Quantifying Biofilm Formation in Evolved Planktonic and Biofilm-Forming Populations of Burkholderia cenocepacia in Carbon-Limited Media

Katherine Jemian, Heather Blasius, and Dr. Caroline Turner Department of Biology, Loyola University Chicago, Chicago, Illinois

Preparing people to lead extraordinary lives

Abstract

Burkholderia cenocepacia, a pathogenic bacterium to patients with cystic fibrosis, forms a thick biofilm which aids adherence to the lungs' thickened mucosa. This debilitates patients' ability to breathe effectively, enhancing the risk of chronic illness and mortality. Bacterial populations were established from a single population isolate and experienced approximately 500 generations of evolutionary selection in carbon-limited media for biofilm and planktonic-selected biofilm growth. In the lab, we quantified the amount of biofilm produced by evolved populations of Burkholderia cenocepacia using spectroscopy and calculated the analysis of variance. We found a significant biofilm growth difference between planktonic and biofilm-forming populations.

Results 0 2.4 1.9 *** * **

- Did environmental selection occur when a single population isolate was exposed to different conditions that would promote biofilm production?
- To what degree of biofilm growth did these evolved populations achieve when compared with planktonic growth over the same period?

Introduction

- Cystic Fibrosis: selective advantage for bacterial colonization and mucus accumulation on lung epithelium.¹²
- Burkholderia cenocepacia: opportunistic and most abundant pathogenic species of the B. cepacia complex in humans with Cystic Fibrosis.^{3 4}
- Biofilm helps mucosal barrier adherence, which is achieved through quorum sensing.⁵
- Selective pressures in the lung contribute to chronic disease, worsen prognoses, increases risk of death.^{1 2 4}
 - Oxygen limitation, host defenses, nutrient availability, antimicrobial therapies.²
 - Bacterial transcriptional reprogramming drives resistance.²
- Increased intrinsic and acquired high antibiotic diminishes cytotoxins resistance, treatment

rbance

D Low Carbon 0.03% GMM

Figure 2. Revived Biofilm Growth.

- Planktonic populations had no distinguishable biofilm on the walls of the test tube (P-HC; P-LC). Some cultures had transparent biofilm with a light film (LB-HC; SB-HC: C, E, F; LB-LC: B, D), where others had more translucent, milky film (SB-HC: A, B, D; LB-LC: A, C), or opaque growth (LB-LC: E, F).
- Superior ring biofilm growth varied between populations. Some had a very faint line (LB-HC: A, C, D; SB-HC: C, E, F; LB-LC: A, D), and others had thick cloud biofilm (LB-LC: C, E, F).⁹

Ethanol-TritonX Solution

Figure 4. Staining Biofilm Evolved Population. We revived frozen B. cenocepacia and inoculated Trypticase Soy nutrient-rich broth media. We analyzed and collected absorbance data on Excel and RStudio using the Analysis of Variance (ANOVA) multifactorial t-test with a post-hoc Tukey's test to analyze significant differences in biofilm growth.⁹

Conclusion

Overview, NIH, Genome: ID: 10703.

adaptation across environments

p. 355-367, 4 August 2018.

differing in mode of growth or resource availability." Evolution Letters, vol. 2(4),

- Planktonic selected populations formed least amount of biofilm.
- Correlates to loss of function mutations in critical biofilm formation genes, indicating tradeoffs in energy consumption and proliferation.
- Similar biofilm growth between populations evolved in parallel, some with variable growth.

Figure 3. Biofilm and Planktonic Selection. Populations were raised in Galactose Minimal Media. After 90 days, 1mL of each population was preserved and frozen in an -80°C freezer in a solution of 8% DMSO as a cryoprotectant.⁸ ⁹

References

1) Scoffone VC, et al. "*Burkholderia cenocepacia* 3) Coenye T, et al. "Recovery of *Burkholderia* 5) Suppiger A, et al. "Two quorum sensing systems 7) Burkholderia cepacia: Organism cenocepacia strain PHDC from cystic fibrosis Infections in Cystic Fibrosis Patients: Drug Resistance control biofilm formation and virulence in and Therapeutic Approaches." Frontiers in patients in Europe." Thorax, vol. 59, p. 952-954, members of the *Burkholderia cepacia* complex." 8) Turner CB, et al. "Parallel genetic Microbiology, vol. 8, p. 1592, 22 August 2017. *Virulence*, vol. 4(5), p. 400-409, 1 July 2013. 2004. 2) Mira NP, et al. "Genomic Expression Analysis Reveals 4) Traverse CC, et al. "Tangled bank of 6) Schoch CL, et al. NCBI Taxonomy: a Strategies of Burkholderia Cenocepacia to Adapt to experimentally evolved *Burkholderia* biofilms comprehensive update on curation, resources and tools. Database (Oxford). 2020: baaa062. Cystic Fibrosis Patients' Airways and Antimicrobial reflects selection during chronic infections." PNAS, Therapy." PLoS ONE, vol. 6(12), e28831, 2011. vol. 110(3), p. E250-E259, 27 December 2012. PubMed: 32761142 PMC: PMC7408187. 9) Created with biorender.com.

Common environmental pressure indicates parallel evolution.

- Radiative adaptive diversification: independent generalist strain specialization to adapted biofilm-forming strains.
- Large Bead-Low Carbon biofilm growth significantly different than:
- <u>Planktonic-High Carbon</u>: bead selection promotes biofilm growth.
- Large Bead-High Carbon: carbon limitation selects for biofilm growth more strongly than biofilm selection.
- <u>Planktonic-Low Carbon</u>: biofilm selection combined with carbon limitation most strongly drives biofilm growth.