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ABSTRACT 

 TRIM5α is one of the best characterized anti-viral restriction factors and works 

specifically to inhibit the lifecycle of retroviruses. Following fusion of a retrovirus with its 

target cell, TRIM5α binds directly to the retroviral capsid, a proteinaceous core that 

houses the viral genome. Upon capsid recognition, TRIM5α forms a hexameric lattice 

around the retroviral capsid and initiates its antiviral activities, which include: (1) 

inhibition of viral infection; (2) inhibition of viral reverse transcription; (3) disassembly of 

the capsid; and (4), activation of innate signaling pathways. Importantly, the formation of 

this assembly also activates the E3 ubiquitin ligase function of TRIM5α. Ubiquitin 

modification is associated with directing substrates to particular cellular pathways. We 

and others have previously shown that TRIM5α spontaneously forms assemblies known 

as cytoplasmic bodies in cells, and these bodies colocalize with proteins involved in the 

cellular degradative pathway of autophagy. The autophagy pathway and its association 

with other TRIM proteins has been implicated in serval models of pathogen clearance, 

and therefore we hypothesized that autophagy may play a critical role in the function of 

TRIM5α as a retroviral restriction factor. The goal of this dissertation is to define the 

molecular interactions required for the association of TRIM5 proteins with autophagy 

effectors and to delineate the roles of ubiquitination and autophagy in retroviral 

restriction by TRIM5α. We first assessed the contribution of the autophagy pathway to 

the restriction of retroviral infection or reverse transcription by TRIM5α. We 

demonstrated that, when the autophagy factors ATG5 or Beclin1 are depleted in human 
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cell lines, the restriction of N-MLV by human TRIM5α, and HIV-1 by Rhesus macaque 

TRIM5α and owl monkey TRIM-Cyp is preserved. These data indicate that autophagy 

machinery is not required for retroviral restriction by TRIM5 proteins. However, given 

TRIM5α’s activity as a ubiquitin ligase, we wanted to further probe the ubiquitin-

dependent steps during retroviral restriction. We generated fusion proteins in which the 

catalytic domain of different deubiquitinase (DUb) enzymes, with different specificities 

for polyubiquitated linkages, was fused to the N-terminal RING domain of Rhesus 

macaque TRIM5α. Using these fusion proteins as tools, we assessed the role of 

ubiquitination in restriction and the degree to which specific types of ubiquitination are 

required for the association of TRIM5α with autophagic proteins. We determined that 

K63-linked ubiquitination by TRIM5α is critical for its association with autophagosome 

membranes. In the absence of K63-specific ubiquitin ligase activity, TRIM5α forms a 

stable association with the capsid, allowing reverse transcription to proceed, however, 

infection is still blocked. These data favor a model whereby the formation of a TRIM5α 

assembly around a capsid is sufficient to inhibit infection. Further, while the ubiquitin 

ligase activity of TRIM5α is needed to inhibit reverse transcription, recruitment of 

autophagic effectors is not required for restriction of infection or reverse transcription. 
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CHAPTER ONE 

REVIEW OF LITERATURE 

HIV-1 Pathogenesis 

Despite the advent of Highly Active Anti-Retroviral Therapy (HAART), infection 

with Human Immunodeficiency Virus-1 (HIV-1) continues to be a significant healthcare 

burden worldwide, as 40,000 Americans and ~2 million people worldwide become 

infected with this virus annually [1]. Furthermore, there are currently nearly 40 million 

people worldwide living with HIV-1 infection [2], and this prevalence continues to rise as 

people are living longer with HIV-1 infection due to the increasing availability of HAART 

[3, 4]. Encouragingly, the number of deaths associated with HIV and Acquired 

Immunodeficiency Syndrome (AIDS) has decreased in recent years [3]. 

 HIV-1 was identified as the causative agent of AIDS in the 1980s [5-7]. The 

epidemic arose from the cross-species transmission of simian immunodeficiency 

viruses found in African primates to humans [8]. The lineage of HIV-1 can be traced to 

four different subgroups, based on their proposed species of origin: Groups M, N, O, 

which were transmitted from chimpanzees; and Group P, which was transmitted from 

gorillas [3]. Group M is responsible for 48% of infections worldwide and is considered 

the cause of the global epidemic [9]. A related virus, HIV-2, was transmitted to humans 

from sooty mangabey monkeys, and although this virus causes similar clinical 

symptoms as HIV-1, it is considered to be less pathogenic because it is less 

transmissible and disease progression is slower [3, 8].  
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HIV-1 primarily targets CD4+ T lymphocytes, although other cells bearing the 

CD4 marker, including macrophages, monocytes, and dendritic cells, can also be 

targets of infection [3]. HIV-1 is predominantly transmitted via sexual or percutaneous 

routes, and mucosal transmission represents the major (80%) route of infection [10, 11]. 

A mixture of quasispecies of virus, representing defective viruses, less fit viruses, and 

competent viruses, are typically present in the blood or mucosal sites [12]. However, in 

most cases, a single virus is responsible for transmission and productive infection, and 

this virus is known as the Transmitted Founder virus [8, 12, 13]. Early replication of the 

Transmitted Founder virus is associated with an induction of cytokines and chemokines 

and the opportunity for the virus to infect more cells. CD8+ T cells are critical during the 

early stages of infection, as they kill infected cells and facilitate other arms of the innate 

and adaptive immune response [14]. Unfortunately, the development of the adaptive 

immune response is sometimes associated with the mutation of epitopes, such as in the 

viral envelope glycoprotein, which drives immune escape [14]. Approximately 20% of 

infected individuals are able to produce broadly neutralizing antibodies that are able to 

neutralize a number of HIV-1 subtypes. In infected individuals, however, these 

antibodies do not lead to clearance, but rather act as drivers of escape mutations [15]. 

Furthermore, over time, many individuals experience a progressive loss of function of 

HIV-1 specific CD8+ T cells, termed exhaustion [16]. Exhaustion is associated with a 

loss of effector function and the expression of one or several inhibitory receptors, 

particularly PD-1, on the cell surface [16]. 

Clinically, HIV-1 infection is associated with a loss of CD4+ T cells that occurs as 
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a result of toxicity of infection or the immune response [17]. If infection is left untreated, 

the loss of CD4+ T cells is associated with the development of opportunistic infections 

and significant mortality [3]. However, regardless of treatment status, HIV-1 infection is 

also associated with inflammation and general immune activation. This activation is 

thought to be driven by activation of plasmacytoid dendritic cells, which produce copious 

amounts of type I IFN [18]. Importantly, this heightened inflammation contributes to a 

number of HIV-related complications and comorbidities, including cardiovascular 

disease, cancer, neurological disease, and liver disease [3]. 

Latency 

Despite the success of antiretroviral therapy in suppressing viral loads, the virus 

almost universally rebounds after treatment interruption [3]. As a result, HIV-1 infected 

individuals are generally required to remain under therapy for life in order to maintain 

low viral loads and avoid the adverse sequelae associated with continued viral 

replication. One of the perplexing questions in the field, and the major burden to a cure, 

is determining where and how the virus remains latent during the treatment phase. This 

latent reservoir is the subject of significant ongoing research. Latency in the HIV field 

refers to the integration of virus’s DNA into a host’s DNA without the production of virus 

[3]. The precise identity of cells forming the latent reservoir is still under debate, with 

studies implicating resting, memory, and naïve T cells as potentially composing the 

reservoir [19-21]. Several hypotheses have been suggested to explain the 

establishment of the latent reservoir, and these hypotheses largely focus on events or 

conditions that keep the virus in a transcriptionally silent state, such as integration of the 
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viral DNA into transcriptionally inactive chromatin; epigenetic control of the HIV-1 

promoter; the absence of transcription factors, such as NFκB, which drive the 

expression of viral genes; or low expression of the viral protein Tat, which is needed for 

efficient transcription of the viral genome [3, 8, 22]. Furthermore, latently infected cells 

are known to persist long term and are thus a critical barrier to a cure. 

 Therefore, there is significant research in the field to identify methods of 

eradicating the latent reservoir. One of the prevailing strategies involves activating the 

cells to allow for transcriptionally silent viruses to become expressed (“Shock”) and 

subsequently be targeted by antiretroviral drugs or immune responses (“Kill”) [3, 8]. To 

date, many studies have investigated drugs that are able to reactivate the expression of 

latent viruses, including chromatin remodeling agents and NFκB activators [3]. 

However, there is limited data supporting the ability of these reactivation efforts to 

reverse latency in vivo [3, 8]. 
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Figure 1. The Clinical Course of HIV-1 Infection. The course of HIV-1 infection can 

be divided into acute and chronic stages. The acute phase is associated with a high 

viral load in the blood and the dissemination of the virus to different sites in the body, as 

well as a decline in CD4+ T cell numbers. Over time, the chronic phase of infection 

develops and is associated with the development of viral escape mutants and increased 

pathological sequelae affecting multiple organ systems. Over time, AIDS develops as 

the CD4+ T cell count is further depleted. The introduction of HAART therapy can 

forestall many of the complications associated with late stages of disease, though the 

virus remains present in latently infected cells. Reprinted with permission from [23]. 
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Figure 2. The Structure of HIV-1. Depicted here is the structure of the mature HIV-1 
virion. HIV is an enveloped RNA virus. The viral envelope, derived from the host cells, is 
studded with viral Env glycoproteins, which facilitate fusion to the target cell. Encased 
within the envelope is the core. The core consists of the capsid, a proteinaceous conical 
structure housing the viral genomic RNA and viral proteins, such as integrase, reverse 
transcriptase, and viral accessory proteins. Reprinted with permission from [24]. 
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Figure 3. The Life Cycle of HIV-1. Upon fusion, HIV-1 undergoes reverse transcription 
of its RNA genome into DNA, uncoating of the capsid, and trafficking to the nucleus, 
where it integrates into the host genome. HIV-1 RNA, consisting of genomic RNA and 
messenger RNA, is transcribed and exported to the cytoplasm, where they can be 
utilized in the synthesis of viral proteins and the generation of the next generation of 
virions. Many of these steps can be inhibited by cellular proteins knowns as restriction 
factors (yellow boxes). However, these restriction factors in turn can be antagonized by 
viral proteins (blue circles). Reprinted with permission from [25]. 

 

HIV-1 Lifecycle 

The lifecycle of HIV-1 (Figures 2 and 3) begins with the binding of the virus’s 

envelope glycoprotein, gp120, to the CD4 receptor and coreceptors, such as the 

chemokine receptors CXCR4 or CCR5, on target cells [26]. Subsequently, the virus 

fuses with the host cell, and the viral capsid enters into the target cytoplasm. The capsid 

is a proteinaceous conical core containing the viral genome and viral proteins, such as 

integrase, reverse transcriptase, and viral accessory proteins (Figure 2). The term 
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capsid refers to the cone-shaped unit composed of individual CA monomers, while the 

core refers to the capsid structure along with its associated genome and viral proteins 

[27]. Upon entry, the capsid engages the cellular microtubule network to move through 

the cell and traffic toward the nucleus [27, 28].  

During the core’s movement through the cytoplasm, the single-stranded RNA 

genome of HIV-1 is converted into double-stranded DNA via the enzyme reverse 

transcriptase within the core [29]. Reverse transcription initiates a process known as 

uncoating, whereby the capsid undergoes a regulated process of disassembly or loss of 

integrity, though the details of this are under considerable debate [27, 30-32]. 

Importantly, some amount of CA remains associated with the reverse-transcribed 

genome (known at the Pre-Integration Complex, or PIC), as numerous studies have 

identified host cellular factors that bind to the capsid and that are critical for trafficking of 

the PIC across the Nuclear Pore Complex (NPC) and protection of the genome from 

cytoplasmic sensors [27, 33, 34]. However, the capsid itself can also function as a 

Pathogen Associated Molecular Pattern (PAMP) and be recognized and sensed by 

cellular factors, namely TRIM5α [35]. Given these interactions with cellular factors, it 

would be advantageous for the virus to mutate its capsid in order to avoid cellular 

recognition. However, the capsid is considered “genetically fragile”, as mutations within 

it are associated with impaired reverse transcription, trafficking, and integration, and 

have been associated with innate sensing [27, 33, 34, 36, 37]. Therefore, the centrality 

of the capsid to HIV-1’s life cycle and its genetic vulnerability make it an important target 

for antiviral approaches, and understanding factors that bind to and target the capsid 
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could give important insight into the next generation of treatment approaches to target 

HIV-1 infection. 

  Upon reaching the nucleus, the PIC engages cellular factors at the nuclear pore 

and enters into the nucleus. There are several models of how the PIC translocates into 

the nucleus, concerning whether an intact core or a partially disassembled core is the 

species that reaches the nuclear pore complex [27]. Nevertheless, several studies have 

identified CA proteins in the nucleus, which could be relevant for optimal nuclear import 

and integration site selection [27, 38, 39]. Integration of the HIV-1 reverse transcribed 

DNA into the host DNA is mediated by the viral enzyme integrase, which is associated 

with the PIC.  

Once integrated, the virus’s genome can be transcribed to produce both viral 

genomic RNA as well as mRNA [40]. Transcription relies on cellular transcription 

factors, namely NFκB and NFAT, and occurs relatively inefficiently until expression of 

the viral protein tat, which drives efficient viral transcription [22]. With Tat present, 

several different types of viral transcripts are produced (Figure 4), and these include: 

unspliced RNA, which comprises the genomic RNA and Gag or GagPol precursors 

(discussed more, below); singly spliced RNA, which encodes the messages for the 

Envelope glycoprotein (Env) and the accessory proteins Vif, Vpr, Vpu; or fully spliced 

RNA, which encodes messages for Tat, Rev, and Nef [22]. 
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Figure 4. Transcription of HIV-1 RNA. Transcription of HIV-1 RNA produces several 
species, due to differential splicing. These include: full length unspliced RNA (~9 kb), 
which comprises the genomic RNA and Gag or GagPol precursors; singly spliced RNA 
(~4 kb), which encodes the messages for the Envelope glycoprotein (Env) and the 
accessory proteins Vif, Vpr, Vpu; or completely spliced RNA (~2 kb), which encodes 
messages for Tat, Rev, and Nef.  Reprinted with permission from [41]. 

 

Subsequently the viral protein Rev facilitates the transport of viral RNAs to the 

cytoplasm where they can be used to produce viral proteins and the next generation of 

virions [22, 40]. Translation of viral RNA produces several products. The Gag 

polyprotein precursor, which encodes the matrix (MA), capsid (CA), nucleocapsid (NC) 

and p6 domains, is produced by translation of the full-length viral RNA [40]. In addition, 

a frameshift during the translation of the Gag precursor produces GagPol, which in turn 

encodes MA, CA, NC, protease, reverse transcriptase, and integrase proteins [40]. 

Newly synthesized Gag binds to and recruits viral genomic RNA as it is exported from 
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the nucleus to the cytoplasm, and in turn this complex, along with newly synthesized 

envelope glycoprotein (Env), is concentrated at the plasma membrane [40]. 

Subsequently, the assembling virus engages members of the cellular endosomal sorting 

complex required for transport (ESCRT) pathway to facilitate budding and release of the 

viral particle [40]. Once the virus has been released, the protease is activated and can 

cleave the Gag precursor protein into its constituent proteins [40].  

During this time, the individual CA monomers assemble into the fullerene cone 

structure of the capsid, in the process encapsidating the viral RNA, integrase, reverse 

transcriptase, and some accessory proteins [27]. The capsid is comprised of 

approximately 1,500 CA monomers that spontaneous assemble into hexamers 

(predominantly) and pentamers to make up the structure of the cone [27, 42]. It is this 

mature core that is released into the cytoplasm during the subsequent round of 

infection.   

Antiretroviral Therapy 

The development of combinatorial antiretroviral therapy regimens was essential 

for control of the HIV-1 epidemic and is responsible for the decreased mortality 

associated with infection [43]. Currently, over 25 drugs have been developed to target 

various aspects of the HIV-1 life cycle, and importantly, these drugs are utilized in 

combinations to limit the potential development of drug resistance [3]. Standard 

regimens include several reverse transcription inhibitors, a protease inhibitor, and an 

integrase inhibitor [3]. The reverse transcription inhibitors fall into one of two classes: 

nucleoside reverse transcription inhibitors (NRTI), which inhibit reverse transcription by 
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acting as a “chain terminator” of DNA synthesis; and non-nucleoside reverse 

transcription inhibitors (NNRTI), which bind to and inhibit the reverse transcriptase 

enzyme directly [44, 45].  Significantly, the onset of therapy produces a substantial 

decrease in plasma viral load, usually to levels below the limit of detection of common 

laboratory tests [3]. In contrast, the rebound of CD4+ T cells is variable among patients, 

and the extent of CD4+ T cell recovery, which is critical to forestall the onset of 

HIV/AIDS related complications, such as the development of opportunistic infections,  

could be related to the timing of initiation of treatment following acute infection [3].  

Restriction Factors 

Through the course of completing its life cycle, HIV-1 potentially interacts with 

many different host proteins, and over the course some of these host proteins evolved 

to specifically inhibit one or more steps in the viral life cycle. These factors can 

collectively be termed restriction factors (Figure 3). Restriction factors were first 

described in the context of defining the cellular factors that protected mice from infection 

by murine leukemia virus, and the identification of Fv1 in the 1960s (discussed in more 

detail, below) opened the door to look for cellular proteins that inhibit viral replication. 

Since then, a number of specifically-anti-HIV restriction factors have been 

characterized. Generally, restriction factors represent different classes of proteins and 

act through different mechanisms, although they share some common characteristics. 

Some common features include: inducibility by interferon; they can be antagonized by 

viral proteins or accessory proteins; and they may display evidence of positive selection, 

suggesting co-evolution with the targeted pathogen over time [46]. 
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APOBEC3 Proteins. 

Apolipoprotein B mRNA Editing Enzyme, Catalytic Polypeptide-like 3 

(APOBEC3) proteins are widely expressed cellular proteins that utilize their cytidine 

deaminase activity to convert cytidine residues in RNA or DNA into uridines, which in 

turn introduces mutations in the resulting sequence [46]. APOBEC3 proteins are 

particularly deleterious to HIV-1 because the APOBEC3 proteins can be packaged into 

assembled virions. Upon fusion and release of the core into the cytoplasm, APOBEC3 

proteins can promote the development of mutations in the newly reverse-transcribing 

DNA [47-50]. This hypermutated DNA often severely compromises viral fitness, and as 

such, the HIV-1 accessory protein Vif evolved to specifically counteract APOBEC3. Vif 

acts by binding to APOBEC3 proteins and promoting their ubiquitination by a cellular 

ubiquitin ligase, ultimately leading to the proteasomal degradation of APOBEC3 [51]. 

 

SAMHD1. 

SAM Domain and HD Domain-Containing Protein 1 (SAMHD1) is a cytoplasmic 

dNTPase that acts to regulate the pool of free dNTPs in the cytoplasm, which in turn 

limits the ability of HIV-1 to reverse transcribe its genome [52-54]. Importantly, SAMHD1 

can be antagonized by accessory proteins from HIV-2 or SIV, namely Vpr and Vpx  [54]. 

However HIV-1 does not encode an antagonist to SAMHD1, and this thought to explain 

the relative inability of HIV-1 to infect macrophages compared to its HIV-2 and SIV 

counterparts [54], as macrophages are known to possess a much lower concentration 

of cytoplasmic dNTPs available for reverse transcription compared to that found in CD4+ 
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T cells [55]. 

MxB. 

Myxovirus Resistance Protein B (MxB) is another interferon-inducible inhibitor of 

HIV-1 infection. It interacts with the assembled capsid structure, rather than CA 

monomers [56-59]. As Mx2 is a relatively newly discovered restriction factor, much is 

unknown about its mechanism of action. It is thought to act after viral reverse 

transcription but before integration of the viral DNA, and prevailing models propose that 

Mx2 interferes with nuclear import of the PIC [60]. 

Tetherin. 

Tetherin was identified as an interferon-inducible cellular factor that inhibits the 

release of assembled virions from the producer cell [61, 62]. Tetherin is known to 

anchor into the plasma membrane, however the precise mechanisms by which it block 

viral release are still under debate [46]. Importantly, through the action of tetherin, 

viruses are thwarted from release and are instead internalized into endosomes for 

degradation [46, 62]. The HIV-1 protein Vpu antagonizes the effects of tetherin, though 

its mechanism of action is also still under debate [46, 61, 62].  

Capsid Binding Restriction Factors: Fv1, Ref1, and Lv1 

The discovery of factors that are able to bind to the retroviral capsid began in the 

1960s, as researchers investigated the factors responsible for the susceptibility of mice 

to infection by Murine Leukemia Virus (MLV) [63]. Eventually, Friend virus 1 (Fv1) was 

identified as the cellular factor that protects mice from MLV infection [64-67]. Two alleles 

of Fv1, denoted Fv1n and Fv1b, were found to be responsible for conferring resistance 
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to B-tropic MVL (B-MLV) and N-tropic MLV (N-MLV), respectively [64-67]. Sensitivity to 

Fv1-mediated restriction was mapped to the capsid protein of MLV [68, 69], as the 

capsids of B-MLV and N-MLV differ by a single amino acid [68]. Furthermore, restriction 

of infection was found to occur after the completion of viral reverse transcription but 

before integration into the host’s DNA [70]. Pre-integration Complexes (PICs) isolated 

from cells expressing Fv1 were found to be competent for integration in vitro, 

suggesting that Fv1 arrests PICs that are on a productive path to infection [71]. In 

addition, researchers found that restriction by Fv1 could be abrogated by the addition of 

increasing amounts of restriction-sensitive virus, suggesting that the activity of this 

factor could be saturated [72, 73]. In 1996, the gene encoding Fv1 was identified [74, 

75], and it was found that this gene was related to the Gag protein of an endogenous 

retrovirus present in the mouse genome [76]. 

 Following the discovery and characterization of Fv1, researchers sought to 

identify similar cellular factors that conferred resistance to retroviral infection of non-

murine cells. In 2000, a factor known as Ref1 was identified, and it was found to protect 

mammalian cells, including human cells, from infection by N-MLV but not B-MLV [77]. 

Intriguingly, Ref1 shared some properties with Fv1, namely, that its target mapped to 

the capsid of N-MLV,  and its activity could be saturated by the addition of increasing 

amounts of restriction-sensitive virus [77]. However, in contrast to Fv1, Ref1 restricts 

retroviral infection prior to the completion of reverse transcription [77]. 

 Several years after the discovery of Ref1, researchers identified a similar factor, 

termed Lv1, which is responsible for the restriction of lentiviral infection [78-81]. As 
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Ref1, restriction by Lv1 mapped to the lentiviral capsid, could be saturated, and 

occurred prior to the completion of reverse transcription [78-81]. Eventually, the 

discovery of TRIM5α, a restriction factor that inhibits HIV-1 infection in Old World 

Monkeys, was identified to be a species-specific variant of Lv1 and Ref1 [82-86]. 

TRIM Family of Proteins 

The Tripartite Motif (TRIM) family is a diverse group of cellular proteins that 

function in a variety of cellular pathways (Figure 5). Over 80 TRIM proteins have been 

identified, and they have been implicated in functions as diverse as regulating cell cycle 

progression, autophagy, innate immunity, signaling, pathogen clearance, and the 

degradation of proteins [87]. The members of the TRIM family are distinguished by the 

presence of the RBCC motif, consisting of: a RING domain, which acts as an E3 ligase; 

one or two Bbox domains, and a Coiled-coil domain, which are important for self-

association and higher-order assembly [87, 88]. The functions of these domains will be 

discussed below. 
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Figure 5. The TRIM Family of Proteins. TRIM proteins share the Tripartite Motif, 
consisting of a RING, one or two Bbox, and Coiled-coil domains. The different members 
of this family are distinguished by the presence of different C-terminal domains. 
Reprinted with permission from [88].  
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Domains of TRIM Proteins 

RING Domain. 

Most TRIM proteins possess an N-terminal Really Interesting New Gene (RING) 

domain, which functions as an E3 ligase to catalyze the addition of ubiquitin (most 

commonly), small ubiquitin-like modifier (SUMO), or Interferon-stimulated proteins of 15 

kDa (ISG15) to substrates [89]. The activity of the RING domain can be regulated by 

assembly mediated by the other domains, and this activity can influence the overall 

function of the particular TRIM protein [87, 90]. 

Bbox and Coiled-coil Domains. 

Both the Bbox and Coiled-coil domains of TRIM proteins are critical for their self-

association and the formation of higher-order assemblies [90]. There are two types of 

Bbox domains, type 1 and type 2, which differ in their ability to coordinate zinc ions [91]. 

Most TRIM proteins possess the type 2 Bbox (Bbox2), whereas others possess both 

type 1 and type 2 [90]. The Coiled-coil domain is critical for dimerization among TRIM 

proteins. This domain is generally helical in structure, and structural studies of several 

TRIM proteins, including TRIM5α, TRIM20, TRIM25, and TRIM69, demonstrate that the 

dimerization of these TRIM proteins involves the formation of an antiparallel dimer 

mediated by the CC domain [87, 90]. 

C-terminal Domain of TRIM Proteins. 

The C-terminal domains of TRIM proteins are variable and differentiate the 

members of this family from one another. The C-terminal domains are important for the 

binding of TRIM proteins to other factors, and they can be involved with directing TRIM 
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proteins to different subcellular localizations [87, 90]. TRIM proteins are subdivided into 

11 groups based on their C-terminal domains, the most common of which is the 

PRYSPRY domain (also known as B30.2), which can be found in over 30 TRIM proteins 

[90, 92]. 

Discovery of TRIM5α 

For many years, scientists observed that certain primate species were naturally 

resistant to infection by HIV-1, and many groups sought to identify the determinant(s) 

responsible for this resistance[77, 79-81, 93]. In 2004, a screen from a cDNA library 

prepared from Rhesus macaque fibroblasts identified TRIM5α as the cellular factor that 

protects Old World monkey cells from infection by HIV-1 [85]. Similar to Ref1 and Lv1, 

TRIM5α targets the HIV-1 capsid, its activity can be saturated, and restriction occurs 

before reverse transcription [85]. Subsequent studies concluded that Ref1 and Lv1 are 

species-specific variants of TRIM5α [82, 83]. Importantly, TRIM5 proteins possess the 

ability to restrict retroviruses from different species (Figure 6), and different primate 

orthologues of TRIM5 were shown to have variable restriction efficiency of different 

retroviruses [94, 95].  

 While TRIM5α and Fv1 are both retroviral restriction factors, they have several 

important differences in their structure and function. First, Fv1 and TRIM5α proteins are 

very different at the primary sequence level, and Fv1 does not have a RING or BBox2 

domain [63]. Nevertheless, both TRIM5α and Fv1 possess a Coiled-coil domain, which 

facilitates multimerization, as well as a C-terminal domain responsible for binding to the 

retroviral capsid [96-99]. Also, while restriction of retroviral infection is a conserved 
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property between TRIM5α proteins and Fv1, the timing of this restriction occurs either 

before or after reverse transcription [63]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Specifies Specificity of Retroviral Restriction by Different TRIM5 
Proteins. TRIM5 proteins demonstrate species-specific restriction of different 
retroviruses. Depicted here is the restriction efficacy of different TRIM5 proteins against 
retroviruses, classified as strong restriction (++), mildly restriction (+) or no restriction (-). 
Reprinted with permission from [63]. 
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Figure 7. Domains and Assembly of TRIM5α. (A) The domain structure of TRIM5α, 

discussed below. TRIM5α forms an antiparallel dimer (putative structure in (B)). TRIM5α 
further assembles into a hexagonal lattice formation, a model of which is depicted in 
(C). Reprinted with permission from [100].  
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TRIM5α: Domain Structure and Function 

RING Domain. 

TRIM5α possesses the RBCC motif characteristic of this family. The RING 

domain of TRIM5α proteins functions as an E3 ubiquitin ligase. Early investigations of 

the function of the RING domain were complicated by the observation that mutation of 

the catalytic cysteine residue in the RING domain produced unstable or large, non-

functional aggregates of protein [98, 101]. Nevertheless, later studies found that the 

function of the RING domain is activated in the context of higher-order assembly of 

TRIM5α proteins [102], and that the RING domain catalyzes the autoubiquitination of 

TRIM5α itself [103], as well as the synthesis of free, unanchored polyubiquitin chains 

[35, 103].  

Bbox and Coiled-coil Domains. 

As with other TRIM proteins, the Bbox2 and Coiled-coil domains of TRIM5α are 

necessary for the formation of higher-order assemblies [104, 105]. Furthermore, 

dimerization of TRIM5α is mediated by the Coiled-coil domain, which forms an 

antiparallel dimer (Figure 7B) [106, 107], and is required for restriction [98, 108]. 

C-terminal PRYSPRY Domain of TRIM5α Proteins. 

TRIM5α proteins possess a C-terminal PRYSPRY (hereafter referred to as 

SPRY) domain, which confers restriction specificity for different retroviruses [109-113]. 

Early experiments investigating the saturation of restriction factors identified that the 

retroviral capsid protein is the target of restriction factor binding. However, individual 

TRIM5α proteins demonstrate low affinity for binding to individual CA monomers [114]. 
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In contrast, this low affinity binding can be overcome by the multimerization of TRIM5α 

proteins around the capsid, which thereby fosters a higher avidity interaction between 

TRIM5α and the capsid [108, 115-117]. Furthermore, this low affinity interaction 

between TRIM5α proteins and the capsid offers the advantage of allowing TRIM5α to 

restrict multiple retroviruses, as well as to readily accommodate changes in the 

retroviral capsid [115]. Owl monkeys express a variation of TRIM5α in which the SPRY 

domain is replaced by a Cyclophilin A (Cyp) domain [118, 119], producing a restriction 

factor known as TRIM-Cyp. As CypA is known to bind to the HIV-1 capsid [120], TRIM-

Cyp remains a potent restrictor of HIV-1 infection. 

 The binding of TRIM5α proteins to the retroviral capsid is a critical determinant of 

restriction, and several groups have identified regions in the SPRY domain, particularly 

a 13-amino acid stretch in the variable loops of the SPRY domain, that are under strong 

positive selection [121, 122]. This observation supports the hypothesis that TRIM5α is 

constantly undergoing evolution in order to restrict retroviruses. Furthermore, although 

human TRIM5α is less potent at restricting HIV-1 infection compared to Rhesus 

macaque TRIM5α, it is likely that human TRIM5α evolved to restrict an ancient 

retrovirus for which its specificity was better suited [121, 123]. Notably, introduction of a 

single amino acid substitution at position 332 in human TRIM5α is sufficient to impart 

potent anti-HIV-1 restriction capabilities to human TRIM5α [124]. This observation 

supports the hypothesis that human TRIM5α is not grossly incapable of restriction of 

HIV-1, and that strategies may exist to enhance the anti-HIV-1 restriction activities of 

human TRIM5α. 
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Higher Order Assembly of TRIM5α 

With the cooperation of its Bbox2 and Coiled-coil domains, TRIM5α readily forms 

higher-order assemblies structured as a hexagonal lattice (Figure 7C, 8) [115-117, 125]. 

This hexagonal lattice formation was observed to occur spontaneously in vitro (Figure 

8), suggesting the formation of such an assembly is an “intrinsic property” of TRIM5α 

proteins [115]. However, lattice formation forms much more readily in the presence of in 

vitro assembled viral capsid assemblies, suggesting the capsid may act as a template 

for seeding the formation of the TRIM5α lattice [115]. Furthermore, the TRIM5α lattice 

matches the symmetry of the viral capsid lattice (Figure 8) [115]. Finally, formation of 

the TRIM5α lattice facilitates dimerization of RING domains on neighboring TRIM5α 

monomers within the lattice, and this arrangement thereby activates the E3 ligase 

function of the RING domains [102]. Activation of the RING domain has important 

implications for TRIM5α’s anti-retroviral functions, and these effects will be examined in 

more detail below. Importantly, it is clear that assembly of the TRIM5α lattice around the 

retroviral capsid is a critical aspect of downstream restriction functions. 
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Figure 8. Assembly of TRIM5α around the Retroviral Capsid Lattice. (A) TRIM5α 
spontaneously forms a hexagonal lattice structure in vitro on assembled CA assemblies. 
(B) TRIM5α assembles a lattice around the viral capsid, matching the symmetry of the 
viral capsid. Reprinted with permission from [115]. 

 

Ubiquitin and Ubiquitin Ligases 

Ubiquitin is a 76-amino acid protein that can be covalently or noncovalently 

attached to substrates, and this modification is often the signal to direct substrates to 

particular cellular pathways [126, 127]. The addition of ubiquitin to a substrate involves 

the coordinated action of several enzymes. A particular E1 enzyme, known as the 

ubiquitin activating enzyme, binds to ubiquitin that can be found freely in the cell [87]. 

Subsequently, E2 and E3 enzymes, which are known as ubiquitin conjugating and 

ligating enzymes respectively, catalyze the addition of the ubiquitin protein to a 

particular lysine residue in the substrate [87]. Ubiquitin has seven internal lysines 

(residues 6, 11, 27, 29, 33, 48, and 63), and these residues, along with the N-terminal 
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methionine of ubiquitin, can be targets of ubiquitination themselves, thereby producing 

polyubiquitin linkages [87, 128]. The polyubiquitin linkages can be anchored to a 

particular protein substrate, or they can be unanchored [129, 130]. Importantly, different 

polyubiquitin linkages are associated with different cellular fates. K48 and K63-linked 

polyubiquitin chains are the most prevalent, representing approximately 80% of all 

ubiquitin linkages observed in mammalian cells [131]. K48-linked polyubiquitin chains 

are canonically associated with directing substrates to the proteasome for degradation, 

while K63-linked polyubiquitin modification is associated with endosomal trafficking, 

intracellular signaling, and DNA repair [126-128, 132-134]. Intriguingly, substrates 

bearing K48 and K63-linked polyubiquitin chains have been shown to bind to 

proteasome components with similar affinities in vitro [135], and proteins modified by 

K63-linked polyubiquitin chains have been demonstrated to be proteasome targets in 

vitro [136]. Nevertheless, there is little evidence that K63-linked polyubiquitination is a 

signal for proteasomal degradation in vivo. 
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Figure 9. Overview of Ubiquitin and Polyubiuquitin Linkages. Ubiquitin contains 
seven internal lysine residues (K, shown in red in the bottom panel) that can be 
modified by ubiquitin themselves, producing polyubiquitin chains. The structure and 
most common function of these linkages is listed in the figure. Reprinted with 
permission from  [137]. 

 

Proteasomes and Proteasomal Degradation 

The proteasome is one of the major cellular degradative pathways (Figure 10). 

The eukaryotic proteasome is a 2.5 megadalton complex consisting of several important 

domains [138]. The central part of the proteasome complex is composed of a hollow 

20S core, within which resides the proteolytic enzymes that are responsible for the 

degradation of protein substrates [138]. In addition, the central region of the proteasome 

also contains a 19S regulatory region, which houses ubiquitin-binding receptors that 

bind to ubiquitinated substrates and direct them into the degradative region of the 

proteasome [135, 138]. The ubiquitin-binding receptors within the proteasome bind to 

the ubiquitin tag, after which the proteasome machinery directs the substrate into the 



28 
   

 
 

core, processively unfolding the substrate as it moves through the core [139, 140]. From 

there, the unfolded protein is sensitive to degradation by the proteolytic enzymes 

present within the 20S core [139, 140]. The ubiquitin itself is cleaved away from the 

substrate via proteasome-associated deubiquitinase enzymes (DUBs) so that it can be 

recycled [141]. 

 Degradation of substrates via the proteasome is classically associated with K48-

linked polyubiquitination. Interestingly, several studies have reported that the ubiquitin-

binding receptors present within the 19S region of the proteasome bind to both K48 and 

K63-linked polyubiquitin chains with equal affinity in vitro [135, 138]. However, another 

study found that the processivity of the proteasome varies based on the polyubitination 

modifications on a substrate, with K48 or mixed polyubiquitination linkages promoting 

greater processivity of the proteasome compared to K63-linked polyubiquitin chains 

[134]. One proposed model to explain the role of ubiquitin chains in influencing 

proteasomal processivity is that K48-linked polyubiquitin chains switches the 

proteasome to an activated state, which facilitates substrate degradation [134]. 

 Generally, K63-linked polyubiquitin chains are not associated with directing 

substrates to the proteasome for degradation in vivo [142, 143]. Several models have 

been proposed to explain why this linkage may not be preferred for proteasomal 

degradation. First, cellular factors may occlude binding the of K63-linked polyubiquitin 

chains to the proteasome [138]. One study found that members of the ESCRT 

((Endosomal Sorting Complex Required for Transport) family of proteins binds to 

proteins marked by K63-linked polyubiquitin chains and blocks their ability to bind to 
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proteasomal components [138]. Second, proteasomal deubiquitinase enzymes may 

cleave K63-linked polyubiquitin chains from substrates, thereby promoting their release 

from the 19S region prior to degradation [138, 141]. Finally, it is possible that cellular 

factors may selectively enhance the recruitment and binding of substrates marked with 

K48-linked polyubiquitin chains to components of the proteasome, thereby promoting 

their efficient degradation [138, 141]. One exception to this model is that K63-linked 

ubiquitin modification to a substrate has been shown to, in some cases, act as a seed 

for the generation of mixed-linkage K48- and K63- linked polyubiquitin chains, which in 

turn can be directed to the proteasome for degradation [144]. 

 
 
 
Figure 10. Schematic of the Eukaryotic Proteasome. Ubiquitinated substrates 
engage the proteasome either directly (a) or via adaptor proteins (b). Subsequently, the 
proteasome degrades these substrates, and ubiquitin is recycled via proteasome 
associated deubiquitinases (DUBs). Reprinted with permission from [145].  
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Autophagy and TRIM Proteins 

 Macroautophagy (hereafter autophagy) is a conserved mechanism of 

degradation of cytoplasmic substrates and can be induced by a number of stimuli, 

including starvation, stress, or invasion by pathogens [146, 147]. It initiates with the de 

novo formation of a double-membraned vesicle, termed the autophagosome, around a 

particular substrate, such as cellular proteins, organelles, or even pathogens, and this 

action, in turn, sequesters the contents from the cytoplasm [146, 147]. A number of 

cellular proteins are involved in the formation of the autophagosome. Studies of 

autophagy in yeast have identified at least thirty-one autophagy related proteins (Atg 

proteins) as being involved in autophagosome formation and maturation [147]. In the 

past, autophagy was considered to be a relatively nonselective degradative mechanism, 

with the proteasome being considered the more selective cellular degradative pathway 

[147]. However, emerging evidence identifies adaptor proteins, including members of 

the TRIM family, may be responsible for the selective targeting of substrates to the 

autophagosome for degradation [146]. One well-characterized adaptor protein is 

SQSTM1/p62. p62 is known to be able to bind to the autophagosome membrane 

marker LC3, and importantly, it is also able to bind to ubiquitinated proteins [147-149]. 

Once formed, the autophagosome is delivered to the lysosome, where degradative 

enzymes within the lysosome can degrade or recycle the contents of the 

autophagosome [147]. 

 Recent studies have highlighted the importance of TRIM proteins in autophagic 

clearance [150]. The proposed role of TRIMs in autophagy first involves the recognition 
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of particular targets by TRIM proteins. Subsequently, the TRIM proteins may assemble 

and recruit autophagy machinery to promote the formation of the autophagosome and 

downstream clearance [150]. For example, TRIM20 and TRIM21 have been shown to 

bind to components of the inflammasome pathway and the type I interferon response, 

respectively, and subsequently, the TRIMs recruit autophagic machinery to these 

targets to promote their degradation [151].  

Mechanisms of Restriction by TRIM5α 

 Similar to Fv1, TRIM5α is able to restrict retroviral infection. However, early 

studies of TRIM5α quickly identified important differences between the restriction 

mechanisms of these two factors. Upon fusion of the virus with the host cell, the capsid 

undergoes a regulated program of gradual or partial disassembly known as uncoating, 

although the precise mechanisms of this process are still under debate [27]. However, 

the consensus in the field is that reverse transcription of the viral genome is closely tied 

to uncoating [27, 30-32]. Capsids that are too stable or too labile demonstrate impaired 

reverse transcription and replication [36], and therefore, the precise timing of reverse 

transcription and uncoating is a critical aspect of retroviral infection. Binding of TRIM5α 

and its orthologues to the retroviral capsid occurs within minutes after viral fusion [152, 

153]. TRIM5α readily forms a lattice structure around the retroviral capsid [115-117], 

and subsequently, TRIM5α is able to promote the premature disassembly of the capsid 

[154, 155]. This disassembly event was uncovered as researchers determined that 

upon infection, pelletable capsids, which represent the higher-order structure of the 

conical core, were unable to be recovered from cells expressing a restriction-competent 
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TRIM5α orthologue [155]. In cells expressing human TRIM5α, one observes a decrease 

in pelletable N-MLV capsid and a corresponding increase in soluble monomeric capsid 

(CA) protein [155]. In contrast, while cells expressing Rhesus macaque TRIM5α 

produced a similar decrease in pelletable HIV-1 capsid, an increase in soluble CA was 

difficult to detect due to the presence of pre-existing soluble CA in cytoplasm of cells 

[155]. Nevertheless, the loss of pelletable capsid was, in all cases, associated with a 

block to infection, and the implication was that disassembly of the capsid is a critical 

aspect of restriction by TRIM5α proteins [155].  

 Since then, a several groups have sought to determine the mechanism of how 

TRIM5α disrupts capsids, leading to their premature disassembly. One hypothesis was 

that following capsid binding, TRIM5α recruits the capsid and its associated viral 

components to cellular degradative machinery, such as the proteasome or autophagy 

pathways. Early investigations focused on the proteasome as having a central role in 

restriction because, in the presence of proteasome inhibitors such as MG132, the block 

to retroviral infection remains intact, but the block to reverse transcription is relieved 

[156, 157]. The reverse transcription products that accumulate in the presence of 

MG132 are competent for integration into DNA in vitro, indicating these products are on 

a productive path to infection [156]. Furthermore, in the presence of MG132, TRIM5α 

forms stabilized associations with capsids, and this has been observed by many groups 

in biochemical and imaging-based approaches [152, 155, 158]. These observations 

helped shape the hypothesis that TRIM5α could utilize the proteasome to promote the 

degradation of the capsid and its associated viral components; when the proteasome is 
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inhibited, the capsid is not destabilized, and reverse transcription can proceed, while the 

block to infectivity, measured as gene expression from an integrated provirus, remains 

[156, 157]. These data suggest that, similar to Fv1, restriction of reverse transcription is 

not critical for restriction of infection by TRIM5α [156-158]. Furthermore, these data 

suggest that TRIM5α has likely evolved multiple mechanisms to inhibit retroviral 

infection [77, 156-158].  

 Nevertheless, the observation that TRIM5α forms stabilized complexes with the 

capsid in the presence of proteasome inhibitors [152] suggested that the proteasome 

has some role in the destabilization and/or degradation of viral components. Two 

studies have observed colocalization between TRIM5α proteins and components of the 

proteasome [159, 160]. To determine if this association with proteasomes had any 

functional impact on TRIM5α’s restriction mechanism, one study tracked the fates of the 

capsid, integrase enzyme, and viral RNA, throughout infection in the presence or 

absence of MG132 [158]. The study found that during restriction, Rhesus macaque and 

human TRIM5α solubilize the capsid and viral RNA of HIV-1 and N-MLV, respectively 

[158]. However, in the presence of MG132, the core complex, containing the capsid, 

integrase, and viral RNA, is retained, and these cores are indistinguishable from 

unrestricted viral cores [158]. These studies concluded that the proteasome is required 

for disruption of the core but not restriction of infection [158]. Collectively, these studies 

suggest a two-step model of restriction by TRIM5α. In the first step, TRIM5α or its 

orthologues binds to the retroviral capsid, and this is sufficient to block infection. In the 

second step, which is sensitive to proteasome inhibitors, TRIM5α induces the 
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premature disassembly of the viral capsid and prevents the accumulation of reverse 

transcription products. 

 However, these studies raised key questions about the role of proteasomes in 

capsid destabilization, as proteasomes are more associated with the degradation of 

linear peptides rather than the consumption of a large complex, such as TRIM5α bound 

to a capsid. As an E3 ubiquitin ligase, TRIM5α promotes both its own autoubiquitination 

as well as the synthesis of unanchored K63-linked polyubiquitin chains [35, 103]. To 

date, no study has identified the capsid as being a substrate for ubiquitination by 

TRIM5α proteins [155, 158], however, it is possible that only a small portion of CA 

monomers could be ubiquitinated, which would be difficult to resolve by Western blot 

[158, 161]. However, another study found that expression of TRIM5α itself decreased in 

the presence of a restriction-sensitive virus, and this reduction in expression could be 

reversed in the presence of MG132 [162]. Notably, the reduction in expression of 

TRIM5α proteins was associated specifically with being in the presence of a restriction-

sensitive virus, as no reduction was observed in the context of an unrestricted virus 

[162]. These data suggested a possible connection between the degradation of TRIM5α 

proteins and their ability to restrict retroviruses. TRIM5α has a rapid turnover in cells 

(approximately 50-60 min) [163], and one hypothesis was that the degradation of the 

capsid is linked to TRIM5α’s turnover. However, cells expressing a RING domain 

mutant of TRIM5α with a longer half-life still maintained the ability to restrict infection, 

indicating that the fast turnover of TRIM5α proteins is not driving restriction of 

retroviruses [163]. Therefore, although there appears to be a step in restriction (the 
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inhibition of reverse transcription) that is sensitive to proteasome inhibitors, it is unclear 

whether proteasomal degradation per se is necessary for capsid disassembly.  

 Importantly, several pieces of evidence argue against the proteasome having a 

central role in capsid disassembly. First, TRIM5α proteins are known to bind to CA 

monomers with low affinity [114], and therefore it is unclear how this low affinity binding 

would transmit enough force to drive both TRIM5α and its bound capsid to the 

proteasome for degradation. In addition, proteasomal degradation is classically 

associated with K48- rather than K63-linked polyubiquitin chains, and it is therefore 

unclear how TRIM5α, which has been associated with the production of K63-linked 

polyubiquitin chains in vitro [103], is recruited to the proteasome for degradation. 

Previous studies have also interrogated autophagy and its role in TRIM5α-

mediated restriction. We have previously observed that TRIM5α associates with the 

autophagic adaptor protein p62/sequestosome1, and depletion of p62 by siRNA caused 

a reduction in retroviral restriction in cells expressing human TRIM5α (huTRIM5α) or 

Rhesus macaque TRIM5α (RhTRIM5α) [164] ; however, because the depletion of p62 

also reduced the expression level of TRIM5α, we could not conclude that p62 is directly 

required for the restriction of retroviruses by TRIM5α. However, two recent studies 

implicated autophagy in the clearance of HIV-1 by TRIM5α, proposing that after binding 

to the viral capsid, TRIM5α recruits autophagic machinery to degrade the virus within 

the lysosome [146, 165]. Although this observation appears to disagree with other 

studies suggesting a proteasome-dependent step in restriction, this apparent 

discordance might be explained by crosstalk between autophagic and proteasomal 
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pathways, which is known to occur in many contexts [166, 167], or by gross perturbation 

of ubiquitin homeostasis caused by pharmacological inhibition of the proteasome.    
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Figure 11. Proposed Models of Retroviral Restriction and Core Destabilization by 
TRIM5α. (A) (left side) During the HIV-1 lifecycle, the core is delivered to the cytoplasm 
of the target cell. The virus reverse transcribes is genome, uncoats its capsid, and 
traffics to the nucleus for integration. (right side) TRIM5α exists as diffuse proteins or 
aggregations called cytoplasmic bodies. During restriction, TRIM5α forms assemblies 
around the retroviral capsid (B), and in turn this assembly formation could be sufficient 
to inhibit infection. Alternatively, TRIM5α could engage the proteasome (C) or 
autophagosome (D) to destabilize capsids, which may or may not be important to block 
infection.   
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CHAPTER TWO 

MATERIALS AND METHODS 

Cells and Pharmaceuticals 

Expression plasmids for yellow fluorescent protein-tagged Rhesus macaque 

TRIM5α (YFP- RhTRIM5α) and hemagluttinin (HA)-tagged RhTRIM5α or TRIM-Cyp 

have been described previously [168, 169]. To quantify TRIM5α accumulation, a 

lentiviral plasmid (pLVX, Clontech) expressing human TRIM5α containing a C-terminal 

Firefly luciferase reporter gene was created. HeLa and TE671 cell lines were obtained 

from the American Type Culture Collection. THP-1 cells were obtained from the AIDS 

reagent repository. Wt and ATG5-/- Mouse Embryo Fibroblasts (MEFs) were generously 

provided by Noboru Mizushima (University of Tokyo). HeLa, TE671 and wt and ATG5 -/- 

MEFs were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS) (HyClone, Logan) UT, USA), 100 U/ml penicillin, 100 

µg/ml streptomycin, and 10 µg/ml ciprofloxacin. THP-1 cells were cultured in RPMI 

medium with identical FBS and antibiotics as above. Cells were maintained in the 

presence of 5% CO2 at 37°C. Bafilomycin A1 and MG132 (Cayman Chemical 

Company, Ann Arbor, Michigan, USA) were used at 100 nM and 1 µg/ml, respectively. 

Cyclohexamide was used at 20 µg/ml. Cyclosporine A (CsA; Sigma Aldrich) was used 

at a final concentration of 2.5 µM. 
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Cloning and Generation of Stable Cell Lines 

Stable expression of YFP-LC3 was achieved by cloning YFP-LC3, described 

previously [170], into a retroviral vector [21]. To generate stable cell lines, retrovirus was 

prepared by transfecting equal amounts of VSV-G, pCigB packaging plasmid, EXN 

YFP-LC3 into HEK293T cells. Viral supernatant was harvested 48 hrs post-transfection, 

filtered through 0.45 µm filters (Milipore), and applied to A549 cells. 48 hrs after 

transduction, G418 was added to the cells, and following selection, cells were collected 

for phenotypic analysis.  

Generation of deubiquitinase Rhesus-TRIM5α fusion proteins was performed as 

described previously [171]. Briefly, catalytically active and inactive deubiquitinase 

enzymes utilized in this study were: HSV-1 UL36 DUb (residues 15-260, [171, 172]); 

AMSH-LP (residues 265-436, a kind gift from the Fukai Lab, University of Tokyo, [173]); 

and OTUB1 (a kind gift from the lab of Wade Harper, (Addgene plasmid # 22551), 

mutation described in [174]). Each of these DUBs was cloned, in frame, into a pLVX 

Flag-Rhesus TRIM5α, in between the Flag-tag and a short linker sequence before the 

start codon of Rhesus TRIM5α, using SOEing PCR. To generate stable cell lines, 

lentivirus was prepared by transfecting equal amounts of VSV-G, psPAX2 (from Dr. 

Didier Trono, NIH AIDS Reagent Program, Cat. # 11348) [175], and the pLVX-DUB-

Rhesus TRIM5α constructs into HEK293T cells. Viral supernatant was harvested 48 hrs 

post-transfection, filtered through 0.45 µm filters (Milipore), and applied to TE671, HeLa, 

or A549 cells. 48 hrs after transduction, puromycin was added to the cells, and following 

selection, cells were collected for phenotypic analysis. 
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Generation of Knockout Cells Using CRISPR/Cas9 Genome Editing 

Indicated knockout TE671, HeLa, and A549 cell lines were generated using 

LentiCRISPRv2 (Addgene plasmid #52961), a gift from Dr. Feng Zhang [176]. Guide 

sequences were generated using the CRISPR design tool at http://www.crispr.mit.edu 

or were taken from available guide sequences from the Genome-scale CRISPR 

knockout (GeCKO2) library [176]. The following oligos were annealed and cloned into 

LentiCRISPRv2 (puromycin resistance) or LentiCRISPRv2-Hygromycin (which we 

designed):  oligo targeting ATG5: 5’- CACCGGATGGACAGTTGCACACACT-3’; oligo 

targeting Beclin1: 5’- CACCGATCTGCGAGAGACACCATCC-3’; oligo targeting 

p62/SQSTM1: 5’- CACCGTGAAACACGGACACTTCGGG-3’; oligo targeting control 

sequence: 5’-CACCGGCACTACCAGAGCTAACTCA-3’. Lentivirus was prepared by 

transfecting equal amounts of VSV-G, psPAX2 (from Dr. Didier Trono, NIH AIDS 

Reagent Program, Cat. # 11348) [175, 177], and LentiCRISPRv2 (containing the guide 

RNA of interest) into HEK293T cells. Viral supernatant was harvested 48 hrs post-

transfection, filtered through 0.45 µm filters (Milipore), and applied to TE671, HeLa, or 

A549 cells. 48 hrs after transduction, puromycin or hygromycin was added to the cells, 

and following selection, cells were collected for knockout assessment by Western blot 

and phenotypic analysis. 

Flow Cytometry 

 For viral infectivity assessment by flow cytometry, equivalent numbers of 

indicated cell lines were plated in 24-well plates. Dilutions of viral supernatant were 

applied to the cells, after which the cells were subject to spinoculation (1200 x g, 2 hrs 
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at 13°C). For experiments involving cells expressing TRIM-Cyp, cyclosporine A (final 

concentration of 2.5 µM) or DMSO was added to the cells concurrently with viral 

supernatant. Following spinoculation, media was subsequently changed, and after 48 

hrs, the cells were harvested and fixed in a 1% formaldehyde-PBS solution for flow 

cytometric analysis. Percent infectivity was determined by measuring the proportion of 

GFP-positive cells in the FITC channel for 10,000 events per sample, using a FACS 

Canto II flow cytometer (Becton Dickinson, San Jose, CA, USA). 

Immunofluorescence Microscopy 

Cells were allowed to adhere to fibronectin-treated glass coverslips and fixed 

with 3.7% formaldehyde (Polysciences) in 0.1 M PIPES [piperazine-N,N'-bis(2-

ethanesulfonic acid)], pH 6.8. Cells were permeabilized with 0.1% saponin, 10% normal 

donkey serum, 0.01% sodium azide in PBS. We used the following primary antibodies: 

rabbit anti-LC3b (Sigma-Aldrich, St. Louis, MO, USA); mouse anti-LAMP2A (BD 

Pharmigen, San Diego, CA, USA); rabbit anti-Flag (Sigma-Aldrich, St. Louis, MO, USA), 

and mouse ant- HIV-1 p24 (Santa Cruz) . Primary antibodies were labeled with 

fluorophore-conjugated donkey anti-mouse or anti-rabbit antibody (Jackson 

ImmunoResearch Laboratories, Inc., West Grove, PA, USA). Images were collected 

with a DeltaVision microscope (Applied Precision, Issaquah, WA, USA) equipped with a 

digital camera (CoolSNAP HQ; Photometrics, Tucson, AZ, USA), using a 1.4-numerical 

aperture (NA) 100x objective lens, and were deconvolved with SoftWoRx software 

(Applied Precision, Issaquah, WA, USA). 
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Image Analysis 

20-30 Z-stack images were acquired using identical acquisition parameters. 

Deconvolved images were analyzed using Imaris software (Bitplane). For analysis of 

colocalization between YFP-RhTRIM5α and autophagy markers, surfaces were 

generated around YFP-RhTRIM5α. Then, the maximum fluorescence intensities of 

LC3b and LAMP2A within each surface were quantified. Background fluorescence 

intensities were calculated and used to set LC3b and LAMP2A intensity thresholds. For 

analysis of colocalization between Flag-RhTRIM5α or the deubiquitinase-fusion proteins 

and YFP-LC3b and/or p24, surfaces were generated around Flag (Figure 12). Maximum 

fluorescence intensities of YFP-LC3b and p24 within each surface were quantified. Both 

graphing and statistics calculations were performed in Prism (Graphpad Software, Inc). 

As indicated on each graph, data is presented as the mean and SEM, and significance 

was determined by Student’s t-test or ANOVA, as indicated. 
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Figure 12. Image Analysis Schematic. To analyze images, a particular channel of 
interest is selected (B) and, and we design three dimension surfaces around the puncta 
within the given channel (C, D). Then, one can determine the intensity of the other 
channels within each of these surfaces in order to assess the degree of colocalization. 
The surfaces are designed with an algorithm and applied to all images. 

siRNA Transfections 

Transcripts for several macroautophagy factors were targeted using the following 

siRNAs: ATG5 (Santa Cruz Cat. No. sc-41445), Beclin1 (Santa Cruz Cat. No. sc-
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29797), p62/SQSTM1 (Santa Cruz Cat. No.  sc-29679), and Control siRNA (Santa Cruz 

Cat. No. sc-37007). 300,000 TE671 cells were plated in 6-well plates and were 

transfected with 30 nM of the indicated siRNAs twice over a 48-hour period. The 

siRNAs were transfected using Lipofectamine 2000 (Life Technologies, Cat. No. 

11668027, Grand Island, NY, USA), according to manufacturer’s instructions.  Whole-

cell lysates were prepared 72 hrs following the second transfection, as described above. 

Proteins were separated via SDS-PAGE and transferred onto nitrocellulose 

membranes. Membranes were probed with α-Atg5 (Novus, Cat. No NB110-53818), α-

Beclin1 (Cell Signaling, Cat. No. 3738), α-p62/SQSTM1 (Cell Signaling, Cat. No. 

7695S), and anti-β-actin and anti-β-tubulin antibodies. Secondary antibodies conjugated 

to HRP (Thermo Fisher Scientific, Waltham, MA, USA) were used where necessary, 

and antibody complexes were detected using SuperSignal West Femto 

chemiluminescent substrate (Thermo Fisher Scientific, Waltham, MA, USA). 

Chemiluminescence was detected using a UVP EC3 imaging system (UVP LLC Upland, 

CA, USA). 

Virus Generation and Titering 

HIV and MLV reporter virus were prepared as described previously [164]. Briefly, 

HIV-1 reporter virus was produced by polyethylenimine [26] transfection of 293T cells 

with 10 μg of VSV-G and 15 μg of the proviral construct R7ΔEnvGFP, in which the Nef 

gene was replaced with GFP. MLV reporter virus was produced by PEI transfection of 

293T cells with equal amounts of VSV-G, pCigN or pCigB packaging plasmid (for N-

MLV and B-MLV generation, respectively), and GFP reporter vector.  Virus was 
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harvested as previously described [178]. MLV was titered on CRFK cells to normalize 

viral input in infectivity studies, as described previously [156]. R7ΔEnvGFP was titered 

as described previously [177] 

Quantitative Real-Time PCR for Viral RT Products 

Quantitation of viral RT products was performed as previously described [156, 

157]. Briefly, equivalent numbers of indicated cells were seeded in 12-well plates. Cells 

were infected with indicated virus, and they were subsequently incubated for 18 hrs at 

37°C.  Genomic DNA was harvested using a DNeasy tissue kit (Qiagen, Valencia, CA, 

USA) according to the manufacturer's instructions and digested with 1 unit/µl DpnI (New 

England Biolabs, Ipswich, MA, USA) for 4 hrs at 37°C to remove residual plasmid DNA. 

Real-time PCR was performed with SYBR green PCR reagent (Applied Biosystems, 

Carlsbad, California, USA) using primers for late RT, GFP and GAPDH. Dilutions of 

proviral plasmid and GAPDH (10-fold) were used to generate standard curves. Samples 

were normalized to 10 ng of total cellular DNA or GAPDH standards. 
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CHAPTER THREE 

HYPOTHESIS AND SPECIFIC AIMS 

Host cell restriction factors are a class of proteins that inhibit viral replication by blocking 

the ability of a virus to complete its life cycle. TRIM5α is one of the best characterized 

anti-viral restriction factors. Members of the TRIM family of proteins are defined by 

having a tripartite motif consisting of an N-terminal RING domain, which functions as an 

E3 ubiquitin ligase; one or two B-box domains; and a Coiled-coil domain. TRIM5α is 

distinguished from other members of this family by its C-terminal SPRY domain, which 

allows TRIM5 proteins to directly bind to the retroviral capsid, a proteinaceous core that 

houses the viral genome [85, 155]. Upon capsid recognition, the B-box and Coiled-coil 

domains, which are critical for self-assembly among many TRIM family members [97, 

108, 117, 179], facilitate assembly of TRIM5 to form a multimeric lattice surrounding the 

viral core [115, 116, 180]. Furthermore, higher-order assembly of TRIM5 also activates 

the E3 ubiquitin ligase function of the RING domain [102]. Through the formation of this 

multimeric assembly, TRIM5 is able to initiate its antiviral activities, which include: (1) 

inhibition of viral infection; (2) inhibition of viral reverse transcription; disassembly of the 

capsid; and (4), synthesis of K63-linked ubiquitin chains that activate innate signaling 

pathways and induce an "antiviral state" for the cell [35, 103, 155, 157]. While the 

inhibition of viral infection by TRIM5α is well-characterized, the precise mechanism by 

which TRIM5α promotes the degradation of the retroviral capsid remains unknown. 
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Several groups, including our own, have determined that there is step in restriction that 

is sensitive to proteasome inhibitors, as treatment with proteasome inhibitors allows 

reverse transcription to proceed, though infection is still blocked, suggesting a 

proteasome dependent step in the restriction process [152, 156, 157, 160, 162]. 

However, several recent high profile studies have implicated autophagy as having a 

central role in retroviral restriction by TRIM5α [146, 165]. Thus the relationship between 

the autophagic and proteasomal degradation pathways and the functions of TRIM5α 

remains unresolved. 

Autophagy is a conserved cellular process whereby cargoes such as proteins or 

organelles are sequestered into a double-membraned vesicle and transported to the 

lysosome for degradation or recycling. We and others have previously shown that 

TRIM5α spontaneously forms assemblies known as cytoplasmic bodies in cells, and 

these bodies colocalize with proteins involved in autophagy, including the adaptor 

molecule p62/SQSTM1 and the autophagosome membrane marker LC3b [164, 181]. 

Furthermore, we and others have also demonstrated that the turnover of TRIM5α is 

partially autophagy-dependent [146, 181]. Intriguingly, autophagy has also been 

implicated in pathogen clearance. For example, a recent study described how cells 

employ autophagy to clear Salmonella infection by tagging the invasive bacteria with 

ubiquitin [182, 183]. These ubiquitinated bacteria are then recognized by p62/SQSTM1 

and directed to autophagosomes for degradation [182, 183]. Similarly, another recent 

study highlighted how infection with certain RNA viruses triggers the activation of 

TRIM23, which in turn activates p62/SQSTM1 and promotes the induction of autophagy 
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[160, 184]. Taken together, these observations suggest that the autophagic pathway 

may play a critical role in the function of TRIM5α as a restriction factor. The goal of this 

proposal is to define the molecular interactions required for the association of TRIM5 

proteins with autophagy effectors and to delineate the roles of ubiquitination and 

autophagy in TRIM5α restriction. 

Aim 1: Determine if TRIM5 proteins require autophagy effectors for the restriction 

of retroviral infection and reverse transcription. To test the requirement of 

autophagy in restriction, we examined the ability of TRIM5α to restrict retroviral infection 

in cells depleted of autophagic mediators ATG5, Beclin1, and p62. In all cases, 

restriction of retroviral infection and reverse transcription by human TRIM5α, Rhesus 

macaque TRIM5α, and owl monkey TRIM-Cyp remained potent in cells depleted of 

these autophagic effectors by siRNA knockdown or CRISPR/Cas9 genome editing 

[181].  

Aim 2: Determine if the ubiquitin ligase activity of TRIM5α is required for its 

association with autophagy effectors and its ability to restrict retroviral infection 

and reverse transcription. We generated fusion proteins in which the catalytic domain 

of different deubiquitinase (DUb) enzymes, with different specificities for 

polyubiquitinated linkages, was fused to the N-terminal RING domain of Rhesus 

TRIM5α. Using these fusion proteins as tools, we sought to assess the role of 

ubiquitination in: (A) the restriction of infection and reverse transcription; (B) 

destabilization of the capsid core; and (C) the degree to which specific types of 

ubiquitination are required for the association of TRIM5α with autophagic proteins. 
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CHAPTER FOUR 

RESULTS 

Inhibition of Autophagy Alters the Cellular Localization of Rhesus TRIM5α 

A novel characteristic of the TRIM family of proteins is their intrinsic ability to form 

higher order assemblies, and in the case of TRIM5α, this activity is essential for the 

ability of the protein to act as a retroviral restriction factor [169]. Normally, RhTRIM5α 

localizes to both small, discrete cytoplasmic puncta, termed cytoplasmic bodies [85] and 

a diffuse pool of cytoplasmic protein that is capable of forming cytoplasmic bodies de 

novo around individual virions [152, 168]. We previously observed that cytoplasmic 

bodies of RhTRIM5α colocalize with the autophagic adaptor protein p62 [164]. In 

contrast, previous studies have observed that treatment of cells stably expressing 

RhTRIM5α with MG132, a proteasome inhibitor, drives the protein to form cytoplasmic 

bodies that are larger in size than normal bodies [157]. Therefore, to study the effects of 

autophagic or proteasomal inhibition on the cellular localization of YFP-RhTRIM5α, 

HeLa cells stably expressing YFP-RhTRIM5α were treated with BafA1, which prevents 

hydrogen flux through the ATPase present on lysosomal and endosomal membranes 

[185], or MG132 for 18 hrs, after which the abundance of YFP-RhTRIM5α in cells was 

quantified. As shown in Figure 13, inhibition of autophagy by BafA1 altered the 

localization of TRIM5α, resulting in the accumulation of more numerous cytoplasmic 

bodies than observed in untreated cells (Fig. 13A and C), while treatment with MG132 

recapitulated previously published findings (Fig. 13B). These observations were 
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validated by quantitative image analysis to characterize YFP-RhTRIM5α localization in 

data sets obtained from the individual treatment groups. BafA1 treatment produced a 

substantial increase in the number of cytoplasmic bodies per cell (Fig. 13D), compared 

to both untreated and MG132 treated cells. Therefore, BafA1 treatment alters the 

subcellular localization of RhTRIM5α, resulting in more numerous cytoplasmic bodies, 

consistent with these bodies being autophagosomal structures destined for clearance 

via lysosomal degradation pathways. 
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Figure 13. Subcellular Localization of YFP-RhTRIM5α Changes in the Presence of 

BafA1 and MG132. (A-C) HeLa cells stably expressing YFP-RhTRIM5α were seeded 

onto fibronectin treated coverslips for 18 hrs. Cells were left untreated or treated with 

BafA1 or MG132 during this time. Cells were subsequently fixed and stained with DAPI. 

Z-stack images were collected with a DeltaVision microscope equipped with a digital 

camera using a 1.4-numerical aperture (NA) 100× objective lens, and were deconvolved 

with SoftWoRx deconvolution software. Individual channel images were superimposed 

to create the merged panels. Images of cells left untreated (A), treated with MG132 (B), 

or treated with BafA1 (C) are presented. Images are representative of at least three 

experiments. (D) To quantify the number of RhTRIM5α cytoplasmic bodies in each 

treatment group, 20 images were taken per treatment under identical acquisition 

parameters. Each image was analyzed using Imaris imaging software. The mean and 

standard error of the mean [186] are highlighted in red. *, P<0.0001. 
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Rhesus TRIM5α Colocalizes with Autophagic Markers LC3b and LAMP2A 

following BafA1 Treatment 

Our observation that treatment with BafA1 increases the accumulation of YFP-

RhTRIM5α suggested that TRIM5α is degraded by an autophagic pathway. 

Accordingly, if YFP-RhTRIM5α is degraded by autophagy, then we would expect that 

the cytoplasmic bodies of YFP-rhTRIM5α, which accumulate upon BafA1 treatment, to 

colocalize with markers of autophagy. To test this hypothesis, we utilized 

immunofluorescence microscopy to quantify the degree of colocalization between YFP-

RhTRIM5α and LC3b, a common marker of autophagosomes, and Lysosomal 

Associated Membrane Protein 2A (LAMP2A) in HeLa cells. In untreated cells, a subset 

of YFP-RhTRIM5α puncta was observed to colocalize with LC3b and LAMP2A (Fig. 

14A and B), with approximately 30% of the YFP-rhTRIM5α cytoplasmic puncta being 

positive for at least one of these markers (Fig. 14C). However, after 6 hrs of treatment 

with BafA1, the colocalization of YFP-RhTRIM5α with both markers substantially 

increased (Fig 14A and B), such that ~68% of puncta were positive for one of the two 

markers, and approximately 35% were positive for both LC3b and LAMP2A (Fig. 14C). 

These data suggest that YFP-RhTRIM5α is rapidly turned over by autophagic 

degradation. When autophagy is inhibited by BafA1, YFP-RhTRIM5α that has been 

targeted for degradation accumulates in compartments containing LC3b and LAMP2A. 
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Figure 14. RhTRIM5α Colocalizes with the Autophagy Markers LC3b and LAMP2. 

(A and B) HeLa cells stably expressing YFP-RhTRIM5α were seeded onto fibronectin 

treated coverslips. Cells were left untreated or treated with BafA1 for 6 hrs. Cells were 

fixed, permeabilized and costained with rabbit anti-LC3b (A) and mouse anti-LAMP2A 

(B) and DAPI. Representative images of cells left untreated or treated with BafA1 are 

presented. (C) To quantify the number of RhTRIM5α cytoplasmic bodies that were 

positive for LC3b or LAMP2A following each treatment, 20 Z-stack images were taken 
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per treatment, under identical acquisition parameters. Imaris imaging software was used 

to identify YFP-RhTRIM5α puncta, and the maximum LC3b and LAMP2A staining 

intensity in each surface was calculated and plotted. Percentages indicate the number 

of RhTRIM5α cytoplasmic bodies that are positive for LAMP2A, LC3b, both, or neither. 

Images are representative of at least three independent experiments. 

 

Depletion of Autophagic Effectors Does Not Relieve N-MLV Restriction by Human 

TRIM5α 

The above studies provide evidence to suggest that YFP-RhTRIM5α is degraded by an 

autophagic pathway. We next asked if the depletion of key macroautophagy effector 

proteins was able to perturb TRIM5α-mediated retroviral restriction. To this end, we 

assessed retroviral restriction in human TE671 cells, which endogenously express 

human TRIM5α and therefore potently restrict N-tropic murine leukemia virus (N-MLV) 

but are permissive to infection by B-tropic MLV (B-MLV) [84]. TE671 cells were 

transfected with siRNAs targeting ATG5, Beclin1 or p62, and the infectivity of N-MLV 

and B-MLV was assessed. As expected, N-MLV infection was potently inhibited 

compared to B-MLV infection in TE671 cells subject to control siRNA transfection (Fig. 

15B). Notably, knockdown of ATG5, Beclin1 or p62 did not relieve the restriction of N-

MLV infection (Fig. 15B), suggesting that these effectors of macroautophagy are not 

required for the restriction of N-MLV by huTRIM5α.  
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Figure 15. Depletion of Autophagic Mediators by siRNA Does Not Affect N-MLV 

Restriction by HuTRIM5α. (A) TE671 cells were transfected with siRNAs targeting 

ATG5, Beclin1, or p62, or a control siRNA. Expression of the indicated proteins was 

detected by Western blot 72 hrs post-transfection. (B) TE671 cells transfected with 

siRNAs targeting ATG5, Beclin1, or p62, or a control siRNA were collected at 72 hrs 

post-transfection. Equal numbers of siRNA-transfected cells were plated and infected 

with equivalent titers of VSV-G pseudotyped N-MLV or B-MLV. Cells were harvested 48 

hrs after infection and infectivity, signified by the percentage of GFP-positive cells, was 

measured by flow cytometry. The data shown here is representative of three 

independent experiments.  
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To confirm and extend this observation, we generated TE671 cells in which the 

ATG5 gene or the Beclin1 gene were disrupted using CRISPR/Cas9 genome editing 

(Fig. 16C and E). Similar to our findings in cells depleted of ATG5 or Beclin1 by siRNA, 

we observed no relief of TRIM5α-mediated restriction of N-MLV in TE671 cells in which 

ATG5 or Beclin1 was knocked out (Fig. 16D and F).  

To determine if ATG5 or Beclin1-dependent macroautophagy are required for the 

restriction of reverse transcription by TRIM5α, we also measured reverse transcription 

products generated by N-MLV and B-MLV in these cells. As we and others have 

previously observed, reverse transcription by N-MLV was reduced, relative to reverse 

transcription by B-MLV, in unmodified TE671 cells (Fig. 16G and H). Importantly, the 

restriction of N-MLV reverse transcription, relative to that of B-MLV, was preserved in 

cells depleted of ATG5 or Beclin1 (Fig. 16G and H). These data demonstrate that 

perturbation of macroautophagy does not abrogate restriction of retroviral infection or 

reverse transcription by endogenously expressed huTRIM5α. 
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Figure 16. Depletion of Autophagic Mediators by CRISPR/Cas9 Genome Editing 

Does Not Affect N-MLV Restriction by HuTRIM5α. TE671 cells were depleted of 

ATG5 (C) or Beclin1 (E), using CRISPR/Cas9 genome editing, and protein expression 

of ATG5 in wild-type and knockout cells was confirmed by Western blot. Infectivity of 

VSV-G pseudotyped N-MLV or B-MLV in wild-type or ATG5 (D) or Beclin1 (F) knockout 

TE671 cells was assayed. The data shown here is representative of three independent 

experiments. Wild-type or ATG5 (G) or Beclin1 (H) knockout TE671 cells were infected 

with equivalent titers of VSV-G pseudotyped N-MLV or B-MLV, and viral reverse 

transcription products were measured. Three independent experiments were 

conducted, and the amount of viral DNA detected in each experiment was normalized to 

the wild-type untransduced sample infected with B-MLV of that experiment. Error bars 

represent the standard deviation of the relative number of viral DNA products detected 

across three independent experiments.  
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Depletion of Autophagic Effectors Does Not Relieve HIV-1 Restriction by Rhesus 

TRIM5α or Owl Monkey TRIM-Cyp 

We next assessed if autophagic adaptors are also required for the restriction of HIV-1 

by RhTRIM5α and owl monkey TRIM-Cyp. We generated HeLa cell lines in which ATG5 

or Beclin1 were disrupted by CRISPR-Cas9 genome editing (Fig. 17A and C and 18A). 

When challenged with HIV-1, we observed extensive infection in wild-type HeLa cells 

and in HeLa cells depleted of ATG5 or Beclin1 (Fig. 17B and D). In contrast, when wild-

type and ATG5 or Beclin1-depleted HeLa cells were transduced to stably express 

RhTRIM5α, these cells potently restricted HIV-1 infection relative to their untransduced 

counterparts (Fig. 17B and D). Analogous results were obtained in ATG5 knockout 

mouse embryonic fibroblasts (not shown).  

 We next examined the ability of RhTRIM5α to inhibit the formation of HIV-1 

reverse transcription products in cells depleted of macroautophagy factors. In 

untransduced ATG5 and Beclin1 knockout HeLa cells, reverse transcription was 

reduced relative to unmodified HeLa cells, consistent with the reduction in infectivity 

observed in these cells (Fig. 17E and F).  In each case, however, potent restriction of 

reverse transcription was observed in cells expressing rhTRIM5α, compared to their 

untransduced counterparts.  
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Figure 17. Depletion of Autophagic Mediators Does Not Affect the Restriction of 
HIV-1 by RhTRIM5α. HeLa cells depleted of ATG5 (A) or Beclin1 (C) by CRISPR/Cas9 
genome editing were transduced to stably express HA-tagged rhTRIM5α (or left 
untransduced). Wild-type, ATG5 (B), or Beclin1 (D) knockout HeLa cells, either with or 
without exogenous RhTRIM5α expression, were infected with a VSV-G pseudotyped 
HIV-1 reporter virus, and infectivity was measured by flow cytometry. The data shown 
here is representative of three independent experiments. (E) Wild-type, ATG5 (E), or 
Beclin1 (F) knockout HeLa cells, either with or without exogenous RhTRIM5α 
expression, were infected with equal titers of VSV-G pseudotyped HIV-1, and viral 
reverse transcription products were measured by quantitative PCR. For each sample, 
viral DNA, as measured by the number of GFP reporter copies detected, was 
normalized to the amount of GAPDH observed in parallel samples. Three independent 
experiments were conducted, and the amount of viral DNA detected in each experiment 
was normalized to the wild-type untransduced sample of that experiment. Error bars 
represent the standard deviation of the relative number of viral DNA products detected 
across three independent experiments. 
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Furthermore, we observed similar restriction in wild-type and ATG5 or Beclin1 

knockout HeLa cells stably expressing owl monkey TRIM-Cyp, compared to 

untransduced cells (Fig. 18B). Notably, relief of restriction by TRIM-Cyp was only 

observed when infection was carried out in the presence of cyclosporine A (CsA), which 

is known to inhibit the interaction of TRIM-Cyp with the capsid of HIV-1 (Fig. 18B) [119, 

153]. Collectively these data reinforce that the restriction of HIV-1 infection by both 

RhTRIM5α and owl monkey TRIM-Cyp is independent of macroautophagy adaptors 

ATG5 and Beclin1. Furthermore, RhTRIM5α does not require ATG5 or Beclin1 to 

complete restriction of HIV-1 infection or reverse transcription. 
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Figure 18. Depletion of ATG5 Does Not Affect the Restriction of HIV-1 by Owl 

Monkey TRIM-Cyp. (A) HeLa cells depleted of ATG5 by CRISPR/Cas9 genome editing 

were transduced to stably express HA-tagged owl monkey TRIM-Cyp (or left 

untransduced). (B) Wild-type or ATG5 knockout HeLa cells, either with or without 

exogenous owl monkey TRIM-Cyp expression (as depicted in (A)) were infected with a 

VSV-G pseudotyped HIV-1 reporter virus either in the absence or presence of 

cyclosporine A (- or + CsA, respectively). Cells were harvested 48 hrs after infection and 

infectivity, signified by the percentage of GFP-positive cells, was measured by flow 

cytometry. The data shown here is representative of three independent experiments. 
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Inhibition of Ubiquitination Produces Stable Association of TRIM5α and HIV-1 in 

THP-1 and A549 Cells 

Initial studies investigating the mechanism of restriction of retroviral infection by 

TRIM5 proteins determined that TRIM5 causes a destabilization of the retroviral capsid 

[155, 187], and early models invoked cellular degradative machinery, such as the 

proteasome or autophagy pathways, as being critical mediators of this destabilization. 

Previous studies identified that in the presence of the proteasome inhibitor MG132,  

Rhesus TRIM5α is unable to restrict HIV-1 reverse transcription, although infection is 

still inhibited [156, 157]. In addition, Rhesus TRIM5α forms stabilized complexes with 

HIV-1 virions in the presence of MG132 [152, 155, 158]. Intriguingly, these complexes 

stain positively for ubiquitin [152], possibly indicating a role for ubiquitin or ubiquitination 

in TRIM5α’s anti-retroviral functions. As an E3 ubiquitin ligase, TRIM5α has been shown 

to autoubiquitinate itself and produce unanchored K63-linked ubiquitin chains in vitro 

[103]. Ubiquitination is often a marker to direct substrates to particular cellular 

pathways, and we and others have observed that TRIM5α colocalizes with markers of 

the autophagy pathway [146, 164, 181]. These observations suggested a possible role 

for autophagy in TRIM5α’s restriction functions. However, we previously established 

that restriction of retroviral infection or reverse transcription by TRIM5 proteins does not 

require the autophagy effector molecules ATG5 or Beclin1 [181]. Nevertheless, it is 

possible that ubiquitination contributes to other functions of TRIM5α. Therefore, our goal 

was to delineate the role of ubiquitination in the anti-retroviral functionsTRIM5α and its 

recruitment to autophagosomes. 
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A recent study from our group determined that the E3 ubiquitin ligase function of 

TRIM5α is required for its ability to destabilize retroviral capsids [171]. TRIM5α proteins 

in which the Herpes Simplex Virus UL36 deubiquitinating enzyme (hereafter referred to 

as DUb) fused to the N-terminal RING domain of Rhesus macaque TRIM5α (DUb-

RhTRIM5α) were able to restrict HIV-1 infection, however, viral cores in complex with 

DUb-RhTRIM5α accumulated in the cytoplasm of infected cells, suggesting impaired 

destabilization of cores in the absence of competent ubiquitination [171]. Importantly, 

cells expressing a catalytically inactive version of the DUB, termed DUb*-RhTRIM5α, 

maintained the ability to both restrict infection and destabilize viral cores [171]. We 

previously observed the accumulation of DUb-RhTRIM5α-core complexes in the 

cytoplasm of infected HeLa cells [171]. These findings were recapitulated in both THP-1 

cells differentiated into macrophages and A549 cells (Fig 19-21). Importantly, from 

these studies, it was unclear if the stabilized DUb-RhTRIM5α-capsid complexes were 

being sequestered into autophagosomes for subsequent degradation. 
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Figure 19. Co-localization of DUB-Fusion Proteins and HIV-1 p24 in THP-1 Cells. 

THP-1 cells expressing the indicated Flag-tagged RhTRIM5 DUB fusion proteins were 

differentiated into macrophages and infected with HIV-1. Colocalization between Flag 

and HIV-1 p24 was assessed. Representative image are shown in (A), and a 

magnification of a DUb-RhTRIM5α image is shown in (B). 
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Figure 20.Co-localization of DUB-Fusion Proteins and HIV-1 p24 in A549 Cells. 

A549 cells expressing the indicated Flag-tagged RhTRIM5 DUB fusion proteins infected 

with HIV-1. Colocalization between Flag and HIV-1 p24 was assessed. Representative 

image are shown in (A), and a magnification of a DUb-RhTRIM5α image is shown in 

(B). 
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Figure 21. Inhibition of the Ubiquitin Ligase Function of TRIM5α Stabilizes the 

Association of RhTRIM5α with HIV-1 Viral Cores in THP-1 and A549 Cells. The 

degree of colocalization of between the different TRIM5α fusion proteins (Flag-tagged) 

and HIV-1 capsid (p24) at 6hpi in both THP-1 cells differentiated into macrophages and 

A549 cells was measured. Error bars represent SEM of at least 20 images taken for 

each cell line. Data are representative of three independent experiments. *** = p < 

0.001 by one-way ANOVA. 
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Generation of Deubiquitinase-Rhesus TRIMα Fusion Proteins 

To more directly identify the specific determinants of how TRIM5α recruits 

autophagic machinery and to determine if stabilized TRIM5α-viral core complexes are 

recruited to autophagosomes, we generated a panel of fusion proteins in which the 

catalytic domain of different deubiquitinase enzymes (DUBs), with different specificities 

for polyubiquitinated linkages, was fused to the N-terminal RING domain of Rhesus 

TRIM5α (Table 1). Our previous study utilized the HSV-1 UL36 deubiquitinating 

enzyme, which has been reported to cleave both K48 and K63-linked polyubiquitin 

chains [172, 188, 189]. The different deubiquitinase enzymes employed in the current 

study were chosen for their ability to cleave only a single type of ubiquitin linkage, even 

at high polyubiquitin concentrations in vitro [190]. In addition, each of these 

deubiquitinase-RhTRIM5α fusions was paired with a catalytically inactive 

deubiquitinase-RhTRIM5α fusion protein (denoted as "*") to control for the addition to 

the N-terminus of RhTRIM5α due to the fusion protein [171-174, 191]. 
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Table 1. Deubiquitinase (DUB)-RhTRIM5α Fusion Proteins Used in This Study. DUB enzymes were fused to the N-

terminus of Rhesus TRIM5α, in frame between the Flag tag and the RING domain.
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Deubiquitinase-RhTRIM5α Fusion Proteins Restrict HIV-1 Infection 

First, these deubiquitinase-RhTRIM5α fusions were screened for their ability to 

restrict HIV-1 infection. A549 cells stably expressing each one of the DUB-RhTRIM5α 

fusion proteins were infected with an HIV-1 reporter virus, in which infected cells appear 

green.  If ubiquitination is required for restriction, we would expect cells expressing one 

of active DUBs to be permissive to infection by the reporter virus. However, in all cases, 

both the catalytically active and inactive deubiquitinase fusion proteins retained the 

ability to restrict HIV-1 infection (Fig 22). It is worth noting that the catalytically inactive 

control for K48-specific DUB activity, OTUB1*-RhTRIM5α, was slightly more permissive 

to infection compared to the other cell lines. We believe this activity is due to protein 

folding changes that may have occurred due to the introduction of an alanine residue in 

the catalytic site of the DUB enzyme. Nevertheless, as all the fusion proteins were able 

to restrict HIV-1 infection, we concluded, from these data, that ubiquitination is not 

required for the restriction of infection by RhTRIM5α. 
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Figure 22. Deubiquitinase-RhTRIM5α Fusion Proteins Restrict HIV-1 Infection in 

A549 Cells. RhTRIM5α fusion proteins were infected with a GFP reporter HIV-1 virus 

and the proportion of infected cells (% GFP positive) was assessed 48hpi by flow 

cytometry. Data are representative of two independent experiments.  

 

K63-linked Ubiquitination Activity is Required for Restriction of Reverse 

Transcription by TRIM5α 

During restriction, TRIM5α is known to promote the disassembly of capsids prior 

to the completion of reverse transcription, although this effect is abrogated in the 
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presence of the proteasome inhibitor MG132 [156, 157]. To determine if the restriction 

of reverse transcription requires ubiquitination activity, and to specifically define what 

type of ubiquitin linkages are critical, we infected A549 cells expressing the DUB-

RhTRIM5α fusion proteins with an HIV-1 reporter virus and measured reverse 

transcription products (Figure 23). As expected, we observed minimal production of 

reverse transcription products in cells expressing RhTRIM5α, which is consistent with 

previous reports [85, 155]. In contrast, we observed an accumulation of reverse 

transcription products in cells expressing the catalytically active HSV-1 UL36 

deubiquitinase fusion protein (DUb-RhTRIM5α). This enrichment is particularly evident 

when comparing the active DUB to its catalytically inactive control, DUb*-RhTRIM5α 

(Figure 23B). In this case, reverse transcription products did not accumulate, indicating 

that ubiquitination activity by RhTRIM5α is necessary for its restriction of reverse 

transcription.  

Notably, the HSV-1 UL36 deubiquitinase enzyme demonstrates dual specificity to 

cleave both K48- and K63-linked polyubiquitin chains [172, 188, 189]. To more precisely 

define the ubiquitination linkages that are critical for the restriction of reverse 

transcription by TRIM5α, we measured reverse transcription in cells expressing K63-

specific (AMSH-LP-RhTRIM5α) or K48-specific (OTUB1-RhTRIM5α) deubiquitinase 

fusion proteins, along with their catalytically inactive controls. Significantly, we observed 

an enrichment of reverse transcription products specifically in cells expressing the 

catalytically active K63-specific deubiquitinase, AMSH-LP-RhTRIM5α, but not in cells 

expressing the K48-specific DUB (Figure 23). Furthermore, this accumulation, once 
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again, is most apparent when comparing the active K63-specific DUB fusion to its 

catalytically inactive control (Figure 23B). Importantly, we observed no difference in the 

production of reverse transcription products in cells expressing the active or inactive 

K48-specific DUB fusion proteins. From these data, we conclude that RhTRIM5α 

requires K63-specific ubiquitination activity to restrict reverse transcription.  
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Figure 23. K63-linked Ubiquitination Activity is Required for Restriction of 
Reverse Transcription by TRIM5α. Deubiquitinase-RhTRIM5α fusion proteins were 
infected with a GFP reporter HIV-1 virus and viral reverse transcription products were 
measured by quantitative real time PCR. (A) Number of reverse transcription products 
(late RT products) accumulating in the indicated cell lines. Error bars represent the 
standard deviation of technical triplicates. Data are representative of at least three 
independent experiments. (B) Values from (A) plotted as the ratio of active DUB to its 
respective catalytically inactive control.  
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Inhibition of K63-linked Ubiquitination Produces Stable Association of RhTRIM5α 

with HIV-1 Cores but Impaired Association with Autophagosome Membranes 

 Previous reports from our lab and others determined that TRIM5α cytoplasmic 

bodies often colocalize with markers of autophagy, including p62/SQSTM1, LC3b, and 

LAMP2A [146, 164, 181]. In addition, one study mapped the interactions necessary for 

TRIM5α to bind to members of the mammalian ATG8 family, of which LC3b is a 

member, and they identified a region in the Coiled-coil domain of TRIM5α that is 

necessary for this interaction [146]. This was an intriguing finding, given that, as an E3 

ubiquitin ligase, TRIM5α is autoubiquitinated, and the precise residues that are modified 

in TRIM5α have been mapped to the RING domain [103]. We previously observed that 

the ubiquitination activity of RhTRIM5α is required for its ability to destabilize viral 

cores[171], and that in the absence of ubiquitination activity, RhTRIM5α forms stable 

complexes with HIV-1 cores [171]. Therefore, we sought to determine if ubiquitination, 

and to define what type of ubiquitin linkage, is required for the stable association of 

TRIM5α with HIV-1 and for the recruitment of autophagic machinery to TRIM5α. To this 

end, we generated A549 cell lines stably expressing both YFP-tagged LC3b (YFP-LC3) 

and each one of the deubiquitinase-RhTRIM5α fusions. YFP-LC3 was utilized to mark 

autophagosome formation. LC3, a diffusely expressed cytoplasmic protein, binds to 

nascent autophagosome membranes, and therefore, punctate LC3 signal serves as 

marker of autophagosome formation. Following infection with HIV-1, we measured the 

degree of colocalization between the RhTRIM5α fusion proteins, HIV-1 p24 capsid 

protein, and/or YFP-LC3 (Figure 24-25). 
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Consistent with previous reports, we observed minimal stable association 

between RhTRIM5α and HIV-1 p24, as RhTRIM5α rapidly destabilizes viral cores 

(Figure 24-25). However, when K63-linked ubiquitination by RhTRIM5α is inhibited, as 

in the case of cells expressing DUb-RhTRIM5α and AMSH-LP-TRIM5α, we observed 

significant stable co-localization between TRIM5α the viral core, particularly when 

comparing these DUBs to their catalytically inactive controls (Figure 24-25). Importantly, 

we measured minimal stable co-localization between the K48-specific DUB fusion 

protein (OTUB1-RhTRIM5α) and HIV-1 p24, and critically there was no significant 

difference between the catalytically active and inactive fusions (Figure 25A). 

Conversely, we observed that K63-liked ubiquitination is critical for the association of 

RhTRIM5α with YFP-LC3, as both DUb-RhTRIM5α and AMSH-LP-TRIM5α showed 

minimal co-localization with LC3, in contrast to their catalytically inactive counterparts 

(Figure 25B). Collectively, these data indicate that the inhibition of K63-linked 

ubiquitination produces a stable association between RhTRIM5α and HIV-1 cores, and 

that K63-linked ubiquitination activity is critical for the association of TRIM5α with the 

autophagosome membrane marker LC3.  Notably, there was minimal triple 

colocalization between the RhTRIM5α, LC3, and p24, suggesting that autophagic 

machinery is not recruited to the sites of core disassembly. 
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Figure 24. Colocalization of DUB-Fusion Proteins, HIV-1 p24, and/or YFP-LC3 in 

A549 Cells. Representative images of A549 cells expressing the indicated Flag-tagged 

RhTRIM5α DUB fusion proteins infected with HIV-1. Colocalization between Flag, HIV-1 

p24, and/or YFP-LC3 was assessed (see Figure 24).   
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Figure 25. Inhibition of K63-linked Ubiquitination Produces Stable Association of 

RhTRIM5α with HIV-1 Cores but Impaired Association with Autophagosome 

Membranes.  A549 cells expressing deubiquitinase-RhTRIM5α fusion proteins and 

YFP-LC3 were infected with HIV-1. The degree of colocalization of between the 

different TRIM5α fusion proteins (Flag-tagged) and the HIV-1 capsid (p24) (A), or YFP-

LC3 (B) was measured. Error bars represent SEM of at least 20 images taken for each 

cell line. Data are representative of three independent experiments. *** = p < 0.001, ** = 

p < 0.01 by one-way ANOVA. 
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p62 is Critical for TRIM5α Association with Autophagosome Membranes 

p62/SQSTM1 is an autophagic adaptor protein that can bind ubiquitinated substrates 

and direct them to autophagosomes [192]. We previously determined that p62 

colocalizes with TRIM5α cytoplasmic bodies [164]. To determine if p62 is required for 

the association of TRIM5α with autophagosomes, we utilized CRISPR/Cas9 genome 

editing to target p62 or a non-targeting gRNA in A549 cells stably expressing YFP-LC3. 

These cells were subsequently transduced to stably express either RhTRIM5α or DUb*-

RhTRIM5α, given that this was the fusion protein that most potently colocalized with 

YFP-LC3 (Figure 26). We quantified the association between RhTRIM5α and LC3 and 

observed that, in the absence of p62, there is significantly less colocalization between 

YFP-LC3 and RhTRIM5α, indicating that p62 is a critical mediator of the interaction 

between RhTRIM5α and autophagosomes (Fig 26).  
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Figure 26. p62 is Critical for TRIM5α Association with Autophagosome 
Membranes.  A549 cells were depleted of p62 via CRISPR/Cas9 genome editing. 
These cells were subsequently transduced to express YFP-LC3 and the indicated DUB 
constructs (A). (B) Following infection with an HIV-1 reporter virus, the degree of 
colocalization of between the different TRIM5α fusion proteins (Flag-tagged) and YFP-
LC3 was measured. Error bars represent SEM of at least 20 images taken for each cell 
line. Data are representative of three independent experiments. *** = p < 0.001, * = p < 
0.05 by Student’s t-test. 

 



 
 

80 
 

CHAPTER FIVE 

DISCUSSION 

Summary of data 

TRIM5α, as other TRIM proteins, has been shown to associate with markers of 

the autophagy pathway [146, 164, 181-184], and given TRIM5α’s role as a retroviral 

restriction factor, that this association suggests a functional relationship between the 

autophagy pathway and TRIM5α. The goal of these studies was to examine the 

contributions of ubiquitination and association with autophagic effectors to TRIM5α’s 

anti-retroviral functions. 

First, we identified that the subcellular distribution of YFP-RhTRIM5α changes in 

the presence of BafA1 and MG132, with the accumulation of more cytoplasmic bodies 

of YFP-RhTRIM5α observed in the presence of autophagy inhibition compared to 

proteasome inhibition (Figure 13). We also determined that the YFP-RhTRIM5α 

cytoplasmic bodies colocalize with markers of the autophagy pathway (Figure 14). 

These observations provided the rationale to examine the role, if any, that autophagy 

plays in the restriction of retroviruses by TRIM5 proteins. For our study, we selected two 

important macroautophagy factors, Beclin1 and ATG5, which are critical for the 

nucleation and elongation of autophagosome membranes. It is worth noting that 

autophagy is a very complex cellular process involving many cellular proteins, and it is 

possible that in some cases, there may be redundant proteins that have similar effects. 
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Importantly, however, Beclin1 appears to be essential for macroautophagy [193] and 

thus was a valuable target for our assessment of autophagy in the functions of TRIM5α. 

We observed that retroviral restriction was not impacted by depletion of 

autophagic mediators by siRNA (Figure 15). This was true in the case of endogenously 

expressed huTRIM5α, which still mediated potent inhibition of N-MLV infection and 

reverse trancription following ATG5, Beclin1 or p62 knockdown. However, these studies 

do not exclude the possibility that small amounts of these mediators remaining after 

siRNA knockdown are sufficient to preserve TRIM5α-mediated restriction. We therefore 

used the CRISPR-Cas9 genome editing system to deplete cells of ATG5 or Beclin1 and 

similarly assessed N-MLV restriction by huTRIM5α (Figure 16). Similar to our 

knockdown studies (Figure 15) no relief in retroviral restriction was observed (Figure 

16D and F) in cells depleted of ATG5 or Beclin1. In addition, restriction of viral reverse 

transcription was intact following ATG5 and Beclin1 knockout (Figure 16G and H). 

Although we cannot discount the possibility that cells depleted of ATG5 or Beclin1 may 

possess alternative mechanisms of substrate degradation via autophagy, these results 

collectively demonstrate that restriction of retroviral infection and reverse transcription 

by TRIM5α is independent of ATG5 and Beclin1.  

We obtained similar results when restriction of HIV-1 by RhTRIM5α (Figure 17) 

or TRIM-Cyp (Figure 18) was examined. Restriction of HIV-1 was not impacted by 

ATG5 or Beclin1 deletion (Figure 17). We did observe that ATG5 depletion caused a 

decrease HIV-1 infection (Figure 17B), although HIV-1 restriction remained intact in 

these cells (Figure 17B). These data are in apparent contrast to the findings from a 
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recent study, which observed that the depletion of autophagic adaptor proteins 

abrogated RhTRIM5α-mediated restriction of HIV-1 [146]. One noticeable difference 

between our studies was that the Mandell et. al. study utilized primary Rhesus 

fibroblasts to examine the role of autophagic adaptors in the restriction mechanism of 

RhTRIM5α; they observed modest restriction of HIV-1 by the primary Rhesus 

fibroblasts, with minimal relief of restriction observed following the depletion of 

rhTRIM5α by siRNA [146]. Our study dissected the role of autophagy in retroviral 

restriction in the context of much more potent restriction, as observed in the restriction 

of N-MLV by huTRIM5α and HIV-1 by RhTRIM5α or TRIM-Cyp. Thus, we suspect that 

the differences between our results and the Mandell et. al. study stem from the more 

pronounced degree of restriction observed in our studies. However, we cannot exclude 

the possibility that cell type or species specific differences explain the apparent 

discordance between our observations. Furthermore, it should be noted that the 

Mandell et. al. study assessed infectivity by measuring the amount of HIV-1 p24 protein 

in the cellular lysate of infected cells, rather than through the more conventional 

approach of measuring the expression of a reporter gene expressed  upon viral 

integration. In this regard, autophagy has been implicated in regulating virus production 

[194], and therefore, the quantification of p24 in the cellular lysate, which could 

represent CA associated with the core or unincorporated CA monomers, does not 

directly reflect the restriction capabilities of TRIM5α and its relationship to autophagy. 

Although we concluded that autophagy is not required for retroviral restriction by 

TRIM5α proteins, it is possible that the association of TRIM5α proteins with autophagy 
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markers could have some other role in TRIM5α’s function. In the present study, we 

assessed the role of the ubiquitin ligase activity of RhTRIM5α on its restriction of HIV-1 

infection, reverse transcription, stable association with viral capsids, and recruitment 

with the autophagosome marker LC3. We conclude that K63-linked ubiquitin ligase 

activity of RhTRIM5α is critical for its restriction of reverse transcription and association 

with LC3. In the absence of K63-linked ubiquitination, we observed a restoration of HIV-

1 reverse transcription and the formation of stable complexes of RhTRIM5α and HIV-1. 

Finally K63-linked ubiquitination is critical for RhTRIM5α’s association with LC3. The 

results from our study are in agreement with a recent report which identified that 

TRIM5α is modified by K63-linked ubiquitination in vitro [103]. Furthermore, the same 

study assessed the contribution of ubiquitination to the restriction of reverse 

transcription by TRIM5α and found that the restriction of reverse transcription by 

TRIM5α was relieved in cells expressing a K63R mutant ubiquitin, in which the 

formation of K63-linked polyubiquitin chains is blocked [103]. One pitfall of such an 

approach is that K63-linked ubiquitination is likely important for many cellular processes, 

and expression of this ubiquitin mutant could alter cellular pathways that could have an 

indirect impact on the restriction functions of TRIM5α. Our approach, in which we fused 

different deubiquitinases to RhTRIM5α, offered the opportunity to study ubiquitination in 

the context of the assembly of TRIM5α around a capsid, as this assembly has been 

shown to be critical to the activation of the E3 ligase function of TRIM5α [102]. 

Furthermore, by pairing each DUB with a catalytically inactive control protein, we were 

able to focus our analysis on the phenotypes associated with the enzymatic activity of 
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the DUB, rather than changes that could be a consequence of adding a fusion to the N-

terminus of Rhesus TRIM5α. Finally, by including DUB enzymes with unique 

specificities for cleaving K48 or K63-linked polyubiquitin linkages, we demonstrated that 

the ubiquitin-dependent steps in restriction by TRIM5α specifically require its ability to 

generate K63-linked polyubiquitin chains. We are currently confirming the 

deubiquitinase activity of the each of the DUB-fusion proteins in in vitro studies. 

Implications of the Data: TRIM5α and the Autophagy Pathway 

Two recent studies have considered the importance of the autophagy pathway in 

facilitating core disruption by TRIM5α [146, 165]. This hypothesis is particularly 

attractive, given how K63-linked ubiquitin chains have been associated with the 

recruitment of autophagy machinery in cells [195]. In this model, TRIM5α binds to and 

forms an assembly around incoming viral cores, synthesizes K63-linked polyubiquitin 

chains [102], and recruits autophagic machinery to degrade both TRIM5α itself and its 

bound viral core [146, 165]. We showed that K63-linked ubiquitination is required for 

TRIM5α’s association with autophagosome membranes (Figure 25) and its ability to 

restrict viral reverse transcription (Figure 23). A hypothesis one can draw from these 

data is that in the absence of K63-linked ubiquitination, TRIM5α is unable to recruit 

autophagic machinery; as  result, stable complexes of TRIM5α bound to the core persist 

in the cytoplasm (Figure 24-25), allowing sufficient time for reverse transcription to 

proceed. In this case, the association with autophagosomes would be essential for the 

ability of TRIM5α to inhibit reverse transcription. However, we determined that the 

depletion of key macroautophagy factors ATG5 or Beclin1 had no impact on the ability 
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of TRIM5α to restrict reverse transcription [181]. These finding are in opposition to 

recent work highlighting the central role of specifically these two factors, along with p62, 

in restriction by TRIM5α [146]. While we disagree with this finding, it is possible that 

TRIM5α’s association with the autophagy pathway may be relevant in other contexts.  

Specifically, one recent study reported that HIV-1 infection is suppressed in 

Langerhans cells, a subset of dendritic cells found within mucosal tissues, and this 

restriction is mediated by TRIM5α [165]. In their model, Langerhans cells bind HIV-1 via 

the C-type lectin receptor Langerin, which in turn facilitates the binding of TRIM5α to the 

internalized virus [165]. Subsequently, TRIM5α directs the core complex to the 

autophagy pathway for degradation [165]. Importantly, this study found that this 

particular pathway of TRIM5α-mediated restriction was specific to Langerhans cells, as 

dendritic cells expressing a different C-type lectin receptor, DC-SIGN, were unable to 

direct the TRIM5α-virus complex  to autophagosomes for degradation [165]. However, 

our studies investigating the role of autophagy in restriction determined that restriction 

of infection by different TRIM5 proteins occurred in the absence of ATG5 or Beclin1 

(Figures 15-18) or K63-linked ubiquitination, which is critical for the association of 

TRIM5α with autophagosome membranes (Figure 22). This is supported by biochemical 

experiments which observed the spontaneous formation of TRIM5α assemblies on in 

vitro assembled capsid assemblies (Figure 8). Taken together, it is difficult to conceive 

how the formation of such an assembly, or the restriction to infection this assembly 

seems to confer, would be different in the context of Langerhans cells. However, a 

possible explanation for this apparent discord may be related to the ability of TRIM5α to 
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promote the induction of an innate signaling response upon capsid recognition [35, 

102]. In this regard, it is possible that TRIM5α signaling may occur without the formation 

of a full, restricting TRIM5α assembly around the viral core, and it is possible that, in 

Langerhans cells, induction of this innate signaling response is sufficient to suppress 

infection and could explain the decreased infection in this cell type observed by Ribeiro 

and colleagues.  

Nonetheless, identifying a restriction mechanism within Langerhans cells is 

particularly important, given their prevalence in mucosal sites, as these sites are the 

major route of transmission of HIV-1. It is also possible that the association of TRIM5α 

with autophagosomes might be more relevant for the generation of adaptive immune 

responses to the virus. In this case, autophagosomes containing TRIM5α-virus 

complexes could be fused with MHC class II containing compartments, thereby 

facilitating the delivery of antigens to MHC class II for presentation [196]. Therefore, 

association of TRIM5α with autophagosomes, in the context of infection, could be a 

means of bridging the innate and adaptive immune responses and should be an avenue 

of future investigation. 

Implications of the Data: TRIM5α and the Proteasome 

Previous reports determined that the destabilization of retroviral capsids by 

TRIM5 proteins is sensitive to proteasome inhibitors [156-158], and one implication of 

these observations is that TRIM5α utilizes proteasome machinery to destabilize 

retroviral capsids. However, this model raises important questions. Proteasomal 

degradation is generally associated with K48-linked rather than K63-linked polyubiquitin 
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linkages [126-128, 132-134]. It is possible that TRIM5α, which produces K63-linked 

polyubiquitin chains exclusively ([103] and the current study), recruits proteasomal 

machinery through a noncanonical mechanism. Two studies determined that while both 

K48- and K63-linked polyubiquitin linkages can bind to proteasomal components in vitro 

[135, 138], the processivity with which the proteasome unfolds substrates is 

dramatically reduced in substrates bearing K63-linked chains, compared to K48-linked 

chains [134]. Furthermore, individual TRIM5α proteins bind to the capsid with low 

affinity [114], and therefore, it is unclear how this low affinity interaction, coupled with 

the low processivity associated with K63-linked polyubiquitin chains, explains the 

efficient destabilization of the core that is observed during retroviral restriction by 

TRIM5α. Finally, many of the early studies investigating the role of the proteasome in 

restriction utilized proteasome inhibitors, such as MG132. However, several studies 

determined that treatment of cells with MG132 resulted in an accumulation of proteins 

bearing ubiquitin linkages of all types except for K63-linkages [142, 186], strongly 

suggesting that substrates marked with K63-linked polyubiquitin are not destined for 

proteasomal degradation. Collectively, these observations justify a reevaluation of the 

role of the proteasome in restriction by TRIM5α. 

It is worth considering how our studies with the DUB-RhTRIM5α fusion proteins, 

which essentially recapitulated the effects of MG132 observed in earlier studies [156, 

157], did so without, ostensibly, modulating the proteasome. One explanation to 

reconcile these two effects is that treatment with MG132 is known to deplete the cellular 

pool of free ubiquitin [197]. This, in turn, could potentially limit the availability of free 
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ubiquitin available for TRIM5α to complete its ubiquitin-dependent steps during 

restriction. Therefore, the effects of MG132 on restriction are likely phenotypes 

associated with side-effects of the drug itself rather than a disruption of a proteasome-

dependent step in restriction. 

The data from the current study support a model, first set forth by Barbie Ganser-

Pornillos et. al., in which the formation of an assembly of TRIM5α around a retroviral 

core is sufficient to block infection [115]. Autophagic machinery is not required for the 

restriction of retroviral infection, as both ATG5 or Beclin1 knockout cells maintained 

potent restriction of multiple retrovirsues (Figure 15-18). Furthermore, cells expressing a 

RhTRIM5α fusion protein in which K63-linked ubiquitnation is inhibited maintain potent 

restriction of HIV-1 infection (see AMSH-LP-RhTRIM5α, Figure 22) despite minimal 

association with the autophagosome membrane marker LC3 (Figure 25). Importantly, 

core destabilization, which occurs prior to reverse transcription [155] and requires the 

K63-specific ubiquitin ligase activity of TRIM5α (Figure 25) does not appear to be 

required for the restriction of infection. This suggests that TRIM5α likely evolved 

multiple mechanisms of restricting retroviral infection. An early block, which requires the 

E3 ligase activity on the RING domain of TRIM5α, promotes the destabilization of cores 

prior to the completion of reverse transcription. However, infection is still blocked 

without the E3 ligase activity, suggesting a later block to infection. This later block is 

remarkably similar to the mechanism of restriction of murine Fv1, the first characterized 

retroviral restriction factor. 
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Figure 27. Current Perspective of the Mechanism of Retroviral Restriction by TRIM5α. (left panel) During infection, 
retroviruses reverse transcribe their RNA genome (pink) into DNA (green), uncoat their capsid (blue) and traffic to the 
nucleus for integration. (right panel) TRIM5α [6] exists as diffuse protein and cytoplasmic bodies. K63-specific ubiquitin 

ligase activity of TRIM5α is critical for its association with autophagosome membrane markers and its ability to destabilize 

viral cores prior to the completion of reverse transcription. In the absence of K63-specific ubiquitin ligase activity, TRIM5α 
forms a stable association with the capsid, allowing reverse transcription to proceed, however infection is still blocked. 
This favors a model whereby the formation of a TRIM5α assembly around a capsid is sufficient to inhibit infection, while 

ubiquitin ligase activity of TRIM5α is needed to inhibit reverse transcriptio
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Fv1 inhibits retroviral infection after reverse transcription but before integration, a 

phenotype mirrored in RhTRIM5α fusions with incompetent K63-linked ubiquitin ligase 

activity (AMSH-LP-RhTRIM5α, Figure 22-23). Importantly, although TRIM5α and Fv1 

are very different at the primary sequence level, they each likely evolved independently 

in response to retroviral challenge over time [86, 198]. However, the evolution of the 

RING domain in TRIM5α proteins likely afforded TRIM5α the capacity to effectively and 

efficiently block both retroviral reverse transcription and infection. 

 Intriguingly, TRIM5-based capsid binding restriction factors have evolved at least 

twice, independently, through the retrotransposition of a Cyclophilin A pseudogene to 

replace the SPRY domain of TRIM5α [199-203]. While this retrotranspostion event 

could have occurred by chance, it is possible that the fusion of a capsid binding factor, 

such as cyclophilin A, to the TRIM motif conferred some selective advantage against 

retroviral pathogens, hence their independent evolution among different primates. In this 

regard, in a laboratory setting, fusion of cyclophilin A to a protein that is known to 

multimerize generates a capsid-binding factor that is competent to restrict HIV-1 

infection [99]. If multimerization was the only requirement to generate an efficient 

capsid-binding restriction factor, why would TRIM-based factors, specifically, arise 

repeatedly? One hypothesis is that in addition to multimerization, the TRIM motif, and 

specifically the RING domain, confers the ability to generate an antiviral signaling 

response [35], and thus was selected for over time, given the evolutionary advantages 

associated with the expression of sensors for pathogens.Upon binding to a restriction-

sensitive capsid, the ubiquitin ligase activity of TRIM5α is activated [102], and in turn 
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TRIM5α has been shown to generate free, unanchored K63-linked polyubiquitin chains 

[35]. These ubiquitin chains can subsequently bind to and promote the activation of the 

cytoplasmic kinase TAK1, which in turn promotes the activation and upregulation of AP-

1 and NFκB-dependent genes [35]. Finally, the anti-retroviral activity of TRIM5α begins 

with its binding to the retroviral capsid, and because the capsid is considered 

“genetically fragile” and is required for many aspects of the retroviral life cycle [27, 36, 

37], it is unlikely to evolve to avoid TRIM5α binding. Therefore, TRIM5α has the ability 

to efficiently couple its restriction function with the generation of an innate immune 

response, and studies to define the underlying mechanisms of restriction can help to 

enhance the activity of human TRIM5α against significant pathogens like HIV-1. 

Future Directions 

This work leaves a few important lingering questions. First, it is worth revisiting if 

proteasomes are indeed involved in the core destabilization function of TRIM5α. This 

work suggests that this destabilization occurs independently of proteasomes and 

supports a model whereby the destabilization of capsids may occur as a result of the 

dynamic movement of individual SPRY domains bound to the capsid [100]. In this 

model, the spring-like movement of the L2 region (Figure 7), which exists as a helix, 

could displace individual SPRY domains bound to the capsid and promote capsid 

disassembly [100]. However, within this model, it is unclear what role TRIM5α’s E3 

ligase activity plays, although from the current work it is clear that this ligase activity is 

required for capsid disassembly. It is possible that as the activation of the E3 ligase 

function promotes the ubiquitination of TRIM5α, this in turn imparts some 
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conformational change in the protein that facilitates the dynamic movement of the L2 

spring, and subsequently, displacement of the SPRY domain bound to the capsid. In 

another model, a recent study described how a cytoplasmic polyanion, IP6, binds to and 

stabilizes HIV-1 cores, in a manner that the authors suggest prevents spontaneous 

disassembly of the cores [204]. In this case, ubiquitination of TRIM5α bound to a capsid 

could promote the displacement of IP6 and summarily, induce the disassembly of the 

capsid. 

Furthermore, early studies describing proteasome-dependent steps in TRIM5α-

mediated restriction relied on MG132 [156-158, 162]. For example one study reported 

that during restriction, viral core components such as the RNA genome, reverse 

transcriptase and integrase proteins, and the capsid itself, are likely degraded by the 

proteasome [158]. However, given that the same study could identify no direct 

ubiquitination of core components [158], and the caveats associated with the model of 

proteasome-dependent destabilization described above, it is unclear what role, if any, 

the proteasome has in TRIM5α’s restriction functions. 

Finally it is important to consider the implications of this work on the development 

of strategies to improve the activity of human TRIM5α against HIV-1. While human 

TRIM5α is not as potent as Rhesus TRIM5α in blocking HIV-1 infection, several lines of 

evidence suggest that there are opportunities to improve its functions. For example, 

several reports have characterized SNPs in human TRIM5α that are associated with 

higher viral loads and a more rapid progression towards AIDS [205-207], suggesting 

that wild-type human TRIM5α is exerting some protective effect that is absent in 
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individuals bearing these SNPs. Furthermore, a recent study described how an 

artificially stabilized version of human TRIM5α had the ability to restrict HIV-1 infection 

to a degree comparable to that performed by Rhesus TRIM5α [208]. In this vein, 

strategies that promote the stabilization of human TRIM5α may enhance its anti-HIV-1 

activity. As a proof of this principle, it would be interesting to assess whether human 

TRIM5α fused to the K63-specific deubiquitinase enzyme, which we showed produces a 

stable complex between AMSH-LP-RhTRIM5α and HIV-1 (Figures 24-25), could impart 

improved restriction capabilities to human TRIM5α. 
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