
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Dissertations Theses and Dissertations 

2017 

Maintaining College Access in a Post Recession Era: A Multi-Level Maintaining College Access in a Post Recession Era: A Multi-Level 

Competing Risks Model Competing Risks Model 

Brendan Martin 
Loyola University Chicago 

Follow this and additional works at: https://ecommons.luc.edu/luc_diss 

 Part of the Higher Education Administration Commons 

Recommended Citation Recommended Citation 
Martin, Brendan, "Maintaining College Access in a Post Recession Era: A Multi-Level Competing Risks 
Model" (2017). Dissertations. 2828. 
https://ecommons.luc.edu/luc_diss/2828 

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. 
It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more 
information, please contact ecommons@luc.edu. 
Copyright © 2017 Brendan Martin 

https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_diss
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_diss?utm_source=ecommons.luc.edu%2Fluc_diss%2F2828&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/791?utm_source=ecommons.luc.edu%2Fluc_diss%2F2828&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_diss/2828?utm_source=ecommons.luc.edu%2Fluc_diss%2F2828&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu


 

LOYOLA UNIVERSITY CHICAGO 

 

MAINTAINING COLLEGE ACCESS IN A POST RECECSSION ERA: A MULTI-LEVEL 

COMPETING RISKS MODEL 

 

A DISSERTATION SUBMITTED TO 

THE FACULTY OF THE GRADUATE SCHOOL 

IN CANDIDACY FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

PROGRAM IN RESEARCH METHODOLOGY 

 

BY 

BRENDAN M. MARTIN 

CHICAGO, IL 

DECEMBER 2017 

  



 

 

 

 

 

 

 

 

 

 

 

Copyright by Brendan Martin, 2017 

All rights reserved. 

 

 

 

 



 

iii 
 

ACKNOWLEDGMENTS 

To my friends and family who never questioned my unhealthy obsession with school. In 

particular, I’d like to thank Tim and Katie for their initial encouragement, and Bill for his good 

faith efforts to keep me going 8 weeks into every semester. Finally, this wouldn’t have been 

possible without the unwavering support, patience, and sharp insight of my wife Alli and sister 

Melissa.  

 

 



 

iv 
 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................................. iii 

LIST OF TABLES ......................................................................................................................... vi 

LIST OF FIGURES ...................................................................................................................... vii 

ABSTRACT ................................................................................................................................. viii 

CHAPTER ONE: INTRODUCTION ............................................................................................. 1 

Enrollment Modeling .................................................................................................................. 2 

Proposed Analysis ....................................................................................................................... 4 

Study Significance ....................................................................................................................... 5 

Research Questions ..................................................................................................................... 6 

CHAPTER TWO: LITERATURE REVIEW ................................................................................. 8 

Academic Factors ........................................................................................................................ 9 

Financial Factors ....................................................................................................................... 10 

Sociodemographic Factors ........................................................................................................ 11 

Institutional Factors ................................................................................................................... 14 

Multi-level Analysis .................................................................................................................. 17 

Time to Event Analysis ............................................................................................................. 18 

Competing Risks Framework .................................................................................................... 22 

Study Significance ..................................................................................................................... 25 

CHAPTER THREE: METHODOLOGY ..................................................................................... 27 

Data ........................................................................................................................................... 27 

Free Application for Federal Student Aid (FAFSA) ............................................................. 29 

College Board ........................................................................................................................ 30 

National Student Clearinghouse (NSC) ................................................................................. 30 

Variable Selection .................................................................................................................. 31 

Variable Definitions .................................................................................................................. 31 

Sociodemographic Factors .................................................................................................... 31 

Institutional Factors ............................................................................................................... 32 

Financial Factors.................................................................................................................... 34 

Academic Factors .................................................................................................................. 36 

Additional Model Parameters ................................................................................................ 37 

Time to Event Models ............................................................................................................... 38 

Competing Risks Modeling ....................................................................................................... 39 

Multi-level Modeling ................................................................................................................ 40 

Model Building Process ............................................................................................................ 42 

Goodness of Fit Diagnostics .................................................................................................. 42 

Statistical Assumptions ......................................................................................................... 43 

CHAPTER FOUR: RESULTS ..................................................................................................... 46 



 

v 
 

Univariable Analysis ................................................................................................................. 49 

Sociodemographic Factors .................................................................................................... 49 

Institutional Factors ............................................................................................................... 58 

Financial Factors.................................................................................................................... 65 

Academic Factors .................................................................................................................. 69 

Multivariable Analysis .............................................................................................................. 72 

Sociodemographic Factors .................................................................................................... 74 

Institutional Factors ............................................................................................................... 76 

Financial Factors.................................................................................................................... 79 

Academic Factors .................................................................................................................. 80 

CHAPTER FIVE: DISCUSSION ................................................................................................. 82 

Sociodemographic Factors ........................................................................................................ 84 

Institutional Factors ................................................................................................................... 89 

Financial Factors ....................................................................................................................... 94 

Academic Factors ...................................................................................................................... 96 

Data Consideration for Future Analyses ................................................................................... 98 

Implications ............................................................................................................................. 100 

APPENDIX A: STUDENT VARIABLES ................................................................................. 106 

APPENDIX B: MULTICOLLINEARITY DIAGNOSTICS ..................................................... 108 

APPENDIX C: HIGH SCHOOL CLUSTER DESCRIPTIONS ................................................ 112 

REFERENCES ........................................................................................................................... 121 

VITA ........................................................................................................................................... 131 

 



 

vi 
 

LIST OF TABLES 

Table 1. Student & Institutional Variables ................................................................................... 31 

Table 2. Output for Parametric Proportional Hazards Test .......................................................... 45 

Table 3. Output for Parametric Proportional Hazards Test .......................................................... 45 

Table 4. Descriptive Statistics....................................................................................................... 47 

Table 5. Sociodemographic Factors .............................................................................................. 49 

Table 6. Institutional Factors ........................................................................................................ 58 

Table 7. Financial Factors ............................................................................................................. 65 

Table 8. Academic Factors ........................................................................................................... 69 

Table 9. Multivariable Analysis .................................................................................................... 73 

 

  

file:///C:/Users/Brendan/Downloads/Dissertation_3-29-17%20MRM_03292017.docx%23_Toc478661756
file:///C:/Users/Brendan/Downloads/Dissertation_3-29-17%20MRM_03292017.docx%23_Toc478661757
file:///C:/Users/Brendan/Downloads/Dissertation_3-29-17%20MRM_03292017.docx%23_Toc478661758
file:///C:/Users/Brendan/Downloads/Dissertation_3-29-17%20MRM_03292017.docx%23_Toc478661759
file:///C:/Users/Brendan/Downloads/Dissertation_3-29-17%20MRM_03292017.docx%23_Toc478661760
file:///C:/Users/Brendan/Downloads/Dissertation_3-29-17%20MRM_03292017.docx%23_Toc478661761
file:///C:/Users/Brendan/Downloads/Dissertation_3-29-17%20MRM_03292017.docx%23_Toc478661762
file:///C:/Users/Brendan/Downloads/Dissertation_3-29-17%20MRM_03292017.docx%23_Toc478661762


 

vii 
 

LIST OF FIGURES 

Figure 1. Example Application Timeline Including Right Censored Records ............................. 21 

Figure 2. Kaplan Meier Curves for Student Sex ........................................................................... 50 

Figure 3. Kaplan Meier Curves for Student Race ......................................................................... 52 

Figure 4. Kaplan Meier Curves for Student Ethnicity .................................................................. 53 

Figure 5. Kaplan Meier Curves for Residency Status................................................................... 54 

Figure 6. Kaplan Meier Curves for U.S. Census Region .............................................................. 56 

Figure 7. Kaplan Meier Curves for First Generation Status ......................................................... 57 

Figure 8. Kaplan Meier Curves for Intended Major ..................................................................... 60 

Figure 9. Kaplan Meier Curves for First Choice .......................................................................... 61 

Figure 10. Kaplan Meier Curves for # of Applications (Cut at Median) ...................................... 63 

Figure 11. Kaplan Meier Curves for Early Outreach .................................................................... 64 

Figure 12. Kaplan Meier Curves for Additional Children in College .......................................... 66 

Figure 13. Kaplan Meier Curves for Pell Grant Eligibility .......................................................... 67 

Figure 14. Kaplan Meier Curves for Merit Aid ............................................................................ 68 

Figure 15. Kaplan Meier Curves for Cumulative GPA (Cut at Median) ...................................... 70 

Figure 16. Kaplan Meier Curves for ACT (Cut at Median) ......................................................... 71 

  

file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135417
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135419
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135420
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135421
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135422
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135423
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135424
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135425
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135426
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135427
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135428
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135429
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135430
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135431
file:///E:/FinalDissertation_10-7-17.docx%23_Toc495135432


 

viii 
 

ABSTRACT 

 

Post-Great Recession budgets cuts and funding freezes have decreased the level of 

institutional resources available to recruit and retain undergraduate students.  To optimize 

remaining expenditures in this challenging climate, new analytical approaches must be 

considered to evaluate and interpret pre-enrollment student data. To date, much of the higher 

education literature has focused on predicting enrollment using traditional fixed or mixed effects 

binary logistic models. While robust, these modeling approaches are constrained by standard 

statistical assumptions, do not account for the timing of students’ enrollment decisions, and 

cannot efficiently incorporate censored data points or competitor information. This study applies 

a multi-level, competing risks model to the analysis of undergraduate application data to assess 

time to enrollment as a function of univariable and multivariable sociodemographic, institutional, 

financial, and academic factors. There are both methodological and practical strengths to the 

analytic approach. Conceptually, the mixed effects model applied to this sample appropriately 

accounts for student clustering, thereby incorporating similarities in applicants’ academic 

preparation and backgrounds. Further, the competing risks design allows data on select 

competitors to enter the model, offering the opportunity to evaluate multiple institutions side-by-

side.  

In practice, the study uncovered differential effects across the competitive set for every 

sociodemographic, institutional, financial, and academic factor under review, with the exception 

of first choice status. The institutional and policy implications associated with these divergent 
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results range from a reduction in undergraduate recruitment expenditures to continued 

investment in student support services leading to stronger retention, higher graduation rates, and 

lower cohort default rates (debt delinquency). Reducing recruitment overhead will not only free 

up important capital to reinvest in vital student support services, including first year 

programming, but it will also enable administrators to maintain a focus on important post-

enrollment metrics. This modeling approach provides unique insights into not only students’ 

final decisions, but also their timelines for making those decisions. Consideration of model 

results within the undergraduate recruitment process will help to alleviate some of the initial 

budget constraints by identifying how and when certain known factors increase the probability of 

student enrollment, while not sacrificing on other important postsecondary measures, such as 

retention and graduation.
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CHAPTER ONE 

INTRODUCTION 

The pervasive and enduring gaps in educational opportunities across traditional racial, 

ethnic, socioeconomic, and gender divides remain important topics of discourse (Kumar & 

Hurwitz, 2015).  Practitioners and policymakers have offered a variety of explanations for these 

persistent inequities, but the fact remains that postsecondary institutions at all levels (two- and 

four-year public and private colleges alike) are confronting an increasingly difficult environment 

in their efforts to attract, retain, and graduate a diverse and qualified undergraduate student body 

(Harvill et al., 2012).  While high school graduation rates have increased since early 2000, 

approximately 30% of students still do not graduate high school and only 70% of those that do 

enroll at a postsecondary institution (Snyder & Dillow, 2010).  In addition, despite some recent 

incremental increases in college enrollment, minorities, lower socioeconomic status (SES) high 

school graduates, and first generation students (roughly 1 in 3 college-bound students) are still 

considerably less likely than their peers to graduate high school and pursue postsecondary 

education (College Board, 2010; Education Advisory Board, 2016).   

These enrollment trends among traditionally under-represented groups have been further 

exacerbated by post-recession spending cuts and funding freezes at colleges and universities 

nationwide. According to the Center on Budget of Policy Priorities, a nonpartisan research and 

policy institute, 47 states spent less per student during the 2014-15 school year than they did at 

the start of the recession (Mitchell & Leachman, 2015). During that same period the cost of 



2 

 

 

student recruitment increased to an all-time high.  In 2015, the median cost of student 

recruitment at four-year private and public universities was $2,232 and $578, respectively, an 

increase of 15% and 45% compared to 2007 costs (Ruffalo Noel Levitz, 2016, 2009). Increasing 

recruitment expenditures and tuition, coupled with recent spending cuts at many public and 

private universities threaten to diminish student access and negatively impact a wide range of 

postsecondary outcomes (Fitzgerald, 2004; St. John et al., 2003). Considering these challenges, it 

is incumbent upon admissions staff to apportion resources to identify and recruit applicants to 

maximize the fit between student and institution. 

Enrollment Modeling 

Strategic allocation of limited recruitment budgets is, in part, informed by the collection 

and analysis of self-reported family and individual student data.  This information is often 

provided throughout the recruitment, application, and financial aid processes. Predictive 

modeling, typically in the form of logistic regression models, is a frequently utilized technique to 

analyze these data to identify students with high probabilities of enrollment. Such analyses 

enable admissions and enrollment management staff the opportunity to target their finite 

resources, thereby allowing institutions to pursue multiple, sometimes competing ends (e.g. 

achieving baseline enrollment targets, diversification, attracting high achieving students, etc.). 

Often, the selection of independent variables in these predictive models depend on a combination 

of theoretical and practical considerations (Thomas et al., 1999). Common metrics include 

measures of academic achievement, financial aid, SES, first generation status, indicators of early 

engagement, minority status, residential status, sex, intended major, and high school context.   
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While these approaches are informative, additional modeling techniques are available 

that may provide further insight into important aspects of students’ decision-making process. For 

example, the application of time to event models within the context of higher education offers a 

unique opportunity to evaluate traditional independent variables while accounting for the time 

dependent nature of the application cycle itself. Since the late 1990s, time to event models, or 

event history models as they are known in education, have been used to examine select factors 

that affect students’ post-enrollment outcomes, such as persistence, dropout, and completion 

(Gross & Torres, 2010; Bahr, 2009; Scott & Kennedy, 2005; DesJardins et al., 2002, 1999, 1997; 

Murtaugh et al., 1999; Singer & Willett, 1991). The extension of such models to focus on 

undergraduate students’ initial decision timelines may provide critical information to the 

admissions personnel tasked with recruiting them.   

Although infrequently applied, the potential benefits of these techniques in the field of 

higher education are many and clear, especially given policymakers’ renewed focus on student 

outcomes over the past few decades. DesJardins et al. (1999) credited such modeling approaches 

for helping to develop timely interventions for students at risk of dropping out, while Gross and 

Torres (2010) used a similar model to examine how the timing of financial aid offers affect 

educational attainment among minority student populations. In addition, scholars have shown 

that these models can be seamlessly extended to meet the demands of complex, hierarchical 

designs (Bahr, 2009) or even adapted to a “competing risks” framework in which the focus rests 

on multiple, overlapping events, such as stopouts, dropouts, and graduation (Guerin, 1997; 

DesJardins et al., 1999; Ronco, 1996). Despite these recent innovations, however, enrollment 

research remains largely limited to more widespread and traditional modeling techniques.  
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Proposed Analysis 

The purpose of this study is to extend the current literature examining the relationship 

between select student- and school-level factors and undergraduate enrollment, while building on 

recent applications of time to event models in higher education. Specifically, the analytic 

approach outlined herein, a multi-level competing risks model, aims to examine what student- 

and high school-level factors effectively reduce time to enrollment in a competitive higher 

education marketplace. Since the great recession, postsecondary institutions of all types have 

been forced to operate in an environment of reduced or constrained budgets and increased 

expectations regarding student outcomes. This research seeks to determine if the important 

academic and sociodemographic factors that have been shown to predictor undergraduate 

enrollment can also effectively inform institutions’ efforts to reduce recruitment expenditures by 

shortening students’ decision timelines. 

The analytic model developed in this study will build off an extensive literature as to 

what factors drive undergraduate enrollment, such as measures of student ability (Noel-Levitz, 

2012; Avery & Hoxby, 2004; Thomas et al., 1999), financial aid (Harvill et al., 2012; Monks, 

2009; Linsenmeirer et al., 2006), early outreach (Wyatt et al., 2014; Perna & Swail, 2002; Swail, 

2001;), and select sociodemographic factors (Kumar & Hurwitz, 2015; Conger & Long, 2013; 

Hussar & Bailey, 2011). In addition, this study will augment emerging research on time to event 

modeling in the context of higher education, while employing a multi-level design that accounts 

for important differences among the high school contexts from which applicants emerge. This 

approach is appropriate as it incorporates variation in the outcomes driven by student clustering 
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within secondary institutions, which play important roles in engendering the social and academic 

skills vital for college success.  

In addition to the student-level insights provided, the model will simultaneously assess 

the roles of competing actors (e.g. multiple universities) in a crowded postsecondary market. 

This will enable institutions to directly incorporate data on their institutional peers and aspirant 

colleges, which will greatly inform on their enrollment management strategies.  By accounting 

for the activities of other universities, admissions personnel can more effectively target and 

recruit prospective high school students, as well as accurately project freshmen enrollment. This 

will help to avoid unexpected budgetary shortfalls that could negatively impact future admissions 

and student services funding. 

Study Significance 

The proposed modeling techniques will also inform multiple financial and policy 

considerations for academic institutions. First and foremost, resource conservation across the 

post-recession higher education landscape will allow institutions to free up important capital by 

minimizing recruitment overhead. This will enable administrators to re-invest in vital student 

support services, first-year student programming, and other retention efforts. Second, more 

targeted efforts to shorten the decision timeline among a smaller pool of well-qualified and 

strongly matched applicants may enable institutions to cover more of the initial costs associated 

with the search process, such as campus visits and admitted student events. This will save 

admissions staff time and money in the long-run, but will also help to alleviate some of the initial 

cost constraints faced by otherwise qualified students and their families. Finally, early efforts to 

maximize student/institution match will also likely pay long-term financial dividends for 
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students, institutions, and the Department of Education in the form of stronger retention and 

lower cohort default rates. 

While more common in the medical literature, the proposed multi-level competing risks 

analysis will contribute valuable insight into the often opaque process of enrollment 

management. More importantly, though, it will also help identify those student and institutional 

factors that are key to reducing time to enrollment. The following analyses will first provide an 

overview of the factors that historically drive college enrollment to provide an analytic 

framework for the model building process. It will then outline the literature related to time to 

event modeling in higher education, as well as address how the data used were collected, 

aggregated, and de-identified. Details on the necessary methodological steps to fit an appropriate 

model will also be discussed. The variables employed in the univariable and multivariable 

models will then be defined and the characteristics of the sample described. Following the 

interpretation of the results, a discussion section will articulate the possible limitations and 

implications of these findings.  

Research Questions 

The research questions that will guide this analysis include: 

1. Do certain sociodemographic, institutional, financial, and academic factors effectively 

reduce time to postsecondary enrollment? 

2. Do these sociodemographic, institutional, financial, and academic factors have common 

effects across several similar-profile postsecondary institutions? 
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3. How can the magnitudes and direction of the effects select sociodemographic, 

institutional, financial, and academic factors have on time to enrollment at different 

postsecondary institutions inform an enrollment management strategy? 
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CHAPTER TWO 

LITERATURE REVIEW 

Despite more recent applications of time to event models in other educational contexts, 

binary logistic regression remains a standard approach to modeling enrollment data. Traditional 

admissions-based models often utilize student- and institution-level data from prior recruitment 

cycles as fixed effects to predict individual behavior (Conger & Long, 2013; Goenner & Pauls, 

2006; Thomas et al., 1999; Brugglink & Gambhir, 1996).  Alternatively, rational choice models 

focus on financial incentives, while controlling for broader macro-economic trends to identify 

those factors that drive enrollment (Monks, 2009; Ledesma, 2009; Linsenmeirer et al., 2006; 

DesJardins & Toutkoushian, 2005; Avery & Hoxby, 2004; Long, 2004; Stater, 2004; Singell, 

2002; Paulsen & St. John, 2002; Paulsen, 2001 & 1990). In addition, hierarchical designs 

utilizing random effects to model variance at the high school level are becoming increasingly 

more common. (Engberg & Wolniak, 2009; Hill, 2008; Johnson, 2008; Cho, 2006; Khattab, 

2005). The findings from these studies have provided profound insight into the links between the 

high school contexts from students emerge and their level of preparation.  

Overall, binary logistic regression models provide reliable enrollment probability 

estimates and thereby a great deal of analytic insight into students’ college choice process. Thus, 

these techniques have traditionally formed the basis for admissions staffs’ efforts to segment 
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their prospective student population and thereby better target their recruitment efforts 

(DesJardins & Lindsay, 2008; Johnson, 2008; Goenner & Pauls, 2006; DesJardins, 2002; 

Thomas et al., 2001).  It is common for variable selection in such models to be driven by the 

academic and personal profile of the student sample; however, it is important that these metrics 

also reflect how institutional characteristics adhere to a student’s preferences (Goenner & Pauls, 

2006).  Therefore, the proposed framework will focus on those student characteristics that are 

known to inform direct matriculation.  

Academic Factors 

Students’ academic achievement, as measured by a combination of standardized test 

scores, advanced placement coursework, and GPA, is meaningfully associated with an array of 

important postsecondary measures (NCES, 2015; Ledesma, 2009; Adelman, 2006; Chang, 2006; 

Brugglink & Gambhir, 1996; Thomas et al., 1979). Numerous empirical studies have shown that 

students with a record of strong academic performance consistently outperform their lower 

achieving peers in terms of college enrollment rates. For example, DesJardins et al. (2002) note 

that students perceived academic ability typically lowers their educational costs by increasing 

demand from various institutional actors. Similarly, Ledesma (2009) showed that high achieving 

applicants tend to apply to and gain admission at multiple colleges and universities. Further, 

additional evidence suggests that academic achievement is not only an indicator of how well 

prepared students are for the rigors of postsecondary education, but also their initial college 

choice (NCES, 2015; Chang, 2006; Brugglink & Gambhir, 1996).  Over time, a student’s 

academic background has been found to have an even more pronounced effect on college 
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enrollment than demographic variables such as sex, race, ethnicity, family composition, and SES 

(Adelman, 2006; Thomas et al., 1979). 

Financial Factors 

In addition to indicators of academic achievement, need-based and merit aid play 

significant roles in students’ enrollment decisions. Offers of financial aid to admitted high school 

seniors often serve two purposes; to “relieve liquidity constraints” that may have undue influence 

on students’ decision-making process and to alter students’ “preference rankings” (Avery & 

Hoxby, 2004; DesJardins et al., 2002).  Financial support typically takes many forms, including 

institutional scholarships; federal loans, grants, and work study; merit and need-based aid offered 

by external third-party lenders; and a bevy of private financing options. There are also many 

competing objectives postsecondary institutions consider when ‘packaging’ students’ final 

financial aid offers. These can include meeting baseline enrollment goals, apportioning seats in 

the freshman class to address pre-specified diversity targets, or maintaining ties with particular 

high school networks.  

Regardless of these goals, many studies have found that it’s the timing, amount, and 

types of financial aid that ultimately affect students’ college choice the most (Harvill et al., 2012; 

Monks, 2009; Linsenmeirer et al., 2006; DesJardins & Toutkoushian, 2005; Avery & Hoxby, 

2004; Long, 2004; Stater, 2004; Singell, 2002; Thomas et al., 1999; Becker, 1993).  Research has 

shown that students typically respond in a rational manner to financial incentives, with earlier aid 

offers, larger awards, and merit-based assistance tending to increase the probability of 

postsecondary enrollment. So strong are these causal links that evidence suggests students 

sometimes respond irrationally to award types. For example, Avery and Hoxby (2004) showed 
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that students’ enrollment probabilities increase at a greater rate when grants are re-positioned as 

‘named’ scholarships, which suggests applicants can be persuaded with what are essentially 

“marketing gimmicks.” 

Another important development in the area of financial aid was the recent executive 

action by the Obama administration enabling students and their families to report income two 

years prior to their Free Application for Federal Student Aid (FAFSA) submission (Department 

of Education, 2015). This shift had immediate and far-reaching implications for financial aid 

departments and enrollment management staff. As a result of these changes, financial data are 

now available to university administrators earlier in the process, enabling them to estimate the 

potential impact of differential financial aid packaging directly in their enrollment models. In 

addition to easing the reporting burden on students and their families, this policy change has the 

potential to help postsecondary institutions provide earlier financial aid offers, adjust their 

communications flow, and more accurately track progress toward established enrollment goals. 

Nevertheless, patterns of college enrollment cannot be explained solely through a simple cost-

benefit analysis. 

Sociodemographic Factors 

Related to financial aid, students’ socioeconomic status has also been shown to have an 

undue influence on their college choice. Lower SES high school graduates face many 

impediments, or “cumulative disadvantages,” to accessing higher education (Schultz & Mueller, 

2006). These can include, but are often not limited to, a lack of access to information and 

resource networks, inequality of neighborhood resources, lack of peer/parental support for 

academic achievement, and ineffective high school counseling (Lin, 2011; Gándara & Bial, 
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2001). Consequently, these students typically record lower GPA and standardized test scores, as 

well as apply to relatively fewer colleges, resulting in below average postsecondary enrollment 

rates (Smith, 2011; Goyette, 2008).  Individual students typically have varying levels of 

academic preparation and access to the resources necessary for success in higher education 

(Harvill et al., 2012). On this basis, Perna (2006) argues for a conceptual model of college 

enrollment that integrates aspects of students’ cultural and sociological contexts.  

Beyond financial resources and academic ability, the sociological factors that animate 

students’ decision-making process often include social and cultural capital, such as parental 

education-level. Georgetown University's Center on Education and the Workforce (CEW) 

reports that approximately 1 in 3 (32%) undergraduate students in the United States is 

categorized as first generation (Carnevale & Strohl, 2013). First generation status is often an 

important indicator of postsecondary enrollment, as students whose parents have gone to college 

are often significantly more likely to attend college themselves (Lin, 2011; Goyette, 2008; 

Warburton & Nunez, 2001). An extensive literature also exists on the roles students’ race and 

ethnicity play in their postsecondary enrollment decisions revealing, for example, a strong link 

between minority status and differential postsecondary enrollment patterns (Wyatt et al., 2014; 

Lin, 2011; Bush, 2009; Goenner & Pauls, 2006; Zarate & Gallimore, 2005; DesJardins et al., 

2002). Coupled with projected demographic shifts within the broader U.S. population, early 

indicators of how the makeup of the higher education landscape is changing are beginning to 

emerge (Colby & Ortman, 2015).  

Pew research shows that Hispanic and African American students have accounted for the 

largest gains in college enrollment over much of the past two decades (Krogstad & Fry, 2014). 
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For example, as of 2012, the college-going rate among 18- to 24-year old Hispanic high school 

graduates surpassed that of their Caucasian counterparts for the first time, by a margin of 49% to 

47% (Krogstad & Fry, 2014).  An enrollment gap remains, however, in part driven by lower rates 

of four-year college enrollment, as well as lower attendance at selective colleges.  In addressing 

this lag, research has shown significant overlap between students’ ethnicity, SES, academic 

achievement, language proficiency, and other important factors that often contribute to college 

readiness and the differential in students’ postsecondary performance (Wyatt et al., 2014; Zarate 

& Gallimore, 2005). This complex interplay suggests a more tailored and nuanced approach to 

high school student recruitment may benefit institutions that currently struggle to attract and 

retain minority students.  

Studies have also shown that there is often significant overlap among the factors that 

contribute to students’ decisions to apply to a college and those that drive their final enrollment 

decision (Goenner & Pauls, 2006). For instance, students’ residential status (in-state v. out-of-

state) often plays an outsized role in their application and enrollment decisions. As of 2012, four 

in five first-time, degree-seeking undergraduate students attended a school in their state of 

residence (Kumar et al., 2015).  This trend highlights the importance of geographical preference 

and, perhaps, serves as an indirect measure of the role important financial considerations play in 

high school students’ decision-making process. Students from outside traditional recruitment 

areas tend to have fewer ties to an institution, may have a less clear understanding of its mission 

and academic reputation, and can be discouraged by the higher tuition costs and transportation 

expenditures associated with commuting to and from campus (Brugglink & Gambhir, 1996). 

This body of research suggests that for institutions that recruit heavily from particular regions, 

expanding their traditional footprint has both potential benefits and costs.  
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The economic and educational implications of the growing gender gap in college 

enrollment have also been well documented (Conger & Long, 2013; Cho, 2006; DesJardins et 

al., 2002; Card & Lemieux, 2000).  In 2010, the National Center for Education Statistics (NCES) 

reported that only 43% of undergraduates were male (Snyder & Dillow). Further, through 2019, 

the NCES projected female student enrollment in colleges and universities across the country to 

grow by 21%, compared to just 12% for their male counterparts (Hussar & Bailey, 2011). Recent 

research also suggests differential performance and attendance patterns at high schools with 

higher college-going rates may be contributing to this existing divide (Conger & Long, 2013; 

Cho, 2006). For these reasons, institutions often target their resources to reduce potential 

imbalances in the undergraduate male to female ratio (Conger & Long, 2013; Cho, 2006; Card & 

Lemieux, 2000; Brugglink & Gambhir, 1996).  

Institutional Factors 

Early and personalized attention has also been shown to improve post-secondary 

outcomes.  Researchers have long discussed the benefits of early outreach to college bound high 

school students, particularly those from impoverished backgrounds (Wyatt et al., 2014; Thomas 

et al., 1999). Even modest student engagement in the college preparation process has been shown 

to engender important postsecondary benefits often brought about by a stronger student and 

institution match (Thomas et al., 1999).  Furthermore, scholars argue that outreach programs 

have evolved over time to compensate for the shortcomings of an underfunded public education 

system by offering a more comprehensive approach to college access (Perna & Swail, 2002; 

Swail, 2001). Research on the topic has also underscored the importance of early, more 

personalized attention as a driving factor in the college choice process. A 2011 survey of over 
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55,000 students from more than 100 public and private four- and two-year institutions 

nationwide found that early, “personalized attention prior to enrollment” was the fourth most 

important factor in students’ enrollment decisions, following cost, financial aid, and the 

academic reputation of the institution (Noel-Levitz Student Satisfaction Inventory, 2012). Over 

time, an understanding of the merits of early outreach and the resulting impact on direct 

postsecondary matriculation has emerged and become widely accepted.  

Another area in which postsecondary institutions can exert more control, is their 

academic programming. Students’ sense of institutional fit and thus their enrollment decisions 

can sometimes be driven by their choice of major and the school’s perceived strength in that area 

(DesJardins et al., 2002). In certain instances, a college or university may even wish to attract 

students with interests in certain fields, as they are seen as mission-critical (Brugglink & 

Gambhir, 1996). A Ruffalo Noel Levitz (2016) report found that alignment with students’ 

intended majors was identified as one of the most effective strategies for student enrollment, 

retention, and completion at four-year private institutions. As a result, students’ intended major is 

often considered an important criterion in enrollment modeling.   

In addition to these student-level factors, there is strong evidence that the high school 

contexts from which applicants emerge are often not only determinative of their college 

enrollment choice, but also closely linked to their postsecondary success (Harvill et al., 2012; 

Johnson, 2011; Johnson, 2008; Hill, 2008; Zarate & Gallimore, 2005). Drawing on data from the 

Educational Longitudinal Survey, Engberg and Wolniak (2009) argued secondary institutions 

play a normative role in promoting college enrollment by enabling students to acquire vital 

human, social, and cultural capital. Given the important function high schools play in moderating 
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students’ enrollment decisions (Engberg & Wolniak, 2009; Johnson, 2008; Hill, 2008; Khattab, 

2005), admissions models that examine the impact of student-level characteristics on college 

enrollment decisions must also account for different school-level variance. To this end, the 

mixed effects model outlined henceforth proposes a novel approach to leveraging student search 

services data, while still aligning closely with the rigorous methodological techniques outlined in 

related higher education studies (Engberg & Wolniak, 2009; Hill, 2008). 

To ensure accurate projections, admissions models must account for students’ differential 

high school experiences and levels of preparation. Consequently, many resources exist to help 

enrollment managers segment their prospective student audience. One such tool is the College 

Board’s DescriptorPLUS service, which matches prospective students to institutions based on 

unique geodemographic neighborhood and high school information. High school cluster data, as 

it is known, provides broad descriptive characteristics upon which applicants are then grouped. 

These measures include, but are not limited to students’ college-going rates, advanced placement 

coursework, diversity, and SES. However, these important high school-level variables are often 

measured at a higher level of aggregation than the primary outcome of interest (e.g. student 

enrollment). As such, it follows that some groups of students may start from more advantageous 

positions and, thereby, carry higher enrollment probabilities. Oftentimes, these characteristics are 

modeled as a common effect across subsets of students from the same or similar types of 

secondary institutions (Raudenbush & Bryk, 2002). In the context of higher education, this 

shared effect represents a form of dependence among the enrollment probabilities of individuals 

from similar backgrounds (Collett, 2015; Lu & Peng, 2008; Raudenbush & Bryk, 2002).  



17 

 
 

Multi-level Analysis 

Modeling institution-level effects is imperative for admissions staff when examining 

student-level data. For one, this can help explain situations in which a group of students who 

have similar values for certain explanatory variables may nonetheless be observed to have 

different enrollment probabilities. In a multi-level design, it is assumed that some individuals 

may have a greater likelihood of postsecondary enrollment than others. Student clustering is a 

very common phenomenon in the field of education. Typical examples include students nested 

within classrooms, classrooms nested within schools, and schools nested within districts. As 

such, individual students cannot enter the model as independent observations as their outcomes 

will tend to align more closely with others from similar contexts and equally differ from those in 

different contexts. In this analysis, a multi-level model addresses the hierarchical relationship of 

students nested within high school clusters (Raudenbush & Bryk, 2002). 

Furthermore, in a traditional modeling approach there is typically no direct measure of an 

individual high school’s impact on a student’s or group of students’ college choice and 

postsecondary outcomes. Meaning, resource disparities, differential teacher quality, adherence to 

effective instructional practices, school violence, etc. are often difficult to track or quantify, and 

sometimes completely unavailable. Such disparate variables typically have many possible values 

and it would be unrealistic to build these differences into the model as fixed effects, as it would 

likely introduce a large number of unknown parameters. To the extent possible therefore, a 

multi-level design attempts to incorporate these dependent effects on students’ event times 

without necessitating precise measurement of each individual component. Thus, this approach 

incorporates the impact these common effects have on students’ observed event times through 
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just one parameter, namely the variance of the random effects’ assumed underlying distribution 

(Collett, 2015). 

The persistent gaps in educational opportunities across traditional fault lines (e.g. race, 

SES, sex, etc.) have been exacerbated by recent, broader economic trends. In particular, federal 

and state spending cuts at many public and private universities have resulted in tuition increases 

and less per capita spending on student education over the past decade. These developments 

threaten to diminish student access and thereby negatively impact student outcomes. This 

proposed research seeks to inform on postsecondary institutions’ efforts to reduce recruitment 

expenditures, while maintaining an emphasis on student-institution match and strong outcomes. 

As the undergraduate admissions cycle is an inherently time dependent process, this analytic 

approach aims to identify and quantify the impact of those student and aggregate high school 

factors that effectively reduce time to enrollment.  

Time to Event Analysis 

Time to event modeling in the context of higher education has become increasingly 

common, though its application remains limited (Kim, 2012, 2011; Gross and Torres, 2010; 

Bahr, 2009; Scott & Kennedy, 2005; DesJardins et al., 2002, 1999, 1997; Murtaugh et al., 1999; 

Singer & Willett, 1991). This analytic approach enables researchers to focus on the intervals 

between two points of interest – typically measured in semesters, quarters, or academic years 

(Bahr, 2009). Thus, students are said to enter the “risk set” when they enroll, for example, and 

are considered “at risk” until they experience a single outcome, such as graduation, or the first of 

several interdependent, competing events, such as graduation, transfer, or drop-out. Desjardins et 

al. (1999), for instance, were among the first to apply a time to event model to investigate those 
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student and institutional factors that affect college departure. In their study, they concluded that 

key explanatory variables do in fact have differential effects over time. More recently, other 

scholars have applied similar techniques to examine undergraduate persistence and completion 

as well.  

Time to event models are useful analytic techniques when scholars’ primary interest rests 

not only on students’ end decisions, but also on their timeline for making those decisions. For 

instance, prior research has shed important light on those factors that meaningfully influence 

students’ college enrollment. However, higher education administrators often face competing 

goals of making and shaping their institutions’ incoming freshman class. Segmenting prospective 

student populations enables enrollment management offices to more narrowly target messaging 

and recruitment activities. This can help to shorten time to enrollment for certain subsets of 

students, which not only reduces the burden on families, but also frees important resources for 

admission and student services personnel.  

These models also provide a more nuanced picture of the admissions process and are 

straightforward in their application. The primary unit of measurement in time to event models is 

time itself – typically bracketed by a well-defined point of origin and the occurrence of a 

particular event or pre-specified end-point (Hosmer et al., 2008). Such models are most common 

in the fields of medicine, where end points may be death or cancer recurrence, as well as more 

applied fields, such as engineering in which stress tests typically focus on machinery failure. 

Since the early 2000s, time to event analyses investigating student dropout and completion have 

provided important evidence of the insight such approaches can lend in a higher education 

context. In education research, natural intervals of interest often depend on the primary outcome 
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under investigation. For instance, if the focus is on what factors shorten time to admission, a 

natural starting point may be their application submission. Rather, if time to enrollment is the 

target, admission may be of more interest.   

There are many reasons why standard statistical procedures may be inappropriate when 

analyzing time to event data. First, time data are typically not symmetrically distributed, but 

rather positively skewed. This results in certain baseline assumptions inherent to more traditional 

approaches being violated. Perhaps more importantly, though, is the presence of censored 

observations, which render standard statistical methods unsuitable (Collett, 2015; Kleinbaum & 

Klein, 2012; Kim, 2007). Time to event data are said to be censored when the event of interest is 

not observed for select individuals in the designated time frame. Three of the most common 

causes of censoring include: 1) a student not enrolling in any institution during the observation 

period; 2) the student’s record being lost to follow-up, meaning no new information that could 

contribute to the model is known about that individual in the appropriate timeframe; or 3) there 

were mitigating circumstances which made immediate postsecondary enrollment impossible, 

such as illness, military service, or electing for a gap year.  

As Scott and Kennedy (2005) noted in their investigation of competing outcomes in sub-

baccalaureate enrollment among nontraditional adult students, information on some students will 

not always be readily available in real-life situations. In certain circumstances, data may be 

missing because an event, other than the one of primary interest (e.g. death or chronic illness), 

may occur precluding the student from finishing their studies or remaining continuously 

enrolled. In addition, data can also simply be lost or incomplete due to human or data entry error. 

Rather than excluding these elements, as is often required by standard statistical procedures, time 
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to event models incorporate censored data efficiently, while simultaneously allowing researchers 

to dynamically measure the impact of specific interventions over time.  

The most common form of censoring, and the method used in this analysis, is known as 

right censoring – when an individual enters the analysis by being admitted, but does not 

experience the event of interest (enrollment) by the last recorded observation. Figure 1, adapted 

from Collett (2015), provides a simple diagram of what right censored data might look like for a 

subset of eight students over the course of the application process. This example illustrates the 

objective of this type of analysis, namely, comparing the duration between two well-defined 

points in time. The start time for each student (reset to point 0 on the x-axis) corresponds to each 

applicants’ admission date, while the end points can vary between postsecondary enrollment at 

one of four institutions or censoring. Thus, this analysis examines those student and institutional 

characteristics that inform on the primary unit of measurement, time. 

Figure 1. Example Application Timeline Including Right Censored Records 
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In addition to their flexibility, initial evidence suggests that time to event models can also 

offer educational stakeholders profound insight into important student outcomes. For instance, 

simply adding a temporal dimension to these models can have important policy implications. 

DesJardins et al. (1999) argued that pinpointing the times at which students are most at risk of 

leaving college enables federal, state, and institutional stakeholders to target their interventions 

more efficiently. Similarly, Kim (2012, 2011), as well as Gross and Torres (2010) explained how 

the timing and type of financial aid can impact various postsecondary outcomes among minority 

student populations. Bahr (2009) also showed how these models could be extended to 

accommodate more complex designs, such as a repeated measures analysis investigating 

students’ rate of progress through a remedial math sequence. Finally, additional analyses have 

also illustrated the ability of this modeling approach to assess and quantify the importance of 

multiple, interdependent competing events, such as graduation, transfer, or drop-out. 

Competing Risks Framework 

The extension of time to event modeling within the context of a “competing risks” 

framework is particularly important in the field of education in which overlapping and 

sometimes correlated events are common (Guerin, 1997; DesJardins et al., 1999, Ronco, 1996). 

Higher education in the United States is a complex and multilayered system where public 

community colleges coexist with highly selective, private four-year institutions (Kumar & 

Hurwitz, 2015). Each college or university plays a unique role in this setting, and students from a 

range of different backgrounds engage with the system at different and, often, multiple levels. 

For many students, the decision to enroll at a particular college is a difficult one, as they 

typically receive multiple acceptances requiring them to weigh the potential benefits of 
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competing offers (Ledesma, 2009; Chang, 2006; Brugglink & Gambhir, 1996). In particular, 

much consideration has been given to high achieving students who, it is assumed, have many 

attractive admissions offers to consider and therefore start from a position of lower enrollment 

probabilities (Thomas et al., 1999). Further, as lower ranked institutions tend to offer more merit-

based financial aid to their most desirable candidates, students must choose between going to a 

less prestigious institution at lower cost or attending a more selective college with a higher 

sticker price (Monks, 2009).  

Fortunately, the allure of these competing options can be directly modeled. Subjects in 

these studies are typically followed until the occurrence of one of several pre-specified events or 

a predetermined end to the observation period. In such instances, the occurrence of the first event 

is said to preclude the occurrence of other events of interest. For example, Scott and Kennedy 

(2005) conducted an event history analysis in a discrete-time setting by modeling the odds 

(known as the hazard or risk in such models) of graduation, in the context of two competing 

risks, transfer and dropout. If admissions staff fail to account for the activities of other 

postsecondary institutions in their own yield models, they risk making decisions within an 

unrealistic vacuum devoid of competing options.  Further, in these instances, the standard 

product limit, or Kaplan Meier (KM) method of estimating the distribution of the underlying 

time to event probabilities, by ignoring events of all other types, may yield biased or misleading 

results (Austin et al., 2016; So et al., 2014; Kim, 2007; Harrell, 2001). 

In a competing risks analysis, the influence of covariates can be evaluated in relation to 

the cause-specific hazard or cumulative incidence of students’ different enrollment decisions 

(Austin et al., 2016; Dignam et al., 2012). The choice of model has implications for how the 
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results of the analysis can and should be interpreted. Competing risks analysis is becoming 

increasingly common in biomedical research, a field in which multiple, potentially overlapping 

outcomes is fairly common (Rodriguez et al., 2015; Coleman, 2014; Haller et al., 2013; Noordzji 

et al., 2013; Abdollah et al., 2011; Gillam et al., 2010; Glynn & Rosner; 2005). For instance, 

there are many studies that assess competing risks in the field of clinical cancer research where 

local/distant cancer recurrences, new cancer diagnoses, and death are important and competing 

events of interest (Dasgupta et al., 2016; de Glas et al., 2016; Bianchi et al., 2014; Lughezzani et 

al., 2011; Kim, 2007). Despite widespread application in the medical field, this modeling 

approach has gained less traction in the field of higher education (Scott and Kennedy, 2005; 

Guerin, 1997; DesJardins et al., 1999; Ronco, 1996). 

While there are many enrollment options from which applicants can choose, it is not 

always possible to discern to what extent dependence between event times may exist in such 

models. Through many simulations, Dignam et al. (2012) showed that when covariate effects are 

‘shared’ among competing events, it may be the case that none achieves statistical significance 

when modeled on the cumulative incidence scale. In addition, scholars argue that cause specific 

hazard ratio (CHR) estimates are often far better suited for addressing etiologic questions when 

these covariates, or common effects, are available for modeling (Austin et al., 2016; Allison, 

2010). Given these statistical and practical considerations, the current analysis will initially 

investigate modeling CHR estimates for the four institutions under review (Kleinbaum & Klein, 

2012). 
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Study Significance 

Since the early 2000s, time to event modeling has been used to examine critically 

important issues, such as student completion and graduation. Nonetheless, the bulk of enrollment 

modeling remains limited to more traditional modeling techniques, such as binary logistic 

regression. The proposed model will build on the extensive undergraduate enrollment literature, 

while simultaneously augmenting and extending the field’s emergent interest in time to event 

models.  The multi-level design will also appropriately account for variation driven by aggregate 

high school-level characteristics. Finally, this approach will simultaneously assess the roles 

competitors play in a crowded higher education market, thereby enabling institutions to 

incorporate important information on the appeal of similar profile colleges into their own yield 

models. 

The main objective of this sort of model is to identify those covariates that are related to 

and drive students’ enrollment decisions. By delineating between the effects these factors have 

on students’ enrollment times, admissions professionals can gain crucial insight into students’ 

enrollment probabilities over time (Hosmer et al., 2008). For instance, certain student- and 

institution-level variables may shorten or lengthen students’ enrollment timelines, and the effects 

of these factors may differ across institutions and over time. Given the complex interplay 

between such variables, a primary goal of the proposed research will be to leverage as much 

student data as possible.  

To the author’s knowledge, the statistical approach outlined henceforth has not been 

formally applied to the analysis of undergraduate enrollment preferences in a multi-level, 

competing risks framework. The proposed analysis will provide an empirical measure of the 
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determinants of undergraduate enrollment in the context of a large and competitive 

postsecondary marketplace. By doing so, it accounts for the ways in which students must engage 

with the complexity of the sprawling and ever-changing U.S. higher education system, as well as 

the roles played by often very similar institutional actors. 
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CHAPTER THREE 

METHODOLOGY 

The research questions that will guide this analysis include: 

1. Do certain sociodemographic, institutional, financial, and academic factors effectively 

reduce time to postsecondary enrollment? 

2. Do these sociodemographic, institutional, financial, and academic factors have common 

effects across several similar-profile postsecondary institutions? 

3. How can the magnitudes and direction of the effects select sociodemographic, 

institutional, financial, and academic factors have on time to enrollment at different 

postsecondary institutions inform an enrollment management strategy? 

Data 

The sample for this analysis consisted of over 69,960 de-identified undergraduate 

application records drawn from a single mid-sized, private not-for-profit institution located in the 

Midwest between 2013 and 2015. Institutional data from this single site served as a baseline 

reference for all summary and statistical estimates presented throughout this analysis. 

Application data included measures of high school seniors’ academic ability and major 

preferences, as well as select geodemographic and sociodemographic factors. Using student data 

from a single source ensured consistency in how important metrics, such as high school GPA, 

were recorded, thus providing a common reference point for interpretation. 
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These application elements were then compared across three similar-profile peer 

competitors using enrollment information appended to the original dataset. As institution-

specific metrics were not available for these three institutions, only parameters that were not 

subject to change from one institution to another were included in this analysis. Specifically, 

standardized test scores, sex, race, student’s geographic location, etc. (Table 1). These three 

institutions were selected due to the similar academic profiles, geographic proximity, and 

overlapping recruiting footprints. All four institutions are Doctoral/Research universities, 

according to their Carnegie classification, with average annual enrollments around 10,000 

students. The institutions represented range from selective to highly selective private-not-for-

profit universities. Each institution included in this study also draws a plurality of its 

undergraduate enrollment from in-state applicants, but maintains national recruiting profiles. 

The use of archived undergraduate application records for this project was initially 

sanctioned by the university’s Enrollment Management division. The project was also submitted 

to the college’s Institutional Review Board (IRB) and was found to be exempt in July 2017. 

Student criteria selected for inclusion in the analysis were aggregated from multiple internal data 

sources using MySQL. Interim checks to ensure accurate and reproducible results were 

implemented at multiple steps throughout the process for quality assurance purposes. Initial 

coding decisions and syntax were vetted by appropriate database administrators and university 

personnel. Finally, a sample of individual student records in the final dataset were then examined 

manually to confirm consistent reporting across each of the internal systems.  

In accordance with Family Educational Rights and Privacy Act (FERPA) guidelines, only 

archived data were referenced for this analysis and all personally identifiable student information 



29 

 

was removed. At a minimum, these include student names or identification numbers, as well as 

date of birth and detailed geodemographic records. As additional safeguards, further steps to 

remove all extraneous variables from the sample were taken to ensure only those aggregate 

criteria necessary for modeling were retained. As such, only fifteen student-level variables were 

included, each of which was tracked in the most discrete manner possible to still provide analytic 

insight (see Variable Selection section below). Finally, the results of this analysis are only 

reported in summary or statistical format.  

The final dataset is a combination of both internal and external sources. Data on 

aggregate high school characteristics were drawn from the College Board’s DescriptorPLUS 

services and merged with institutional data. Further, federal financial aid eligibility, which was 

determined from information students provided on the Free Application for Federal Student Aid 

(FAFSA), also supplemented this analysis. Finally, students’ college choice was confirmed and 

appended to the aggregate dataset using information from the National Student Clearinghouse 

(NSC). Each of these databases are described in further detail below. As the focus of this project 

is enrollment yield, this analysis will examine the direct matriculation patterns of admitted 

students. More information is generally available on this subset of students, thereby increasing 

the likelihood of accurate predictions (Thomas et al., 1999). 

Free Application for Federal Student Aid (FAFSA) 

Among the FAFSA data reviewed for this analysis were students’ Estimated Family 

Contribution (EFC), which served as an adjusted proxy for their socioeconomic status. Other 

important variables included the number of other institutions to which applicants submitted their 

FAFSA information and parent education level. This information was supplemented with 



30 

 

College Board’s DescriptorPLUS service, which segments prospective students into high school 

clusters based on various academic and geodemographic factors.  

College Board 

The College Board’s DescriptorPLUS services utilize High School Cluster tagging to 

segment soon-to-be high school graduates according to academic, financial, and geographical 

measures (2006).  By leveraging the geodemographic data of over four million students from 

more than 28,000 high schools, the College Board has generated 28 descriptive high school 

clusters (see Appendix B). These clusters group secondary institutions based on students’ prior 

academic achievement, rates of extracurricular activity, college enrollment preferences, 

diversity, SES, and so on. Aggregate high school characteristics included in the analysis reflect 

the academic quality, poverty levels, and racial/ethnic composition of the student populations.  

National Student Clearinghouse (NSC) 

Further, this sample was augmented by data drawn from the NSC. The NSC is a 

nonprofit and nongovernmental organization that provides educational reporting, data exchange, 

verification, and research services to participating postsecondary member institutions. Since its 

inception, over 3,600 colleges and universities have participated in the Clearinghouse to report 

enrollment and degree information – accounting for 98% of all students enrolled in public and 

private U.S. institutions. Working with partner institutions, the NSC is designed to facilitate 

compliance with FERPA and The Higher Education Act, among other applicable laws. The NSC 

was the primary source of information on the destinations for admitted students who enrolled at 

any institution, including two- and four-year public/private institutions. 
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Variable Selection 

The selection of student-level characteristics was informed by prior empirical studies on 

the topic of college choice (see Literature Review section). The following individual- and 

institution-level pre-collegiate characteristics are included in the analysis (Table 1). 

Table 1. Student & Institutional Variables 

 

 

 

 

 

 

 

 

 

Variable Definitions 

Sociodemographic Factors 

Student sex is a binary indicator variable based on students’ application responses. In the 

model, the value “Female” serves as the referent. Students’ race is a derived multinomial 

variable with five distinct levels: Asian, Black or African-American, Multi-Racial, White, and 
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Other (Not Specified). Students were assigned into racial categories that aligned with the 

information provided on their college application. Students who self-identified as descending 

from more than one racial background were reassigned into a ‘multi-racial’ domain. Student 

ethnicity was tracked separately as a binary indicator variable. Students’ with Hispanic heritage 

were recorded as “Hispanic,” and the value “Non-Hispanic” serves as the referent. 

Similar to sex and ethnicity, residency status is a binary indicator variable based on 

students’ application responses. Residency was a derived variable based on students’ entry for 

their state of origin. The value “Out-of-State” served as the referent, so the impact of being “In-

State” could be modeled directly. Similarly, state information was further categorized based on 

U.S. Census Bureau regions. The four regions included in the univariable analysis were 

Midwest, Northeast, South, and West (including Pacific).  

First generation status is a derived binary indicator variable based on students’ responses 

across multiple parental education fields on the FAFSA. Specifically, to qualify as a first 

generation student, an applicant had to indicate that both their mother and father did not 

complete any ‘college or beyond’ (level 3 on the FAFSA form). As a result, only students who 

reported that neither of their parents completed grades beyond high school were tracked as first 

generation. The value “Not First Generation” served as the referent, so the impact of being “First 

Generation” could be modeled directly. 

Institutional Factors 

Students’ intended major is also a derived multinomial variable taking six distinct levels: 

Business, Communication, Education, Liberal Arts, STEM fields, and Undecided. These 

categories were generated based on students’ responses to two questions on their undergraduate 
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applications. The first was the school into which the students planned to matriculate, which was 

an aggregated field one level higher than the major category itself. These responses served as 

broad categories, which when appropriate, were retained for the analysis.  

To provide additional insight into students’ major preferences, a more nuanced approach 

was taken for their responses to the major question itself. Across all four institutions included in 

this analysis, broader categorizations, such as Arts & Sciences, were utilized. As a result, 

students’ responses to the major question on their applications were used to delineate between 

the Liberal Arts and STEM fields. Coding decisions were cross validated with the Bureau of 

Labor Statistics’ STEM designation index (STEM Index, 2016). Those students who indicated 

they were undecided about their intended major or college on both questions were grouped 

together as “Undecided.” 

An a priori decision was also made to evaluate the impact of being admitted into a first 

choice school. First choice school designation is a derived variable using information drawn 

from both the FAFSA and NSC database. On the FAFSA, students are asked to designate up to 

10 schools to which they want their financial information disclosed. Prior research suggests that 

most students list the schools in order of preference, and nearly two-thirds of applicants enroll in 

their first choice school if admitted (CNN Money, 11/24/2015).  

To quantify the impact of this first choice preference, students’ FAFSA data were 

supplemented by information downloaded from the NSC. Specifically, the name of the 

institution into which admitted students enrolled, as well as the matriculation date were cataloged 

and merged. Aligning this information, a first choice indicator variable was created. Therefore, 

First Choice is a binary variable based on an amalgamation of student information from the 
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FAFSA and NSC. The value “Not First Choice” served as the referent, so the impact of being 

admitted into a “First Choice” college or university could be modeled directly. 

Similarly, recent research has shown that the number of colleges to which students apply 

often affects their college enrollment decisions (Smith, 2011). As one in four high school 

graduates who apply to four-year colleges still do not enroll in one, the number of college 

applications was identified as a potentially important predictor of time to enrollment (Avery & 

Kane, 2004). The number of schools to which students submitted their FAFSA information was 

tracked as an ordinal count, ranging from 0 to 10. This served as a proxy for the number of 

schools to which students applied. Evidence shows that increasing the number of college 

applications can increase a student’s probability of enrolling at a four-year college by as much as 

40 to 50 percent (Smith, 2011).  

Early outreach and contact are also strong indicators of student engagement. To measure 

the effect of early outreach efforts, the date of students’ first contact of record was identified and 

coded as a binary variable. Those students with whom schools had contact prior to the fall 

semester of their senior year of high school were designated as early outreach targets. Those 

students whose first contact was after the start of their fall semester of their senior year were 

grouped as part of the regular communications flow. This was a derived indicator variable based 

on student recruitment and marketing logs. The value “Normal Communication Flow” served as 

the referent, so the impact of “Early Outreach” could be modeled directly. 

Financial Factors 

Several additional variables from students’ FAFSA submission were also used to create 

indicators of financial need or burden. The first of these was a variable designating if a student’s 
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family had other children in college at the same time. An a priori hypothesis was that students 

whose family had multiple children in college may delay their enrollment decision to maximize 

the amount of financial aid they were offered. To assess the impact of this factor, the number of 

kids of in college was tracked as a binary variable with zero as the referent, so the impact of 

having any additional children (>= 1) in college could be modeled directly. 

Using information students and their families reported on the FAFSA, the Department of 

Education also derives what’s known as an Estimated Family Contribution (EFC). This serves as 

index number that college financial aid staff use to determine how much financial aid a student 

would be eligible for if they were to attend their school (Department of Education). This variable 

is a continuous measure that serves as an adjusted proxy for students’ socioeconomic status. 

Each year, the government establishes a threshold below which students are Pell Grant eligible. 

This figure has typically ranged from $5,000 to $6,000 over the past few years. The primary 

purpose of the Federal Pell Grant Program is to provide need-based grants to low-income 

undergraduate students (Department of Education). Using EFC estimates for each of the three 

years, as well information collected from the Department of Education, Pell Grant eligibility 

status was calculated for each of the application cycles included in this study. Pell Grant 

Eligibility is a binary variable based on EFC data drawn from students’ FAFSA submission. The 

value “Not Pell Grant Eligible” served as the referent, so the impact of being “Pell Grant 

Eligible” could be modeled directly. 

Another important measure of students’ financial status is whether they were eligible for 

and received an offer of merit aid. Consideration for merit aid is based on a review of various 

student reported criteria including, but not limited to their academic ability and standardized test 
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scores. Merit Aid is a binary variable based on institutional data drawn from students’ 

application submission. The value “No Merit Aid” served as the referent, so the impact of 

receiving “Merit Aid” could be modeled directly. 

Academic Factors 

Two measures of students’ academic ability were also evaluated in this analysis. The first 

was students’ cumulative high school grade point average (GPA). This variable was tracked as a 

continuous measure on students’ application based on a review of their official high school 

transcripts. On univariable analysis, the effect of high school GPA was measured in two ways. 

First, unit increases of 0.50 (equivalent to a one standard deviation increase) on the variable’s 

continuous scale were reviewed. Second, students’ high school GPA was also binned into 

quartiles: low, low middle, high middle, and high. The impact of a unit increase on this more 

discrete ordinal scale was then also modelled directly. 

The second measure was students’ standardized ACT test scores. This variable was also 

tracked as a continuous measure on students’ application based on official score reports. Valid 

scores ranged from 0 to 36. On univariable analysis, the effect of ACT scores was measured in 

two ways. First, unit increases of 4 (equivalent to a one standard deviation increase) on the 

variable’s continuous scale were reviewed. Second, similar to GPA, students’ ACT scores were 

also binned into quartiles: low, low middle, high middle, and high. The impact of a one unit 

increase on this more discrete ordinal scale was then also modelled directly. Ultimately, 

continuous measurements of GPA and ACT, using predetermined unit increases, provided a 

stronger model fit. Therefore, the quartile approach for both factors were not reported.  
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In line with prior research (Johnson, 2008), special consideration was given to 

information derived from the FAFSA in the modeling process. Information on First Generation 

status, number of kids in college, number of college applications, First Choice, and Pell Grant 

eligibility is not available for students who did not file a FAFSA. Consideration was then given 

to multiple imputation as a method for addressing missing data elements. However, while 

simulation studies have shown that multiple imputation can perform well, under certain 

circumstances, for variables with up to 50% missing observations, larger amounts of missing 

information can lead to estimation problems and are generally not recommended (Allison, 2002; 

Johnson and Young, 2011). Thus, models including these variables were limited to student 

records for which complete FAFSA information was available. 

Additional Model Parameters 

As time to enrollment is the primary unit of measurement in this analysis, particular 

attention was paid to how the time variable was calculated. Accurate and detailed time logs were 

available for all major stages of the application cycle. Using customer relationship management 

(CRM) software (Technolutions Slate), specific dates and times for the point of application, 

admission, and enrollment were reviewed. In addition, records of students being denied 

admission and the timing of their first point of contact were also tracked.  

The primary outcome of interest was enrollment in one of four similar profile institutions, 

thus an a priori decision was made to limit this analysis to only admitted students. This both 

adhered to the tenets of a traditional enrollment funnel (e.g. only admitted students can enroll), 

but also meant that complete information on important model parameters was also often 

available for most retained student records. As a result, students denied entry, as well as though 
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who simply did not progress past the point of application were omitted, and the date of 

admission was used as time zero for the analysis. Students’ date of enrollment or last known 

follow-up bookended the observation period. All students who withdrew from the application 

process or had no additional contact after their admission date were therefore treated as censored 

variables.  

Due to the presence of competing risks, NSC data were also referenced to derive a 

multinomial outcome variable. In addition to censored records, there were four universities 

tracked in this study. As a result, the primary dependent variable had five levels. A value of zero 

indicates the admitted student did not enroll at any of the four institutions, while each school is 

assigned a value ranging from 1 to 4 to indicate enrollment at one of the institutions during the 

observation period.  

Time to Event Models 

There are two main approaches to conducting a time to event analysis, standard 

parametric and non-parametric procedures (Austin et al., 2016; Collett, 2015). Models in which a 

pre-specified probability distribution is assumed for the underlying time to event estimates are 

known as parametric models. Such techniques often require a thorough review of the modified 

Cox-Snell residuals to ascertain which of many possible probability distributions (Weibull, 

Exponential, etc.) presents the best fit. Non-parametric or “distribution-free” methods are far 

more common and do not require specific a priori assumptions to be made about the underlying 

distribution of students’ enrollment times (Collett, 2015). The Cox regression model is perhaps 

the best-known extension of traditional non-parametric procedures.  
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In standard Cox regression, the primary objective is often to explore the relationship 

between a set of explanatory variables and the time to a single event of interest, enrollment in 

this instance (Collett, 2015). Allison (2010) provides the basic model form below: 

ℎ𝑖(𝑡) = exp⁡(𝛽′𝑥𝑖)ℎ0(𝑡) 

Here ℎ0(𝑡) represents the baseline hazard, 𝑥𝑖 is the vector of values for the independent variables 

for the ith individual, and⁡𝛽 is the vector of their coefficients (Collett, 2015). The goal of the 

modelling process is to determine which combination of potential explanatory variables affect 

the form of the underlying probability distribution (Collett, 2015; Kleinbaum & Klein, 2012; 

Allison, 2010). However, in many instances, a student’s enrollment decision is not solely driven 

by a set of clearly defined explanatory variables, but rather also influenced by the activities and 

outreach of other universities. In the presence of these “competing risks,” enrollment at a 

competitor institution is said to preclude direct matriculation at the institution of primary interest, 

and these activities have implications for the data analysis (Austin et al., 2016). 

Competing Risks Modeling 

Competing risks observations provide important context when evaluating time dependent 

processes. In a competing risks model the cause specific hazard (CHR) heuristically represents 

the probability of enrollment at one institution at a moment in time (t), given that the student has 

not already enrolled at another institution (Austin et al., 2016; Dignam et al., 2012; Belot et al., 

2010; Dignam & Kocherginsky, 2008). Collett (2015) specifies the following model as an 

extension of the standard Cox regression: 

ℎ𝑖𝑗(𝑡) = exp⁡(𝛽′
𝑗
𝑥𝑖)ℎ0𝑗(𝑡) 
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Here ℎ0𝑗(𝑡) represents the baseline hazard for the jth cause, 𝑥𝑖 is the vector of values for the 

independent variables for the ith individual, and 𝛽𝑗 is the vector of their coefficients for the jth 

cause (Collett, 2015). In a competing risks setting, an individual can potentially enroll at any of 

several institutions, but only the time to event for the first of these is observed (Dignam & 

Kocherginsky, 2008). Importantly, though, even when only one event is observed per student, 

partial information on enrollment at other colleges is available due to censoring.  

There are many technical and practical advantages to this modeling approach. In real-life 

situations, modeling CHR estimates provides important predictive value as only the earliest 

enrollment time and at most one enrollment type is observed (Austin et al., 2016; Belot et al., 

2010; Peterson, 1976; Gail, 1975; Tsiatis, 1975). Further, CHR estimates from these models are 

largely interpreted in the same way as the hazard ratio derived from a tradition Cox regression in 

the absence of competing risks. When interest lies in identifying those variables that inform 

directly on the event of interest, CHRs indicate the odds (known as hazards or risks in such 

models) of a student enrolling at any given time at one of several institutions as a function of 

univariable and multivariable individual and institutional factors. By accounting for the common 

effects identified throughout the literature, one can confidently rely on functions of the observed 

CHRs for interference when analyzing data with respect to the first enrollment event (Dignam et 

al., 2012). 

Multi-level Modeling 

When data are nested, as in this case, the assumption that observations contribute to the 

model independently is violated. Thus, the standard errors produced by such models are often too 

small, which can lead to a higher probability of Type II error (incorrectly rejecting the null 
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hypothesis, or a false positive) than if the observations were truly independent (Raudenbush & 

Bryk, 2002). To account for this clustering effect in the proposed time to event model, a mixed 

effects model of the following form is proposed: 

ℎ𝑖𝑗(𝑡) = 𝑧𝑖exp⁡(𝛽
′
𝑗
𝑥𝑖)ℎ0𝑗(𝑡) 

Substituting ⁡𝑧𝑖 = exp⁡(𝑢𝑖) provides an alternative representation of the clustering effect, which 

is generally considered more convenient for modeling purposes (Collett, 2015): 

ℎ𝑖𝑗(𝑡) = exp (𝛽′
𝑗
𝑥𝑖 +⁡𝑢𝑖) ℎ0𝑗(𝑡), 𝑢𝑖 = 0⁡𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠⁡𝑡𝑜⁡𝑛𝑜⁡𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔⁡𝑒𝑓𝑓𝑒𝑐𝑡 

In this model, ui is a random effect in the linear component of the proportional hazards model. 

This model includes student-level information as fixed effects, but also allows for random 

intercepts at the level of high school cluster. In total, there were 27 unique clusters representing 

nearly 4,500 individual high schools included in the analysis. This list of secondary institutions 

included a range schools, such as select enrollment magnet and smaller rural schools, as well as 

general public and private entities. Incorporating high school cluster information in the model as 

a random effect based on externally validated and aggregated criteria efficiently and 

appropriately accounts for the correlation among students who come from secondary institutions 

assumed to share certain characteristics (socioeconomic, academic ability, college preparation, 

etc.).  

Further, the random effects in this model introduce a degree of dependence across 

students’ time to enrollment estimates, thus anticipating and accounting for important variation 

at the high school level (Collett, 2015; Kleinbaum & Klein, 2012; Allison, 2010). These random 

effects are assumed to have levels drawn from a “population of possible values, where the actual 
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levels are representative of that population” (Collett, 2015). While the effects corresponding to 

student level factors, the fixed effects in such models, may remain largely unchanged, these 

multi-level models incorporate important institution-level variation that might otherwise be 

difficult or unwieldy to incorporate in a single model.  

Model Building Process 

Based on an extensive review of the existing literature, various measures of students’ 

academic ability and SES, as well as sociodemographic factors, intended major, and school 

choice were selected for inclusion in the exploratory univariable models. As this analysis 

involves only one response variable per observation (e.g. enrollment), univariable is thus defined 

as a model that employs a single explanatory variable (Hidalgo et al., 2013; Tsai, 2013; Peters, 

2008). These analyses were conducted to individually assess the relationship between each 

explanatory variable and students’ enrollment patterns. The objective of this preliminary stage is 

to determine which variables independently affect students’ likelihood of enrollment at any given 

time. Any explanatory variables that are found to be marginally or meaningfully associated with 

enrollment outcomes (p <.10) in the univariable analyses will be considered for inclusion in the 

final multivariable model. As before, this analysis involves only one response variable per 

observation, so multivariable is defined as a model that employs multiple explanatory variables 

simultaneously (Hidalgo et al., 2013; Tsai, 2013; Peters, 2008). 

Goodness of Fit Diagnostics 

On multivariable analysis, assessment of model fit will be conducted using Akaike’s 

Information Criterion (AIC). Unlike −2 log 𝐿̂, the value of the AIC is penalized and will tend to 

increase when additional, unnecessary terms are added to the model (Collett, 2015; Allison, 
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2010). The formula for AIC is as follows, where q represents the number of unknown β-

parameters: 

𝐴𝐼𝐶 = ⁡−2 log 𝐿̂ + 2𝑞 

Utilizing AIC avoids overfitting models, which results in the estimated values of some of the 

beta coefficients being highly dependent on the actual data, thus limiting the generalizability of 

the results. An additional benefit of comparisons on the basis of AIC is that sequential models 

need not be nested. For interpretation purposes, smaller AIC values indicate a better fitting 

model. Specifically, when AIC decreases by more than two points upon removing an 

independent variable, the results indicate the more parsimonious model provide better estimates 

of the true expected values. In the event the AIC value remains unchanged or increases, the 

omitted variable should be retained in the final analysis as the more complex model provides a 

better approximation of the true relationship between the parameters (Agresti, 2007).  

Statistical Assumptions 

In any multivariable model, an issue of multicollinearity could arise. Multicollinearity in 

regression exists when two or more explanatory variables are highly correlated with each other, 

resulting in unstable regression coefficients (Weisberg, 2005). One approach to diagnosing 

collinear variables is to review variance inflation factor (VIF) estimates, with any VIF value > 10 

indicating a potential problem. When issues of multicollinearity are detected, the highly 

correlated explanatory variables will be removed from the model and re-entered one at a time. In 

the final multivariable model, only those explanatory variables that best minimize AIC will be 

retained.  
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Further, in standard non-parametric Cox regression models, there is the assumption that 

the hazard of each event type is proportional over time. For this analysis, the proportional 

hazards assumption will be assessed as described by Cox and Oakes (1984). Cox and Oakes 

(1984) proposed a parametric test of the proportional hazards hypothesis using the following 

model: 

log ℎ𝑗(𝑡) = 𝛼0(𝑡) +⁡𝛼𝑗 +⁡𝛽𝑗𝑡, 𝑗 = 1, 2, 3… 

They showed that if all βj = β for all j, then the proportional hazards hypothesis is satisfied. 

Graphical evaluation of the Martingale residuals for each predictor will also be examined as 

described by Lin, Wei, and Ying (1993). 

If the proportional hazards assumption is retained, it means the log-hazards for any two 

events (e.g. enrollment at institutions 1 and 2) are parallel, or proportional, at any given time t. In 

this analysis, with four competing events, the equation proposed by Cox and Oakes (1984) 

implies a multinomial logistic regression model with a generalized logit link.  

*Parametric Proportional Hazards Test; 

PROC LOGISTIC DATA=CompetingRisks; 

CLASS Enrollment_Outcome (REF="1"); 

WHERE Enrollment_Outcome NE 0; 

MODEL Enrollment_Outcome = DaysFromAdmitToFinalDecision / LINK=GLOGIT; 

RUN; 

In the above syntax, the four event types serve as levels of the dependent variable, while the 

measurement of time serves as the independent variable. Censored variables are excluded for this 

test using the “Where” statement. Under the proportional hazards hypothesis, the coefficient for 

time will be 0; therefore, a non-significant Type 3 effect for this test of proportionality indicates 

the null hypothesis should be retained.  
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Upon review, the proportional hazards assumption was retained, with a non-significant 

Type 3 effect (p = .39). These results confirm a multinomial Competing Risks model, an 

extension of the non-parametric Cox regression model, is an appropriate choice for the analysis. 

Further, the small chi-square statistics and beta estimates near 0 suggest that the hazard functions 

for all four event types were nearly identical (Tables 2 & 3).  

 

 

 

 

 

 

Table 2. Output for Parametric Proportional Hazards Test 

Table 3. Output for Parametric Proportional Hazards Test 



 

 

46 
 

CHAPTER FOUR 

RESULTS 

A total of 35,434 students who were admitted into a single postsecondary institution 

between 2013 and 2015 were included in the final analysis. This total accounted for 50.6% of all 

applicant records (N = 69,962), with the remaining records being lost to follow-up, withdrawn, or 

denied. Students’ academic profile, as well as breakdowns of their demographic, socioeconomic, 

and geodemographic characteristics are listed in Table 4.  Overall, two-thirds of all admitted 

applicants were female (69%). The mean age among admitted students was 17, with a standard 

deviation (SD) of 0.53. The sample was predominately Caucasian (64%). While nearly four in 

five admitted students reported living in the Midwest (83%), only half of the students reported 

being in-state (50%).  

According to the College Board’s DescriptorPLUS ratings, nine in ten students originated 

from high school clusters that aligned with high college-going rates, students with strong 

academic ability, and high levels of extracurricular participation. Most students came from three 

of the 27 unique clusters: 79 (30%), 68 (22%), and 70 (21%). In line with College Board data, 

the mean high school GPA for admitted students was 3.80 (SD = 0.48) and the average ACT 

score was 27 (SD = 3.68). Most students indicated they intended to major in a STEM field 

(38%), followed by Undecided (19%), Business (16%), and the Liberal Arts (10%).  On average, 
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admitted students took just under two months to make their enrollment decisions, with a narrow 

range of one and a half to three months across the competitive set.  

Two in three admitted students (67%) submitted FAFSA information. Of those students, 

approximately one in five (18%) were categorized as first generation status. A third of the 

sample (35%) reported that their family had one or more additional children in college and a 

nearly equal percentage (32%) were Pell Grant eligible. The median count of colleges to with 

admitted students applied was six, with an interquartile range (IQR) of four to nine. Only 18% of 

admitted students reported enrolling in their first choice institution.  

  

Table 4. Descriptive Statistics 

 

Table 5: Descriptive Statistics 
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Underscoring the near parity of the competitors included in the analysis, these 

breakdowns remained consistent across each of the four institutions. Between 61% and 69% of 

admitted students were female, with a mean age of 17, across all four institutions. A majority of 

students admitted to each institution were Caucasian and reported being in-state applicants (58% 

- 77%) originally from the Midwest (81% - 92%). Nearly all emerged from high school clusters 

(79, 68, and 70) with high college-going rates, reflected by their mean high school GPA (3.80 - 

4.40) and ACT scores (26 - 32). A plurality of students indicated they intended to major in a 

STEM field in college.   

As noted early, a majority of students admitted to each institution submitted FAFSA 

information. Of those students who submitted a FAFSA, approximately one in five (17% - 27%) 

were categorized as first generation status. A third of the sample (29% - 35%) reported their 

family had one or more additional children in college and a similar percentage (27% - 40%) were 

Pell Grant eligible. The median count of colleges to with admitted students applied ranged from 

four to nine (IQR: 2 – 10). In line with the overall sample, approximately one in five admitted 

students reported enrolling in their first choice institution.  
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Univariable Analysis 

Measures of students’ academic ability and SES, as well as sociodemographic factors, 

intended major, and school choice were selected for inclusion in the exploratory univariable 

models. These analyses were conducted to individually assess the relationship between each 

explanatory variable and students’ enrollment patterns. The objective of this preliminary stage is 

to determine which variables independently affect students’ likelihood of enrollment at any given 

time. 

Sociodemographic Factors 

 

A student’s sex was independently associated with the instantaneous odds of enrollment 

at three of the four institutions under review. Specifically, male students were 1.21 (95% CI: 

1.14-1.28, p < .0001) and 1.23 (95% CI: 1.10-1.37, p < .001) times more likely to enroll at any 

given time at institutions one and two, respectively, compared to female applicants (Table 5). 

Male students were also 49% (Hazard Ratio [HR] = 1.49, 95% CI: 1.03-2.14, p = .03) more 

likely to enroll at any given time at institution four. The Kaplan-Meier results presented in Figure 

2 indicate how students’ enrollment probabilities changed over time based on their sex. These 

paneled findings align closely with the model output included in Table 5. For each institution, 

Table 5. Univariable Models Assessing Sociodemographic Factors 
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male students recorded higher enrollment probabilities throughout the application timeline. 

Nonetheless, for institution one there was clear separation between male and female students, 

while the differences between institutions two and four were less pronounced, but still evident. 

By contrast, the enrollment patterns by student sex for institution three were nearly identical.  

 

 

 

In addition, students’ race was also meaningfully associated with the odds of enrollment 

at each of the four institutions, but the magnitude and direction of the relationship varied across 

Figure 2. Kaplan Meier Curves for Student Sex 

 

Figure 3: Kaplan Meier Curves for Student Sex 
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the four universities. Asian students were 1.31 (95% CI: 1.21-1.41, p < .0001) and 2.58 (95% CI: 

1.85-3.61, p < .0001) times more likely to enroll at any given time at institutions one and three, 

but were 32% less likely to enroll at institution two (HR = 0.68, 95% CI: 0.57-0.81, p < .0001) 

compared to Caucasian students (Table 5). Black or African American students were 4.46 (95% 

CI: 2.85-6.97, p < .0001) and 3.68 (95% CI: 1.96-6.90, p < .0001) times more likely than their 

Caucasian counterparts to enroll at any given time at institutions three and four, respectively. 

Multi-racial students were also 24% (HR = 1.24 95% CI: 1.11-1.38, p < .001) and 78% (HR = 

1.78, 95% CI: 1.11-2.88, p = .02) more likely to enroll at any given time at institutions one and 

three compared to Caucasian admitted students. For the Kaplan-Meier results presented in Figure 

3, the findings related to student race were simplified by dichotomizing student characteristics to 

White v. Non-White. This allowed for a clearer presentation of how students’ enrollment 

probabilities changed over time based on the general racial breakdown of the student sample. 

When combined in this manner, broader trends emerged, but the results were equally divergent 

across all four institutions as observed in Table 5. Overall, white students were more likely to 

enroll at institutions one and three, but less likely compared to their minority counterparts at 

institutions two and four. 
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Student ethnicity followed a similar pattern, as students who identified as Hispanic 

exhibited increased odds of instantaneous enrollment at three of the four institutions. This trend 

was most pronounced at institutions three and four. Hispanic students were 4.31 (95% CI: 3.06-

6.05, p < .0001) and 3.25 (95% CI: 2.00-5.27, p < .0001) times more likely to enroll at any given 

time at institutions three and four (Table 5). Hispanic students were also 36% (HR = 1.36, 95% 

Figure 3. Kaplan Meier Curves for Student Race 

 

Figure 4: Kaplan Meier Curves for Student Race 
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CI: 1.19-1.56, p < .0001) more likely to enroll at any given time at institution two. By 

comparison, students’ ethnic identity was not meaningfully associated the odds of enrollment at 

institution one (HR = 1.06, 95% CI: 0.98-1.14, p = .13). The Kaplan-Meier results presented in 

Figure 4 closely align with the model output included in Table 5. For each institution, there was 

a trend toward increased enrollment probabilities among Hispanic students throughout the 

application cycle. However, these trends were most pronounced for institutions three and four. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Kaplan Meier Curves for Student Ethnicity 

 

Figure 5: Kaplan Meier Curves for Student Ethnicity 
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Residency status was also independently associated with an increase in the odds of 

enrollment at any given time at all four institutions. The most pronounced association was for 

institution three, followed by institutions two, four, and one, respectively. In-state applicants 

were most likely to enroll at any given time (HR = 3.52, 95% CI: 2.64-4.71, p < .0001) at 

institution three (Table 5). However, in-state applicants were also nearly two times (HR = 1.94, 

95% CI: 1.73-2.18, p < .0001) more likely to enroll at institution two compared to out-of-state 

applicants. In-state applicants were also 71% (HR = 1.71, 95% CI: 1.17-2.49, p = .01) and 47% 

(HR = 1.47, 95% CI: 1.39-1.56, p < .0001) more likely to enroll at any given time at institutions 

four and one, respectively. The Kaplan-Meier results provided in Figure 5 reflect the pronounced 

effect sizes detailed in Table 5. For each institution, there was a clear trend toward increased 

enrollment probabilities among in-state residents throughout the application cycle.  

 

 

 

 

 

 

 

 

 

  

Figure 5. Kaplan Meier Curves for Residency Status 

 

Figure 6: Kaplan Meier Curves for Residency Status 
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Similar to residency status, univariable results underscored students’ strong regional 

preferences for institutions located in the Midwest. Overall, the region of the country in which 

students resided was significantly associated with the odds of enrollment at institutions one (p = 

.004), two (p < .0001), and three (p < .0001), but not four (p = .80). Compared to students from 

the Midwest, students from the Northeast were 42% (HR = 0.58, 95% CI: 0.41-0.84, p = .004) 

and 72% (HR = 0.28, 95% CI: 0.09-0.88, p = .03) less likely to enroll at any given time at 

institutions two and three (Table 5). Similarly, students from the South were 22% (HR = 0.78, 

95% CI: 0.68-0.90, p < .001) and 74% (HR = 0.26, 95% CI: 0.0.10-0.69, p = .01) less likely to 

enroll at any given time at institutions two and three, respectively. Further, students from the 

West region were 39% (HR = 0.61, 95% CI: 0.47-0.78, p < .001) and 62% (HR = 0.38, 95% CI: 

0.19-0.77, p = .01) less likely to enroll at any given time at institutions two and three. 

For the Kaplan-Meier results presented in Figure 6, the findings related to U.S. Census 

Region were simplified by dichotomizing student residency to Midwest v. Other. This allowed 

for a clearer presentation of how students’ enrollment probabilities changed over time based on 

the region of the country from which they originated. It also aligned with results presented in 

Table 4, which indicated a clear majority of applicants came from the Midwest. When combined 

in this manner, broader trends emerged, but the patterns largely mirrored the more detailed 

findings presented in Table 5. Overall, students from the Midwest were more likely to enroll at 

institutions one, two, and three, but somewhat less likely to enroll compared to students from 

other regions at institution four. 
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In line with other sociodemographic factors, first generation status was also associated 

with increased odds of enrollment at select institutions. Specifically, first generation status was 

predictive of the instantaneous odds of enrollment at institutions one (p < .0001) and two (p < 

.0001), but not meaningfully associated with outcomes at three (p = .21) or four (p = .74). 

Compared to applicants whose parents attended college, first generation students were 21% (HR 

= 1.21, 95% CI: 1.13-1.31, p < .0001) more likely to enroll at any given time at institution one 

(Table 5). By comparison, first generation students were 80% (HR = 1.80, 95% CI: 1.57-2.07) 

more likely to enroll at any given time at institution two (p < .0001). The Kaplan-Meier results 

Figure 6. Kaplan Meier Curves for U.S. Census Region 

 

Figure 7: Kaplan Meier Curves for U.S. Census Region 
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presented in Figure 7 closely align with the model output included in Table 5. For each 

institution, there was a trend toward increased enrollment probabilities among first generation 

students throughout the application cycle. 

 

 

  

Figure 7. Kaplan Meier Curves for First Generation Status 

 

Figure 8: Kaplan Meier Curves for First Generation Status 
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Institutional Factors 

 

Students’ intended major was meaningfully associated with the instantaneous odds of 

enrollment at each of the four institutions, but the magnitude and direction of the relationship 

varied across the four universities. Compared to undecided applicants, students interested in 

business were 62% (HR = 1.62, 95% CI: 1.40-1.89, p < .0001) more likely to enroll at any given 

time at institution two (Table 6). By contrast, business students were 47% (HR = 0.53, 95% CI: 

0.32-0.88, p = .01) and 66% (HR = 0.34, 95% CI: 0.14-0.85, p = .02) less likely to enroll at 

institutions three and four, respectively. However, a preference for business studies was not 

meaningfully associated with enrollment at institution one (HR = 1.01, 95% CI: 0.92-1.11, p = 

.86). Similarly, students interested in the field of communication were 88% (HR = 1.88, 95% CI: 

1.56-2.27) more likely to enroll at any given time at institution two (p < .0001). Communication, 

as a major preference, did not affect students’ decision timelines as they relate to institutions one 

(p = .42), three (p = .13), or four (p = .07).  

Students intending to major in education were no more likely to enroll at any of the four 

institutions: one (p = .51), two (p = .35), three (p = .54), and four (p = .24). Nonetheless, those 

admitted students interested in the liberal arts were 86% (HR = 1.86, 95% CI: 1.01-3.44, p = .05) 

Table 6. Univariable Models Assessing Institutional Factors 

 

Table 6: Institutional Factors 
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more likely to enroll at any given time at institution four. Similar to communication studies, a 

liberal arts major did not lead to an increase in the instantaneous odds of enrollment at any of the 

remaining institutions. Compared to undecided applicants, students who indicated they intended 

to major in a STEM field were more likely to enroll at institutions one (HR = 1.12, 95% CI: 

1.04-1.21, p = .002) and three (HR = 1.38, 95% CI: 1.01-1.90, p = .04).  By comparison, STEM 

students were 44% less likely to enroll at institution two (HR = 0.56, 95% CI: 0.49-0.65, p < 

.0001). A preference for a STEM major was not significantly associated with time to enrollment 

at institution four (p = .17). 

For the Kaplan-Meier results presented in Figure 8, the results related to major preference 

were simplified by dichotomizing the results to STEM v. non-STEM. This allowed for a clearer 

presentation of how students’ enrollment probabilities changed over time based on major 

preference. It also aligned with results presented in Table 4, which indicated a clear plurality of 

applicants indicated a preference for STEM majors. When combined in this manner, broader 

trends emerged, but the patterns largely mirrored the more detailed findings presented in Table 6. 

Overall, STEM students were more likely to enroll at institutions one, three, and four, but 

somewhat less likely to enroll at institution two compared to the students with other major 

preferences. 
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In every instance, first choice status was independently associated with an increase in the 

instantaneous odds of enrollment at all four institutions (Figure 9). For example, students who 

regarded university one as their “First Choice” school were significantly more likely to enroll if 

they were admitted. This pattern held for each of the four competitors, but the most pronounced 

associations were for institutions one and two. First choice applicants were six times (HR = 6.05, 

95% CI: 5.74-6.37, p < .0001) more likely to enroll at institution one, while first choice 

applicants were nearly five times (HR = 4.65, 95% CI: 4.18-5.17, p < .0001) more likely to enroll 

Figure 8. Kaplan Meier Curves for Intended Major 

 

Figure 9: Kaplan Meier Curves for Intended Major 
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at institution two (Table 6). By comparison, first choice applicants were 2.84 (95% CI: 1.90-

4.25, p < .0001) times more likely to enroll at institution four and 65% (HR = 1.65, 95% CI: 

1.24-2.21, p < .0001) more likely to enroll at institution three. The Kaplan-Meier results 

presented in Figure 9 closely align with the model output included in Table 6. For each 

institution, there was a pronounced trend toward increased enrollment probabilities among first 

choice students throughout the application cycle. 

 

  

Figure 9. Kaplan Meier Curves for First Choice 

 

Figure 10: Kaplan Meier Curves for First Choice 
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The number of applications students submitted was also significantly associated with 

time to enrollment at each of the four institutions (Figure 10). However, the odds of enrollment 

at three of the four institutions decreased for every additional application an admitted student 

submitted.  For every one additional application, admitted students were 5% (HR = 0.95, 95% 

CI: 0.94-0.96, p < .0001) less likely to enroll at any given time at institution one (Table 6). 

Similarly, for every one additional application, admitted students were 3% (HR = 0.97, 95% CI: 

0.96-0.99, p < .0001) and 4% (HR = 0.96, 95% CI: 0.93-0.99, p = .02) less likely to enroll at any 

given time at institutions two and three, respectively. Only at institution four did the odds of 

enrollment at any given time increase as the number of applications a student submitted 

increased. For every one additional application, admitted students were 6% (HR = 1.06, 95% CI: 

1.01-1.11, p = .02) more likely to enroll at any given time at institution four.  

For the Kaplan-Meier results presented in Figure 10, the results related to number of 

applications students submitted were simplified by dichotomizing the results using the sample 

median as the cut point. This allowed for a clearer presentation of how students’ enrollment 

probabilities changed over time based on number of applications they submitted. It also aligned 

with results presented in Table 4. Overall, students who submitted more applications were less 

likely to enroll at institutions one, two, and three, but somewhat more likely to enroll at 

institution four compared to those students who submitted fewer applications. 
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In line with other institutional factors, early outreach was also an important indicator of 

the odds of enrollment at any given time at three of the four institutions (Figure 11). Early 

outreach targets were 84% (HR = 1.84, 95% CI: 1.74-1.94, p < .0001) more likely to enroll at 

institution one (Table 6). Comparatively, early outreach targets were 56% (HR = 1.56, 95% CI: 

1.41-1.74, p < .0001) and 29% (HR = 1.29, 95% CI: 1.02-1.64, p < .0001) more likely to enroll 

Figure 10. Kaplan Meier Curves for # of Applications (Cut at Median) 
 

Figure 11: Kaplan Meier Curves for # of Applications (Cut at Median) 
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at institutions two and three, respectively.  However, early outreach efforts were not 

independently associated with the instantaneous odds of enrollment at institution four despite a 

positive trend (HR = 1.19, 95% CI: 0.83-1.70, p = .34). The Kaplan-Meier results presented in 

Figure 11 closely align with the model output included in Table 6. For three of the four 

institutions, there was a pronounced trend toward increased enrollment probabilities among 

students who were the targets of early outreach throughout the application cycle.  

Figure 11. Kaplan Meier Curves for Early Outreach 

 

Figure 12: Kaplan Meier Curves for Early Outreach 
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Financial Factors 

 

Univariable model results confirmed the importance of select financial factors in 

students’ final enrollment decisions as well. Specifically, admitted students whose families 

reported additional children in college was an important indicator of enrollment at institution one 

(Figure 12). Admitted students who came from families with more than one child in college were 

9% (HR = 1.09, 95% CI: 1.03-1.16, p = .003) more likely to enroll at any given time at 

institution one (Table 7). By comparison, the number of children a family had in college was not 

meaningfully associated with the odds of enrollment at institutions two (p = .19), three (p = .68), 

or four (p = .36). In each instance, however, there was a trend toward reduced odds of 

enrollment: two (HR = 0.92, 95% CI: 0.81-1.04), three (HR = 0.93, 95% CI: 0.67-1.29), or four 

(HR = 0.80, 95% CI: 0.50-1.29). The Kaplan-Meier results presented in Figure 12 indicate how 

students’ enrollment probabilities changed over time based on the number of additional children 

the applicant’s family has in college. These paneled findings align closely with the model output 

included in Table 7. For institution one, applicants from families with additional children in 

college recorded higher enrollment probabilities throughout the application timeline. By contrast, 

this trend flipped for institutions two, three, and four for which there was less separation between 

the two applicant subgroups.  

Table 7. Univariable Models Assessing Financial Factors 

 

Table 7: Financial Factors 
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Pell Grant eligibility, as determined by students’ derived estimated family contribution on 

their FAFSA submission, was also an independent predictor of the instantaneous odds of 

enrollment at three of the four institutions under review (Figure 13). Pell Grant eligible students 

were 34% (HR = 1.34, 95% CI: 1.26-1.42, p < .0001) more likely to enroll at institution one 

Figure 12. Kaplan Meier Curves for Additional Children in College 

 

Figure 13: Kaplan Meier Curves for Additional Children in College 
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(Table 7). Similarly, Pell Grant eligible students had nearly equal odds of enrollment at 

institutions two (HR = 1.43, 95% CI: 1.27-1.61, p < .001) and three (HR = 1.48, 95% CI: 1.11-

1.98, p = .01) over time. By contrast, Pell Grant eligibility was not meaningfully associated with 

time to enrollment at institution four (HR = 0.87, 95% CI: 0.55-1.39, p = .57). The Kaplan-Meier 

results are presented in Figure 13. For institutions one, two, and three there was a trend toward 

increased enrollment probabilities among Pell Grant eligible students throughout the application 

cycle. By contrast, this relationship was flipped, but also less pronounced for institution four. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Kaplan Meier Curves for Pell Grant Eligibility 

 

Figure 14: Kaplan Meier Curves for Pell Grant Eligibility 
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In addition, the offer of merit aid was significantly associated with increased odds of 

enrollment at any given time at all four institutions (Figure 14). This effect was most pronounced 

at institution four (HR = 16.17, 95% CI: 2.26-115.79, p = .01) where the offer of merit aid 

resulted in a sixteen-fold increase in the instantaneous odds of enrollment (Table 7). Students 

offered merit aid were also 44% (HR = 1.44, 95% CI: 1.34-1.55) more likely to enroll at 

institution one (p < .0001). By comparison, offers of merit aid also doubled and nearly 

quadrupled the instantaneous odds of enrollment at institutions two (HR = 2.34, 95% CI: 2.07-

2.64) and three (HR = 3.62, 95% CI: 1.59-25.83), respectively. The Kaplan-Meier results 

presented in Figure 14 closely align with the model output included in Table 7. For each 

institution, there was a pronounced trend toward increased enrollment probabilities among merit 

aid recipients throughout the application cycle.  

 

 

 

 

 

 

 

 

 

  

Figure 14. Kaplan Meier Curves for Merit Aid 

 

Figure 15: Kaplan Meier Curves for Merit Aid 
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Academic Factors 

 

An applicant’s cumulative grade point average (GPA) was also significantly associated 

with the instantaneous odds of enrollment at each of the four institutions (Figure 15). 

Nonetheless, the direction of this relationship was different for institutions one and two 

compared to institutions three and four. For every one standard deviation (units=0.5) increase in 

students’ cumulative GPA, admitted students were 21% (HR = 0.79, 95% CI: 0.76-0.81, p < 

.0001) and 29% (HR = 0.71, 95% CI: 0.67-75, p < .0001) less likely to enroll at any given time 

at institutions one and two, respectively (Table 8). By contrast, for every half unit increase in 

students’ cumulative GPA, admitted students were over two times more likely to enroll at any 

given time at institutions three (HR =2.42, 95% CI: 2.22-2.62, p < .0001) and four (HR =2.26, 

95% CI: 2.01-2.55, p < .0001). 

For the Kaplan-Meier results presented in Figure 15, the findings related to student GPA 

were simplified by dichotomizing the results using the sample median as the cut point. This 

allowed for a clearer presentation of how students’ enrollment probabilities changed over time 

based on their GPA. It also aligned with results presented in Table 4. When combined in this 

manner, broader trends emerged, but the patterns largely mirrored the more detailed findings 

presented in Table 8. Overall, students with higher GPAs were less likely to enroll at institutions 

one and two, but more likely to enroll at institutions three and four compared to those students 

with lower GPAs. 

Table 8. Univariable Models Assessing Academic Factors 

 

Table 8: Academic Factors 
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A similar pattern to students’ GPA results emerged for their standardized test scores as 

reported by the ACT (Figure 16). For every one standard deviation (units=4) increase in 

students’ ACT scores, admitted students were 26% (HR = 0.74, 95% CI: 0.72-0.77, p < .0001) 

and 40% (HR = 0.60, 95% CI: 0.56-0.63, p < .0001) less likely to enroll at any given time at 

institutions one and two, respectively (Table 8). By contrast, for every four-unit increase in 

students’ ACT scores, admitted students were five to six times more likely to enroll at any given 

time at institutions three (HR = 4.94, 95% CI: 4.18-5.84, p < .0001) and four (HR = 6.02, 95% 

Figure 15. Kaplan Meier Curves for Cumulative GPA (Cut at Median) 

 

Figure 16: Kaplan Meier Curves for Cumulative GPA (Cut at Median) 
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CI: 4.58-7.92, p < .0001). For the Kaplan-Meier results presented in Figure 16, the results related 

to student ACT scores were simplified by dichotomizing the results using the sample median as 

the cut point. This allowed for a clearer presentation of how students’ enrollment probabilities 

changed over time based on their ACT scores. It also aligned with results presented in Table 4. 

Overall, students with higher ACT scores were less likely to enroll at institutions one and two, 

but more likely to enroll at institutions three and four compared to those students with lower 

ACT scores. 

  
Figure 16. Kaplan Meier Curves for ACT (Cut at Median) 

 

Figure 17: Kaplan Meier Curves for ACT (Cut at Median) 
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Multivariable Analysis 

Any sociodemographic, institutional, financial, or academic factors found to be 

significant on univariable analysis were considered for inclusion in the final multivariable model. 

Multicollinearity diagnostics, including Variance Inflation Factor (VIF) and correlation estimates 

(see Appendix B), were assessed to identify and remove correlated independent variables in the 

final analysis (Weisberg, 2005). In the final multivariable model, only the “Region” variable was 

excluded due to its overlap with residency status. Based on the univariable results and theoretical 

considerations, all remaining explanatory variables were initially evaluated. For interpretation 

purposes, the effect of each individual variable included in the final analysis should be 

interpreted as though one is holding all other variables in the model line constant (Table 9). 

For the formal model building process, AIC values for sequential models were assessed 

to ensure the results reflected the most parsimonious predictive estimates. Utilizing AIC avoids 

overfitting models, which results in the estimated values of some of the beta coefficients being 

highly dependent on the actual data, thus limiting the generalizability of the results. An 

additional benefit of comparisons on the basis of AIC is that sequential models need not be 

nested. For interpretation purposes, smaller AIC values indicate a better fitting model. 

Specifically, when AIC decreases by more than two points upon removing an independent 

variable, the results indicate the more parsimonious model may provide better estimates of the 

true expected values. In the event the AIC value remains unchanged or increases, the omitted 

variable should be retained in the final analysis as the more complex model provides a better 

approximation of the true relationship between the parameters.  
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Table 9. Multivariable Analysis 
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Sociodemographic Factors 

After controlling for students’ race, ethnicity, residency, first generation status, major 

preference, admission into a first choice school, number of applications, early outreach, number 

of siblings in college, Pell Grant eligibility, merit aid, GPA, and ACT, sex was still a significant 

determinant in the odds of enrollment at any given time at institution one. Male students were 

14% (HR = 1.14, 95% CI: 1.06-1.21) more likely to enroll at any given time at institution one 

compared to female applicants (p < .001). By contrast after controlling for all additional 

covariates, a student’s sex was no longer meaningfully associated with the instantaneous odds of 

enrollment at institution four. In line with univariable findings, male students’ odds of 

enrollment did not significantly increase for either institutions two or three. Further, for the 

models assessing institutions two, three, and four, the variable sex was removed from the final 

analyses based on an evaluation of fit statistics (AIC).  

On multivariable analysis, students’ race remained significantly associated with the odds 

of enrollment at all four institutions over time. As before, though, the magnitude and direction of 

the relationship varied widely across each institutions. After controlling for students’ sex, 

ethnicity, residency, first generation status, major preference, admission into a first choice 

school, number of applications, early outreach, number of siblings in college, Pell Grant 

eligibility, merit aid, GPA, and ACT, Asian students were 18% (HR = 1.18, 95% CI: 1.09-1.28, p 

< .0001) and 89% (HR = 1.89, 95% CI: 1.15-3.08, p = .01) more likely to enroll at any given 

time at institutions one and three compared to Caucasian students. By contrast, after controlling 

for other important factors, Asian students were 27% less likely to enroll at institution two (HR = 

0.73, 95% CI: 0.59-0.89, p = .003).  



 75 

 

Adjusting for other covariates, Black or African American students were 13.99 (95% CI: 

8.05-24.32, p < .0001) and 12.10 (95% CI: 6.53-22.43, p < .0001) times more likely than their 

Caucasian counterparts to enroll at any given time at institutions three and four, respectively. 

Multi-racial students’ instantaneous odds of enrollment also increased 2.21 (95% CI: 1.14-4.28) 

times at institution four after controlling for select sociodemographic, institutional, financial, and 

academic factors (p = .02). By contrast, Black or African American students were marginally 

(HR = 0.75, 95% CI: 0.54-1.03, p = .07) less likely to enroll at any given time at institution two 

compared to Caucasian students. On multivariable analysis, students who identified with ‘Other’ 

racial groups were 3.30 (95% CI: 1.27-8.59) times more likely to enroll at any given time at 

institution three compared to Caucasian students (p = .01). 

Controlling for select sociodemographic, institutional, financial, and academic factors, 

students’ ethnicity emerged as a meaningful indicator of time to enrollment at two of the four 

institutions. Hispanic students were over seven times (HR = 7.68, 95% CI: 5.07-11.64) more 

likely to enroll at any given time at institution three (p < .0001). Hispanic students were also over 

five times (HR = 5.63, 95% CI: 3.54-8.96) more likely to enroll at any given time at institution 

four (p < .0001). However, on multivariable analysis, ethnicity was no longer meaningfully 

associated with time to enrollment at institution two. In line with univariable results, students’ 

ethnic identity was also not meaningfully associated the time to enrollment at institution one. For 

the models assessing institutions one and two, the variable ethnicity was removed from the final 

analyses based evaluation of the fit statistics. 

After controlling for students’ sex, race, ethnicity, first generation status, major 

preference, admission into a first choice school, number of applications, early outreach, number 
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of siblings in college, Pell Grant eligibility, merit aid, GPA, and ACT, residency status was still 

significantly associated with an increase in the odds of enrollment at any given time at three of 

the four institutions. In-state applicants were 58% (HR = 1.58, 95% CI: 1.35-1.86, p < .0001) 

more likely to enroll at institution two at any given time compared to out of state students. 

Similarly, in-state applicants were also 60% (HR = 1.60%, 95% CI: 1.06-2.40, p = .03) more 

likely to enroll at institution three. However, after adjusting for other covariates, in-state 

applicants were 16% (HR = 0.84, 95% CI: 0.80-0.88, p < .001) less likely to enroll at any given 

time at institution one. For the model assessing institution four, the variable residency was 

removed from the final analysis based on an evaluation of fit statistics. 

Controlling for the aforementioned sociodemographic, institutional, financial, and 

academic factors, first generation status only remained a significant predictor of time to 

enrollment at institution two. On multivariable analysis, first generation status was not 

meaningfully associated with enrollment outcomes over time at intuitions one, three, or four. In 

each instance, fit statistics were evaluated and the variable first generation was removed from the 

final analyses. Compared to applicants whose parents attended college, first generation students 

were still 41% (HR = 1.41, 95% CI: 1.20-1.66, p < .0001) more likely to enroll at any given time 

at institution two, even after adjusting for additional covariates.  

Institutional Factors 

After controlling for students’ sex, race, ethnicity, residency, first generation status, 

admission into a first choice school, number of applications, early outreach, number of siblings 

in college, Pell Grant eligibility, merit aid, GPA, and ACT, students’ major preference remained 

meaningfully associated with the instantaneous odds of enrollment at two of the four institutions. 
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Compared to undecided applicants, students interested in business were 65% (HR = 1.65, 95% 

CI: 1.36-1.99, p < .0001) more likely to enroll at any given time at institution two. After 

adjusting for important covariates, students interested in the field of communications were also 

84% (HR = 1.84, 95% CI: 1.45-2.33) more likely to enroll at any given time at institution two (p 

< .0001). By contrast, a preference for business or communication studies was not meaningfully 

associated with enrollment at any of the other institutions.  

Controlling for select factors, education and liberal arts majors were no longer predictive 

of time to enrollment at any of the four institutions, compared to undecided students. However, 

an important difference between outcomes at two of the institutions was the magnitude and 

direction of the association between STEM designated fields. On multivariable analysis, students 

who indicated they intended to major in a STEM field were 22% more likely to enroll at 

institution one (HR = 1.22, 95% CI: 1.12-1.32, p < .0001). By contrast, STEM students were 

38% less likely to enroll at any given time at institution two (HR = 0.62, 95% CI: 0.52-0.75, p < 

.0001). A preference for a STEM major was not significantly associated with time to enrollment 

at institutions three or four. The variable major preference was removed from the final model 

assessing institution four based on an evaluation of the fit statistics. 

Even after adjusting for all other covariates, first choice status remained significantly 

associated with an increase in the instantaneous odds of enrollment at each of the four 

institutions. In every instance, first choice designation was associated with a four to five-fold 

increase in the instantaneous odds of enrollment among admitted students across the four 

universities. Unlike univariable results in which institutions one and two clearly separated from 

three and four, each of the competitors exhibited a pronounced association with first choice 
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preference in the multivariable model. First choice applicants were over five times more likely to 

enroll at institutions one (HR = 5.32, 95% CI: 4.98-5.69, p < .0001) and two (HR = 5.47, 95% 

CI: 4.75-6.29, p < .0001). Similarly, first choice applicants were 4.50 (95% CI: 3.07-6.59, p < 

.0001) times more likely to enroll at institution three and 4.36 (95% CI: 2.86-6.66, p < .0001) 

times more likely to enroll at institution four.  

Similarly, the number of applications students submitted remained significantly 

associated with the odds of enrollment at three of the four institutions after controlling for 

important covariates. While the odds of enrollment decreased at institution one for every 

additional application an admitted student submitted, it increased at institutions two and three. 

For every additional application, admitted students were 5% (HR = 1.05, 95% CI: 1.02-1.08, p < 

.001) more likely to enroll at any given time at institution two. Similarly, on multivariable 

analysis, for every additional submitted application, admitted students were 9% (HR = 1.09, 95% 

CI: 1.02-1.17) more likely to enroll at any given time at institutions three (p = .02). By contrast, 

for every additional application, admitted students were 8% (HR = 0.92, 95% CI: 0.91-0.93) less 

likely to enroll at any given time at institution one (p < .0001). Only at institution four did the 

odds of enrollment at any given time remain unchanged as the number of applications a student 

submitted increased after adjusting for important covariates. 

In line with other institutional factors, early outreach emerged as an important indicator 

of the odds of enrollment at any given time at three of the four institutions on univariable 

analysis. This association remained unchanged even after controlling for students’ sex, race, 

ethnicity, residency, first generation status, major preference, admission into a first choice 

school, number of applications, number of siblings in college, Pell Grant eligibility, merit aid, 
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GPA, and ACT. On multivariable analysis, early outreach targets were 42% (HR = 1.42, 95% CI: 

1.33-1.51) more likely to enroll at institution one (p < .0001). Comparatively, early outreach 

targets were 25% (HR = 1.25, 95% CI: 1.09-1.43, p < .002) and 61% (HR = 1.61, 95% CI: 1.11-

2.33, p = .01) more likely to enroll at institutions two and three, respectively.  As in univariable 

analysis, early outreach efforts were not meaningfully associated with the instantaneous odds of 

enrollment at institution four after adjusting for select covariates. In fact, for the model assessing 

institution four, the variable early outreach was removed from the final analysis based on an 

evaluation of the fit statistics. 

Financial Factors 

Unlike univariable findings that confirmed the importance of select financial factors in 

students’ final enrollment decisions, multivariable model results found their effects substantially 

moderated. After controlling for select sociodemographic, institutional, financial, and academic 

factors, admitted students whose families reported additional children in college was no longer 

an important indicator of time to enrollment at any of the institutions. Despite this finding, there 

remained a marginal association for students who enrolled at institutions one and three. Admitted 

students who came from families with more than one child in college were 6% (HR = 1.06, 95% 

CI: 0.99-1.13, p = .06) more likely to enroll at any given time at institution one. By comparison, 

similar admitted students were 35% (HR = 1.35, 95% CI: 0.94-1.96, p = .10) more likely to 

enroll at any given time at institution three. For the model assessing institution four, the indicator 

variable for the number of children a family had in college was removed from the final analysis 

based on an evaluation of fit statistics. 
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After controlling for students’ sex, race, ethnicity, residency, first generation status, 

major preference, admission into a first choice school, number of applications, early outreach 

number of siblings in college, merit aid, GPA, and ACT, Pell Grant eligibility remained an 

important predictor of the instantaneous odds of enrollment at two of the four institutions under 

review. Pell Grant eligible students were 7% (HR = 0.93, 95% CI: 0.87-0.99, p = .04) less likely 

to enroll at institution one. Conversely, Pell Grant eligible students were 2.17 (95% CI: 1.47-

3.13, p < .001) times more likely to enroll at any given time at institution three after adjusting for 

select factors. Similarly, Pell Grant eligibility maintained a marginal positive association with 

increased enrollment at institution two (HR = 1.14, 95% CI: 0.98-1.32, p = .09). On 

multivariable analysis, Pell Grant eligibility was not meaningfully associated with increased 

enrollment at institution four and was removed from the final model after evaluation of AIC. 

By contrast to univariable findings, the offer of merit aid remained significantly 

associated with the odds of enrollment at only one of the four institutions. Students offered merit 

aid were 26% (HR = 0.74, 95% CI: 0.61-0.91) less likely to enroll at any given time at institution 

two (p = .01). This result may be indicative of the competitive market for higher achieving 

admitted students, as evidenced by this subset of four like-profile institutions. Regardless, offers 

of merit aid were no longer significantly associated with time to enrollment at institutions one 

(HR = 1.05, 95% CI: 0.95-1.17, p = .41), three (HR = 7.92, 95% CI: 0.48-129.52, p = .95), or 

four (HR = 3.19, 95% CI: 0.44-22.99, p = .25) on multivariable analysis.  

Academic Factors 

After adjusting for select covariates, students’ cumulative GPAs remained significantly 

associated with the odds of enrollment at three of the four institutions. In line with univariable 
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findings, however, the direction of this relationship was different for institution one compared to 

institutions three and four. For every one standard deviation (units=0.5) increase in students’ 

cumulative GPA, admitted students were 10% (HR = 0.90, 95% CI: 0.87-0.94, p < .0001) less 

likely to enroll at any given time at institution one on multivariable analysis. By contrast, for 

every half unit increase in students’ cumulative GPA, admitted students were 81% (HR =1.81, 

95% CI: 1.54-2.12, p < .0001) and 58% (HR =1.58, 95% CI: 1.31-1.90, p < .0001) more likely to 

enroll at any given time at institutions three and four. 

Controlling for select factors, students’ standardized test scores emerged as significant 

predictors of time to enrollment for each of the four universities. As with other important factors, 

though, the magnitude and direction of these associations varied across institutions. For every 

one standard deviation (units=4) increase in students’ ACT scores, admitted students were 16% 

(HR = 0.84, 95% CI: 0.80-0.88, p < .0001) and 24% (HR = 0.76, 95% CI: 0.69-0.83, p < .0001) 

less likely to enroll at any given time at institutions one and two, respectively. Conversely, for 

every four unit increase in students’ ACT scores, admitted students were six to seven times more 

likely to enroll at any given time at institutions three (HR = 6.65, 95% CI: 4.87-8.881, p < .0001) 

and four (HR = 7.12, 95% CI: 5.11-9.92, p < .0001).  
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CHAPTER FIVE 

DISCUSSION 

The primary objective of this study was to ascertain if select sociodemographic, 

institutional, financial, and academic factors effectively reduce time to postsecondary 

enrollment. Further, this analysis also looked to extend prior research by identifying any 

common effects that may exist across several similar-profile postsecondary institutions. To 

address these aims, this study applied a multi-level, competing risks model to the analysis of 

undergraduate application data. The results revealed differential effects across the competitive 

set for every parameter under review, except first choice status. These findings can not only be 

used to inform a single institution’s enrollment management strategy, but there are also 

numerous policy implications associated with these divergent results.  

As the primary data source for this analysis was a single institution, the results and their 

implications should be interpreted in that context. This analysis provides important insight on not 

only the profile of student that an institution typically attracts, but also the segments with which 

it may struggle compared to similar profile peers. This information has the potential to inform on 

a multitude of institutional aims. First, it can help to tailor and appropriate align institutional 

services to meet the needs of the incoming undergraduate class. Second, it identifies the student 
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subgroups among whom additional or different outreach may be beneficial. Finally, building on 

this, it can also help to pinpoint the specific competitors to which these students are drawn, 

providing a roadmap for what additional services, programs, and messages may be effective. 

While institution-specific data from all included competitors would provide a more nuanced 

understanding of select metrics, such as the impact of competing financial aid offers, the results 

of this analysis remain informative and actionable on an institution by institution basis.  

While this modeling approach provides unique insights into students’ timelines for 

making their final enrollment decisions, identifying individual and institutional characteristics 

that drive students’ decision-making is only the first step. What is just as, if not more important 

is how an institution puts these findings into action. To that end, institutions that employ such 

analytic techniques must be prepared to use the evidence they uncover to inform strategic 

decision-making (Alkin, 2013; Patton, 2008). This will likely necessitate, among other steps, an 

internal evaluation of sorts, through which future research endeavors are tailored to address the 

information needs of key organization members (Russ-Eft & Preskill, 2009). In this manner, the 

findings of this analysis are but the first step in a larger process of strategically clarifying 

institutional priorities, identifying when and where new or updated services are necessary, and 

aligning corresponding recruitment activities to achieve well-defined and broadly accepted 

institutional goals. Consideration of model results within the undergraduate recruitment process 

will help to alleviate some of the initial budget constraints by identifying how and when certain 

known factors increase the probability of student enrollment, while not sacrificing on other 

important postsecondary measures, such as retention and graduation. 
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Sociodemographic Factors 

Select sociodemographic factors have significant influence on students’ college choice. 

In particular, an extensive literature exists on the roles students’ race and ethnicity play in their 

postsecondary enrollment decisions (Wyatt et al., 2014; Lin, 2011; Bush, 2009; Goenner & 

Pauls, 2006; Zarate & Gallimore, 2005; DesJardins et al., 2002). For example, minority high 

school graduates, as well as those from more impoverished backgrounds often face many 

impediments, or “cumulative disadvantages,” to accessing higher education (Schultz & Mueller, 

2006). These can include, but are often not limited to, a lack of access to information and 

resource networks, inequality of neighborhood resources, and lack of peer/parental support for 

academic achievement (Lin, 2011; Gándara & Bial, 2001). Consequently, these students 

typically record lower GPA and standardized test scores, as well as apply to relatively fewer 

colleges, resulting in below average postsecondary enrollment rates (Smith, 2011; Goyette, 

2008). While Pew research shows that Hispanic and African American students have accounted 

for the largest gains in college enrollment since 2000, enrollment gaps remain due to lower rates 

of four-year college enrollment, as well as lower attendance at selective colleges (Krogstad & 

Fry, 2014).   

In this analysis, students’ race remained significantly associated with the instantaneous 

odds of enrollment at all four institutions on multivariable analysis, whereas their ethnicity 

emerged as a meaningful indicator of enrollment at only two of the four institutions. Despite 

these overall trends, the magnitude and direction of these relationships often varied widely across 

each of the universities, underscoring the importance of incorporating competitor data into an 

institution’s enrollment model.  These concurrent evaluations provide institution-specific insight 

that could be used to support positive enrollment trends or provide further insight into potential 
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strategies to bolster outreach efforts among students that would otherwise choose a competing 

institution.  

Several institutions included in the analysis appear well positioned to attract minority 

students vis-à-vis their peers. For example, the odds of instantaneous enrollment increased 

significantly among Asian students at institution three (p = .01), while Black or African 

American students were also over ten times more likely to enroll at any given time at institutions 

three and four (p < .0001). Similarly, these same institutions have clearly made significant 

inroads among Hispanic applicants, who were five to seven times more likely to enroll at any 

given time (p < .0001). For these institutions, an internal evaluation of current outreach efforts 

and student services could prove beneficial to help identify areas of strength. In doing so, they 

could ensure these current trends are not only sustained, but perhaps replicated among other 

applicant subgroups that may warrant additional consideration. 

By contrast, evidence indicates institution two may face significant challenges in 

attracting Asian and Black or African American students admitted to other universities this 

subset. For institutions that struggle to attract and retain minority students, it is important to 

identify and accentuate those institutional characteristics that increase the likelihood of 

enrollment very early in the process. To this end, key university stakeholders must investigate 

strategies to enhance the coordination of current student services (admissions, first year 

programming, advising, etc.), as well as look for opportunities to bolster targeted outreach 

efforts. Therefore, one goal of an internal evaluation would be to assess students’ awareness of 

and satisfaction with current and future services aimed toward improving minority student 

recruitment and retention at the undergraduate level. Although results varied by institution, the 
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findings of this analysis underscore the crucial role a student’s racial and ethnic identity play in 

the timing of their final enrollment decisions. This sort of information coupled with projected 

demographic shifts within the broader U.S. population, suggest a more tailored and nuanced 

approach to high school student recruitment may benefit institutions looking to diversify their 

undergraduate student populations (Colby & Ortman, 2015).  

Whether or not an institution has an established track record of success recruiting 

minority students, ongoing efforts to enhance current strategies are key to sustained success. As 

administrators look to diversity for their undergraduate student population, it is imperative that 

they consider the viewpoints of front-line staff, student workers (e.g. resident assistants), and 

other undergraduate students who may serve as informal brand ambassadors. Such targeted 

outreach could include surveys to establish an empirical measure of student sentiment regarding 

current or proposed services, social spaces, and academic support. These quantitative findings 

could then be supplemented through focus groups and/or one-on-one interviews to elicit 

feedback regarding more detailed strategies to address issues related to the on-campus social and 

cultural climate. An inclusive strategy to address issues related to minority student recruitment 

will likely not only pay dividends in terms of direct matriculation, but also increased persistence 

and graduation rates.   

In addition to race and ethnicity, there are a wide range of economic and educational 

implications resulting from the growing gender gap in college enrollment (Conger & Long, 

2013; Cho, 2006; DesJardins et al., 2002; Card & Lemieux, 2000). Through 2019, the NCES 

projects female student enrollment in colleges and universities across the country will grow by 

21%, compared to just 12% for their male counterparts (Hussar & Bailey, 2011). While sex 
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remains an important determinant in postsecondary enrollment, the results of this analysis found 

that it was often not a significant driver of their time to enrollment. After adjusting for select 

sociodemographic, institutional, financial, and academic factors, male students were 14% (HR = 

1.14, 95% CI: 1.06-1.22) more likely to enroll at any given time at institution one compared to 

female applicants (p < .001). By contrast, a student’s sex was no longer meaningfully associated 

with the odds of enrollment at institutions two (p = .14), three (p = .67), or four (p = .56) on 

multivariable analysis.  While it is important institutions continue to target their resources to 

reduce gender imbalances, the findings of this study indicate this criterion does not inform on the 

timing of students’ enrollment decisions (Conger & Long, 2013; Cho, 2006; Card & Lemieux, 

2000; Brugglink & Gambhir, 1996). As such, this factor is less subject to the timing of 

administrators’ outreach, as well as the potential influence of competitor activities to address any 

previously identified deficits. Overall, these findings reveal that sex is not a time-sensitive factor 

in students’ postsecondary enrollment after accounting for other important criteria for a majority 

of the institutions currently under review.  

By contrast, the results of this study confirmed residency status was meaningfully 

associated with an increase in the odds of enrollment at any given time at three of the four 

institutions on multivariable analysis. This is in line with Kumar et al. (2015), who found a 

majority of undergraduates attend a school in their state of residence. In this analysis, in-state 

applicants were 54-56% more likely to enroll at institutions two and three at any given time 

compared to out of state students (p < .05). As a result of their success among in-state applicants, 

these institutions are particularly well positioned to expand their traditional recruiting footprint 

compared to their peers. For administrators at institutions two and three, a review of primary and 

secondary research, including institutional records and third-party search service white papers, 
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could inform participation at select college fairs and outreach to high school counselor groups in 

new cities and states. Brugglink and Gambhir (1996) found that students from outside traditional 

recruitment areas tend to have a less clear understanding of a school’s mission or academic 

reputation. As a result, identifying amenable student audiences and recognizing/testing messages 

that may resonate with these new groups would be of the utmost importance before a full-scale 

investment recruitment resources would be warranted.  

However, after accounting for the draw of select similar-profile institutions, the results 

suggest that in-state recruitment is more of a challenge for institution one than others (p < .001). 

Recognizing these geographical patterns and adjusting recruitment efforts accordingly, early in 

the process, may help to avoid an overreliance on out-of-state/region applicants, who are both 

more time and resource intensive targets. For universities similar to institution one, additional 

research among prospective in-state students could prove vital. One strategy would be a mixed 

methods approach that would incorporate survey administrations among students, high school 

personnel, and university administrators alike, as well as follow-up interviews and document 

analyses. These steps could also be supplemented by secondary research on in-state student 

retention efforts at similar profile institutions across the country, such as policies for living at 

home and commuter student services. A complete review and, if necessary, evidence-based 

reshaping of in-state recruitment efforts would likely pay long-term dividends. 

Finally, parental education-level is among the most important sociodemographic factors 

that typically animate students’ decision-making process. In fact, numerous studies have found 

that first generation status is a crucial indicator of postsecondary enrollment and performance 

(Lin, 2011; Goyette, 2008; Warburton & Nunez, 2001). Nonetheless, after controlling for other 
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important sociodemographic, institutional, financial, and academic factors, first generation status 

only remained a significant predictor of time to enrollment at a single institution in this study. 

Specifically, first generation students were 41% more likely to enroll at any given time at 

institution two (p < .0001). Given the potential cultural and academic deficits with which these 

students may enter, it is imperative that this institution, and others like it, maintain existing and 

possibly fund new support services to address any and all shortfalls (Carnevale & Strohl, 2013). 

Such steps could include the establishment or possible expansion of federally funded TRIO 

programs. What is critical, is that institutions that attract a disproportionate percentage of first 

generation students coordinate all necessary levels of support before and after enrollment to 

ensure these undergraduate students are positioned for postsecondary success. 

Institutional Factors 

Early, personalized attention has also been shown to improve post-secondary enrollment 

rates. Even modest levels of engagement early in the application cycle have been shown to 

engender important postsecondary benefits, particularly among those students from 

impoverished backgrounds (Wyatt et al., 2014; Thomas et al., 1999).  In this study, early 

outreach also emerged as an important indicator of the odds of enrollment at any given time at 

three of the four institutions on multivariable analysis. Specifically, early outreach targets were 

25-64% more likely to enroll at institutions one (p < .0001), two (p < .002), and three (p = .01) 

after adjusting for select covariates. While the merits of early outreach and the resulting impact 

on direct postsecondary matriculation are generally well accepted, these findings further suggest 

that such efforts can significantly shorten students’ decision timelines, saving both families and 

institutions money. Engaging prospective students before their senior year of high school 

produces sustained benefits throughout the application cycle. By targeting qualified candidates 
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earlier in their academic career, administrators can simultaneously increase the likelihood of 

enrollment, while also reducing future recruitment overhead.  

To enhance early outreach efforts, however, administrators should implement strategies 

to critically examine what types of communications impact students’ decision timelines the most. 

For instance, prospective randomized studies could be employed to investigate if broader topics, 

such as reputation, campus location, sports, etc. resonate better with prospective students earlier 

in their high school careers. Consideration of the timing of such communications and messaging 

content could also provide additional avenues for future research. Specifically, do messages with 

particular subject lines lead to more email opens, are there particular days that generate broader 

readership, and are there topics that are more effective among student or parent audiences. Each 

of these options provides examples of how these and other institutions could capitalize on areas 

of perceived strength. While these findings confirm the importance of establishing relationships 

with prospective students and their families early in the process, further research could help to 

identify the mechanisms by which administrators could capitalize on and magnify these 

advantages.  

Another area in which postsecondary institutions can exert a modicum of control, is their 

academic programming and how they market such offerings to prospective students. Students’ 

sense of institutional fit and thus their enrollment decisions can sometimes be driven by their 

choice of major and the school’s perceived strength in that area (DesJardins et al., 2002). In this 

analysis, students’ major preferences were found to be meaningfully associated with the 

instantaneous odds of enrollment at two of the four institutions after controlling for select student 

and institutional factors. Targeting marketing efforts to strategically align messaging with 
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students’ academic preferences is an important tactic in shortening students’ decision timelines. 

Further, this type of outreach could also be used to strengthen ties with select high schools or 

high school networks that have particular affinities, such as magnet STEM schools or secondary 

institutions that incorporate significant Advanced Placement (AP) or International Baccalaureate 

(IB) coursework.  

Furthermore, major preference has also been identified as one of the most effective 

strategies for promoting student retention and completion at four-year private institutions 

(Ruffalo Noel Levitz, 2016). Major preference is one of the most accessible pieces of 

information available on prospective students. Related information is often repeatedly reported 

via multiple channels, including the application itself, requests for information (RFI), open 

houses, campus visits, and college fairs. Leveraging this information to micro-target marketing 

efforts and personalize student and parent outreach has the potential to reduce the time spent 

recruiting applicants that present specific academic profiles, which align with institutional 

strengths. 

For institution two, at which business and communication majors are more likely to 

enroll at any given time (p < .0001), this information could be used in support of expanded 

programming in target fields. It could also be paired with other information, such as outcomes 

data, internship placement rates, and networking events to build upon a track record of 

established success. Similarly, institution one could parlay its success among prospective STEM 

majors (p < .0001) into new private and public investment opportunities with various industry, 

state, and federal actors. This would have the potential to further cement the institution’s 

standing in the STEM community, but also attract the grants necessary to pursue the critical 
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research that could further position it as a leader in the field. By contrast, institution two’s 

observed disadvantage among prospective STEM majors (p < .0001) could spur further funding 

in areas in which the university wishes to expand or could be used as confirmation of its 

orientation and commitment to other academic areas. Importantly, in each instance, major 

preference information is readily available and important to students’ decision-making 

throughout the application process. 

Another critical factor in students’ decision timelines is their admission into a first choice 

school. Prior research suggests that most students list schools in order of preference on their 

FAFSA submission, and nearly two-thirds of applicants enroll in their first choice school if 

admitted (CNN Money, 2015). In line with these findings, first choice designation was 

associated with a four- to eight-fold increase in the instantaneous odds of enrollment at each of 

the four universities, after adjusting for other important covariates (p < .0001). First choice 

applicants are clearly among the most amenable to an institution’s recruitment efforts. The 

sustained magnitude of these observed effects, however, effectively provides administrators with 

a level of flexibility, as these prospects present options for both immediate enrollment or as 

targets for later efforts to make class (e.g. achieve predetermined enrollment goals) should other, 

potentially more difficult to attract, enrollment targets fall through. 

Leveraging financial aid data throughout the application process is a critical component 

to the success of any recruitment strategy. By doing so, institutions have access to a wider 

variety of student characteristics than would otherwise be available through the application 

process alone. While such information provides vital data for modeling students’ merit and 

financial aid, it also includes valuable criteria, such as indicators of institutional preference. First 
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choice and related variables are likely most useful in concert with other important data points. 

For instance, cross tabulation of first choice applicants against other desirable criteria, such as 

race, measures of students’ academic ability, etc., could be the difference between achieving or 

falling short of enrollment targets among certain subgroups of applicants. What is clear from the 

evidence presented throughout this analysis, is that first choice preference is among the most 

predictive factors associated with students’ time to enrollment. Collecting this information early 

in the process will provide significant flexibility in any institutions’ broader enrollment 

management strategy.  

Researchers have also documented associations between other broad application factors 

and undergraduate enrollment trends. For instance, Smith (2011) showed that the more college 

applications a student submits leads to a corresponding increase in their probability of enrolling 

at a four-year college by as much as 40-50% (Smith, 2011). As one in four high school graduates 

who apply to four-year colleges still do not enroll in one, this criterion can play a potentially vital 

role in predicting time to enrollment (Avery & Kane, 2004). The findings of this analysis 

confirm that for each additional application submitted, there is a meaningful and corresponding 

shift in students’ time to enrollment at three of the four institutions.  For every additional 

application submitted, admitted students were 5-31% more likely to enroll at any given time at 

institutions two (p < .001), three (p = .02), and four (p < .0001). These three institutions were 

particularly successful at attracting students in an otherwise competitive undergraduate 

recruitment market. By contrast, the odds of instantaneous enrollment declined at institution one 

after adjusting for other important covariates (p < .0001). 
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The institutions to which students release their FAFA data can be instructive as to what 

the market considers an institution’s peer and, potentially, aspirant set. Institutions which 

struggle to recruit applicants with more college options may need to evaluate their position vis-à-

vis this core group of similar profile competitors, known as FAFSA overlap schools. A full 

landscape analysis including an inventory of major offerings, location, cost of attendance, 

outcomes, and other institutional factors should be considered as part of this review. Conversely, 

for institutions which appear to thrive in a crowded market, a similar review has the potential to 

uncover new strategies and services that may further the universities’ perceived advantages. 

Informed by this secondary research, targeted primary research can then be employed to test new 

messaging, evaluate demand for new programming, and generally solicit feedback about current 

and proposed university services. At its core, the application cycle is a highly competitive 

process, which is subject to change from a variety of inputs. Through a better understanding of 

who students consider to be an institution’s competitors, a university can begin the process of 

truly assessing its strengths and weaknesses against a well-defined set of peers.  

Financial Factors 

Offers of financial aid to admitted high school seniors often serve two purposes; to 

“relieve liquidity constraints” that may have undue influence on students’ decision-making 

process and to alter students’ “preference rankings” (Avery & Hoxby, 2004; DesJardins et al., 

2002). Research has shown that students typically respond in a rational manner to financial 

incentives, with earlier aid offers, larger awards, and merit-based assistance tending to increase 

the probability of postsecondary enrollment. Regardless, the multivariable model results from 

this study found the effects of select financial factors were substantially moderated. For instance, 

offers of merit aid were no longer significantly associated with the instantaneous odds of 



 95 

 

enrollment at institutions one (p = .28), three (p = .96), or four (p = .41) on multivariable 

analysis. Similarly, Pell Grant eligibility only remained an important predictor of the 

instantaneous odds of enrollment at two of the four institutions.  

As this analysis focused on those students admitted to selective, private four-year 

colleges, it is possible that competing offers of merit aid were widely available and largely 

cancelled each other out as meaningful factors within the decision making process. At a 

minimum, the high academic ability of the applicants under review could suggest offers of merit 

aid were likely more available and thus not a distinguishing factor among any of the institutions 

included in this analysis. Similarly, three quarters of admitted students across the four 

institutions did not qualify for Pell Grant funding. In such instances, universities must 1) 

accurately identify the parameters that define its prospective student base, and 2), decide on 

alternative strategies that may set it apart for high achieving college applicants. One possible 

approach is to message on honors programming or other tailored academic options, such as 

learning communities, which serve not only to acknowledge students’ past achievements and 

abilities, but also to differentiate an institution from its peers. Another possible route might be to 

offer selective benefits in the form of early registration or move-in times, coupled with 

opportunities for undergraduate research. Further evaluation of current and prospective student 

services and secondary analyses of competitor offerings would serve to both inform and guide 

these activities and related marketing.  

With the recent executive action by the Obama administration, students’ financial data 

are now available early enough in the application cycle to be meaningfully incorporated into 

yield models (Department of Education, 2015). As a result of this shift, university administrators 
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are now able to estimate the potential impact of differential financial aid packaging directly in 

their enrollment projections. In addition to easing the reporting burden on students and their 

families, this policy change has the potential to help postsecondary institutions provide earlier 

financial aid offers, adjust their communications flow, and more accurately track progress toward 

established enrollment goals. While financial factors did not emerge as significant distinguishing 

factors between institutions in this analysis, it is important to recognize that highly desirable 

candidates will still expect and will likely receive competing offers of financial aid. In such 

instances, accurately calibrating the thresholds at which the probability of timely enrollment 

increase or decrease is of paramount importance.  

Academic Factors 

Students’ academic achievement has consistently been found to be meaningfully 

associated with an array of important postsecondary measures (Ledesma, 2009; Chang, 2006; 

Brugglink & Gambhir, 1996; Thomas et al., 1979). Numerous empirical studies have shown that 

students with a record of strong academic performance consistently outperform their lower 

achieving peers in terms of college enrollment rates (NCES, 2015; Adelman, 2006). In this 

analysis, a student’s cumulative GPA was also found to inform on their time to enrollment at 

three of the four institutions, even after adjusting for important covariates. Specifically, students 

with higher cumulative GPAs were 62-80% more likely to enroll at any given time at institutions 

three and four (p < .0001). Meaning, at any point throughout the recruitment cycle, the likelihood 

a student with a higher GPA would enroll at institutions three and four increased substantially, 

even after controlling for an array of important sociodemographic, institutional, financial, and 

academic factors.  
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By contrast, admitted students with higher GPAs were also found to be 10% (p < .0001) 

less likely to enroll at any given time at institution one on multivariable analysis. This trend is 

likely indicative of the competitive nature of the higher education marketplace. Ledesma (2009) 

showed that high achieving applicants tend to apply to and gain admission at multiple colleges 

and universities. Thus, qualified students are typically confronted with a wider range of 

enrollment options from which they must delineate between often subtle and subjective measures 

of institutional quality. The competing risks framework applied in this study appropriately 

captures this conflict, highlighting the importance of not only measuring the association between 

student-level factors and institutional enrollment, but also emphasizing the interplay between 

such measures and competitor activities. Thus, it provides important insight into how 

postsecondary institutions can position themselves vis-à-vis their closest peers to appeal to as 

qualified and broad a prospective student audience as possible.  

This research also confirmed that after controlling for select sociodemographic, 

institutional, financial, and academic factors, students’ standardized test scores were significant 

predictors of time to enrollment. Increasing ACT scores aligned with a 16-25% drop in the 

likelihood of enrollment across the application timeline at institutions one and two (p < .0001). 

Conversely, the analysis found that admitted students with higher ACT scores were between five 

and six times more likely to enroll at any given time at institutions three and four (p < .0001). 

These results support evidence that suggests that academic achievement is not only an indicator 

of how well prepared students are for the rigors of postsecondary education, but also their initial 

college choice (NCES, 2015; Chang, 2006; Brugglink & Gambhir, 1996). In this large and 

diverse student sample, several consistent patterns emerged suggesting that higher achieving 
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students would prove to be significantly more difficult for institutions similar to one and two to 

recruit within the context of a competitive educational market with several like-profile peers. 

These findings support evidence that students’ academic ability not only increases 

demand from various institutional actors (DesJardins et al., 2002), but also, perhaps as 

importantly, that such measures can also inform on the timing of their decisions. In this study, 

higher achieving admitted students’ enrollment patterns exhibited a wide range of often 

divergent outcomes. The evidence presented throughout this analysis confirmed that a student’s 

academic background has a profound effect on the timing of their college choice, even after 

controlling for other important factors (Adelman, 2006; Thomas et al., 1979). In addition, it also 

underscores the importance of strategic allocation of institutions’ recruitment budgets. As the 

enrollment outcomes associated with students’ academic ability will be sustained throughout the 

application cycle, it is incumbent upon enrollment management personnel to balance competing 

goals of making and shaping each freshman class. Identifying which other student and 

institutional characteristics align with more desired institutional outcomes (e.g. enrollment) and 

then micro-targeting when further investment of additional capital is appropriate could lead to a 

higher percentage of stronger academic candidates enrolling over time.  

Data Consideration for Future Analyses 

Strategic allocation of limited recruitment budgets is, in part, informed by the collection 

and analysis of self-reported family and individual student data.  This information is often 

provided throughout the recruitment, application, and financial aid processes. However, as with 

all analyses, predictive modeling, in any form, is limited by the data elements available for the 

analysis. Important metrics available for this analysis were intentionally limited to select 
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sociodemographic, institutional, financial, and academic measures. Nevertheless, other possible 

covariates, such legacy status, were not readily available, limiting the scope of the current study. 

Further, as this initial analysis served as a proof of concept of sorts, interactions between the 

parameters employed in these models were not investigated. However, this may provide an 

interesting and useful line of inquiry for future analyses. Moving forward, there are also several 

noteworthy practical limitations to the methods employed in the analysis. 

First, the models outlined throughout this study require application of multiple, often 

sophisticated statistical techniques for which institutions may not have adequate personnel. This 

particular approach combines three advanced methodologies, each of which, in isolation, 

requires the extension of more standard statistical models. One, the mixed effects model 

accounts for high school-level variation, or the shared effects representing a form of dependence 

among the enrollment probabilities of individuals from similar backgrounds (Collett, 2015; Lu & 

Peng, 2008; Raudenbush & Bryk, 2002). Two, a time to event analysis incorporates important 

aspects of the time dependent nature of the application cycle. For such analyses, the unit of 

measurement is time itself, as interest lies on the odds of an event occurring over time. Finally, a 

competing risks framework simultaneously assesses enrollment at multiple, similar-profile 

universities. This enables institutions to directly incorporate data on their institutional peers and 

aspirant colleges, which will greatly inform on their enrollment management strategies. While 

the extension and combination of such models provides critical information to the admissions 

personnel tasked with recruiting them, it also may make replication of these methods 

increasingly more difficult for some institutions.   
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In addition, an a priori decision was also made in this analysis to evaluate the impact of 

being admitted into a first choice school. To date, students are asked to designate up to 10 

schools to which they want their financial information disclosed on the FAFSA. As this and 

other studies have shown, these “overlap schools,” as they are commonly referred to, can provide 

important analytic and practical insight into students’ decision timelines. Specifically, prior 

research has shown that nearly two-thirds of applicants enroll in their first choice school and the 

findings of this study indicated a four to five-fold increase in the instantaneous odds of 

enrollment at each of the four universities. Despite these results, regular access to this 

information is not always readily available and will likely require personnel that can combine 

data from disparate sources.  

Finally, timely access to important sociodemographic, institutional, and financial factors 

was only guaranteed by the recent executive action by the Obama administration to enable 

students to report income two years’ prior to their FAFSA submission (Department of Education, 

2015). As a result of this shift, university administrators are now able to estimate the potential 

impact of differential financial aid packaging directly in their enrollment models with enough 

time to adjust their communications flow and more accurately track progress toward established 

enrollment goals. If future government actions reverse or limit this access, several important 

variables will no longer be available to estimate important parameters early enough to 

proactively and appropriately adjust yield models.  

Implications 

Since the early 2000s, time to event modeling has been used to examine critically 

important issues, such as student completion and graduation. However, the bulk of enrollment 
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modeling remains limited to more traditional modeling techniques, such as fixed and mixed 

effects binary logistic regression. The model outlined herein builds on the extensive 

undergraduate enrollment literature, while simultaneously augmenting and extending the field’s 

emergent interest in time to event models.  The multi-level design also appropriately accounts for 

variation driven by aggregate high school-level characteristics. Further, the competing risks 

framework assesses the roles competitors play in a crowded higher education market, thereby 

enabling institutions to incorporate important information on the appeal of similar profile 

colleges into their own yield models. 

The potential benefits of these techniques in the field of higher education are many and 

clear, especially given policymakers’ renewed focus on student outcomes over the past few 

decades. DesJardins et al. (1999) credited related modeling approaches for helping to develop 

timely interventions for students at risk of dropping out, while Gross and Torres (2010) used a 

similar model design to examine how the timing of financial aid affects educational attainment 

among minority student populations. In addition, these findings support prior work that 

seamlessly extend such techniques to meet the demands of complex, hierarchical designs (Bahr, 

2009) or even those adapted to a “competing risks” framework (Guerin, 1997; DesJardins et al., 

1999; Ronco, 1996).  

Another important and potentially overlooked strength of this approach is that it shares a 

common objective with most prior models and utilizes readily available student data provided 

throughout the recruitment, application, and financial aid processes. Specifically, the main 

objective of this approach is to identify common covariates that are related to and drive students’ 

enrollment decisions. Importantly, though, by delineating between the effects these factors have 
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on students’ enrollment timelines, admissions professionals can gain crucial insight into 

students’ enrollment probabilities over time (Hosmer et al., 2008). For instance, the results of 

this analysis confirmed that sex, race, ethnicity, residency, first generation status, early outreach, 

major preference, first choice, number of applications, Pell Grant eligibility, cumulative GPA, 

and ACT scores are not only significantly associated with students’ time to enrollment estimates, 

but also that these effects often differ across institutions. Given the complex interplay between 

such variables, the primary goal of this research was to present preliminary evidence on how 

such data could be leveraged to provide further insight into those factors that impact students’ 

decision-making throughout the application cycle.  

The statistical approach outlined herein provides evidence as to how a multi-level, 

competing risks framework can be formally applied to the analysis of undergraduate enrollment 

preferences. Practically, the analysis presents an empirical measure of the determinants of 

undergraduate enrollment in the context of a large and competitive postsecondary marketplace. 

By doing so, it appropriately accounts for the ways in which students from a range of academic 

and socioeconomic backgrounds must engage with a complex and ever-changing U.S. higher 

education system.   

Further, the results of this model also inform on multiple financial and policy 

considerations across the postsecondary education system. First, institutions that place a 

premium on resource conservation after the recent financial crisis, have a roadmap to minimizing 

recruitment overhead and, thereby, freeing up important capital for other initiatives. For 

example, administrators can re-invest in vital student support services and first-year student 

programming or pay down outstanding debt and, as necessary, address pension shortfalls. 
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Second, more targeted efforts to shorten the decision timeline among a smaller pool of well-

qualified and strongly matched applicants enables institutions to cover more of the initial costs, 

such as campus visits and admitted student events, associated with the search process. This will 

save admissions staff time and money in the long-run, but will also help to alleviate some of the 

initial cost constraints faced by otherwise qualified students and their families. Finally, early 

efforts to maximize student/institution match will also pay long-term financial dividends for 

students, institutions, and the Department of Education in the form of stronger retention, higher 

graduation rates, and lower cohort default rates. 

In 2015, the Bureau of Labor Statistics reported that most of the 22 major occupational 

groups projected through 2024 will require significant levels of education, including 

postsecondary training and beyond (Hogan & Roberts). Furthermore, multiple studies have 

shown that college graduates earn twice as much and accumulate nearly two and half times the 

wealth of their less educated peers (DesJardins et al., 2002; Diaz-Jiminez et al., 1997; Murphy & 

Welch, 1993). These trends notwithstanding, the U.S. Census Bureau recently found that just one 

in three adults (33%) reported having a bachelor’s degree or more education (Ryan & Bauman, 

2016). In addition, evidence suggests its economically disadvantaged high school graduates that 

tend to disproportionately pursue non-traditional enrollment options, delaying the social and 

economic benefits of postsecondary education (Goldrick-Rab, 2006; Reynolds et al., 2006; 

Hearn, 1992). Given the inextricable links between college readiness, retention, degree 

completion, and career preparation, such shortfalls have significant implications for higher 

education administrators, in particular those involved in the enrollment management process.  
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Recent trends toward increasing recruitment expenditures and tuition threaten to diminish 

student access and negatively impact a wide range of postsecondary outcomes (Fitzgerald, 2004; 

St. John et al., 2003). The Great Recession has only exacerbated the pervasive gaps in 

educational opportunities across traditional racial, ethnic, socioeconomic, and gender divides. 

According to the Center on Budget of Policy Priorities, 47 states spent less per student during the 

2014-15 school year than they did at the start of the recession (Mitchell & Leachman, 2015). 

Coupled with these funding shortfalls, postsecondary institutions across the spectrum are facing 

increasing pressure to attract, retain, and graduate an ever more diverse and qualified 

undergraduate student body (Harvill et al., 2012). Despite recent growth in minority, lower SES, 

and first generation student enrollment, these subgroups are still considerably less likely than 

their peers to graduate high school and pursue postsecondary education (College Board, 2010; 

Education Advisory Board, 2016). Considering these challenges, admissions staff must apportion 

resources to identify and recruit applicants to maximize the fit between student and institution. 

Despite possible limitations, this study succeeded in extending the current literature 

examining the relationship between select student- and school-level factors and undergraduate 

enrollment. It builds on recent applications of time to event models in higher education, while 

extending these approaches to a multi-level competing risks framework. The results confirm that 

such an approach will facilitate higher education administrators’ efforts to identify those factors 

that effectively reduce time to enrollment in a competitive higher education market. Since the 

Great Recession, postsecondary institutions of all types have been forced to operate in an 

environment of reduced or constrained budgets and increased expectations regarding student 

outcomes. This research shows that important student and institutional factors that have been 

shown to predict undergraduate enrollment can also inform institutions’ efforts to reduce 
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recruitment expenditures by shortening students’ decision timelines. This will enable universities 

sufficient flexibility to re-invest in vital student services and, by doing so, begin to regain some 

of the security lost during the recent financial collapse.
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Ascribed Characteristics 

Variable Measure Type Definition 

Sex Binary Dummy code, 1 = Male, 0 = Female 

Race Multinomial 

Multilevel categorical variable with seven 

distinct levels: (1) Native American or 

Alaska Native; (2) Asian; (3) Black or 

African American; (4) Multi-Racial; (5) 

Native Hawaiian or other Pacific Islander; 

(6) Caucasian; or (7) Other 

Ethnicity Binary 
Dummy code, 1 = Hispanic 0 = Not 

Hispanic 

Residential Status Binary 
Dummy code, 1 = In-State 0 = Out-of-

State 

U.S. Region Multinomial 

Multilevel categorical variable with four 

distinct levels: (1) Midwest; (2) Northeast; 

(3) South; (4) West (including Pacific) 

First Generation Status Binary Dummy code, 1 = Yes, 0 = No 

Intended Major Multinomial 

Multilevel categorical variable with seven 

distinct levels: (1) Business; (2) 

Communications; (3) Education; (4) 

Liberal Arts; (5) Social Work; (6) STEM 

or (7) Undecided 

First Choice College Binary Dummy code, 1 = Yes, 0 = No 

Number of College 

Applications 
Ordinal Ordinal count, ranging from 0 to 10 

Target of Early Outreach Binary Dummy code, 1 = Yes, 0 = No 

Number of Kids in College Binary 

Dummy code, 1 = Greater than or equal to 

one, 0 = Family has no additional kids in 

college 

Pell Grant Eligible Binary Dummy code, 1 = Yes, 0 = No 

Merit Aid Binary Dummy code, 1 = Yes, 0 = No 

Cumulative High School 

Grade Point Average 
Continuous Raw high score GPA scores 

ACT Test Scores Ordinal 
Standardized test score ranging from 0 to 

36 

High School Cluster Multinomial 

College Board utilizes 28 unique high 

school clusters to group college applicants 

by various attributes 
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APPENDIX C 

DESCRIPTORPLUS HIGH SCHOOL CLUSTER DESCRIPTIONS 
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(Source: College Board Educational Cluster Key) 

 

 

 

 

 

http://media.collegeboard.com/digitalServices/pdf/miscellaneous/ClusterDescriptionGuide.pdf
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