Hedgehog Signaling Contributes to Midline Facial Development and Facial Elongation in the Lizard *Anolis sagrei*

Greta Keller | Naaz Khan | Rushabh Shah | Dr. Thomas Sanger | Department of Biology | Loyola University Chicago

Abstract

This project’s intention is to understand the role of Hedgehog signaling in craniofacial development in the lizard *Anolis sagrei*. There has been extensive research on craniofacial development of avian and mammalian species, but there is a gap in knowledge regarding squamates, lizards and snakes. We hypothesized that the knockdown of Hedgehog in *A. sagrei* will result in disrupted formation to the midline facial structures, specifically the premaxilla. To investigate this question, stage matched embryos were collected and administered with differing concentrations, 50μm or 100μm, of the chemical cyclopamine to knock down Hedgehog signaling in the developing embryo at different stages of facial morphogenesis.

To assess the morphology of our experimental embryos, we μCT scanned and performed segmentations through an analytical software. In addition, we acquired microscopic images of the frontal and lateral view of late-stage embryos. We then recorded the range of malformations for each treatment: unaffected, mild, moderate, and severe.

Methods

- **Collection and treatment of specimens**
 - Photograph frontal and lateral images of specimens under microscope
 - Utilize micro-CT scanner to gather data
 - Create surface models and segment in VGStudio Max

- **Sort specimens by malformation levels**

Results

A

Day 0

Day 2

Day 4

B

Control

50 μM

100 μM

Day 0

Day 2

Day 4

C

Cyclopamine Treatment (μM)

Day 0

Day 2

Day 4

D

Cyclopamine Treatment (μM)

Day 0

Day 2

Day 4

Anole Craniofacial Diversity

Figure 2. Phylogeny of the major amniote groups illustrating the differences in facial proportion (red = premaxilla, blue = nasal, green = maxilla). In each of these species one can see that the face forms from a series of facial prominences, yet the size, number, and proportion of these prominences varies among species.

Figure 1. An *A. sagrei* embryo embryo at oviposition showing the expression of Shh (orange; Fb = forelimb bud, Hb = hindlimb bud, Tel = telencephalon). B) Closeup of the *A. sagrei* head at oviposition highlighting the expression in the telencephalon (arrow). C) After 36-48 hours the expression moves into the oral ectodermal epithelium (arrow) as two paired expression domains.

Conclusions

- Higher concentrations of chemical cyclopamine treatments result in more severe malformations due to higher levels of Hedgehog signaling knockdown.

- Early ovi-position treatments ablate much of the midline skeleton while later treatments only mildly affect facial elongation.

- We conclude that Hedgehog signaling plays a unique and critical role in lizard facial development compared to other amniotes.

- Especially noticeable is the unique way that Hedgehog signaling appears focused on the midline skeleton, while the more lateral maxillary derivatives appear to develop more normally.

- Further research should be conducted to understand the link between cell signaling and facial morphogenesis in lizards.

Acknowledgements

Thank you to the Loyola University Chicago Department of Biology for the use of the micro-CT scanner and microscope, and to Dr. Thomas Sanger for his guidance and support.