approach might be to develop a large
language model with knowledge about DL reengineering and pre-trained models.

7.3.2 Support for Validation during DL Reengineering

Direction 2: The reengineering challenges we identified emphasize the need for better val-
idation and debugging tools tailored to specific stages of DL reengineering. We observed
particular gaps in the stages of Data Pipeline (e.g., for data quality and augmentation
defects) and Training (e.g., for performance defects), as well as in the efficient develop-
ment of unit and differential tests.

Our results shows the DL-stage-related characteristics of reengineering defects (§6.1—
§6.4) and difficulties of debugging (§6.5). We recommend future directions on debugging
tools for each DL stage, especially Data Pipeline and Training.

Our analysis shows that most of the defects in data pipeline are due to the incorrect data pre-
processing and low data quality. There have been many studies on data management (Kumar
etal. 2017), validation for DL datasets (Breck et al. 2019), and practical tools for data format
converting (Willemink et al. 2020). However, we did not observe much use of these tools in
(open-source) practice, including in the commercially maintained zoos. It is unclear whether
the gap is in adopting existing tools or in meeting the real needs of practitioners. In addition,
creating large DL datasets is expensive due to high labor and time cost. Data augmentation
methods are widely used in recent DL models to solve the related problems (e.g., overfitting,
lower accuracy) (Shorten and Khoshgoftaar 2019). Our results (§6.4) show that engineers
often encounter defects during data augmentation and data quality. Therefore, we recommend
future studies on evaluating the quality of data augmentation. It would be of great help if
engineers can test in advance whether the data augmentation is sufficient for training.

Researchers have been working on automated DL testing (Tian et al. 2018; Pei et al.
2017) and fuzzing (Zhang et al. 2021; Guo et al. 2018) tools for lowering the cost of the
testing in the training stage. However, there are not many specific testing techniques for
DL reengineering (Braiek and Khomh 2020). In our reengineering team (§6.5), we found
performance debugging challenging, especially for reproducibility defects. We recommend
software researchers explore end-to-end testing tools for reengineering tasks which can
take advantage of existing model implementations. For example, end-to-end testing of re-
engineered models, particularly those replicated using a different DL framework, can be
challenging. To address this, developing new fuzzing techniques offers promise (Jajal et al.
2023; Openja et al. 2022; Liu et al. 2023). By randomly generating inputs during the early
training stage, these techniques can help predict the final performance of the replicated model
compared to the original one. To lower end-to-end costs, improved unit and differential test-
ing methods will also help. Our work highlights the need for further development in unit and
differential testing techniques tailored specifically for deep learning models. Recent work has
begun to study testing practices for such models (Ali et al. 2024). By focusing on different
stages of the deep learning pipeline, new techniques can enable earlier detection and easier
diagnosis of training bugs. For instance, differential testing can be employed to verify func-
tionalities like model loading or loss function implementation by comparing the inputs and
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outputs of the replicated model with the original one. Similarly, unit testing can be applied
to visualize and validate individual components like the data pipeline or specific algorithms
within the model, such as non-maximum suppression in object detection tasks (Gong et al.
2021).

7.3.3 Innovating Beyond Manual DL Model Reengineering

Direction 3: We found that practitioners perform DL model reengineering by hand, with
limited automated support. Future work could examine automated model conversion from
framework to framework, automated model component extraction for reuse, and domain-
specific languages for DL mathematics.

DL Model reuse may mainly happen in the modeling stage. Most modeling defects are due
to the operations of pre-trained weights and models (Fig. 10). Though there have been tools for
the conversion of models between different DL frameworks, notably ONNX (ONN 2019a),
converting models remains costly due to the rapidly increasing number of operators (Liu
et al. 2020) and data types (ONN 2019b). Moreover, we found that engineers also struggle
with data management and training configuration (§6.4, §6.5). Thus we recommend further
investment in end-to-end model conversion technology.

Recent studies have shown a unique approach to reengineering DL models. Pan et al.
propose a promising step to decompose DL models into reusable modules (Pan and Rajan
2020, 2022; Imtiaz et al. 2023). Imtiaz et al. proved that this decomposition approach can also
support the reuse and replacement of recurrent neural networks (Imtiaz et al. 2023). These
approaches show promise in mitigating the complexities and expenses typically associated
with the DL reengineering process. We advocate for expanded research that leverages the
distinctive characteristics of DL models to explore and develop innovative methodologies
for facilitating DL reengineering.

When models cannot be reused automatically, DL reengineers must manually replicate
the logic, resulting in a range of defects (Fig. 10). Both the open-source defects and team
leaders mentioned mathematical defects, e.g., sign mismatch or numerical instability (Fig.
9). Our findings indicated that mathematical functionalities are hard to verify (§6.4, §6.5)
We suggest a domain-specific language for loss function mathematics, similar to how regular
expressions support string parsing (Michael et al. 2019). While engineers currently leverage
mathematical language to design loss functions, their implementation in general-purpose
languages like Python appears to present verification difficulties. Our proposed DSL would
offer a solution by facilitating the compilation of loss function code into a human-readable
format, such as compiled LaTeX functions. Additionally, we recommend the development
of automated test generation techniques specifically tailored for mathematical and numerical
testing of these loss functions.

7.3.4 Empirical Studies

Direction 4: We found substantial disagreement between our results and prior work
on DL failures, suggesting that our “process” focus may yield different results than a
traditional “product”-focused failure analysis. Through the lens of DL reengineering,
our study exposed many areas for deeper study, such as how individual classes of DL
reengineering failures should be solved, and the compounding effect of discrepancies in
upstream models. New datasets of DL models should simplify further study in this topic.
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Given the substantial prior research on DL failures, both quantitative and qualitative, we
were surprised by the differences between our results and prior work that we described in §7.2.
Although we can only conjecture, one possible explanation of these differences is that prior
work takes a product view in sampling data (cf. §2.1), while our work’s sampling approach
takes a process view guided by the engineering activity. The sampling methods between our
work and previous studies vary in what they emphasize. Prior work used keywords to search
for issues, pull requests, and Stack Overflow questions (Islam et al. 2019; Zhang et al. 2018;
Humbatova et al. 2020; Sun et al. 2017; Shen et al. 2021) which provide them a product
view of the deep learning failures. In contrast, during the data collection, we identified the
engineering activities and process first, then categorized and analyzed the defects. If the
results of a failure analysis differ based on whether data is sampled by a product or a process
perspective, the implications for software failure studies are profound — most prior studies
take a product view (Amusuo et al. 2022). This may bear further reflection by the empirical
software engineering research community.

Our case study identified several gaps in our empirical understanding of DL reengineering.
First, to fully understand reengineering problems, it would be useful to investigate more
deeply how experts solve specific problems. Our data indicated the kinds of problems being
solved during CV reengineering, but we did not explore the problem solution strategies nor the
design rationale. For example, reengineering defects include indications of expert strategies
for choosing loss functions'? and tuning hyper-parameters'*. Second, our findings motivate
further interviews and surveys for DL engineers, e.g., to understand the reengineering process
workflow (Fig. 12) and to evaluate the efficiency benefits of our proposed strategies (among
others (Serban et al. 2020)). Third, the difficulties we measured in DL model reengineering
imply that reengineering is hard. As Montes et al. (2022b) showed, collections of pre-trained
models (e.g., ONNX model zoo (ONN 2019a) and Keras applications (Keras 2022)) may
not be entirely consistent with the models they claim to replicate. Prior work also indicated
that discrepancies exist in the DL model supply chain (Jiang et al. 2022b, 2023b). These
defects could result in challenges of model operationalization and portability (§6.5.1) and
therefore impact the downstream DL pipelines (Xin et al. 2021; Gopalakrishna et al. 2022;
Nikitin et al. 2022). There is no comprehensive study on how these discrepancies can affect
downstream implementations and what are effective ways to identify them.

In investigating these topics, future work can build on recent datasets such as PTMTor-
rent (Jiang et al. 2023c), PeaTMOSS (Jiang et al. 2024), and HFCommunity (Ait et al.
2023), which capture DL models, inter-model dependencies, and their downstream use on
GitHub. These datasets can be used to analyze reengineering activities. For example, PeaT-
MOSS could be used to study how engineers adapt upstream pre-trained models to their
downstream applications.

8 Threats to Validity

Construct Threats In this paper we introduced the concept of Deep Learning Reengineering.
This concept tailors the idea of software reengineering (Linda et al. 1996; Byrne 1992) to the
reengineering tasks pertinent to DL. We used this concept as a criterion by which to select
repositories and defects for analysis. Although this concept resembles traditional problems in
reuse and porting, we believe reengineering is a useful conceptualization for the activities of

13 See https://github.com/ultralytics/yolov3/issues/2.
14 See https://github.com/junyanz/pytorch-CycleGAN-and- pix2pix/issues/150.
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software engineers working with DL technologies. Through our study, we provide empirical
evidence on the prevalence and nature of these concepts, demonstrating the appropriateness
of this conceptual framework for understanding and improving the practice of deep learning
reengineering process (§4). We used saturation to assess the completeness of the taxonomies
used to characterize DL reengineering defects.

We acknowledge that the definition and model of DL reengineering §4 used in our study
(§3) may be perceived as overly broad. Ours is the first work to observe that reengineering
is a major class of DL engineering work. Further work could examine the nuances between
from-scratch development, direct reuse from papers or code via copy-paste, adaptation from
one domain to another, adaptation between one framework and another, and other variations.
This is a complex domain with many opportunities for study, e.g., by varying study constructs
and focuses.

In our study, we assert that repository forks are among the primary methods of DL reuse.
However, recent research suggests that many engineers chose to reuse open-source pre-trained
models and develop downstream models through fine-tuning or few-shot learning (Jiang
et al. 2023b; Tan et al. 2018; Kéding et al. 2017). The lack of direct evidence comparing the
popularity of these two approaches introduces a construct validity threat, casting doubt on
the representativeness of our repository mining approach. We recommend future studies to
quantitatively measure and compare these methods of reuse.

Internal Threats In measuring aspects of this concept, we relied on manual classification
of GitHub issue data. Our methodology might bring potential bias in our results. First, our
data collection filters might bias the collection of defects. We followed previous studies to
study closed issues, which allow us to understand the flow of a full discussion and can help
to reveal all possible information types (Arya et al. 2019; Sun et al. 2017). However, we
acknowledge that issues without associated fixes can also be important.

Second, the use of only one experienced rater in failure analysis and one analyzer in
the interview study also increases the likelihood of subjective biases influencing the results.
To mitigate subjectivity in the GitHub issue analysis, we adapted and applied existing tax-
onomies. Ambiguity was resolved through instrument calibration and discussion. Acceptable
levels of interrater agreement were measured on a sample of the data.

We also agree that there could be some bias in the framework analysis of in the interview
study. We considered the bias in our study design. To mitigate the bias in our interview data,
we build a draft of reengineering workflow based on the knowledge of ML development
workflow (Amershi et al. 2019). Our observations from the failure analysis also let us tease
out similarities and differences in the reengineering context. During the interview, we asked
if the subjects had anything to add to our workflow. We also conducted member checking by
sharing our findings with 6 team leaders from §5.2.2, who confirmed their agreement with
our analysis (Ritchie et al. 2013).

External Threats Our findings may not generalize to reengineering in other DL applications
because our case study only considered DL reengineering in the context of computer vision.
To mitigate this threat, we focused on the DL reengineering process and adapted general DL
defect taxonomies from previous studies. The participants in our interview study have expe-
rience in multiple domains (Table 8) which can also mitigate this threat. Our findings indicate
the distributions of reengineering phases (§6.1), defect types (§6.2), symptoms (§6.3), and
root causes (§6.4) in the DL reengineering process (as measured on CV projects), as well
as the challenges and practices we collected from the interview study (§6.5). We highlight
two aspects of our work that may face particular generalizability threats: the taxonomies and
distributions of defect symptoms (Fig. 9) and root causes (Fig. 10). Both of these may vary
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by DL domain (e.g., in what measurements are used to identify failure symptoms, and in
what the failure modes of distinct architectures are).

Within our case study, our failure analysis examined open-source CV models. Our data
may not generalize to commercial practices; to mitigate this, we focused on popular CV mod-
els. Lack of theoretical generalization is a drawback of our case study method; the trade-off
is for a deeper look at a single context. We acknowledge that reengineering activities can
vary significantly due to the diversity in training datasets, architectures, and learning meth-
ods (Tajbakhsh et al. 2020; Shrestha and Mahmood 2019; Khamparia and Singh 2019). As
a result, necessary modifications to data pipelines, architectural adaptations, and replication
checks may also differ. For instance, recent research on large language models has introduced
low-rank adaptation methods specific to NLP contexts (Hu et al. 2021). However, while the
specific methods or activities may differ, the overarching process aligns with the high-level
framework outlined in this work (Fig. 1). This means that the specific defects we found in
§6.1-8§6.4 may vary, but our findings from a process view appear to be generalizable to DL
reengineering in multiple DL application domains. As a point of comparison, we think that
research on web applications contextualized to important frameworks, such as Rails (Yang
et al. 2019) and Node.js (Chang et al. 2019), are worth having, even if not all software is a
web application or if some web applications use other technologies.

Within our CV reengineering team study, our team had only two years of (undergraduate)
experience in the domain. However, the corporate sponsor provided weekly expert coaching,
and the results are now used internally by the sponsor. This provides some evidence that the
team produced acceptable engineering results, implying that their process is worth describing
in this work.

9 Conclusions

Software engineers are engaged in DL reengineering tasks — getting DL research ideas
to work well in their own contexts. Prior work mainly focuses on the product view of DL
systems, while our mixed-method case study explored the process view of characteristics, pit-
falls, and practices of DL. model reengineering activities. We quantitatively analyzed 348 CV
reengineering defects and reported on a two-year reengineering effort. Our analysis shows
that the characteristics of reengineering defects vary by DL stage, and that the environment
and training configuration are the most challenging parts. Additionally, we conducted a qual-
itative analysis and identified four challenges of DL reengineering: model operationalization,
performance debugging, portability of DL operations, and customizing data pipelines. Our
findings from a process view appear to be generalizable to DL reengineering in multiple DL
application domains, although further study is needed to confirm this point.

We integrated our findings through a DL reengineering process workflow, annotated with
practices, challenges, and frequency of defects. We compared our work with prior studies on
DL development, traditional software reengineering process, and pre-trained model reuse.
Our work shares similar findings with prior defect studies from DL product perspectives, such
as a large proportion of API defects. However, we found a higher proportion of defects caused
by hyper-parameter tuning and training data quality. Moreover, we discovered and described
similarities between model reengineering and pre-trained DL model reuse. There is some
overlap between these two topics and the challenges and practices can also be shareable in both
domains. Our results inform future research directions on the development of standardized
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practices in the field, development of DL software testing tools, further exploration of model
reengineering, and facilitating easier model reuse.

Data Availability Our artifact is at https://github.com/Wenxin-Jiang/EMSE-CVReengineering- Artifact.
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