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CHAPTER ONE 

INTRODUCTION 

 Every year there are nearly 500,000 reported burn injuries in the United States, half of 

which occur under the influence of alcohol1-3.  Clinical studies have shown that burn patients 

who are intoxicated at the time of injury have a worse prognosis4,5.  Patients intoxicated at the 

time of injury have increased susceptibility to infection, exhibit delayed wound healing, and have 

longer hospital stays4,5.  Furthermore, patients who are intoxicated at the time of burn injury have 

elevated risk of developing multiple organ failure (MOF) and sepsis.  Intoxicated patients also 

have significantly higher mortality rates2,3,6,7.  The etiology of these pathological consequences 

of ethanol and burn injury remains to be elucidated.  The Gut-lymph hypothesis of multiple 

organ dysfunction (MODs) theorizes that trauma (e.g. ethanol and burn injury) results in a 

redistribution of blood flow to protect more vital organs which leads to ischemia/hypoxia 

(diminished oxygen delivery) in the intestines8.  This contributes to the impaired intestinal 

barrier function which could lead to sepsis and MODs. 

An intact intestinal barrier is particularly important as the intestines are the largest 

reservoir of bacteria within the human body.  Any breakdown of this barrier could potentially 

lead to translocation of bacteria or bacterial endotoxins resulting in systemic infection and 

inflammation.  Studies from our laboratory provide support that there is a breakdown in the 

intestinal barrier following ethanol and burn injury9,10.  Furthermore, we observed that ethanol 

and burn injury leads to an increase in intestinal inflammation (IL-6, IL-18 and KC), hypoxia, 
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microbial dysbiosis (increased total bacteria and Enterobacteriaceae) and modifications of some 

other cellular processes (e.g. apoptosis, proliferation, and mucins)11-14.  These changes could 

negatively impact the intestinal barrier, leading to the pathology following the combined insult of 

ethanol and burn injury.  Ultimately, the major goal of our studies is to determine the underlying 

mechanism by which ethanol and burn injury impairs the intestinal barrier.  Major cellular 

regulators-microRNAs (miRs) likely have a role in adverse effects following ethanol and burn 

injury.  Therefore, the mechanism underlying the altered intestinal cellular responses and the role 

that miRs play in these processes remains the major focus of our current studies.  

microRNAs are small noncoding RNAs sequences that control gene expression at the 

post-transcriptional level15,16.  They mediate their gene silencing ability by complementary 

binding to the 3’ Untranslated Region (UTR) of their target.  Binding of the miR to the 3’UTR 

results in either mRNA degradation or translational repression of their target15-17.  miRs are 

estimated to regulate nearly 60% of the genome, therefore, alterations in their expression could 

potentially affect thousands of genes18,19.  To function as mature microRNAs, the small RNAs 

undergo two processing events: nuclear cleavage by drosha and cytoplasmic cleavage by dicer.  

Argonaute is a main component of the miRNA-Induced Silencing Complex (miRISC) which 

mediate microRNA gene silencing15-17.  Alterations in expression of drosha and dicer, 

microRNA transport protein (Exportin-5) and the miRISC component (argonaute) may lead to 

diminished microRNA processing resulting in elevated intestinal inflammation and diminished 

intestinal barrier function.  microRNA levels and biogenesis are affected by a number of factors 

including trauma/injury, ethanol, and disease20-26.  The role of microRNAs following ethanol and 

burn injury, however, remains largely unknown. 
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This dissertation focuses on examining whether hypoxia following ethanol and burn 

injury modulates expression of microRNA biogenesis components and microRNAs resulting in 

increased inflammation and intestinal barrier disruption.  The central hypothesis is that, hypoxic 

insult following acute ethanol intoxication and burn injury disrupts microRNA biogenesis 

resulting in decreased miR-150 expression in isolated small intestinal epithelial cells and 

increased intestinal permeability in vivo.  To test this hypothesis, we developed three specific 

aims.  Specific Aim 1:  Profile microRNA biogenesis components following ethanol and burn 

injury in murine cells isolated from the terminal small intestine.  Specific Aim 2:  Determine 

whether hypoxia modulates microRNA biogenesis and if inhibition of hypoxia inducible factor 

(HIF)-1α restores microRNA biogenesis components, miR-150 expression in epithelial cells 

isolated from the terminal small intestine resulting in increased intestinal barrier integrity.  

Specific Aim 3:  Evaluate whether miR-150 alters inflammation in the young adult mouse 

colonocytes in vitro which results in impaired paracellular permeability.   

In order to determine the role of hypoxia on microRNA biogenesis and intestinal barrier 

function we administered PX-478 a HIF-1α inhibitor via intraperitoneal (I.P.) injection at the 

time of resuscitation.  HIF-1α expression was measured in small intestinal tissue sections by 

immunofluorescence.  Enzyme-Linked Immunosorbent Assays (ELISA) were used to quantify 

the presence of inflammatory mediators including IL-6, KC, IL-18 in small intestinal tissue.  

Intestinal epithelial cells (IECs) were isolated and used to evaluate drosha, dicer, and argonaute-

2 by quantitative real-time polymerase chain reaction (qPCR) and western blot.  Furthermore, 

IECs were used to measure expression of tight junctions, mucins, and microRNAs by qPCR.  

Additionally, microbiome alterations were assessed by 16S rRNA by qPCR for total bacteria and 

Enterobacteriaceae.  Together these studies will elucidate the role of HIF-1α in intestine barrier 
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disruption following the combined insult which may lead to a potential therapeutic option for 

patients intoxicated at the time of burn injury. 
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE: ROLE OF MICRORNAS ON THE INTESTINAL 
BARRIER AND MICROBIOME 

 
Ethanol and Burn Injury 

Alcohol (ethanol) abuse remains a major economic and health problem.  In 2010, 

excessive alcohol misuse cost the United States nearly 250 billion dollars27.  Furthermore, each 

year three million people die worldwide from alcohol abuse or complications associated with 

alcohol exposure.  Alcohol is widely considered to be the fourth ranking preventable cause of 

death28.  Alcohol abuse also increases risky behaviors which enhances the likelihood of incurring 

traumatic injuries (e.g. burn injuries).   

Nearly 500,000 burn injuries are reported each year in the United States, resulting in 

approximately 40,000 hospitalizations and 4000 deaths1.  Approximately 50% of these injuries 

occur under the influence of ethanol1-3.  Alcohol intoxication at the time of burn injury delays 

wound healing, results in longer hospitalization, and increases susceptibility to infection 

compared to patients who did not consume alcohol prior to burn injury4,5.  Patients who are 

intoxicated at the time of burn injury also have an increased risk of developing MOF and sepsis.  

Additionally, intoxicated patients have higher mortality rates and die from smaller burn 

injuries2,3,6,7. 

Studies carried out in animal models suggest that the adverse effects seen in patient 

studies may arise from gut barrier disruption following ethanol and burn injury10,29.  

Furthermore, ethanol and burn injury increases intestinal inflammation which can contribute to  
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barrier disruption9-14,30,31.  However, the mechanism behind these observed effects following 

ethanol and burn injury have not been elucidated.  Therefore, the central goal of our laboratory is 

to decipher the mechanism by which ethanol exacerbates post-burn pathogenesis and determine a 

therapeutic option for implementing treatment following ethanol and burn injury.   

The Gastrointestinal (GI) tract performs multiple functions including digestion, and 

nutrient absorption, as well as maintaining an interface to prevent the translocation of bacteria 

living in the GI tract32,33.  Constant exposure to antigens from the diet and commensal bacteria 

(up to 1012 microorganisms per gram of tissue), requires the gut to employ physical and 

immunological defense barriers which limit luminal bacteria translocation33-38.  As shown in 

Figure 1, the intestine forms a semi-permeable barrier composed of a single layer of columnar 

epithelial cells that are sealed by tight junction proteins.  While the majority of columnar 

epithelial cells are absorptive enterocytes, there are other cell types (e.g. goblet cells, M cells, 

and Paneth cells) that participate in intestinal defense33,34,39.  Additionally, the intestine contains 

a mucus barrier composed of mucins secreted by goblet cells which prevents the luminal bacteria 

from adhering to the epithelial cells34.  Paneth cells contribute to gut homeostasis by producing a 

large number of antimicrobial peptides (AMPs).  The immune component of the intestine 

includes a layer of loose connective tissue (lamina propria) beneath the epithelial cells and 

intestinal lymphoid tissue called Peyer’s patches33,40.  Together, these components maintain 

intestinal homeostasis by providing a physical and immunological barrier.  Disruption in any of 

these barrier functions due to disease, misuse of alcohol or trauma (e.g. burn injury) may 

compromise the barrier integrity resulting in increased intestinal permeability9,41.  Major cellular 

regulators such as microRNAs may have a role in intestinal barrier integrity. 
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Figure 1. Overview of Intestinal Barrier Components and Microbiome.  The intestinal 
barrier consists of a single layer of columnar epithelial cells (enterocyte) that are sealed together 
by tight junction proteins which aids in limiting luminal bacteria (orange and blue) translocation 
between adjacent cells.  The columnar epithelial cells are encased in a mucus layer (yellow) that 
are made by mucin secreting goblet cells (green).  The immunological component of the 
intestinal barrier comprises of Paneth cells (pink) that are located at the base of the intestinal 
crypts which secrete AMPs. The lamina propria is an area of connective tissue directly below the 
layer of enterocytes, which is rich in immune cells which allows for a rapid immune response to 
invading pathogens.  M cells (Dark blue) permit passage into the Peyer’s patches (light blue). 

 

Introduction to microRNAs 

microRNAs are excellent candidates for providing a mechanism behind many of the 

outcomes resulting in impaired gut barrier integrity following ethanol and burn injury as they 

control many cellular processes (e.g. apoptosis/proliferation, tight junction proteins and 
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inflammation).  miRs are small noncoding RNAs which control gene expression at the post-

transcriptional level15,16,42.  They bind to the 3’ UTR region of their target mRNA resulting in 

gene silencing15,16,42.  microRNAs must undergo a maturation process in order to function as 

gene silencers.  microRNAs are transcribed by RNA polymerase II forming a primary 

microRNA (pri-miR).  The pri-miR undergoes a nuclear cleavage by a microprocessor composed 

of drosha and its co-factor DiGeorge syndrome critical region gene 8 (DGCR8).  The nuclear 

cleavage by the microprocessor forms a 60–70 nucleotide precursor microRNA (pre-miR) which 

is exported into the cytoplasm by the ran-GTP dependent exportin-5.  In the cytoplasm the pre-

miR is cleaved by dicer and its cofactors trans-activation response RNA-binding protein (TRBP) 

and protein activator of PKR (PACT).  The second cleavage forms a 21-24 nucleotide duplex 

microRNA consisting of a guide and passenger strand.  The passenger strand is usually degraded 

whereas, the guide strand and an argonaute protein form miRISC.  TRBP aids in the loading of 

the microRNA into the miRISC, as it functions as a sensor for the thermodynamically 

asymmetrical strand, the less thermodynamically stable paired 5’ end is loaded onto the 

argonaute protein.  The formation of the miRISC permits imperfect base pairing binding of the 

seed region of the microRNA to its target resulting in mRNA degradation or translational 

repression (Figure 2)15-17. 

microRNAs are estimated to target over 60% of all genes and each miR can have 

multiple target genes18,19.  Aberrant microRNA expression can impair normal organ function 

including the intestinal barrier function.  Villin-specific dicer knockout mice exhibited altered 

intestinal morphology, decreased differentiation, increased intestinal inflammation and 

apoptosis.  Furthermore, ablation of dicer-1 led to diminished expression and mislocalization of 

tight junction proteins43,44.  These observations coincided with diminished barrier integrity 
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providing evidence of the indispensable role of microRNAs in the intestine and demonstrate the 

need to explore these molecules following ethanol and burn injury. 

microRNA levels and biogenesis are affected by a number of factors including  

trauma/injury, ethanol, and disease20-26.  Furthermore, as microRNAs are ubiquitously expressed 

in both circulation and tissues their differential expression can be used as diagnostic tools and for 

possible therapeutic interventions24,25,45.  This review will summarize the current knowledge on 

the role of microRNAs in the maintenance of intestinal barrier integrity and discuss the gap in 

knowledge in the area of microRNAs and their role in pathology associated with ethanol and 

burn injury. 

Drosha. 

 The endonucleolytic enzyme drosha is an essential component of canonical RNA 

interference (RNAi).  Drosha recognizes and cleaves secondary stem-loop structures, which 

allows it to have microRNA independent functions and the ability to influence expression of 

other types of RNAs (e.g. mRNAs, pre-rRNAs, and DNA damage induced RNAs).  Cleavage of 

its co-factor DGCR8 was identified as drosha’s first non-microRNA dependent function46.  

Drosha has been shown to cleave DGCR8 mRNA resulting in its destabilization.  This 

relationship is likely a mechanism of autoregulation of the microprocessor.  Furthermore, 

drosha’s ability to process other RNAs has been demonstrated to control cell cycle.  Knockdown 

of drosha led to an inability to progress the cell cycle which resulted in stalling the cell in the G1 

phase due to the accumulation of pre-rRNAs.  Interestingly, however, knockout of drosha did 

have any effect of rRNA levels46. 
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Figure 2. microRNA Biogenesis.   microRNAs are transcribed by RNA polymerase II forming a 
pri-miRNA.  The pri-miR undergoes its first cleavage in the nucleus by the microprocessor 
consisting of the protein drosha and its co-factor DGCR8.  Nuclear cleavage by the 
microprocessor forms a pre-miRNA.  The pre-miRNA is translocated from the nucleus into the 
cytoplasm by exportin-5.  Once in the cytoplasm the pre-miRNA undergoes cleavage by dicer 
and its co-factors TRBP and PACT/loqs forming a duplex structure.  The duplex formed from 
dicer cleavage contains a passenger strand which is usually degraded and a mature miRNA 
strand.  The mature miRNA strand is loaded onto argonaute forming the miRISC where the 
mature microRNA can mediate its gene silencing ability (inhibition of translation or mRNA 
degradation).     
 

Dicer.   

Knockout of dicer is embryonically lethal in mice47.  Furthermore, tissue-specific 

knockout of dicer has been shown to lead to developmental defects and organ dysfunction47,48.  
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Villin-specific dicer knockout resulted in elevated inflammation, cell death,  and decreased 

differentiation.  Furthermore, villin-specific knockout impaired intestinal morphology, and 

resulted in reduced expression and mislocalization of tight junction proteins43,44.  These studies 

suggest an indispensable role of dicer and resulting expression of microRNAs in normal 

functioning of the cell, tissue and organ.  Dicer is an obligatory molecule in the siRNA and 

miRNA pathway in vertebrates.  However, in addition to its role in RNA as a riboendouclease, 

dicer has been shown to process a number of other RNAs including dsRNAs, siRNA precursors, 

DNA-damage induced RNAs, SINE-derived RNAs, and triplet repeat RNAs46.  Furthermore, in 

C. elegans, caspase CED-3 mediated cleavage of dicer showed that it has a DNase capacity 

where it binds and cleave one strand of dsDNA.  This cleavage resulted in DNA degradation and 

apoptosis, however, it is not known if this occurs in other organisms46. 

Argonaute.   

In humans, the argonaute proteins are a family of proteins consisting of argonautes 1-4.  

Ago-1, ago-3, and ago-4 are non-catalytic members of the argonaute family.  Ago-2 is the only 

catalytic member of the argonaute family in mammals.  They are highly specialized proteins that 

bind to small RNAs.  Argonaute proteins play an essential role in microRNA mediated silencing 

as they are the core proteins of the miRISC complex.  Various post-transcriptional modifications 

affect the function of the argonaute proteins.  Additionally, ago-2 has been shown to protect 

single stranded microRNAs from degradation49,50.  There is some evidence that the functions of 

argonautes may extend more than their role in microRNA mediated silencing.  Interestingly, 

argonaute proteins have been found both in the nucleus and cytoplasm.  In addition, to their role 

in RNAi, argonaute proteins have been shown to influence chromatin modification, alternative 

splicing and double strand break repair51. 
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microRNAs and the Epithelial Layer 

microRNAs are regulators of normal cellular homeostasis and numerous studies have 

demonstrated that they play a major role in intestinal barrier maintenance.  microRNAs have 

been shown to affect apoptosis52-57, proliferation58-64, tight junction protein expression23,65-71,  

ischemia/hypoxia20,57,72, inflammation20,73-82 and the microbiome83 (Figure 3) all of which can 

impact the intestinal barrier function.   

 
Figure 3. microRNAs in Intestinal Barrier Integrity.  microRNAs can directly and indirectly 
affect intestinal barrier integrity by impacting apoptosis, proliferation, tight junction protein 
expression, ischemia/hypoxia, inflammation and microbiota composition in the intestine20,23,52-83. 
 

microRNAs Role in Apoptosis.   

Apoptosis is a natural physiological process resulting in death and removal of unwanted 

cells84-86.  Apoptosis is essential for normal maintenance of the GI tract and is required to 

counterbalance the constant cell turnover of proliferating cells87.  Apoptosis therefore, is crucial 

to enable normal structure and function of the GI tract 86.  Increased levels of apoptosis beyond 

this normal cellular maintenance however, results in an impaired intestinal barrier86.  It is widely 

accepted that increased intestinal epithelial cell apoptosis disrupts the intestinal barrier resulting 

in increased intestinal permeability.   
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In particular, our laboratory observed that ethanol and burn injury resulted in increased 

intestinal apoptosis10.  The mechanism of this increased apoptosis following ethanol and burn 

injury is unknown but it is likely linked to microRNAs as many microRNAs have a role in 

intestinal apoptosis52-54,56,57,72.  Our laboratory has demonstrated that ethanol and burn injury 

delays neutrophil apoptosis compared to sham injured animals88,89 and increased intestinal 

epithelial cell death (Hammer et al. (2016) unpublished data), all of which could lead to tissue 

damage and impaired intestinal barrier function.  Apoptosis can arise due to the intrinsic 

apoptotic pathway which results in the release of cytochrome c into the cytoplasm from the 

mitochondria.  The release occurs after activation of pro-apoptotic proteins (e.g. Bax).  

Following the release cytochrome c, the apoptosome forms with procaspase-9 and apoptotic 

protease-activating factor 1.  This process can be averted by anti-apoptotic proteins Bcl-2 which 

prevents cytochrome c release86.  Although, it is established that ethanol and burn injury 

influences apoptosis, the mechanism remains elusive.   

microRNAs can influence apoptosis by gene silencing members of the anti-apoptotic Bcl-

2 family.  miR-150 was significantly elevated in the dextran sodium sulfate (DSS) model of 

colitis in mice and in active ulcerative colitis in human colonic tissue which resulted in apoptosis 

by downregulation of c-Myb.  Reduction of c-Myb led to decreased levels of the anti-apoptotic 

protein Bcl-2 which resulted in increased apoptosis52.  In contrast, Christensen et al. observed 

that miR-150 did not alter cellular viability in certain colorectal cancer cell lines suggesting that 

the apoptotic ability of miR-150 may be cell type dependent53.  Furthermore, miR-375 

expression was decreased in patient samples and in multiple colorectal cell lines.  miR-375 

targeted Yes-associated protein 1 whose downstream targets are BIRC5 and BCL2L1 (also 

known as Bcl-xl) resulting in apoptosis53.  
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microRNAs can also impact apoptosis by regulation of other anti-apoptotic proteins such 

as Mcl-1.  miR-29a was increased e in a mouse model of DSS-induced ulcerative colitis which 

resulted in decreased levels of Mcl-1.  In vitro analysis in colonic epithelial cells HT29 showed 

that miR-29a caused apoptosis by downregulation of its target molecule Mcl-1 which activated 

caspase-354.  As mRNAs can have numerous binding sites allowing for binding of different miRs 

it is not surprising that other miRs (miR-125 and miR-29b) have been shown to reduce Mcl-1 

levels55,56.  These studies illustrate that aberrant microRNA expression in the intestines can 

directly and indirectly target the apoptotic pathway.  Furthermore, these studies suggest that 

microRNAs could play a role in increased small intestinal apoptosis following ethanol and burn 

injury. 

microRNAs Role in Proliferation. 

The intestinal epithelium is one of the most rapidly renewing tissues within the body.  

The intestine is renewed every 2-3 days in mice and 3-5 days in humans90.  Intestinal epithelial 

stem cells develop into transit amplifying progenitor cells and differentiate into various subtypes 

of intestinal cells.  Proliferation occurs in the crypts, allowing for differentiation and migration 

up the intestinal villi.  Proliferation and apoptosis is tightly regulated in order to maintain the 

intestinal barrier function.   

Burn injury alone or in combination with ethanol decreases intestinal proliferation.  

Furthermore, ki67 staining was significantly decreased following ethanol and burn injury 

compared to sham animals suggesting that the combined insult diminished intestinal epithelial 

cell proliferation29.  microRNAs can provide insight into diminished proliferation following 

ethanol and burn injury as numerous studies suggest they have a role in cell cycle regulation91,92.  

As alterations of cell proliferation is a hallmark of cancer, the majority of work on microRNAs 
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and proliferation is performed in cancer models.  Overexpression of miR-27a, and miR-505 

influenced cell proliferation and invasion of colonic cancer cells63,64.  Numerous studies have 

shown that miR-224 is increased in colorectal cancer patients58-62.  In vitro studies using HCT-

116 and SW-480 colon cancer cell lines demonstrated that upregulation of miR-224 increased 

proliferation, and cell migration while promoting cell cycle progression58,59,61,62.  Furthermore, 

microRNAs can be used for prognosis and predictions of colorectal cancer relapse.  microRNAs 

can increase proliferation and contribute to the development of colonic cancer58,59,61,62.  As we 

observed a reduction in intestinal epithelial cells proliferation (Hammer et al. (2016). 

unpublished data), perhaps these microRNAs may have a role in decreased proliferation in the 

intestine following ethanol and burn injury.  Thus, investigation into these microRNAs following 

the combined insult could potentially provide some insight into the mechanism underlying the 

reduction in proliferation.   

microRNAs and Tight Junction Proteins.   

Tight junction proteins play an indispensable role in maintenance of intestinal barrier 

integrity34.  Tight junction proteins are major components of apical junctional complex which 

seal adjacent cells limiting paracellular flux93-95.  Tight junction complexes forms a semi-

permeable protein complex comprised of transmembrane, scaffold and adaptor proteins34,39,94,96.  

The Claudin family and occludin proteins make up the essential tetra-span transmembrane 

proteins95.  Occludin is a 65 kDa protein widely believed to function in regulation of paracellular 

flux between intestinal epithelial cells97.  Claudins and occludin proteins attach to adaptor 

proteins Zonula occludens (ZO) which anchor occludin and claudin proteins to actin 

cytoskeleton and adherens junction39,93,95,96.  Formation of tight junction complexes is necessary 

to maintain the integrity of the intestinal barrier34.  Numerous studies show that altered 
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expression of microRNAs (miR-21,miR-122a, miR-155, miR-429 and miR-874) can directly and 

indirectly modulate tight junction proteins and apical junctional complexes resulting in increased 

intestinal permeability65-71.   

Tight junction proteins (occludin, claudins-4, and 8) are significantly reduced following 

the combined insult of ethanol and burn injury compared to shams.  Additionally, the leaky 

claudin, claudin-2 (that allows transport of water and ions) was significantly increased following 

ethanol and burn injury compared to sham injured animals10,13 .  Furthermore, phosphorylation of 

tight junctions (occludin and claudin-1) and expression of the adapter molecule ZO-1 was 

significantly decreased in the intestine following ethanol and burn injury compared to 

shams10,30,31.  The role that microRNAs play in modulating these proteins following ethanol and 

burn injury requires more investigation as they have been shown to influence expression of many 

tight junction proteins. 

  miR-122a has been shown to directly target occludin resulting in degradation of its 

mRNA which negatively impacted intestinal barrier function66,71.  Administration of 109 colony 

forming unit (CFU)/day of probiotics L. rhamnosus Gorbach-Goldin per day for four weeks 

ablated chronic ethanol exposure effects on intestinal permeability.  The probiotic treatment 

reduced miR-122a expression resulting in increased occludin protein levels71.   A similar study 

investigating the role of ethanol exposure and microRNAs showed that exposure of Caco-2 cells 

to 0.1 to 1% ethanol for three hours resulted in increased expression of miR-212 in a time and 

dose dependent manner which corresponded with decreased ZO-1 expression23.  Reduced ZO-1 

levels is associated with impaired intestinal barrier function23,98.  Studies such as these are 

particularly important and demonstrate the need to investigative the relationship between 

microRNAs and tight junction protein expression in the context of ethanol and burn injury.  The 
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relationship requires further examination as ethanol and burn injury diminishes both occludin 

and ZO-1 expression in the intestine10,30,31.  Furthermore, as ethanol exposure resulted in similar 

deleterious effects on occludin and ZO-1 levels as observed following ethanol and burn injury in 

the gut perhaps these ethanol mediated effects are both being mediated by miRs.  

microRNAs can target molecules which indirectly result in reduced tight junction 

expression. miR-21 was upregulated in both the colon and serum of patients with ulcerative 

colitis, which is associated with decreased expression of occludin, ZO-1, and Ras homolog gene 

family, member B (RhoB)67.  Overexpression of miR-21 in Caco-2 cells resulted in a loss of both 

occludin, ZO-1, and RhoB protein levels while increasing epithelial permeability.  The group 

showed that miR-21 influenced RhoB expression and that siRNA-mediated ablation of RhoB 

resulted in decreased occludin and increased permeability67.  Similarly, occludin can be 

indirectly targeted by miR-874.  In vitro overexpression of miR-874 resulted in increased 

paracellular permeability and bacterial translocation and diminished occludin and claudin-1 

levels69.  Although, it is not known whether RhoB is affected by ethanol and burn injury, the 

combined insult does diminish occludin and claudin-1 expression.  These studies establish that 

microRNAs could directly or indirectly regulate tight junction protein expression following 

ethanol and burn injury.   

microRNAs and the Pathophysiological Consequences of Ethanol and Burn Injury 

microRNAs Role in the Microbiome.   

The gut microbiota is a relatively constant microbe population comprising over 100 

trillion organisms consisting of 1000 bacterial species99,100.  These bacteria play an important 

role ranging from metabolism to developing the intestinal immune system.  Alterations in the gut 

microbiome can lead to pathological conditions (inflammatory bowel disease, obesity and 
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diabetes)100-103.  In particular, trauma (e.g. 20% burn injury or ethanol intoxication prior to burn 

injury) has the ability to alter the intestinal microbiome and increase gut bacterial load13,104.  

Numerous studies profiling microRNA expression utilizing either germ free or antibiotic treated 

mice show that the microbiota composition influences expression of microRNAs83,105-108.  Germ 

free mice infected with the food born pathogen Listeria monocytogenes had reduced ability to 

clear the bacterial counts in multiple tissues compared to conventional (C57BL6/J) mice 

suggesting that the microbiota is protective against infection.  Furthermore, microRNAs (miR-

143, miR-148a, miR-194, miR-200b, miR-200c, and miR-378) were significantly decreased in 

conventional mice infected with Listeria which coincided with increased expression in several of 

their predicted targets.  These changes were not observed in germ free mice infected with 

Listeria, with the exception of miR-378 which was significantly elevated 72 hours post 

infection83.  As the microbiota/host relationship is so interconnected it is not surprising that host 

microRNAs can influence the microbiota composition43.  

The host can influence microbiota composition and growth through intestinal epithelial 

cell and intestinal epithelial +4 niche stem cells expressing cell derived microRNAs.  These 

microRNAs are released via extracellular vesicles into the feces where they can enter bacteria 

and control bacterial growth and gene expression.  It is unclear as to how the miRs enter bacteria 

and how the microRNAs are processed by the bacteria however, the fecal miRs could be binding 

to complementary binding site on bacterial genes.  Furthermore, dysregulation of host derived 

microRNAs using mice with an intestinal epithelial cell deficiency in dicer expression resulted in 

gut microbiota dysbiosis exacerbating DSS induced colitis43.  These studies display the essential 

symbiotic relationship between the host and the microbiota which in part is shaped by 

microRNAs.  As ethanol and burn injury results in microbiota dysbiosis13 it is possible that these 
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changes are being mediated by the microRNAs, alternatively the observed microbiota changes 

could be influencing host microRNA expression.  These studies reveal that the interplay between 

the host and microbiota is mediated through microRNAs shaping the intestinal microbiota and 

the microbiota in turn modifies microRNA expression.  This suggests, that the 

microbiota/microRNA crosstalk play an important role in cultivating our gut microbiota 

composition.  Future studies are necessary to examine whether microRNA levels and microbiota 

dysbiosis and bacterial growth are interconnected following ethanol and burn injury.  

microRNAs Role in Ischemia/Hypoxia. 

Ischemia is a major consequence in the intestine following trauma and burn injury, where 

blood flow is redistributed to more vital organs resulting in hypoxia (diminished oxygen 

delivery) in the gut8,109-112.  Elevated levels of hypoxia inducible factor (HIF-1α), a marker of 

hypoxia, in the gut has been associated with diminished intestinal barrier function (altered tight 

junction expression), cell death and inflammation. Our laboratory has demonstrated that ethanol 

exposure at the time of burn injury results in an ischemic condition in the gut due to a reduction 

in intestinal oxygen delivery14.    

HIF-1 is a transcription factor that induces expression of genes that enables cell survival 

during shifts of oxygen levels.   There are three alpha isoforms (-1α, -2α and -3α) which share 

the same binding partner (HIF-1β).  HIF-1α is ubiquitously expressed and provides a quick 

response to oxygen deficiency (2-24 hours) during periods of severe hypoxia (<0.1% O2).  HIF-

2α has 48% amino acid homology with HIF-1α however, its expression is more prevalent in the 

carotid body, lung and endothelium and is active under milder hypoxic insult (<5%O2) and 

remains active after 48-72 hours of hypoxia113,114.  Finally, HIF-3α is believed to act as a 

negative feedback regulator for HIF-1.   
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Under normoxic conditions HIF-1α has a relatively short half-life (~5minutes) where it 

undergoes hydroxylation of two prolines and acetylation of a lysine on the oxygen dependent 

degradation domain (ODDD) which triggers the signaling pathway.   These post-translational 

modifications triggers binding with von Hippel Lindau (pVHL) E3 ligase complex tagging HIF-

1α, resulting in its degradation by the ubiquitin-proteasome pathway.  However, under hypoxic 

conditions HIF-1α is stabilized and translocates to the nucleus and binds to HIF-1β where the 

complex binds to the HRE region of its targets where it regulates gene expression113. 

Hypoxia/ischemia influences both expression of microRNAs and microRNA biogenesis 

components57,69,72,115-117.  Intestinal ischemia/reperfusion (I/R) injury leads to intestinal injury 

through increased inflammation, overproduction of reactive oxygen species and apoptosis.  miR-

34a is significantly upregulated following I/R.  Knockdown of miR-34a was shown to increase 

Sirtuin-1 which reduced I/R related oxidative relative damage and apoptosis57.  In a similar 

study, miR-682 mediated intestinal I/R injury by targeting phosphatase and tensin homolog.  In 

vivo overexpression of miR-682 prior to I/R injury significantly reduced apoptosis and other 

effects of I/R injury72.  Chassin et al., utilized a mouse model of I/R to show the connection 

between miR-146a and IRAK1 expression.  The group demonstrated that increased IRAK1 due 

to I/R injury resulted in increased expression of the pro-inflammatory chemokine CXCL2, 

apoptosis and intestinal permeability20.  In vivo induction of miR-146a via diindolylmethase 

(DIM) a miR-146a inducing agent or administration of miR-146a reduced I/R mediated 

inflammation and IRAK1 elevation.  Furthermore, exposure of human intestinal tissues ex vivo 

to hypoxic conditions elevated IRAK1 which was attenuated with DIM treatment and reduced 

CXCL8 mRNA expression following lipopolysaccharide (LPS) stimulation20.  These studies 

demonstrate the relationship between hypoxia and inflammation.  As we observed significant 
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increases in both hypoxia and inflammation following ethanol and burn injury it would 

interesting to ascertain if the link between hypoxia and inflammation is due to microRNAs.  

microRNAs Role in Inflammation. 

Intestinal inflammation is a hallmark of intestinal pathology.  Numerous disease 

conditions (e.g. ulcerative colitis, Crohn’s disease, ethanol and burn injury) are associated with 

excess inflammation and exhibit modulation of microRNA biogenesis and/or microRNA 

expression24,25,77,80,118,119.  Inflammation in the gut contributes to increased apoptosis, tissue 

damage and dismantling tight junction complexes.  In particular, we observed an increase in IL-

6, IL-18 and KC within 24 hours after ethanol and burn injury12.  Increased IL-6 and IL-18 are 

linked to increased intestinal permeability by negatively impacting tight junction protein levels 

and functions10,120.  Similarly, other models of ethanol and burn injury have illustrated that mice 

treated with IL-6 antibodies after the combined insult diminished intestinal morphological 

changes, bacterial translocation, and reestablished tight junction protein localization.  While 

complete knockout of IL-6 using IL-6 knockout mice improved intestinal damage it did not 

improve bacterial translocation and tight junction protein localization suggesting complete loss 

of IL-6 is not advantageous following the combined insult30.  KC is a neutrophil chemokine, 

which likely contributes to increased neutrophil infiltration observed following ethanol and burn 

injury.  Similarly, IL-18 has been shown to delay neutrophil apoptosis, increase their O2− 

production and neutrophil recruitment to the intestine following ethanol and burn injury 

compared to sham injured animals88,109,121.  Elevated IL-18 altered permeability by decreasing 

the levels of tight junction proteins (occludin) and activation (phosphorylation) of claudin-1 and 

occludin following the combined insult compared to shams10.  These findings suggest that 

intestinal inflammation following ethanol and burn injury is a major contributor of increased 
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intestinal permeability.  Attenuating intestinal inflammation following ethanol and burn injury 

therefore could be instrumental in providing therapeutic treatments following the combined 

insult. 

microRNAs can disrupt inflammatory pathways contributing to increased inflammation 

following disease and trauma.  Our laboratory observed that ethanol and burn injury, 

significantly reduced drosha and argonaute-2 expression one day following the combined insult 

in small intestinal epithelial cells compared to sham animals.  Diminished expression of 

microRNA biogenesis components correlated with reduced expression of miR-150.  

Overexpression of miR-150 in young adult mouse colonocytes (YAMCs) reduced LPS mediated 

inflammation (IL-6 and KC) compared to empty vector controls81.  Other models have also 

demonstrated a similar relationship between miR-150 and inflammatory mediators45,122-125.  The 

changes in microRNA biogenesis and miR-150 are particularly important as miR-150 levels was 

reduced in plasma from sepsis patients a major adverse effect following ethanol and burn 

injury45.    

Immunomodulatory miRs (miR-21, miR-146a and miR-155) have been shown to be 

overexpressed in patients with inflammatory bowel disease, vibrio cholera infection, and acute 

intestinal obstruction73,75,77,80,82.  Knockout of immunomodulatory miR-21 resulted in a reduction 

in intestinal inflammation (TNF-α and MIP-2) in a model of DSS induced colitis while 

improving survival75.  Several studies have implicated miR-155 and miR-146a as negative 

feedback regulators of the inflammatory response modulating signal molecules in the NFκB 

pathway20,73,74.  

 Our laboratory investigated whether miR-155 influenced splenic T cell release of IFN-γ 

in a murine model following acute ethanol exposure prior to burn injury.  We observed a 
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significant reduction in miR-155 in T cells following ethanol and burn injury compared to sham 

injured animals.  Furthermore, we observed that there was no difference in ex vivo T cell release 

of IFN-γ between miR-155 knockout mice and wild type mice one day following ethanol and 

burn injury76.  These studies suggest that the immunomodulatory role of miR-155 in the gut may 

be cell type specific.  Interestingly, miR-146a and miR-155 are upregulated in inflammatory 

bowel disease and vibrio cholera infection77,78,80, suggesting that these microRNAs are not 

involved in the hyperinflammatory response associated with the diseases, but may have a role in 

the resolution of the disease state.  Chronic ethanol exposure (Lieber-DeCarli diet for five 

weeks) significantly elevated miR-155 while significantly reducing the AMP, Reg3β.  Knockout 

of miR-155 in the presence of chronic ethanol intoxication, reduced ethanol mediated increases 

in serum endotoxins levels, NFκB activation and inflammation (TNF-α) in the small intestine79.  

In contrast, acute ethanol exposure (5 g/kg ethanol in water for three days) resulted in elevated 

AMPs but did not alter miR-155 expression or TNF-α protein levels however it significantly 

increased NFκB activation79.   

These studies demonstrate that microRNAs are particularly important in regulating the 

inflammatory response in the gut.  Interestingly, atypical microRNA expression may be both 

protective to the gut or contribute to the pathology of the disease.  As inflammation is paramount 

for intestinal barrier dysfunction following ethanol and burn injury more investigation is required 

to elucidate the relationship between microRNAs in ethanol and burn injury mediated 

inflammation. 

Conclusions 

Collectively, the findings in this review exemplify the role of microRNAs in the 

regulation of intestinal barrier function.  These studies demonstrate that microRNAs can directly 
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and indirectly affect intestinal apoptosis, proliferation, tight junction protein expression, 

ischemia/hypoxia, inflammation and microbiota composition (Figure 3).  There are studies that 

have investigated the role of ethanol or trauma including burn injury on microRNA expression in 

other organ systems.  There is however a big gap in research examining how microRNAs can be 

influenced or influence ethanol’s effects on trauma particularly in the context of burn injury in 

the gut.    Furthermore, aberrant microRNAs can be further exploited as microRNAs could be 

used as biomarkers or for therapeutic design.  
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CHAPTER THREE 

REGIONAL EFFECTS OF ETHANOL AND BURN INJURY ON THE EXPRESSION 
 OF PRO-INFLAMMATORY MEDIATORS12 

 
Abstract 

 The intestinal tract is the second largest immune organ that is segmented into separate 

and functionally distinct parts.  The intestines consist of the duodenum, jejunum, ileum and 

colon.  These compartments have different functions and bacterial content.  The current study 

evaluated whether the inflammatory response varied throughout the intestinal tract following 

ethanol and burn injury.  Male (C57BL/6) mice were gavaged with ~2.9 g/kg of ethanol four 

hours prior to receiving a ~12.5% total body surface area (TBSA) full thickness burn.  Mice were 

euthanized days one, three and seven after the insult.  Following euthanasia, intestinal tissue 

segments (duodenum, jejunum, ileum, and colon) were collected.  The total tissue was 

homogenized, and inflammatory mediators were analyzed using their respective ELISAs.  The 

pro-inflammatory mediators (IL-6, IL-18 and KC) exhibited differential expression levels 

throughout the intestinal tract.  We observed significant increases in KC levels in the jejunum, 

ileum and colon following the combined insult of ethanol and burn injury compared to sham 

injured animals. Furthermore, the KC levels were ~30-fold higher in the colon as compared to 

ethanol and burn injury in the duodenum.  Additionally, both IL-6 and IL-18 levels were 

significantly elevated following ethanol and burn injury in the ileum and colon compared to 

shams.  There was a ~7-fold increase in IL-6 levels in the distal intestinal tract (colon) compared  
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to the duodenum following ethanol and burn injury.  Similarly, IL-18 levels were ~1.5-fold 

higher in the colon compared to the ileum following the combined insult of ethanol and burn 

injury.  Collectively, these data suggest that ethanol and burn injury differentially affects the 

distinct compartments of the intestinal tract. 

Introduction 

The intestine is the second largest immunological organ consisting of functionally 

discrete compartments – duodenum, jejunum, ileum, and colon.  Additionally, the intestine is the 

largest bacterial reservoir within the body.  Collectively, the intestine is responsible for nutrition 

absorption and maintaining an interface to prevent gut bacterial translocation33.  Regions of the 

intestine (duodenum, jejunum, ileum, and colon) are functionally distinct and contain regional 

variations in antigen-presenting cells and bacterial content33,126,127.  It is well established that the 

intestinal bacterial content increases progressively from the duodenum to the colon, where the 

colon contains the largest bacterial population128,129.  Both ethanol exposure and burn injury 

alone perturb intestinal structural and functional integrity 8,130,131.  Similarly, ethanol combined 

with burn injury has been demonstrated to cause increased intestinal permeability and bacterial 

translocation9,10,30,132.  Previously, our lab showed that acute ethanol exposure prior to burn 

injury results in significantly increased levels in pro-inflammatory mediators in the terminal 

ileum11,133.  The present study examined whether ethanol combined with burn injury 

differentially influences the expression of pro-inflammatory mediators in various parts of the 

intestine (duodenum, jejunum, ileum and colon).   

Materials and Methods 

Animals. 

8–10-week-old male C57BL/6 mice (22–25 g) were obtained from Harlan Laboratories  
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(Indianapolis, IN).  Mice were housed and acclimated for two weeks prior to experimentation. 

All animal procedures were conducted in accordance with the Animal Care and Use Committee 

at Loyola University Chicago Health Sciences Division. 

Mouse Model of Ethanol Intoxication and Burn Injury.   

Mice were randomly divided into four groups: sham vehicle (n =10–12), sham ethanol 

(n= 10–12), burn vehicle (n =5–8), and burn ethanol (n=6–8).  As described previously, ethanol- 

or water-treated mice were gavaged with 0.4 mL of 25% ethanol in water (~2.9 g/kg) or water, 

respectively11.  Four hours after the gavage, mice were anesthetized by I.P. injection with a 

cocktail of ketamine and xylazine (80 mg/kg and 1.25 mg/kg, respectively). The dorsal surface 

was shaved, and mice were transferred to a template, which is fabricated to expose ~12.5% of the 

TBSA.  Mice in the burn group were immersed in 85–90°C water for 7–8 seconds. The mice 

were then dried and resuscitated with an I.P. injection of 1.0 mL physiological saline11 before 

being returned to their cages and given water and food ad libitum. 

Tissue Harvesting.   

Groups of mice were euthanized one, three and seven days after injury. The duodenum, 

jejunum, ileum, and colon were removed and immediately transferred into liquid nitrogen. 

Preparation of Tissue Homogenates.  

For the measurement of inflammatory mediators, tissue from the various groups was 

sonicated on ice in phosphate-buffered saline (PBS) containing a protease inhibitor cocktail 

(Sigma Chemical Co., St. Louis, MO). Homogenates were cleared by centrifuging at 9,000 RPM 

at 4 °C for 30 min and stored at −80 °C. 

Measurement of Cytokines in Tissue Homogenates.    

IL-6, IL-18, and KC levels in tissue homogenates were determined by ELISA kits  
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according to the manufacturer’s instructions. Mouse IL-6 and KC ELISA kits were purchased 

from R&D Systems (Minneapolis, MN), and mouse IL-18 ELISA kit was purchased from 

eBioscience (Santa Clara, CA).   

Statistical Analysis.  

Data is presented as mean ± standard error of the mean (SEM).   Statistical analysis was 

performed using wherever applicable Analysis of Variance (ANOVA) with Tukey-Kramer’s 

post-hoc test or student’s t-test.  (GraphPad Prism 7 Software, La Jolla, CA). A p < 0.05 was 

considered statistically significant. 

Results 

We observed no significant changes in IL-6 in the duodenum and jejunum following the 

combined insult of ethanol and burn injury compared to animals in the sham vehicle group 

(Figures 4A-B).  Consistent with our previous findings11, IL-6 levels were significantly elevated 

in the ileum day one following burn injury alone compared to the shams groups (Figure 4C).  

Similarly, IL-6 was significantly increased day one after the combined insult of ethanol and burn 

injury in the ileum compared to the sham groups.  We did not however, observed any significant 

changes between the burn vehicle and burn ethanol groups in the ileum (Figures 4C).  IL-6 levels 

were significantly elevated in the colon day one after the combined insult of ethanol and burn 

injury compared to all groups (Figure 4D).  We did not detect any changes in IL-6 levels days 

three and seven following the combined insult of ethanol and burn injury in the duodenum, 

jejunum, ileum or colon compared to the sham vehicle group (Figure 4). 

Next, we evaluated IL-18 levels days one, three and seven following the combined insult 

of ethanol and burn injury.  IL-18 was of particular interest as it is a pro-inflammatory cytokine 

associated with intestinal tissue damage89,134.  We observed no changes in IL-18 levels in the 
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duodenum or jejunum following ethanol and burn injury compared to animals in the sham 

vehicle group (Figures 5A-B).  IL-18 levels were significantly increased in the ileum and colon 

after ethanol and burn injury compared to all groups (Figures 5C-D). We did not find any 

changes in IL-18 levels days three and seven following ethanol and burn injury in the duodenum, 

jejunum, ileum or colon compared to the sham vehicle group (Figure 5).   

To examine whether chemokine levels were also differentially affected in the GI tract 

following the combined insult of ethanol and burn injury, we analyzed KC levels in the intestine 

tissues days one, three and seven after ethanol and burn injury.   Similar to cytokine levels (IL-6 

and IL-18), we determined that KC exhibited differential expression throughout the GI tract.  KC 

levels were not changed in the duodenum following ethanol and burn injury compared to the 

sham vehicle group (Figure 6A).  Burn injury alone significantly elevated KC levels in the ileum 

and colon compared to sham vehicle animals (Figures 6C-D).  Furthermore, KC levels were 

further elevated following ethanol and burn injury in the jejunum and ileum day one following 

the combined insult of ethanol and burn injury compared to the sham groups (Figures 6B-C).  

KC levels were significantly higher in the colon compared to all groups tested (Figure 6D).  We 

did not detect any changes in KC levels days three and seven following ethanol and burn injury 

in the duodenum, jejunum, ileum or colon compared to the sham vehicle group (Figure 6).   
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Figure 4.  Effects of Ethanol and Burn Injury on IL-6 Levels in Intestinal Tissues Days 
One, Three and Seven Following Injury. Intestinal tissues (A. duodenum, B. jejunum, C. 
ileum, and D. colon) were collected days one, three and seven following ethanol and burn injury 
and used to measure IL-6 levels.  *p<0.05, ***p < 0.001, by Two-Way ANOVA. The data 
shown are mean ± SEM of n = 5–12 animals per group. All sham vehicle and sham ethanol 
animals from all the days tested were pooled together.     
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Figure 5.  Effects of Ethanol and Burn Injury on IL-18 Levels in Intestinal Tissues Days 
One, Three and Seven Following Injury.  Intestinal tissues (A. duodenum, B. jejunum, C. 
ileum, and D. colon) were collected days one, three and seven following ethanol and burn injury 
and used to measure IL-18 levels.  *p<0.05, ***p<0.001 by Two-Way ANOVA, # by student’s 
t-test compared to burn vehicle. The data shown are mean ± SEM of n = 5–12 animals per group. 
All sham vehicle and sham ethanol animals from all the days tested were pooled together.     
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Figure 6.  Effects of Ethanol and Burn Injury on KC Levels in Intestinal Tissues Days One, 
Three, and Seven Following Injury. Intestinal tissues (A. duodenum, B. jejunum, C. ileum, and 
D. colon) were collected days one, three and seven following ethanol and burn injury and used to 
measure KC levels.  *p<0.05, **p<0.01, ***p<0.001 by Two-Way ANOVA. The data shown are 
mean ± SEM of n = 5–12 animals per group. All sham vehicle and sham ethanol animals from all 
the days tested were pooled together.      
 

We reevaluated the data collected (Figures 4-6) to examine whether levels of pro-

inflammatory mediators were differentially affected by region (duodenum, jejunum, ileum or 

colon).  Interestingly, we observed that the levels of pro-inflammatory mediators (IL-6, IL-18 

and KC) increased distally, with levels being higher in the colon. This coincided with the 

increasing bacterial content in the GI tract which also increases distally, with the highest levels 

being in the colon. The duodenum and jejunum contain 102–104 CFU/g, whereas the ileum’s 

bacterial content is 1010 CFU/g. The colon’s bacterial content is 1010–1012 CFU/g128,129.  While 

IL-6 levels increased similar in the ileum and colon (~2.5-fold) following ethanol and burn 

injury compared to the sham vehicle injured animals.  The net IL-6 levels were significantly 

higher in the colon compared to the small intestine (e.g. duodenum, jejunum and ileum) (Figure 
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7A).  Further analysis of the data demonstrated a ~7-fold increase in IL-6 levels in the colon 

following the combined insult of ethanol and burn injury compared to the duodenum and a ~3-

fold increase when compared to the ileum.  Similarly, IL-18 levels increased more distally, with 

higher levels in the colon however in contrast to IL-6, the net elevation was only ~1.5-fold 

higher in the colon compared to the ileum after ethanol and burn injury and this was not found to 

be significantly different (Figure 7B).  In agreement with our other findings, the pro-

inflammatory mediator KC also increased distally, with higher levels in the colon.  KC levels 

were significantly elevated in the colon compared to the duodenum ~30-fold and the ileum ~4-

fold following the combined insult of ethanol and burn injury (Figure 7C). 
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Figure 7.  Expression of Pro-Inflammatory Mediators One Day Following Ethanol and 
Burn Injury Intestinal Tissues.  Reevaluated data collected from Figures 4-6 to investigate 
whether levels of pro-inflammatory mediators (A. IL-6, B. IL-18, and C. KC), were differentially 
affected by region (duodenum, jejunum, ileum, and colon) day one following ethanol and burn 
injury. Panel D was generated from O'Hara & Shanahan. EMBO Rep. 2006;7(7):688-693 and 
Hakansson & Molin. Nutrients. 2011;3(6):637-682128,129 *p<0.05, **p<0.01, ***0.001 by One-
Way ANOVA compared to the respective sham vehicle group. The data shown are mean ± SEM 
of n = 7-8 animals per group.  

Summary 

In the present study, we examined pro-inflammatory mediators in various parts of the 

intestine days one, three, and seven following ethanol and burn injury.   These data suggest that 

ethanol and burn injury significantly increased pro-inflammatory mediators (IL-6, IL-18 and KC) 

in intestinal tissue following the combined insult of ethanol and burn injury.  Interestingly, we 

discovered that the levels of the pro-inflammatory mediators progressively increase down the GI 

tract with larger net levels in the colon.  As the levels of bacterial content also follows this trend, 



35 
 

 

this suggests that the microbiota may influence the levels of the pro-inflammatory mediators 

following the combined insult.  Although further investigation is needed to validate this 

relationship, collectively, these data suggest that ethanol and burn injury differentially effects 

levels of pro-inflammatory mediators in different parts of the GI tract following the combined 

insult of ethanol and burn injury. 

Although we observed higher levels of pro-inflammatory mediators in the colon, we 

observed similar responses in both small and large intestines in other parameters (e.g. expression 

of tight junction proteins). This provides further evidence that the levels of the inflammatory 

responses are strongly linked to the bacterial content following ethanol and burn injury.  As our 

laboratory historically evaluate changes following ethanol and burn injury in the ileum, we only 

used the ileum or isolated epithelial cells from the ileum for downstream experiments. 
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CHAPTER FOUR 

EFFECTS ON ETHANOL AND BURN INJURY ON EXPRESSION OF MICRORNA 
BIOGENESIS COMPONENTS81 

 
Abstract 

Ethanol exposure at the time of burn injury is a major contributor to post-burn 

pathogenesis. Many of the adverse effects associated with ethanol and burn injury are linked to 

an impaired intestinal barrier.  The combined insult causes intestinal inflammation, resulting in 

tissue damage, altered tight junction protein expression, and increased intestinal permeability.  

microRNAs are key regulators of cellular homeostasis and play a critical role in the maintenance 

of intestinal barrier function.  Specifically, miR-150 has been shown to impact levels of 

inflammatory mediators which can contribute to gut barrier disruption.   The present study 

examined whether ethanol and burn injury alters expression of microRNA processing enzymes 

(drosha, dicer, and argonaute-2) and microRNAs in the small intestinal epithelial cells (IECs). 

Male mice were gavaged with ethanol (~2.9 g/kg) 4 hours prior to receiving a ~12.5% total body 

surface area full thickness burn.  One day after injury, mice were euthanized and IECs were 

isolated and analyzed for expression of miR biogenesis components (drosha, dicer and 

argonaute-2) and miRs (-7a, -22, -150, -210, and -375).  Dicer mRNA and protein levels were 

not changed following the combined insult compared to sham injured animals.  Drosha and 

argonaute-2 mRNA and protein levels were significantly reduced in IECs one day after injury.  

There was a trend for decrease expression of all tested miRs following ethanol and burn injury 

compared to shams however, only miR-7a and miR-150 were significantly reduced.  To  
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substantiate the role of miR-150 in intestinal inflammation, young adult mouse colonocytes were 

transfected with a miR-150 plasmid and stimulated with LPS (100ng/mL).  miR-150 

overexpression significantly reduced IL-6 and KC protein levels compared to vector control cells 

challenged with LPS.  These results suggest that altered microRNA biogenesis and associated 

decrease in miR-150 likely contributes to increased intestinal inflammation following ethanol 

and burn injury. 

Introduction 

Recent findings have demonstrated that the gut barrier disruption following ethanol and 

burn injury is widely associated with excess inflammation10,11,30,135.  These studies suggest that 

increases in intestinal inflammatory mediators such as IL-6, IL-18 or other chemokines (e.g. KC) 

can directly or via recruitment of neutrophils cause intestinal tissue damage and alter tight 

junction protein expression10,30,31,88,134,135.  microRNAs (miRs) are small noncoding RNA 

sequences, which control gene expression at the post-transcriptional level15,16,18,42, and 

dysregulation of microRNA expression has resulted in numerous pathological conditions.  Many 

studies have shown a relationship between microRNAs and tissue inflammation following 

ethanol exposure or tissue injury.  However, whether microRNAs play a role following ethanol 

and burn injury remains unknown.  Therefore, the present study assessed the effects of ethanol 

combined with burn injury on the biogenesis of microRNAs in intestinal epithelial cells (IECs). 

Biogenesis of microRNAs occurs in several steps, starting with transcription by RNA 

polymerase II forming a primary microRNA (pri-miRNA), which is then cleaved by drosha (a 

RNase III enzyme) resulting in a precursor miRNA (pre-miRNA).  The pre-miRNA is exported 

from the nucleus by exportin-5, where it is cleaved by dicer15,16.  Cleavage by dicer results in a 

duplex miRNA complex containing both the guide and passenger strand.  The guide strand is 
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loaded onto an argonaute (ago) protein forming miRISC, while the passenger strand is usually 

degraded.  The guide miRNA uses partial base pairing to guide miRISC to its target mRNA. 

Binding of miRISC to the target mRNA allows for miRNA mediated gene regulation 15-17.  

Numerous studies have illustrated the importance of microRNAs in maintenance of the 

intestinal barrier23,66,136.  Thus, altered expression of microRNAs could negatively affect the 

intestinal barrier.  Changes in microRNAs expression as a result of ethanol and burn injury could 

potentially alter the levels of pro-inflammatory cytokines, which have been associated with 

tissue damage and altered tight junction protein expression10,30,31,88,134.  Specifically, miR-150 

has been shown to regulate levels of inflammatory mediators and is downregulated in sepsis 

patients and following exposure of cells to bacterial LPS in vitro45,124,125.   

Therefore, we examined whether ethanol and burn injury modulates expression of 

microRNAs and biogenesis components in small intestinal epithelial cells.  We hypothesized that 

expression of microRNAs and biogenesis components would be diminished following ethanol 

and burn injury.  Our data suggest that ethanol and burn injury diminished drosha and ago-2 

expression.  We determined that ethanol and burn injury reduced expression of miRs (-7a and-

150).  Furthermore, in vitro overexpression of miR-150 illustrated that the microRNA decreased 

levels of pro-inflammatory mediators.  Taken together, our results demonstrate the ethanol and 

burn injury negatively affects expression of microRNA biogenesis components and miRs (-7a 

and -150) compared to sham injured animals, which may provide a mechanism behind the 

elevated inflammatory response following ethanol and burn injury. 

Materials and Methods 

Mouse Model of Acute Ethanol Intoxication and Burn Injury.   
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Adult male C57BL/6 mice (22-25g) were purchased from Charles River Laboratories 

(Wilmington, MA). The mice were randomly divided into four groups: sham vehicle (n = 5-8), 

sham ethanol (n = 3-9), burn vehicle (n = 4-11), and burn ethanol (n=7-12).  Mice were gavaged 

with 0.4ml of 25% ethanol in water (~2.9 g/Kg) or water (vehicle).  Four hours following the 

gavage, mice were anesthetized by I.P. with ketamine and xylazine (80 mg/Kg and 1.25 mg/Kg, 

respectively).  The mice were transferred to a template fabricated to expose ~12.5% of the total 

body surface area. For burn injury, mice were immersed in 85-90°C water bath for 7-8 sec. Mice 

were dried and resuscitated with an I.P. of 1.0 ml physiological saline and returned to their cages 

and given water and food ad libitum11.  All animal procedures were carried out in accordance 

with the Animal Care and Use Committee at Loyola University Chicago Health Sciences 

Division. 

Small Intestinal Epithelial Cell Isolation and RNA Isolation. 

Day one after injury, mice were euthanized, and small intestine tissue was harvested and 

washed in ice cold 1x PBS containing a cocktail of Gentamycin (50mg/ml) and 1x penicillin-

streptomycin.   The small intestine tissue was further processed to isolate small intestinal 

epithelial cells as described by Weigmann et al.137.  The small intestines were then incubated in a 

pre-digestion solution (1x Hank’s Balanced Salt Solution (HBSS), 1% 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), 5mM Ethylenediaminetetraacetic acid (EDTA) and 

1mM Dithiothreitol (DTT)) and incubated at 37 °C for 20 minutes.  Following the incubation, 

the supernatant was passed through a 100 µm strainer to collect epithelial cells.  The incubation 

in the pre-digestion solution was performed twice to maximize cell count.  The collected cells 

were centrifuged for 10 minutes at 4°C at 1500 RPM and washed in 1x PBS. IECs were lysed 

and large RNA and enriched small RNA were isolated using mirVana miRNA Isolation Kit (Life 
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Technologies, Carlsbad, CA) according to the manufacturer's instructions.  A nanodrop 

spectrophotometer (Thermo Scientific) was used to determine RNA concentration.  

Determination of microRNA Biogenesis Components (Drosha, Dicer and Argonaute-2) and 

Degradation Components (Exoribonuclease 1 and Exoribonuclease 2). 

Large RNA was used to make cDNA using the High-Capacity cDNA Reverse 

Transcription Kit from Life Technologies (Carlsbad, CA).  Expression of drosha, dicer and ago-

2, exoribonuclease 1 (XRN1) and exoribonuclease 2 (XRN2) was analyzed by qPCR using their 

respective primers obtained from Life Technologies (Carlsbad, CA).  GAPDH was used as the 

endogenous control for qPCR experiments.  The target genes Ct cycle values were normalized to 

GAPDH Ct values.  Data were calculated using the ΔΔCT method and expressed relative to the 

average of sham vehicle group13. 

Determination of microRNA Biogenesis Components (Drosha, Dicer and Argonaute-2) 

Protein Expression. 

To determine protein levels of microRNA biogenesis components in epithelial cells day 

one following ethanol and burn injury, lysates were analyzed by Sodium Dodecyl Sulfate 

Polyacrylamide Gel Electrophoresis (SDS-PAGE) and were transferred to either Polyvinylidene 

Difluoride (PVDF) or nitrocellulose membranes.  The membranes were blocked for one hour at 

room temperature with 5% Bovine Serum Albumin (BSA) in TBS-T (0.05% Tween 20 in Tris 

Buffer Solution).  Following blocking the membranes were incubated with antibodies specific to 

dicer (Santa Cruz Biotechnology, Santa Cruz, CA), drosha or argonaute-2 (Cell Signaling 

Technology, Danvers, MA) overnight at 4°C.   Membranes were washed five times for five 

minutes with TBS-T.  Following the last wash, the membrane was incubated with secondary 

antibody conjugated with horseradish peroxidase (HRP) for one hour.  After the incubation in the 
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secondary antibody, the membrane was washed five times for five minutes in TBS-T and one 

time for 10 minutes in TBS.  Following the final wash, the membranes were probed using 

Western Lightning™ Chemiluminescence Reagent Plus from PerkinElmer (Norwalk, CT).  The 

membrane was visualized using a ChemiDoc System from BioRad (Hercules, CA).  

Determination of Expression of microRNAs. 

Enriched small RNAs were used for cDNA synthesis using miScript II RT Kit from 

Qiagen (Valencia, Ca).  Expression of microRNAs (-7a, -22, -150, -210 and -375) was examined 

by qPCR using Qiagen miScript Primer Assays.  Small nucleolar RNA (Snord68) was used as an 

endogenous control for microRNA qPCR experiments.  miR Ct cycle values were normalized to 

snord68 Ct values.  Data were calculated using the ΔΔCT method and expressed relative to the 

average of sham vehicle group. As we observed no changes in mRNA or protein levels of 

microRNA biogenesis components, miR expression was examined in two groups: sham vehicle 

(n=3-4), and ethanol burn (n=3-4). 

miR-150 Overexpression and Assessment of IL-6 and KC. 

To establish the role of miR-150 on intestinal inflammation, 6 x 105 YAMCs were seeded 

in Roswell Park Memorial Institute medium (RPMI) 1640 containing 50μg/ml gentamicin, 100 

units/ml penicillin, 100 μg/ml streptomycin, 1% ITS+ Premix, 5% fetal bovine serum (FBS) and 

1x glutamine.  One day after plating, the cells were transfected with 250ng of miR-150 

expression plasmid (miR-150 plasmid) or PCMVMIR empty vector control (vector) from 

Origene (Rockville, MD) and Lipofectamine 2000 from Invitrogen (Carlsbad, CA).  The cells 

were incubated for 48 hours in the Lipofectamine 2000/DNA mixture.  Following the incubation, 

the cells were washed with PBS and then treated with LPS (100ng/ml) for 6 hours.  After the 6-

hour LPS treatment both the supernatant and cells were collected.  The cells were lysed and used 
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for RNA isolation, total and enriched RNA were used for cDNA synthesis and subsequent qPCR 

(miR-150, IL-6 and KC).  Snord68 was used as an endogenous control for miR-150 qPCR, while 

β-Actin was used as an endogenous control for IL-6 and KC qPCR.  IL-6 and KC levels from the 

supernatant were determined by ELISA kits according to the manufacturer’s instructions. Mouse 

IL-6 and KC ELISA kits were purchased from BD Biosciences (Bedford, MA) and R&D 

Systems (Minneapolis, MN) respectively.  Transfection experiments were performed three times 

in duplicates.  Due to variability between IL-6 and KC levels on different days, IL-6 and KC 

values were normalized to vector LPS. 

Statistical Analysis. 

  All statistical analysis is presented as mean ± SEM.  Analysis was performed with Two-

Way ANOVA with Tukey-Kramer Multiple Comparisons Test or student’s t-test (GraphPad 

Prism 7 Software, La Jolla, CA). A p<0.05 was considered statistically significant. 

Results 

To determine whether ethanol and burn injury modulates expression of microRNA 

biogenesis components, we examined expression of drosha.  The first step in microRNA 

maturation is cleavage of pri-miR by drosha in the nucleus15.  Drosha mRNA expression was 

significantly diminished day one following ethanol and burn injury in isolated small intestinal 

epithelial cells compared to all groups (Figure 8A).  Consistent with mRNA expression, we 

found a significant decrease in drosha protein levels in small intestinal epithelial cells day one 

following the combined insult compared to the sham vehicle and burn vehicle groups (Figure 

8B). 

Next, we examined expression of dicer to further assess whether ethanol and burn injury 

disrupts expression of microRNA biogenesis components in small intestinal epithelial cells.  
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Cytoplasmic cleavage of the pre-miR by dicer is the next maturation step in microRNA 

biogenesis15.  There was no change in IEC dicer mRNA expression day one following the 

combined insult of ethanol and burn injury compared to all groups (Figure 9A).  Additionally, 

dicer protein levels were not changed day one following ethanol and burn injury in small 

intestinal epithelial cells compared to all groups (Figure 9B). 

Next, we examined whether the combined insult affects ago-2 expression.  Argonaute 

proteins are the core component of the miRISC complex, and ago-2 is the only member of the 

argonaute family with catalytic ability15.  Furthermore, ago-2 has been shown to protect the 

single stranded mature microRNA from cleavage by ribonucleases49,50.  Therefore, altered 

expression of ago-2 could influence microRNA levels.  There was a significant decrease in ago-2 

mRNA expression day one following the combined insult in small intestinal epithelial cells 

compared to all groups (Figure 10A).  Furthermore, ago-2 protein levels were significantly 

reduced day one following the combined insult compared to the sham vehicle and burn vehicle 

groups (Figure 10B). 
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Figure 8. Drosha mRNA and Protein Levels in Small Intestinal Epithelial Cells Following 
Ethanol and Burn Injury. Isolated intestinal epithelial cells were used to examine drosha A.) 
mRNA expression, and B.) protein levels day one following ethanol and burn injury.  Values 
were calculated using a ΔΔCT method and normalized to sham vehicle animals.  GAPDH was 
used as an endogenous control.  Densitometry measurements for each protein are given as a ratio 
of the protein density to β-Actin.  The data shown are mean ± SEM of duplicate experiments. *p 
< 0.05 by Two-Way ANOVA or #p< by student’s t-test compared to burn vehicle. n = 3–12 
animals per group.  
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Figure 9. Dicer mRNA and Protein Levels in Small Intestinal Epithelial Cells Following 
Ethanol and Burn Injury. Isolated intestinal epithelial cells were used to examine dicer A.) 
mRNA expression, and B.) protein levels day one following ethanol and burn injury.  Values 
were calculated using a ΔΔCT method and normalized to sham vehicle animals.  GAPDH was 
used as an endogenous control.  Densitometry measurements for each protein are given as a ratio 
of the protein density to β-Actin.  The data shown are mean ± SEM of duplicate experiments. 
Statistical analysis was performed by Two-Way ANOVA. n = 3–12 animals per group. 
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Figure 10. Ago-2 mRNA and Protein Levels in the Small Intestinal Epithelial Cells 
Following Ethanol and Burn Injury.  Isolated intestinal epithelial cells were used to examine 
ago-2 A.) mRNA expression, and B.) protein levels day one following ethanol and burn injury.  
Values were calculated using a ΔΔCT method and normalized to sham vehicle animals.  GAPDH 
was used as an endogenous control.  Densitometry measurements for each protein are given as a 
ratio of the protein density to β-Actin.  The data shown are mean ± SEM of duplicate 
experiments of duplicate experiments. *p < 0.05, **p<0.01, ***p<0.001 by Two-Way ANOVA. 
n = 3–12 animals per group. 
 

To establish whether ethanol and burn injury modulates microRNA expression we 

evaluated expression of miR-7a, miR-22, miR-150, miR-210 and miR-375. We chose to examine 

expression of five microRNAs (miR-7a, miR-22, miR-150, miR-375, and miR-210) based on 

their predicted targets.  miR-7a was selected because this microRNA play an important role in 
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proliferation, apoptosis and inflammation138-140.  Similarly, microRNAs (miR-22, miR-150 and 

miR-210) were selected for evaluation due to their involvement in inflammation45,122,124,141, 

which is a major adverse effect following ethanol and burn injury11,12,30.  Furthermore, miR-375 

was selected due to its role in goblet cell differentiation136.  Although, all microRNAs examined 

exhibited a trend towards reduced expression following the combined insult, miR-7a and miR-

150 were the only miRs whose expression was significantly reduced compared to sham vehicle 

animals (Figure 11).   miR-7a expression was reduced by 60%, while miR-150 expression was 

reduced by 65% compared to the sham vehicle group (Figure 11A and 11C).   

5′ to 3′ exoribonucleases (XRN1 and XRN2) are believed to be involved in microRNA 

degradation 15,21.  We evaluated whether ethanol and burn injury modulates expression of these 

exoribonucleases.  We observed no changes in XRN1 or XRN2 mRNA expression following 

ethanol and burn injury compared to all groups (Figures 12A-B), suggesting that degradation is 

not contributing to the observed decrease expression of select microRNAs.   
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Figure 11. Expression of miRNAs in Isolated Small Intestinal Epithelial Cells Following 
Ethanol and Burn Injury. Isolated intestinal epithelial cells were used to examine A.) miR-7a, 
B.) miR-22, C.) miR-150, D.) miR-210 and E.) miR-375 day one following ethanol and burn 
injury.  Values were calculated using a ΔΔCT method and normalized to sham vehicle animals.  
Snord68 was used as an endogenous control.  **p<0.01 by student’s t-test compared to sham 
vehicle. The data shown are mean ± SEM of n = 3–4 animals per group. 
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Figure 12. XRN1 and XRN2 Expression in the Small Intestinal Epithelial Cells Following 
Ethanol and Burn Injury. Isolated intestinal epithelial cells were used to examine A.) XRN1 
and B.) XRN2 day one following ethanol and burn injury.  Values were calculated using a ΔΔCT 
method and normalized to sham vehicle animals.  GAPDH was used as an endogenous control.  
Statistical analysis was performed by Two-Way ANOVA. The data shown are mean ± SEM of n 
= 5-7 animals per group. 
 

Although, we observed significant reduction in both miRs (-7a and -150), we chose to 

further investigate the role of miR-150.  miR-150 was of particular interest due to its 

involvement of inflammation and sepsis which are major adverse effects following ethanol and 

burn injury.   We used an in vitro approach in which young adult mouse colonocytes were 

transfected with a miR-150 plasmid for 48 hours prior to a 6-hour LPS (100ng/ml) treatment 

(Figure 13A).  The 48-hour transfection significantly increased miR-150 expression in cells 

transfected with the miR-150 plasmid compared to cells transfected with the empty vector 

(Figure 13B).   Treatment of cells containing the empty vector with LPS resulted in a significant 

increase in IL-6 (12-fold) and KC (48-fold) expression.  Overexpression of miR-150 did not 

affect IL-6 or KC expression (Figures 13C and 13E).  IL-6 protein levels were significantly 

reduced following transfection with miR-150 compared to vector LPS treated cells (Figure 13D). 

Furthermore, KC was significantly reduced in cells transfected with the miR-150 plasmid and 

challenged with LPS compared to vector LPS cells (Figure 13F). 
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Figure 13. Effects of miR-150 Overexpression on Pro-Inflammatory Mediators. A.) 
Schematic of time course of YAMCs transfection experiment:  YAMCs transiently transfected 
with a miR-150 plasmid, 48 hours later cells were treated for 6-hour LPS (100ng/ml).  B.) 
Expression of miR-150 following transfection and LPS challenge.   Values were calculated using 
a ΔΔCT method and normalized to cells containing the empty vector.  Snord68 was used as an 
endogenous control for miRNA. RNA isolated from YAMCs was used to examine IL-6 (C) and 
KC (E) mRNA expression.  Values were calculated using a ΔΔCT method and normalized to 
cells containing the empty vector.  β-Actin was used as an endogenous control for mRNA.  
Secreted IL-6 (D) and KC (F) levels were examined by ELISA, results were normalized to vector 
LPS (n = 3 individual experiments performed in duplicate).  *p < 0.05, **p < 0.01, ***p<0.001 
by Two-Way ANOVA or student’s t-test compared to vector or vector LPS. 
 

Summary 

In this study, we demonstrate that ethanol exposure at the time of burn injury negatively 

impacts expression of microRNA biogenesis components (drosha and ago-2) in small intestinal 

epithelial cells compared to shams.  Furthermore, the reduction in expression microRNA 

components correlates with reduced miR-7a and miR-150 expression.  Our findings further show 

that miR-150 influences levels of inflammatory mediators.  In vitro overexpression of miR-150 

and subsequent LPS stimulation reduced pro-inflammatory mediators (KC and IL-6) following 
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ethanol and burn injury.  Together these findings suggest that diminished expression of 

microRNA biogenesis and subsequent reduction in miRs (e.g. miR-150) could contribute to the 

observed elevated inflammation following ethanol and burn injury. 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

CHAPTER FIVE 

ROLE OF HIF-1α IN THE GUT FOLLOWING ETHANOL AND BURN INJURY 
 

Abstract 

Ethanol remains a major confounder in the pathology associated with burn injury.  

Experimental studies have widely linked these adverse effects to an impaired intestinal barrier.   

Our laboratory has previously demonstrated that there is reduced intestinal oxygen delivery 

(hypoxia) to the gut following ethanol and burn injury.  Furthermore, we observed altered 

microRNA expression in small intestinal epithelial cells after the combined insult of ethanol and 

burn injury.  Others have shown that hypoxia can influence expression of both microRNAs and 

microRNA biogenesis components.  In this study, we sought to examine whether hypoxia has 

any role in altered expression of microRNA biogenesis components (drosha, dicer and 

argonaute-2) and miRs (-7a and -150) following ethanol and burn injury.  Additionally, we 

evaluated whether improvements in expression of miRs could impact other parameters that are 

disrupted following ethanol and burn injury (tight junction expression, bacterial outgrowth, and 

intestinal permeability).  Male mice were gavaged with ethanol (~2.9 g/kg) four hours before 

receiving a ~12.5% total body surface full thickness burn.  Immediately after burn, mice were 

resuscitated with 1 mL of normal saline with or without 5 mg/Kg PX-478 a HIF-1α inhibitor.  

One day following injury mice were euthanized, luminal contents were collected from the distal 

ileum and small intestinal tissue was harvested and processed for isolation of IECs.  Ethanol and 

burn injury significantly reduced expression of drosha and argonaute-2 in IECs.  This correlated  



53 
 

 

with reduced expression of miRs (-7a and -150), occludin and claudin-4 compared to sham 

injured animals.  This was accompanied with an increase in intestinal permeability.  

Furthermore, we observed an increase in total bacteria and Enterobacteriaceae populations 

following the combined injury compared to sham vehicle animals. Treatment of mice with PX-

478 improved expression of drosha, argonaute-2 and miRs (-7a and -150).  PX-478 treatment 

increased occludin, claudin-4, ZO-1 expression, while reducing bacterial dysbiosis, and intestinal 

permeability. Taken together, these data suggest that PX-478 improves microRNA biogenesis 

which improves expression of miRs, barrier integrity while reducing bacteria dysbiosis following 

ethanol and burn injury.  

Introduction 

Experimental findings have widely linked an impaired gut barrier to ethanol and burn 

injury pathology9,29.  One factor that is modulated following ethanol and burn injury and likely 

contributes to this pathology is the ischemic condition and resulting hypoxia that occurs in the 

gut14.  Our laboratory has demonstrated that the combined insult of ethanol and burn injury 

reduces intestinal oxygen delivery to the gut (hypoxia)14.  Hypoxia can result in increased 

inflammation, altered tight junction expression and tissue damage110-112.  Furthermore, hypoxia 

after burn injury has been associated with tissue damage while reducing tight junction protein 

expression and increased intestinal permeability110-112,142,143.  Additionally, hypoxia has been 

shown in other models to reduce expression of microRNAs and their biogenesis 

components115,116,144-147.  As microRNAs are major regulators of cellular homeostasis aberrant 

expression due to hypoxia can lead to detrimental effects.   

Hypoxia has been shown to result in decreased drosha expression in a HIF-1α dependent 

manner.  Interestingly, hypoxia decreased dicer expression in a HIF-1α independent manner115.  
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The effects on argonaute expression as a consequence of hypoxic insult are conflicting, one 

study suggest that hypoxia potentiates argonaute expression while another study demonstrated 

that hypoxia diminishes microRNA loading onto argonaute144,145.  Together, these studies 

illustrate that hypoxia can impact expression of microRNA biogenesis components and 

subsequently expression of microRNAs.  Alterations of these key regulators due to the hypoxic 

condition in the gut could contribute to the observed negative effects following ethanol and burn 

injury. 

As microRNAs are central to many cellular functions disruption of these molecules due 

to hypoxic insult could influence tissue damage, tight junction protein expression and 

inflammation.  Furthermore, as ethanol and burn injury reduces expression of microRNA 

biogenesis components (drosha and argonaute-2)81, we examined whether the hypoxic insult in 

the gut following injury mediate these effects.  We hypothesized that inhibiting the hypoxic 

signaling pathway using PX-478 (HIF-1α inhibitor) will restore expression of microRNA 

biogenesis components and parameters negatively impacted following ethanol and burn injury.   

Materials and Methods 

Animals.  

 Adult (8-10-week-old) C57BL/6 male mice (~22-25g body weight) were purchased from 

Charles River Laboratories (Wilmington, MA).  Mice were housed and acclimated for one week 

before experimentation.  All animal procedures were conducted in accordance to the Animal 

Care and Use Committee at Loyola University Chicago Health Science Division, Maywood, IL. 

Mouse Model of Acute Ethanol Intoxication and Burn Injury and PX-478 Treatment.  

Mice were randomly divided into four groups: sham vehicle (saline) (n=5-6), sham  
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vehicle (PX-478) (n=4-6), burn ethanol (saline) (n=6-10) and burn ethanol (PX-478) (n=5-10). 

Mice were gavaged either with water (vehicle group) or with (~2.9 g/Kg) 0.4ml of 25% ethanol 

in water (ethanol group).  Four hours after the gavage, the mice were anesthetized by I.P. with a 

cocktail of ketamine and xylazine (80 mg/Kg and 1.25 mg/Kg, respectively).  The mice were 

then placed into a template which is fabricated to expose ~12.5% of the TBSA.  Mice in the burn 

group were immersed in a water bath (85-90°C) for 7-8 seconds.  Immediately after the injury 

mice were dried and resuscitated with an I.P. injection of 1.0 ml physiological saline (saline 

group) or 5mg/kg of PX-478148 in saline (PX-478 group).  Mice also received the analgesic 

Buprenorphine (1mg/kg) subcutaneously.  Mice were returned to their cages and received water 

and food ad libitum11.  One day following the gavage, mice were euthanized, luminal contents 

and small intestine tissue were collected.   

Small Intestinal Epithelial Cell Isolation & RNA Isolation.   

Harvested small intestinal tissue was washed in ice cold 1x PBS containing Gentamycin 

(50mg/ml) and 1x penicillin-streptomycin.  Small intestinal tissue was incubated at 37 °C for 20 

minutes in pre-digestion solution (1x HBSS, 1% HEPES, 5mM EDTA and 1mM DTT).  The 

epithelial cells were collected by passing the supernatant through a 100 µm strainer.  Incubation 

of the small intestinal tissue in the pre-digestion solution was preformed twice to maximize cell 

count.  Cells were centrifuged for ten minutes at 4°C at 1500 RPM before being washed in 1x 

PBS.  Enriched IECs were lysed and used for downstream experimentation. 

Determination of Expression in Isolated Small Intestinal Epithelial Cells.   

A mirVana miRNA Isolation Kit (Life Technologies, Carlsbad, CA) was used according 

to the manufacturer's instructions to isolated large RNA and enriched small RNA.  A nanodrop 

spectrophotometer (Thermo Scientific, Waltham, MA) was used to determine RNA 
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concentration.  A high-Capacity cDNA Reverse Transcription Kit from Life Technologies 

(Carlsbad, CA) was used to make cDNA from large RNA.  Expression of drosha, dicer, 

argonaute-2 (ago-2), occludin, claudin-4 and ZO-1 was analyzed by qPCR using their respective 

primers from Life Technologies (Carlsbad, CA).  Data were calculated using the ΔΔCT method, 

GAPDH was used as an endogenous control.  The Ct cycle values for the target genes were 

normalized to Ct values for GAPDH.  The data are expressed relative to the average of the sham 

vehicle group13.  

Determination of Drosha, Dicer, and Argonaute-2 Protein Expression.  

Lysates from isolated IECs were analyzed by SDS-PAGE and were transferred to PVDF 

membranes to determine protein levels of drosha, dicer and argonaute-2.  The membranes were 

blocked for one hour at room temperature in 5% BSA in TBS-T (0.05% Tween 20 in TBS) 

before incubation overnight at 4°C with the desired antibody dicer (Santa Cruz Biotechnology, 

Santa Cruz, CA), drosha and argonaute-2 (Cell Signaling Technology, Danvers, MA).  The 

membranes were washed five times for five minutes in TBS-T following the overnight 

incubation before the membrane was incubated for an hour in the secondary antibody conjugated 

with HRP.  The membranes were then washed five times for five minutes in TBS-T and once in 

TBS for ten minutes.  The membranes were then probed using Western Lightning™ 

Chemiluminescence Reagent Plus (PerkinElmer, Norwalk, CT) and visualized using a 

ChemiDoc System.  

Determination of Expression of microRNAs. 

A miScript II RT Kit (Qiagen, Valencia, CA) was used to make cDNA from enriched 

small RNAs.  miRs (-7a and -150) expression was examined by qPCR using their respective 

Qiagen miScript Primer Assays.  Data were calculated using the ΔΔCT method, snord68 was 
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used as an endogenous control.  The Ct cycle values for the target genes were normalized to Ct 

values for snord68. The data are expressed relative to the average of sham vehicle group. 

Immunofluorescent Tissue Staining. 

HIF-1α staining was performed on frozen tissues from mice in four groups: sham vehicle 

(n = 3), sham ethanol (n = 4), burn vehicle (n =5), and burn ethanol (n=8).  Frozen sections were 

stored in optimal cutting temperature (O.C.T.) medium.  Sections were cut to 5μm using a 

Cryostar NX50 Cryosectioner (Thermo Fisher Scientific, Waltham, MA) and mounted on glass 

slides. Mouse anti-HIF-1α antibody (SantaCruz, Santa Cruz, CA) were used with an Alexa-455 

conjugated secondary antibody (Invitrogen, Carlsbad, CA).   ProLong Gold Antifade Reagent 

with DAPI (Invitrogen, Carlsbad, CA) was used to visualize the cell nuclei.  Images were 

captured using a Zeiss Axiovert 200m (200X total magnification).  Tissue sections were 

analyzed in a blinded fashion and a minimum of three were randomly obtained.  Brightness and 

contrast of images were adjusted using Photoshop CC.  Quantification of the fluorescent 

intensity was determined using Image J (NIH, Bethesda, MD).  Fluorescent intensity=Integrated 

Density– (Selected Area x Mean fluorescent reading of background). 

Isolation of Luminal Contents Genomic DNA.  

Luminal contents were aseptically collected from the distal 5 cm of the ileum.  Luminal 

genomic DNA QIAmp DNA Stool Isolation Kit (Qiagen, Valencia, CA) was used according to 

the manufacturer’s instructions, contents were incubated at 95°C to improve bacterial cell lysis.  

DNA concentration was determined by NanoDrop 2000 spectrophotometer. 

16S rRNA Bacterial Quantitative Real-Time PCR. 

As described previously, specific primer sets which target small subunit (SSU) 16S 

rRNA of total bacteria and Enterobacteriaceae were used for qPCR104.  The primers were 
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purchased from Thermo Fisher Scientific.  The sequences used for total bacteria primers: 340F 

(ACTCCTACGGGAGGCAGCAGT) and 514R (ATTACCGCGGCTGCTGGC) for total 

bacteria.  While the primers used for Enterobacteriaceae and 515F 

(GTGCCAGCAGCCGCGGTAA) 826R (GCCTCAAGGGCACAACCTCCAAG).  Serial 

dilutions were made from purified genomic DNA from reference bacteria: total bacteria (Blautia 

producta strain VPI 4299 [ATCC 27340D-5] and Enterobacteriaceae (Escherichia coli strain K-

12 [ATCC 1098D-5] purchased from ATCC (Manassas, VA) to generate standard curves for 

PCR quantification.  qPCR reactions were performed using 1X iTaq Universal SYBR Green 

Supermix (Bio-Rad) 300nM of forward and reverse primers.  Equal amount of fecal DNA was 

loaded, and data are presented as changes in bacterial copies.  

Determination of Intestinal Permeability.   

To determine intestinal permeability, one day after injury mice received a gavage of 0.4 

ml of 22mg/ml Fluorescein Isothiocyanate (FITC)-dextran (4D) in PBS.  90 minutes following 

the gavage, the mice were euthanized, and blood was collected to measure levels of FITC-

dextran in circulation.  Data presented are the average of two independent experiments. 

Statistics.   

The data are presented as means ± SEM and were analyzed using Two-Way Analysis of 

variance (ANOVA) with Tukey’s post-hoc test (GraphPad Prism 7 Software, La Jolla, CA). A p-

value of <0.05 was considered statistically significant. 

Results 

Previous findings from our laboratory have shown a significant reduction in oxygen 

delivery and blood flow to the intestine following ethanol and burn injury14.  Such a decrease in 

oxygen delivery can cause hypoxia.  Here, we measured expression of the hypoxic marker, HIF-
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1α in small intestinal tissue using a mouse anti-HIF-1α antibody.  The results shown in Figure 14 

clearly demonstrate a significant increase in HIF-1α following ethanol and burn injury.  To provide 

additional evidence of the hypoxic insult in the gut following ethanol and burn injury, we measured 

HO-1 and VEGF-α, downstream targets of HIF-1α.  We observed a trend of an increase in VEGF-

α one day following ethanol and burn injury, however, this was not found to be significantly 

different (Appendix-A Figure 26B).  HO-1 expression was significantly elevated one day 

following ethanol and burn injury compared to all groups (Appendix A-Figure 26A).  This together 

with our previous observations suggest that there is a hypoxic insult to the gut following the 

combined insult of ethanol and burn injury. 

In a recent study, we observed a decrease in microRNA biogenesis components (drosha 

and argonaute-2) following ethanol and burn injury81.  Additionally, studies have shown that 

hypoxia and its signaling molecule HIF-1α can influence microRNA biogenesis115.  Here, we 

sought to determine whether inhibition of HIF-1α via PX-478 would increase expression of drosha, 

dicer and argonaute-2 in small intestinal epithelial cells one day following ethanol and burn injury.  

To provide evidence of the ability of PX-478 to reduce levels of HIF-1α, we examined HIF-1α 

immunostaining.  We found reduced immunostaining of HIF-1α in small intestinal tissue following 

PX-478 treatment at the time of injury (Appendix A-Figure 27).  Furthermore, we observed a 

significant reduction in expression of the HIF-1α downstream target HO-1 in IECs following 

treatment of mice at the time of burn injury with PX-478 compared to all groups (Appendix A-

Figure 28).  Next, we examined the relationship between HIF-1α and expression of microRNA 

biogenesis components.  Similar to our previous studies, drosha mRNA expression (~38%) and 

protein levels (~44%) were significantly reduced following the combined insult of ethanol and 

burn injury in IECs compared to animals in the sham vehicle group (Figure 15).  Dicer mRNA 
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expression and protein levels remained unchanged in small intestinal epithelial cells following 

ethanol and burn injury compared to sham vehicle (Figure 16).  Argonaute-2 mRNA expression 

(~23%) and protein (~48%) levels were significantly decreased in small intestinal epithelial cells 

following the combined insult compared to sham vehicle animals (Figure 15A).  Expression of 

drosha was normalized to sham values after treatment with PX-478 as we observed an increase in 

expression (~35%) and protein levels (~30%) in IECs (Figure 15) compared to ethanol and burn 

injured animals.  Dicer mRNA expression and protein levels remained unchanged in small 

intestinal epithelial cells following treatment of mice with PX-478 at the time of burn injury 

(Figure 16).  We did observe however, that there was a significant increase in dicer mRNA in the 

sham treated group compared to ethanol and burn injured animals (Figure 16A).  PX-478 treatment 

at the time of burn injury enhanced argonaute-2 expression (~23%) and protein (~22%) levels in 

small intestinal epithelial cells (Figure 17) compared to animals in the ethanol and burn group.    

Together, these data illustrate that HIF-1α has a role in regulating expression of drosha and 

argonaute-2 following the combined insult. 

 
Figure 14.  HIF-1α Levels in Small Intestinal Tissue Day One Following Ethanol and Burn 
Injury. Immunofluorescent staining was performed on 5μm frozen sections using anti-HIF-1α to 
assess HIF-1α levels in small intestinal tissue one day following the ethanol and burn injury *p < 
0.05, by Two Way ANOVA. (Red-HIF-1α and Blue-Dapi). The data shown are mean ± SEM 
of n = 3-8 animals per group.  
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Figure 15.  Effects of PX-478 Treatment on Drosha Expression in Small Intestinal 
Epithelial Cells One Day Following Ethanol and Burn Injury.  Isolated intestinal epithelial 
cells were used to examine drosha A.) mRNA expression and B.) protein levels day one 
following ethanol and burn injury with or without PX-478.  Values were calculated using a 
ΔΔCT method and normalized to sham vehicle animals.  GAPDH was used as an endogenous 
control.  Densitometry measurements for each protein are given as a ratio of the protein density 
to β-Actin.  *p < 0.05, **p<0.01, ***p<0.001 by Two Way ANOVA.  The data shown are mean 
± SEM of n = 4-8 animals per group.  
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Figure 16.  Effects of PX-478 Treatment on Dicer Expression in Small Intestinal Epithelial 
Cells One Day Following Ethanol and Burn Injury.  Isolated intestinal epithelial cells were 
used to examine dicer A.) mRNA expression and B.) protein levels day one following ethanol 
and burn injury with or without PX-478.  Values were calculated using a ΔΔCT method and 
normalized to sham vehicle animals.  GAPDH was used as an endogenous control.  
Densitometry measurements for each protein are given as a ratio of the protein density to β-
Actin.  **p<0.01 by Two Way ANOVA.  The data shown are mean ± SEM of n = 4-8 animals 
per group.  
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Figure 17.  Effects of PX-478 Treatment on Ago-2 Expression in Small Intestinal Epithelial 
Cells One Day Following Ethanol and Burn Injury.  Isolated intestinal epithelial cells were 
used to examine ago-2 A.) mRNA expression and B.) protein levels day one following ethanol 
and burn injury with or without PX-478.  Values were calculated using a ΔΔCT method and 
normalized to sham vehicle animals.  GAPDH was used as an endogenous control.  
Densitometry measurements for each protein are given as a ratio of the protein density to β-
Actin.   *p < 0.05, **p<0.01 by Two Way ANOVA.  The data shown are mean ± SEM of n = 4-8 
animals per group.  
 

 As previously demonstrated, ethanol and burn injury reduced expression of selected 

microRNAs relative to animals in the sham vehicle group.  Here, we sought to determine 

whether improved expression of drosha and argonaute-2 following PX-478 extended to 
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improving expression of miRs (-7a and -150).  Similar to our previous studies, we observed 

significant reductions in expression of miRs (-7a and -150) compared to sham injured animals.  

Treatment of mice at the time of burn injury with PX-478 increased expression of miRs (-7a and 

-150) (Figures 18A-B).  This suggests that increased expression of microRNA biogenesis 

components (drosha and argonaute-2) following treatment with PX-478 at the time of burn injury 

resulted in increased expression of miRs (-7a and -150).    

 
Figure 18.  Effects of PX-478 Treatment on microRNA Expression in Small Intestinal 
Epithelial Cells One Day Following Ethanol and Burn Injury.  A.) miR-7a and B.) miR-150 
expression was examined in small intestinal epithelial cells day one following injury *p < 0.05, 
by Two Way ANOVA. The data shown are mean ± SEM of n = 6 animals per group.  
 

microRNAs are known to regulate cellular homeostasis and specifically they have been 

shown to have indispensible roles in intestinal barrier maintenance.  Therefore, we sought to 

determine whether restoration of microRNA biogeneis components and select miRs aided in 
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improving intestinal barrier components that are disrupted following the combined insult of 

ethanol and burn injury. 

It has been established by our laboratory and others that ethanol and burn injury reduces 

expression of tight junction proteins13,30,31.  Consistent with these findings, we observed significant 

reductions in (~47%) occludin, (~48%) claudin-4 and (~32%) ZO-1 expression in small intestinal 

epithelial cells following ethanol and burn injury compared to sham animals (Figures 19A-C).  

Treatment of mice immediately after the burn injury with the HIF-1α inhibitor PX-478 improved 

expression of these tight junction proteins in small intestinal epithelial cells. Occludin expression 

increased by (~29%) and claudin-4 expresssion was increased by (~23%)  in mice  treated with 

PX-478 at the time of burn injury compared to ethanol and burn injured animals who were not 

treated with PX-478.  Similarly, ZO-1 expression increased by (~26%) after PX-478 treatment at 

the time of burn injury compared to untreated ethanol and burn injured animals.   Additionally, 

other parameters of intestinal barrier such as mucins (-2 and -4), and proliferation (PCNA) were 

reduced following ethanol and burn injury (Appendix A-Figures 29 and 30).  Treatment of mice 

at the time of injury increased expression of mucin-2, but did not increase expression of mucin-4 

(Appendix A-Figure 29).  Furthermore, PX-478 treatment increased PCNA levels suggesting that 

PX-478 treatment increased proliferation following the combined insult of ethanol and burn injury. 

Previously our laboratory has demonstrated that ethanol and burn injury results in intestinal 

microbial dysbiosis and increased growth of total bacteria and Enterobacteriaceae relative to all 

groups13,39.  Consistent with our previous finding, we saw a significant increase in both total 

bacteria (Figure 20A) and Enterobacteriaceae (Figure 20B) in small intestinal luminal contents 

following the combined insult of ethanol and burn injury.  Our findings further show that PX-478 

treatment of mice at the time of burn injury attenuates the increase in both total bacteria and 
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Enterobacteriaceae (Figure 20).  These data illustrate that inhibition of HIF-1α prevents bacterial 

dysbiosis following the combined insult of ethanol and burn injury. 

As PX-478 treatment at the time of burn injury improved components that can influence 

the intestinal barrier (miRs, and tight junction proteins), we sought to determine whether PX-478 

treatment would reduce intestinal permeability.  Mice were gavaged with FITC-dextran one day 

following the injury.  90 minutes following the FITC-dextran gavage blood was collected and 

levels of FITC-dextran in plasma was evaluated to determine intestinal permeability.  The data 

show that there were significantly higher FITC-dextran levels in circulation following ethanol 

and burn injury (Figure 21).  Consistent with our other findings PX-478 given at the time of burn 

injury normalized intestinal permeability compared to shams animals.  Together, these data 

demonstrate a role of HIF-1α in intestinal permeability following ethanol and burn injury.  These 

observed changes are likely to be due to increased levels of drosha and argonaute-2 following 

treatment of PX-478 at the time of burn injury which parallels with elevated miR expression, 

improved expression of these cellular regulators could be contributing to the reduction in 

intestinal permeability. 
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Figure 19.  Effects of PX-478 Treatment on Tight Junction Protein Expression in Small 
Intestinal Epithelial Cells One Day Following Ethanol and Burn Injury. A.) occludin, B.) 
claudin-4, and C.) ZO-1 expression were examined in small intestinal epithelial cells day one 
following injury. *p < 0.05, **p<0.01, ***0.001 by Two-Way. The data shown are mean ± SEM 
of n = 5-8 animals per group. 
 

 



68 
 

 

 
Figure 20.  Effects of PX-478 Treatment on Total Bacteria and Enterobacteriaceae Levels 
One Day Following Ethanol and Burn Injury. Changes in A.) total bacteria and B.) 
Enterobacteriaceae populations within the small intestinal luminal content were analyzed one 
day following injury using specific primers by qPCR. *p < 0.05, **p<0.01 by Two Way 
ANOVA. Data are expressed as copies of 16S rRNA in luminal content relative to the sham 
vehicle group. The data shown are mean ± SEM of n = 4-10 animals per group. 
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Figure 21.  Effects of PX-478 Treatment on Intestinal Permeability One Day Following 
Ethanol and Burn Injury.  Mice were gavaged with FITC-dextran one day following the injury, 
90 minutes later blood was collected, and FITC-dextran levels were determined in plasma by 
absorbance. *p < 0.05, **p<0.01 by Two-Way ANOVA. The data shown is a combination of 
two independent experiments and data are mean ± SEM of n = 9-19 animals per group. 
 

Summary 

These data suggest that there is a hypoxic insult in the gut following ethanol and burn 

injury as there is a significant increase in HIF-1α, a marker of hypoxia.  We showed that 

treatment of mice at the time of burn injury with PX-478, an inhibitor of HIF-1α, increased 

expression of microRNA biogenesis components: drosha and argonaute-2.  These changes 

corresponded with increased expression of miRs (-7a and -150).  As microRNAs regulate normal 

cellular homeostasis we expanded our studies to examine whether restoration of microRNA 

biogenesis and expression of miRs improved parameters of intestinal barrier function following 

the combined insult of ethanol and burn injury.  Treatment of mice with a HIF-1α inhibitor at the 

time of burn injury improved expression of tight junction proteins.  Furthermore, improvements 
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in these parameters due to PX-478 treatment prevented microbial dysbiosis and decreased 

intestinal permeability one day following injury.  Together these data suggest that HIF-1α has a 

distinct role in expression of microRNA biogenesis components: drosha and argonaute-2 which 

could impact many other functions of the intestinal barrier.   
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CHAPTER SIX 

DISCUSSION 

New Contributions to the Ethanol and Burn Injury Field 

The overall aim of this dissertation project was to examine the role of microRNAs in 

intestinal barrier disruption following ethanol and burn injury, and to identify a therapeutic 

approach for lessening the negative effects of ethanol and burn injury.  The adverse effects 

following the combined insult of ethanol and burn injury are widely known, however, there is a 

gap in the burn field examining the contributions of microRNAs and how they can influence 

ethanol and burn injury pathology.  The current project provided evidence that there is an 

increased inflammatory response day one following injury, the levels of the pro-inflammatory 

mediators increases distally with higher levels in the colon.  Furthermore, ethanol and burn 

injury diminished expression of drosha and argonaute-2 proteins which correlated with reduced 

expression of miRs (-7a and -150).   Ethanol and burn injury also significantly increased HIF-1α 

expression which has been shown to effect expression of microRNA biogenesis components. 

Administration of PX-478, an inhibitor of HIF-1α, at the time of burn injury reestablished 

expression of drosha, argonaute-2 and miRs (-7a and -150).  PX-478 treatment also increased 

tight junction expression and these changes accompanied restoration of the intestinal microbiome 

and intestinal permeability following the combined insult of ethanol and burn injury.  

Intestinal Inflammation 

The major role of the intestine is the facilitation of nutrient and water absorption.  In  
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addition to this function the intestine also has an importation role in maintenance of an 

immunological and physical barrier which prevents translocation of gut bacteria or their products 

to extra-intestinal sites.  The intestine is compartmentalized into four anatomically and 

functionally distinct segments (duodenum, jejunum, ileum and colon)33.  These intestinal parts 

have different bacterial content, with the bacterial number increasing progressively from the 

duodenum to the colon.  The bacterial content in the duodenum and jejunum is 102–104 CFU/g 

content, whereas, the ileum’s is 1010CFU/g.  The colon’s bacterial content is 1010–1012 CFU/g 

content 128,129.  These commensal bacteria normally reside in the gut and are protective and aid in 

digestion.  However, dysbiosis or increased permeability in the intestine can allow for 

translocation into otherwise extra-intestinal sites which could lead to MOF or sepsis formation.  

It has been demonstrated that ethanol and burn injury negatively impacts the intestinal barrier 

resulting in increased bacterial translocation149.  Due to the regional variations in bacterial 

content and increased bacterial translocation due to ethanol and burn injury it is important to 

determine if there are any differences in the inflammatory response in different parts of the 

intestine.   

 Pro-inflammatory cytokine levels were increased in total tissue homogenates collected 

from the jejunum, ileum and colon.  Interestingly, levels were several folds higher in the colon 

compared to jejunum or ileum as a consequence of ethanol and burn injury. While the definitive 

cause for differential expression of these cytokines/chemokine in various parts of the intestine 

remains to be established, the progressive increase in bacterial density from duodenum to the 

colon is likely to contribute to an excess inflammatory response in the distal part (e.g. colon) 

compared to jejunum or ileum.  
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The neutrophil chemokine, KC increased in the distal gastrointestinal tract with higher 

KC levels seen in the colon following ethanol and burn injury.   Circulating neutrophil 

sequestration to the site of injury following the combined insult is believed to be a major 

contributing factor to MOF.  Neutrophils are the immediate responders following injury.  Earlier 

studies from our laboratory have shown an increase in neutrophil infiltration into the tissue 

following a combined insult of ethanol and burn injury89.  We observed ethanol and burn insult 

significantly elevated KC levels in the jejunum, ileum and colon compared to shams within 24 

hours after injury.  Such an increase in KC is likely to cause neutrophil recruitment to the 

intestine as observed in our previous studies.  Similarly, the increase in IL-6 levels following 

ethanol and burn injury has also been associated with increased intestinal permeability120.   

Additionally, findings from both patients and animal models indicate a relationship between the 

elevated levels of IL-6 and the development of septic complications150,151. 

IL-18 has also been demonstrated to have a role in increased gut leakiness following 

combined ethanol and burn injury.  Results from that study showed a role of IL-18 in decreased 

claudin-1 phosphorylation and occludin expression and phosphorylation compared to sham 

animals10.  Similarly, occludin dephosphorylation has been demonstrated to increase intestinal 

permeability135.  Additionally, in vitro treatment of YAMCs with recombinant IL-18 increased 

paracellular permeability10.  We showed that IL-18 levels were elevated in the ileum and colon 

following ethanol and burn injury.  We have previously demonstrated a role of IL-18 in 

increased neutrophil O2− production and their recruitment to the intestine tissue.  Furthermore, 

IL-18 delays neutrophil apoptosis134.  Such an increase in IL-18-dependent neutrophil infiltration 

into the intestine may contribute to intestinal tissue damage following ethanol and burn injury. 

Ethanol and Burn Injury Effects on Expression of microRNA Biogenesis Components 
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microRNAs are non-coding RNAs which control gene expression at the post-

transcriptional levels.  The gene silencing ability of miRs allow microRNAs to regulate normal 

cellular homeostasis and function15,16,18,42.  Aberrant expression of microRNAs contributes to 

development of pathological conditions.  Numerous studies have illustrated that microRNAs can 

influence inflammation following exposure to ethanol and tissue injury75,79.  Interestingly, the 

role of microRNAs following the two-hit model of ethanol and burn injury remains unknown. 

microRNAs have been shown to regulate intestinal barrier maintenance23,66,136, as such, 

aberrant miR expression could impact the intestinal barrier function.  Furthermore, modulation of 

miR expression following ethanol and burn injury could alter levels of pro-inflammatory 

mediators, which are linked to tissue damage and diminished expression of tight junction 

proteins 10,30,31,88,134,135.  Specifically, miR-150 is reduced in sepsis patients and after in vitro 

exposure of cells to bacterial LPS45,125.  Additionally, miR-150 is involved in regulation levels of 

pro-inflammatory mediators124.    

Therefore, we examined whether ethanol and burn injury modulates expression of 

microRNA biogenesis components and microRNAs.  We observed decreased expression in 

mRNA and protein levels of microRNA biogenesis components (drosha and ago-2) day one 

following ethanol and burn injury in IECs.  This was accompanied with a trend of a reduction in 

all miRs (miR-7a, miR-22, miR-150, miR-210 and miR-375) tested however, only miRs (-7a 

and-150) expression was significantly reduced in IECs day one following ethanol and burn 

injury.  Using an in vitro overexpression approach, our findings further suggest that the decrease 

in miR-150 could potentially contribute to increased intestinal inflammation.  These data suggest 

that altered microRNA expression and biogenesis components following ethanol and burn injury 

could result in increased intestinal inflammation. 
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microRNAs are promiscuous, each microRNA has the ability to regulate hundreds of 

different genes based on the complementary binding of the microRNA to its target18.  Therefore, 

it is quite possible and likely true that miR-150 has targets in addition to the targets listed here.   

Furthermore, we cannot discount that disruption in microRNA biogenesis likely reduces 

expression of many microRNAs, therefore, more microRNAs maybe in play in the pathology 

associated with ethanol and burn injury.   

Ethanol and burn injury increased levels of pro-inflammatory mediators (IL-6, IL-18 and 

KC) day one following injury, which are normalized to sham values day three following 

injury11,12.  These elevated pro-inflammatory mediators within the intestine can contribute to 

intestinal tissue damage and barrier disruption following ethanol and burn injury10,30.  These 

studies correlate well with the present data as we observed a decrease in miR-150 which 

accompanied altered microRNA biogenesis day one following the combined insult of ethanol 

and burn injury.  Interestingly, miR-150 which had reduced expression day one following injury, 

has been shown to have an inverse relationships between their expression and levels of 

inflammatory mediators45,122-125,138,140.  These findings agree with our in vitro study.  We 

observed that overexpression of miR-150 significantly reduces levels of IL-6 (50%) and KC 

(20%) following stimulation with LPS.  Therefore, reduced miR-150 levels observed following 

ethanol and burn injury likely contributes to the increased levels of pro-inflammatory mediators.  

One limitation of the current study is that the in vitro transfection of miR-150 was 

measured in colonocytes and the in vivo studies were carried out in small intestinal epithelial 

cells. YAMCs were generated using 18-day old transgenic mice which have a temperature 

sensitive simian virus 40 large tumor antigen mutation.  This mutation allowed for the creation of 

conditionally immortalized epithelial cell cultures.  Crypts were isolated from the colonic 
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mucosa and they stain positive for keratin and synthesize brush border disaccharidase and 

peptidases152.  While there is a possibility that small and large intestinal epithelial cells respond 

differently to a stimulus such as LPS, our laboratory has shown a similar trend in inflammation 

in both the small and large intestines (colon).  The inflammatory response however, after injury 

was relatively of a higher magnitude in the large intestine12.  Based on this observation, we 

believe that colonocytes could be used for in vitro studies to address the role of miR-150. 

Together these observations suggest that overexpression of miR-150 can cause a decrease in 

colonocytes release of IL-6 and KC.  While, these findings remain to be confirmed in epithelial 

cells from the small intestine, it is likely that small intestinal epithelial cells will follow a similar 

trend. 

microRNAs regulate key components of the intestinal barrier function including the 

expression of tight junction proteins, inflammatory mediators, apoptosis and 

proliferation23,26,56,66,70,122,124,141.  Environmental factors (e.g. injury, ethanol, and disease) can 

impair microRNA expression and biogenesis20-26, which may adversely affect the components of 

the intestinal barrier.  McKenna et al. utilized dicer1loxP/loxP, villin –Cre mutant mice which lack 

the obligatory microRNA processing enzyme in the small and large intestinal epithelium.  The 

ablation of dicer-1 altered intestinal morphology and number of goblet cells.  Similarly, dicer-1 

deficiency increased number of apoptotic cells and intestinal inflammation, while decreasing 

differentiation.  Ablation of dicer-1 led to tight junction mislocalization (Claudin-7) and 

disruption of protein levels (Claudin-4) which coincided with diminished barrier integrity44 .  

These data clearly illustrate a vital role that microRNAs play in intestinal barrier maintenance.   

Gaulke et al. have shown that environmental factors (SIV infection) also can impact microRNA 

biogenesis components (dicer-1 and argonaute-2) contributing to SIV mediated enteropathy 21.   
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Furthermore, impairment of microRNA biogenesis and increased levels of microRNA 

degradation machinery resulted in decreased microRNA expression.  Although the present study 

did not observe any changes in dicer-1 expression, these studies illustrate the importance of 

microRNAs and their processing enzymes for normal intestine function.  Therefore, the 

reduction of drosha and argonaute-2 following the combined insult is likely to influence normal 

intestinal homeostasis 

Taken together, these data suggest that ethanol and burn injury decreases the expression 

of microRNA biogenesis components and miRs (-7a and -150) in IECs. Such a decrease in miR-

150 can lead to an increase in intestinal inflammation including increased IL-6 and KC which in 

turn can contribute to intestinal barrier disruption observed after ethanol and burn injury.    

Role of HIF-1α Following the Combined Insult of Ethanol and Burn Injury 

Hypoxia causes cellular adaptation in which processes that are energy and oxygen 

dependent are downregulated, while increasing genes that lead to angiogenesis and stress 

survival.  HIF-1α is a major protein elevated following hypoxia and as such widely considered to 

be a marker of hypoxia.  Studies have determined that ethanol and burn injury alone elevates 

intestinal expression of HIF-1α110,112,148.  Our laboratory has previously shown using 

Strotinum85 labelled microspheres that there is a ~20% decrease in intestinal blood flow day one 

following ethanol and burn injury.  Similarly, we observed a ~25% reduction in oxygen delivery 

to the small intestine day one following ethanol and burn injury14.  In the current study, we 

confirmed the hypoxic insult in the gut as HIF-1α is significantly elevated (Figure 14) following 

the combination of ethanol and burn injury.  

HIF-1 is a heterodimer of HIF-1α and HIF-1β which acts as a transcription factor that 

regulates genes necessary to allow for cell survival and adaptation during hypoxic conditions.   
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HIF-1α is constitutively expressed however, under instances of normoxia (~21% oxygen), the 

protein is post-translationally modified.  Under normoxic conditions HIF-1α has a half-life of ~5 

minutes where the protein is hydroxylated on two proline residues and acetylated on a lysine 

reside within the ODDD on HIF-1α.  This triggers association of HIF-1α to the pVHL ubiquitin 

E3 ligase complex which results in its ubiquitin-proteasome pathway dependent degradation.  

Under hypoxic conditions (~1% oxygen), HIF-1α is stabilized where it binds to HIF-1β forming 

HIF-1 which acts as a transcription factor113,153.    

In addition to HIF-1α, there are also HIF-2α and HIF-3α that can interact with HIF-1β.  

HIF-1α is the most active isoform and is active in fast (2–24 h) and severe hypoxic conditions.  

HIF-2α is more slower acting (48-72h) and drives the response during chronic hypoxia.  HIF-2α 

has 48% amino acid homology with HIF-1α however, unlike its counterpart HIF-2α is not 

ubiquitous and is mainly expressed in the endothelium, carotid body and the lung113,114.  While 

HIF-3α also binds to HIF-1β, its splice variant is believed to have an inhibitory effect, preventing 

the binding of HIF-1α113,153. 

In the current study, we examined the relationship of HIF-1α on expression of microRNA 

biogenesis components (drosha and argonaute-2) and whether this influences intestinal barrier 

integrity.  Mice were treated with PX-478 at the time of burn injury to assess the role of HIF-1α 

in reduced expression of drosha and arognaute-2 following the combined insult.   Although, the 

mechanisms of action for this small molecule has not been elucidated, PX-478 (S-2-amino-3-[4′-

N,N,-bis(chloroethyl)amino]phenyl propionic acid N-oxide dihydrochloride) has been shown to 

decrease expression of HIF-1α mRNA, protein levels, deubiquitination  and activity153,154.  While 

we did not measure HIF-1β protein levels, PX-478 is not believed to affect its expression153.   

Koh et al. exposed MCF-7 cells to hypoxia, which had maximum expression of HIF-1α after 8 
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hours of exposure.  Interestingly, inhibition of HIF-1α was not observed until 8 hours of hypoxic 

exposure and complete inhibition was not observed until 16 hours after hypoxia but was 

maintained for up to 20 hours153.  These data illustrated that PX-478 has a delayed effect in 

inhibiting HIF-1α however it is long lasting.  

Elevated levels of HIF-1α has been associated with increased histone deacetylase 

(HDAC) activity155.  Furthermore, use of the HDAC inhibitor valproic acid has been shown to 

reduce expression of HIF-1α and improve deleterious effects (e.g. diminished expression of tight 

junction proteins) of elevated HIF-1α110.  The relationship between HDAC and HIF-1α is one 

that requires more exploration as it affects many processes including expression of microRNA 

biogenesis components115,116.  Rupaimoole et al. demonstrated that increased hypoxia 

downregulates expression of drosha in a HIF-1α dependent mechanism via ETS1 and ELK1 

recruitment of HDAC1 and ARID4B onto its promoter region.  Treatment with an HDAC 

inhibitor (valproic acid) normalized drosha expression115.  Together these studies suggest that 

valproic acid reduces HIF-1α expression, which improves drosha and subsequently expression 

of miRs which reduces harmful effects of elevated HIF-1α such as diminished tight junction 

protein expression. This study supports our data, as we saw diminished reduction in drosha 

which coincided with elevated HIF-1α.  Furthermore, the group found that hypoxia did affect 

dicer expression but in a HIF-1α independent fashion.   We observed no changes in dicer 

following ethanol and burn injury and no improvement with inhibition of HIF-1α via PX-478.  

There are conflicting reports that hypoxia may help or hinder argonaute expression and miR 

loading onto the argonaute protein144-146.  Our studies show that following ethanol and burn 

injury there is diminished expression of argonaute-2 which is normalized to sham values when 

mice are treated with PX-478.   These findings suggest that HIF-1α negatively impacts 
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expression of drosha and argonaute-2 following ethanol and burn injury, which is normalized 

with treatment of PX-478. 

It is not surprising that as expression of microRNA biogenesis components is negatively 

impacted by hypoxia so is expression of microRNAs.  Rupaimoole et al. showed that hypoxia 

led to >40% reduction in precursor miRs, and >60% reduction in mature miRNAs compared to 

normoxic cells115.  As we did not observed changes in both drosha and dicer we were not 

surprised that we did not observe global downregulation of miRs.  We determined however, that 

miR-150 is significantly diminished following ethanol and burn injury.  Yu et al. demonstrated 

that miR-150 has an inverse relationship with HIF-1α and is significantly reduced during 

hypoxia, as it is predicted to target VEGF-α which is a downstream target of HIF-1α156.  

Consistent with these findings use of the HIF-1α inhibitor at the time of burn injury increased 

expression of miR-150. 

HIF-1α has conflicting roles within the body.  Some studies attest to the beneficial effects 

of HIF-1α.  While other have shown that it is detrimental110,112,148.  Yun et al. determined that 

inhibition of HIF-1α via PX-478 following binge ethanol exposure decreased levels of 3-

nitrotyrosine and apoptosis in hepatocytes148.  Studies have demostrated that large burn injury 

significantly elevates HIF-1α in the gut while reducing expression of tight junction 

proteins110,112.  Furthermore, Luo et al. demonstrated that treatment of rats with valproic acid a 

histone deaceytalase inhibitor (HDACIs) represses HIF-1α expression and improved expression 

of tight junction proteins and intestinal barrier110.  Consistent with these findings, we observed 

that HIF-1α is elevated following ethanol and burn injury (Figure 14), while tight junction 

proteins exhibit reduced expression13,30,31.   Furthermore, treatment at the time of burn injury 

with PX-478 improved expression of tight junctions and improved intestinal barrier (Figure 19 
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and Figure 21), this likely occurs through improved microRNA expression.  microRNAs have 

been shown to regulate numerous cellular processes including tight junction protein 

expression23,66,71. 

It is widely accepted that hypoxia increases inflammation and NFκB activation however, 

inflammation can also stabilize HIF-1α resulting in “inflammatory hypoxia”157-159.   Furthermore, 

our laboratory and others have shown an inverse relationship of miR-150 and inflammatory 

mediators45,81,124.  Together these results suggest that elevated HIF-1α levels following ethanol 

and burn injury reduces expression of microRNA biogenesis components (drosha and ago-2) 

resulting in diminished miR-150 expression which leads to elevated intesinal inflammation 

following the combined insult.  

Given the strict oxygen requirements of the gut microbiome, it not suprising that shifts in 

oxygen levels could result in microbiome dysbiosis.  We observed significant elevation in 

bacterial copies of both total bacteria and Enterobacteriaceae following ethanol and burn injury 

using specific primers that target the 16S rRNA region of total bacteria and the family of Gram-

negative bacteria Enterobacteriaceae.  Studies have suggested that anaerobic intestinal bacteria 

are more abundant than the gram-negative enteric bacteria which prevents the gram-negative 

enteric bacteria from attaching to the intestinal epithelium109,160.  We observed a significant 

increase in Enterobacteriaceae, a family of gram-negative bacteria following ethanol and burn 

injury which could be shifting this relationship (Figure 20).  Treatment of mice with PX-478 

attenuated the observed increase in total bacteria and Enterobacteriaceae.  Currently, we are 

unsure, why this phenomenon is occurring as treatment with PX-478 does not reduce hypoxia in 

the gut following ethanol and burn injury but prevents the hypoxic signaling pathway through 

inhibition of HIF-1α.  These changes could be occurring due to the restoration of the intestinal 
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barrier.  Furthermore, these changes could be a result of normalization of microRNAs 

expression, as microRNAs have been shown to regulate intestinal bacteria43. 

As depicted in Figure 22, ethanol and burn injury results in diminished expression of 

microRNA biogeneis components (drosha and ago-2) and miRs (-7a and -150) compared to 

shams in small intestinal epithelial cells. This phenomenon, likely occures due to the hypoxic 

insult in small intestinal epithelial cells (shown as a red cell to portray hypoxic insult on small 

intestinal epithelial cells) following the combined insult.  Use of the HIF-1α inhibitor PX-478 at 

the time of burn injury, restores expression of microRNA biogenesis components:drosha and 

argonaute-2 in small intestinal epitheilal cells (shown as a white cell to represent inhibition of 

HIF-1α signaling) (Figure 23).  This restoration coincides with elevation of miR-150 which has 

been shown to negatively impact levels of inflammatory mediators.  Changes in microRNA 

expression likely influences downstream effects of ethanol and burn injury including improved 

expression of tight junction proteins, microbial dysbiosis and intsesinal permeability.   
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Figure 22. Schematic Depicting Relationship Between HIF-1α and microRNA Biogenesis. 
Ethanol and burn injury results in elevated levels of HIF-1α in small intestinal epithelial cells 
(red cell denotes hypoxia insult) which leads to diminished expression of drosha and argonaute-2 
which coincides with reduced expression of miRs (-7a and 150).  
 

 

Figure 23. Schematic Depicting Treatment of Mice with PX-478 at the Time of Burn 
Injury. Treatment of mice at the time of burn injury with PX-478 to inhibit HIF-1α in small 
intestinal epithelial cells (white cell denotes inhibition of hypoxic signaling) resulted in increased 
expression of drosha and argonaute-2 which coincided with elevated expression of miRs (-7a and 
150). 
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Limitations 

 Unfortunately, there are numerous limitations to the studies associated with this 

dissertation project.  As the ultimate aim of research is to be translational, we feel that our work 

would have greatly benefited from the use of human samples after ethanol and burn injury.  

Unfortunately, due to limited resources as patients do not commonly need to undergo intestinal 

biopsies or non-invasive procedures we were not able to include these in our studies.  Another 

limitation on our studies is that our experiments were only performed using male mice.  We 

currently do not include female mice in our studies due to the necessity of aligning female mice 

estrous cycles as estrogen levels could influence our results.  Our laboratory will be including 

both female and male mice in future studies as the National Institutes of Health require female 

and male mice to be used. 

 One major limitation in our study to definitively link diminished miR expression to the 

adverse effects observed following ethanol and burn injury would be that miR mimics were not 

used.  miR mimics are chemically synthesized double-stranded RNA oligonucleotides which 

emulate the function of endogenous mature miRNAs.  Our studies would have greatly profited if 

we had pretreated mice by oral gavage with a miR-150 mimic prior to ethanol and burn injury.  

This could have showed a direct relationship between miR-150 and intestinal damage following 

the combined insult of ethanol and burn injury.   

Final Conclusions 

 Our current work has introduced a molecule of interest in the pathology of ethanol and 

burn injury.  We showed that there is an inflammatory response throughout the GI tract 

following the combined insult of ethanol and burn injury.  The magnitude of the inflammatory 

response increases progressively in the distal end of the gastrointestinal tract (colon) which 
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interestingly follows the pattern of the bacterial concentration in the GI tract.  Furthermore, we 

observed that there is a significant microbial dysbiosis in the small intestine following the 

combined insult compared to sham injured animals.  As the intestinal microbiome is now linked 

to many disease states this relationship needs to be further explored following ethanol and burn 

injury. 

 Interestingly, we also confirmed that drosha, argonaute-2 and miRs (-7a and-150) are 

significantly reduced following ethanol and burn injury compared to the sham vehicle group 

(Figure 24).  Additionally, in vitro overexpression of miR-150 in YAMCs illustrates that the miR 

has a role in regulation of the inflammatory response.  Previously, studies have demonstrated an 

inverse relationship between hypoxia and expression of microRNA biogenesis components.  

Treatment of mice at the time of injury with a HIF-1α specific inhibitor PX-478 improved 

expression of drosha, argonaute-2 and miRs (-7a and -150) (Figure 25).  Furthermore, we saw 

improvements of many parameters disrupted following the combined insult of ethanol and burn 

injury (tight junction protein expression, microbial dysbiosis, and intestinal permeability) 

compared to shams (Figure 25).  More work is needed to definitively show that improvements in 

these components are directly related to miR expression following ethanol and burn injury. 

 Together, this work has illuminated the relationship of hypoxia and microRNAs and 

their role in regulation of the intestinal barrier.  Furthermore, in providing a potential mechanism 

behind the adverse effects following ethanol and burn injury, we have shown two potential 

therapeutic strategies (miR-150 and PX-478) for patients who experience ethanol and burn 

injury.  Future research will continue to focus on exploring this relationship and add to the 

wealth of knowledge into the role of ethanol in pathology of burn injury. 
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Figure 24. Schematic Depicting Major Findings Following the Combined Insult of Ethanol 
and Burn Injury. Ethanol and burn injury results in diminished expression of drosha and 
argonaute-2 which coincides with reduced expression of miRs (-7a and -150) which parallels 
with increased gut leakiness and reduced tight junction protein expression following ethanol and 
burn injury.  
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Figure 25. Schematic Depicting Major Findings Following Ethanol and Burn injury with 
PX-478 Treatment. Treatment of mice at the time of burn injury with PX-478 led to improved 
expression of drosha, argonaute-2 and miR-150.  Furthermore, PX-478 treatment increased tight 
junction protein expression and reduced gut leakiness following the combined insult of ethanol 
and burn injury. 
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APPENDIX A 

SUPPLEMENTAL FIGURES 
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To confirm that HIF-1α is significantly elevated following ethanol and burn injury, we 

measured expression of VEGF-α and HO-1 downstream targets of HIF-1α.  We observed that 

HO-1 mRNA expression was significantly elevated in small intestinal epithelial cells following 

ethanol and burn injury compared to all groups (Figure 26A).  Furthermore, there was a trend of 

increased expression of VEGF-α in small intestinal epithelial cells day one following the 

combined insult of ethanol and burn injury however, this was not found to be significantly 

different from the sham vehicle group (Figure 26B).  These data provide further evidence that 

there is a hypoxic insult occurring in the gut following ethanol and burn injury. 

 
Figure 26.  Effects of Ethanol and Burn Injury on HIF-1α Downstream Targets in Small 
Intestinal Epithelial Cells. A.) HO-1 and B.) VEGF-α levels were measured in small intestinal 
epithelial cells day one following injury.  ***p<0.001 by Two Way ANOVA. The data shown 
are mean ± SEM of n = 5-7 animals per group.  
  

Mice were treated with PX-478 immediately after burn injury to determine the role of 

HIF-1α in modulating expression of microRNAs biogenesis components and microRNAs.  We 

evaluated HIF-1α expression following treatment by immunofluorescent staining.  We observed 

reduced HIF-1α staining following PX-478 treatment administered at the time of burn injury 

(Figure 27).  Furthermore, we saw a significant reduction in the HIF-1α downstream target HO-1 
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in small intestinal epithelial cells day one following ethanol and burn injury with PX-478 

treatment (Figure 28).   

As microRNAs are major regulators of normal cellular homeostasis we investigated 

whether the improved expression of drosha and argonaute mediated by PX-478 extended to 

improved other parameters disrupted following ethanol and burn injury.  We measured 

expression of mucin-2 and mucin-4 in IECs day one following the combined insult of ethanol 

and burn injury.  Consistent with previous findings the mucins (-2 and -4) were significantly 

reduced day one following the combined insult compared to sham vehicle mice.  We observed 

however, that only mucin-2 expression was improved with treatment of mice at the time of burn 

injury with PX-478 (Figure 29).  Furthermore, we evaluated levels of proliferating cell nuclear 

antigen (PCNA), a marker of proliferation in IECs day one following ethanol and burn injury.  

PCNA expression was reduced following the combined insult of ethanol and burn injury which 

was elevated with treatment of mice at the time of injury with PX-478 (Figure 30).  Together, 

these data provide additional evidence that inhibition of HIF-1α via PX-478 improves numerous 

components necessary for maintenance of the intestinal barrier and these changes are likely due 

to the restoration of drosha, argonaute-2 and microRNAs. 
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Figure 27.  Effects of PX-478 Treatment on HIF-1α Immunostaining One Day Following 
Ethanol and Burn Injury. Immunofluorescent staining was performed on 5μm frozen sections 
using anti-HIF-1α to assess HIF-1α levels in small intestinal tissue one day following the ethanol 
and burn injury.    

 

Figure 28.   Effects of PX-478 Treatment on HO-1 Expression One Day Following Ethanol 
and Burn Injury. Expression of HO-1, a HIF-1α downstream target was examined in small 
intestinal epithelial cells day one after ethanol and burn injury.  *p < 0.05, **p<0.01 by Two 
Way ANOVA.  The data shown are mean ± SEM of n = 4-8 animals per group.  
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Figure 29.  Effects of PX-478 Treatment on Expression of Mucins One Day Following 
Ethanol and Burn Injury.  A.) mucin-2 and B.) mucin-4 expression was evaluated in small 
intestinal epithelial cells day one following injury.  A*p<0.05, **p<0.01, ***p<0.001 by Two 
Way ANOVA. The data shown are mean ± SEM of n = 6-8 animals per group.  
 
 
 

 
 
Figure 30.  Effects of PX-478 Treatment on PCNA Expression in Small Intestinal Epithelial 
Cells One Day Following Ethanol and Burn Injury. Intestinal epithelial cells isolated from 
small intestine tissue were probed for PCNA protein expression by Western blot. 
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Mouse Model of Acute Ethanol Intoxication and Burn Injury 

Materials and Reagents. 

 Two Water baths 

 Timer 

 Thermometer 

 Absorbent pads 

 Template fabricated to expose ~12.5% surface area for 25g mouse 

 1 mL syringes with 20-oral gavage needle 

 1 mL syringes with 27-gauge precision glide needles  

 3 mL syringes with 27-gauge precision glide needles  

 Ethanol 200 Proof   

 Sterile Water 

 Heating pads 

 Hair clippers 

 Scale 

 Bacteriostatic 0.9% sodium chloride (sterile) 

 Ketamine 

 Xylazine 

Protocol. 

1.   Fill and heat one water bath (for burn group) to 85°C, the other water bath (for sham group) 

fill with lukewarm water. 

2. Prepare a 25% ethanol solution in sterile water (for ethanol group) and water (for vehicle 

group). 
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3. Tail mark mice and gavage mice in ethanol group with 0.4ml of the 25% ethanol solution. 

Gavage mice in the vehicle group with 0.4ml of sterile water.  Return mice to their cages in the 

animal facility. 

4. Four hours later, weigh the mice.  Return mice to their cages and place cages on warm heating 

pads. 

5.  Give mice a cocktail of anesthesia of 80 mg/kg ketamine hydrochloride and 1.2 mg/kg 

xylazine by intraperitoneal injection. 

6. After the mice are sleep, shave the dorsal surface of the mice. 

7. Place mice onto a template fabricated to expose ~12.5% of their dorsal surface. 

8. Mice undergo a burn injury by placing mice contained in the burn template into 85°C water 

bath allowing only the dorsal surface of the mouse to make contact with the water for 7 seconds. 

9. After 7 seconds, remove mice from the water and the burn template and dry on absorbent pad.  

10. Give mice 1mL of normal saline resuscitation by intraperitoneal injection and return them to 

their cages where they can be monitored for 3-4 hours. After this period the cages can be 

returned to the mouse room. 

11. Perform steps 7-10 with sham animals but using the lukewarm water bath. 
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Intestinal Epithelial Cell Isolation 

Materials and Reagents. 

 Water bath 

 Vortex 

 50 mL conical tubes 

 100um filters 

 37°C shaker incubator 

 Petri dishes 

 Forceps 

 centrifuge set to 4°C  

 chilled sterile 1X PBS 

 Hemocytometer 

 Microscope 

 Trypan blue 

 PBS antibiotics solution: 

1X PBS (sterile), 500ml 

1% penicillin-streptomycin cocktail 

Gentamycin (50mg/ml) 

 Pre-digestion solution: 

1X HBSS (without Ca2+ and Mg2+)   

5% FBS (Heat inactivated)   

Gentamicin (50mg/ml)   

1% HEPES (1M) 
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1% penicillin-streptomycin cocktail 

5mM EDTA  

1 mM DTT 

Protocol. 

1. Prepare pre-digestion solution in sterile bottle and warm to 37°C in water bath. 

2. Chill centrifuge to 4°C 

3. Harvest intestine tissue without fat and open longitudinally.  Place collected tissue in a 50ml 

conical tube containing 20ml of ice cold PBS antibiotics solution and store tube on ice.  

4. Forcibly vortex tube for 10 seconds.  Remove contents of 50ml conical (intestine and PBS 

antibiotics solution) into a petri dish.  Return tissue to 50ml conical and add more ice-cold PBS 

antibiotics solution.  Repeat step 4 twice to wash the intestine tissue. 

5.  After final wash return intestine tissue to 50ml conical and add 10ml of warm pre-digestion  

solution.   

6.  Incubate tube for 20 min under slow rotation (250 RPM) at 37°C. 

7.  Forcibly vortex tube for 10 seconds.  Collect pre-digestion solution, leave tissue undisturbed.  

Dispense the pre-digestion solution (which now contains isolated epithelial cells disrupted from 

the intestine mucosa) into 100um filter with a new 50ml conical tube.   

8.  To maximize cell count repeat steps 5-7 using the same tissue and 100um filter. 

9. Centrifuge tubes at 1500 RPM for 10 minutes at 4°C.   

10.  Remove supernatant.  Wash cells with 10ml cold 1X PBS.  Repeat step 10. 

11. Remove supernatant and resuspend cells in 1ml 1X PBS. 
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miR-150 Transfection and LPS Stimulation 

Materials and Reagents. 

 Young Adult Mouse Colonocytes 

 Young Adult Mouse Colonocyte Media 

RPMI 1640 media 

2 mM glutamine 

1% Antibiotic-Antimycotic Solution  

1% ITS + Premix  

5% FBS 

 250ng of miR-150 expression plasmid 

 PCMVMIR empty vector control 

 Lipofectamine 2000 

 Lipopolysaccharide  

 Phosphate buffer solution 

 Opti-Mem Reduced Serum Media 

Protocol. 

1.  Plate 6x105 YAMCs 

2. One day after plating remove cells and prepare transfection solutions: Dilute 250 ng of miR-

150 expression plasmid, PCMVMIR and Lipofectamine in Opti-Mem Medium.  Incubate 

separately for five minutes.  After the incubate mix miR-150 plasmid/Lipofectamine 2000 and 

PCMVMIR empty control/Lipofectamine mixture and incubate at room temperature for 20 

minutes. 

3. Add mixtures to the YAMCs cells and incubate the cells for 48 hours at 37°C.  

https://www-sciencedirect-com.archer.luhs.org/topics/biochemistry-genetics-and-molecular-biology/plasmid
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4. Following the incubation, wash cells with PBS and then treat with LPS (100 ng/ml) for 6 h at 

37°C.  

5. After the 6 h LPS treatment, both the supernatant and cells are collected. 

6. The cells were lysed and used for RNA isolation, total and enriched RNA were used for 

cDNA synthesis and subsequent qPCR. IL-6 and KC levels were measured from the supernatant 

were determined by ELISA kits according to the manufacturer's instructions.  
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