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~ dentioola is a cx:mron inhabitant of the hmnan oral 

cavity. '!his gram-nec;:Jative anaerobic spirodlete is a member of a group 

of fastidio.is microoz:gani.sms 'Which are associated with sul:XJinJival dental 

plaque. A stronJ oorrelation has been made between the percentage of 

spircdletes within a given sul:XJin]ival plaque sample an:1 clinical evi­

denee of periodontal disease at the site fran 'Which the plaque samples 

were obtained (I.Desche an:1 I.aughon, 1982). An increase in sul:XJinJival 

trep::>nemes is associated with an increase in dental plaque index, gin­

gival exudate, gin]ival index, bleedi.rg terdency, an:1 p:>eket depth, in 

addition to a loss of cx:>nnective tissue attadlment (Listgarten an:1 r.evin, 

1981). 

In healthy sites, treponemes are present in relatively few numbers 

in sul:XJinJival plaque; their numbers increase dramatically in sites af­

fected. by periodontal disease. Listgarten an:1 Isvin (1981) report that 

only spirochetes ~ to be positively oorrelated with prabin] depth. 

Armitage et al. (1982) also foun::i that sul:XJinJi val spirochetes increased 

significantly when pcx:ket depth an:1 attachment loss exceeded. 3 nm. While 

they did D:Jt identify the spirochetes I they n:rl:ed that spirochetes were 

present in healthy sites, but only in low percentages. Although these 

studies have n::>t provided direct evidence that spirochetes are an etio­

lCXJical agent of periodontal disease, they do denonstrate that the 

periodontal pcx:ket provides a uniquely suitable ecolCXJical niche for 

spirochete growth. 

1 
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Li.stgarten and Helld.en (1978) deteI:mined the relative distribution 

of ba.ct.eria at clinically healthy and periodontally diseased sites within 

the same irrlividual and reported that whereas spirochetes ao::::ounted for 

less than 2% of the total microscopic flora at the healthy sites, their 

proportions increased fran 25 to 58% within the diseased sites. Schultz­

Haud.t et al. (1954) examined. subgirgival plaque taken fran either healthy 

or periodontally involved patients and reported a 17% increase in the 

rn,nnbers of spirochetes in sanples fran patients with periodontal disease. 

Spirochetes were frurd to c::x:arp::se about 45% of the microscopic oount in 

subgirgival plaque sanples :rem:rved fran sites associated with adult 

periodontitis (I.oesc:he et al., 1985). Slots et al. (1979) examined. the 

pretreatment plaque of periodontitis patients and reported that the 

spirochetes cx:mprised 30% of the total microscopic flora. Followirg 

treatment, the spirochetes were reduced to nondetectable levels in 50% of 

the pockets. 

Recently, Simonsen et al. (1988) provided evidence of a p:::sitive 

relationship be'bweel1 a specific spirochete, l'· dentic:ola, and severe 

periodontitis. 'lhe spirochete was present at a significantly elevated 

level in plaque sanples c:ollected fran deep-pcx::ket sites of severe perio­

dontitis patients. Cllel'l] et al. (1985) had previously stmied the sero­

logical heterogeneity amrg the oral isolates of l'. dentic:ola and in:li­

cated that sane serotypes may be DDre related to disease than others. 

'lhese results shcul.d aid future stmies related to detectirg differences 

in disease associations for various spirochete serotypes. 

An i.np:>rtant factor in periodontal disease is bacterial plaque. 

'Ihe destructive nature of the periodontitis lesion can be maintained only 
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in the presence of subgirgival plaque bacteria (Slots, 1979; Van 

Palenstein Heldennan, 1981). CUrrent periodontal therapy is directed 

wwaro the reiooval of subgirgival bacterial deposits am the control of 

bacterial regrowth by controllirg supragirgival plaque. 'Ihese goals are 

usually adlieved by means of scalirg am root planirg, local or systemic 

administration of antibiotics, periodontal surgery where in:licated, in­

struction in oral hygiene procedures' am periodic maintenance. Unfor­

tunately, these methods require either considerable patient contact time 

or written prescriptions for the drugs used. It is inp:>rtant that, in 

order to be considered effective, a method 1lllSt be shown to either con­

trol or reduce essentially all clinically detectable plaque, prevent 

girgivitis, pericxlontitis or caries, or alter bacterial carponents which 

are known to be essential for disease develcpnent. Chelootherapeutic 

agents will mxla.Jbtedly play a role in the future for plaque control 

(Kornman, 1986). 

[)espite the evi~ of a relationship be~ girgivitis am 

plaque, am the spirodletes therein, only a few specific therapeutic 

agents are capable of controllirg plaque fonnation. 011.oi:hexidine 

gluconate, benzethonilDD dlloride, or other bisbiguanides may be used to 

reduce plaque am girgivitis (Eriksen am GjentD, 1973; Flotra et al., 

1971; Id:>ene, 1979). However, the len]t:hy pericxl for treatment is as­

scx::iated with a stainin:J of the teeth am the aoamul.ation of calculus. 

In addition, the effectiveness of these antibacterial agents for perio­

dontopathic bacteria remains questionable. A IIDre effective means for 

the treatment of periodontal disease calls for the control, if not the 

elimination of the specific pathogens am their effects on · the host 
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cso::::ranskY et al., 1982). In order to adrleve these means, ll'Cre 111.lSt be 

JmOWil aJ:a.rt the pathogens involved, especially their involvem:.mt in the 

p:rodu.ction of periodontal djsease a.00 their responses to the agents used 

for pericxiontal treatnad:. 

'Ihe use of fluoride in preventive dentistry is widespread. In 

tennS of dental caries prevention, fluoride represents one of the IOOE.lt 

SlJCO'!SSfUl agents in all medicine. Fluoride appears to have several 

n00es of action in the prevention of tooth decay. Fluoride has been 

founi to decrease tooth enamel solubility (Brown et al., 1977), to aug­

nent enamel :remineralization (Silverstone, 1972), a.00 to interfere with 

the growth a.00 metabolism of oral bacteria (Kleinberg et al. , 1977) • 

HoWeVer, the mechanism of action of fluoride is still not entirely urrler­

stood. 

Fluoride, in its ionic fonn, is one of the lOOE.lt reactive elements 

foon:i in the periodic table. '!he high elect:ronegativity of the F atan 

often has a profoorxl effect on the properties of ll'Clecules in which F 

ocx::u:rs. 'Ibis extreme reactivity may aoc:ount for the large number of 

potential DEiChanisms for the action of fluoride. 

'!he level of fluoride in saliva has been fourn to be low (O. 02 

µg/ml; Shanro\ et al., 1973). However, fluoride concentrations in plaque 

have been foorxl to ranJe fran o to 60 ~ml (Hardwick a.00 Ieacb., 1962). 

In 1959, Katlg reported the inhibition of plaque formation in rats re­

ceivirg stannous fluoride awlications. other sttx:lies usirg stannous 

fluoride rinses have sham significant reductions in plaque (svantun et 

al., 1977; Tina.naff et al., 1980). A dose-related decrease in the number 

of sul::girgival notile bacteria a.00 spirod:letes, in addition to a 
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recfUCtion in the bleedin:J in:lex score has been shown followirg subgin­

gival irrigation with a stanncus fluoride solution (Mazza et al., 1981; 

eoyd et al. , 1985) • '1hese studies do not differentiate between species 

of spirochetes. stu:lies have also shown that bl:1.1Sh.inq with toothpaste 

containin:J stannous fluoride reduced both plaque am. gin;Jivitis (Bay am. 

Rolla, 1980). Newbnm et al. (1984) also :reported. on the anti.microbial 

activities of sodilDD fluoride on selected periodontal pathogenic 

microbes. Various species of periodontopathic bacteria belongin;J to the 

genera of Actincmyoes, ca.pncx;ytophag, Eikenella, F\.lsd:)acteril..nn, Ac­

p.nabacillus, am. Bacteroides have been shown to be inhibited by fluoride 

at roncentraticn; of 128 to 256 µg/ml. (Mardell, 1983; Yoon am. Newman, 

1980). However, spirochetes were not included in these studies. Recent­

ly, Kay am. Wilsen (1988) :reported. m the in vitro susceptibility of 

forty strains of subgin;Ji val plaque bacteria to amine fluorides. 'lheir 

f.in:ti.n;Js ~ that amine fluorides may be useful in the treatment or 

prophylaxis of plaque-related diseases. Unfortunately, this recent sur­

vey also failed to inclu:Je strains of periodontopathic spirochetes. '1he 

acanrulatim of fluoride in dental plaque may provide erntjb. fluoride to 

produce an inhibitory effect m the resident plaque bacteria. studies on 

the effect of fluoride m periodontopathic bacteria are extrerely limited 

am investigaticn; m the .in vitro action of fluoride m 1. del1ticola are 

'1he effect of fluoride m enzymatic regul.atim of the cariogenic 

bacteria, such as the oral streptoooc:x::i, has been reviewed (Hamilton, 

1977) • 'Ihese organisms derive their energy fran the degradation of 

sugars. studies .irdicate that fluoride has several sites of action: one 
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at enolase an:l e11e at sane site prior to glucose-6-~te fo:rma.tion 

(Hamilton, 1977). However, the mechanisms by which the clinical effect 

is produeed are still very nuch debated. Info:rma.tion on the effect of 

fluoride on the enzymatic regulation of the periodontopathic bacteria is 

non-existent· 

In contrast to the cart>ahydrate metabolism predaninant in the 

cariogenic bacteria, amino acid fennentation is daninant in 1'· denticola 

(Blakelmre an:l canale-Parola, 1976; Respell an:l cana.le-Parola, 1971). 

sane amino acids, such as L-cysteine, L-serine, an:l Iralanine, are fer­

mented by pathways that involve py:rtNate as an inte:r:mediate. other amino 

acids, such as arginine, are dissilllil.ated by pathways that do not involve 

pyruvate. Alt:h:u:Jh 1'· denticola possesses the enzymes needed for glllCXISe 

fermentation via the Enixien-Meyer.hof (EM) pathway, glucose does not serve 

as the primary substrate when the organism is grown in the presence of 

both gluoc:ise an:l amino acids (Respell an:l canale-Parola, 1971). F\lrther­

JOC>re, 1'. denticola uses a clostridial-type cleavage to metabolize pyru­

vate derived fran cart>ahydrates via the EM pathway or f:ran amino acids. 

'!his anaerobic spi.rodlete possesses a nuniJer of different metabolic path­

ways that enable it to derive energy {ATP) for its g:rawth f:ran a wide 

rarge of substrates. 'lbe W!tabolic flexibility of 1'. denticola is 

prcbably e11e of the factors that allCMS it to o::mpete, smvive, an:l 

thrive in the oral cavity. 

Preliminary work by Hl:ghes an:l Yotis {1986) has :revealed that the 

1' • dent:icola 33520 raispecific acid ~tase is :reducai in the 

P~ of fluoride. Naispecific acid ~tases (ort:hoJ;:hosPloric 

ltDnOester phospldlydrolases: EX: 3.1.3.2) have been pirified or partially 
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purified fran microorganisms. In general, oonspecific acid p1:lostnatases 

}lydrOlyze a variety of p1:lostnate esters, are inhibited by fluoride, an::l 

)laVe an acidic optilrum pi for activity (Morton, 1965}. '!he tenn 

11piosP:iatase" is a general name applied to all enzymes which catalyze the 

bydr'Olysis of an ester or anhydride lx>rxi to pb.osp:lorous in pb.osp:lorylated 

metabolites, while the tenn ~ is usually limited to the 

piosP:iatases specific for }ilosphcm:>noes. In gram-negative bacteria, 

ioost of these p1:lostnatases are believed to be located between the irmer 

(cytoplasmic} cell membrane an::l the ruter wall or membrane-in the peri­

plasmic recJion. Many of the same enzymes are often exoenzynES in gram­

p:>Sitive bacteria (Heppel, 1971}. '!be periplasmic enzymes, a tenn coined 

by Mitchell (1961}, are selectively released by prcx:8iures that do not 

release any internal proteins, such as by osnctic shoc:k an::l the fonnation 

of sp:ieroplasts with lysozyme an::l ethylenediamine tetraaoetic acid 

(EDI'A} (Heppel, 1971}. FUrther evidence for the presence of periplasmic 

eneynes is provided by the fact that the activity of these enzymes can be 

measured with intact cells (Brockman an::l ffeWel, 1968; Torriani, 1968). 

Intact cells are able to efficiently hydrolyze p1:lostnate ester an::l dies­

ter substrates, which are lDt usually transported into the cell. 

In the OSDDtic shock procedure, gram-negative bacteria are first 

suspended in a concentrated solution of sucrose in the presence of EOrA, 

which causes an in::rease in cell perneability an::l releases portions of 

the cell wall lipqx:>lysaodlaride into the medium. In these plasmlyzed 

oells, the cytoplasmic membrane limits the cx:indensed cytoplasm, an::l the 

rigid cell wall retains the shape of the cell. When the treated cells 

are subjected to an abrupt decrease in the enviranment:al osnDtic 
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pressure, the cells S\Vell rapidly arrl a small aI001.ll1t of cellular protein 

is released· Only the rigid wall prevents the cell fran rursting 

(ffeWEilr 1971) • 

si:neroPlasts are made by the treatment of gram-negative bacteria 

with a c::ati:>ination of lysozyme arrl EDI'A. 'Ihe outer wall stnicture of the 

cell is VJeakened in the ~last, but in contrast to protoplasts of 

gram-positive organisms treated with lysozyme, they retain sane of the 

ruter wall carp:>nents. 'Ihe cytq>lasmic ment>rane becanes the art:ernost 

boUJrlarY be'bNeen the cytq>lasm arrl the envirornnent over large areas of 

the ~last surface (liEg)el, 1971), arrl it Wrsts when aa:Ied to dis­

tilled water. 

stlllies of E· coli had established that several ~tase enzymes 

were present (Rogers arrl Reithel, 1960; Von Hofsten arrl Porath, 1962) • 

Alkaline ~tase (OC 3.1.3.1), originally ?Jrified arrl characterized 

by Garen arrl Ievinthal (1960), hydrolyses a variety of ~te esters 

as well as pyrq:bosJ;:hate bcn:ls. Anraku ( 1964) ?Jrified a cyclic 2 ' , 3 1 -

rnx:leotide ~esterase that also hydrolyzed 3 •-nucleotides. A 5 1-

rnx:leotidase activity was discovered by Neu arrl Hei:pil (1965) arrl ?Jri­

fied by Neu (1967). In aailtion to hydrolyzirg 5'-nucleotides, this 

enzyme also acts on nucleotide di~ ~-

Dvorak et al. (1967) described at least three different enzymes 

that cx:W.d hydrolyze p-nitrqilenyl ~te at acidic PI in the shock 

fluid of E· coli. 'Ihe acid hexose ~tase arrl cyclic piosJ;ilodies­

terase -were ?Jrified to haoogeneity. A 11C11Sp0Cific acid ~tase, 

with activity towards a wide variety of ~te esters, was fourrl to 

resist ?Jrification arrl was only partially characterized. o:issa et al. 
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(1980) identified another acid i;::tiosphat.ase in _f;. mli that is cptimally 

active at pH 2.5 in vitro and is relatively specific for ~cm:n:::>eS­

terS pos.sessi:rg rnmerous ~ydride bon:1s. 

Sb.rlies by Kier et al. (1977a) revealed the presence of three peri­

plasmic i;::tiosphatases in salloonella typti.nurh:nn: a cyclic 2 ' , 3 '-nucleo­

tide ~esterase, an acid hexose i;::tiosphat.ase, and a nonspec:ific 

acid phosP.iat.ase. No evidenc:s was foorrl for the existence of an alkaline 

~t.ase. All three J;ilosphatases could be measured efficiently in 

intact cells; however, they -were not readily released by osrootic shock 

pi:oaedlires. 

'1he location of these periplasmic enzymes all~ them to hydrolyze 

i:nost;:hate esters to irD:rganic J;ilosphate and the mrrespor:di.n; alcohol 

ootside of the cytq>lasmic nSl'i:>rane, wch is cx:l'lSidered to be the cell's 

main penneability barrier. Bacteria are krx.Jwn to be relatively inperne­

able to {ilospha.te esters that are not actively transported (Lidrt:enstein 

et al• I 1960; Kasahara and Anraku, 197 4) • SUdl n::>l'l-'transp sub­

strates l11lSt first be ~:rylated for subsequent metabolism. 

DeJixspho:rylation is also associated with intraoellular or extracellular 

llDVE!mellt of metabolites. '1he primary evidenc:s for the periplasmic loca­

tion of the &tlnpnfilla {ilospha.tases is the ability of intact cells to 

efficiently hydrolyze J;ilosphate ester and diester substrates (Kier et 

al., 1977a). Similar observations on the hydrolysis of substrates by _f;. 

mlj, J;ilosphatases were made by Brockman and lfeH>el ( 1968) and by Torriani 

(1968). 'lherefore, the periplasmic phosJ;:.ha.tases could act as scaven;i:rg 

enzymes, hydrolyzi:rg nontransportable phosJ;:.ha.te esters into carp::>nents 

that could then be transported and utilized by the cell. RlosJ;tlat.ase 
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activity could supply many types of nutrients, deperrlin;J on the esters' 

0r:qanic 100iety, in addition t.o PtosJ.ilate. 

'!he isolation of Salnpnella mutants lackirq nonspecific acid pios­

pla.tase haS helped t.o define the piysiological role of the periplasmic 

enzyre (Kier et al., 1979). When~ ard ,OOgf mutants, whidl lack non­

specific acid PtosJ.ilatase, were forca:l t.o use certain ~ 

as J;i'lOSEilate sources, the nutant strains grew' sl~ than the wild-type 

bacteria. 'Ihese observations suggest that in wild-type cells, non-

specific acid i;:i'losJ;ilatase serves as a beneficial, although. not essential, 

scaver:girg enzyme whidl facilitates the utilization of various metabo­

lites present in the environment as ~. 

Spirochetes manifest themselves in subgirgival plaques associated 

with periodontal disease, where they acxx:unt for 35 t.o 55% of the micro­

scq>ically detectable flora. '!hey localize on the outer surface of the 

plaque, where they are in intimate contact with the sulcular or pocket 

epithelium, or both (I.oesche an:i I.aughoo, 1982). Olsen (1984) has shoirm 

in electron microscx:pic stu.:iles that .'.!'. de?lticola adheres t.o human epi­

thelial cells in Yitt;:Q. In vivo, spirochetes have been founi t.o invade 

the tissue in acute necrotizirg ulcerative girgivitis (Listgart:en, 1965) 

an:i in perioda1titis (Frank, 1980). Points of entry for oral bacteria 

8R°)E'ar t.o be the urderside of desquanatin;J cells or throogh ulcerations 

in the pocket wall. '!he mechanism of bacterial penetration into the 

tissue is not un:ierstocxi (Newman, 1984). 'lhe possibility exists that 

intracellular spaces may be initial portals of entry for bacteria int.o 

the epithelium an:vor into the connective tissues. other unknown 

factors, such as activity of hyaluronidase, IilosJ;ilolipase, or other 
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enzymes produced by bacteria, may also operate to pennit invasion of bac­

teria toward the basal layer an:i eventually into the connective tissue 

(BU].kaCZ et al. , 1982) • 

Anv:n;J the oral spirochetes, .'.I'. denticola has been lOClSt studied 

(ca.nale-Parola, 1977; Loesche an:i Iaughon, 1982; Hant.1ood an:i canale­

Parola, 1984). In the gin;Jival plaque envirornnent, .'.I'· denticola has 

acx::ess to finite annmts of proteins, peptides, am am.llD acids. 'Ihe 

metabolic diversity of the organism enables it to sw:vive in the c:::c::ttpeti­

tive envirornnent of the gin;Jival sulcus (canale-Parola, 1977). 'Ihe num­

ber am types of intra- an:i extracellular enzymes elalx>rated by this 

organism should reflect the nutritional requirements of the cell, since 

these enzymes wa.ild be needed to provide peptides or am.llD acids for the 

growth of the cells. 'Ihe possible significal'Da of 'l'reponema enzymes as 

potential virulen:::e factors in the develcpnent of periodontitis has been 

eq:ilasized (Fielm, 1986; Uitto et al., 1986). 'Ihe organism is proteo­

lytic; it hydrolyzes gelatin (Holdeman, 1977), dissolves fibrin (Nitzan, 

1978), produces a collagenolytic enzyme (Makinen et al., 1986), am i;x>s­

sesses a tcypsin-like activity against benzoyl-arginine-napithylamine 

(Chta et al., 1986). Makinen et al. (1987) also report the presence of 

proline ~idase activity in .'.I'· denticola. In aalition, treponemes 

require a ccnplex growth medium. '!hey cannot synthesize or elon:Jate 

fatty acids am rely upon those present in media or tissue for growth 

(Jdm.son, 1977; Li.vez:nDre am Jdmson, 1974) • 

'Ihe tcypsin-like activity of .'.I'· denticola is a potentially patho­

genic mechanism. Proteolytic activity may have a direct effect upon the 

jurci:ional epithelium, as tcypsin has been shown in vitro to disrupt 
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cell-cell aIXl cell-substratum adhesins (Brit.ch aIXl Allen, 1980). 

Birkedal-Hansen et al. (1975) reported that trypsin activated latent 

gin;Jival tissue collagena.se by destruction of a collagenase inhibitor in 

serum. Ttypsin is also knoNn to activate the alternate :pathway of cx:m­

plE!Il:Slt fixation, causin:;J the release of leukotactic factors (ward et 

al., 1973). Furthenoo:re, the oral ~ have been sm:veyed for 

their ability to p~ enzyne; that are potentially destructive to host 

tissue (Iaughon et al., 1982). strains of ,T. denticola aIXl .T· vinc.entii 

have been foun::l to p~ cs esterase, acid phos1;na:tase, arrl ~ 

amidase activities. 'lhese activities, sin:;Jly or corx::mtedly, catld be 

responsible for significant damage to the peridontium. 

'lhe ultrastructure of spirochetes has been :reviewed (Holt, 1978). 

'!his structure is di.a.gramnatically depicted in Fig. 1. 'lhe nr::ist external 

layer of the cell is knoNn as the outer sheath. 'Ihis unit membrane may 

:function as a primacy penneability barrier. 'lhe region between the outer 

sheath arrl the outer layers of the protq>lasmic cylimer is the 

equivalent of the periplasmic space in other gram-negative cells. 'lhe 

protq>lasmic cyli.rxier cxnsists of the cell wall, cytoplasmic membrane arrl 

enclosed cytoplasmic contents. 'lhe cell wall-cytoplasmic membrane is 

c::haracteristic of other gram-negative bacteria. 
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Fig. 1. A diagranmatic representation of a transverse section of a typi­

cal spirc:xilete depicts the varirus cell layers. '1he ootenoost layer, the 

ooter' sheath (A), envelopes the cell. Situated in the electron-q>aque 

periplasmic region (B) are the axial fibrils (H). '1he layers of the 

protq>lasmic cylin:ier consist of the ootenoost helical lipop:rotein layer 

(C), a peptidoglycan layer (D), arrl internal to the peptidoglycan, the 

innerill::>st layer of the cell, the cytoplasmic ment>rane (E). '1he cytoplas­

mic region contains ribosanes (F) arrl a centrally disposed rruclear region 

(G) (taken fran Holt, 1978) • 
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'lhe specific aims of this research are: 

a) to examine the effect of fluoride on the growth of 

.T. dentioola; 

b) to attenpt to localize the p-nitrq:ilenyl phc::lsplate acid J;flos­

p.iatase of _T. dentioola; 

c) to characterize partially the fluoride-sensitive p-nitro­

J;ilenyl phc::lsplate acid phc::lsplatase of _T. dentioola. 

It is hoped that these efforts to elucidate the fluoride sensitivity of 

.T. dentioola will lead to an un::iersta.ndir of the effect of fluoride on 

oral spirochetes so that the (X)tential efficacy of fluoride as a preven­

tive measure for pericxk>ntal disease may be considered. 



groan.ism am culture coniitions. l'. denticola A'K'C 33520 an::i 

33521, originally isolated fran subgirqival plaque taken fran periodon­

tally diseased sites, -were used in these investigations. Strain 10 an::i a 

pectinolytic spirodlete, strain P4, isolated fran hmnan subgirqival 

plaque (Weber an::i canale-Pa.rola, 1984) -were provideCI. by E. canale-Pa.rola, 

university of Massachusetts, Anherst. 

TreponemeS -were cultured at 37°C in a prereduced basal medium with 

awrcpriate suwlements (Li.vermo:re an::i Johnson, 1974), which inclu::led 10% 

(vol/vol) heat inactivated fetal bovine sennu (GIBCX> Ia.boratories, Life 

Technologies, Inc., Chagrin Falls, OH). Treponeroos -were also cultured at 

37•c in GM-1 broth in an N2 atm:isplere. '1he GM-1 medium was prepared as 

described by filakem:>:re an::i canale-Pa.rola (1976) I except that it included 

1. 7% (v/v) heat-inactivated fetal bovine sennu. a+-1 medium was m:::xilfied 

by the addition of 0.3% pectin (weight/vol, final concentration) for the 

culture of pect.ioolytic strain P4. 

For studies of enzyme levels of cells grown on poor carl:x:m am 

ph.osplorous som:ces, the :reduced glucose am Ji1osl:horous a+-1 medium (C"" 

P-) was used. 'Ibis medium contained per liter: parx::reatic digest of 

casein (Bact:o-T.rypt:ane), 8.5 g; papaic digest of soybean ma! (BBL 

Rlytone Pept:ale), 1.5 g; sodium chloride, 5.0 g; yeast extract (Difco­

B:lcto), 5.0 g; sodium thioglyoolate, 0.5 g; Ir-cysteine hyC.nxilloride, 1.0 

g; 0.2% thiamine pyrq:ilosp:late, 3.0 ml: 10% (w/v) NaHCD:J, 5.0 ml; fetal 

bovine sennu (Gilx:o), 17.0 ml; volatile fatty acid solution, 5.0 ml. 'lhe 

16 
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volatile fatty acid solution ex>nsisted of 0.5 ml each of isob.Ityric, DL-

2-methylbutyric, i.sovaleric, am valeric acids dissolved in 100 ml of o .1 

N KClf. c+P- medium consisted of the basal c-,p- medium with the addition 

of 1.25 ng glua:::ise per ml. c-,p+ medium consisted of c-,p- medium with the 

addition of 1.25 ng K2ro4 per ml. c+P"" medium ex>nsisted of the basal 

medium with the ack:lition of glUCX>Se am K2HI04 • 'Ihe pH of each medium 

was ad.justed to 7 .4 with l<l:H. 

1'. dentiex>la stock cultures were maintained by storage in fresh 

medium with 10% (v/v) glycerol at -70°c. stock cultures were tha."11ed. am 

distributed to fresh media for growth as needed.. 

Growth cw:ve measurements. Inocula for growth cw:ve stu:lies were 

generally prepared fran early-logaritlnnic-i;ilase (24 h) cultures by 

centrifugin;J cultures at 18,000 x g for 30 min at 4°C am gently :resus­

pen1in:J the cell pellet in fresh medium to a cell density that ran;Jed in 

cptic.al density fran 0.070 to 0.100. 'Ihe inoculum consisted. of 0.25 ml 

(1 xia8 to 2 xia8 cells per ml) per 5 ml of medium in a bltyl-:rubber 

stc.g:Jered Kl.ett-&:mmersal tube. After in:ubation at 37°C, duplicate 

culture tubes were :t'alDVed at designated time intervals am measured 

tw::bidimetric.ally by means of a Kl.ett-sunraersm i;notoelectric ex>lorimeter 

(Klett Mfg. Co., Ire., NEW' York) fitted with a 660-m filter. Cell 

growth yields were determined by dll:ect cell counts, with a Fet:roff­

Hausser cnmtin;J chaniJer umer a :r;nase-contras mi~. A stan:Jard 

cw:ve relatin;J the ex>lor.i.netric read..irgs to dll:ect cell counts was pre­

pared. 
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l\J?I ZYM system. 'lhe carmercially available API ZYM system 

(Analytab Products, Plainview, NY) was used as described by Iaughoo et 

al. (1982) to visually assay for the followirg 19 enzyme activities (with 

the corresporxlirg substrates): alkaline phosphatase (2-naphthylphos­

phate) , C4 esterase (2-naphthylhutyrate) , C8 esterase lipase (2-naphthyl­

caprylate) , C14 lipase (2-naphthyl-myristate) , leucine aminopeptidase (L-

1eucy1-2-naphthylamide) I valine aminopeptidase (L-valyl-2-naphthylamide) t 

cysti.ne aminopeptidase (I.rcystyl-2-naphthylamide), trypsin (N-benzoyl-DL­

arginine-2-naphthylamide) I dl:ynotrypsin (N-glutarylPJ.enylalanine-2-naph­

thylamine} , acid phosphatase (2-naphthylphosphate) , phosploamidase (naph­

thyl-AS-BI-phosphodiamide), a-galactosidase (6-bnm:>-2-naphthyl-a-D­

ga.lactopyranoside), P-galact.osidase (2-naphthyl-p-D-galactcpyranoside), 

p-gluc:uronidase (naphthyl-AS-BI-P-D-glucuronide), a-glucosidase (2-naph­

thyl-2-D-glucx:JPYI'MlOSide) , p-glucosidase ( 6-braoo-2-naphthyl-P-D-glucos­

aminide) , N-aoetyl-P-glucosami nidase ( 1-naphthyl-N-acetyl-P-D-glucos­

aminide) I a-mam:JSidase (6-braoo-2-naphthyl-2-D-mann::pyraroside) I arD a­

f'ucx:>Sidase (2-naphthyl-a-L-f'ucclpyranoside) • 

Spirodletes -were harvested in the stationai:y i;nase of growth by 

oentrifl:.gatiai ard resusperded in sterile saline (0.85.\ NaCl) to 200 

10..ett mrlts. sterile test solutions (NaF, SnF2, SnC12, ard NaCl) -were 

acliad. to cell suspensions as desired. Bin:lirg was allOf.Ved to ocx::ur for 1 

h at 24 ± 1 °c. 'Ihe API ZYM strips -were activated by addirg 60 µl of bac­

terial suspensiai to eadl micrcx::up.lle ard irDJbated aerobically for 4 h 

at 37°C. Controls CC11Sisted of: 0.85% NaCl, NaF, SnF2 , SnC12 , or NaCl 

in the absence of cells. All controls -were fan:d to have no measurable 

enzyme activity. 
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wzyme assays. Nonspecific acid phosphatase activity was measured 

bY the method of Bessey et al. (1946). 'lbe :reaction mixture contained: 

0 •2 ml cell material (whole cells or cellular fractions in 0.2 M sodium 

acetate J::uffer, i;il 4.8); 0.1 ml 8 JIM p-nitrq:nenyl phosphate; 0.1 ml 

deionized distilled. water. 'lbe :reaction mixture was incubated. for 60 min 

at 37°c, an::l the :reaction was ~ with the addition of 0.8 ml 0.03 N 

NaCIJ. 'lbe resultirq color dlange was :measured at 405 rnn (max:inum wave­

len:;Jth for p-nitrcphenol) with the ci:lseNed. intensity of color fanned 

proportional to acid phosphatase activity. 'lbe starmrd used in these 

assays was p-nitrcphenol. Activity was reported as naraools p-nitro­

p::i.en::>l released per ng soluble protein, BSA equivalents. 

When the nonspecific acid phosphatase was assayed. with different 

~te esters, the :reaction mixture (0.4 ml) contained: 2.5 µiools of 

the substrate; 0.15 ml 0.2 M acetate Dlffer (i;il 4.8) with 1 JIM M;JCl.2 an::l 

o.5 JIM CoC12 ; 0.10 ml distilled. water; an::l enzyne. 'lbe assays YJe:re in­

itiated. by addition of substrate an::l carduct:ed at 37°C. At varicus times 

after substrate addition, sanples -were rem:JV"ed. an::l inorganic phosphate 

was determined (Oien et al., 1956). All substrates YJe:re used as the 

sodium salt. cart:rols irci.uded substrates an::l reagents in the absence of 

enzyne treated. in an identical manner. cart:rol values YJe:re subtracted. 

fr.an those generated. by sanples to yield the values qiven in the tables 

an:l figures in Results. 

ATPase activity was measured by the liberation of Pi as described 

by Rubak an::l Yotis (1981). 'lbe :reaction was started by the addition of 

Whole cells to 1 ml of reaction mixture containirq 100 JIM KCl, 4. o JIM 
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M:JC12 , 2.5 nM ATP (vanadate-free) an:i 50 nM Tris(hydroxymethyl)amino­

methane (Tris)-acetate ruffer (i;:H 6.5). After 30 min at 37°C, the reac­

tion was tenninated by the addition of o. 5 ml of 1. 5 M HCl04 • '!he tubes 

-were centrifuged in a Fisher micro-centrifuge (nroel 235A; I..exID;Jton, MA) 

for 5 min at 4 • c an:i the supernatant was assayed for release of Pi by the 

method of Chen et al. (1956). Values lNere obtained fran a stan:1ard 

curve, foll~ abso:rbarx::e readings at 820 nm. '!he controls included 

the reaction mixture in which the sanple was added after addition of 

perc:hloric acid. All control sanples an:i reactants lNere exposed to simi­

lar corrlitions as the test sanples. Control values lNere subtracted fran 

sanple values to yield those given in the results tables an:i figures. 

Hexokinase (EC 2. 7.1.1) activity was measured us~ an NADP-linked 

assay (Joshi an:i Vagannathan, 1966), which measured the irx:rease in NADm 

abso:rbarx::e at 340 run. '!he assay mix contained: 0.1 M potassimn ~te 

ruffer (i;:H 7.5) with 20 nM ~2' 1.5 ml; 81 nM ATP, 0.1 ml; 11 nM NADP, 

0.1 ml; H20, 1.1 ml; 2 U glUCXJSe 6;;ilosP'late dehydrogenase; 300 nM 

glUCXJSe, 0.1 ml; an:i 0.1 ml sanple cont.a~ enzyme activity. 

Hexokinase, derived fran Baker's Yeast, type F-300, sulfate-free, was 

used as a stan:iard. 

Ana1vtica1 procedures. Soluble protein was measured by the method 

of IoNry et al. (1951). Reagents for the protein assay lNere as follc:M;: 

Reagent A, 2% Na2CX>:3 in 0.1 N NaOH; Reagent B, 0.5% OJS04°5H20 in 1% 

(w/v) sodimn tartrate; Reagent c, 50 ml Reagent A mixed with 1 ml Reagent 

B; Reagent D, 1 N Polin an:i Ciocalteau's ~l reagent. For the assay, 

1 ml of Reagent c was ackled to a o. 2 ml volune of sanple or stan:iard an:i 
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all~ to stani for at least 10 min. '!hen, 0.1 ml Reagent D was added 

to the assay an:.i mixed illlnediately. Followin;J an incubation at 24 ± l 0C 

for 30 min, the absorbance of the reaction pro::iuct was measured at 500 

nm. Bovine albnnin (98-99% p.i:re) was used as the st:arrlard. 

FhosP:late was assayed by the method of Chen et al. (1956) at 820 

nm. K2HK>4 was used to construct a stardard curve. 

Glucose was measured by a methcxi which is a IOOdified version of 

that of Raal:x> an:.i Terkildsen (1960). Briefly, 2.5 ml of ca:nbined ~ 

color reagent solution~ ad:ied to 0.25 ml of sanple an:.i mixed thorough­

ly. 'lbe ca:nbined enzyme-color reagent solution consisted of (per 100 

ml): 500 IU glucose oxidase (Aspetgillus n:!gm:): 100 PU1:p.lrcx;Jallin u 

Peroxidase (Horseradish); 4 ng o-dianisidine dihydrcx::hloride. Followin;J 

incubation for 30 min in a 37°C water bath, absort:>anoe was measured at 

446 nm. a-D-glucose was used as a stardard. 

Spectl:q;h:Jtanic detenninations were measured on a Gilford (Ciba 

comirg Diagnostics corp., Gilford Systems, ct>erlin, CE) Response UV-VIS 

scannin;r spectrq:ilotane. 

Cell ftact:ionation. Cells were harvested at desired phases of 

grcwth, pelleted. by centritu;iation for 25 min at 5,000 x g, washed with 

cold 10 nM Tris-HCl (Pf 7.3) with 30 nM NaCl, an:.i resuspen:Jed in the same 

buffer for enzyme assays. 'lbe washiI'.g prcxedure did oot release detec­

table annmts of the enzymes into the supernatant solution. 

Cell exb:acts were prepared fran washed spirochetes that had been 

resuspemed in 10 nM Tris-HCl (Pf 7.3) ccntainin;J 4 nM dithiothreitol. 

'lbe whole cell suspensions were flushed with N2 (Medical Grade; AIR.CO, 
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MurraY Hill, KT) and passaged twice thralgh the French pressure cell 

(Anerican Instrument co., Inc., Silver Sprirg, MD) at 16,000 lb/in2. 'Ihe 

resu1 tirg disrupted cell suspension was la:beled "cell extract". 

'Ihe proc:::edures art:lined by Dassa and BcX}Uet (1981) and Dvorak et 

al. (1967) were used with sane rooctifications to obtain material fran the 

different ccnpartments of f. denticola. CUltu:res of f. denticola 33520 

were harvested by centrifugation (5,000 x g, 25 min, 5°C) and washed 

twice with 50 nM Tris-HCl (i;:ff 7.8) containi.rg' 30 nM NaCl. Cell pellets 

were suspen:ied in so nM Tris-HCl (i;:H 7.8) containin;;r 30% (wjw) sucrose 

and 1 nM EOrA at a conc::entration of 1 g wet wt/ 40 ml at 24 ± 1 ° c. 'lhe 

mixture was stin'ed for 10 min and centrifuged. 'lhe supernatant was 

discarded and the plasmolyzed cells were subjected to a sndcien osmotic 

transition by rapid dispersal in cold water (40 ml./g wet wt). 'lhe mix­

ture was stirred for 10 min and centrifuged in the cold. 'lhe shocked 

bacteria were pelleted and retained for future manipll.ation. 'lhe super­

natant "shock fluid" was oc:n:::ientrated to dryness by lyqirllizatioo. 'Ihe 

dry poNder was dissolved in a vollll!e of distilled water equivalent to one 

fortieth of the original vollll!e. 

'Ihe shocked bacteria were resusperxied in 50 nM Tris-HCl blf fer (i;:H 

7. 8) containi.rg' 10% (V /v) glycerol, 0. 2 nq/ml mAse I, 0. 2 ng/ml pan­

creatic RNAse A and 2 nM M;1Cl2 , and passaged three times thralgh the 

French pressure cell at 16,000 lb/in2. 'lhe unbroken cells were :rem:wed 

by centrifugatioo and the supernatant was retained for further centri­

fugatioo at 300,000 x g for 2 h at s 0 c. 'Ihe :resulti:rg supernatant was 

decanted and la:beled "cytoplasmic material. 11 'lhe pellet or "envelq>e 

fractioo" was resuspen:1ed. in bl.ff er. 
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Anion exc:hame dlraJatography. Anion exc.hal"'ge chranatograP'ly was 

performed. as described by Kier et al. (1977a). DFAE-cellulose (Sigma, 

ns:litnn mesh, 0.98 mequiv/g) was equilibrated with Tris-salts buffer con­

taini.rg 5 nM Tris-HCl (Iii 7.4) with 1 nM dithiothreitol (blffer A). nie 

column (0.8 x 60 cm) was washed extensively with the same buffer. Sanple 

was applie::l to the column arrl eluted with 100 ml of buffer A follOl'Ned by 

a linear gradient of NaCl in blffer A. nie linear gradient was begun 

with 50 ml of blffer A in the m.i.xi.rg vessel arrl an equal voll.mle of buffer 

A containin;J o. 2 M NaCl in the reservoir. Each of the 2. 5 ml fractions 

( collecte::l fran the beginni.rg of sanple application) was assayed for 

nonspecific acid ~tase activity arrl protein, as previously 

described. 

$Ep1adex chranatography. Methods for gel filtration chranatography 

-were based on those described by WEglelman et al., (1977). A sep:iadex G-

100 superfine (Iha.r:macia Inc. , Piscataway, NJ) column (2. 5 by 23 cm; 

total bed voll.mle CVt) = 113 ml) was equilibrated in arrl eluted with 50 nM 

Tris-hydrochloride blffer, Iif 7.4, containi.rg 1 nM M:JC].2 , 1 nM MnCl.2 , 0.1 

nM COC12 , arrl 0.5 M KCl.. nie KCl. was present to prevent b.irdin:J of non­

specific acid ~tase to sepiaaex. Calibration proteins (Ibannacia) 

included.; ril:x:nlclease A, 13,700; c:hymatrypsinogen A, 25,000; ovalbumin, 

43,000; aldolase, 67 ,000; arrl blue dextran, 2,000. nie calibration 

sanple contained 2 ml of equilibration blffer with 10% (w/v) glycerol arrl 

the folla.Nin;;J: 5 ng ribonuclease A, 1. 25 ng chyiootrypsinogen A, 5 ng 

ovalbumin, arrl 5 ng aldolase. nie elution voll.mle (Ve) of the stan::1ard 

proteins was determined by measurirg optical abso:rbance at 254 rnn. nie 
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blue dextran elution volume (V0 ) was detennined by measurirg absorbance 

at 262 :run. Partially pirified enzyme preparations (750 µq protein) were 

mixed with elution Wffer containirg 10 % (w/v) glycerol (2. o ml total 

volume), applied to calibrated colurms, and eluted as described alx>ve. 

Sephadex G-10 was also used in an att.enpt to concentrate enzyme 

activity in the initial "soluble contents". Briefly, 3.0 g of dcy 

Sephadex G-10 was added to 10 ml of soluble contents and allaNE!d. to swell 

with rockirg at 5"C. 'lhe swelled beads were rerooved by centrifugation 

(5,000 x g; 15 min, 5°C) and the supernatant was retained for enzyme and 

protein analysis as described earlier. 'lhe pelleted Sephadex G-10 beads 

were resusperded in 10 nM Tris-HCl (Pf 7.4) with 0.5 M KCl, transferred 

to a Bio-Rad disp:>Sable column (15 ml) and allaNE!d. to settle. 'lhe Wffer 

was allaNE!d. to drain f:ran the column and the resultirg eluate was 

analyzed for enzyme activity and protein content. 

Diazgtizatian. 'lhe reagent, 7-diazanium-1,3-naphthylene disulfon­

ate (diazo-NIS) was prepared by the method of Paniee and watanabe (1968) 

as follows: a 55 ng ano.mt of 7-amirx:>-1, 3-nai;i'lthylene disulfanic acid 

(Nm; Alclridl 01emi.cal Co., Inc., Milwaukee, WI) was dissolved in 3.5 ml 

H2o with 0.05 ml ooncient:rated HC1 and was cooled an ice-salt; then 0.25 

ml of 0.5 M Na1«>;z solution was added at -3 °C. After 30 min, 2 ml of the 

clia.zo-Nm was added to a 7 ml suspension of washed statiana.ey piase '.!'. 

dent.icola. After incubation for 1 h at 24 ± 1 °C, the cells were washed 

by centrifugation. Shoc:ked cells were treated in the same manner an:l 

subsequently disrupted by French pressure cell passage to obtain cell 
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"envelcpe" an:l "cytoplasmic" fractions. Controls contained all can-

ponents except Nt'G. 

Spheroplast p:rg;;aration. $p:J.erq>lasts -were prepared followirg the 

method of Collins et al. (1980). Harvested cells (mid- to late-exponen­

tial growth) -were washed twice in 1 11M Tris-HCl (J;il 7. 3) an:l resusperrled 

to 1.67 00680 in 20% (w/w) sucrose pi:epared in the same b.rffer (Tris­

sucrose). '!his suspension was stirred at 24 ± 1°c for 10 min followed by 

the 1/10 volume additions of lysoeyme (EC 3.2.1.17; 6.4 ng/ml in Tris­

sucrose) an:l EDrA (20 m;J/ml in Tris-sucrose). '!be suspension was stirred 

at 24 ± 1 °c for 20 min after eadl addition. '!be osiootically-sensitive 

S(ileroplasts -were collected by centrifugation, washed on:e in Tris­

sucrose an:l resuspen:ied in the same l:uffer. Pelleted S(ileroplasts -were 

lysed by the addition of ice cold distilled water. '!be controls included 

bacteria ir¥::ubated in the abserx::e of lysoeyme, EDrA, or both. 

Electron miCroscx:py. 'Ihe acid phosJ;batase histochemical methods of 

Okabayashi et al. (1974) -were followed. Farly stationary (60 h) ?lase 

cultures of :r. cienticola grown in C-V- medium were harvested an:l washed. 

'!be cells -were resuspen:ied in 0.2 M acetate l:uffer (J;il 4.8) with 1 11M 

M;JC::l2 an:l 0.5 :nM eoci2 • '!be ir¥::ubation mixture contained the followirg: 

cell suspension, 0.4 ml; H20, 0.1 ml; 4 m;J/ml Ib(NOJ)2 1 0.1 ml: 8 11M p­

nitrq;nenyl phosJ;bate, 0.2 ml. Followirg ir¥::ubation for 1 h at 37°C, the 

cells -were pelleted, washed, an:l processed for electron microsccpy. 

Sanples -were prepared for electron microscx:py by the methods of 

Olsen et al. (1984). Washed cell pellets were immediately fixed with 2% 
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qlutaraldehyde in 0.15 M cacx:xfylate ruffer (J;il 7.4) with 0.1 M sucrose 

for 1 h at 24 ± re an::t then for 16 h at 4°C. cacx:xfylate ruffer (0.15 M; 

pl 7.4) was used for 2-5 min rinses. Post-fixation was done with 1% 

osmium tetroxide in cacx:xfylate ruff er for 2 h at 24 ± 1° c. Followirg 2-5 

min ruffer rinses, the pellets were dehydrated in a gradai series of 

acetone an::t E!llb3dded in :Ep:>J1 812 plastic at 60°C for at least 24 h. 

Ultrathin sections (silver-gold) were made on an I.KB Ultramicrotane with 

a dianond knife, placed on 20o-mesh copper grids, stained. with w:anyl 

acetate an::t lead citrate, an::t examined. with a Hitadtl H-600 transmission 

electron mi~. Controls for the histochemical methods included: 

cells reacted in the a1::sence of Pb (NOJ) 2 ; cells reacted in the a1::sence of 

substrate; cells treated with fluoride (NaF) prior to the catplete his­

tochemical reaction; an::t cells in the a1::sence of the histcx:hemical reac­

tion. 

:Eblvac;cylamide gel electrqtioresis. Native polyaci:ylamide gel 

elect:rqiloresis (PAGE) was perfonned as described by ram et al. (1978) 

an::t Maurer (1971). 'lhe separation gel stock solutions cxt'lSisted of: (a) 

separation gel ruffer (?I 4.3) per 100 ml: 48.0 ml 1 N I<CH, 17.2 ml gla­

cial aa!tic acid an::t 4.0 ml TEMED; (b) aci:ylamide stock solution per 100 

ml; 30.0 g aci:ylamide an::t 0.8 g bis-aci:ylamide; (c) d2H2o; (d) 0.28 g 

anm::ru.um persulfate per 100 ml. 'lhe separation gel (7. 7 %T, 2. 6 %C) was 

prepared by mixirg the above stock solutions in the ratio (a:b:c:d) 

1:2:1:4. 

'1he stacki.n;J gel stock solutions cxt'lSisted of: (a) stacki.n;J gel 

ruffer (J;il 6.7) per 100 ml: 48.0 ml 1 N I<CH, 2.87 ml glacial acetic acid, 
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arrl 0.46 ml TEMEO; {b) accylamide stock solution per 100 ml: 10.0 g 

ac:rylamide arrl 2.S g bis-accylamide; {c) 4.0 ng rilx>flavin per 100 ml; 

(d) d2H20· 'lhe stackirg gel (3 .1 %T, 2. o %C) was prepared by m:i.xi:ng- the 

aboVe stock solutions in the ratio (a:b:c:d) 1:2:1:4. 'lhe stackirg gel 

was i;notopolymerized in the presence of a 14-watt fluorescent lanp 

(canalco, Rockville, MD). 

'lhe electrode blffer stock solution for this system consisted of 

31.2 g ~-alanine per liter adjusted to pH s.o with acetic acid. 'Ihe 

stock blffer was diluted to 10% in aqueous solution. 'lhe gel was pre­

elect:rqiloresed at so nM for 1-2.S h at s 0 c prior to loadin;J sanples. 

'lhe loaded gel was then nm at 20 mA for 17 h at s 0 c with the polarity 

reversed (top (+) arrl battan (-) ) • Pyronine Y (1 ng/ml) was used to mark 

the ad.vancin;J front of the gel. 

'.l"v.1o-dimenianal gel elect:rqhoresis was performed as described by 

Iborra arrl Buhler (1976). 'lhe first dimension (thin-layer isoelectric 

focusin;J, pH 3.5-S.2) was coniucted in an I.RB (ll<B-P.rodukter AB, Brame., 

Sweden) M'llltipx,r t.mit. 'lhe unpolymerized mixture, consistin;J of 10 ml 

of an accylamide (30%)-bis-accylamide (0.8%) solution; 7 ml of 87% (v/v) 

glycerol; LS ml of I.RB Anpholine pH 3.s-s.o; 1.S ml of I.RB Aq;tioline pH 

4.Q-6.0; arrl 40 ml distilled water, was degassed arrl paired between two 

glass plates separated by a 1 nm thick :r:uttler gasket. After polymeriza­

tion, one glass plate was ren:cved arrl the gel plate was lowered onto the 

c:xx:>lin;J plate of the t.mit. Small plastic frames placed ai the gel sur­

face "Were used as sanple :reservoirs. Isoelectric point markers (U. S. 

Bicx.::hemical Corp. , Clevelarrl, CH) consisted of acetylated cytochrare c at 

various pI: 4.1; 4.9; 6.4; 8.3; 9. 7; arrl 10.6. Electrode solutions 
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oonsisted of: anode, 1 M H3ro4 ; cathode, 2% (v/v) arcpio1ine Pf 5-7. 

FcOJSin1 was con:iucted for 2 h at a constant PJWer of 30 W. After focus­

inl, the gel plate was frozen on ice. strips cx:>nta.inirq sanples were 

carefUlly exciserl and used in the seconi dimension or processed for en­

zyme activity (see below). In addition, consecutive slices (5 nm) of the 

focused gel were placed in boiled, degassed distilled water for 2 h and 

measured to detennine the PI gradient of the gel. 

'!he analysis of the seconi dimension (S:C:S-PAGE) was cx:>rrlucted in a 

Hoefer (Hoefer Scientific Instnnnents, San Francisco, CA) vertical elec­

trqtioresis tmit. 'lhe separation gel consisted of 8% accylamide, 0.25 M 

Tris-HCl (Pf 8.8), and 0.1% sr:s. 'lhe stackirg gel consisted of 5% 

acrylamide, 0.25 M Tris-HCl (Pf 6.8), and 0.1% sr:s. 'lhe electrqiloresis 

b.lffer consisted of 0.6% Tris base, 2.88% glycine, and 0.1% sr:s. 

Electroploresis was con:iucted at a constant current of 30 mA at 4°C until 

the trackirg dye reached the bottan of the gel. 

M::>leall.ar ~ight st:an::lards included; bovine a.l.b.nni.n, 66 I 000; egg 

albmtln, 45,000; glyceraldehyde 3-~te dehydrogenase, 36,000; car­

bonic anhydrase, 29,000; trypsinogen, 24,000; trypsin inhibitor, 20,100; 

an:l a-lactalhJJDin, 14,200. 'lhe electroploretic nd::>ility of ea.di known 

protein was plotted against a logaritlnnic scale of DDleall.ar ~ights. 

'Die electroploretic nd::>ility of eadl barn. dJserved in PAGE was measured 

an:l its :relative IOOleall.ar ~ight value (l+lr) was estimated f:ran the plot 

of DDleall.ar ~ight stamards. 'lhe protein ban:is were :referred to by the 

estimated IOOleall.ar ~ght Illlltiplied by 10-3 and followed by the letter 

K (An:!s, 1974) • 
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Vj.sualization of oonspecific acid i;i'lo§J;tlatase ard protein in gels. 

EnZYrD9 activity was detected on gels by a post-irnlbation capture rret.hod 

CJ.esCr.ibai by Uriel (1971). FollCMing elect:rq;iloresis, the gel was 

rerroved fran the cassette ard allowed to equilibrate for 2 h at 37°C in 

o.2 M sodimn acetate buffer CPI 4.8). 'Ihe gel was rem.:Ned fran the buf­

fer, the substrate solution: 5 ng of naptthol AS-BI {i'losP'loric acid in 20 

ml of 0.2 M acetate buffer CPI 4.8), was ai:plied to the gel surface, ani 

the gel irnlbated for 2 hat 37°C. Excess substrate solution was rem.:Ned 

frail the gel ani the coupling solution, CX>11Sisting of 10 ng of Fast 

Gamet GBC diazonimn salt in 10 ml 0.2 M acetate buffer (PI 4.8), was ap­

plied. When the activity bani reached the desired intensity (0.5 to 1.5 

h) the gel was transferred to a 2% acetic acid solution ani allowed to 

destain. Ac:id J;ilosphatase (Ex: 3.1.3.2.), type IV fran Potatoes, was used 

as an enzyme control. 

Gels stained for nonspecific acid J;ilosphatase were subsequently 

stained for proteins using Coanassie mue R250 CF.astman Kodak Co, Roches­

ter, NY). 'Ihe staining solution CX>11Sisted of: 1.25 g CB R250, 230 ml 

rrethaml, 230 ml d2H20 ani 40 ml acetic acid. Gels were destained, using 

a solution CX>11Sisting of 1500 ml ethanol ani 500 ml acetic acid diluted 

to 5 L with d2H2o. When gels were sufficiently destained they were 

soaked in destaining solution containing 2% (v/v) glycerol for 1 h with 

shakirg. 'Ihe gels were transferred to a piece of 3 nm Whatm:m filter 

paper cut slightly l~ than the gel ani dried urDe:r vacuum on a Hoefer 

Slab Gel Dryer (nr:xlel. SE1150) for 4 h at 80°C. 
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statistical analyses. Results were analyzed by student's t test 

(sokDl arrl Rdll.f, 1981). '!he cx:rrp:rt:er software program, Sigma-Plot, 

version 3.1 (Janie! Scientific, Sausalito, CA), was used for linear 

regression analyses. 

Cl'lemicals, reagents, arrl proteins. Whenever possible, dlemicals of 

analytical reagent (AR) quality were used. Unless otherwise noted, all 

dlemicals, reagents, arrl proteins were d:Jtained fran Sigma Chem. Co., 

(st. I.aris, K>), or were of analytical grade. 



I. EFFECl' OF FllJORIDE CN 'IHE GlU'1IH OF T. DEN'I'IOOIA. 

A. Effect of sodium fluoride on the grgNth of T. denticola. 

Experiments were cor:ducted to determine whether fluoride had an 

effect an the growth of l'· denticola ATCC strains 33520 ard 33521, ard 

strain 10 (Table 1) • 'Ihe action of NaF on the growth of .'.I'. denticola was 

detemined by measurirg absor.banoe ard by actual cell COl.lllts. A staOOard 

curve relatirg the colorimetric read.in:;Js to direct cell COlll1ts was 

prepared. cell viability was ju::'k}ed by motility concurrently with actual 

cell COl.lllts. A typical growth a.n::ve was generated (Fig. 2). cells grown 

in the presence of 10 µg of fluoride per ml had a growth profile similar 

to the control. cells grown in the presence of 20 µg of fluoride per ml 

had an irK::reased gene.ration time or lag J;ha.se, ard a decreased growth rate 

or cell yield. M:st of the growth pa.raneters were not significantly 

different fran the controls. Growth was cmpletely inhibited by 40 µg of 

fluoride per ml. All three strains tested behaved in a similar manner. 

B. Effect of stannoos fluoride on the growth of T. denticola. 

Since SnF2 has been rep:>rted to have roore actioos against oral 

mic:rooi::ga.nisms .in YitrJ2 than has NaF (Tinanoff et al., 1983), the effect 

of stan:nrus fluoride an the growth of .'.I'. del1ticola 33520 in medium Gi-1 

was also st:tnied (Table 2). When 5 µg of fluoride per ml was canbined 

with 15.6 µg of stannaJs ioos (as SnF2) per ml, significant ~ion 

of growth was cilse.rved. Growth was cx:11pletely inhibited by fluoride at 

31 
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Table 1. Effect of NaF on t.he growth parameters of .I. dentimla 

Growth Parameter 
y- eorx::n Generation GrcMth Rate Maxinum Cell Yield Time lag 
(µg/ml) Time (h) (gen per h) (per ml) Constant (h) 

strain 33520 

0 9.4 (3.2)a 0.037 (0.015) 4.0x108 (l.2x108) 4.3 (3.3) 

10 9.9 (3.2) 0.035 (0.015) 3.6x108 (0.6x108) 6.0 (4.3) 

20 21.8 (6.0) 0.015 co. 005) 1.9xl08 c1.2xio8) 12.7 (5.2) 

40 00 _Q_ _Q_ 00 

strain 33521 

0 10.9 (2.6) 0.030 (0.007) 7.8xlo8 (3.6x108) 0 

10 13.5 (3.4) 0.024 (0.006) 6.7x108 (2.2x108) 0 

20 18.2 (5.0) 0.018 C0.006) 4.3x108 (1. 7x108) 13.3 (3.4) 

40 00 _Q_ _Q_ 00 

strain 10 

0 14.7 (0.7) 0.020 (0.001) 6.lxlo8 (l.6x108) 0 

10 14.3 (0.3) 0.021 (0.000) 4.lxlo8 (0.2x108) 0 

20 19.9 (3.7) 0.015 (0.002) 4.2x108 (2. 7x108) 16.0 (23) 

40 00 _Q_ _Q_ 00 

a Values are reported as t.he n:ean of at least 3 se.pa.rate experiments. 
'Ihe starrlanl deviation is in parentheses. underlined values in:li­
cate a level of significanc:e .F ~ 0.01. 
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Fiq. 2. Growth curve of :r. dentioola 33520. Direct cell ca.mts of :r. 
d@nticola were determined with a Petroff-Hausser camt~ d'lant>er urrler a 

~ microscq:>e. Values are reported as the mean ± standard 

deviation of at least three separate experiments. Open symbols, typical 

growth curve; filled. synb:>ls, growth curve of cells gram in the presence 

of 40 µq r /ml (NaF sairce) • 
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Table 2. Effect of SnF2 on the growth of .T. denticola A'ICC 33520 

Grc:Mth Parameter 
eoncn 

(µq/mli+ Generation Grt7«th Rate Maxinum Cell Yield Time Iag 
r sn Time (h) (gen per h) (per ml) Constant (h) 

o.o 

1.0 

2.5 

5.0 

10.0 

20.0 

o.o 

o.o 

0.0 

o.o 

o.o 

0.0 

a 

b 

c 

o.o 10.0 (3.3)a 0.034 (0.016) 6.4xl.08 (3.0xl.08) 0 

3.1 8.3 (2.1) 0.038 (0.010) 3.9x108 (1.2xl.08) 0 

7.8 7.7 (0.3) 0.039 (0.002) 3.3xl.08 (l.2xl08) 0 

15.6 16.2 (6.9) 0.021 (0.009) 1.3x108 (0.9xl.08) 6.4 (6.1) 

31.2 co _Q_ _Q_ co 

62.4 co _Q_ _Q_ co 

1.9sb 15.0 {rd)C 0.020 (rd) 6.8xl.08 (rd) 4.5 (rd) 

3.9 15.3 {rd) 0.020 (rd) 6.lxl.08 (rd) 4.5 (rd) 

7.8 19.4 (4.0} 0.016 (0.002} 5.lxl.o8 (0.8xl.08) 4.0 (4.0) 

15.6 24.1 (1.1) 0.012 (0.000) 2.0x1.o8 Cl.lx108) 5.0 (5.0) 

31.2 co _Q_ _Q_ co 

62.4 co _Q_ _Q_ co 

Values are reported as the mean of at least 3 separate experi­
n&rt:s. '!be st:an:1ard deviatioo is in parentheses. Un:lerlinEd 
values indicate a level of significan:::e .f S 0.01. 

SnCl.2•2H20 prepared to be equal in Sn content to that Of SnF2• 

Not done. 
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10 an:i 20 µg/ml. st.anncus ions alone at 7.8 µg/ml (added as sne12·2H2o) 

were also fown to significantly reduce .'I'· denticola growth. 'Ihe inhibi­

toIY na.ture of the stannous ions absel:ved in these experiments is not 

entirely llirlerstood. 

c. Effect of sodium counter ion (Na) on the growth of T. denticola. 

'Ihe effect of the counter ion (Na+) present in sodium fluoride was 

investigated. As shown in Table 3, the addition of sodium chloride (as a 

control for Na+) to the growth medium of .'I'· d.enticola 33520 did not in­

hibit the growth of the organism. In agreement with previoosly plblished 

results (Hughes ard Yotis, 1986), Y- inhibits the growth of the organism 

at concentrations greater than 20 µg/ml. 

II. :mz'YME FROFIIE OF T. DENI'ICOIA. 

Milch of the work al the nec::hanism of fluoride actial has centered. 

on the effect of the inhibitor al enzymes. 'Iherefore, the API ZYM system 

was used as a rapid means of SUl'.Veyirg enzyme activities present in .'I'. 

denticola. Whole cells fran stationary fhase cultures of .'I'. denticola 

33520, strain 10, ard a pectinolytic spi.rodlete, strain P4, \¥ere assayed 

for enzyme activities usirg the API ZYM system. All three strains con­

sistently denDnstrated acid ~tase, C8 este:rase lipase, ard 

~dase activities (Table 4). In additial the .'I'· denticola 

strains de.oonstrated t:cypsin, dlym:>b::yp;in, ard a-ga.lactosidase ac­

tivities. Only .'I'· d.enticola 33520 displayed leucine amirq:Jeptidase ac­

tivity. When .'I'. denticola 33520 was in:ubated in the presence of sodium 

fluoride or stannous fluoride (5 µq/ml Y-) for l h ard then assayed in 
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Table 3. Effect of NaF am NaCl on the grcMtl1 of 1'· denticola 33520 

Coral Growth Paraireter 
(µg/ml) Generation Growth Rate Max Cell Yield Time Iag 
F'"" Na+ Time (h) (gen per h) (per ml) Constant (h) 

0 o.o 10.6 0.028 8.lxlo8 0 

10 12.1 10.1 0.030 9.5x108 0 

20 24.2 19.3 0.016 2.9x108 4 

40 48.4 co 0.000 0 co 

80 96.8 co o.ooo 0 co 

100 121.0 co 0.000 0 co 

160 193.6 co 0.000 0 co 

0 12.1a 9.7 0.031 9.5x108 0 

0 24.2 10.0 0.030 9.5x108 0 

0 48.4 10.0 0.030 l.OX109 0 

a Added as NaCl, prepared to be equal in Na content to that of NaF. 
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Table 4. Enzyma.tic activities of selected oral spirodietes 

- Treponema. denticola Pectinolytic 
Eneyme Control a ~ 33520 strain 10 strain P4 

.Aeid~tase Qb 5 5 2 

Tryp6in 0 2 5 0 

~oamidase 0 2 1 3 

~in 0 2 0 0 

r.sucine aminopeptidase 0 3 0 0 

C8 F.sterase lipase 0 3 3 1 

a-Galactosidase 0 1 1 0 

Alkaline ~tase 0 0 0 0 

C4 F.sterase 0 0 0 0 

Cl4 Lipase 0 0 0 0 

Valine aminopeptidase 0 0 0 0 

Cystine amil':lq>eptidase 0 0 0 0 

p-Galactosidase 0 0 0 0 

P-Glucuronidase 0 0 0 0 

a-Glucx::isidase 0 0 0 0 

P-Glucx::isidase 0 0 0 0 

a-Mann::lsidase 0 0 0 0 

a-Fucxisidase 0 0 0 0 

N-Acetyl-
P-qluoosa:mjnidase 0 0 0 0 

a Control irx::luied 0.85% NaCl in the absence of cells. 

b Enzyme activities were recorded ai a scale of O (low) to 5 (high) by 
cx:atparison with the color dlart pn:wided by the marrufacturer. 
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the API ~ system, acid phosphatase activity was decreased (Table 5). 

'WhOle oells incubated in the presence of stannous ions alone de.na1strated 

a ~ a-galactosidase activity. Trypsin activity was not affected 

by the presence of fluoride at the oonamtrations used in these experi­

ments. Chynot:cypsin, leucine aminopeptidase, an:l C8 esterase lipase ac­

tivities were unaffected. 

III. CHARACTERIZATION OF T. DENTICOIA 33520 NONSPEX:IFIC ACID 

apsmATASE. 

A. Effect of nutrient limitation on enzyme expression. 

'1he synthesis an:l expression of acid phosphatases has been shown to 

be stinulated by Pi limitation (Kier et al., 1977b; o:issa et al., 1982). 

ttle.refore, .'.!'· dent.icola was grown urrler a variety of nutrient limitations 

in order to investigate the expression of nonspecific acid phosphatase. 

'1he DEdia used were no:lification.s of the cx:nplex medium, GM-1, mrma.lly 

used to cultivate the a:ganism. '1he ir:g:redients of the trypticase say 

broth cx:mponent of the GM-1 medium were added individually in order to 

control the adlltion of cartx>n (glucose) an:l Pi (dipotassium phosphate). 

'1he J;ii of each redlJCed DEdium was adjusted to J;ii 7.4 with Fat. Exogenous 

glucose cx:incentration.s were reduced greater than 90%, "While exogenc:us Pi 

caicentration.s were reduced 68% (Table 6). '1he nonspecific acid phospha­

tase.§. tygtlnurium has been shown to be limited by the presen::e of 0.075 

nM phosphate (0.007 nq/ml) in the grcMt:h DEdium (Kier et al., 1977b). No 

clear differences were observed in the grcMt:h cu:r:ves of .'.!'. denticola 

g:rown in the fair different DEdia (Table 7). When oells at varioos 

stages of grcMt:h in the fair DEdia were assayed, no clear differences 
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Table 5. Effect of fluoride an the e:nzyma.tic activities 
of 1:· denticx:>la 33520 

Intact ce11s plus 
0 µg/ml 5 µg/ml F 5 µg/ml F 15.6 µg/ml Sn 

Enzyme (F or Sn) (NaF) (SnF2) (SnCl2. 2H20) 

Acid~tase 5a 1 0 3 

Tl:'YJ;Sin 5 5 5 1 

~dase 3 3 2 3 

Chynotrypsin 1 1 1 1 

reucine ami.rq>eptidase 2 2 2 2 

C8 F.sterase lipase 3 3 3 3 

a-Galactosidase 1 1 0 0 

Alkaline J;ttosEtlatase 0 0 0 0 

C4 F.sterase 0 0 0 0 

Cl4 Lipase 0 0 0 0 

Valine amincpeptidase 0 0 0 0 

cystine ami.rq>eptidase 0 0 0 0 

p~actosidase 0 0 0 0 

P-Glucuronidase 0 0 0 0 

a-Glucosidase 0 0 0 0 

P-Glucosidase 0 0 0 0 

a-Manoosidase 0 0 0 0 

a-F\Jcx::sidase 0 0 0 0 

N-Acetyl-
P-qlucosaminidase 0 0 0 0 

a Enzyme activities as described in preced.in;J table. Controls in-
eluded: 0.85% NaCl, 5 µg/ml P- (NaF), 5 µg/ml P- (SnF2), or 15.6 
µg/ml Sn++ (SnC12•2H20) in the abserDe of cells. All controls -were. 
found to be negligible for enzyne activity. 
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Table 6. Olemical analysis of culture media containing reduced levels 
of ca:rtx>n ani }DosJ;i1a.te 

averageB- averagea 
ng glucose ng~te 

per mib per mic 

c;p- o.o 0.108 ± 0.014 

c;p+- o.o 0.320 ± 0.005 

c+P- 1.35 ± o.oo 0.094 ± 0.012 

crP+ 1.60 ± 0.08 0.301 ± 0.016 

Reduction in glucose concentration: 100 % REIXJCI'ION 

Reduction in }DosJ;i1a.te concentration: 67. 5 % REIXJCI'ION 

a Average value fran two separate sanples. 

b As determined by glucose oxidase assay. 

c As determined by Pi determination, method of Chen et al. (1956). 



Table 7. GrtJWth of ,'.'E. denticola 33520 in ne:lia containin;J reduc:ai levels 
of gluoose arrl :Pios?late 

Ml:Xliunfi o 
Stage of arowth (hours} 

16 48.5 63 

c-p- 9.lxlo7 (0.5xl07) 2.0x108 (0.9x108) 4.9xlo8 (l.8x108) 0.0x108 (3.4x108) 

~- 9.lxlo7 (0.5xl07) 1.9x108 (0.6x108) 5.4x108 (1.9x108) 8.7x108 (2.8x108) 

c-p+ 9.lxlo7 (0.5x107) 2.0xio8 (0.7x108) s.sxio8 (1.2x108) 7.4x108 (3.0x108) 

c¥ 9.lxlo7 (0.5x107) 2.7x108 (0.8x108) 4.0xio8 (2.0xl.08) 9.3xl08 (2.2x108) 

a An overnight culture grown in c-p- ne:lium (20 ml) was used to incx:::ulate 200 ml of each of the 
various ne:lia with reduced levels of exogenous carbon arrl phosphate. 

b GrtJWth was m:::>nitored by optical absoi::bance arrl direct cell counts. Values represent average 
± staroam deviation of three separate experj..nents (in parentheses) • 

ollio 

"' 
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\1t1E!.te obeerVed in acid phosphatase activity (Fig. 3). '1hese results also 

j,rdicate that acid phosphatase activity is greatest in stationary {ilase 

cells. 

To determine whether or not the ana.mts of soluble protein neasured 

at each J;i'laSe of T. denticola growth were similar, whole cell suspensions 

tran early-, mid-, am late-log i;ilases of growth were adjusted to the 

same optical density am assayed for soluble protein as previously 

desCribed• No significant differences were observed in the soluble pro­

tein ex>ntents of the three cell suspensions (Table 8) • 'lherefore, the 

term used to describe enzyme activity, nmol ~ released per ng soluble 

protein, is logical. 

B. Effect of Pf al nonspecific acid tilosttlatase of intact cells of 

T. denticola. 

To determine the depenlerx::e of enzyme activity al Ifi, intact early 

stationaey;;:tlase cells were assayed for nonspecific acid phosphatase 

activity aver a rarge of Iii values. '1\tio qJtima. were observed (Fig. 4). 

One Iii optllu.nn l::Jeb.1een 4. 6 am 4 • a was quite distirx::t. Arx>ther broader 

Iii opt.inun centered at about Iii 6. 2 suggests the preserxie of another 

enzyme in wh:>le cells able to utilize pNPP as a substrate. 'these results 

support the c:boice of Iii 4. 8 for the enzyme assay. Enzyme activity at Ifi 

6. 2 was not investigated further. 

C. Effect of fluoride al nonspecific acid OOosdlatase· 

To determine whether there was a correlatial l::Jeb.1een the level of 

fluoride required to suppress the growth of T. denticola am the 
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Fig. 3. Effect of exogenous carbon an:i J;ilosphate on the e:xpression of 

rx:nspe:eific acid };ilosphatase. An overnight culture of _T. deJ1ticola 33520 

grown in c-P- netitnn (20 ml) was usa:i to inoculate 200 ml of eadl of the 

various netia. At various times, sanples TNere rem::ived an:i assayed for 

oonspecific acid };ilosphatase activity as described in the text. Values 

represent the average ± star:dard deviation of at least three separate 

experinents. 
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Table 8. Mieasurement of soluble protein 
in whole cell suspensions of '..!'· dentioola 33520 

stage of growth (age) 

Farly-log (22 h) 

Mid-log ( 46 h) 

late-log (70 h) 

ug soluble protein 
mia 

354 ± 25 

384 ± 14 

398 ± 14 

p valueb 

0.28 

0.17 

a Soluble protein of cell suspensions adjusted to 160 Klett 
units was measm:a::l by I.ot1r.y assay, as described in materials 
a:rx:l methods. Values are reported as the mean ± starrlard 
deviatioo of triplicate sanples. 

b As detennined by student's t test (Sokol a:rx:l Rchlf, 1981). 
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Fig. 4. Profile of non.specific acid }i'lost:hatase in whole cells as a 

fmrtion of pH. ;r. denticola 33520 was grown t.o early stationary p:iase, 

washed an:i assayed. Enzyme activity is exp~ as nmol p-nitrqilenol 

released :per ng soluble protein. Values represent average ± stan::!ard 

deviation of triplicate sanples. Open synix>ls, 0.1 M sodium acetate buf­

fers; filled synix>ls, 0.1 M Tris-hydrochloride buffers. 
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CX)l'lCeTitration at whidl fluoride (as NaF) inhibits the nonspecific acid 

~t.ase of :r. denticola, fluoride (0-200 µgjml) an::l substrat.e were 

added to washed, early stationary lilase (60 h) cells of :r. denticola an::l 

assayed for nonspecific acid ~t.ase. Inhibition of nonspecific acid 

~t.ase was observed with great.er than 20 µg/ml (1 nM F"") (Fig. 5}. 

It was also noted that ~roximat.ely 40 min was necessary to observe 

enzyne inhibition at the lCMer concentrations of fluoride. 

o. Effect of ions on 11C11§PeCific acid ~t.ase in intact cells. 

Although only 2-3% of the fluoride in plaque appears to be ionized 

(Jenkins et al., 1969), the remairri.rg fluoride in plaque is thought to be 

bound either to inorganic ca:rponents, such as ca++, M}++, ~t.e an::l 

other ions (Gron et al., 1969; Sin;Jer et al., 1970; Birkelan::l an::l Rolla, 

1972), or to bact.eria (Jenkins et al., 1969). '!he l:x:urrl fluoride may or 

may not exert an action in the system. In order to examine any possible 

interaction between fluoride an::l M}++ in the system, whole cells were 

assayed for enzyme activity in the presence or absence of M}++. In addi­

tion, the effect of 20 an::l 100 µq r /ml was examined in the presence or 

absence of M}++ in the system. '!he absence of M}++ in the b.l.ffer system 

did not significantly affect enzyme activity. In addition, the presence 

of M}++ did not affect the ability of r to inhibit enzyme activity (Fig. 

6). 'Diese :results also in:licat.e that great.er than 40 min are needed for 

optimal release of product (pNP) in the enzyme assay, confinnir.q that the 

starna:rd assay procs::lure of 60 min is reasonable. '!he effect of other 

divalent cations (M}++, Mn++, eo++, ca++, or Zn++) on nonspecific acid 

IilosJ;:natase was also evaluated. When metal ions were added to whole cell 
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Fig. 5. Effec:t of fluoride cxn:::entration on nonspecific acid Ii'losP'latase 

in intact ,'.!'. denticola 33520. Fluoride, as NaF, was adde:i to stationary 

piase cells at time zero. At 30 ani 60 min, sanples were :rerroved ani 

assayed for nonspecific acid J;ilosI:hatase. Enzyme activity represents 

JllOOl p-nitrqilenol :released per ng soluble protein. 



10--~~~~~~~~~~~~~~~-119-=r-=;~m~l;t 
80 

20 

10 

v 
<> 
t -----· 

0 0 
ll. 5 
0 10 
v 20 
<> 30 
• 50 
• 100 
• 200 U1 ..... 



52 

Fi,q. 6. Effect of fluoride an:i magnesium ions on nonspecific acid 

~tase in intact cells. stationary phase ~. denticola 33520 was 

.-yed for enzyn'W:! activity in the presence or absence of 1 nM M;;JC12 in 

the assay b.Iffer. Fluoride, as Na.F, at vai:yin;J c:x:inoentrations was also 

atJed. to the system at time zero. At variais times, sanples were reJ.OOV"ed 

ard assayed for nonspecific acid ~tase activity. Enzyme activity 

nipresents rm:>l p-nitrq;ilenol released per ng soluble protein. Values 

mpresent the average ± sta:OOanl deviation of at least three separate 

experiments. 
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suspensions, in addition to the stamard assay canpone:nts, no sti.Ira.:Jlatory 

effects were d::>served (Table 9). Exceptions were M:J++ an:i ca++ at rather 

high (500 nM) levels, which appeared to dalble activity. Zn++ appeared 

to inhibit enzyme activity, albeit slightly. 

E. Michaelis constant for llOil§PeCific acid r:bO§phatase. 

Kinetic parameters for the hydrolysis of :r;:NPP by intact cells were 

dete:rmi.ned by measurirg the release of i;:NP at various times an:i cx::mcen­

trations. 'lhe initial slq:ie of a curve which represents the release of 

i;:NP as a function of ti.me was calculated to detenni.ne :reaction velocity. 

'lhe ai;pirent Kiri an:i Ki for sodium fluoride were determined by the method 

of Lineweaver an:i Burk (1934), as shown in Fig. 7. Fluoride appears to 

be a :nonc:arp3titive inh:il::>itor of the enzyme in intact cells, with an ap­

parent Ki of 0.3 nM. 

F. Effect of fluoride on llOil§PeCific acid tilostilatase in cell extracts 

of T. denticx!la. 

In an effort to un:Jerstand enzyme activity at a level beyon:i that 

of the intact cell, so that the nonspecific acid phosphatase ccul.d be 

isolated an:i dlaracterized, whole cells of '.f. denticola 33520 were dis­

rupted with the Frerdl pressure cell, as ootlined in Materials an:i 

Methods, an:i the resultirg cell extract (CE) was assayed for nonspecific 

acid phosphatase in the p:resenc:e an:i absenr::la of fluoride (Table 10). '!he 

addition of 20 an:i 40 µg/ml r (as NaF) significantly decreased non­

specific acid phosphatase in disrupted cell suspensions. 'lhe addition of 

10 µg/ml F- (as SnF2) irduoed an 18% decrease in nonspecific acid 
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Table 9. Effects of ions on nonspecific acid J;ilosJ;:hatase 
of intact cells of '.!'· denticola 3352oC1 

Addition 

None 

M;J++ 

Mn++ 

eo++ 

ca++ 

Zn++ 

Concn in 
assay mix 

(ITM) 

0.1 
1.0 
5.0 

10.0 
100.0 
500.0 

0.1 
1.0 
5.0 

10.0 
100.0 
500.0 

0.1 
1.0 
5.0 

10.0 
100.0 
500.0 

0.1 
1.0 
5.0 

10.0 
100.0 
500.-0 

0.1 
1.0 
5.0 

10.0 
100.0 
500.0 

Relative enzyme activity 
substrate 
~ 

1.0 

0.8 
0.8 
0.8 
1.2 
0.7 
1.9 

0.8 
0.6 
0.8 
0.9 
0.9 
1.0 

1.0 
0.9 
1.0 
1.3 
1.2 
1.4 

1.0 
1.0 
0.6 
1.4 
1.4 
2.0 

0.9 
0.9 
0.2 
0.4 
0.6 
0.5 

ATCC 33520 was grown to early stationary piase in Gf-1 medium for 
assay. 

Act.i vity measured by release of p-nit.rc:plerx>l, as previously 
described. 
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Fiq. 1. Li.ne!irNeaver-8.u'k plots an::l Michaelis constants of fluoride-in­

hibited nonspecific acid i;:bosli'latase in intact aills. Assay mixtures 

contained ear1y-stationai:y ~ I· denticola 33520 an::l };t1PP as sub­

strate. 'Ihe initial slcpe of a cu:cve representi:rg the release of p­

nitrq;nenol as a :flntti.oo of time was calculated to detennine reaction 

velcx::i ty. 
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Table 10. Effect of fluoride on nonspec::ific acid i;ilosJ;ilatase 
in cell extracts of ~. dent.ioola 33520 

Sanple 

CE, l::x>iled 15 min 

CE + 5 µq Y-/ml (5nF2) 

CE + 10 µq Y-/ml (5nF2) 

CE + 5 µq r /ml (NaF) 

CE + 10 µq r /ml (NaF) 

CE + 20 µq r /ml (NaF) 

CE + 40 µq Y-/ml (NaF) 

rnools p-nitrophenol rel~ 
n:g soluble protein 

23.1 ± 5.4 

1.5 ± 0.6 

17.5 ± 8.2 

14.3 ± 5.7 

23.5 ± 9.2 

18.9 ± 5.6 

11.7±2.3 

10.3 ± 1.0 

a Values reflect mean ± st:an:lard deviation of at least 3 
separate experiments. tJmerlined values irrlicate a level of 
significan::::e .f S 0.01. 

b CE = Cell extracts. Whole cell suspensions 'Were ~ 
thrc:u;Jh the French pressure cell twice at 16, ooo lb/in2, as 
previously described. 
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~tase activity; ha'Never, the differen::e fran the activity observed 

in the absence of fluoride was not significant. Higher concentrations of 

:r-, as snF2 solutions, \tie.re difficult to 'lllt'Ork with due to precipitation 

of the cxmpoun::i. 

G. Nonspecific acid Jilosphatase in sulx:ellular fractions of 

T. denticola. 

Analysis of the a:ill fractionation sc::herce reveals that nonspecific 

acid :phosphatase is present in all suJ:x:ellular fractions of j. denticola 

33520. 'Ibis is sunnarized in Table 11. Although the nonspecific acid 

~tase of j. denticola seems to behave like the correspon:iin;J ,E. 

coli enzymes by exhibitin:j activity in intact a:U.ls (Neu an:i Heppel, 

1964), the activity does not appear to be efficiently released by OSDDtic 

shcx::k procedures. 'Ibis inefficient OSllDtic shock release is also charac­

teristic of _s. tyttrl.nuril.nn :phosphatases (Kier et al., 1977a). 

'Ibis does not necessarily mean that the nonspecific acid :phospha­

tase activity fa.mi in OSDDtic shock ''periplasmic contents" of j. 

denticola is due to OSDDtic shock damage of the cytoplasmic membrane an:i 

release of the enzyme fran the cytoplasmic contents. In order to irwes­

tigate this possibility, freshly prepared suJ:x:ellular fractions \tie.re as­

sayed for hexokinase activity, a cytoplasmically located enzyme. 'Iha 

OSIOOtic shock fluid (''periplasmic contents") was not contaminated with 

hexokinase activity (Table 12) • 'lherefore, the OSDDtic shock procedure 

does not appear to damage the cytoplasmic membrane an:i release proteins 

fran the cytoplasmic contents. 
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Table 11. Nonspecific acid J,ilosphatase llle!aSUI'ed in subcellular fractions 
of l'· dentioola 33520 

Voltnne Protein :nrrol~ wP releaseci1' Total Units 
Fraction8 (ml) (ng/ml) ng soluble protein (X 103) 

Whole cellsc 480 3.3 43.6 69.0 

osmotic shock 
treated cells 35 28.5 20.2 ± 0.01 20.1 

asm:>tic shock 
fluid 15 1.0 23.2 ± 0.01 0.4 

"Cytoplasmic" 
a:>ntents 32 14.0 7.7 ± 1.0 3.4 

''Membrane" 
fraction 25 35.3 15.2 ± 0.4 13.4 

a Fractions OOtained fran cell fractiaiation scheme, as p:r:eviously 
described. 

b Activity iooasured by the release of p-nitrophenol, as p:r:eviously 
described. 

c Represents washed cells, pelleted am pooled fran 18,875 ml of cultured 
ne::lia. 
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Table U. Hexokinase (EC 2. 7 .1.1) assay of the 
suboellular fractions of '.r· dent.imla 33520 

Specific Activityb 

Whole Cells n.d.c 

Shocked Cells 1.1 ± 0.01 

Fren::h Pressure Cell Extract 2.2 ± 0.2 

Oslootic Shock Fluid 0.7 ± 0.2 

''Men'brane" Fraction n.d. 

"Cytoplasmic" Contents 5.9 ± 0.3 

Hexokinase starmrd (Signe.) 14,600 ± 265 

a Fractions obtained f:ran cell fractionation scheme, as 
previously described. All sanples were fz:eshly pl.'epCIXed. 

b Nanaool.s of pyridine nucleotide charY;Je per min per ng 
soluble protein. 

c n.d. = not detected. 
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Osrootic shock fluid preparations containing non.specific pb.osp:latase 

were also eleci:l:qiloresed usir.g native polyacrylamide gels am stained 

for enzyme activity (Fig. 8). '1'vo separate barrls exhibitir.g nonspecific 

acid J;ilosJ;ilatase were detected in the shock fluids. 'lhese barrls were 

fourrl to have relative nolecular weights of 53K am 40.SK. '1'vo other 

protein barrls, whidl. did not exhibit nonspecific acid pb.osp:latase, were 

d:>serVed followi.rq stainir.g with Coanassie blue am had awarent MWr of 

24K arrl 21K. Because neither of these two proteins could be unam­

biguously identified as bel~ir.g to the non.specific acid pb.osp:latase, 

the possibility remains that either or both of the proteins may be sub­

units of nonspecific acid pb.osp:latase. 

In ad:lition, when culture fluid supematants were assayed for non­

specific acid J;ilosJ;ilatase, negligible enzyme activity was detected (data 

not shown). '!his in:licates that the enzyme is not an exoenzyme. 

H. Effec:t of enzyme concentration on product fonnation. 

To dete:cmine whether or not the enzyme activity un:ler investigation 

was linear with respect to the ano.mt of enzyme, .in:::rea.sir.g volmnes of 

subcel.lular fractions containing nonspecific acid pb.osp:latase were added 

to the assay mixture. 'llle results are shown in Fig. 9. When both 

soluble cx.:>nt:ents (Fig. 9a, above) am meni:>rane fraction (Fig. 9b, above) 

were assayed in .in:::rea.sir.g volmnes, the ann.mts of product released 

remained linear. '1hese results in:licate that the assay used to detennine 

enzyme activity is a valid assay system. 
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Fig. 8. Detection of nonspecific acid pb.osp:latase after electrophoresis 

on native polyac:r::ylamide gel. Iane 1, :nr::>lecular weight markers: 2, os­

m:tic shock fluid (JOO µg protein) ; 3, Of.D:Jtic shock fluid (300 µg pro­

tein) ; 4 thro;gh 9 I acid pb.osp:latase control, type rJ fran potatoes, 

decreasi.rg ooncentrations; 10, 100lecular -weight markers. In lanes 2-3, 

(*) denotes J::mm detected by acid pb.osp:latase enzyme stain (see 

methods) ; (-) denotes J::mm detected only after protein sta.inin;J. 





65 

Fig. 9. Effect of enzyne concentration an prcx:luct formation. Increasing 

volumes of designated sul:x::lellular fractions "Were added to the st:arnard 

enzyme assay. Values represent average ± st:arnard deviation of duplicate 

scmq:>les. (A) soluble contents. (B) meni:>rane fraction. 
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r. Assay of subcellular fractions for ATPase. 

Various cell fractions, which exhibited nonspecific acid pios­

};ilatase with pNPP as a substrate, were also assayed for activity against 

ATP, another phosphate contai.nirg substrate (Table 13) • ATPase was 

present in OSDX>tic shock fluid, suggestirg that the nonspecific acid 

i;:tiosJ;ilatase is able to utilize ATP as a substrate. 

J. Anion exdlarge chronatcsra.Im" of T. denticola soluble contents. 

'Ihe next step in the purification sc:beme of the nonspecific acid 

phosphatase involved anion exchange chranatograpiy. 'Ihe soluble l· 9§1:: 

ticola contents (3 ml; 14 irq protein per ml) were applied to a DEAE-oel­

lulose column (0.8 x 60 an) equilibrated with 5 nM Tris-HCl (Pf 7 .4) 

containin;J 1 nM dithiothreitol (b.lffer A). 'lhe column was eluted with 

the same b.lffer followed by a linear gradient of NaCl in b.lffer A. 'Ihe 

linear gradient was begtm with 50 ml of b.lffer A in the mixinq vessel and 

an equal volurre of b.lffer A contai.nirg o. 2 M NaCl in the reservoir, yiel­

dirg a NaCl cxn::&ltration rMgirg fran o to 4 x 10-2 M. Fach of the 

fractions (collected fran the begi:nnirg of sample application) was as­

sayed for naispecific acid phosphatase activity with p-nitrqilenyl 

phosphate as the sul::strate at Pf 4. 8. Fractions were also assayed for 

protein usirg the I.t:Mry assay (I.t:Mry et al., 1951). A typical DEAE-oel­

lulose dlranatography profile of the soluble contents, as consistently 

ootained fran greater than five determinations, is shown in Fig. 10. Two 

major protein peaks are eluted early in the column, while another peak is 

eluted after the gradient has been applied. A major portion of the non­

specific acid phosphatase eluted with the first major protein peak. 'Ihe 
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Table 13. Assay of subcellular fractions of l'. denticola 33520 
for ATPase 

Fraction ATPase Activicyb 

Whole cells 29.1 ± 0.5 

Shocked. cells 5.4 ± 0.4 

French Pressure cell Extract 11.3 ± 2.1 

C>snDt:ic Shock Fluid 62.7 ± 7.4 

''Membrane" Fraction 12.7 ± 0.5 

"Cytoplasmic" contents 10.9 ± 0.9 

a C>snDt:ic shock and cell fractionation procedure as previously 
described. 

b ATPase activity measured as µq Pi released per ng soluble 
protein. Values i:epresent average ± staOOard deviation of 
duplicate sanples. 
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Fig. 10. DFAE-cellulose drranatograpiy of .T· aenticola 33520 nonspecific 

acid i;:tiosphatase. A solution of 3 ml (14 ng protein per ml) of soluble 

contents prepared as described in the text was applied to a DFAE­

cellulose column (0.8 x 60 cm} equilibrated with blffer A. '!he column 

was eluted with 100 ml of blffer A follONed by a linear gradient of NaCl. 

in buffer A fran o to 4 x 10-2 M. F.ac:h of the 2 .1 ml fractions (col­

lected. fran the be:;Ji.nnin:J of sanple application) was assayed for rx:m­

specific acid phosi;ilatase. '!he arrows imicate the inclusive fractions 

pooled for further analysis. 'Ibis is a typical drranatograprlc profile, 

as cbtained fran greater than five DFAE-cellulose columns prepared in a 

similar marmer. 
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nonsJ?E!ICific acid ~tase fractions fran the DFAE-oellulose oolumn 

were pooled am resez:ved (frozen) for further analysis. 

K. Fluoride sensitivity of the DF.AE-cellulose nonspecific acid 

p;ioschatase drrana.tograptlc fractions. 

'lhe pooled fractions f:ran the DFAE-cellulose oolumn \l1ere assayed 

for the presence of fluoride-sensitive acid ~tase. Pooled frac­

tions, in aci:lition to unchranatograiile.d soluble contents, \l1ere incubated 

in the presence or absence of varyin:J ooncentration.s of scxlium fluoride 

for 1 h am then assayed for nonspecific acid phosp...atase activity. '!he 

:results of these experiments are shown in Table 14. DFAE-cellulose peak 

I exhibited fluoride-sensitive nonspecific acid phosplatase activity. 

'!his enzyme activity is enridled over that of the startin:J (soluble 

oontents) material.. DFAE-oellulose peaks II am III exhibited nuch lc:Mer 

enzyme activities when catpared to peak I enzyme activity (8 am 3%, 

respectively). 

L. Purification of J'lQl'lS.P!Cific acid IhosJt@tase. 

'lhe pooled nonspecific acid phosplatase fractions fran the DF.AE­

oellulose oolumn resisted further p.irification. ~ ooltnnn.s \l1ere 

prepared am calibrated for gel filtration chrana:tograpiy. A typical 

calibration Clll.'Ve is shown in Fig. 11. Ho!.11eVer, when the pooled DFAE­

oellulose fractions containirg nonspecific acid phosplatase activity \l1ere 

awlie.d to ~ ooltnnn.s, enzyme activity was not detected in the 

eluate fractions. To investigate whether the sanple was too dilute for 

detection, a concentration step was enployed to incl:ease the activity 
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Table 14. Effect of fluoride on nonspecific acid J;ilosJ;:hatase 
isolated by DFAE-cellulose colU1111 dlramatogra);ily 

Sanple 

Soluble Contents + 0 µg Y-jml 
+ 20 µg Y-jml 
+ 100 µg Y-jml 

DFAE-cellulose peak I + 0 µg Y-jml 
+ 20 µg Y-jml 
+ 100 µg Y-jml 

DFAE-cellulose peak II + 0 µg Y-jml 
+ 20 µg Y-/ml 
+ 100 µg Y-jml 

DFAE-cellulose peak III + 0 µg Y-jml 
+ 20 µg Y-jml 
+ 100 µg Y-jml 

rmpl p-Nitrqilenol releasElCP 
n:g soluble protein 

7.6 ± 1.0 
5.4 ± 0.8 
4.3 ± 1.1 

155.0 ± 0.4 
10.2 ± 6.0 
6.3 ± 2.0 

11. 7 ± 0.01 
n.d. 
n.d. 

4.8 ± 0.6 
n.d. 
n.d. 

a Activity measured by release of p-nitrqhenol as previously 
described. Values represent average ± stan:lani deviation of duplicate 
sa:nples. 

n.d. = ~le levels 
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Fiq. 11. Selectivity anve for 100lecular "tNeight markers on Se};i1adex 

G-100. Values of Ka.v "tNere calculated fran the peak elution positions of 

the starrlards dlranatograpied on a $Ep'ladex G-100 superfine oolurrn as 

described in the Materials am Methods. 
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in the "soluble contents". Dry Se);:i1adex G-10 beads were added to a 

volume of "soluble ex>ntents" an:l allowed to swell. 'lhe swelled beads 

were rem:wed an:l the renainirg supernatant was assayed for enzyme ac­

tivity (Table 15). 'lhe cxmcentrated "soluble ex>ntents" were not enriched 

for enzyme activity despite an overall reduction in the volume of the 

"soluble ex>ntents". When the beads were washed with b..lffer rontainirg 

o.5 M KCl, the nonspecific acid phosphatase activity present in the 

eluate was CX>l'lOelltrated only two-fold. Although the cx:>ncentration step 

cannot be considered successful, these fin:ii:n;;Js in:ilcate that the 

presence of KCl is necessary to prevent the bin:lin:J of the nonspecific 

acid phosphatase to Sephadex. !a.ta for the partial purification of the 

nonspecific acid phospiatase are presented in Table 16. 

M. Substrate specificity of partially p.irified nonspecific 

acid J;iJ.osiilatase. 

In order to define the substrate prefe:ren:::e of the nonspecific acid 

phosphatase, partially purified enzyme preparations were assayed for 

activity against a variety of phosphate esters, phOSJ;h.odiesters, an:l of 

inorganic py.rqilosphate. Table 17 presents the activities of the enzyme 

towan:ls these substrates. Differences are ci:lserved when the Treponema 

nonspecific acid phosphatase is carpared with the analogoos Sa1monella 

CWeR;>e1man et al., 1977) an:l I;. roli enzymes (Dvorak et al., 1967). 

lJnjer the experimental oorrlitions used here, fewer substrates are hydro­

lyzed by the l'· dentirola enzyme. Ioorga.nic pyrophospiatase activity is 

Present in the partially purified nonspecific acid phosphatase fran 
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Table 15. SeJ;i:ladex G-10 treatment of the soluble contents 
of l'· denticola 33520 

Soluble cxntents 

SUpernatant, SeJ;i1adex G-10 treatment 

O. 5 M KCL eluate, SeJ;i:ladex G-10 beads 

rmpl J;flP reie.aseab 
ng soluble protein 

5.4 ± 0.6 

4. 7 ± 1.5 

11. 7 ± o. 7 

a Treatnents as described in materials an:i methods. 

b Activity measured by release of p-nitrqilenol as previously described. 
Values represent average ± staOOard deviatiai of duplicate samples. 



Table 16. PW::if ication of nonspecific acid i;ilosEtlatase 

(a) (b) (c) d=a·b·c e=ci/eo f=di/do 
Vohnne Protein mool t:tilP Total Units Fold Yield 

PW::if ication step (ml) (ng/ml.) ng sol. protein (x 103) PW::if ication (%) 

Whole cellsF 30 3.3 43.6 4.3 

Shocked cells 2.2 28.5 20.2 1.3 1 100 

"Soluble" 
contents 2.0 14.0 7.65 0.21 0.38 16 

DFAE-cellulose 
chromatography 7.0 0.5 155.0 0.54 20.3 41.5 

a pertains to 2 ml of cytoplasmic contents applied to DFAE-cellulose colmnn back calculated 
1/16 of volmne fn:m original. 

-.J 
-.J 
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Table 17. Relative activity of nonspecific acid ~tase 
toNards various substrates 

Substrate 

Glucose 6-~te 
a-D-Glucose 1-i:;hosphate 
6-:Ehosphogluoonate 
R.ilxlSe 5-phosiilate 
Dira-Gly~te 
2 1 -AMP 
3 1-AMP 
5 1-AMP 
5'~ 
3'-tJMP 
5'-tJMP 
ADP 
ATP 
UDP 
Ul'P 
Inorganic pytqilosphateP 
Q-NaP'lthyl JiiosJ;:.hate 
cyclic 2',3'-AMP 
cyclic 3 1 ,5 1-tJMP 
cyclic 3 1 ,5 1-AMP 
cyclic 3',5'-GMP 
bis~ 
Fructose 1, 6-diJiiosJ;:.hate 
Rlospho-L-arginine 
Rlospho-L-serine 
pNPP 

Relative Enzyme 
Activitya 

<0.01 
5.00 

<0.01 
<0.01 
<0.01 
<0.01 
<0.01 
<0.01 
0.25 

<0.01 
<0.01 
<0.01 

2.00 
0.50 

<0.01 
8.25 

<0.01 
<0.01 
<0.01 
<0.01 
<0.01 
<0.01 
9.00 

<0.01 
<0.01 
1.00 

a Assays were coniucted usir:g the sta.rm.rd assay 
buffer, 2.5 IQlK>l substrate, ard 50 µl of partially 
p.1rifie:l enzyme. 

b Values of units with inorganic pytqilosphate as a 
substrate have been divided by two because two 
JiiosJ;:.hate 100lec:ules an.a released for every pyro­
JiiosJ;:.hate lxn:i cleave:l. 
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.'1'· denticola. 'Ibis activity was obsel:ved in the 8al.npnel.la enzyme, but 

was not obsel:ved in the partially purified .f,;. coli preparation. 

N. Effect of gJ on partially p.irified nonspecific acid phosmatase. 

In order to ascertain the depen::lence of the partially purified 

nonspec:ific acid J;hosJ;:hatase activity on J;il, the enzyme preparation was 

assayed for nonspecific acid i;:hosJ;tlatase at a rarge of J;il values. Enzyme 

activity was obsel:ved to have an optim.mt at about pH 4. O when ~ saves 

as a substrate (Fig. 12). 

o. '1henral inactivation of partially p.irified nonspecific acid 

ptioep'latase. 

Sirv::ie the thennolability of nonspecific acid J;ilosphatase has been 

shown to vary fran sruroe to sruroe of enzyme (WeR;>el:man et al. , 1977; 

Kier et al., 1979; D:lssa an:i Boquet, 1985), the thennolability of the 

partially purified enzyme fran .'I'. denticola was investigated. When par­

tially purified enzyme was irx::ubated at 60 °c for up to 1 h, enzyme ac­

tivity toward ~ was not affected (Fig. 13). HCJ'w'eVer, when partially 

purified enzyme was in::ubated at 90 °C for the same lergt:h of time, the 

enzyme lost 27% of its activity. 

P. Kinetic parameters of partially ruri.fied nonspecific acid 

dlosphatase. 

Despite the in::lication that fluoride is a nonc.:x:mpetitive inhibitor 

of acid J;ilosphatase in the urrlefined environment of the intact cell, it 

was ilrp:>rtant to investigate the effect of fluoride on enzyme activity in 



80 

Fig. u. Profile of partially pirified nonspecific acid ~tase as a 

:funetion of PI· Enzyme activity represents rm::>l p-nit.n:plenol :eel.eased 

per ng soluble protein. Values are expressed as average ± stan:'lal:d 

deviation of duplicate sanples. Open synix:>ls, 0.1 M sodium acetate Wf­

fers~ filled synix:>ls, 0.1 M Tris-hydrodlloride Wffers. 
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Fi9· 13. '1hennc1l inactivation of nonspecific acid phosphatase. Sanples 

of partially purified nonspecific acid phosphatase (0.1 ml) in 0.2 ml 0.2 

M sodium acetate, Pl 4. 8, were kept on ice at O °C or incubated at 60 °c 

(cpen synix>ls) or 90 °C (closed synix>ls) for varicus times arrl returned 

to o °C. After sanples were at o °C for 25 min, they were assayed with 

~ as substrate. Enzyme activity is expressed as rmDl p-nitrq.ilenol 

released per ng soluble protein. Values represent average ± starDa:rd 

deviatioo of duplicate sanples. '!his a typical profile, as d:lserved with 

tw separate experiments. 
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a m:>re defined, partially purified preparation. When the partially 

p.irified enzyme preparation was incubated in the presence of fluoride arrl 

analyzed, mixed results were obtained (Fig. 14.). Fluoride ~ to 

inhibit enzyme activity at high corx::entrations (100 µg r /ml) ; yet, it 

ai;:pears to activate enzyme activity at lONer concentrations (20 arrl 60 µg 

F"9/ml). '!he med:lanism of inhibition ai:pears to be that of mixed inhibi­

tion (Cl:>mish-BaNden, 1979). 

Q. Polyac:eylamide electrqi'loresis of nonspecific acid J:hosdla.tase. 

~ional gel electrqiloretograms of the soluble contents arrl 

the partially purified enzyme preparation are shown in Fig. 15. When the 

first dimension (thin-layer isoelectric focusing) was stained for non­

specific acid i;:bosphatase, areas of enzyme activity were detected in the 

acidic i;:il rarge of 3. 5 to 4. o. FollO!N'ing the secx:ni dimension ( SOO­

P.AGE), gels were stained for protein arrl examined. At least eight pro­

teins were detected in the soluble contents rarqing in relative m:>lec:ular 

\\leight fran 15K to 40K (Fig. 15a). When partially purified enzyme was 

electrqiloresed un:ier identical cxn:litions, three proteins were detected 

with relative m:>lec:ular \\leights of JJK, 24K, arrl 14K (Fig. 15b). 'lhese 

three proteins co-migrated with three proteins detected in the soluble 

contents. 

R. Localization of nonspecific acid rbosg'latase. 

One ai:proadl to protein localization of periplasmic enzymes invol­

ves the use of reagents i.rx:apable of penetrating the bacterial per­

neability barrier, the cytq>lasmic meni:>rane (Pardee arrl watanabe, 1968). 
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Fiq. 14. Typical L:i.nerNeaver-Burk plots of fluoride-inhibited nonspecific 

acid i;ilosphatase activity in partially p.irified enzyme preparation. 

AsSay mixtures contained partially p.irified enzyme an:l pNPP as substrate. 

'lhe initial slope of a curve representin;;J the release of p-nitrophenol as 

a function of time was calall.at.ed to determine reaction velocity. '.lhe 

plots 'Were drawn fran data obtained in b.Jo experiments. 
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Fig. 15. Two-dimensional gel electrcphoresis of j. denticola 33520 

soluble contents an:i partially purified 11C111Sp9Cific acid i;:hosphatase. 

'lhe first dimension (basic thin-layer isoelectric focusirg) was con1ucted 

with sa.nples of (A) soluble contents (350 µq) an:i (B) partially purified 

enzyne (50 µg). '!he gel was cut into pieces an:i stained for enzyme ac­

tivity as irxticated in the text. '!he secxni dimension was con1ucted in 

the presence of so;, an:i afte:cwards stained for protein. Fran the top to 

bottan of the figure the following are shown: a diagrammatic representa­

tion of the first dimensim gel strip showirg the region of enzyme ac­

tivity; the :r;:il distribltim measured in the gel strip; the secon:l dimen­

sion, after staining with Coanassie blue. M:>lecular '!Neight stan:3ards, as 

described in the text, are represented to the left. 



f 
MW,. 

~0 

~ 

'3lp 

'-9 

J.4- -

JD.I -

14.~-

-I 
IE.F"~ - I+ 

I I I 
+ 5 b 

A 

•fb'O 
!SQ 

·o 
10 

'o 

J:EF-+ 

-I ~~ 

~ 
MWI" 

00 

AG 

':lei 

Aq 

;.~ -

3,0.I -

1+.3' -

I 

"" 

'O 

l-© 

I+ 
I I 
5 6 

B 

0) 
0) 



89 

EneymeS inside the cytoplasmic ment>rane camot be inactivated unless the 

cells are dis:rupted; enzymes on or rutside the membrane can be inac­

tivated. With one sudl reagent, 7-diazonium-1,3-na.Iilthylene disulfona.te 

(diazo-NOO), one can detennine whether an enzyme lies inside the cell 

membrane or whether it is exposed to the external envirorunent. Whole 

cells an:i osnotically shocked. cells "1ere treated with the reagent. 'Ihe 

shocked cells "1ere then dis:rupted to detemine distribution of the enzyme 

in cell fractions. Based on cx:>lor observations (not shc:Mn), diazo-NOO, 

an orange reagent, birrls to the ment>rane portions of the cells. Diazo­

NOO inhibits nanspecific acid J;hosphatase in whole cells an:i in shocked. 

cells (Table 18) • In diazo-NOO treated shocked. cells that are further 

fractionated to ''membrane" an:i soluble "cytoplasmic contents", the mem­

brane-asscx!iated enzyme activity is inhibited, whereas the soluble ac­

tivity is not. 'Iherefore, diazo-NOO does not penetrate the cytoplasmic 

membrane of the cell. 'lhe in::reased activity in the diazo-NOO treated 

shock cell "cytoplasm" cannot be explained at this time. 'Dlese results 

provide evider.oa that the nanspecif ic acid J;hosphatase is exposed to the 

periplasmic spaoe of the organism. 

SJileroplasts of .r. dentioola "1ere also prepared in an effort to 

in:::rease enzyme release an:i localize the enzyme. Treatment of whole 

cells with lysozyme resulted in ''bllgin;J" of the cells at their tennini 

as visualized by ~ microsoc.py. Treatment of the cells with 

EDI'A resulted in ''bleli>inf' of the oo:ter sheath. Only cells treated 

with lysozyme an:i EDm "1ere observed to have both "bulgirg" an:i "blebb­

inf'. Nonspecific acid J;hosphatase is inefficiently released by lysozyme 

treatment, as evider'K:ed. by its presence in the supernatant of 
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Table 18. Effect of diazo-NOO on rx::inspecific acid phosJ;ilatase 

untreated, whole cells 
Diazo-NDS, whole cells 

untreated, shcx::ked cells 
Diazo-NDS, shcx::ked cells 

untreated shcx::ked, French press, ''membrane" 
Diazo-NDS shcx::ked, French press, ''membrane" 

untreated shcx::ked, French press, "cytoplasm" 
Diazo-NDS shcx::ked, French press, "cytoplasm" 

nmol pNP rel~ 
ng soluble protein 

24.0 ± 1.1 
3.0 ± 2.4 

21.1 ± 1.4 
8.6 ± 3.6 

16.7 ± 0.01 
1.8 ± 0.8 

18.2 ± 2.7 
55.3 ± 9.2 

a Diazotization am cell fractionation scheme as previously 
described. 

b Activity measured by release of p-nitrophenol as previously 
described.. Values represent average ± stamard deviation of 
triplicate sanples. 
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treated cells. '1he enzyme is also present in the supernatant of lysed 

~lasts (Table 19) • mrA-Tris treatment alone did not result in 

release of nonspecific acid ~tase. If the nonspecific acid {ilos­

Jilatase is "free" in the periplasmic spaaa, one would expect it to be 

released by this treatment. '!he inefficient release of the enzyme in:li­

cates that the protein is most likely associated with the protoplasmic 

cyl.irrler, with eJq?OSUre of the enzyme's active site to the periplasmic 

spaaa. 

Histochemical st:ainin;J was used to localize enzyme activity in 

whole cell preparations for electron microscopy. '!be hydrolysis of pNPP 

by the bacteria at an acidic J;il, as evidenoed by the precipitation of 

lead ~te, appears to be at lcx::a.tions between the rut.er sheath arxi 

the protoplasmic cylin:ler of the organism (Fig. 16). 'Ibis suggests a 

periplasmic lcx::a.tion for the enzyme. Hat.lever, when the thin-sections are 

not COl.ll'lterstained with lead citrate arxi uranyl aaatate precedin;J mic:ro­

sropic examination, nonspecific lead precipitation is evident in con­

trols. Extensive washirg durin;J the histoc:hemical treatment did not 

alleviate this nonspecific b.i.n:li.n3'. 'therefore, the localization of non­

specific acid ~tase in '.!'. denticola usin;J these hisbx:hemi.cal 

methods, l.mforb.mately, remains irxx>rlclusive. 
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Table 19. Nonspecific acid ~tase in Sfheroplasts 
of ,'.r. dentioola 33520 

Preparation 

Intact, washed ,'.r. dentioola A'l'CX 33520 

I.¥sozyme Sfheroplasts, pellet 
Lysozyme Sfheroplasts, supernatant 
cysed sr;ilerq>lasts, pellet 
cysed sr;ilerq>lasts, supernatant 

I.¥sozyme-Tris alone, pellet 
I.¥sozyme-Tris alone, supernatant 
I.¥sozyme-Tris, lysed, pellet 
~is, lysed, supernatant 

EDrA-Tris alone, pellet 
EDrA-Tris alone, supernatant 
EorA-Tris, lysed, pellet 
EDrA-Tris, lysed, supernatant 

nnpl pNP releaseda 
ng soluble p:rot.ein 

69.3 ± 13.0 

78.3 ± 4.0 
o.o 

68.4 ± 12.2 
115.9 ± 29.0 

66.5 ± 2.0 
21.1 ± 0.01 
60.4 ± 19.3 
o.o 

72.1 ± 14.4 
o.o 

65.9 ± 17.1 
0.0 

% of 
original 

100 

112 
0 

99 
167 

96 
30 
87 

0 

104 
0 

95 
0 

a Activity iooasured by release of p-nitrqilenol. Values are expressed as 
the average ± stan:.m:d deviation of duplicate sanples. 
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Fig. 16. Electron microsc:q>ic histcx:hemistry of nonspecific acid 

~tase of intact T· denticola 33520. ArroWs in::licate deposition of 

lead J;ilospha.te, suggestirg the location of nonspecific acid ~tase. 

Hlotanicrograi:h approximately 100, OOOX magnification. (A) nonspecific 

acid J;ilospha.tase :reaction (B) untreated cells. 
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DISaJSSIOO 

'lhe effect of fluoride on the growth of the oral spirochete 1. 

dentioola has been sru:lied.. 'lhe fluoride concentrations used in these 

experiments are well within the fluoride levels known to exist in ht.man 

dental plaque (Hardwick an:i I.ea.ch, 1962). Sodimn fluoride, a simple 

ionic salt, was the preferred soorce of fluoride used in these experi­

ments. It is readily available, easy-tCHNOrk with, an:i it is cc:mrcnly 

used in dental preparations. Fluoride, as NaF, was shown to inhibit the 

growth of the 1. dentioola strains tested here (Table 1) • 'Ihe sodimn 

ooonterion did not effect growth (Table 3). 'Ibis was the first report in 

the literature that fluoride inhibits the growth of 1· dentioola (Hughes 

an:i Yatis, 1986). 

other fluoride c:::arp::lU1"d used topically in the oral cavity include 

stannous fluoride an:i DD10fluorqilc:lsiilate. SnF2 has been shown to have 

ll¥Jre effects than NaF against oral :microorganisms in vivo (An:ires et al. , 

1974) an:i in~ (Tinanoff et al., 1983) than has NaF. 'lhe different 

effects of NaF an:i SnF2 oo oral bacteria have been attributed to: (1) the 

divalent cation, tin, interactin;J with the negatively dlarged. plaque 

c::aiponents to alter bacterial adhesion/cdlesion (Skjorlan:i et al., 1978); 

(2) the oxidation of thiol grcups of bacterial enzymes by tin (Ofpennann 

et al., 1980); (3) the alteration of bacterial metabolism due to uptake 

of tin by bacteria (Attramadal an:i svantun, 1980; Tinanoff an:i OmrJsci, 

1980); or (4) the naturally low PI of SnF2 causin;J HF fonnation, which is 

reportedly nx:>re anti-bacterial than fluoride (Whitford et al., 1977). 

95 
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When '.I'. denticola was grown in the presence of either NaF or SnF2, a 

greater inh.ibito:ry effect was observed with SnF2 than with NaF (Table 1; 

Table 2). However, the SnF2 was cliffiall.t to \¥Ork with, in that it pre­

cipitated art of solution at ve:ry low concentrations (greater than 10 µq 

r/ml). stanna.Js ions alone, added as SnC12, ~ also abserved to in­

hibit '.I'· denticola growth (Table 2). Whether this Sn inh.ibito:ry effect 

is due to an oxidation of thiol groops of bacterial enzymes by tin, to an 

alteration of bacterial metabolism due to the uptake of tin, or to sane 

other mechanism, is not urrlerstood at this time. 

Sin:e llllCh of the \¥Ork on the mechanism of fluoride action has 

centered on the effect of the inhibitor on enzymes, the same aw:roach was 

taken with l'. denticola. '1he API Z"iM system served as a rapid am con­

venient method by whidl a bat:tecy of '.I'. denticola enzymes could be 

screened for fluoride-sensitivity. A l11JliiJer of enzyme activities ~ 

consistently observed in the '.I'· denticola strains in::luti.n;J acid ~­

tase, trypsin, ~dase, ca esterase lipase am a-qalactosidase 

(Table 4). 'Ihese enzyme profiles are generally consistent with the firxi­

in3s of Iaujlon et al. (1982), who smveyed twenty-three unspecified 

strains of l'. c1enticola am l'. vincentii. However' in contrast to the 

study of Iau;Jha'l et al. (1982), alkaline ~tase activity was not 

observed in the three oral spirodletes tested here. Fiehn (1986) also 

reported the abseooe of alkaline ~tase activity in eight small­

sized oral spirodletes. '1he pectinolytic strain, P4, exhibited only acid 

~tase, ~dase am ca esterase lipase activity. 'Ihe enzyme 

profiles of the three strains of oral spirodletes observed here are also 



97 

oonsistent with the available information at the Iitysiology of the spiro­

chetes (cana.le-Parola, 1977; Harwo:ld am cana.le-Parola, 1984). 

Of the seven enzyme activities detected. in ;x. denticola 33520 with 

the API ZYM system, aily acid piospha.ta.se activity was sensitive to the 

presence of 5 µq F'""/ml (Table 5). '!hat the acid ~ta.se was sensi­

tive to fluoride was not surprising, since nonspecific acid ~ta.ses, 

in general, are inhibited by fluoride (lok>rt.an, 1965). Although acid 

piospha.ta.ses have not specifically been i.nplicated as virulel'lO! factors 

in periodontal disease, they may play an i.nportant :role in the metabolic 

diversity of ;x. denticola in the oral cavity. Cell-bol.1:00 enzymes, if 

located on or near the oell surface, can hydrolyze substrates present in 

the periodontal pockets or in the tissues, if the oells have been in­

vasive. 1his i.nplies that the enzymes are always available to hydrolyze 

host catp:Jllellts. In the case of nonspecific acid ~ta.se, the enzyme 

would be available to rem::we P"tos.Phate graJ.PS fran host-prcxiua!d non­

transport:.able piosphate esters, thereby allowing the hydrolyzed host can­

ponents to be transported. am utilized by the oell. '!he J;ilosphata.se 

activity ooo.ld supply a variety of nutrients to the oell depe.nd.i.rg at the 

esters' organic iooiety, in additiat to piospha.te. 

Tcypsin-like activity, which has been i.nplicated as an inportant 

dete.m.inant in the virulel'lO! of periodcrit.cpathic bacteria (Iau;#lan et 

al. , 1982) , was unaffected by the levels of fluoride used in these ex­

perinw.mts (Table 5). Of c:airse, the possibility exists that ;x. denticola 

enzymic activities other than those detectable with the API ZYM system 

may be sensitive to fluoride. other enzyme activities we.re not inves­

tigated. 
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'!he API ZYM is a semi-quantitative m.icranethod system designed for 

the detectioo of enzyme activities. '!he system consists of a series of 

m.icrocuplles contai.nirq dehydrated chraoogenic substrates. '!he addition 

of aqueaJS sanple to be test€'d rehydrates the cx:mp:ments am initiates 

the :reactions. Reactions a.re visualized after the additioo of the 

detector reagents. Although the API ZYM system allO'NS for the rapid am 

systematic stmy of nineteen enzymatic reactions, the system is not with­

out its limitations. Since the substrates a.re c:hraoogenic, the enzyme 

11llSt react with the substrate to yield p:rcxiucts that in turn will react 

with the detector reagents. For this reason, the assay is an in:ti:rect 

assay of enzyme activity. '!he final :rea.ctioo product must be detectable 

by the human eye am ocupa.rable to a color chart provided by the manufac­

turer. 'Iherefore, the assay is ooly semi-quantitative. M:lst i.np:xtant­

ly I the microcuplle support provides contact between the sanple am a 

typically insoluble substrate. If intact cells a.re placed in the 

m.icrocuplle am the substrate is insoluble, the possibility exists that 

the substrate may never reach intracellular enzymes, am that these en­

zyme activities may go undetected. Finally, the API ZYM system is 

limited to the stmy of ooly nineteen enzymatic :reactions. Since bac­

teria oa:rt:ain DDre :reactions than those detectable with the API ZYM sys­

tem, many enzyme activities a.re overlooked. Nonetheless, the API ZYM 

system was useful as a preliminary enzyme assay system in these 

investigations. 
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An un:ierst:aniin; of the role of nonspecific acid Itios?'latase in 

1'· denticola ~ tied to the fluoride-sensitivity of the organism. 

'Ihe ?'lysiological regulation of this enzyme will first be considered. 

'Ihe nonspecific acid ~tase of 1'· denticola described here is 

c.ptimally synthesized in the stationary J;i1ase of growth (Fig. 3). It 

behaves like a nenber of a group of degradative enzymes, which include E· 

coli acid ~tase (c.ptinum Pf 2.5; I8ssa et al., 1982), Sallronella 

nonspecific acid ~tase (Kier et al.' 1977b)' am proteases (st. 

Jam et al., 1978). '!his stationary J;i1ase irrluction suggests that the 

acid ~tase is not required durin:j balarx:ied growth, am that it may 

be synthesized in response to a limitation in sane nutrient. An attenpt 

at variais nutrient limitations was made with 1'· denticola; however, 

neither glucose or i;:tiOsi;ilate limitation was able to provoke an inmediate 

enzyme expression. umer these experimental cxn:litians then, it is con­

cluded that exogenous levels of glucose am Pi, within the concentrations 

tested, do not regulate nonspecific acid ~tase expression in 1'· 

denticola. Neu am 1JeR>e1 ( 1965) also :rep::>rt that the level of acid 

~tase in E· coli ~rs to be unaffected by the concentration of 

Pi in the growth medium. '!his situation is different fran that d:lserved 

with the nonspecific acid ~tase of Salnpnella tyrhinurium, whose 

synthesis has been shown to be stinul.atecl by a limitation in camon, 

sulfur, ~rous, or nitrogen availability (Kier et al., 1977b). A 

level of O. 075 l1M ~te rep:ressed nonspecific acid ~tase ex­

pression in ~. tyrhinurium. It also differs fran that ci:>sEuved with the 

acid ~tase (c.ptinum Pf 2.5) of E· coli, whose synthesis has been 

shown to be derep:ressed by Pi starvation (Iassa et al., 1982). 
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Althcugh the expression of _T. dentioola nonspecific acid IilOSFha­

tase does not awear to be affected by glucose or IilOSFhate limitation, 

it is inp:>rtant to rememl::ier that _T. dentioola is 9rolNll in a canplex 

meditml. '1he erxioge.noos levels of phosiilate in the phosiilate-limited GM-1 

meditml was approximately ten fold higher than phosiilate levels known to 

repress nonspecific acid phosiilatase expression in ~. typhinpritml (Table 

6). It is highly likely that, despite the reduction of glucose arrl phos­

}ilate levels in the medi\Dll (Table 6), the other CXllpJl'lellts of the medi\Dll, 

particularly the yeast extract, serum, or fatty acids, provided nutri­

ents, th.e:reby relievinJ any limitations. Also, sin::e glucose does not 

serve as the primary substrate when _T. d.entioola gror.vs in media oontain­

inl glucose arrl a:mim acids (Hespell arrl canale-Parola, 1971), it is not 

sw:prisinJ that an effect by glucose on nonspecific acid phosplatase 

expression was not ctlserved under these oorxlitions. 'lhe effect of Pi 

just may not have been low encugh to derepress the nonspecific acid pios­

}Xlatase of _T. d.entioola. 

'1he fluoride-sensitive nonspecific acid i;ilosphatase is measurable 

in intact cells of .T. d.entioola (Table 5; Fig. 3) • Most of the prq>er­

ties of the _T. dentioola nonspecific acid i;ilosphatase measured in intact 

cells reserri:>le those described for the oor:respardi.rq Salnpnel.la (Weppel­

man et al., 1977) arrl ,B. ooli enzymes (Dvorak et al., 1967). 'lhe _T. 

dentioola enzyme in intact cells has an acidic pH opti:aun an:md 4. 8 

(Fig. 4), whereas the partially purified _T. d.entioola enzyme exhibits a 

pH optinum in the vicinity of 4.0 (Fig. 12). ~inllm pH values for the 

oorrespcn:tirg ,B. Q2li arrl Salnpnella enzymes center an:md pH 5.0. 

Similarly, no metal ion requirements are detectable for the nonspecific 
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acid phosphatase of intact cells of l'· denticola {Table 9) or of :.;. coli 

arrl salnDnella. In contrast, alkaline phosphatases are thought to be 

z.ilx: metalloenzymes {Reid arrl Wilson, 1971). 'Ihe partially purified '.J:. 

denticola nonspecific acid phosphatase also a.i;pears to be therm::stable at 

60 °C {Fig. 13). Dassa. an:i Boquet (1985) reported a similar thermal 

stability with the pH 2.5 acid phosphatase isolated f:ran an :.;. coli 

strain which overproduces the enzyme. 

'Ihe ability of fluoride to inhibit enzyme activity in the absence 

of a magnesium ion requirarent was abse:tved (Fig. 6). Sirna 97-98% of 

the fluoride in dental plaque is th.ought to be boorrl to i.nonJanic can­

ponents or to bacteria (Gron et al., 1969: Jenkins et al., 1969), a pro­

posed DDie of fluoride action involves the fozmation of a magnesium­

fluoride carplex, which functions as a magnesium J:'E'.\mJVal mechanism. 'lhis 

prqx:ise:.i DDie of fluoride action does n::>t ai;ply to the '.J:. denticola non­

specific acid phosphatase system. 

'Ihe nonspecific acid phosphatase of .S. tygrl.nprium, a.i;pears to be a 

dimer of two suD.mits of 26,000-m:>lecular-t.1eight polypeptide chains 

(We);pWnan et al., 1977). 'lhis possibility cannot be igoored with the 

nonspecific acid phosphatase of l'. denticola. Protein barrls exhibitin;J 

nonspecific acid phosphatase in the molecular weight range of 53, 000 have 

been abse:tved on polyacrylamide gels (Fig. 8). Enzyme preparations sub­

jected to SI:S-polyacrylamide electl.'qiloresis cart:ained proteins in the 

molecular weight rarge of 24,000 (Fig. 15). 'lllese values are close to 

the values detennined for the Salnpnella enzyme. 'Ihe possibility for 

dimerization in l'. denticola exists. Aax:>rdirg to Weppelman et al. 

(1977), the fact that at least two, an:i possibly three of the salmonella 
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~tases are oliganers may have sane :relationship to protection of 

the cytq>lasm fran i;::ilosphatase activity. Schles~er et al. (1969) airong 

others have perfonned experiments that inlicate that active alkaline 

~tase is not present inside E· coli rut that inactive subunits are 

synthesized in the cytq>lasm am excreted into the periplasm, where they 

becane active upon dimerization in the preserx::e of zinc. In a similar 

manner, subunits of the 1 · denticola nonspecific acid i;::ilosli'latase might 

be excreted into the periplasm where they cool.d beoane activated by 

dimerization processes. 

'lhe partially i;:urified enzyme of l'· denticola is able to degrade a 

variety of i;::ilosphate conta~ substrates, includirg fructose 1, 6-

dii;::ilosphate, inorganic ~te, am ATP (Table 17) • 'lhe acid i;:nos­

i;:hatase of the yeast, Rhodotorula ~' was also observed to exhibit 

high activity with ATP as a substrate (Wato:rek et al., 1977). Mildner et 

al. (1976) suggested that this high activity was due, not to contamina­

tion by ATPase, rut to the preserx::e oo. the yeast acid i;::ilosphatase of a 

secon:i active site exhibi~ ATPase activity. 'lhe possibility of a 

secon:i active site oo. the nonspecific acid i;::ilosphatase of 1. denticola 

was not investigated. '!here does not ~ to be any definite pattern 

in the substrate specificity of the nonspecific acid ~tase of 1. 

denticola which 'WOUl.d allOlli further classificatioo. of the enzyme ac­

ti vity. 'lherefore, the activity :remains identified as a nonspecific acid 

~tase. 

'lhe preserx::e of this nonspecific acid ~tase in l'. denticola 

'WOUl.d be advantageous for the cell. It 'WOUl.d be 100re efficient for the 

cell to have one enzyme capable of hydrolyz~ a mnnber of similar 
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substrates than to have several separate enzymes that would ead:l hydro­

lyze auy one particular substrate. '1his efficiency would allow the cell 

to d1annel its energies into other areas, such as synthesizi.rg other 

proteins or utilizi.rg other metabolites. In the carpetitive niche of the 

periodontal pocket, where many different species of bacteria vie for the 

same limited pool of nutrients, it is inportant for ,i'. denticola to main­

tain a catpetitive edge. If the activity of a versatile nonspecific acid 

:r;tiosphatase allows T. denticola to be a ItD:re effective sea.verger of 

available metabolites than other bacteria, then ,1'. denticola will survive 

an:i flourish in the periodontal milieu. 

'!he fluoride-sensitivity of ,1'. denticola nonspecific acid :r;tiospha­

tase has been examined.. In intact cells, fluoride, as NaF, appears to be 

a classical norm1petitive inhibitor of enzyme activity (Fig. 7). To 

paraphrase Comish-Bowden (1979) on J'lC>J'KXEpatitive inhibition: 

It arose originally because the earliest students of inhibition, 
Mid:laelis an:i his collaborators, ass1Jmed that certain inhibitors 
acted by decreasi.rg the ai;:parent value of V, rut had no effect on 
Km· '1his effect would be an cbviaJS alternative to carpetitive 
inhibition, an:i was tenned 11:oor¥:X 111etitive inhibition". It is 
difficult to imagine a reasonable explanation of such effects, 
however: one would have to assume that the inhibitor interfered 
with the catalytic properties of the enzyme, rut that it had no 
effect on the bindir:g of substrate. '1his might be possible for 
very small inhibitors. • • In general, it is best to regard nonc:an­
petitive inhibition as a special, an:i not very interestin;J case of 
mixed inhibition. 

To say that fluoride inhibition of T. denticola nonspecific acid phosJ;:tla.­

tase is nc:n:ntpetitive usi.rg data obtained fran whole cells may be a bit 

presunptive, b.1t it is a begirmi.n;J. '!he milieu of the wilole cell is a 

catplex one. 'ArfI number of factors, whether it be ions, ItDlecules, pro­

teins, or sane other factor in the intact cell environment, may have an 

inpact on enzyme activity or cx:nfonnation. Fluoride inhibition of the 
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partially µ.irified enzyme is nr::>re difficult to categorize. Fluoride 

inhibition is no lorger thalght to be of a classical noncarpetitive na­

ture. Rather, it is a nr::>re cx:nplex, mixed inhibition (Fig. 14). In 

fact, fluoride appears to function as an activator of nonspecific acid 

J;ilosiilatase activity at lCM fluoride concentrations, while it ai:pears to 

inhibit enzyme activity at high fluoride concentrations. 

'll1is activator-inhibitor function may be explained by the "general 

m:xiifier mechanism" of Botts am M:>rales (1953), in which the tenn 

''nv:xtifier'' is used as a general tenn that embraces both activators am 

inhibitors. 'll1is mechanism is IXJt confined only to e.xanples of activa­

tion, bit it can also ac:x:::amt for IID:re OC11plex types of inhibition. In 

Fig. 17 (taken f:ran Botts am M:>rales), if 

k+2 > k'+2 am k+1k+2f<k-1 + k+2> > k'+1k'+2Ck'-1 + k'+2>, 

then X is a hypemolic inhibitor at all substrate concentrations; if the 

reverse inequalities are obeyed X is a hypert::>olic activator at all sub­

strate concentrations; if only one inequality ~lies, X is an inhibitor 

in one rarge of substrate concentrations bit an activator elsewhere. 

In a rather sinplistic explanation, si..BJe fluoride inhibition of 

nonspecific acid J;ilosiilatase activity aJ:'{>Mrs to be · J'lClI'lCQ1I)etitive, 

fluoride wrul.d interact with the enzyme at sane site other than the ac­

tive site. Fluoride, at lCM concentrations, wrul.d interact with the 

enzyme to create a nr::>re favorable envi.rannent unjer which substrate wrul.d 

be able to bin:i, thereby activatinJ enzyme activity. However, at higher 

concentrations, fluoride wrul.d interact with the enzyme, pertlaps at a 

rnnnber of sites, to create confonnational or allosteric dl.an]es which 
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Fig. 17. Scheme representin;J the "general m:xlif ier mec.:ila.nism" of Botts 

arrl Morales (1953), wi'let:e X is the m:xlifier (taken fran Comish-Bc:J!Nd.en, 

1979). 
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'Walld rXJt allc::Jr« substrate to interact with the active site in a favorable 

manner, thereby inhibitin;J enzyme activity. 

Granted, these are only mechanistic hypotheses for the action of 

fluoride on the partially ?Jrified nonspecific acid :Eilosi;ilatase of 1'. 

dentioola. It is also conceivable that a determinant of enzyme activity 

inp:>rtant to the action of fluoride on the enzyme may have been lost in 

the ?Jrification scheme. '!his detenninant may be an ion, 100lecule, or 

oofactor other than those investigated here. Effects of the local peri­

plasmic envirornnent on the enzyme, as 'Well as the preserx::e of other pro­

teins, may also influence activity. Cofactors am enzyme may even be 

located in separate carpartments of the cell. 

Nonetheless, it is inp:>rtant to recognize the noncanpetitive nature 

of fluoride inhibition of the nonspecific acid :Eilosi;tiatase of 1'· 

dentioola. Fluoride has been shown to be a strorg inhibitor of acid 

~tases fran a variety of soorces incl~: I;. ooli (Pl 2.5; Dassa 

et al., 1982); Trypanosana cruzi (I.etelier et al., 1985); Drosg:irila 

(Feigen et al. 1 1980); §po:rothrix sdlenckii (Azn:>ld et al. 1 1987); an:l 

ral:i>it kidney oortex (Helwig et al., 1978). However, these investigators 

did rXJt further characterize the inhibito:ry nature of fluoride. other 

investigators have examined the inhibito:ry nature of fluoride 100re exten­

sively to fin:i that fluoride is a normtp::titive inhibitor of acid Iilos­

piatase in: the yeast, Sdrlzosactjlaranyoes ~ (Dibenedetto an:l Jollra, 

1978); the potato (Kasho et al. I 1982); Poa pratensis seeds (Lorezx:-KIJbis 

an:l M:>rawiecka, 1980); human skin epidennis (Makinen, 1985); an:l hmnan 

seminal plasma (NagIBs an:l lhattadla:ryya, 1984). 'Ihe fi.rxlirg then, that 
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fluoride acts as a J'Xll'lCXll'lleitive inhibitor of l'· denticola non.specific 

acid J;.ilosI:tlatase is not unusual. 

Evidence has also been provided suggest~ a periplasmic lcx::ation 

for the nonspecific acid J;.ilosI:tlatase in l'· denticola. Admittedly, 

evidence for the lcx::ation of the enzyme in the study is in:lirect. 'Ihe 

primary evidence for the periplasmic lcx::ation of the l'. denticola non­

specific acid i;:hosi:tlatase is that the enzyme is inefficiently released in 

OSllDtic shock fluids arrl sphercplast preparations arrl that the enzyme is 

able to hydrolyze J;hospha.te esters in whole cells (Table 11; Table 19). 

Similar observations on the hydrolysis of substrates by i:;. coli 

J;.ilosI:tlatases (Brockman arrl HEg;lel, 1968; To:rriani, 1968) arrl salmonella 

~tases (Kier et al., 1977a) have been made. 

'!he methods used he.re to study the periplasmic lcx::ation of the 

nonspecific acid J;.ilosI:tlatase are selective. '!he procedures, nanel.y os­

notic shock arrl the fonnation of sphercplasts with lysozyme arrl EDrA, do 

not release internal, cytcplasmic proteins. Another approach, utiliz~ 

the reagent diazo-NI:S, inactivates proteins (enzymes) on or outside the 

cytcplasmic membrane, while proteins inside the permeability barrier are 

l.D'laffected unless the cells are disrupted. Alt:hcu:]h the use of diazo-NIS 

in these experilllents may have been helpful (Table 18) , diazo-NtS is not 

the ideal reagent for lcx::at~ proteins. It inactivates only a limited 

fraction of enzymes or transp::>rt systems (Pardee arrl watanabe, 1968) • 

Diazatltnn catpXll'ds can canbine with sev-eral amino acid residues, pri­

marily histidine arrl tyrosine (fforinishi et al• I 1964) • 'Ihe chm:ged 

sulfonate groups ai;:pear to prevent its penetration into the cell. A 

disadvantage to us~ diazo-NIS is that if a protein does not contain an 
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adequate 1l\llTi:)er of histidine or tyrosine residues, diazo-NOO will not be 

l:x:JUrrl am inactivation will not oc:x::ur. '1he amino acid content of the 

nonspecific acid ~tase of 1. denticola is not presently kI'lavn. 

'1he electron microscopic histochemical localization of nonspecific 

acid ~tase in 1. denticola awears pranisirg (Fig. 16). However, 

the reagent used to trap the Pi released by the enzymatic reaction may 

need to be altered. lead salts ~ used here. Perhaps, calcium salts 

may be a ioore effective means of prec::ipitatirg ~te groups as they 

are released by the enzymatic reaction. Another possible method for the 

localization of nonspecific acid ~tase in ,1'. denticola involves the 

use of antibodies prepared against the enzyme. '1he anti-acid ~tase 

antibodies ccW.d be teamed with colloidal gold in an electron microscopic 

technique designed to visualize the location of the protein in thin-sec­

tions of l!.1hole cells. 

Certainly, the isolation of nutants altered in the eJq>ression of 

nonspecific acid ~tase ~d help to define the Iilysiological role 

of the enzyme in 1. denticola. '1he isolation am study of 1. denticola 

nutants resistant to fluoride may also provide infonnation al:xut the 

mechanism of action of fluoride in this organism. However, isolation of 

such nutants was not urx:lertake.n in these sb.xlies. 

'lhese sb.xlies have identified nonspecific acid ~tase as a 

potential target for fluoride action in 1· denticola. Fluoride inhibits 

the growth of the organism. Fluoride effects nonspecific acid Iilosi;ila­

tase activity. '1hese sb.xlies do not suc;Re5t that nonspecific acid phos­

?'latase is the only target for fluoride action. '1he potential effects of 

fluoride on membrane potential, extracellular am intracellular :PI, or 
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transport medlani.sms -were not considered in these studies. 

fluoride target 100lecules may exist in .'.!'. dentioola. 

A possible role for the periplasmically-exposed nonspecific acid 

phosphatase of.'.!'· <ientioola 'WOUld ~ to be that of a scaven;irq en­

zyme. Given that the phosphatase is inhibited by fluoride, presumably, 

it 'WOUld be difficult for the organism to obtain utilizable phosphate-

CXJntainirq ca:tp:Rm:Js in the p:reseooe of fluoride. Since there is no in­

dication of alkaline phosphatase activity in .'.!'. dentioola (HUghes an:l 

Yotis, 1986b) , many phosphate-containirq ca.tp:Unds may need to be 

degraded by a oonspecific acid phosphatase in order to be utilizable. 

When the activity of the acid phosphatase is inhibited, nutrients oon­

tainirq phosphate 'WOUld not be degraded to a usable state. Without suf­

ficient netabolites, the organism. would not be able to sw:vive, let alone 

thrive. 

Altha.lgh acid phosphatases have not specifically been i.nplicated as 

virulerx::ie factors in periodontal disease, acid phosphatase may have a 

role as a potential measure for periodontal disease progression. Since 

acid phosphatases are detected in intact cells, it may be possible to 

test periodontal pocket sanples for enzyme activity. High enzyme ac­

tivity may indicate a potential disease site, with spirochetes in an 

active netabolic state. I.cw enzyme activity may indicate a wa.nirg spiro­

chete population, with a return to periodontal health. 

In a broader sense, given that spirochetes are present in large 

numbers in subgirqival plaque associated with periodontal disease; then, 

based on the firrling:s :reported here, if fluoride is intrcxiuc::ed to the 

periodontal pocket environment, .'.!'· dentioola an:l other oral spirochetes 
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'WOUld not be able to catpe1:e or smvive. Spi.rochete numbers 'WOUld theo­

retically decrease an:l periodontal health 'WOUld be restored. As a 

preventive measure, fluoride administration 'WOUld reduce the aoc:::urmllation 

of subginJival plaque bacteria, thereby :reducinJ the incidence of 

periodontal disease. 



1he effect of fluoride on the oral spirochete ,T. dentioola has been 

stu:lied. Fluoride, as NaF, was shown to inhibit the growth of all three 

strains of ,T. delltioola stu:lied. cell growth was cx:npletely inhibited by 

40 µq fluoride :per ml. 

1he API ZYM system was used as a rapid means of sm:veyirg enzyme 

activities present in .T· dentioola. Of the seven enzyme activities 

detected in .T. dentioola 33520 with the API ZYM system, only non.specific 

acid J;ilosJ;:hatase was sensitive to 5 µq fluoride :per ml. 

1he fluoride-sensitive nonspecific acid i;itosphatase of .T· dentioola 

33520 was further characterized. 1he ci::lse:r:ved enzyme activity was op­

timally expressed in the stationary i;ilase of growth. In addition, ex­

ogenc:u; levels of glucose ani Pi did not appear to regulate nonspecific 

acid J;ilosJ;:hatase expressiat in .T· denticola. 1he fluoride-sensitive 

nonspecific acid J;ilosJ;:hatase that is measurable in intact cells has an 

acidic pH optinum arourd 4. 8 ani does not ai;:pear to have aey metal ion 

requirements for activity. Fluoride, as NaF, ai;:peared to be a classical 

naxx:mpetitive inhibitor of enzyme activity in intact cells. 

1he nonspecific acid J;ilosJ;:hatase was partially p.n-ified (twenty­

fold) followirg aniat excharge (DFAE-oellulose) c:hrana:tography. 1he 

partially p.n-ified enzyme exhibited a pH q>tinum in the vicinity of 4.0 

ani aweared to be therm::JSt:able at 60 °C. 1he partially p.n-ified enzyme 

was able to degrade a variety of J;ilosJ;:hate containirg substrates, 

in:::ludin:J f.ructose 1, 6-diJ;ilosJ;:hate, ioorganic pyrq;:il.osplate, ATP, ani 

112 
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p-nit.rqilenyl piospbate. Fluoride inhibition of the partially p.Irified 

nonspecific acid piosphatase was m:::>re difficult to categorize. Fluoride 

inhibition was rx> lan;Jer of a classical narx:x::rrpetitive nature, rut rather 

of a m:::>re catplex, mixed type. At low fluoride oorx::entrations, fluoride 

appeared to furci:ion as an activator of nonspecific acid piospbatase, 

while it appeared to inhibit enzyme activity at high fluoride concentra­

tions. 

Evidence that suggests a periplasmic location for the nonspecific 

acid piosphatase in T. denticola has also been provided. Intact cells 

are able to hydrolyze efficiently piosphate esters that are incapable of 

penetratin:;J the cells cytq>lasmic meni:>rane. 'lhe enzyme is inefficiently 

released in osrootic shock fluids an:l ~last preparations. In 

another awroadl, which utilized the reagent diazo-NI:S, nonspecific acid 

piosphatase on or artside the cytq>lasmic meni:>rane was inactivated, while 

proteins inside the penneability barrier were unaffected unless the cells 

were disrupted. 'lhe electron microscxpic histochemical localization of 

nonspecific acid i;ilosl:hatase in T· denticola was in:xmclusive. 

A possible role for the periplasmically-exposed nonspecific acid 

i;ilosl:hatase of T. <ienticola awears to be that of a scavergin:;J enzyme. 

It is hq>ed that these efforts to elucidate the fluoride sensitivity of 

T· denticola will lead to an unierstan::lin; of the effect of fluoride on 

oral spirochetes so that fluoride may be established as a preventive 

measure for pericxiontal disease. 
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