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ABSTRACT 

 

Partial oxidations of small molecules over metal surfaces are central to many 

heterogeneously catalyzed reactions. However, the identity of the actual surface species that 

promote or hinder these reactions has remained elusive for a variety of reasons. Recently, the 

understanding of the role of surface oxides in catalytic activity has changed. Instead of being 

thought of as poisons, they are now believed to be effective promoters of selective catalysis. 

Rh(111) was chosen as a model system to study oxidation; Rh effectively promotes 

oxidation reactions and is a benchmark system for models of heterogeneously catalyzed 

chemistry. In this dissertation work, the uptake of oxygen on Rh(111) was fully characterized for 

coverages from 0.5 monolayers (ML) to over 8 ML. The surface oxygen coverage was 

determined with Auger electron spectroscopy (AES), total oxygen abundance with temperature 

programmed desorption (TPD), and the surface structures with low energy electron diffraction 

(LEED) and scanning tunneling microscopy (STM). 

Careful control of the exposure parameters allowed for the selective growth of the RhO2 

surface oxide, surface adsorbed oxygen, and subsurface oxygen. Following surface oxide 

growth, the Rh crystal was exposed to carbon monoxide (CO) to study CO oxidation as a probe 

reaction. Carbon dioxide (CO2) yield was measured using TPD and surface structure evolution 

was tracked using STM. This is the first study that shows atomically resolved structural 

information regarding CO oxidation on RhO2, and reveals conclusive structural evidence of low 

temperature CO oxidation on RhO2 under UHV conditions.
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CHAPTER ONE 

INTRODUCTION 

Heterogeneously catalyzed chemical reactions are ubiquitous in nature; molecules in the 

interstellar medium are formed via surface-mediated processes, and icy surfaces process 

molecules in the terrestrial atmosphere. In heterogeneous catalysis, the catalyst and reactants are 

in different phases, and the catalyst is used to increase the rate of a chemical reaction by 

lowering the activation energy needed for the desired products to form. Heterogeneous catalysis 

has greatly impacted industrial synthetic applications; creating an energetically favored reaction 

pathway allows for the selective formation of desired products. Utilized in the formation of 

plastics, prescription medicines, and chemicals for further industrial and research use, 

heterogeneous catalysis is used in the formation of over 90% of manufactured products2. Besides 

their synthetic utility, heterogeneously catalyzed reactions may also have positive environmental 

and societal impacts in abating pollution; heterogeneously catalyzed reactions have been a major 

component in continued efforts to reduce the disastrous consequences of human induced climate 

events.  

From the 1940s through the 1970s, Los Angeles had some of the most polluted air in the 

world. The level of smog, a combination of nitrogen oxides (NOx) and hydrocarbons (HC), 

resulting from automobile exhaust made residents of the city unable to venture outside without 

experiencing headaches, shortness of breath, and other environmentally induced illness. Eugene 

Houdry, a French mechanical engineer who emigrated to the United States in 1930, saw the
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effects of factory and automobile exhaust on the air quality in Los Angeles, and began 

developing catalytic converters at the Oxy-Catalyst Company in the 1950s to neutralize the 

toxicNOx and HC emissions from automobile and factory exhaust fumes3. In the mid-1970s, 

when the EPA began enforcing more stringent emission regulations and requiring catalytic 

converters to be installed on all manufactured automobiles, the air quality of Los Angeles began 

to improve dramatically. Modern catalytic converters are made of a combination of platinum 

(Pt), palladium (Pd), and rhodium (Rh). This trio of metals is referred to as a three-way catalytic 

converter, and utilize each metal to effectively reduce or oxidize noxious exhaust into more 

benign emissions. In the case of the catalytic converter, heterogeneous catalysis serves to not 

only neutralize emissions from automobiles, but is the reason why air quality in Los Angeles, 

and many cities around the world, is now acceptable.  

In heterogeneous catalysis, such as NOx and HC oxidation/reduction via the three-way 

catalytic converter, the chemical species present on the catalyst surface, and resultant surface 

structure, are essential for product formation and reaction efficiency. For many heterogeneously 

catalyzed reactions, however, the active surface species are poorly defined. By understanding the 

active surface structure or species present during reaction conditions, optimal reaction 

parameters can be obtained to form the desired chemical product. 

The oxygenaceous species on oxidized metal surface of a heterogeneous catalyst is of 

particular importance in determining catalytic function. Due to the varying attractive and 

repulsive interactions among adsorbed oxygen and the metal surface, a variety of oxygen 

species, and thus structures, may be present on the catalyst surface. These oxygen species may 

include adsorbed O2, adlayers of adsorbed O atoms (Oad), surface reconstructions, surface 
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oxides, and bulk oxides. Each of these oxygen phases results in a unique chemical state for the 

oxygen and metal, in turn indicating surface reactivity4-5. When the interaction between an O2 

molecule and the surface are relatively weak, the O2 will adsorb intact, often at low temperatures. 

In these instances, the O2 is weakly bound to the surface via physisorption6. For Oad, the 

interaction between the O2 molecules and surface are significantly stronger than for physisorbed 

O2. This results in the O2 bond breaking, forming dissociatively adsorbed Oad which is 

chemisorbed to the surface7. The strength of interaction between the chemisorbed Oad and the 

surface allows for Oad to be present at much higher temperatures than physisorbed O2. As 

interactions between the surface and adsorbate increase, the metal lattice restructures itself to 

accommodate the new O atoms. This is especially prevalent in Ag oxidation; a variety of 

coexisting surface reconstructions form due to the interaction between Oad and surface Ag 

atoms8-9. As oxygen coverage increases on the metal surfaces, the metal shifts from metallic to 

oxide10. This shift in nature of the metal surface also alters the adsorbate surface interactions; the 

chemical nature of Oad goes from ionic to covalent11-12. In this regime, structures such as surface 

oxides, thin films of oxide, and bulk oxides are able to form13. Rh surface oxide, RhO2, has a 

trilayer O-Rh-O stacking structure. The chemical identity of the oxygen is unique to the surface 

oxide, and the upper and lower oxygen layers have unique chemical identities from one 

another14. The Rh in this trilayer is also distinctly different from bulk Rh; there is evidence of 

strongly oxygen coordinated Rh which is only found when the surface oxide is present coexisting 

with metallic Rh1. Bulk oxides are thicker oxide layers on the metal surface. When bulk oxides 

are present, there is no metallic identity remaining, only evidence of metal that is strongly 

coordinated to oxygen15. Because of the unique chemical identities of surface and bulk oxides 
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from one another, and the metallic surface, the chemical reactivity varies drastically for each 

surface species. 

In addition to the various surface phases of oxygen on metals, oxygen dissolved into the 

top few layers of the metal crystal, or subsurface oxygen, has recently been suggested as an 

important oxygen phase for heterogeneously catalyzed reactions16-17. Less is known, however, 

about the chemical characteristics and structural effects of subsurface oxygen on surface 

structure and function than the aforementioned oxygen phases. Consequently, recent studies have 

begun to investigate the properties of dissolved oxygen in catalytic metal surfaces.18 

This central relationship between structure and function has resulted in many 

fundamental surface science studies of catalytic transition metal single crystals under ultra-high 

vacuum (UHV) conditions. Working under pressures 12 to 13 orders of magnitude below 

atmospheric pressure, the interactions between specific adsorbed molecules and the native metal 

surface have been well defined for several benchmark systems7, 19-20. Actual heterogeneously 

catalyzed reactions, however, usually require elevated temperature and high-pressure conditions, 

resulting in high adsorbate coverages and complex surface interactions. The discrepancy between 

actual reaction conditions and UHV conditions is often referred to as the “pressure gap”21; this 

makes direct comparisons between the surfaces present in vacuum to those in actual catalysis 

challenging. The key is to find the essential aspects of the complex catalytic surfaces and 

reproduce them under UHV conditions for detailed study. The ability to discern the reactivity of 

catalytically relevant surface species or structures present during reaction conditions would be a 

significant advance in understanding the fundamental chemistry of metal surfaces in catalysis. 

Recent developments in surface science analysis techniques have allowed for the study of metal 
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surfaces under more realistic pressures22-24. High-pressure surface x-ray diffraction (SXRD)25, 

ambient pressure x-ray photoelectron spectroscopy (AP-XPS)26-28, scanning electron microscopy 

(SEM)  and transmission electron microscopy (TEM) of nanoparticles29, and high-pressure 

scanning tunneling microscopy (STM)22, 24, 30 have revealed the dynamic properties of solid 

catalysts, but such preparation methods result in complex mix of surface phases25, 31. 

Although there was a time when oxide surfaces were though to be inert, our 

understanding of them has changed over the past decade or so. It is clear now that oxide surfaces 

may be highly active, but this reactivity may strongly depend on the exposed facet or interface 

with the metal. Despite the complexity of the resultant surfaces, researchers have determined that 

surface oxides are a crucial part of catalytic activity1, 12, 17, 32-35. While surface oxides have been 

identified as catalytically relevant, atomistic information is difficult to obtain from such high-

pressure preparation methods due to the increased complexity of the system. Consequently, 

atomically resolved structural characterization is still needed for the prepared catalytically 

relevant surfaces. Such atomic characterization is, however, only possible under UHV 

conditions. As such, a method to prepare catalytically relevant surface species under UHV 

conditions is necessary to characterize the active surface phase. 

This dissertation work has focused on revealing a straightforward, UHV based, approach 

to prepare the Rh(111) surface with high oxygen coverages akin to those present under reaction 

conditions. Using gas-phase atomic oxygen (AO), we have developed a preparation method that 

combines the relevant surface oxide with controlled reaction conditions found under UHV 

conditions. Using temperature programmed desorption (TPD), Auger electron spectroscopy 

(AES), and low energy electron diffraction (LEED), ensemble surface chemical and structural 
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information was obtained to characterize surface wide behavior. Low-temperature STM was 

used to provide structural information not available from high pressure or temperature studies of 

catalytic metal surfaces. By using this combination of UHV techniques, the chemical and 

structural identity of the Rh(111) surface following AO exposure and CO oxidation provides 

atomic-scale information of a catalytically relevant metal surface. 

Rhodium 

 Rhodium is a powerful and selective catalyst for a variety of applications including the 

oxidation of small molecules and NOx reduction34, 36-38. The chemical species and surface 

structures present on catalytic metal surfaces greatly influences the chemical efficacy of the 

catalyst as well as the resultant chemical product. Due to the many applications of Rh in 

heterogeneously catalyzed reactions, there have been many studies to discern fundamental 

adsorbate-surface interactions on Rh under UHV conditions39-43. Rh has a face centered cubic 

(fcc) crystal structure as shown in Figure 1. To simplify adsorbate-surface interactions, many 

studies have used the (111) face of the Rh crystal. This denotation, known as a Miller index, 

specifies the manner in which the bulk crystal is cleaved to generate a particular surface 

structure. In the instance of Rh(111), the three axis of the bulk crystal are intersected, resulting in 

           
 

Figure 1. Left) The face centered cubic (fcc) unit cell structure; Center) The (111) plane of an 

fcc unit cell; Right) a representative, atomically flat fcc (111) surface. 
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an atomically flat surface termination (Figure 1). Such a truncation limits the number of 

undercoordinated step edge atoms, controlling the interactions between adsorbates and surface 

defects.  

 Along with Miller indices, Wood’s notation is a commonly used method of classifying 

overlayer structures on single crystal surfaces. The primitive unit cell of an fcc (111) surface, the 

smallest possible repeating unit of the surface, is defined by identifying the substrate vectors that, 

when repeated in an ordered array, generates the surface structure, as shown in the left image of 

Figure 2. For the fcc (111) surface, the unit cell is (1×1). Surface adlayers are identified relative 

to the native (1×1) surface cell. When the adlayer has a spacing that is twice the size of the unit 

cell in both directions, the adlayer unit cell is then referred to as (2×2), as shown in the center 

image of Figure 2. Similarly, a unit cell that is twice as long in one direction relative to the native 

unit cell, but the same size in the other direction, is defined as a (2×1) unit cell. 

 

 
 

Figure 2. Left) The (1×1) unit cell on an fcc (111) surface; Center) The (2×2) unit cell in red; 

Right) The (2×1) unit cell in green. 
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The use of Rh as a partial oxidation catalyst has resulted in many studies investigating the 

interaction of oxygen with Rh(111)41, 43-44. Despite the seeming simplicity of the O/Rh(111) 

system, much effort went into determining the structure of adsorbed oxygen (Oad) on Rh(111). 

Early work using LEED showed that the Rh(111) surface saturates upon the formation of a 

(2×2)-O overlayer45-46, depicted in the left image of Figure 3. Subsequent work showed that it 

would be impossible to distinguish the (2×2)-O surface structure from three domains of (2×1)-O 

rotated by 60˚, depicted in the right image of Figure 347. Once STM was used to investigate the 

O/Rh(111) surface, it was determined that the predominant surface structure upon saturation with 

Oad was the (2×1)-O adlayer40, 43. The model for Oad on Rh(111) under UHV conditions now 

shows that the surface is covered in the (2×2)-O adlayer that has a coverage (θO) of 0.25 

monolayers (ML) at low coverages. As coverage is increased, the surface saturates at 0.5 ML, 

which corresponds to the (2×1)-O adlayer. The 0.5 ML is kinetically limited due to O2 needing 

two adjacent vacant sites on the Rh surface to dissociate under UHV conditions. 

         
 

Figure 3. Left) The (2×2)-O adlayer on Rh(111); Right) The (2×1)-O adlayer on Rh(111) 
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When Rh(111) is exposed to high O2 pressures1 or gas phase AO48 at elevated 

temperatures, the surface oxide forms along step edges and defect sites. The surface oxide 

displays in STM images as a moiré pattern; this is a result of the misfit between the 3.02 Å oxide 

lattice and 2.69 Å native Rh lattice1. A moiré pattern results from the constructive interference of 

two similar lattices overlaid with one another. The constructive wave interference from the two 

structures results in the formation of a larger projection of the combined structures. The Rh 

surface oxide, RhO2, is a trilayer reconstruction of the Rh(111) surface. As show in Figure 41, a 

(7×7) O-Rh-O unit cell lies atop the native (8×8) Rh(111) surface supercell. The trilayer 

reconstruction is defined as such due to the sandwiching of Rh atoms between two layers of O 

atoms; due to the intermolecular interactions between the O and Rh atoms, the Rh(111) surface 

reconstructs to allow for the top layer of Rh atoms to integrate into the oxide structure. Whereas 

the surface oxide causes a reconstruction of the Rh(111) surface, the (2×2)-O and (2×1)-O 

adlayers are formed by O2 dissociatively adsorbing onto Rh(111). As such, there is no 

reconstruction of the Rh(111) surface, and the Oad is chemisorbed to the surface. While once 

 
 

Figure 4. Side and top views of the Rh surface oxide, RhO2
1

. 
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believed to be a catalyst poison or inactive spectator, the oxide surface is now believed to be 

catalytically active and crucial to catalyst function4-5, 33, 49.  

 While fundamental interactions of small molecules, such as O2 and CO, on metal single 

crystals have been thoroughly studied under UHV conditions, only recently have advances been 

made regarding surface structures present under actual high pressure and temperature conditions 

commonly found in actual heterogeneously catalyzed reactions15, 50-51. Utilizing high pressure O2 

exposures1, AO plasma sources52, and gas phase AO48, 53 has allowed for the formation of surface 

structures that are not stable under UHV conditions. In CO oxidation studies in which the surface 

oxide is present on Rh nanoparticles and single crystal surfaces, CO2 yield is significantly higher 

compared to the Rh surface that is solely covered in Oad
10, 34, 49. Recent work has also 

demonstrated the unique character of bulk oxides. Low-temperature activation of methane has 

been observed on bulk iridium oxide, IrO2(110)54, further supporting the enhanced catalytic 

activity of particular oxide species on metal catalysts. In doing so, it has been determined that 

catalytic activity cannot be attributed solely to the metallic phase. 

In an effort to study the catalytically relevant surfaces using traditional UHV surface 

science techniques, this dissertation work focuses on forming high coverage oxygen adlayers and 

surface oxides on catalytically relevant transition metal surfaces. First, the effect of the metal 

surface on subsurface oxygen (Osub) stability was probed by comparing Rh(111) to Pt(553), a 

highly stepped metal surface55. With the confirmation that the metal affinity for Osub greatly 

contributes to Osub formation, a reproducible method for forming various catalytically relevant 

oxygen phases on Rh(111) was determined48. While recent studies have shown catalytically 

relevant surface phases, the methods employed have made determining the exact site of 
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reactivity difficult to obtain. The last portion of this dissertation work has focused on 

determining the active site for CO oxidation on Rh(111) using TPD and STM to provide 

atomically resolved structural information. This crucial information will greatly improve our 

understanding of the surface reaction mechanism for CO oxidation on Rh catalysts. 
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CHAPTER TWO 

EXPOSURE OF PT(553) AND RH(111) TO ATOMIC AND MOLECULAR OXYGEN: DO 

DEFECTS ENHANCE SUBSURFACE OXYGEN FORMATION? 

Reprinted with permission from Exposure of Pt(553) and Rh(111) to Atomic And 

Molecular Oxygen: Do Defects Enhance Subsurface Oxygen Formation?, Rachael G. Farber, 

Marie E. Turano, Eleanor C. N. Oskorep, Noelle T. Wands, Ludo B. Juurlink, and Daniel R. 

Killelea, Journal of Physics: Condensed Matter 2017 29 (16), 164002. Copyright 2017 

IOPScience. 

The adsorption of oxygen onto metal surfaces is central to many heterogeneously 

catalyzed reactions, and is a benchmark system for refinement of theoretical models of surface 

structure and chemistry 56-58. On many transition metal surfaces, O2 readily dissociates into 

adsorbed oxygen atoms (Oad) that are incorporated into stable adsorbate structures or surface 

reconstructions. On both Rh and Pt surfaces, O2 may chemisorb at low surface temperatures (Ts), 

but above 200 K O2 dissociatively chemisorbs to the metal and only Oad is observed59-61. 

However, when the metal surfaces are exposed to more potent oxidants, such as NO2 or gas-

phase atomic oxygen (AO), higher oxygen coverages are possible, and the total amount of 

oxygen exceeds what is present on the surface. Besides the formation of three-dimensional 

oxides, O can become dissolved into the near surface, or selvedge, of the metal and form 

subsurface oxygen (Osub). When Osub is plentiful, total oxygen abundances in excess of 1 

monolayer (ML, defined as one adsorbate per surface metal atom, ≈ 11015 O cm-2)62 are
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possible. Typically, there will be an oxidized surface layer and the remaining oxygen is Osub. 

Osub are thought to be an important factor in heterogeneously catalyzed reactions because its 

presence alters the geometric and electronic structure of the metal surface, in turn influencing the 

reactivity of the metal surface16, 63-65. Additionally, Osub acts as a reservoir of O atoms that can 

participate in the reaction; this effectively generates a higher surface concentration of O and 

prolongs the catalytic activity of metal surfaces 18, 66.  

The stability of Osub and the response of the surface to its presence vary for many metal 

surfaces. On Pd surfaces, small concentrations of Osub form Pd oxides, and multilayer Pd oxides 

are readily formed from gas-phase AO 52, 67. In Ag(111) surfaces, Osub is destabilized above 500 

K, and small abundances (≈0.1 ML Osub) cause extensive surface reconstruction68. Alternatively, 

Rh surfaces are far less sensitive to Osub. On Rh(111), total coverages in excess of 2 ML O have 

been prepared using AO with the persistence of the O = 0.5 ML (21)-O adlayer. Furthermore, 

despite the high abundance of oxygen absorbed into the selvedge of the metal, there is no 

evidence of bulk or surface oxide formation 60. Finally, Pt surfaces appear to resist the formation 

of Osub. Exposure of Pt surfaces to AO results in the formation of three-dimensional oxides that 

disorder the surface once O > 0.5 ML; no appreciable amount of Osub was observed to form 69.  

It is also worth noting that on each metal their activity towards O2 varies as well. Ag(111) 

is effectively inert to O2, but Pt and Rh surfaces are far more reactive 6. Pt surfaces with (111) 

geometry typically exhibit an initial sticking probability (S0) around 0.4, which decreases with 

increasing O, until the terminal coverage of O = 0.25 ML is reached62; exposure to NO2 can 

achieve O ≈ 0.75, but the surface was disordered61. Rhodium surfaces are even more reactive 
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towards O2, S0 is near unity, the surface becomes saturated at O = 0.5 ML 60, 70 and no further 

oxygen accumulation is observed unless high pressures of O2 are employed33, 71.  

In all of the above cases, planar surfaces with low defect densities were used. Due to the 

increased reactivity and lattice perturbation at defect sites, it is reasonable to think that Osub 

formation may be enhanced on a surface with a greater number of defects. On Pd(100), for 

example, defects were observed to facilitate the formation of Osub from surface-bound oxygen 

atoms 72. Pt, however, has proven to be resistant to Osub formation, with small amounts of Osub 

formed near step edges after repeated high temperature exposures to O2 
62. In order to determine 

the effect defects have on Osub formation, a Pt(553) crystal, a stepped Pt surface with 4-atom 

wide (111) terraces and (110) step geometry, was used. By exposing the Pt(553) surface to gas-

phase AO, the Osub formation can be tracked to determine how defect sites enhance Osub 

formation and stability. The comparison of Pt(553) to Pt(111) elucidates how step edges and 

defect density can facilitate the formation of Osub on a metal where Osub is otherwise not stable. 

In addition to comparing the Pt(553) oxygen uptake with Pt(111),  we compare the metal to 

planar Rh(111) exposed to similar amounts of AO to determine how metal identity, despite a 

high defect density, affects the formation and stability of Osub. 

The experiments were performed using an ultra-high vacuum (UHV) apparatus that has 

been described in detail previously 60. The apparatus is equipped with Auger electron 

spectroscopy (AES) for surface analysis, low-energy electron diffractometer (LEED) for 

structural characterization, and two quadrupole mass spectrometers (QMS) for temperature 

programmed desorption (TPD) experiments and residual gas analysis (RGA). The Rh(111) and 

Pt(553) samples were supplied by Surface Preparation Laboratories (SPL, Zaandam, NL) and 
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were cleaned by repeated cycles of Ar+ sputter and annealing in UHV 73. Surface cleanliness was 

verified with AES and LEED.  

The Rh(111) or Pt(553) crystals were exposed to a mixture of gas-phase atomic oxygen 

(AO) and O2 in the UHV preparation chamber at the prescribed exposure temperatures. AO was 

generated by dissociation of O2 over a hot 0.25 mm diameter Ir filament 74-75. The chamber was 

backfilled to 510-7 Torr O2 and the filament brought to around 1 cm from the front face of the 

crystal. AES analysis of the surface after AO exposure show only the accumulation of O on the 

surfaces, as previously reported for Ag(111) 35. The total amount of oxygen (O) was determined 

by integration of the O2 recombinative desorption peak in a TPD experiment. For all TPD data, 

the ramp rate was 3.0 K s-1. The peak area of the self-limiting 0.5 ML O coverage on Rh(111) 

from O2 exposure was used to calibrate the TPD peak areas. AES was used to quantify the 

oxygen surface coverage (O,ad) on Rh(111), but this was not possible on Pt(553) because of 

difficulty in systematically quantifying the intensity of the Pt Auger peaks. 

In order to determine how Pt(553) will be affected by high oxygen coverages from 

exposure to AO, we first explored the uptake of oxygen from O2 exposures. As shown in Figure 

5A, O2 readily adsorbed to Pt(553) at Ts = 300 K. For modest oxygen coverages (O < 0.2 ML) , 

O desorbed in a broad feature around 800 K in the TPD experiment. As O, was increased, the 

desorption feature at 800 K shifted towards a lower temperature, ~ 750 K, and saturated at ~ 180 

L; this higher temperature desorption feature is attributed to O desorbing from (110) step edges 

76. After 180 L O2 exposures, a lower temperature shoulder began to develop at roughly 650 K.  
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With a 600 L exposure, the 650 K peak, assigned to O desorption from (111) terraces 76, 

saturated and further O2 exposures had no effect on desorption behavior. The TPD spectrum is 

nearly identical to a 0.25 ML Oads spectrum reported previously with a TPD ramp a 1 K s-1 59, 

and is in agreement with Parker, et al.61. The total oxygen coverage (O) as a function of O2 

exposure is shown in Figure 6A. The surface saturated at O = 0.25 ML, similar to previous 

reports of O2 dissociation on Pt(553) 59. These data show that, at Ts = 300 K, O2 exposures only 

formed surface bound oxygen that saturated at O = 0.25 ML, characteristic of the p(22)-O 

 
 

Figure 5. TPD spectra after oxygen desorption on Pt(553) at Ts = 300 K. Each spectrum was 

taken with a ramp rate of 3 K s-1. A) desorption after various O2 exposures. Terminal 

coverage was O = 0.25 ML after 300 L dose. B) desorption after various AO exposures. In 

panel B, the two new peaks appear at ≈700 K and ≈625 K. The 700 K peak rapidly saturates 

indicating it is from a surface bound species while the 625 K peak is decomposition of the 

oxide.  
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adlayer. When comparing O of Pt(111) and Pt(553), there is little difference between oxygen 

adsorption on the two surfaces 61, 77. Although O2 dosing at Ts = 300 K resulted in 0.25 ML 

saturation, it is important to note the effect Ts has on O uptake and desorption behavior. In a 

previous study we showed that significantly larger O can be reached after extensive O2 

exposures at Ts = 100 K on Pt(553). The (110) step edge allows for the autocatalytic dissociation 

of O2 into Oad upon adsorption at 100 K resulting in a high location concentration of metastable 

chemisorbed molecular oxygen, O2,chem, coexisting with Oad at Ts = 100 K59. 

After characterizing O2 uptake on Pt(553), we then studied the O uptake on Pt(553) after 

AO exposure. As shown in Figure 5B, the O2 TPD peaks are still present, but after AO exposure 

two new desorption peaks were observed to form, one near 700 K and a second around 625 K. It 

is interesting to note that the smallest AO exposure (60s) roughly corresponds to a 60 L O2 

exposure, and integration of this peak yields a coverage of O ≈ 0.07 ML. We used this to 

estimate the incident flux of AO impinging on the surface. Assuming the 1 cm diameter surface 

(A = 0.79 cm2) was uniformly exposed to AO from the Ir filament, and the sticking probability 

of AO for O < 0.1 ML was unity, this yields a flux ( = O / A•S0•t) on the Pt(553) crystal of  

= 0.0015 ML cm-2 s-1 from the filament. This is in line with previous reports of AO generation 

from Ir filaments 74-75 and is less than 1% of the flux from the atomic beam source used by the 

Weaver group69, 78. 
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As shown in Figure 6A, when AO exposure was increased, the TPD desorption features 

were initially similar to those seen for O2 exposures. Like for O2, the lower 650 K desorption 

peak grew in and appeared to saturate by a 180 s exposure, but thereafter O surpassed the 0.25 

 
 

Figure 6. Integrated TPD area highlighting oxygen uptake as a function of exposure length. 

A) Direct comparison between oxygen coverage as a result of AO and O2 exposure on 

Pt(553) B) Oxygen uptake after AO exposure on Rh(111). 
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ML and continued to grow, as evidence by the appearance of the two new desorption peaks. The 

new desorption peaks correspond to surface coverages in excess of 0.25 ML, as reported 

previously61, 69. The peak near 700 K is desorption from a (2×2)-O adlayer on the (111) terraces 

and saturates at 0.25 ML79. At 600 s, a new peak develops around 625 K; the 625 K peak 

assigned to decomposition of platinum oxide, as previously reported by Weaver et al.69, 78. The 

evolution of the TPD desorption behavior corresponds well with surface evolution to allow for O 

uptake greater that 0.25 ML. Sharp desorption peaks at the same temperatures were also reported 

for high O coverages of the very similar Pt(221) surface due to the autocatalytic dissociation of 

O2 into Oad at Ts = 100 K59. There was also a continuation in the O uptake, roughly 0.75 ML now 

 
 

Figure 7. TPD spectra after exposure of Rh(111) to O2 (O = 0.5 ML) and AO with Ts = 350 K. 

All TPD data was collected with a ramp rate of 3 K s-1. 
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exist on the Pt(553) surface. While AO generated O uptake beyond 0.25 ML, there was still 

significantly less than 1.0 ML O on the surface. Previous work looking at Pt(111) after exposure 

to AO showed very similar results to those seen on Pt(553)69. From the TPD data alone, it 

appears as though the introduction of step edges did little to increase the stability and formation 

of Osub on Pt, despite the rather high O and presence of terrace step edges.  

To see how Pt(553) O uptake after AO exposure compares to a different transition metal, 

we studied AO uptake on Rh(111). It is well known that on Rh(111), O2 dissociates into Oad and 

saturates at 0.5 ML forming a (2×1)-O adlayer. This 0.5 ML coverage, shown in Figure 7 as the 

gray TPD trace, has a characteristic broad desorption feature beginning at 800 K and continuing 

to 1200 K70. After exposure to AO, a sharp desorption feature at ~750 K grew in (Figure 7). As 

the length of exposure was increased, the ~750 K feature continued to grow, with no saturation 

point observed. The integrated TPD area also suggests O uptake would continue with further AO 

exposure. As shown in Figure 6B, the total O on Rh(111) linearly increased, for example a 300 s 

AO exposure resulted in nearly 3 ML O uptake. The significant amount of O uptake, coupled 

with previous work identifying the sharp desorption feature after AO exposure as Osub 

emergence80, demonstrates that Rh(111) has a much higher affinity for Osub formation, and 

subsequent, stability than Pt(553). 
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Using LEED, we were able to observe how the surface structure changed as more O was 

introduced into the system. Figure 8A shows a representative LEED pattern for a Rh(111) 

crystal. After a 60 L O2 exposure (Figure 8B), a (2×1) pattern was present, indicating the 

formation of the (2×1)-O adlayer corresponding to 0.5 ML Oad. After 180 s exposure to AO, 

 
 

Figure 8. Images of LEED patterns on Rh(111) and Pt(553). Each pattern was obtained using 

62 eV electron energy. A through C are LEED patterns of Rh(111) surface. D through I are 

LEED patterns of Pt(553) surface. The images from Rh(111) are: A) Clean Rh(111) showing 

(1×1) pattern;  B) after 60 L O2 exposure showing (2×1) pattern at O = 0.5 ML O; and C) 

180 s AO exhibiting (2√3 × 2√3) pattern. The lower six images are from Pt(553) and were 

taken after the following AO exposures: D) 0 s; E) 60 s;  F) 180 s; G) 300 s; H) 600 s; and I) 

1200 s. The degeneration of the pattern to a diffuse background is evident in panel I. 
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when the sharp desorption feature (Figure 7) is seen at 750 K on Rh(111), a (2√3×2√3) pattern 

developed. This suggests that, after sufficient AO exposure and Osub formation, the surface 

structure of the Rh(111) crystal changes in response to the presence of Osub. On Pt(553), 

however, there was very little change in the surface structures detected after AO exposure. 

Figure 8D is a representative LEED pattern for a clean Pt(553) surface. Figure 8E-H shows the 

Pt(553) surface after 60, 180, 300, and 600 s AO exposures. The pattern shows very little change 

across the various exposures; the (2×2)-O adlayer shows as slight splitting of the native (553) 

surface, but otherwise there is no major surface structure change or reconstruction. After a 1200 

s AO exposure (Figure 8I), however, the (553) structure is nearly obscured by a hazy 

background. This corresponds very well to work done by Weaver showing the degeneration of 

sharp LEED patterns as the surface became covered in three-dimensional patches of the bulk 

oxide, whose orientations develop stochastically and are incommensurate with the underlying 

Pt(111) surface69, 78. The progression of LEED patterns suggests that, while Rh(111) readily 

forms Osub and has surface structure formations that represent that presence of Osub, Pt(553) does 

not readily form Osub. Instead, the Pt(553) surface forms a bulk Pt oxide after extensive AO 

exposure at room temperature, highlighting how the intrinsic stability of Osub on a particular 

metal is more important than the defects that could facilitate the incorporation of oxygen into the 

selvedge. 

While high O coverages for Pt(553) may be obtained either through Ts = 100 K O2 

exposures or AO exposures at Ts = 300 K, neither oxidation process stabilizes the formation of 

Osub. At low temperature O2 exposures, a kinetic barrier allows for a supersaturation of O2,chem 

and Oad, which forms due to step geometry effects59. While oxidation with AO at Ts = 300 K 
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does not experience such kinetic barriers for increased O coverage, extensive AO exposure at 

300 K results in bulk oxide growth rather than oxygen absorption into the selvedge. Rh(111), on 

the other hand, readily forms Osub and the surface structures present evolve drastically in the 

present of absorbed O. These results suggest that, for Pt samples, defect sites alone are not 

enough to promote the formation of, and stability, of Osub. 
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CHAPTER THREE 

THE QUEST FOR STABILITY: STRUCTURAL DEPENDENCE OF RH(111) ON OXYGEN 

COVERAGE AT ELEVATED TEMPERATURE 

Reprinted with permission from The Quest for Stability: Structural Dependence of 

Rh(111) on Oxygen Coverage at Elevated Temperature, Rachael G. Farber, Marie E. Turano, 

Eleanor C. N. Oskorep, Noelle T. Wands, Erin V. Iski, and Daniel R. Killelea, The Journal of 

Physical Chemistry C 2017 121 (19), 10470-10475. Copyright 2017 American Chemical 

Society. 

The arrangements of atoms on oxidized metal surfaces arise from the interplay between 

attractive and repulsive interactions among the adsorbed oxygen atoms and the metal, resulting 

in a variety of surface structures. The surface structure of oxidized metals include adlayers, 

surface reconstructions, and surface oxides; these reveal the chemical state of both the adsorbed 

oxygen and the metal, and therefore are indicators of surface reactivity 4-5. With increasing 

oxygen coverage (O atoms per surface metal atom), the oxidation state of the metal surface goes 

from metallic to oxide 10. Concomitantly, the chemical state of the adsorbed oxygen shifts from 

ionic to covalent 11-12. The surface structure also evolves with oxygen coverage; the structure is 

indicative of the chemical state of the oxidized surface, and thus, differs for various chemical 

states. When the chemical potentials of different oxidic phases are nearly isoenergetic, different 

surface oxygen phases co-exist on the surface 15, 81-82. Proper identification of surface phases and 

their relative coverages provide insight into the fundamental chemistry of oxidized metal 
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surfaces. Understanding how metal surfaces respond to high coverages of oxygen is of particular 

importance for determination of the atomic-level nature of oxidation reactions over metal 

surfaces under the high-pressure conditions of industrial heterogeneous catalysis.83 

Over the past decade or so, our understanding of the nature of the active surfaces in  

heterogeneous catalysis has significantly changed 10, 15, 84. The paradigm of catalytic activity 

being solely due to the metal is incomplete; the oxide must also be considered. While once 

thought of as passive, or even a poison, it is now believed that the oxide surface is the 

catalytically important phase under reaction conditions for several major reactions 4-5, 33, 49. 

Recently, atomic oxygen (AO) has been used to control the growth of high-quality oxide 

surfaces on Pt and Pd, allowing for thorough investigation of the physical and chemical 

properties of the oxidized surfaces 52-53, 85. On Ag, the flux of AO was shown to be a key 

parameter in the growth of the oxide phase 35. Similarly, exposing Rh(111) to high pressure O2 

yielded patches of a high-density oxygen reconstruction phase along with the surface oxide RhO2 

1. Although these studies clearly demonstrate the ability to form surfaces with coexisting oxide 

phases under strongly oxidizing conditions, the conditions for the growth of specific phases and 

their relative stability were not determined. In the present study, we show that exposing Rh(111) 

to gas-phase AO yields the same surface phases as high-pressure O2 exposures, and that proper 

selection of deposition temperature (Tdep) and AO exposure yield particular surface structures. 

Despite total oxygen coverages (O,total) in excess of 5 monolayers of oxygen (ML, 1 ML = 1.6  

1015 O atoms cm-2 18), the surface exhibited the (21)-O adlayer structure corresponding to an 

oxygen surface coverage (O,surface) of 0.5 ML. However, areas of the surface oxide (RhO2) were 
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observed in the presence of defects and ample oxygen dissolved in the subsurface (or selvedge) 

of the metal.  

 The persistence of the (21) adlayer and the limited growth of the RhO2 surface oxide are 

important for understanding the reactivity of Rh surfaces in catalysis. Ultra-thin RhO2 oxide 

films on Rh metal surfaces have recently been cited as the chemically important surface in actual 

heterogeneous catalysis reactions 4, 49, 82. The oxide surface structure is insensitive to the 

structure of the bulk metal, so the oxide observed on Rh(111) is relevant to the surface of 

oxidized nanoparticles 82. Oxide formation on Rh nanoparticles increases the rate of CO 

oxidation and such catalytic activity is directly tied to the amount of oxide formed on the 

nanoparticle surface 34. Despite the critical role surface oxide films play in catalysis, the 

energetic reasons behind the formation of certain surface oxide films are unclear, as are the 

factors that favor or disfavor their formation.  

Herein, we characterize oxidized surfaces using ultra-high vacuum scanning tunneling 

microscopy (UHV-STM), temperature programmed desorption (TPD), Auger electron 

spectroscopy (AES), and low-energy electron diffraction (LEED). Furthermore, this approach 

allows for quantitative analysis of O uptake and directly connects oxygen exposure, uptake, 

surface coverage, and structure. These results show that the RhO2 surface oxide and (21)-O 

adlayer are both thermodynamically stable. Finally, the surface oxide is not observed to form at 

lower deposition temperatures or on terraces, suggesting defects facilitate oxide formation at 

elevated temperatures.  

Experiments were performed in an ultrahigh-vacuum scanning tunneling microscope 

(UHV-STM, RHK Technology, Troy, MI) apparatus described previously 60. The STM has a 
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Pan-style scanner and is suspended from the bottom of a vibration-isolated closed-cycle He 

cryostat, which has a base temperature around 12 K. The Rh(111) crystal (Surface Preparation 

Laboratory, Zaandam, NL) was mounted on a Ta sample holder (McAllister Technical Services, 

Coeur d’Alene, ID) with a type-K thermocouple. Repeated cycles of Ar+ sputtering and 

annealing at 1300 K prepared a clean Rh(111) surface; cleanliness was verified by Auger 

Electron Spectroscopy, a sharp (11) LEED pattern, and STM. Atomic oxygen (AO) was 

generated using a hot Ir filament as described by Umemoto, et al 74, 86. The UHV chamber was 

backfilled with O2 (g) to 510-7 Torr, and the hot Ir filament was positioned within ≈ 0.5 cm of 

the front face of the Rh(111) crystal. AES measurements showed no new peaks besides O, as 

previously reported 35. LEED patterns were obtained with the Rh(111) crystal at 300 K. All TPD 

measurements used a ramp rate of 3 K s-1, and the spectra were recorded with a UTI 100c 

quadrupole mass spectrometer controlled by a homebuilt labVIEW program. Prolonged O2 

exposure at 350 K yields 0.5 ML Oad; the integral of the O2 TPD peak from this surface was used 

to calibrate the total amount of O for other TPD experiments.60  All STM images were taken at 

30 K. Post-imaging TPD data showed neither accumulation of background gases 87 nor 

degradation of the oxidized surface. Likewise, LEED patterns taken before imaging were 

indistinguishable from the post-imaging patterns. LEED analysis did not alter the oxidized 

surface; both TPD spectra and STM images showed no discernable difference whether or not a 

LEED was obtained.  

O atoms on the Rh(111) surface recombinatively desorb as O2 in a TPD measurement, 

and integration of the desorption peak yields O,total. Figure 5 shows TPD spectra for O2 

desorption from Rh(111) after various exposures to gas-phase AO with the surface at either    
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Tdep = 700 K (Figure 9A) or Tdep = 350 K (Figure 9B). The O2 desorption temperatures and peak 

shapes were nearly the same, suggesting that the O atoms were likely in similar adsorption 

and/or absorption sites after exposure at either temperature. Arrhenius analysis of the leading 

edges of the apparently zeroth-order desorption features 61 found the activation energies (Ea) for 

desorption to be 220 ± 6 kJ mol-1 for Tdep = 700 K and 201 ± 6 kJ mol-1 for Tdep = 350 K. This 

difference in Ea suggests the oxygen from higher Tdep was more stable, but the difference was 

modest. However, as shown in Figure 9C, Tdep had a pronounced effect on O,total, with 

significantly greater uptake at Tdep = 700 K. O,surface was determined using surface-sensitive AES 

measurements and the results in Figure 9D show that for all AO exposures O,total > O,surface. 

Despite the differences in θO,total, Tdep had a much smaller effect on θO,surface. θO,surface ranged from  

0.5 ML to slightly less than 0.8 ML; θO,surface < 0.5 ML were not observed because the AO 

dosing also exposes the Rh(111) surface to 510-7 Torr O2, rapidly saturating the surface with 

0.5 ML O 41, 60. The surface coverages in excess of 0.5 ML could be from other surface 

structures. θO,surface for the (2√3  2√3) and (2  2)-3O adlayers are 0.66 ML and 0.75 ML, 

respectively 88. Both structures have been observed after high-pressure O2 exposures 82, 88 and fit 

the AES data in Figure 9D. However, because θO,surface was significantly less than 1 ML for all 

AO exposures, the excess O must have been absorbed into the selvedge of the Rh(111) crystal as 

subsurface oxygen (Osub), as has been reported previously for high oxygen coverages on and in 

Rh(111) 18, 60, 66.  
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The TPD and AES data show high oxygen abundance, yet modest surface coverage after 

 
Figure 9. TPD spectra (ramp rate = 3 K s-1) after AO exposures on Rh(111) at A) Tdep = 700 

K and B) Tdep = 350 K. The total oxygen uptake (θO,total, integrated TPD) vs. AO exposure is 

shown in C) and the surface coverage (θO,surface, as determined by AES) is plotted in D). 

These show only a modest increase in surface coverage despite large increases in total 

oxygen. 
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AO exposure. Figure 10 depicts how the surface structure changes for several θO,total at Tdep = 

350 K. The STM images and LEED patterns (insets) show the surface changing from the θO,total = 

0.5 ML (21) adlayer structure (Figure 10A) to a distorted (2√32√3) R30° with θO,total = 0.76 ± 

0.06 ML (Figure 10D). As reported in a previous publication60, the (21)-O structure remained 

predominant despite θO,total > 1 ML; these observations were confirmed by the STM and LEED 

images in Figure 10B. With increasing O uptake, however, the (2√32√3) R30° domains grow at 

the expense of (21), as seen in Figure 10C. Finally, at θO,total = 2.9 ML (Figure 10D), the LEED 

showed only a distorted (2√32√3) R30° pattern, and likewise the STM images showed the 

surface covered with extensive domains of (2√32√3)R30° intermixed with patches of (22)-3O 

domains. This mixture of surface structures has been previously reported after O2 exposures at 

elevated pressure and temperature 88, but has not been shown after AO exposures under UHV 

compatible conditions and at modest sample temperatures. It is believed that the incorporation of 

subsurface oxygen (Osub) allows for the formation of the oxide-like structures because, once the 

oxygen rich domain thickens, the oxygen cannot penetrate to propagate the incorporation of 

oxygen 17.  
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The effect of Tdep is evident in that going from 350 K to 700 K, θO,total increased 

dramatically, θO,surface decreased slightly, and the O2 desorption Ea was modestly greater. Taken 

together, these point to a change in the chemical state of the oxygen on and in Rh(111). The 

STM images in Figure 11A show the marked difference in the surface structure after exposure at 

 
 

Figure 10. STM images (20 x 20 nm2) and LEED patterns (insets) of Rh(111) after Tdep = 350 

K AO/O2 exposures. θO,total = A) 0.5 ML O, B) 0.9 ML O, C) 1.7 ML O, and D) 2.9 ML O. 

All STM images were taken at 30 K and electron energy was 62 eV for all LEED patterns. 

STM imaging conditions were A) 0.9 V, 300 pA; B) 20 mV, 288 pA; C) 0.88 V, 200 pA; D) 

100 mV, 160 pA 
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700 K compared to 350 K. Instead of the intermixed coexistence of (2√32√3)R30° and (22)-

3O structures, the surface was covered in (21)-O domains or large hexagonal domains on the 

top of step edges. These structures were also observed after prolonged 210-4 mbar O2 exposures 

at 800 K 1. Closer inspection of these hexagonal structures revealed a moiré pattern characteristic 

of a single (88) RhO2 trilayer oxide on top of a (99) Rh(111) substrate 15, 82. The LEED pattern 

(inset of Figure 11A) confirms the presence of the surface oxide via spot splitting indicative of 

the (88) oxide periodicity. It is important to note that, although θO,total (6.4 ML) is nearly 6 ML 

above the 0.5 ML coverage of the (21) adlayer, this low coverage structure persists on the 

terraces. Furthermore, the (21) domains are much larger than observed for Tdep = 350 K, 

suggesting these to be the stable surface structure at 700 K. The brims of RhO2 oxide on the top 

of the step edges account for ≈ 25% of the surface area in the 300 s AO exposure shown in 

Figure 3A. The fact that they were only observed on the top of step edges, and that every step 

edge was covered, indicates that defects enhanced their formation.  

The stability of the RhO2 oxide and the (21) surface adlayer were further explored by 

dosing the Rh(111) crystal with AO at Tdep = 350 K (θO,total = 2.9 ML) and then annealing it to 

700 K for 600 s. STM images of the surface after such a treatment are shown in Figure 11B. 

Rather than a brim of the RhO2 oxide on top of the step edges, smaller patches of the trilayer 

were observed along with dendritic features growing from the step edges along the symmetry 

vectors of the surface on the lower terrace. These dendritic structures are comparable to oxide 

chains seen during Pt oxidation 85. Although we are unable to definitively determine the 

composition of these features, we hypothesize that they are the same RhO2 as seen for the 700 K 
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exposure interspersed with dendritic oxide precursors. The fraction of the surface covered by 

RhO2 was now about 15%, and longer annealing times had little effect on the structure or 

coverage of the RhO2 oxide. The effect of O abundance on the annealed surface was also studied 

by varying total O uptake. Figure 11C shows STM images of the Rh(111) surface after a 60 s 

AO exposure (θO,total = 0.9 ML) at Tdep = 350 K followed by a 600 s anneal at 700 K. Unlike the 

θO,total = 2.9 ML preparation, there were no moiré or dendritic structure present. The surface was 

instead covered entirely with the (2×1) adlayer, identical to that seen in Figure 10B. With 

annealing, the (2×1) domains are much larger and well defined. The step edges in Figure 11C are 

also decorated with 1-D oxide lines similar to those observed on (110) steps 89. In this case, the 

surface remains covered in the (21) adlayer, and the LEED patterns for both of the annealed 

surfaces confirm the predominance of the (21) surface structure. While Figs. 7B and C show 

some distortion of the (11) and (21) LEED pattern respectively, the predominance of these 

surface structures are clearly evident. 
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Figure 11. STM images after exposing Rh(111) to AO A) θO,total = 6.4 ML at Tdep = 700 K.; 

B) θO,total = 2.9 ML at Tdep = 350 K followed by 600 s anneal at 700 K; C) θO,total = 0.9 ML at 

Tdep = 350 K followed by 600 s anneal at 700 K. Insets are LEED patterns (62 eV) taken after 

deposition. STM images were obtained at 30 K and conditions were (L to R) (A) 100 mV, 

137 pA; 181 mV, 170 pA: 140 mV, 153 pA (B) 50 mV, 400 pA; 70 mV, 410 pA; 50mV, 400 

pA C) 20 mV, 200 pA; 20 mV, 150 pA; 20 mV, 150 pA. 

Comparison of the post-annealing structures from θO,total = 2.9 ML and 0.9 ML show the 

effect of Osub on the presence of the surface oxide. For both, θO,surface was the same, but the 

amount of Osub differed, θO,sub ≈ 2.3 ML and 0.3 ML, respectively. Therefore, any surface 

differences can be attributed to the amount of Osub present before annealing. The fact that no 

appreciable RhO2 was observed unless > 1 ML Osub was available suggests that the RhO2 surface 
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oxide forms from Osub, and the surface oxide will only form once enough Osub is present in the 

Rh crystal.  

Another factor is the difference in O uptake for the two temperatures. For all exposures, 

θO,total was roughly double for Tdep = 700 K compared to Tdep = 350 K. This was likely because 

the O atoms at 350 K did not have enough energy to diffuse more than 4-5 layers deep into the 

Rh selvedge, which filled more quickly, as evidenced by the quicker uptake rollover seen in 

Figure 9C. Alternatively, at 700 K, the O atoms in the selvedge were much more mobile, and 

penetrated farther into the surface. This resulted in a higher concentration of O in the selvedge 

and a localized oxygen rich environment. When looking at the phases in the oxygen rich regime, 

the oxide, RhO2, is the thermodynamically preferred structure 90-91. Extended AO exposure 

resulted in significant oxygen absorption into the subsurface region once the surface saturates at 

0.65 ML, this agrees with previous work studying high O coverage structures1, 90, 92. We are 

presently studying oxidation reactions on the different surface phases to determine how their 

chemistry may differ. 

In summary, high coverage O/Rh surface structures were prepared using AO dosing. 

Preparation conditions were developed to investigate the thermodynamic stability of the resulting 

O adlayers and oxide structures, as well as the surface conditions necessary to form the thin film 

surface oxide RhO2. At 700 K, the (21) adlayer was stable regardless of Osub concentration. By 

tuning the amount of subsurface oxygen present in the system, as well as the Rh(111) 

temperature during AO deposition or annealing, we were able to selectively form the surface 

oxide as well as a variety of O adlayers. When the concentration of Osub was increased, and the 

sample was prepared at or annealed at 700 K, we were able to generate the surface oxide and a 
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dendritic oxide precursor without the presence of bulk oxide. This illustrated the thermodynamic 

stability of the (21) adlayer, as well as the formation of RhO2 surface oxide when sufficient Osub 

was present. Fine control of the deposition conditions allowed for a clear connection between 

subsurface oxygen and surface defects and the formation of the catalytically important RhO2 

surface oxide.
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CHAPTER FOUR 

LOW TEMPERATURE CO OXIDATION ON OXIDIZED RH(111) 

 The arrangement and interaction of atoms on catalytic surfaces directly influences the 

resultant products formed. For this reason, a driving goal in the study of heterogeneously 

catalyzed reactions using surface science techniques has been to understand the atomistic 

mechanism of various heterogeneously catalyzed reactions. Traditional surface science 

techniques, however, require ultra-high vacuum (UHV) conditions that can result in 

fundamentally different surface structures and chemical mechanisms from those seen on 

catalysts under actual catalytic conditions21. 

 The discrepancy between UHV studies and actual catalysis, referred to as the “pressure 

gap”, has inspired innovations in the field of surface science to prepare more catalytically 

representative surfaces for thorough study23-24, 30, 93. One such development has been the ability 

to create surfaces present under actual catalysis conditions for study in UHV surface science 

studies. By utilizing high pressure and temperature O2 preparations49, atomic oxygen (AO) 

plasmas85, and gas phase AO exposures48, catalytically relevant oxidized surfaces can be 

prepared that were previously unobtainable with UHV compatible preparation techniques. In 

generating highly oxidized surfaces, it has been shown that oxide surfaces, rather than only 

metallic surfaces with an oxygen adlayer, are extremely relevant for catalytic activity5, 33-34. On 

Rh, the surface oxide (RhO2) has been suggested as the catalytically relevant phase for CO 

oxidation, but there is debate as to the extent the surface oxide actually plays. 
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While some work shows the surface oxide as necessary for high CO2 yield from CO oxidation on 

Rh surfaces10, other shows that the metallic Rh surface with adsorbed oxygen (Oad) is the truly 

active catalyst10, 94-95.  

In this work, we have prepared well characterized oxidized Rh(111) surfaces containing 

the 0.5 monolayer (ML) (2×1)-O adlayer, RhO2, and subsurface oxygen (Osub)
48 to study the 

active sites for CO oxidation using temperature programmed desorption (TPD) and scanning 

tunneling microscopy (STM). By utilizing TPD to track residual oxygen (Ores) desorption and 

CO2 yield following CO exposure, we compared the reactivity of the saturated (2×1)-O surface 

with the RhO2 surface. STM was then used to identify the exact reaction site on the oxidized 

Rh(111) surface. By combining TPD data that shows the relative reactivity of the distinct 

oxidized surfaces and STM data that shows atomic scale detail of surface reactivity, we are able 

to identify the active surface phase, as well as begin to understand factors that enhance CO 

oxidation on Rh catalysts. 

 Experiments were performed in an ultrahigh-vacuum (UHV) apparatus comprised of a 

preparation chamber and a scanning tunneling microscope (UHV-STM, RHK Technology, Troy, 

MI) chamber described previously60. The Pan-style STM is cooled using a closed-cycle He 

cryostat, and has a base temperature of approximately 12 K. The Rh(111) crystal (Surface 

Preparation Laboratory, Zaandam, NL) was mounted on a Ta sample holder (McAllister 

Technical Services, Coeur d’Alene, ID) with a type-K thermocouple. The Rh(111) sample was 

cleaned with repeated cycles of Ar+ sputtering and annealing at 1300 K. The cleanliness was 

verified by Auger electron spectroscopy (AES), a clean (1×1) LEED pattern, and STM imaging 

to obtain the Rh(111) atomic lattice. Atomic oxygen was generated using a hot Ir filament as 
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previously reported35, 60. TPD spectra were recorded with a UTI 100c quadrupole mass 

spectrometer controlled by a homebuilt labVIEW program. Rh(111) exposed to O2 at 350 K 

results in the saturated (2×1)-O 0.5 ML Oad surface; the integral of the O2 spectra was used to 

calibrate subsequent O2 TPD spectra. The oxidized Rh(111) surface was held at either 300 K or 

200 K during CO exposure. For TPD experiments following CO exposure, the crystal was cooled 

to 100 K. TPD spectra from 100-600 K used a ramp rate of 4 K s-1 and tracked evolution of CO2. 

Following this initial TPD experiment, the sample was cooled to 400 K. TPD spectra from 400-

 
 

Figure 12. A) STM image (5 × 5 nm2) of (2×2)-O+CO, 1.02 V, 0.69 nA B) Representative 

TPD spectra of CO2 yield (left) and Ores (right) following O2 exposure at Tdep = 350 K and CO 

exposure at Tdep = 300 K. 
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1400K used a ramp rate of 3 K s-1; and residual oxygen (Ores) remaining on the surface following 

CO oxidation was tracked. All STM images were taken at 30 K. As previously mentioned, there 

was neither background gas accumulation nor surface degradation following prolonged STM 

experiments87. 

 Much work has been done to further the understanding of CO oxidation on the (2×1)-

O/Rh(111) surface42, 96-98. CO adsorbs to the (2×1)-O surface resulting in (2×2)-O+CO 

overlayer99. This is supported experimentally and theoretically for the Rh(111) surface, and an 

STM image of the (2×2)-O+CO surface can be seen in Figure 12A. Additionally, a 

representative TPD spectra following CO exposure at 300 K can be seen in Figure 12B. TPD 

experiments were performed following a 300 K and 100 K CO exposure to (2×1)-O/Rh(111), 

and the CO2 yield and Ores were similar for the two temperatures. This supports previous claims 

that the O+CO overlayer is stable at room temperature and lower39. The CO2 TPD in Figure 12B 

also shows that the maximum CO2 desorption occurs at 425 K. 

 Previous work has shown in detail that Rh(111) can be oxidized using AO to selectively 

form RhO2, (2×1)-O, and Osub
48. After preparing an oxidized Rh(111) surface with 3 ML 

equivalence of oxygen, CO exposures were conducted at 300 K. Since CO exposures at 100 and 

300 K were identical for the (2×1)-O surface, and the maximum desorption temperature for CO2 

was determined to be 425 K, CO exposures at 300 K should have been low enough for the 

O+CO adlayer to be stable on the RhO2 surface preparation. The surface was held at 700 K and 

exposed to AO generating an uptake of 3 ML oxygen. Following the preparation of the oxidized 

sample, the surface was exposed to CO at 300 K for various exposure lengths. Due to our TPDs 

not discriminating against background gas in the chamber, initial oxidation behavior was 
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analyzed by looking at the amount of Ores. If the amount of Ores corresponds to the oxygen 

remaining after CO has oxidized the other oxygen species on the surface, the amount of Ores can 

serve as a qualitative mark for surface reactivity. 

While we started with ~ 3 ML O present, after a 1.5 L CO exposure, the intensity of the Ores peak 

has decreased disproportionally relative to the length of the CO exposure as seen in Figure 13A. 

As CO exposure is increased, we can see that the Ores amount continues to decrease until it is 

difficult to detect above the gas background of the chamber.  

 
Figure 13. A) TPD spectra of Ores following AO exposures at Tdep = 700 K and CO exposures 

at Tdep = 300 K. B) Integrated TPD area of Ores and CO2 yield. 
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 When we compare the Ores against the CO2 yield, as seen in Figure 13B, we can see that 

the Ores decreases rapidly while there is a simultaneous roll over in the amount of CO2 detected.  

Interestingly, the amount of CO2 detected is roughly double that detected from the (2×1)-O 

surface, supporting the assignment that RhO2 is more catalytically active for CO oxidation due to 

the increased CO2 yield10, 28, 34, 49. Additionally, while there is a continuous decrease in the 

amount of Ores, the CO2 yield is constant. If 3 ML equivalence of oxygen is to be reacted from a 

surface, it would be suspected that a comparable amount of product (CO2) be detected to 

correlate to the consumed oxygen. Previous work has suggested that when CO oxidation is 

taking place in an oxygen rich environment, the activation energy for oxidation is lowered100. In 

addition, the work function of Rh is altered by the introduction of oxygen into the metal, as 

adsorbed and absorbed oxygen101. For these reasons, there could be a lower temperature 

oxidation reaction occurring due to the oxygen rich surface and lowered activation energy. 
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 To determine if there is, indeed, low temperature oxidation occurring, we need to be able 

to track the surface structure evolution, since there is no way to detect CO2 that may be forming 

during the CO exposure or surface cool to T1 for the TPD experiments. In order to achieve this 

reaction snapshot, we utilized low temperature STM imaging to effectively freeze any surface 

reconstruction or evolution occurring during CO exposure. The CO exposures were done at 300 

and 200 K to see if the same surface structure evolution occurred. As seen in Figure 14B, after a 

1.5 L CO exposure at 300 K, there are adsorbates on the (2×1) O adlayer as well as aggregation 

along the RhO2 moiré/(2×1) boundary. Additionally, there are triangular features forming on the 

moiré pattern. These triangular features are not seen on the bare RhO2 surface, as shown in 

Figure 14A, suggesting that the new features are the result of CO adsorption on the surface 

 
Figure 14. STM images after Tdep = 700 K AO exposures and Tdep = 300 K CO exposures for 

various CO exposures. A) Bare RhO2 243 mV, 301 pA; B) 1.5 L CO, -1.01 V, -0.87 nA, inset 

414 mV, 260 pA; C) 60 L CO, 0.88 V, 230 pA, inset 1.26 V, 0.81 nA; D) 120 L CO, -280 

mV, -0.96 nA, inset -280 mV, -0.96 nA. 
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oxide. The step edge of the moiré also has evidence of adsorbates, indicating that CO adsorbs 

preferentially to domain boundaries and defect sites as suggested in previous work10. Increasing 

CO exposure to 60 L, when very little Ores is detected in TPD experiments (Figure 13A), a more 

drastic surface evolution is seen in Figure 14C. The domain near the step edge that had surface 

oxide is now completely consumed by disordered clusters and the terrace is covered in a (2×2)-

O+CO adlayer, consistent with CO adsorption on the (2×1)-O adlayer. The terrace is also 

decorated with bright islands. Upon closer inspection of the terrace, the corresponding inset of 

Figure 14C, there are triangle-like clusters intermixed with the (2×2)-O+CO adlayer. These 

triangular clusters agree well with the structure seen for CO adsorbed directly onto Rh(111)102. 

The only way for bare Rh to be present following AO exposure is if CO is being oxidized during 

the CO exposure at 300 K, thus allowing for CO to adsorb directly to the metal surface. Since 

CO binds more strongly to the Rh surface than CO2, it is reasonable for the CO molecule to 

remain adsorbed on the surface at 300 K. Increasing the exposure to 120 L, shown in Figure 

14D, the surface is completely covered in bright clusters and the (2×2)-O+CO adlayer. There is 

no longer any evidence of surface oxide, and the terraces have clusters regardless of the site 

distance from a step edge or defect site. Such drastic reconstruction of the oxidized surface 

following CO exposure is consistent with reconstruction seen following CO oxidation on Rh 

surfaces, and suggests that the surface must be catalyzing CO oxidation below reaction 

temperatures.  

 While 300 K is below the reaction temperature needed for CO oxidation to occur on the 

oxidized Rh surface, we wanted to confirm that the surface evolution observed is solely due to 
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low temperature CO oxidation. To do so, we repeated CO exposure to the RhO2 surface at 200 

K, significantly below the reaction temperature for CO oxidation. The surface of the 200 K  

 

CO exposure was then directly compared to identical CO exposures done at 300 K, as shown in 

Figure 15. The surface evolution of the 200 K preparation is identical to the 300 K preparation. 

For both of the 10 L exposures in Figure 15, the moiré pattern is interrupted with linear 

decorations, the terraces are covered in the (2×2)-O+CO adlayer, and in the 200 K CO exposure, 

an island of moiré is completely covered in the (2×2)-O+CO adlayer. For the 60 L CO exposure 

 
 

Figure 15. STM images CO exposure at either Tdep = 200 or 300 K. Tdep = 200 K images       

25 × 25 nm2. Tdep = 300 K images 45 × 45 nm2. Tdep = 200 K, 10 L CO -1.22 V, -0.92 nA; 

Tdep = 200 K, 60 L CO -0.85 V, -0.70 nA; Tdep = 300 K, 10 L CO 2.23 V, 90 pA; Tdep = 300 

K, 60 L CO 1.06 V, 350 pA 
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in Figure 15, both surfaces have had the surface oxide completely consumed, and islands are 

beginning to form on the terrace as well. Since both temperatures are evolving in identical 

manners, it is likely that low temperature CO oxidation is occurring.  

 In this work, we have shown evidence of low temperature CO oxidation occurring on a 

Rh(111) crystal that has been oxidized using AO to form the (2×1)-O adlayer, RhO2 surface 

oxide, and Osub. While the exact mechanism for low temperature CO oxidation is not currently 

known, the CO oxidation begins at domain boundaries and defect sites on the crystal and surface 

oxide. We have shown, with molecular resolution, that the surface oxide is entirely consumed 

during CO oxidation at 300 and 200 K, confirming the important role of surface oxide in 

catalytic oxidation.  
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

 In this dissertation work, gas phase atomic oxygen (AO) has been used to prepare 

relevant high coverage adlayers and surface oxides on catalytically relevant single metal crystals. 

 First, the effects of defect density and catalyst material on the stability of subsurface 

oxygen (Osub) was studied by comparing the structural evolution and oxygen uptake of Pt(553) 

and Rh(111) following AO exposure on Rh(111)55. It was shown that the stability of Osub was 

not enhanced on Pt(553) relative to Pt(111) despite the high defect density of Pt(553). On 

Rh(111), however, Osub readily formed, resulting in a mixture of high coverage oxygen adlayers. 

This study supported the observation that certain metals more readily stabilize and form Osub, and 

the addition of defect sites does not drastically alter the inherent affinity for Osub formation of a 

metal. 

 Second, using traditional ultra-high vacuum (UHV) surface science techniques, 

preparation conditions were carefully controlled to allow for the selective formation of various 

oxygen phases on Rh(111)48. By varying the temperature of the substrate during AO exposure, 

either high coverage oxygen adlayers or the Rh surface oxide, RhO2, formed. Additionally, 

annealing experiments demonstrated the importance of Osub population in the stability and 

formation of RhO2. The ability to selectively form various catalytically relevant phases using 

UHV preparation methods allows for atomistic structural information that is difficult to 
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obtain when using elevated temperature and high pressure oxidizing conditions. 

 Finally, utilizing the preparation methods to generate RhO2 on Rh(111), the active site for 

CO oxidation was investigated. During the course of this study, it was shown that CO oxidation 

occurs at significantly lower temperatures in the presence of RhO2. Additionally, atomically 

resolved structural information reveals that CO preferentially adsorbs to defect sites and grain 

boundaries at low CO coverages on the oxidized Rh surface, and as coverage increases, the CO 

completely consumes the surface oxide. The consumption of CO during low temperature CO 

oxidation was observed for temperatures as low as 200 K. 

 In order to fully characterize the oxygen speciation present on Rh(111) following 

exposure to AO at various substrate temperatures, high-resolution X-ray photoelectron 

spectroscopy (HR XPS) will be used to probe the unique chemical states of adsorbed oxygen and 

the Rh surface as various surface structures evolve. This will allow for a detailed understanding 

of the chemical properties of the oxygen phases present on Rh(111), giving insight into their 

potential catalytic activity. 

 While previous work in the Killelea lab has focused on Osub characterization on 

Ag(111)103, reactivity studies have not been carried out on Ag(111). Future work will look to 

probe unique reactivity of various oxygen phases on Ag(111) and Ag (110), and determine the 

structural evolution of the oxidized Ag surface following oxidation reactions. It is of interest to 

understand reactivity behavior and structural evolution of Pd surfaces, and similar reactivity 

studies will also be done on Pd single crystals in the future. 

  



 

49 

REFERENCE LIST 

 

1. Gustafson, J.; Mikkelsen, A.; Borg, M.; Lundgren, E.; Kohler, L.; Kresse, G.; Schmid, 

M.; Varga, P.; Yuhara, J.; Torrelles, X.; Quiros, C.; Andersen, J. N., Self-Limited Growth of a 

Thin Oxide Layer on Rh(111). Physical Review Letters 2004, 92 (12), 126102. 

 

2. Cuena, B. R., Metal Nanoparticle Catalysts Begin to Shape-up. Acc. Chem. Res. 2012, 

46, 1682-1691. 

 

3. Landmarks, A. C. S. N. H. C. The Houdry Process for Catalytic Cracking. 

http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/houdry.html (accessed 

February). 

 

4. Weaver, J. F., Surface Chemistry of Late Transition Metal Oxides. Chemical Reviews 

2013, 113 (6), 4164-4215. 

 

5. Freund, H. J., The Surface Science of Catalysis and More, Using Ultrathin Oxide Films 

as Templates: A Perspective. Journal of the American Chemical Society 2016, 138 (29), 8985-

8996. 

 

6. Campbell, C. T., Atomic and molecular oxygen adsorption on Ag(111). Surface Science 

1985, 157, 43-60. 

 

7. Rovida, G.; Pratesi, F.; Magliett.M; Ferroni, E., Chemisorption of Oxygen on Silver 

(111) Surface. Surface Science 1974, 43 (1), 230-256. 

 

8. Bao, X.; Barth, J. V.; Lehmpfuhl, G.; Schuster, R.; Uchida, Y.; Schlogl, R.; Ertl, G., 

Oxygen-Induced Restructuring of Ag(111). Surface Science 1993, 284 (1-2), 14-22. 

 

9. Schnadt, J.; Knudsen, J.; Hu, X. L.; Michaelides, A.; Vang, R. T.; Reuter, K.; Li, Z.; 

Laegsgaard, E.; Scheffler, M.; Besenbacher, F., Experimental and theoretical study of oxygen 

adsorption structures on Ag(111). Physical Review B 2009, 80 (7), 075424. 

 

10. Gustafson, J.; Westerstrom, R.; Balmes, O.; Resta, A.; van Rijn, R.; Torrelles, X.; 

Herbschleb, C. T.; Frenken, J. W. M.; Lundgren, E., Catalytic Activity of the Rh Surface Oxide: 

CO Oxidation over Rh(111) under Realistic Conditions. Journal of Physical Chemistry C 2010, 

114 (10), 4580-4583. 

http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/houdry.html


50 

 

 

11. Jones, T. E.; Rocha, T. C. R.; Knop-Gericke, A.; Stampfl, C.; Schlogl, R.; Piccinin, S., 

Thermodynamic and Spectroscopic Properties of Oxygen on Silver under an Oxygen 

Atmosphere. Physical Chemistry Chemical Physics 2015, 17 (14), 9288-9312. 

 

12. Li, W. X.; Stampfl, C.; Scheffler, M., Subsurface Oxygen and Surface Oxide Formation 

at Ag(111): A Density-Functional Theory Investigation. Physical Review B 2003, 67 (4), 

045408. 

 

13. Verwey, E. J. W.; de Boer, J. H., Surface oxide films. Recl. Trav. Chim. Pays-Bas 1936, 

55 (8), 0165-0513. 

 

14. Gustafson, J.; Mikkelsen, A.; Borg, A.; Andersen, J. N.; Lundgren, E.; Klein, C.; Hofer, 

W.; Schmid, M.; Varga, P.; Kohler, L.; Kresse, G.; Kasper, N.; Stierle, A.; Dosch, H., Structure 

of a thin oxide film on Rh(100). Physical Review B 2005, 71 (11), 115442. 

 

15. Blomberg, S.; Lundgren, E.; Westerstrom, R.; Erdogan, E.; Martin, N. M.; Mikkelsen, 

A.; Andersen, J. N.; Mittendorfer, F.; Gustafson, J., Structure of the Rh2O3(0001) Surface. 

Surface Science 2012, 606 (17-18), 1416-1421. 

 

16. Greeley, J.; Mavrikakis, M., On the role of subsurface oxygen and ethylenedioxy in 

ethylene epoxidation on silver. Journal of Physical Chemistry C 2007, 111 (22), 7992-7999. 

 

17. Todorova, M.; Li, W. X.; Ganduglia-Pirovano, M. V.; Stampfl, C.; Reuter, K.; Scheffler, 

M., Role of Subsurface Oxygen in Oxide Formation at Transition Metal Surfaces. Physical 

Review Letters 2002, 89 (9), 096103. 

 

18. Gibson, K. D.; Killelea, D. R.; Sibener, S. J., Comparison of the Surface and Subsurface 

Oxygen Reactivity and Dynamics with CO Adsorbed on Rh(111). Journal of Physical Chemistry 

C 2014, 118 (27), 14977-14982. 

 

19. Ertl, G., Reactions at surfaces: From atoms to complexity (Nobel lecture). Angewandte 

Chemie-International Edition 2008, 47 (19), 3524-3535. 

 

20. Campbell, C. T., Atomic and Molecular-Oxygen Adsorption on Ag(111). Surface Science 

1985, 157 (1), 43-60. 

 

21. Freund, H.-J.; Kuhlenbeck, H.; Libuda, J.; Rupprechter, G.; Bäumer, M.; Hamannm, H., 

Bridging the pressure and materials gaps between catalysis and surface science: clean and 

modified oxide surfaces. Topics in Catalysis 2001, 15, 201-209. 

 

22. Rider, K. B.; Hwang, K. S.; Salmeron, M.; Somorjai, G. A., High-pressure (1 Torr) 

scanning tunneling microscopy (STM) study of the coadsorption and exchange of CO and NO on 

the Rh(111) crystal face. Journal of the American Chemical Society 2002, 124 (19), 5588-5593. 



51 

 

 

23. Salmeron, M.; Schlogl, R., Ambient pressure photoelectron spectroscopy: A new tool for 

surface science and nanotechnology. Surface Science Reports 2008, 63 (4), 169-199. 

 

24. Herbschleb, C. T.; van der Tuijn, P. C.; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, 

Q.; Stoltz, D.; Canas-Ventura, M. E.; Verdoes, G.; van Spronsen, M. A.; Bergman, M.; Crama, 

L.; Taminiau, I.; Ofitserov, A.; van Baarle, G. J. C.; Frenken, J. W. M., The ReactorSTM: 

Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature 

catalytic reaction conditions. Review of Scientific Instruments 2014, 85 (8). 

 

25. van Rijn, R.; Balmes, O.; Resta, A.; Wermeille, D.; Westerstrom, R.; Gustafson, J.; 

Felici, R.; Lundgren, E.; Frenken, J. W. M., Surface structure and reactivity of Pd(100) during 

CO oxidation near ambient pressures. Physical Chemistry Chemical Physics 2011, 13 (29), 

13167-13171. 

 

26. Rocha, T. C. R.; Oestereich, A.; Demidov, D. V.; Havecker, M.; Zafeiratos, S.; 

Weinberg, G.; Bukhtiyarov, V. I.; Knop-Gericke, A.; Schlogl, R., The silver-oxygen system in 

catalysis: new insights by near ambient pressure X-ray photoelectron spectroscopy. Physical 

Chemistry Chemical Physics 2012, 14 (13), 4554-4564. 

 

27. Tao, F., Design of an in-house ambient pressure AP-XPS using a bench-top X-ray source 

and the surface chemistry of ceria under reaction conditions. Chemical Communications 2012, 

48 (32), 3812-3814. 

 

28. Gustafson, J.; Blomberg, S.; Martin, N. M.; Fernandes, V.; Borg, A.; Liu, Z.; Chang, R.; 

Lundgren, E., A high pressure x-ray photoelectron spectroscopy study of CO oxidation over 

Rh(100). J. Phys. Condens. Matter 2014, 26, 055003-05009. 

 

29. Blomberg, S.; Westerstrom, R.; Martin, N. M.; Lundgren, E.; Andersen, J. N.; Messing, 

M. E.; Gustafson, J., A high-pressure X-ray photoelectron spectroscopy study of oxidation and 

reduction of Rh(100) and Rh nanoparticles. Surface Science 2014, 628, 153-158. 

 

30. Montano, M.; Tang, D. C.; Somorjai, G. A., Scanning tunneling microscopy (STM) at 

high pressures. Adsorption and catalytic reaction studies on platinum and rhodium single crystal 

surfaces. Catalysis Letters 2006, 107 (3-4), 131-141. 

 

31. Somorjai, G. A.; Park, J. Y., Evolution of the Surface Science of Catalysis from Single 

Crystals to Metal Nanoparticles Under Pressure. Journal of Chemical Physics 2008, 128 (18), 

182504. 

 

32. Li, L.; Yang, J. C., Complex oxide structures formed by oxidation of Ag(100) and 

Ag(111) by hyperthermal atomic oxygen. Materials at High Temperatures 2003, 20 (4), 601-

606. 



52 

 

 

33. Lundgren, E.; Gustafson, J.; Resta, A.; Weissenrieder, J.; Mikkelsen, A.; Andersen, J. N.; 

Kohler, L.; Kresse, G.; Klikovits, J.; Biederman, A.; Schmid, M.; Varga, P., The Surface Oxide 

as a Source of Oxygen on Rh(111). Journal of Electron Spectroscopy and Related Phenomena 

2005, 144, 367-372. 

34. Kim, S. M.; Qadir, K.; Seo, B.; Jeong, H. Y.; Joo, S. H.; Terasaki, O.; Park, J. Y., Nature 

of Rh Oxide on Rh Nanoparticles and Its Effect on the Catalytic Activity of CO Oxidation. 

Catalysis Letters 2013, 143 (11), 1153-1161. 

 

35. Derouin, J.; Farber, R. G.; Heslop, S. L.; Killelea, D. R., Formation of Surface Oxides 

and Ag2O Thin Films with Atomic Oxygen on Ag(111). Surface Science 2015, 641, L1-4. 

 

36. Grass, M. E.; Zhang, Y.; Butcher, D. R.; Park, J. Y.; Li, Y.; Bluhm, H.; Bratlie, K. M.; 

Zhang, T.; Somorjai, G. A., A Reactive Oxide Overlayer on Rhodium Nanoparticles during CO 

Oxidation and Its Size Dependence Studied by In Situ Ambient-Pressure X-ray Photoelectron 

Spectroscopy. Angewandte Chemie-International Edition 2008, 47 (46), 8893-6. 

 

37. Horn, R.; Williams, K. A.; Degenstein, N. J.; Schmidt, L. D., Syngas by catalytic partial 

oxidation of methane on rhodium: Mechanistic conclusions from spatially resolved 

measurements and numerical simulations. Journal of Catalysis 2006, 242 (1), 92-102. 

 

38. Renzas, J. R.; Zhang, Y. W., Rhodium nanoparticle shape dependence in the reduction of 

NO by CO. Catal. Lett. 2009, 132, 317-322. 

 

39. Schwegmann, S.; Over, H.; DeRenzi, V.; Ertl, G., The atomic geometry of the O and 

CO+O phases on Rh(111). Surface Science 1997, 375 (1), 91-106. 

 

40. Marchini, S.; Sachs, C.; Wintterlin, J., STM investigation of the (2x2)O and (2x1)O 

structures on Rh(111). Surface Science 2005, 592 (1-3), 58-64. 

 

41. Thiel, P. A.; Yates, J. T.; Weinberg, W. H., Interaction of Oxygen With the Rh(111) 

Surface. Surface Science 1979, 82 (1), 22-44. 

 

42. Matsushima, T.; Matsui, T.; Hashimoto, M., Kinetic studies on the CO oxidation on a 

Rh(111) surface by means of angle-resolved thermal desorption. Journal of Chemical Physics 

1984, 81, 5151. 

 

43. Xu, H.; Ng, K. Y. S., STM study of oxygen on Rh(111). Surface Science 1997, 375 (2-3), 

161-170. 

 

44. Sibener, S. J.; Peterlinz, K. A.; Sibener, S. J., Absorption, Adsorption, and Desorption 

Studies of the Oxygen/Rh(111) System Using O2, NO, and NO2. Journal of Physical Chemistry 

1995, 99 (9), 2817-2825. 

 



53 

 

45. Grant, J.; Haas, T., A Study of Ru(0001) and Rh(111) Surfaces Using LEED and Auger 

Electron Spectroscopy. Surface Science 1970, 21, 76-85 

 

46. Castner, D.; Sexton, B.; Somorjai, G., LEED and Thermal Desorption Studies of Small 

Molecules (H2, O2, CO, CO2, NO,C2H4, C2H2, and C) Chemisorbed on Rhodium (111) and 

(100). Surface Science 1978, 71, 519-540. 

 

47. Wong, K. C.; Liu, W.; Mitchell, K. A. R., LEED crystallographic analysis for the 

Rh(111)-(2x1)-O surface structure. Surface Science 1996, 360 (1-3), 137-143. 

 

48. Farber, R. G.; Turano, M. E.; Oskorep, E. C. N.; Wands, N. T.; Iski, E. V.; Killelea, D. 

R., The Quest for Stability: Structural dependence of Rh(111) on oxygen coverage at elevated 

temperature. The Journal of Physcial Chemistry C 2017, 121 (19), 10470-10475. 

 

49. Gustafson, J.; Westerström, R.; Mikkelsen, A.; Torrelles, X.; Balmes, O.; Bovet, N.; 

Andersen, J. N.; Baddeley, C. J.; Lundgren, E., Sensitivity of Catalysis to Surface Structure: The 

Example of CO Oxidation on Rh Under Realistic Conditions Physical Review B 2008, 78 (4), 

045423. 

 

50. Musselwhite, N.; Somorjai, G. A., Investigations of Structure Sensitivity in 

Heterogeneous Catalysis: From Single Crystals to Monodisperse Nanoparticles. Topics in 

Catalysis 2013, 56 (15-17), 1277-1283. 

 

51. Wachs, I. E., Extending surface science studies to industrial reaction conditions: 

mechanism and kinetics of methanol oxidation over silver surfaces. Surface Science 2003, 544 

(1), 1-4. 

 

52. Kan, H. H.; Weaver, J. F., Mechanism of PdO Thin Film Formation During the Oxidation 

of Pd(111). Surface Science 2009, 603 (17), 2671-2682. 

 

53. Weaver, J. F.; Chen, J.-J.; Gerrard, A. L., Oxidation of Pt(111) by Gas-Phase Oxygen 

Atoms. Surface Science 2005, 592 (1–3), 83-103. 

 

54. Liang, Z.; Li, T.; Kim, M.; Asthagirl, A.; Weaver, J. F., Low-temperature activation of 

methane on the IrO2(110) surface. Science 2017, 356 (6335), 298-301. 

 

55. Farber, R. G.; Turano, M. E.; Oskorep, E. C. N.; Wands, N. T.; Juurlink, L. B. F.; 

Killelea, D. R., Exposure of Pt(553) and Rh(111) to atomic and molecular oxygen: do defects 

enhance subsurface oxygen formation? J. Phys. Condens. Matter 2017, 29, 164002. 

 

56. Eren, B.; Liu, Z. Y.; Stacchiola, D.; Somorjai, G. A.; Salmeron, M., Structural Changes 

of Cu(110) and Cu(110)-(2 x 1)-O Surfaces under Carbon Monoxide in the Torr Pressure Range 

Studied with Scanning Tunneling Microscopy and Infrared Reflection Absorption Spectroscopy. 

J. Phys. Chem. C 2016, 120 (15), 8227-8231.



54 

 

 

57. Jones, T. E.; Rocha, T. C. R.; Knop-Gericke, A.; Stampfl, C.; Schlögl, R.; Piccinin, S., 

Insights into the Electronic Structure of the Oxygen Species Active in Alkene Epoxidation on 

Silver. ACS Catalysis 2015, 5 (10), 5846-5850. 

 

58. Altman, E. I.; Schwarz, U. D., Mechanisms, Kinetics, and Dynamics of Oxidation and 

Reactions on Oxide Surfaces Investigated by Scanning Probe Microscopy. Adv. Mater. 2010, 22 

(26-27), 2854-2869. 

 

59. Badan, C.; Farber, R. G.; Heyrich, Y.; Koper, M. T. M.; Killelea, D. R.; Juurlink, L. B. 

F., Step-Type Selective Oxidation of Pt Surfaces. The Journal of Physical Chemistry C 2016, 

120 (40), 22927-22935. 

 

60. Derouin, J.; Farber, R. G.; Killelea, D. R., Combined STM and TPD Study of Rh(111) 

Under Conditions of High Oxygen Coverage. Journal of Physical Chemistry C 2015, 119, 

14748-14755. 

 

61. Parker, D. H.; Bartram, M. E.; Koel, B. E., Study of High Coverages of Atomic Oxygen 

on the Pt(111) Surface. Surface Science 1989, 217, 489 - 510. 

 

62. Bashlakov, D. L.; Juurlink, L. B. F.; Koper, M. T. M.; Yanson, A. I., Subsurface Oxygen 

on Pt(111) and Its Reactivity for CO Oxidation. Catalysis Letters 2012, 142 (1), 1-6. 

 

63. Lambert, R. M.; Williams, F. J.; Cropley, R. L.; Palermo, A., Heterogeneous alkene 

epoxidation: past, present and future. Journal of Molecular Catalysis a-Chemical 2005, 228 (1-

2), 27-33. 

 

64. Grant, R. B.; Lambert, R. M., Mechanism of the Silver-Catalyzed Heterogeneous 

Epoxidation of Ethylene. J. Chem. Soc., Chem. Commun. 1983,  (12), 662-663. 

 

65. Xu, Y.; Greeley, J.; Mavrikakis, M., Effect of subsurface oxygen on the reactivity of the 

Ag(111) surface. J. Am. Chem. Soc. 2005, 127 (37), 12823-12827. 

 

66. Gibson, K. D.; Viste, M.; Sanchez, E. C.; Sibener, S. J., High Density Adsorbed Oxygen 

on Rh(111) and Enhanced Routes to Metallic Oxidation Using Atomic Oxygen. Journal of 

Chemical Physics 1999, 110 (6), 2757-2760. 

 

67. Hinojosa, J. A., Jr.; Weaver, J. F., Surface structural evolution during the thermal 

decomposition of a PdO(101) thin film. Surf. Sci. 2011, 605 (19-20), 1797-1806. 

 

68. Derouin, J.; Farber, R. G.; Turano, M. E.; Iski, E. V.; Killelea, D. R., Thermally Selective 

Formation of Subsurface Oxygen in Ag(111) and Consequent Surface Structure. ACS Catalysis 

2016, 4640-4646. 

 



55 

 

69. Weaver, J. F.; Chen, J. J.; Gerrard, A. L., Oxidation of Pt(111) by gas-phase oxygen 

atoms. Surf. Sci. 2005, 592 (1-3), 83-103. 

 

70. Gibson, K. D.; Colonell, J. I.; Sibener, S. J., Velocity distributions of recombinatively 

desorbed O2 originating from surface and subsurface oxygen/Rh(111). Surf. Sci. 1995, 343 (1-2), 

L1151-L1155. 

 

71. Kohler, L.; Kresse, G.; Schmid, M.; Lundgren, E.; Gustafson, J.; Mikkelsen, A.; Borg, 

M.; Yuhara, J.; Andersen, J. N.; Marsman, M.; Varga, P., High-coverage oxygen structures on 

Rh(111): Adsorbate repulsion and site preference is not enough. Phys. Rev. Lett. 2004, 93 (26). 

 

72. Huang, W. X.; Zhai, R. S.; Bao, X., Direct observation of subsurface oxygen on the 

defects of Pd(100). Surf. Sci. 1999, 439, L803 - L807. 

 

73. van der Niet, M. J. T. C.; den Dunnen, A.; Juurlink, L. B. F.; Koper, M. T. M., A detailed 

TPD study of H2O and pre-adsorbed O on the stepped Pt(553) surface. Phys. Chem. Chem. Phys. 

2011, 13 (4), 1629-1638. 

 

74. Umemoto, H.; Kusanagi, H.; Nishimura, K.; Ushijima, M., Detection of Radical Species 

Produced by Catalytic Decomposition of H2, O2 and Their Mixtures on Heated Ir Surfaces. Thin 

Solid Films 2009, 517 (12), 3446-3448. 

 

75. Umemoto, H.; Kusanagi, H., Catalytic decomposition of O2, NO, N2O and NO2 on a 

heated Ir filament to produce atomic oxygen. J. Phys. D: Appl. Phys. 2008, 41 (22), 225505. 

 

76. van der Niet, M. J. T. C.; den Dunnen, A.; Juurlink, L. B. F.; Koper, M. T. M., The 

influence of step geometry on the desorption characteristics of O2, D2, and H2O from stepped Pt 

surfaces. J. Chem. Phys. 2010, 132 (17). 

 

77. Jacobse, L.; den Dunnen, A.; Juurlink, L. B. F., The molecular dynamics of adsorption 

and dissociation of O2 on Pt(553). J. Chem. Phys. 2015, 143 (1), 014703. 

 

78. Weaver, J. F.; Kan, H. H.; Shumbera, R. B., Growth and properties of high-concentration 

phases of atomic oxygen on platinum single-crystal surfaces. J. Phys.-Condes. Matter 2008, 20 

(18), 184015. 

 

79. Devarajan, S. P.; Hinojosa, J. A., Jr.; Weaver, J. F., STM study of high-coverage 

structures of atomic oxygen on Pt(111): p(2 x 1) and Pt oxide chain structures. Surf. Sci. 2008, 

602 (19), 3116-3124. 

 

80. McEwen, J. S.; Gaspard, P.; Mittendorfer, F.; de Bocarme, T. V.; Kruse, N., Field-

assisted oxidation of rhodium. Chem. Phys. Lett. 2008, 452 (1-3), 133-138.



56 

 

 

81. Martin, N. M.; Klacar, S.; Gronbeck, H.; Knudsen, J.; Schnadt, J.; Blomberg, S.; 

Gustafson, J.; Lundgren, E., High-Coverage Oxygen-Induced Surface Structures on Ag(111). 

Journal of Physical Chemistry C 2014, 118 (28), 15324-15331. 

 

82. Gustafson, J.; Westerstrom, R.; Resta, A.; Mikkelsen, A.; Andersen, J. N.; Balmes, O.; 

Torrelles, X.; Schmid, M.; Varga, P.; Hammer, B.; Kresse, G.; Baddeley, C. J.; Lundgren, E., 

Structure and Catalytic Reactivity of Rh Oxides. Catalysis Today 2009, 145 (3-4), 227-235. 

 

83. Somorjai, G. A.; Park, J. Y., Molecular Surface Chemistry by Metal Single Crystals and 

Nanoparticles From Vacuum to High Pressure. Chemical Society Reviews 2008, 37 (10), 2155-

2162. 

 

84. Fantauzzi, D.; Calderon, S. K.; Mueller, J. E.; Grabau, M.; Papp, C.; Steinruck, H. P.; 

Senftle, T. P.; van Duin, A. C. T.; Jacob, T., Growth of Stable Surface Oxides on Pt(111) at 

Near-Ambient Pressures. Angewandte Chemie International Edition 2017, 56 (10), 2594-2598. 

 

85. Devarajan, S. P.; Hinojosa Jr., J. A.; Weaver, J. F., STM Study of High-Coverage 

Structures of Atomic Oxygen on Pt(111): p(2 × 1) and Pt Oxide Chain Structures. Surface 

Science 2008, 602 (19), 3116-3124. 

 

86. Umemoto, H.; Kusanagi, H., Catalytic Decomposition of O2, NO, N2O, and NO2 on a 

Heated Ir Filament to Produce Atomic Oxygen. Journal of Physics D: Applied Physics 2008, 41 

(22), 225505. 

 

87. Kolb, M. J.; Farber, R. G.; Derouin, J.; Badan, C.; Calle-Vallejo, F.; Juurlink, L. B. F.; 

Killelea, D. R.; Koper, M. T. M., Double-Stranded Water on Stepped Platinum Surfaces. 

Physical Review Letters 2016, 116 (13), 136101. 

 

88. Kohler, L.; Kresse, G.; Schmid, M.; Lundgren, E.; Gustafson, J.; Mikkelsen, A.; Borg, 

M.; Yuhara, J.; Andersen, J. N.; Marsman, M.; Varga, P., High-Coverage Oxygen Structures on 

Rh(111): Adsorbate Repulsion and Site Preference is Not Enough. Physical Review Letters 2004, 

93 (26), 266103. 

 

89. Klikovits, J.; Schmid, M.; Merte, L. R.; Varga, P.; Westerstrom, R.; Resta, A.; Andersen, 

J. N.; Gustafson, J.; Mikkelsen, A.; Lundgren, E.; Mittendorfer, F.; Kresse, G., Step-Orientation-

Dependent Oxidation: From 1D to 2D Oxides. Physical Review Letters 2008, 101, 266104. 

 

90. Dudin, P.; Barinov, A.; Gregoratti, L.; Kiskinova, M.; Esch, F.; Dri, C.; Africh, C.; 

Comelli, G., Initial Oxidation of a Rh(110) Surface Using Atomic or Molecular Oxygen and 

Reduction of the Surface Oxide by Hydrogen. Journal of Physical Chemistry B 2005, 109 (28), 

13649-13655. 

 



57 

 

91. Mittendorfer, F., Low-Dimensional Surface Oxides in the Oxidation of Rh Particles. 

Journal of Physics: Condensed Matter 2010, 22, 393001. 

92. Ganduglia-Pirovano, M. V.; Scheffler, M.; Baraldi, A.; Lizzit, S.; Comelli, G.; Paolucci, 

G.; Rosei, R., Oxygen-Induced Rh 3d5/2 Surface Core-Level Shifts on Rh(111). Physical Review 

B 2001, 63 (20), 205415. 

 

93. Goodman, D. W., Correlations between surface science models and ''real-world'' 

catalysts. Journal of Physical Chemistry 1996, 100 (31), 13090-13102. 

 

94. Gao, F.; McClure, S.; Chen, M.; Goodman, D. W., Comment on "Catalytic Acitivty of 

the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic Conditions". The Journal of 

Physcial Chemistry C 2010, 114 (50), 22369-22371. 

 

95. Gustafson, J.; Westerstrom, R.; Balmes, O.; Resta, A.; van Rijn, R.; Torrelles, X.; 

Herbschleb, C. T.; Frenken, W. M.; Lundgren, E., Reply to "Comment on 'Catalytic Activity of 

the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic Conditions'". The Journal of 

Physcial Chemistry C 2010, 114 (50), 22372-22373. 

 

96. Jaworowski, A. J.; Beutler, A.; Strisland, F.; Nyholm, R.; Setlik, B.; Heskett, D.; 

Andersen, J. N., Adsorption sites in O and CO coadsorption phases on Rh(111) investigated by 

high-resolution core-level photoemission. Surface Science 1999, 431 (1-3), 33-41. 

 

97. Hopstaken, M. J. P.; Niemantsverdriet, J. W., Structure sensitivity in the CO oxidation on 

rhdoium: Effect of adsorbate coverages on oxidation kinetics on Rh(100) and Rh(111). Journal 

of Chemical Physics 2000, 113 (13), 5457-5465. 

 

98. Krenn, G.; Bako, I.; Schennach, R., CO adsorption and CO and O coadsorption on 

Rh(111) studied by reflection absorption infrared spectroscopy and density functional theory. 

Journal of chemical physics. 2006, 124 (14), 144703. 

 

99. Kizilkaya, A. C.; Gracia, J. M.; Niemantsverdriet, J. W., A Direct Relation between 

Adsorbate Interactions, Configurations, and Reactivity: CO Oxidation on Rh(100) and Rh(111). 

The Journal of Physcial Chemistry C 2010, 114 (49), 21672-21680. 

 

100. McClure, S.; Lundwall, M.; Yang, F.; Zhou, Z.; Goodman, D. W., CO Oxidation on 

Rh/SiO2/Mo(112) Model Catalysts at Elevated Pressures. The Journal of Physcial Chemistry C 

2009, 113 (22), 9688-9697. 

 

101. Lambeets, S. V.; Barroo, C.; Owczarek, S.; Jacobs, L.; Genty, E.; Gilis, N.; Kruse, N.; de 

Bocarme, T. V., Adsorption and Hydrogenation of CO2 on Rh Nanosized Crystals: 

Demonstration of the Role of Interfacet Oxygen Spillover and Comparative Studies with O2, 

N2O, and CO. The Journal of Physcial Chemistry C 2017, 121, 16238-16249.



58 

 

 

102. Cernota, P.; Rider, K.; Yoon, H. A.; Salmeron, M.; Somorjai, G., Dense structures 

formed by CO on Rh(111) studied by scanning tunneling microscopy. Surface Science 2000, 

445, 249-255. 

103. Derouin, J.; Farber, R. G.; Turano, M. E.; Iski, E. V.; Killelea, D. R., Thermally Selective 

Formation of Subsurface Oxygen in Ag(111) and Consequent Surface Structure. ACS Catalysis 

2016, 6 (7), 4640-4646. 



 

 

59 

VITA 

 

Rachael G. Farber was born in Hartford, Connecticut, and raised in Grosse Pointe, 

Michigan. Before attending Loyola University Chicago, she attended Case Western Reserve 

University, where she earned a Bachelor of Science in Chemistry, in 2013. 

While at Loyola, Rachael was awarded the 2016 Denkewalter Poster Prize, the Arthur J. 

Schmitt Dissertation Fellowship for the 2017-2018 academic year, the Nellie Yeoh Whetten 

Award and the Morton M. Traum Surface Science Student Award at the AVS 64th International 

Symposium and Exhibition in November 2017, and was elected chair of the 2017 Gordon 

Research Seminar-Dynamics at Surfaces. Rachael was also invited to present her research during 

a Loyola University Chicago Department Seminar as well as at Leiden Institute of Chemistry, 

Catalysis and Surface Chemistry, in the Netherlands. 

Currently, Rachael is preparing for a postdoctoral position under Prof. Steven J. Sibener 

at The University of Chicago, beginning on May 14th, 2018. 



 

 

 

 


	Structural and Chemical Consequences of High Oxygen Coverages on Rh(111)
	Recommended Citation

	tmp.1533307687.pdf.D4YFw

