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ABSTRACT 

 

Binge drinking during adolescence is a common occurrence which is associated with 

increased risk of developing alcohol dependence and other mental health disorders. 

Hypothalamo-pituitary-adrenal (HPA) axis dysfunction is one characteristic commonly observed 

in many affective disorders, including anxiety and depression. Our laboratory has previously 

demonstrated that adolescent binge-pattern alcohol exposure results in long-term dysfunction of 

the HPA axis in a Wistar rat model, characterized by deficient glucocorticoid feedback 

inhibition. The current study aimed to characterize the behavioral phenotype of these rats in 

response to psychological stress during adulthood, and furthermore sought to understand the 

molecular mechanisms by which adolescent binge alcohol exposure may induce changes in HPA 

axis function and behavior. 

 To address the behavioral consequences of adolescent binge alcohol exposure, Wistar rats 

were exposed to our laboratory’s established adolescent binge alcohol paradigm, then subject to 

further acute or chronic psychological stress during young adulthood. The anxiety behaviors of 

these rats were measured using the elevated plus maze, then tissues were collected to assess HPA 

axis effector levels. To address the mechanisms by which alcohol may alter HPA axis signaling, 

glucocorticoid receptor (GR) co-immunoprecipitation experiments were performed using brain 

tissue samples from adolescent binge alcohol exposed Wistar rats. Additionally, a proximity-

dependent biotinylation (BioID) screen was established to identify novel GR protein:protein 

interactions in a neuroblastoma-derived cell line.  
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The data demonstrated that adolescent binge alcohol exposure in combination with either 

acute or chronic adulthood stress resulted in increased anxiety-like behaviors, accompanied by 

HPA axis dysfunction.  Adolescent binge alcohol exposure selectively altered HPA-related GR 

target gene expression, but not other target genes; furthermore, adolescent binge alcohol 

exposure did not alter GR interactions with its chaperone hsp90. Together, these data suggest 

alcohol specifically alters GR-mediated HPA axis regulation, but not global GR signaling. The 

BioID screen preliminarily identified 59 putative GR-interacting proteins, the majority of which 

were novel potential protein:protein interactions. Further work is needed to assess whether 

alcohol may affect these novel interactions. Collectively, the work presented here contributes 

important information regarding the effects of adolescent binge alcohol exposure at both 

behavioral and molecular levels. 
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CHAPTER I 

 
STATEMENT OF THE PROBLEM 

Adolescence is a critical period of brain development which is concomitant with a behav-

ioral transition from being dependent on one’s parents to becoming an independent person. One 

behavioral hallmark of this transition is an increased propensity for experimentation with novel 

stimuli, including alcohol. Therefore, it comes as no surprise that binge drinking is a common 

behavior among adolescents; roughly half of high school seniors admit to having been drunk at 

some point in their lives, and roughly 5.4 million teenagers in the U.S. can be classified as 

“binge drinkers,” meaning they have consumed five or more alcoholic beverages in one sitting at 

least once a month (Johnston, O’Malley, Miech, Bachman, & Schulenberg, 2017; Results from 

the 2013 NSDUH: Summary of National Findings, 2014).  

Because of the active developmental processes occurring during adolescence, the adoles-

cent brain is uniquely vulnerable to alcohol exposure. Consequently, teenage binge drinking can 

have effects that last long past intoxication, even into adulthood, regardless of whether an indi-

vidual continues to consume alcohol regularly. For example, imaging studies conducted on the 

brains of teenage binge drinkers reveal disorganization and thinning of brain regions that are im-

portant for regulating memories, mood, and cognition (Luciana, Collins, Muetzel, & Lim, 2013), 

while epidemiological studies demonstrate that teenage binge drinking increases the risk for al-

cohol dependence and mood disorders (Grant, Stinson, & Harford, 2001; Viner & Taylor, 2007). 

A considerable number of research studies using animal models of adolescent binge alcohol have 
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also been conducted, especially in recent years, which collectively support a causative role for 

adolescent binge drinking in the development of these mental health disorders. Yet, the results of 

specific studies can sometimes seem contradictory among one another due to differences in the 

animal model used (mouse, rat, non-human primate, etc.), the dosage, timing, and route of alco-

hol administration, and the research tools used to measure the study outcomes. 

One characteristic observed in many mood disorders is dysfunction of the hypothalamo-

pituitary-adrenal (HPA) axis. Functionally, the HPA axis comprises the neuroendocrine stress 

response and culminates with increased release of glucocorticoids (GCs) from the adrenal cortex 

into the systemic circulation. GCs are pleiotropic steroid hormones, known mostly for their abil-

ity to regulate immune responses and glucose homeostasis, but they also exert negative feedback 

on the hypothalamic arm of the axis by downregulating expression of corticotropin releasing fac-

tor (CRF) via the glucocorticoid receptor (GR). Although HPA axis dysfunction is observed in 

mood disorder patients, current drug therapies for these disorders are not directly targeted toward 

restoring normal HPA axis function specifically. While many mood disorders first appear during 

the adolescent transition period, the etiologies of mood disorders are poorly understood, and 

many patients do not respond to drug treatments that are currently available. 

Alcohol has long been known to act as a stressor, activating the HPA axis and eliciting a 

neuroendocrine stress response. It was not until more recently, though, that it became clear that 

alcohol can modulate the reactivity of the HPA axis, and in adolescence, binge pattern alcohol 

exposure can result in long-term HPA axis dysfunction, specifically chronically elevated hypo-

thalamic CRF levels and an exacerbated increase in circulating GCs upon exposure to a subse-

quent stressor (Przybycien-Szymanska, Mott, Paul, Gillespie, & Pak, 2011). These data suggest 
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that alcohol is reducing the GC-mediated negative feedback on the hypothalamus, but little is 

known regarding how adolescent binge alcohol might be affecting hypothalamic control of the 

neuroendocrine stress response. In vitro evidence demonstrates that binge level alcohol increases 

CRF promoter activity and decreases the ability of GR to bind to the CRF promoter (Przybycien-

Szymanska, Mott, & Pak, 2011), suggesting that alcohol’s effects on HPA axis function are me-

diated by GR, but how specifically alcohol may be doing this is unclear. 

Collectively, there is much work to be done in understanding how mood disorders devel-

op, how they may be effectively treated, how alcohol may impact mood disorder development, 

how alcohol disrupts the neuroendocrine stress response, and how alcohol’s effects on the HPA 

axis might alter mood and behavior, particularly in the vulnerable adolescent brain. This disserta-

tion aims to characterize the long-term behavioral and neuroendocrine effects of adolescent 

binge alcohol exposure, and to understand how binge-level alcohol impacts hypothalamic gluco-

corticoid receptor (GR) signaling, adding to our collective knowledge regarding how adolescent 

binge alcohol may cause an increased propensity toward the development of a mood disorder.  
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CHAPTER II 
	

ADOLESCENT BINGE ALCOHOL AND THE HPA AXIS: A REVIEW OF THE  

LITERATURE 

Literature Review. 

Binge drinking is a common behavior among adolescents that many teens and parents 

alike consider benign, even “normal.” Although adolescents do normally exhibit increased inter-

est in stimulatory or risky behaviors, mounting evidence demonstrates that teenage binge drink-

ing is a risk factor for many mental health disorders, suggesting that this behavior is, in fact, a 

serious public health concern (Grant et al., 2001; Rose, Winter, Viken, & Kaprio, 2014; Viner & 

Taylor, 2007). Because it is difficult to establish a causal relationship between teenage binge 

drinking and mental health disorders in human studies, many animal models have been designed 

that collectively demonstrate an increased propensity toward addiction and anxiety-like and/or 

depressive phenotypes due to adolescent alcohol exposure (Briones & Woods, 2013a; Guerri & 

Pascual, 2010; Pandey, Sakharkar, Tang, & Zhang, 2015). This is likely due to the fact that the 

brain undergoes important developmental changes during puberty, generally characterized by 

widespread synaptic pruning and increases in myelination (Luciana, 2013). Like the rest of the 

brain, the hypothalamus (and therefore reactivity of the hypothalamo-pituitary-adrenal, or HPA, 

axis) undergoes important developmental changes during adolescence, and perturbation of this 

developmental process by external stressors can result in permanent dysfunction of this neuroen-

docrine stress response (Romeo et al., 2006; Sisk & Zehr, 2005). Importantly, HPA axis 
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dysfunction is observed in many mood disorders (Naughton, Dinan, & Scott, 2014), and our la-

boratory and others have demonstrated using animal models that adolescent binge alcohol expo-

sure results in long term dysfunction of the HPA axis (Brunell & Spear, 2005; Logrip et al., 2013; 

Przybycien-Szymanska, Mott, Paul, et al., 2011). Taken together, these findings suggest that un-

derstanding adolescent alcohol’s effects on the HPA axis may be the key to understanding how 

adolescent alcohol increases the propensity toward mood disorder development. However, the 

molecular mechanisms by which the HPA axis is fine-tuned are poorly understood, particularly 

at the level of the hypothalamus, and likely involve many pathways with varied temporal resolu-

tion. This review of the literature will therefore focus on the developmental changes occurring in 

the adolescent brain, the effects of adolescent alcohol exposure, and the molecular regulation of 

the HPA axis.  

Adolescence: A critical period of brain development and behavioral transitions 

 Adolescence is the developmental period between childhood and adulthood during which 

important physical and cognitive changes occur to allow an individual to transition into an inde-

pendent lifestyle. While the terms “puberty” and “adolescence” are often used interchangeably, 

they refer to different yet overlapping developmental periods. Puberty specifically refers to the 

developmental time period during which an animal becomes reproductively competent, and is 

marked by elevated secretion of gonadal steroid hormones that results in the development of sec-

ondary sex characteristics (i.e. in humans, breast development in females, or the onset of facial 

hair growth in males). Indeed, the dynamic changes in steroid hormone concentrations during 

puberty play a role in the characteristic reorganization of the adolescent brain (reviewed in Sisk 

& Zehr, 2005), but the adolescent timeframe is more protracted than the strict pubertal time peri-

od. Because the adolescent timeframe can be difficult to define in non-human animals, many an-
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imal models of “adolescence” are based around the onset of puberty, which can be clearly delin-

eated by structural and hormonal characteristics. 

 In addition to the visible physical changes that accompany puberty, non-invasive imaging 

studies over the past ~25 years have allowed for characterization of the structural changes occur-

ring in the brain throughout the entire adolescent transition (extending even into the mid-twenties 

in humans). In general, gray matter volume follows an inverted U-shaped trajectory, reaching 

peak volume in the cortex just prior to the onset of puberty, whereas the peak subcortical gray 

matter volume is delayed by a few years (Giedd et al., 2015). These decreases in gray matter 

volume across adolescence are believed to be due mostly to synaptic pruning (Huttenlocher, 

1990; Whitford et al., 2007). On the other hand, white matter volume, which reflects the degree 

of myelination, increases linearly throughout puberty, accompanied by increased organization of 

white matter tracts and therefore increased connectivity among brain regions (Giedd et al., 2015). 

Additionally, these changes occur generally in caudal-to-rostal and phylogenetically older-to-

newer pattern, such that the prefrontal cortex, which is involved in higher order cognitive pro-

cesses, is the last region to fully develop (Gogtay et al., 2004).  

 One of the most prominent behavioral characteristics of adolescence is poor decision 

making, specifically the propensity for adolescents to engage in novel, stimulating, and risky ac-

tivities. These observations, combined with the advent of adolescent neuroimaging studies, ulti-

mately led to the “dual systems” model of adolescent brain development, which states that the 

incentive-processing socioemotional brain pathways mature before the inhibitory cognitive con-

trol pathways develop (Casey, Getz, & Galvan, 2008; Steinberg, 2008). While this model is like-

ly a bit of an oversimplification, it is generally supported by both psychological and neuroimag-

ing data (Mills, Goddings, Clasen, Giedd, & Blakemore, 2014; Shulman et al., 2016). Further-
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more, adolescents exhibit increased responsiveness to positively rewarding stimuli and decreased 

responsiveness to aversive stimuli, an observation that is supported by both human and animal 

data (reviewed in Spear, 2011). It is therefore not surprising that the recreational use and abuse 

of both alcohol and illicit drugs begins on average during the early teen years, increasing 

throughout adolescence and peaking in the mid-twenties (Johnston et al., 2017). 

 Another important aspect regarding adolescent brain development is the fact that many 

neuropsychiatric disorders have an average onset during the adolescent timeframe. In America, 

the median age of onset for any DSM-IV disorder is 14 years of age, and about half of the popu-

lation will be diagnosed with a DSM-IV disorder at some point in their life, highlighting the so-

ciological burden that psychiatric disorders place on our country (Kessler et al., 2005). In regard 

to substance abuse disorders specifically, individuals who engage in drug or alcohol use during 

adolescence have an increased risk of subsequently developing a substance abuse disorder 

(Wagner & Anthony, 2002). Animal studies suggest this may be due in part to adolescents’ rela-

tive resistance to the negative aspects of alcohol intoxication, including motor impairments and 

“hangover” symptoms (Doremus, Brunell, Varlinskaya, & Spear, 2003; White et al., 2002), 

while at the same time, adolescents are more susceptible to the alcohol neurotoxic effects, partic-

ularly in the hippocampus (White & Swartzwelder, 2004). Likewise, affective disorders also 

have a typical onset during puberty, and in girls specifically, depression and anxiety onset corre-

late better with menarche than with chronological age, strongly suggesting the involvement of 

steroid hormones in the development of mood disorders (Patton et al., 1996). In summary, ado-

lescence is a developmental period during which the brain is uniquely susceptible to perturba-

tions from external stimuli, which can result in long-lasting structural and functional effects.  
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Adolescent binge drinking: impact in human studies and animal models 

 “Binge drinking” is defined by the National Institute of Alcohol Abuse and Alcoholism 

(NIAAA) as consuming enough alcohol to raise an individual’s blood alcohol concentration to 

0.08 grams percent or higher; typically these levels are achieved when a man consumes five al-

coholic beverages or a woman consumes four alcoholic beverages in the span of two hours 

(Alcoholism, 2004). By their senior year of high school, roughly half of teenagers will have been 

drunk at some point in their lives; furthermore, over 15% of 12th graders self-report frequent 

binge drinking (Johnston et al., 2017). In 2010, underage drinking cost the United States $24.3 

billion, demonstrating the vast economic impact that teenage binge drinking has on our society 

(Sacks, Gonzales, Bouchery, Tomedi, & Brewer, 2015). Additionally, teenage binge drinking is 

known to increase the risk of alcoholism and mood disorders later in life (Grant et al., 2001; 

Rose et al., 2014; Viner & Taylor, 2007).  

 Human brain imaging studies have revealed many structural consequences to teenage 

binge drinking. Teenage binge drinkers exhibit decreased fractional anisotropy, a measure of 

white matter integrity and organization, throughout frontal, temporal, parietal, and cerebellar re-

gions, suggesting widespread deficits in connectivity among brain areas, particularly within the 

limbic system (McQueeny et al., 2009). Similar observations have been made in longitudinal 

studies that compared brain scans before and after the onset of alcohol use in adolescents, partic-

ularly demonstrating decreased white matter organization among brain regions responsible for 

behavioral regulation and executive function; this same study observed decreases in middle 

frontal gyrus cortical thickness in adolescent alcohol users, which is also considered to be part of 

the cognitive control network (Luciana et al., 2013). Heavy binge drinking adolescents also ex-

hibit greater decreases in cortical volume, which might indicate an increase in the normal synap-
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tic pruning that occurs during this developmental time period, or could indicate early neuro-

degeneration (Squeglia et al., 2015). Teenage binge drinkers also exhibit physiological dysfunc-

tions; for example, female college students with higher self-reported drinking have increased sal-

ivary cortisol levels, suggesting dysregulation of the HPA axis (Wemm et al., 2013). 

 Because of the limitations of most human studies, it is difficult to draw causal relation-

ships between teenage binge drinking and various outcomes; therefore, many animal models of 

adolescent alcohol exposure have been developed. However, there is not one single animal mod-

el of binge drinking during puberty that is standardized across this field of research; therefore, it 

is important to keep in mind each experimental paradigm when interpreting a study’s results. 

Male Wistar rats exposed to ethanol vapor inhalation three consecutive days per week for four 

weeks beginning at post-natal day (PND) 32-34 induced deficits in spatial working memory 

measured by the Morris water maze in the week after the last ethanol treatment, but did not alter 

anxiety behavior tested on the elevated plus maze (Schulteis, Archer, Tapert, & Frank, 2008). A 

similar ethanol-vapor delivery study observed decreased forebrain neurogenesis in the subven-

tricular zone up to 21 days after the last dose (Hansson et al., 2010), while intragastric delivery 

of high doses of alcohol resulted in decreased hippocampal neurogenesis in Sprague-Dawley rats 

(McClain, Hayes, Morris, & Nixon, 2011). Reduced hippocampal neurogenesis has also been 

observed in male Rhesus monkeys that were trained to consume alcohol during adolescence for 

11 months and then abstained from alcohol for two months (Taffe et al., 2010). Voluntary etha-

nol consumption in rats has also been shown to cause altered dopaminergic neurotransmission 

and social behavior (Maldonado-Devincci, Badanich, & Kirstein, 2010). While the list of effects 

due to adolescent binge alcohol exposure continues to grow, our laboratory and others have 

shown that alcohol induces long-term effects on the regulation of the HPA axis (Allen, Lee, 
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Koob, & Rivier, 2011; Przybycien-Szymanska, Mott, Paul, et al., 2011). Alcohol has long been 

shown to activate the HPA axis, thereby increasing circulating glucocorticoids (Adinoff, 

Iranmanesh, Veldhuis, & Fisher, 1998; Inder et al., 1995).  However, the mechanisms by which a 

short-term alcohol stress can induce long-term changes to the HPA axis are unknown. 

 

The hypothalamo-pituitary-adrenal (HPA) axis in health and disease 

 The ability to respond appropriately to stressors is a critical aspect of all life forms. While 

all living organisms must respond to physical stressors (i.e. any perturbation to homeostasis) lest 

Figure 1: HPA axis schematic. Upon exposure to a stressor, the PVN of the hypothalamus 
(left) releases CRF and AVP. These neuropeptides act on the anterior pituitary (middle) to 
stimulate the release of ACTH into the systemic circulation. ACTH acts on the adrenal cortex 
to trigger glucocorticoid release into the circulation. Glucocorticoids exert effects throughout 
the body, mainly on metabolism and immune function, and exert negative feedback on the 
hypothalamus. Alcohol has been shown to disrupt this feedback inhibition. 
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they become permanently disabled or succumb to death, higher order animals have developed the 

capacity to also respond to perceived threats to their safety, or psychological stressors. While the 

immediate “fight-or-flight” response to stress is mediated by the sympathetic nervous system, 

long term maintenance of homeostasis in the context of stress requires the integration of nervous, 

endocrine, and immune system responses. This stress response is mediated by the hypothalamo-

pituitary-adrenal (HPA) axis, the activation of which has widespread physiological and psycho-

logical consequences (see Figure 1) (reviewed in Smith & Vale, 2006). 

 Upon exposure to a stressor, parvocellular neurons in the paraventricular nucleus (PVN) 

of the hypothalamus release the neuropeptide corticotropin-releasing factor (CRF) into the hypo-

physial portal circulation; once CRF binds its receptor (CRFR1) on anterior pituitary cortico-

tropes, adrenocorticotropic hormone (ACTH) is released into the systemic circulation (Rivier & 

Vale, 1983; G. W. Smith et al., 1998; Vale, Spiess, Rivier, & Rivier, 1981). Although vasopres-

sin (AVP) is most well-known for its role in osmoregulation, AVP can be released from par-

vocellular PVN neurons onto the pituitary corticotropes as well, where binding to their V1b re-

ceptors potentiate ACTH release (Hernando, Schoots, Lolait, & Burbach, 2001; S. M. Smith & 

Vale, 2006). When ACTH reaches the adrenal cortex, it binds its receptor (MC2-R) on adreno-

cortical parenchymal cells, which triggers intracellular signaling cascades that result in increased 

steroidogenesis and secretion of glucocorticoids (Simpson & Waterman, 1988; S. M. Smith & 

Vale, 2006). Glucocorticoids (cortisol in humans and corticosterone in rodents) are pleiotropic 

hormones which act via binding their cognate receptors, either the glucocorticoid receptor (GR), 

or the mineralocorticoid receptor (MR); however, it is generally believed that MR regulates basal 

HPA axis tone while GR is responsible for carrying out the effects of glucocorticoids under 

stressed conditions (Ratka, Sutanto, Bloemers, & de Kloet, 1989; Reul & de Kloet, 1985). The 
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GR is a class I nuclear receptor with widespread distribution of expression throughout the brain 

and periphery, therefore its effects are canonically mediated by changes in target gene expression, 

which is highly cell-specific (Bamberger, Schulte, & Chrousos, 1996; Love et al., 2017). Gener-

ally, glucocorticoids mediate changes in metabolism, immune function, cognition, and behavior; 

these changes are adaptive at appropriate levels but can become pathogenic if dysregulated 

(Charmandari, Tsigos, & Chrousos, 2005). Thus, activity of the HPA axis is under tight regula-

tion by both neuronal and endocrine signals (Figure 1). Glucocorticoids themselves exert nega-

tive feedback on both the hypothalamus and pituitary, and because GR is widely distributed 

throughout the brain, both the parvocellular PVN neurons themselves as well as other brain re-

gions, including the hippocampus, are potential sites for glucocorticoid feedback inhibition 

(Jacobson & Sapolsky, 1991; Sawchenko, 1987). Furthermore, other neuronal populations 

throughout the hypothalamus, brainstem, lamina terminalis, and limbic system extend projec-

tions to the parvocellular PVN neurons to regulate HPA axis activity in response to a variety of 

different types of stressors (S. M. Smith & Vale, 2006).  

 Although many physical disorders are associated with a hyper- or hypo- active HPA axis, 

including diabetes, suppressed immune function, gastrointestinal issues, decreased reproductive 

function, and inhibition of thyroid function (reviewed in Charmandari et al., 2005), we will focus 

this portion of the review of the literature on psychiatric disorders associated with HPA axis dys-

function due to the relevance to the work at hand. The most common mood disorder, major de-

pression, is associated with HPA axis dysfunction characterized by increased central CRF levels, 

downregulation of CRF receptors, enhanced adrenal responses to ACTH, and downregulation of 

glucocorticoid feedback inhibition (Naughton et al., 2014). A low-dose dexamethasone suppres-

sion test has been proposed as a diagnostic tool for depression (Carroll et al., 1981), but its use 
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has not become widespread due to low specificity of the results (i.e., a number of other factors 

can alter responsiveness to this test). Furthermore, although drugs targeting the HPA axis, such 

as cortisol synthesis inhibitors, have been proposed as therapeutic interventions for depression, 

these drugs are not favored, as they are not sufficient to achieve remission on their own 

(Wolkowitz & Reus, 1999). HPA axis dysfunction is also associated with anxiety disorders, but 

the specific dysfunction can vary based on the type of anxiety disorder. For example, patients 

with panic disorder exhibit normal responsiveness to dexamethasone, but their cortisol response 

is hypo-reactive to CRF injection (Petrowski, Wintermann, Kirschbaum, & Bornstein, 2012). In 

contrast to depressed patients, those with PTSD actually exhibit enhanced glucocorticoid feed-

back inhibiton (Yehuda, Yang, Buchsbaum, & Golier, 2006). Interestingly, patients with co-

morbid PTSD and major depression exhibit a distinct HPA axis profile, with an attenuated 

ACTH response and low morning CORT levels, suggesting dysregulation at the level of the hy-

pothalamus (de Kloet et al., 2008; Vythilingam et al., 2010). Together, these studies highlight the 

importance of characterizing the specific mechanisms responsible for mood disorder-associated 

neuroendocrine dysfunction and the need for better HPA axis targeted therapeutics. 

The glucocorticoid receptor – structure and function 

 The glucocorticoid receptor (GR) is a ligand-activated transcription factor that is part of 

the nuclear receptor superfamily. Encoded by the NR3C1 gene, in humans the mature protein is 

777 amino acids long and is composed of three major functional domains: the N-terminal trans-

activation domain (NTD), the DNA-binding domain (DBD), and a multifunctional C-terminal 

domain (CTD) which contains the ligand binding site, a second transactivation domain, nuclear 

localization signals, and sites for other proteins to bind (Giguère, Hollenberg, Rosenfeld, & 

Evans, 1986). An additional nuclear localization signal is located in a flexible hinge region of the 
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protein between the DBD and CTD, and perhaps not surprisingly based on the proximity to the 

ligand binding site, nuclear localization is hormone dependent (Picard & Yamamoto, 1987).  

 The NTD is the most variable domain in GR, both among the various nuclear receptor 

superfamily members and among different species (Kumar & Thompson, 1999). This domain 

contains the AF1 transcription activation domain, which can act as a docking site for the tran-

scriptional machinery and coregulatory proteins (Dieken & Miesfeld, 1992). The NTD also con-

tains all of the known phosphorylation sites; some of these sites are phosphorylated upon ligand 

binding, and each site’s phosphorylation has different effects on GR’s capability to modulate 

transcription (W. Chen et al., 2008; Pocuca, Ruzdijic, Demonacos, Kanazir, & Krstic-

Demonacos, 1998; Wang, Frederick, & Garabedian, 2002). Another post-translational modifica-

tion in this region is SUMOylation at K293, which has been demonstrated to be necessary for the 

formation of a complex required for tethered transrepression important for anti-inflammatory 

processes (Hua, Ganti, & Chambon, 2015; Hua, Paulen, & Chambon, 2016). Together, these data 

highlight the importance of this domain in the fine-tuning of GR signaling. 

 The DBD, like other nuclear receptors, contains two highly conserved zinc fingers which 

can bind a particular DNA sequence referred to as a glucocorticoid response element, or GRE 

(Nicolaides, Galata, Kino, Chrousos, & Charmandari, 2010). Though the complete absence of 

GR is neonatally lethal, expression of a mutant GR (containing a point mutation within the DBD) 

which cannot directly bind DNA is not necessary for survival, though these mutant GR-

expressing mice do exhibit abnormalities in the hypothalamus and pituitary (Reichardt et al., 

1998). Interestingly, recent studies have demonstrated that variability in the DNA sequence 

where GR binds can confer conformational shifts within the GR DBD that can alter its dimeriza-

tion, suggesting that GR-DNA signaling is a “two-way street” (Watson et al., 2013).  



15	

	

 Finally, the CTD contains many functional regions, including the ligand binding domain, 

the AF2 transactivation region, one of the nuclear localization signals, and binding sites for re-

ceptor dimerization and coregulatory and chaperone proteins (Beck, De Bosscher, & Haegeman, 

2011; Bledsoe et al., 2002). Some naturally occurring, disease-linked mutations occur in the GR 

CTD, some of which render the receptor unable to bind ligand, and others which simply destabi-

lize the protein (Bledsoe et al., 2002).  Interestingly, crystal structures reveal that binding of the 

antagonist mifepristone causes a conformational shift in helix 12 (part of the LBD) that favors 

corepressor binding, demonstrating how different ligands can induce GR conformations that fa-

vor one effect on transcription (based on coregulatory protein binding) over another (Frego & 

Davidson, 2006; Pfaff & Fletterick, 2010; Schoch et al., 2010). 

 In humans, there are two major isoforms of GR that arise from an alternative exon 9, re-

sulting in a different and slightly shorter CTD in the GRβ isoform (Hollenberg et al., 1985). 

Though GRβ is generally thought of as a dominant-negative form of the receptor, it also exhibits 

intrinsic, gene-specific transcriptional activity in a ligand- and GRα- independent manner (Kino 

et al., 2009; Oakley, Jewell, Yudt, Bofetiado, & Cidlowski, 1999). Mice also express a different 

GRβ isoform that is also truncated at the C-terminus, but a GRβ isoform has not been character-

ized in rats. All three organisms, however, have an alternative translation start site, which can 

produce slight truncations at the N-terminus. Humans also express several different untranslated 

exon 1 variants that may regulate receptor protein levels (Turner & Muller, 2005).  

Glucocorticoid receptor protein:protein interactions 

 The glucocorticoid receptor carries out its effects in conjunction with many other proteins. 

This includes, but is certainly not limited to, a suite of proteins that bind to GR to stabilize it in 

the cytoplasm, proteins that facilitate transfer into (and possibly out of) the nucleus, and tran-
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scriptional coregulatory proteins. These interactions are likely somewhat cell-type specific, and 

changes in GR conformation due to ligand binding and/or DNA binding can expose various sur-

faces through which GR can interact with its binding partners. Therefore, fully understanding 

these protein:protein interactions is part of the key to understanding GR function as a whole. 

  

In the absence of ligand, GR is predominantly localized in the cytoplasm of the cell, 

where it resides in a multimolecular complex which holds the receptor in a conformation with 

high affinity for ligand. Nascent GR is first bound to hsp70 and hsp40, which then facilitate 

Figure 2: GR protein:protein interactions in a PVN parvocellular neuron. GR is local-
ized in the cytoplasm in the absence of ligand, where it remains in a complex with heat shock 
proteins and other co-chaperones, as well as other binding partners like FKBP5. During 
stress, adenylyl cyclase activity increases, which activates cAMP-PKA-CREB signaling, in-
creasing CRF expression. When glucocorticoid levels rise, GR translocates into the nucleus 
where it downregulates CRF expression. 
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hsp90 binding; this creates what is sometimes referred to as the foldosome (Morishima, Murphy, 

Li, Sanchez, & Pratt, 2000; Rexin, Busch, & Gehring, 1991). Additional co-chaperone proteins 

which assist in this process may involve hsp70-interacting protein (Hip) or BAG family molecu-

lar chaperone regulator 1 (BAG-1) (Kanelakis et al., 2000). In order for GR to mature, p23 can 

bind the GR-hsp90 complex in order for the GR ligand binding domain to open into a confor-

mation that will allow hormone binding (Morishima et al., 2003). To complete this maturation 

process, immunophilins including FK506-binding proteins FKBP51 or FKBP52, cyclophilin-40 

(CyP-40), and protein phosphatase 5 (PP5) bind the complex (Cheung & Smith, 2000). Interest-

ingly, FKBP51 and FKBP52 are believed to play opposing roles on GR function by altering its 

affinity for hormone; FKBP51 downregulates GR activity, while FKBP52 increases it (Riggs et 

al., 2003). 

Although canonically it was thought that ligand binding resulted in GR’s dissociation 

from this cytoplasmic chaperone complex, recent data suggest that this complex actually facili-

tates GR nuclear translocation. For example, treatment of cells with the hsp90 inhibitor gel-

danamycin slows down GR nuclear translocation (Elbi et al., 2004; Galigniana et al., 1998). Also, 

FKBP52 coimmunoprecipitates with GR, hsp90, and the motor protein dynein (Silverstein et al., 

1999), demonstrating how this complex would facilitate a more rapid translocation mechanism 

via the cytoskeleton. Once at the nuclear envelope, GR entry into the nucleus is mediated by im-

portins recognizing and binding the nuclear localization signals on GR (Freedman & Yamamoto, 

2004). Recent data demonstrated that members of the GR-hsp90 complex can also interact with 

importins and a nuclear pore glycoprotein (Nup62), raising the question that this chaperone com-

plex might also translocate with GR (Echeverria et al., 2009). 
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 Once inside the nucleus, GR’s interactions with other proteins ultimately mediates its ef-

fects on transcription; it is important, however, to note that most studies which investigate GR 

protein:protein interactions are conducted in the context of immune cell (or another non-neuronal 

cell type) function. It is well known that GR’s ultimate target gene regulation is cell-type specific 

(Krstic, Rogatsky, Yamamoto, & Garabedian, 1997; Love et al., 2017), suggesting that GR’s nu-

clear protein:protein interactions could also vary from cell to cell. Like other members of the nu-

clear receptor family, GR requires recruitment of coregulatory proteins to influence transcription 

(Petta et al., 2016). In order to exert transactivation of target genes, GR may recruit a variety of 

coactivators, the most well-studied of which is the p160 family, comprised of NCoA1 to -3 (also 

known as SRC-1 to -3 or by other individual names) (Anzick et al., 1997; Hong, Kohli, Trivedi, 

Johnson, & Stallcup, 1996; Oñate, Tsai, Tsai, & O’Malley, 1995). These p160 family coactiva-

tors interact with nuclear receptors (including GR) via their highly conserved LXXLL motifs 

(Parker, Heery, Kalkhoven, & Hoare, 1997). These coactivators then recruit histone acetyltrans-

ferases, which alter chromatin formation into a more open, transcriptionally active state (Li, 

Wong, Tsai, Tsai, & O’Malley, 2003). Of particular note, despite being generally referred to as a 

“coactivator,” NCoA2 can in some contexts act to repress transcription rather than activate it 

(Rogatsky, Zarember, & Yamamoto, 2001). On the other hand, nuclear receptors can also inter-

act with corepressors (NCoRs) and a homologue SMRT (silencing mediator of the retinoic acid 

receptor and thyroid receptor) which interact with the nuclear receptors via a L/I-XXI/V-I motif 

(Collingwood, Urnov, & Wolffe, 1999). Not surprisingly, these corepressors can exert opposite 

effects on chromatin formation by recruiting histone deacetylases (Rosenfeld, Lunyak, & Glass, 

2006). The GR antagonist mifepristone (RU486) does not inhibit GR from binding DNA; rather, 
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it triggers the recruitment of corepressors in scenarios where GR would normally recruit coacti-

vators (Schulz et al., 2002). 

 GR can also interfere with other transcription factor signaling pathways. For example, 

GR and NF-κB can directly bind one another, resulting in mutual inhibition of their actions on 

downstream target genes (Ray & Prefontaine, 1994); additionally GR and NF-κB signaling can 

intersect via several other mechanisms (Petta et al., 2016). Similarly, GR and AP-1 can inhibit 

one another, although recent evidence has demonstrated that AP-1 is also necessary for GR-

mediated transcription of some target genes (Biddie et al., 2011; Yang-Yen et al., 1990). Another 

bidirectional regulatory relationship exists between GR and the Jak/STAT signaling pathway; 

GR can interfere with the Jak/STAT signaling pathway by directly binding to some of its media-

tiors, while STAT3 can affect the transcription of GR and other GR-binding proteins (de Miguel, 

Lee, Onate, & Gao, 2003; Langlais et al., 2012).  

 Export of GR from the nucleus can also occur, and it is generally believed that out of the 

total population of GR in a cell, some of it is constantly in flux between nucleus and cytoplasm; 

the presence or absence of ligand simply tilts that balance in one direction or another. GR nucle-

ar export is mediated by the nuclear export receptor calreticulin, though it is possible that this is 

not the only exportin that can remove GR from the nucleus (Olkku & Mahonen, 2009; Walther et 

al., 2003). While it is generally believed that GR is degraded after nuclear export, it has recently 

been proposed that exported GR, in conjunction with hsp90, may be recycled instead (DeFranco, 

2000). 

 GR can undergo post-translational modifications in ways which are relevant to its func-

tion. For example, S203 and S221 become hyperphosphorylated by CDK5 in the presence of 

glucocorticoids, while S226 phosphorylation by JNK negatively regulates GR activity (Ismaili & 
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Garabedian, 2004; Rogatsky, Logan, & Garabedian, 1998). Furthermore, GR can be tagged for 

degradation by ubiquitination (Duma, Jewell, & Cidlowski, 2006), and it can be SUMOylated 

such that it can form a transrepression complex (Hua et al., 2015). Certainly, GR’s interactions 

with the enzymes that mediate these post-translational modifications are also important to its 

function in the cell. 

Glucocorticoid feedback inhibition in the hypothalamus 

 While glucocorticoids can mediate feedback inhibition of the HPA axis at both the hypo-

thalamic and pituitary levels (reviewed in Laryea, Muglia, Arnett, & Muglia, 2015), the exact 

molecular mechanisms by which this occurs is largely understudied. Here, we will focus specifi-

cally on glucocorticoid negative feedback mechanisms in the parvocellular PVN neurons. Origi-

nally, it was demonstrated using deletions of the CRF promoter in gel shift and reporter assays 

that a so-called negative glucocorticoid response element (nGRE) exists within the CRF promot-

er, and that GR can bind this region primarily as a monomer, suggesting that negative feedback 

occurred via direct GR-DNA binding at the CRF promoter region, which could then interfere 

with AP-1 or CREB- mediated increases in CRF expression (Malkoski & Dorin, 1999). However, 

subsequent studies have opposed this original model; for example, mice that express a mutant 

GR with a point mutation within the DBD that renders it unable to bind DNA do not show 

changes in CRF expression, suggesting direct DNA binding is not necessary for GR to regulate 

CRF expression (Reichardt et al., 1998). Furthermore, ChIP assays demonstrate relatively little 

interaction of GR with the CRF promoter relative to other transcription factors at the CRF pro-

moter, or GR binding at other promoter regions, suggesting this mechanism of feedback inhibi-

tion is minor (Evans, Liu, MacGregor, Huang, & Aguilera, 2013).  
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 Other proposed mechanisms for glucocorticoid mediated negative feedback include inter-

actions with other signaling pathways. For example, experiments using the BE(2)C neuroblasto-

ma cell line suggest GR might exert repression of CRF expression by interacting with and inter-

fering with the activity of PKA (which would alter the ability of other transcription factors like 

CREB to increase CRF promoter activity); however this study did not demonstrate a role of his-

tone deacetylases (HDACs) in altering CRF expression (Yamamori et al., 2007). This is in oppo-

sition to more recent studies that have demonstrated, using the PVN-derived IVB cell line, that 

DEX treatment results in formation of a repressor complex including GR, HDAC1, methyl CpG 

binding protein 2 (MeCP2), and DNA methyltransferase 3b (DnMT3b), which together result in 

epigenetic changes in the CRF promoter region, including methylation of the promoter (Sharma, 

Bhave, Gregg, & Uht, 2013). These modifications likely would not explain all glucocorticoid 

mediated feedback inhibition, as some inhibition is observed on a much shorter timescale. Other 

have demonstrated that glucocorticoids can increase endocannabinoid signaling, thereby reduc-

ing the frequency of excitatory glutamatergic stimuli from other brain regions, which could be 

mediated by a putative membrane GR or could be due to glucocorticoid binding to other mem-

brane receptors (Di, Malcher-Lopes, Halmos, & Tasker, 2003; Evanson, Tasker, Hill, Hillard, & 

Herman, 2010). Together, these studies demonstrate that there are likely several mechanisms 

which regulate glucocorticoid mediated feedback inhibition of CRF, and resolving each mecha-

nism on a molecular scale with relevant temporal resolution is important for understanding the 

complexities of HPA axis regulation as a whole.  

Effects of adolescent binge alcohol on HPA axis function 

 Our laboratory has demonstrated that in male Wistar rats, binge alcohol exposure during 

puberty results in HPA axis dysregulation that persists into adulthood but that binge alcohol ex-
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posure during adulthood results in different effects on the HPA axis than what is seen in adoles-

cence (Przybycien-Szymanska, Mott, Paul, et al., 2011; Przybycien-Szymanska, Rao, & Pak, 

2010). The choice to use Wistar rats specifically is important because they are an outbred strain, 

which is more reflective of the human population, and they exhibit greater fluctuations in HPA 

axis effectors in response to stress compared to other outbred rat strains, though in behavioral 

anxiety tests they exhibit higher baseline anxiety-like behaviors (D’Souza El-Guindy et al., 2010; 

Harbuz, Jessop, Lightman, & Chowdrey, 1994; Rex, Voigt, Gustedt, Beckett, & Fink, 2004). 

Furthermore, Wistar rats are widely used throughout the stress literature, which gives a better 

frame of reference for comparison.  

Specifically, our laboratory has demonstrated that a single dose of 3.0g/kg EtOH results 

in elevation of circulating CORT levels in both pubertal and adult Wistar rats; this CORT in-

crease in response to EtOH is slightly attenuated in pubertal and adult rats after the last dose of 

EtOH in our binge paradigm, but is still elevated compared to control animals. However, in male 

pubertal rats, CRF and AVP expression in the PVN is increased ONLY in response to binge 

EtOH exposure, but not control or acute alcohol exposure. Female rats do have higher baseline 

CRF and AVP expression levels, but these levels do not change in response to acute or binge 

EtOH treatment (Przybycien-Szymanska et al., 2010). These sexual dimorphisms are due to the 

presence of 17β-estradiol, but interestingly, ovariectomized female rats exposed to adolescent 

binge alcohol exhibit decreases in CRF and AVP expression (Przybycien-Szymanska, Gillespie, 

& Pak, 2012). Furthermore, male rats that were exposed to binge alcohol during puberty and 

subsequently treated with a second acute- or binge- alcohol challenge exhibit altered HPA re-

sponsiveness to this second treatment. Pre-exposed adult male rats had lower baseline CORT 

levels than EtOH-naïve adult rats, but increases in circulating CORT in the pre-exposed rats after 
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a single EtOH dose exceeded the increases observed in naïve rats exposed to a single EtOH dose. 

Additionally, pre-exposed rats did not have an attenuated CORT increase when exposed to binge 

alcohol in adulthood, but the naïve rats did have an attenuated CORT release. Our study indicat-

ed that pre-exposed male rats had higher baseline CRF expression in the PVN than naïve rats, 

which increased after acute but not binge EtOH treatment, while AVP expression in the PVN of 

pre-exposed male rats showed a completely different pattern compared to naïve rats (Przybycien-

Szymanska, Mott, Paul, et al., 2011). Our lab has investigated the possible mechanisms underly-

ing this HPA axis dysfunction using a PVN-derived cell line (IVB), demonstrating that two 

hours of treatment with alcohol doses as low as 12.5mM resulted in increased CRF promoter ac-

tivity in a luciferase assay; this is likely due to the inability of GR to bind the CRF promoter, as 

observed by ChIP assays (Przybycien-Szymanska, Mott, & Pak, 2011). Together, these data 

demonstrate that adolescent alcohol exposure in a Wistar rat model results in hypersensitivity of 

the HPA axis caused by dysfunctional feedback inhibition by glucocorticoids at the level of the 

hypothalamus. 

 Other studies investigating adolescent alcohol’s effects on the HPA axis generally agree 

with our laboratory’s findings, but some results may be mixed, likely due to differences in exper-

imental paradigm. For example, adolescent Sprague-Dawley rats (which are derived from the 

Wistar rat strain but exhibit slight differences in stress responsiveness) when given access to al-

cohol during a period of daily foot-shock stress do not habituate to the stressor, supporting the 

idea that adolescent alcohol interferes with HPA axis negative feedback and plasticity (Brunell & 

Spear, 2005). On the other hand, Sprague-Dawley rats exposed to alcohol vapor from PND28-42 

did not exhibit significant increases in PVN CRF levels as adults, but males did show increased 

AVP expression in the PVN on PND42 (Logrip et al., 2013). Interestingly, adolescent alcohol 
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administration has been shown to alter histone modifications, specifically observed in the amyg-

dala but likely also in other brain regions, which suggests adolescent alcohol use can alter the 

epigenetic landscape in potentially heritable ways (Pandey et al., 2015). Indeed, our laboratory 

has observed changes in hypothalamic gene expression profiles of offspring born to parents with 

a history of adolescent binge alcohol exposure (Przybycien-Szymanska, Rao, Prins, & Pak, 

2014). Although we have not directly studied the role of histone modifications in this alteration 

of gene expression patterns, we have demonstrated that these offspring exhibit differential cyto-

sine methylation across the genome, which explains some but not all of the observed changes in 

hypothalamic gene expression (Asimes et al., 2017).  

Summary. 

 Adolescent binge alcohol exposure results in hypersensitivity of the HPA axis due to dis-

rupted feedback inhibition by glucocorticoids. This dysfunction may underlie a propensity to-

ward the development of mood disorders in teenage binge drinkers, and the fact that the adoles-

cent brain undergoes widespread developmental changes makes this a unique time period during 

which exposure of the brain to any perturbation can have permanent consequences. Several po-

tential mechanisms by which glucocorticoids mediate feedback inhibition at the level of the hy-

pothalamus have been described, making it unclear how alcohol might disrupt this process. In 

general, glucocorticoids act via their receptor, GR, which is a ligand-dependent transcription fac-

tor that works in conjunction with many other proteins. The fact that alcohol does not change the 

levels of GR itself suggests that it may influence GR protein:protein interactions, which can vary 

in different cell types. However, the neural GR interactome is vastly under studied. It is im-

portant to understand the molecular mechanisms by which adolescent alcohol exposure causes 
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HPA axis hypersensitivity and an increased risk of mood disorders in order to guide the devel-

opment of novel therapeutics that prevent or treat the effects of teen binge drinking.  

Hypothesis and Aims. 

Since the HPA axis comprises the major neuroendocrine stress response, and dysfunction 

of the HPA axis is associated with many psychiatric disorders, it is important to understand how 

adolescent binge alcohol consumption exerts its effects on the HPA axis. The goal of the current 

research, then, is to elucidate the underlying molecular mechanisms mediating adolescent binge 

alcohol’s effects on the GR (and therefore on the HPA axis), as well as investigate the neuroen-

docrine and behavioral responses to psychological stress in adult animals that were exposed to 

binge alcohol during adolescence. The overarching hypothesis of this work is that binge alcohol 

during adolescence alters the GR’s interactions with other proteins, resulting in increased CRH 

expression and aberrant HPA axis signaling, which contributes to inappropriate neuroendocrine 

and behavioral responses to psychological stress during adulthood. To test this hypothesis, I have 

developed the following aims: 

Aim 1: Evaluate the behavioral and neuroendocrine responses to psychological stress in 

adulthood following adolescent binge alcohol exposure in a rat model. 

Many animal studies have aimed to test the causal link between adolescent binge alcohol expo-

sure and an anxiety-like phenotype, but the results have been difficult to interpret due to differ-

ences in experimental paradigms, highlighting the importance of evaluating each one experimen-

tally. While our lab has established a connection between adolescent alcohol and long-term HPA 

axis dysfunction in a particular peri-pubertal Wistar rat model, we had not previously tested 

whether this model would result in altered anxiety-like behavior after a prolonged abstinence 

from alcohol. Additionally, the development of mood disorders like anxiety tends to progress 
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due to a variety of compounded factors or multiple stressful events. It was unknown how rats 

exposed to binge alcohol during adolescence would respond to subsequent stressors, and if those 

responses varied depending on whether the subsequent stressor was acute versus repeated or ho-

motypic versus heterotypic. Therefore, I sought to answer the following questions: 

1) Is adolescent binge alcohol exposure alone sufficient to cause an anxiety-like behavioral 

phenotype in young adulthood? 

2) Does adolescent binge alcohol exposure change the behavioral response to an acute psy-

chological (heterotypic) stressor during adulthood?  

3) Is the HPA axis profile different in rats with a history of adolescent binge alcohol expo-

sure, with or without subsequent acute exposure to psychological stress? 

4) Does adolescent binge alcohol exposure combined with repeated stress during young 

adulthood result in an anxiety-like phenotype? 

5) After adolescent binge alcohol exposure, do homotypic and heterotypic repeated stressors 

result in the same behavioral and neuroendocrine responses? 

Overall, the data collected in this aim demonstrated that adolescent binge alcohol altered the 

behavioral and neuroendocrine responses to an acute psychological stressor toward an anxiety-

like phenotype, although adolescent binge alcohol alone is not sufficient to result in increases in 

anxiety-like behavior after long-term alcohol abstinence. Furthermore, repeated exposure to both 

a homotypic and heterotypic stressor during adulthood had similar effects on anxiety-like behav-

ior and HPA axis effector levels in rats exposed to adolescent binge alcohol. 

Aim 2: Characterize the mechanisms by which adolescent binge alcohol alters GR function.   

Previous in vitro and in vivo studies in our lab have collectively demonstrated that binge alcohol 
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reduces the ability of GR to negatively regulate CRF expression, but it is still unclear how exact-

ly this occurs. Others have demonstrated that alcohol exposure during a different developmental 

time period (gestation) results in region-specific changes in GR nuclear localization, suggesting 

alcohol may alter the suite of proteins that interact with GR in the cytoplasm. However, most 

studies investigating how GR regulates it target genes are performed in non-neuronal cells, and it 

has been demonstrated that GR target genes are cell-type specific. There are relatively few stud-

ies which have aimed to understand how GR regulates CRF gene expression in the PVN, thereby 

controlling HPA axis negative feedback. Therefore, it is also necessary to understand how GR 

functions normally in PVN neurons before one can fully understand how alcohol disrupts GR 

function in these cells. Therefore, in this aim I have attempted to answer the following questions: 

1) Does GR interact differently with known binding partners in brain tissue punches from 

rats exposed to binge alcohol during adolescence? 

2) Is the regulation of GR target genes intact in brain tissue punches from adolescent alcohol 

exposed rats? 

3) Given the same amount of ligand, does alcohol change GR nuclear localization in vitro? 

4) What proteins interact with GR in neuronal-like cells in the absence and presence of lig-

and? 

In this aim, I have demonstrated that adolescent binge alcohol does not alter the association 

of GR with HSP90 (a chaperone protein that canonically interacts with GR in the cytoplasm) in a 

region-specific manner. Furthermore, some but not all GR target genes tested are unchanged in 

the alcohol exposed samples despite differences in glucocorticoid levels. Repeated alcohol expo-

sure may subtly reduce the ligand-induced nuclear localization of GR in a PVN-derived cell line, 
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but this is likely not the sole mechanism by which adolescent alcohol exerts its effects. Finally, 

we described known and novel components of the putative GR interactome in a neuron-like cell 

line. We identified several components of the nBAF complex using a GR-directed proximity-

dependent biotinylation screen, most of which had previously been shown to interact with GR. 

Furthermore, we identified many other nuclear proteins known to act as transcriptional coregula-

tors or modulators of splicing that had not previously been demonstrated to be GR-interacting 

proteins. 
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CHAPTER III 
	

THE EFFECTS OF ADOLESCENT BINGE ALCOHOL EXPOSURE ON THE BEHAVIOR-

AL AND NEUROENDOCRINE RESPONSES TO AN ACUTE PSYCHOLOGICAL 

STRESSOR 

Introduction. 

Alcohol consumption has long been known to act as a stressor on the HPA axis, ultimate-

ly resulting in increased circulating glucocorticoids in both humans and animal models (Adinoff 

et al., 1998; Inder et al., 1995). Because widespread developmental changes occur in the adoles-

cent brain, the possibility of alcohol consumption itself and alcohol-induced HPA axis activity to 

negatively impact normal adolescent brain development has become a recent topic of investiga-

tion. Epidemiological data have demonstrated that individuals with a history of teenage binge 

drinking have an increased risk of developing mental health disorders, including alcohol use dis-

orders and mood disorders like anxiety or depression (McCambridge, McAlaney, & Rowe, 2011; 

Rose et al., 2014; Viner & Taylor, 2007). Similarly, studies utilizing rodent models of adolescent 

binge alcohol exposure have sometimes reported increases in anxiety-like behaviors after adoles-

cent alcohol, but the data can vary depending on the specific animal model used, and the mecha-

nism for why this occurs is poorly understood. Our laboratory has adopted a relatively prudent 

animal model of adolescent binge alcohol exposure, and we have demonstrated that this model 

results in long-term dysfunction of the HPA axis in males (Przybycien-Szymanska, Mott, Paul, et 

al., 2011; Przybycien-Szymanska et al., 2010). However, the behavioral phenotype of animals in 
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this experimental paradigm had not been characterized previously, which was a critical gap in 

our knowledge regarding this model’s applicability to human health. Because HPA axis dysfunc-

tion is a characteristic observed in mood disorder patients (Naughton et al., 2014), I hypothesized 

that male rats exposed to our adolescent binge alcohol paradigm would exhibit increased anxie-

ty-like behaviors compared to water-treated controls. Our previous studies showed that a subse-

quent stressor was necessary to detect differences between alcohol- and water- exposed animals’ 

plasma CORT levels (Przybycien-Szymanska, Mott, Paul, et al., 2011). Therefore, it was possi-

ble that changes in anxiety-like behaviors would similarly only be detected after activation of the 

HPA axis by a stressful stimulus.  

 Because there is no single animal model of adolescent binge drinking that is uniformly 

used for research, there are conflicting reports on the possible causal role of adolescent binge al-

cohol consumption to produce an anxiety-like phenotype. Multiple studies utilizing adolescent 

Sprague-Dawley rats have demonstrated an increase in anxiety-like behaviors in rats exposed to 

binge-level alcohol either via self-administration, or i.p. injections (Briones & Woods, 2013a; 

Pandey et al., 2015). However, male Wistar rats exposed to binge-level alcohol via vapor inhala-

tion during adolescence did not exhibit increases in anxiety-like behavior on the elevated plus 

maze (Schulteis et al., 2008). Likewise, C57BL/6 mice given i.p. alcohol injections during ado-

lescence do not exhibit increase anxiety-like behaviors (Coleman, He, Lee, Styner, & Crews, 

2011). Together, these studies highlight the discrepancies in results obtained via different exper-

imental paradigms, emphasizing the need to validate each model of adolescent binge alcohol ex-

posure before attempting to extend the findings to the human population.  

Our model of adolescent binge alcohol exposure, in which Wistar rats are given binge-

level (3g/kg) alcohol via oral gavage during peri-puberty (PND37-44) for a total of six non-
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consecutive days, has been shown to cause long-term dysfunction of the HPA axis in males 

(Przybycien-Szymanska, Mott, Paul, et al., 2011). Specifically, while CRF transcript levels are 

consistently elevated in the PVN of the binge-alcohol exposed animals (regardless of further 

treatment), plasma CORT levels appear “normal” at rest, but the CORT response elicited after a 

subsequent alcohol dose is intensified, suggesting the HPA axis is hypersensitive to stress due to 

ineffective negative feedback of glucocorticoids in the PVN. Similar HPA axis dysfunction is not 

observed if the rats are exposed to binge alcohol during adulthood, highlighting adolescence as a 

distinct developmental timeframe during which HPA function is vulnerable to permanent pertur-

bations. Hypersensitivity of the HPA axis is also observed clinically in patients with anxiety and 

depression (Naughton et al., 2014). HPA dysfunction is common to many mood disorders, and 

the onset of mood disorders is often observed during adolescence (Paus, Keshavan, & Giedd, 

2008); this finding raises the intriguing thought that HPA axis dysfunction may lie at the heart of 

the adolescent alcohol-induced propensity toward the development of a mental health disorder.  

 Here, our aim was to assess the effects of a heterotypic stressor (acute restraint stress) on 

the neuroendocrine stress response in young adult rats which had been exposed to our paradigm 

of repeated binge alcohol during adolescence. Furthermore, we measured anxiety-like and relat-

ed ethological behaviors in these animals as adults in order to further validate our model’s simi-

larity to clinical observations of increased mood disorder risk in populations who have engaged 

in teenage binge drinking. This was the first study to conduct these experiments in this specific 

animal model of adolescent binge alcohol exposure, and was an important step in confirming this 

model as an effective tool to study the mechanisms of alcohol’s effect on the neuroendocrine 

stress response system. I hypothesized that male Wistar rats exposed to our adolescent binge-

pattern alcohol paradigm would exhibit increased anxiety-like behaviors in the elevated-plus 
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Figure 3: Experimental paradigm. Pubertal binge ethanol (EtOH) treatments commenced 
on PND 37. On PND 73, animals were tested in the elevated plus maze (EPM) to establish a 
baseline level of anxiety-like behavior. On PND 74, animals in the restraint stress group were 
placed in a plastic restrainer tube for 30 min, then were tested in the EPM again, and 5 min 
after ending the EPM test, the animals were euthanized.  
 

maze after subsequent exposure to an acute psychological stressor during adulthood. We demon-

strated that young adult animals exposed to our paradigm of binge-level alcohol administration 

during adolescence that received acute restraint prior to behavioral testing did exhibit increased 

risk assessment behaviors and had an altered neuroendocrine profile. While restraint stress itself 

also activated the HPA axis, as was predicted, we observed no differences in behavior prior to 

any adulthood stress between water- and alcohol- exposed rats. Together, these data suggest that 

adolescent binge alcohol exposure could sensitize individuals to subsequent mild stressors and 

increase their risk of developing anxiety disorders as adults, underscoring the need to identify the 

mechanisms by which alcohol plays a causative role on HPA axis dysfunction and other al-

terations to anxiety-related brain functions. 

 

 

 

Results. 

Adolescent binge alcohol exposure did not alter baseline anxiety-like behaviors in adulthood 

 Previously, we have demonstrated that adolescent binge alcohol exposure results in sig-

nificant long term alterations in expression patterns of genes that regulate the neuroendocrine 

stress response as well as stress hormone biochemical profiles (Przybycien-Szymanska, Mott, 

Paul, et al., 2011). This led to the hypothesis that animals exposed to repeated binge alcohol dur-
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ing adolescence may also exhibit altered anxiety-like behaviors as young adults, either at rest or 

after a subsequent, heterotypic stressor. To measure this, we used the elevated plus maze as it is a 

gold standard in the field for measuring anxiety-like behavior. Canonically, more time spent in 

the closed arms of the maze is indicative of an anxiety-like phenotype, while more time spent in 

the open arms of the maze is indicative of a more exploratory phenotype (Walf & Frye, 2007). 

The first elevated plus maze behavioral trial was conducted after four weeks of complete alcohol 

abstinence and in the absence of any further stressful treatments (see Fig. 3 for experimental par-

adigm). The data from this behavioral trial showed that there were no significant differences in 

traditionally-measured anxiety-like behaviors, specifically the time spent in the closed arms, 

open arms, or intersection of the arms of the elevated plus maze, between rats exposed to repeat-

ed binge alcohol during adolescent versus rats that receive water control treatments (see Fig. 4A-

C, Table 1). Furthermore, there were no significant differences between alcohol or water treated 

animals on any ethological behaviors measured, which included stretched attend postures (SAPs), 

head dips, or rearings (Fig. 4D-F, Table 1). Importantly, there were no differences in the overall 

activity levels between the two groups either, as measured by the total distance travelled in the 

maze and the average speed of exploration (Fig. 4G-H, Table 1).  Together, these data suggest 

that adolescent binge alcohol alone does not change the anxiety-like behavioral phenotype of rats 

under low stress conditions.  
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Dependent variable (units) H2O mean (SEM) ETOH mean (SEM) 95% CI 

Time in closed arms (%) 38.53 (3.735) 38.27 (2.577) -9.446 to 8.926 

Time in open arms (%) 35.33 (4.572) 33.07 (3.463) -13.87 to 9.347 

Time in intersection (%) 25.4 (1.682) 28.31 (1.648) -1.861 to 7.673 

Stretched attend postures (count) 19.2 (1.417) 19.15 (1.022) -3.587 to 3.487 

Head dips (count) 33.6 (3.646) 38.35 (3.75) -5.838 to 15.34 

Rearing (count) 23.3 (2.442) 24.9 (1.304) -4.004 to 7.204 

Total distance travelled (m) 13.93 (1.148) 14.66 (0.6127) -1.911 to 3.358 

Average speed (m/s) 0.049 (0.002967) 0.04885 (0.002023) -0.00742 to 0.00712 

Table 1: Elevated plus maze trial 1 results. Adolescent alcohol exposure did not significantly 
change any parameters measured in the elevated plus maze on PND73, prior to further manipula-
tion. n=20 per group. 
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Figure 4: Anxiety-like behavior under resting conditions. The percent of time in the 
closed arms (A), intersection (B), and open arms (C) of the elevated plus maze was calculated 
by dividing the amount of time spent in the given zone by the total duration of the test (300s). 
The number of stretched attend postures (D), head dips (E), and rearing behaviors (F), were 
scored by a blinded observer. The total distance travelled (G), and the average speed (H) 
were used as indicators of overall motor activity. Data are expressed as mean ± SEM, and 
were analyzed by two-way ANOVA with Sidak’s multiple comparisons post-hoc tests, in 
which p<0.05 was considered significant (n=20 per group).  
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Adolescent binge alcohol exposure increased risk assessment behaviors in adulthood following 

an acute mild psychological stressor 

 In our previous studies, changes in stress hormone levels were not detected in unstressed 

animals that had received either repeated binge alcohol or water treatment during adolescence; it 

was only upon exposure to another stressor that differences in plasma corticosterone levels be-

tween adolescent treatment groups were observed (Przybycien-Szymanska, Mott, Paul, et al., 

2011). Therefore, we next tested whether adolescent binge alcohol exposure would alter the be-

havioral response to a mild psychological stressor in young adulthood. Similarly to the baseline 

behavioral tests, rats that did not receive a psychological stressor immediately prior to testing did 

not exhibit difference in the spatiotemporal or ethological behavioral parameters between the ad-

olescent alcohol or water treatment groups (refer to the black bars in Fig. 5). However, animals 

exposed to binge alcohol during adolescence spent significantly more time in the intersection of 

the elevated plus maze (but no changes in the time in the open or closed arms) after 30 minutes 

of restraint stress compared to rats who receive water treatment during adolescence and subse-

quently stressed before elevated plus maze testing (Fig. 5A-C, Table 2). Further, there were sta-

tistically significant main effects by two-way ANOVA of both adolescent alcohol exposure and 

of acute restraint stress on the number of SAPs, such that the rats exposed to binge alcohol as 

adolescents and then subjected to restraint stress just prior to entering the maze exhibited the 

highest number of SAPs (Fig. 5D, Table 2), but there were no statistically significant differences 

between treatment groups on the number of head dips or rearings (Fig. 5E-F, Table 2). Again, 

there were no differences between any of the groups on the total distance travelled or average 

speed of exploration in the maze, demonstrating that the changes in the abovementioned behav-

iors were not due to an overall increase in activity (Fig. 5G-H, Table 2). While the importance of 
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the increased time spent in the intersection of the maze is debated (as it may be due to a variety 

of factors which cannot be differentiated using the elevated plus maze alone), the increased level 

of the anxiety-relevant SAP behaviors is significant, because it suggests that adolescent binge 

alcohol (combined with acute restraint stress) contributes to an anxiety-like phenotype. 
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Figure 5: Anxiety-like behavior following acute restraint stress. The percent of time in the 
closed arms (A), open arms (B), and intersection (C) of the elevated plus maze was calculated 
by dividing the amount of time spent in the given zone by the total duration of the test (300s). 
The number of stretched attend postures (D), head dips (E), and rearing behaviors (F), were 
scored by a blinded observer. The total distance travelled (G), and the average speed (H) 
were used as indicators of overall motor activity. Data are expressed as mean ± SEM, and 
were analyzed by two-way ANOVA with Sidak’s multiple comparisons post-hoc tests, in 
which p<0.05 was considered significant (n=10 per group). There was a significant main ef-
fect of gavage on time spent in the intersection of the arms (C), and significant main effects 
of gavage and restraint on stretched attend postures (D). Asterisk (*) denotes significant 
pairwise comparisons between indicated groups. 
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Adolescent alcohol exposure altered neuroendocrine regulators of the HPA axis in adulthood 

 While our previous studies measured HPA axis effector levels in adolescent binge alco-

hol exposed animals after a homotypic stressor (a subsequent dose or repeated doses of alcohol) 

(Przybycien-Szymanska, Mott, Paul, et al., 2011), we also wanted to measure HPA axis media-

tors in adolescent binge alcohol exposed animals after a heterotypic stressor (30 minutes of re-

straint stress, a completely psychological stressor). The paraventricular nucleus (PVN) of the hy-

pothalamus is the nucleus which contains the CRF- and AVP- positive neurons that project to the 

median eminence to regulate the HPA axis directly, and the ventral hippocampus (V.Hipp) is one 

brain region which sends projections to the PVN to modulate its activity (S. M. Smith & Vale, 

2006), therefore we have focused our gene expression studies on these two brain regions. In ad-

dition to measuring CRF and AVP levels, we also measured cFos transcript levels as a proxy for 

general neuronal activity in these brain areas. In the V.Hipp, neither prior adolescent alcohol ex-

posure nor restraint stress altered CRF mRNA (Fig. 6A, Table 2). Restraint stress did significant-

ly increase CRF mRNA levels in the PVN of both alcohol exposed and control animals, as ex-

pected, but there was not a statistically significant effect of adolescent alcohol exposure, a find-

ing that deviates from our previous work but may be due in part to the different experimental 

paradigm (Fig. 6C, Table 2). Restraint stress also significantly increased cFos expression in both 

the V.Hipp and the PVN, suggesting increased brain activity in these regions, but again alcohol 

did not significantly affect cFos expression in either region (Fig. 6 B,D, Table 2). Interestingly, 

adolescent alcohol exposure (but not restraint stress) increased AVP mRNA in the PVN (Fig. 6E, 

Table 2). Because AVP released from the PVN acts in concert with CRF to promote ACTH se-

cretion from the anterior pituitary, the combination of increased AVP and similar (though not 

significantly higher) CRF levels in the PVN suggests that the PVN of rats exposed to adolescent 
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binge alcohol is primed to elicit a greater ACTH (and likely CORT) response during a stressful 

event, which is consistent with our previous studies demonstrating HPA axis hypersensitivity in 

adolescent binge alcohol exposed animals.  

Dependent variable  Interaction:  

Gavage x Restraint 

Main effect:  

Gavage 

Main effect:  

Restraint 

Time in closed arms NS NS NS 

Time in open arms NS NS NS 

Time in intersection NS F(1,36)=9.47, p=0.0040 NS 

Stretched attend postures NS F(1,36)=4.193, p=0.0479 F(1,36)=4.193, p=0.0479 

Head dips NS NS NS 

Rearing NS NS NS 

Total distance travelled NS NS NS 

Average speed NS NS NS 

V. hipp CRF NS NS NS 

V. hipp cFos NS NS F(1,36)=6.059, p=0.0188 

PVN CRF NS NS F(1,36)=6.102, p=0.0184 

PVN cFos NS NS F(1,28)=36.21, p<0.0001 

PVN AVP NS NS, F(1,36)=3.999, p=0.0531 NS 

CORT NS F(1,36)=5.223, p=0.0283 F(1,36)=70.98, p<0.0001 

V. hipp GR NS NS F(1,36)=5.234, p=0.0281 

PVN GR NS NS NS 

Table 2: Statistical analysis for elevated plus maze trial 2 and biochemical parameters.  
F and p-values from two-way ANOVA on EPM results at PND74, qRT-PCR, and ELISA. 
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Figure 6: Regional levels of CRF, AVP, and cFos transcripts. mRNA levels of corticotro-
pin releasing factor (A and C), cFos (B and D), and arginine vasopressin (E), in the ventral 
hippocampus (A and B) and paraventricular nucleus of the hypothalamus (C-E), measured by 
RT-qPCR relative to the unrestrained H2O group. Data are expressed as mean ± SEM, and 
were analyzed by two-way ANOVA with Sidak’s multiple comparisons post-hoc tests, in 
which p<0.05 was considered significant (n=10 per group). There were significant main ef-
fects of restraint on V.hipp cFos (B), PVN CRF (C), and PVN cFos (D) levels. Asterisk (*) 
denotes significant main effect of restraint in panel B and significant pairwise comparisons 
between indicated groups in panels C and D. 
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Adolescent alcohol exposure altered circulating glucocorticoid levels, but not glucocorticoid re-

ceptor transcript levels 

 Finally, we measured plasma levels of the stress hormone corticosterone (CORT), as well 

as glucocorticoid receptor (GR) transcript levels in the V.Hipp and PVN, since it is known that 

CORT, an endogenous GR ligand, can downregulate GR expression (Yuan et al., 2016). As ex-

pected, plasma CORT levels were significantly higher following an acute stressor in both groups, 

such that alcohol and acute restraint stress increased CORT levels (Fig 7A, Table 2). Restraint 

stress significantly decreased GR mRNA levels in the V.Hipp; however, the animals with ado-

lescent alcohol exposure exhibited a smaller decrease compared to unrestrained controls than the 

animals exposed to water gavage during adolescence (Fig. 7B, Table 2). There were no statisti-

cally significant differences in GR mRNA in the PVN among any of the groups, though the re-

strained water control rats trended toward a decrease compared to their unstressed counterparts 

(Fig. 7C, Table 2). This lack of a difference in GR expression in the PVN, particularly between 

the restrained and unrestrained alcohol exposed rats, is actually an intriguing result, as it suggests 

that there is dysfunction in the HPA axis negative feedback loop due to the reduced capability of 

GR to regulate its target genes in the PVN, which is consistent with our previous in vivo and in 

vitro studies (Przybycien-Szymanska, Mott, & Pak, 2011; Przybycien-Szymanska, Mott, Paul, et 

al., 2011).  
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Discussion. 

 The data presented here contribute novel information regarding the ability of adolescent 

binge alcohol exposure to alter risk assessment behavior and neuroendocrine function after mild 

psychological stress in adulthood, adding to the body of literature supporting the hypothesis that 

a history of adolescent binge drinking has a causative role in the development of mood disorders. 

Our experimental paradigm is relatively prudent compared to other models with regard to the 

timing and dosage of alcohol administration, the use of an outbred rat strain, and the low-stress 

environmental conditions under which the behavioral experiments were performed, which high-

lights the importance of our significant observations as being more applicable to the human pop-

ulation. Of note is that we did not observe significant alterations in behavior between alcohol-

exposed and control rats prior to further stress, which is consistent with the notion that not all 

Figure 7: Plasma CORT and brain region expression of GR. Circulating plasma levels of 
corticosterone (A), measured by ELISA. mRNA levels of glucocorticoid receptor in the ven-
tral hippocampus (B), and paraventricular nucleus of the hypothalamus (C), measured by RT-
qPCR relative to the unrestrained H2O group. Data are expressed as mean ± SEM, and were 
analyzed by two-way ANOVA with Sidak’s multiple comparisons post-hoc tests, in which 
p<0.05 was considered significant (n=10 per group). There were significant main effects of 
gavage and restraint on plasma CORT (A), and a significant main effect of restraint on V. 
hipp GR mRNA (B). Asterisk (*) denotes significant pairwise comparisons between indicated 
groups in panel A and significant main effect of restraint in panel B. 
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individuals who engage in binge drinking during adolescence will develop a mental health disor-

der. Instead, our data demonstrate that a history adolescent binge alcohol causes subtle changes 

in the manner in which a psychological stressor is perceived, which may render an individual 

more at risk for developing a mood disorder. Furthermore, these behavioral changes were ac-

companied by an altered HPA neuroendocrine profile, which is another hallmark of many mental 

health disorders.  

 My data have demonstrated that both prior adolescent binge alcohol and an acute adult 

restraint stress increased the number of stretched attend postures (SAPs), a risk assessment be-

havior, in the EPM immediately following restraint. We did not observe changes in the spatio-

temporal measures of anxiety-like behavior in the EPM, which is consistent with data demon-

strating that these behaviors do not originate from the same molecular mechanisms. Specifically, 

while the time spent in the open or closed arms of the EPM is sensitive to benzodiazepine treat-

ment and one-trial tolerance, the incidence of SAPs is not (Albrechet-Souza, Cristina de 

Carvalho, Rodrigues Franci, & Brandão, 2007). Rather, the number of SAPs exhibited is posi-

tively correlated with circulating glucocorticoid levels and can be modulated by exogenous glu-

cocorticoid treatment or pharmacological blockade of glucocorticoid synthesis (Mikics, Barsy, 

Barsvári, & Haller, 2005; Rodgers et al., 1999). Likewise, we observed concurrent increases in 

plasma CORT levels due to both adolescent binge alcohol and adult acute restraint stress that 

followed the same pattern as the increases in SAPs. Therefore, it is likely that the hormonal ab-

normalities induced by adolescent binge alcohol exposure underlie the behavioral changes we 

and others have observed, and may mediate the increased propensity for mental health disturb-

ances.  
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 Another interesting and unexpected behavioral observation we made was that rats ex-

posed to adolescent binge alcohol spent more time in the intersection of the EPM arms upon their 

second exposure to the maze. However, there are no publications to our knowledge that have re-

ported a change in this behavioral parameter independently, which leaves this observation open 

to many interpretations. One possibility is that this spatiotemporal behavior is another type of 

risk assessment, since the rats most often exhibited SAPs in the intersection of the maze (data not 

shown). Another explanation is that, since these differences were only observed upon the second 

exposure to the maze, it is possible the alcohol-exposed rats did not remember their prior expo-

sure to the maze. Indeed, intermittent adolescent binge alcohol exposure has been shown to in-

duce learning deficits in both a conditional discrimination task and a spatial working memory 

task (Pascual, Blanco, Cauli, Miñarro, & Guerri, 2007; Schulteis et al., 2008). However, further 

behavioral studies would have to be performed to delineate whether either of these two proposed 

explanations for the observed behavior is correct. For example, many researchers have switched 

to using the elevated zero maze in place of the elevated plus maze to measure anxiety-like behav-

ior because it retains the characteristics of having open and enclosed portions in which the ani-

mal may spend time, but because of the shape, does not have an intersection between the two 

areas (Shepherd, Grewal, Fletcher, Bill, & Dourish, 1994). Other proposed assays for learning 

deficits might include the Morris water maze, which tests spatial learning, or the novel object 

recognition task, which measures whether the animal remembers being exposed to an object pre-

viously (Antunes & Biala, 2012; Morris, 1984; Vorhees & Williams, 2006).  

 In terms of the neuroendocrine effects of adolescent binge alcohol consumption, we gen-

erally observed similar results as in our previous studies with some exceptions. As before, we 

observed that a history of adolescent binge alcohol exposure resulted in a hypersensitive CORT 
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response to a stressor, in this case an acute psychological stressor, whereas before we tested the 

CORT response to a homotypic alcohol stressor (Przybycien-Szymanska, Mott, Paul, et al., 

2011). Likewise, in both studies, AVP transcript levels in the PVN were increased in adolescent 

binge alcohol exposed animals, although in the current study the data were just shy of what is 

traditionally considered significant. In the current study, however, we did not see a significant 

effect of alcohol exposure on levels of CRF transcript in the PVN (though there was a trend to-

ward an increase), whereas our previous study demonstrated that adolescent binge alcohol did 

increase PVN CRF mRNA levels (Przybycien-Szymanska, Mott, Paul, et al., 2011). It is im-

portant to note the differences in the two experimental paradigms, however, particularly the fact 

that in the current study, all animals were tested in the EPM just prior to tissue collection, so it is 

possible that the behavioral testing alone induced a slight increase in PVN CRF mRNA levels in 

all experimental groups.  

 In the current study, we also measured other HPA axis effector levels that we had not 

measured previously. Importantly, we measured GR transcript levels in both the PVN and the 

V.Hipp (which has afferent connections to the PVN), and while we did not observe changes in 

PVN GR mRNA, we did see a decrease in V.Hipp GR mRNA due to restraint stress. This is an 

interesting observation, because GR itself is a GR-target gene, and because restraint stress in-

creased plasma CORT levels, one would expect the transcript levels of GR in target tissues to 

decrease. The fact that we did not observe a decrease in PVN GR mRNA levels after stress sug-

gests that the GR may be dysfunctional in this brain region specifically, and because the PVN is 

the site of HPA axis activation, this is likely the culprit for the dysfunction of the HPA axis over-

all.  
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As a proxy for general neuronal activation, we also measured cFos mRNA levels in the 

V.Hipp and PVN, and while restraint stress did increase cFos in both regions as expected, ado-

lescent binge alcohol exposure did not have an effect, suggesting that the changes due to the his-

tory of alcohol exposure were not simply due to changes in overall neuronal activity. It is also 

important to point out that acute restraint stress did result in changes to cFos, PVN CRF, and 

V.Hipp GR transcript levels as well as plasma CORT levels as expected, demonstrating that this 

acute restraint stress was sufficient to activate the neuroendocrine stress response.  

In comparison to other models of adolescent binge alcohol exposure, our model is rela-

tively pragmatic in the timing and dosage of alcohol delivery, our choice of animal (rat) and 

strain, and in the manner in which the behavioral testing was conducted. We delay the onset of 

alcohol exposure until PND37, which has been demonstrated biochemically to be the onset of 

peri-puberty (Ketelslegers, Hetzel, Sherins, & Catt, 1978; Södersten, Damassa, & Smith, 1977). 

This is in stark contrast to most of the models in the field which begin alcohol delivery around 

PND28 (Coleman et al., 2011; Pandey et al., 2015), which is only one week after what is tradi-

tionally considered “weaning,” and would correspond to roughly an elementary school-aged hu-

man. On the days when rats receive alcohol in our model, it is administered three hours after 

“lights on,” which is the time of day when circulating CORT levels are normally low as it is to-

ward the beginning of the rats’ sleeping period (Kalsbeek et al., 2012; Spiga, Walker, Terry, & 

Lightman, 2014), and corresponds to when human teenagers would most likely engage in binge 

drinking (i.e., when they should be going to sleep). This is in contrast to the widely used “drink-

ing in the dark” model of adolescent binge alcohol consumption, in which animals consume al-

cohol during the dark period, which for rodents, is the wake-phase of the circadian period. We 

use rats versus mice because their alcohol metabolism is more similar to humans, and Wistar rats 
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specifically because they exhibit greater fluctuations in HPA axis effectors in response to stress 

compared to other outbred rat strains (D’Souza El-Guindy et al., 2010; Harbuz et al., 1994). 

However, it is important to note that Wistar rats exhibit higher baseline anxiety-like behavior in 

several assays, which could result in a ceiling effect once exposed to subsequent anxiogenic 

stimuli (Rex et al., 2004). Finally, we take great care to conduct our behavioral experiments un-

der low-stress conditions (i.e. dim light, frequent handling by the same individual, soothing 

white noise), and while other researchers generally do not mention the conditions under which 

their behavioral testing is performed, anecdotal evidence would suggest that most researchers do 

not take the same kind of measures to reduce non-specific stress.  

It is not surprising, then, that with so much variation in experimental methodology, there 

is great variation in the field regarding the ability of adolescent binge alcohol exposure to cause 

an anxiety-like phenotype in rodent models. For example, adolescent Sprague-Dawley rats that 

are trained to self-administer alcohol exhibit increased immobility in the open field test, which is 

indicative of anxiety-like behavior (Briones & Woods, 2013b). Likewise, Sprague-Dawley rats 

that were given 2g/kg of ethanol i.p. from PND28-41 in a two-day on, two-day off fashion 

demonstrated increased anxiety-like behaviors in both the light-dark box and EPM tasks as 

adults (Pandey et al., 2015). Conversely, C57BL/6 mice that were given 5 g/kg ethanol i.p. for 

ten days during adolescence (PND28-37) did not exhibit increased anxiety-like behaviors in the 

EPM or open field test (Coleman et al., 2011). Likewise, male Wistar rats exposed to ethanol va-

por inhalation beginning around PND32-34 do not exhibit changes in the time spent in the open 

or closed arms of the EPM, similar to our observations in the current study (Schulteis et al., 

2008). Taken together, these studies demonstrate the discrepancies in observed anxiety-like be-

havior across different models of adolescent binge alcohol exposure, which underscores the im-
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portance of validating each model separately before conducting more labor-intensive mechanistic 

experiments. Furthermore, because our model is more pragmatic relative to those in the field, we 

believe our findings are applicable to a wider proportion of the human population, who may not 

display clinical symptoms of anxiety or depression, but are at a higher risk for developing a 

mood disorder under further psychosocial pressure. 

Overall, this study contributes vital information regarding the impact of adolescent binge 

alcohol exposure on subsequent behavioral and neuroendocrine responses to a stressful stimulus 

in a physiologically relevant rat model. We demonstrated that rats with a history of adolescent 

binge alcohol exposure exhibited increased risk assessment behaviors and HPA axis hypersensi-

tivity. We believe this is reflective of the observation among human patients suggesting that a 

history of teenage binge drinking contributes to an increased risk for mood disorders 

(McCambridge et al., 2011; Rose et al., 2014; Viner & Taylor, 2007). Most importantly, we have 

validated this model as a relevant tool to study the molecular mechanisms by which adolescent 

alcohol exposure contributes to the development of psychiatric disease. 
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CHAPTER IV 
	

THE EFFECTS OF ADOLESCENT BINGE ALCOHOL EXPOSURE ON THE BEHAVIOR-

AL AND NEUROENDOCRINE RESPONSES TO CHRONIC STRESSORS 

Introduction. 

Persistent physical and psychological stressors are increasingly becoming prominent fac-

tors in both mental and physical health and disease. For example, chronic stress is known to in-

crease the propensity toward developing mental health disorders (Pittenger & Duman, 2008). 

These data are corroborated by animal studies that used various chronic stress paradigms as 

models for anxiety or depression (Tamashiro, Nguyen, & Sakai, 2005; Willner, Muscat, & Papp, 

1992). Not surprisingly, chronic stress can also alter HPA axis function, often in opposition to 

the ways acute stress affects the HPA axis (McEwen, 2008). Furthermore, while repeated expo-

sure to the same stressor usually results in attenuation of the stress response to that homotypic 

stressor, repeated exposure to one stressor actually increases the neuroendocrine response to a 

different (heterotypic) stressor (Ma, Lightman, & Aguilera, 1999). Interestingly, our lab previ-

ously demonstrated that a history of repeated adolescent binge alcohol exposure eliminates the 

neuroendocrine habituation to repeated binge alcohol during adulthood (Przybycien-Szymanska, 

Mott, Paul, et al., 2011). However, it is unknown how repeated exposure to binge alcohol during 

adolescence might affect the neuroendocrine and behavioral adaptations to repeated heterotypic 

stressors during adulthood. 

Our previous studies demonstrated that a history of adolescent binge alcohol abolished 
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the habituation to subsequent repeated alcohol exposure during adulthood (i.e., the CORT re-

sponse is not attenuated after repeated exposures to alcohol). Therefore, we tested if a history of 

adolescent binge alcohol exposure would alter the adult response to repeated exposure to a re-

peated heterotypic stressor. Further, we assessed the effects of adolescent binge alcohol on the 

behavioral responses to these chronic stressors, and examined whether or not the behavioral re-

sponse was similar for both the repeated homotypic (binge alcohol) and heterotypic (restraint) 

stressors. I hypothesized that male Wistar rats exposed to our adolescent binge-pattern alcohol 

paradigm would exhibit increased anxiety-like behaviors in the elevated-plus maze after subse-

quent exposure to both the chronic homotypic and heterotypic stressors during adulthood com-

pared to naïve animals. In order to test this, we used the same adolescent binge alcohol paradigm 

as in our previous studies, but followed that with either eight days of restraint stress (30 min. per 

day), a second round of binge alcohol, or as a control, eight days of handling (5 min. per day) 

during young adulthood (see Fig. 8). Animals were evaluated for anxiety behaviors 24 hours af-

ter the last exposure to this second round of stressors (homotypical: EtOH; or heterotypical: re-

straint). The data showed a trend toward an anxiety-like phenotype in rats with a history of ado-

lescent alcohol that were subsequently exposed to either of the chronic adult stressors, although 

these effects were not statistically significant between groups. Additionally, we observed differ-

ences in select HPA axis effectors measured 24 hours after stressor exposure. Together, these 

data suggest that adolescent binge alcohol exposure could sensitize individuals to subsequent 

chronic stressors, whether they are similar or different from stressors they have previously expe-

rienced.  
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Results. 

Adolescent binge alcohol may alter behavioral response to a stressor regardless of the type of 

stress 

 The studies conducted and discussed in Chapter III examined the effect of adolescent 

binge alcohol exposure on the responses to a heterotypic, purely psychological stressor. Our la-

boratory’s previous work had focused on the neuroendocrine effects of adolescent binge alcohol 

on the response to a homotypic stressor (alcohol), which is both a physical and psychological 

stressor (Przybycien-Szymanska, Mott, Paul, et al., 2011). Therefore, in order to be able to draw 

conclusions between these studies, we wanted to test whether adolescent binge alcohol exposure 

induced similar or different changes in anxiety-like behavior after exposure to a homotypic 

(binge alcohol) or heterotypic (repeated restraint) stressor. Additionally, in this set of experi-

ments, the animals were only tested in the elevated plus maze once, 24 hours after the last stress 

exposure, to reduce the possibility that prior exposure to the maze would influence the results of 

the test, as has sometimes been observed (Albrechet-Souza et al., 2007). We observed some 

trends toward an anxiety-like phenotype in the animals with a history of adolescent binge alcohol 

exposure that were exposed to an adult chronic stressor, though these fell short of statistical sig-

nificance. For example, adult stress increased the amount of time spent in the closed arms of the 

EPM (F(2,30)=2.49, p=0.0999, see Fig. 9A), particularly in the groups that received adolescent 

Figure 8: Experimental paradigm. Pubertal binge ethanol (EtOH) treatments commenced 
on PND 37. On PND 67, animals were divided into either a second binge alcohol group, a 
repeated restraint group, or a control group.. On PND 75, 24 hours after the last stressor, an-
imals were tested in the EPM, then euthanized 5 min after behavioral testing.  
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binge alcohol. In contrast, rats that received water during adolescence did not spend more time in 

the closed arms after chronic adult stress. Reciprocally, in the adolescent alcohol groups, binge 

or restraint stress reduced the amount of time spent in the open arms of the EPM, but there was 

no change in the time spent in the intersection of the maze arms (Fig. 9B and C). Together, these 

suggest that a history of adolescent binge alcohol exposure in addition to any type of adult 

stressor combine to produce an anxiety-like phenotype. Of particular interest was that adolescent 

alcohol-exposed rats did not exhibit increased stretched attend postures after stress compared to 

adolescent alcohol-exposed, non-stressed rats. However, the adolescent water-exposed rats did 

decrease the number of stretched attend postures after stress, suggesting that a history of adoles-

cent alcohol exposure results in increased (or in this case, retained) risk assessment behaviors 

(Fig. 9D). It also appeared as though, in the adolescent alcohol animals, that after stress, the rats 

exhibited fewer head dips, which are a more exploratory behavior (Fig. 9E). Again, this is in 

contrast to rats that received water during adolescence, as all groups exhibited roughly the same 

number of head dips regardless of chronic adult stress. There were no differences between ado-

lescent water- and alcohol-treated animals on the number of rearings exhibited, except in the 

groups which received chronic restraint stress during adulthood (Fig. 9F). Importantly, there 

were no differences among any of the groups on the total distance travelled or the average speed 

of exploration in the maze, suggesting the observed changes in behavior were not due to overall 

changes in locomotor activity (Fig. 9G,H).  

 

 



54	

	 

Figure 9: Anxiety-like behavior following adolescent binge alcohol and either adult 
binge alcohol or adult repeated restraint stress. The percent of time in the closed arms 
(A), intersection (B), and open arms (C) of the elevated plus maze was calculated by dividing 
the amount of time spent in the given zone by the total duration of the test (300s). The num-
ber of stretched attend postures (D), head dips (E), and rearing behaviors (F), were scored by 
a blinded observer. The total distance travelled (G), and the average speed (H) were used as 
indicators of overall motor activity. Data are expressed as mean ± SEM, and were analyzed 
by two-way ANOVA in which p<0.05 was considered significant (n=6 per group).  



55	

	

Adolescent binge alcohol may alter HPA axis effectors in response to a stressor regardless of the 

type of stress 

Next, we measured transcript levels of HPA axis effectors as well as plasma CORT levels 

24 hours after the last stressor (just following behavioral testing). There was a significant main 

effect of adolescent binge alcohol exposure on PVN CRF transcript levels (F(1,30)=5.989, 

p<0.05, Fig. 7A), though interestingly, the alcohol-exposed animals had decreased PVN CRF, 

which is in contrast to our laboratory’s previous findings (Przybycien-Szymanska, Mott, Paul, et 

al., 2011). This appears to be a region-specific change, as there was no change in CRF transcript 

levels in the V.Hipp due to adolescent alcohol exposure, though adolescent water-treated animals 

showed lower V.Hipp CRF after restraint stress only (Fig. 10B). Adolescent alcohol exposure 

also decreased AVP transcript levels in the PVN (F(1,30)=4.161, p=0.0503, Fig. 10C), which is 

at least partially consistent with our previous studies. Finally, the levels of GR mRNA in both the 

PVN and V.Hipp were unchanged (Fig. 10D,E), despite a trend toward increased plasma CORT 

in the adult stressed conditions, particularly in animals with prior adolescent alcohol exposure 

(F(2,30)=2.896, p=0.0708, Fig. 10F). 
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Figure 10: Regional levels of CRF, AVP, and GR transcripts. mRNA levels of corticotro-
pin releasing factor (A and B), arginine vasopressin (C), and glucocorticoid receptor (D and 
E), in the paraventricular nucleus of the hypothalamus (A,C,E) and ventral hippocampus (B 
and D), measured by RT-qPCR relative to the unrestrained H2O group. Circulating plasma 
levels of corticosterone (F) were measured by ELISA. Data are expressed as mean ± SEM, 
and were analyzed by two-way ANOVA with Sidak’s multiple comparisons post-hoc tests, in 
which p<0.05 was considered significant (n=6 per group). There was a significant main effect 
of adolescent alcohol on PVN CRF (A).  
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Discussion. 

 The data presented here demonstrate that rats with a history of adolescent binge alcohol 

respond similarly to repeated homotypic and heterotypic stressors during adulthood. There was a 

trend toward an anxiety-like phenotype in rats with a history of adolescent binge alcohol in re-

sponse to either type of repeated stress during adulthood. In the current study, adolescent alcohol 

exposure decreased PVN CRF levels, measured 24 hours after the last stress exposure and im-

mediately after behavioral testing. There was also a trend toward increased CORT levels in ani-

mals with a history of adolescent alcohol and subsequent repeated stress, regardless of type. To-

gether, these results suggest that adolescent binge alcohol combined with repeated or chronic 

stress in adulthood could cause an anxiety-like behavioral phenotype and prolonged HPA axis 

activation.  

 Although in this study we observed a decrease in CRF transcript levels in the PVN due to 

adolescent binge alcohol exposure, our previous studies showed an opposite effect of adolescent 

binge alcohol on PVN CRF (Przybycien-Szymanska, Mott, Paul, et al., 2011). However, it is im-

portant to note the differences in timing of the tissue collection; in the previous study, brains 

were collected one hour after either water- or alcohol- treatment, whereas in the current study, 

brains were collected 24 hours after the last experimental manipulation and immediately after 

behavioral testing. It is possible that this is due either to a delay in the glucocorticoid-mediated 

negative feedback in the PVN in the alcohol-exposed animals in the current study, or in the pre-

vious study, that the control treatment was sufficient to activate the HPA axis resulting in ob-

served higher CRF levels. 

The results presented here should be interpreted with some caution. For example, the rel-

atively low sample size and high variability due to the use of an outbred rat strain raises issues 
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with the generalizability of our findings. It is possible that, with more animals per group, some of 

our observations which trended toward significance would have reached a statistically significant 

threshold, or on the other hand could have introduced more variability and abolished the per-

ceived trend. Furthermore, the timing of behavioral testing and tissue collection (24 hours after 

the last stressor) differed from our prior studies, making direct comparisons to those studies dif-

ficult. For example, the observation that CORT levels in the groups which received alcohol dur-

ing adolescence and a subsequent stressor during adulthood trended toward an increase, particu-

larly compared to their own control group, might suggest that baseline CORT levels are in-

creased in these animals. Alternatively, this could be interpreted as a delay in the resolution of 

the stress response; perhaps these animals had not completely recovered from the stressor the 

previous day, while the animals that receive water during adolescence were able to recover more 

quickly from subsequent stressors. A third possibility is that adolescent alcohol exposure shifts 

the plasma CORT circadian rhythm; if this were true, however, one would expect to see elevated 

CORT levels in all the groups with a history of adolescent binge alcohol exposure. Similar ar-

guments could be made for alternative interpretations of the behavioral trends as well. 

 While some forms of chronic stress, particularly chronic social defeat stress, result in an 

anxiety-like behavioral phenotype (Tamashiro et al., 2005), most chronic stressors, particularly 

chronic mild stress, actually results in a depressive-like phenotype (J. Chen et al., 2015; Willner 

et al., 1992). This depressive phenotype induced by chronic mild stress can be characterized be-

haviorally by increased anhedonia in the sucrose preference test and increased immobility in the 

forced swim test; these behavioral changes can be prevented in adrenalectomized rats, suggesting 

glucocorticoids play a role in the development of the depressive phenotype (J. Chen et al., 2015). 

Furthermore, chronic mild stress induced alterations in FKBP5 expression and GR function 
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throughout various stress-related brain regions (including the hypothalamus, hippocampus, and 

prefrontal cortex) that could be reversed with antidepressant medication, again demonstrating a 

role of the HPA axis in the development of depression-like symptoms after chronic stress 

(Guidotti et al., 2013). It would be important going forward, then, to test the effects of adolescent 

binge alcohol on the development of depressive-like behaviors in response to chronic stressors.  

 Parvocellular AVP has been implicated more in the stress response to chronic (versus 

acute) stressors. Elevated AVP levels have been observed after chronic social defeat stress, re-

peated restraint stress, but these increases have so far been observed within a couple of hours af-

ter the stress exposure (Litvin, Murakami, & Pfaff, 2011; Ma et al., 1999). Notably, we did not 

observe changes in PVN AVP levels, particularly among those with a history of adolescent binge 

alcohol exposure, but it is possible that PVN AVP levels spiked after stress and resolved before 

we collected tissue in the current study. A more complete time course of data collection (both 

behavioral testing and tissue harvesting) would be beneficial in parsing this issue.  

 In research relevant to this study, increased Dnmt3a in the medial prefrontal cortex after 

chronic social defeat stress causes an anxiety-like phenotype in mice (Elliott et al., 2016). How-

ever, in that study, the authors did not assess hypothalamic Dnmt’s in anxiety-like behaviors. 

Our lab has recently demonstrated altered DNA methylation patterns in offspring of adolescent 

alcohol exposed parents (Asimes et al., 2017). It would be interesting to also assess Dnmt func-

tion and DNA methylation patterns in the hypothalami of adolescent alcohol-exposed rats, as this 

could be one molecular mechanism by which adolescent alcohol use causes long-lasting changes 

in HPA axis function and behavior, and might then alter the responses to chronic stress in adult-

hood. 
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 Overall, this study provides novel information regarding the effects of adolescent binge 

alcohol exposure on the behavioral and neuroendocrine responses to chronic stress in adulthood. 

Of note is that the data suggest that adolescent alcohol may increase the propensity toward an 

anxiety-like behavioral phenotype and prolonged HPA axis activation after adult chronic stress. 

These data are in agreement with data from human patients suggesting that a history of teenage 

binge drinking contributes to an increased risk for mood disorders (McCambridge et al., 2011; 

Rose et al., 2014; Viner & Taylor, 2007), and highlight the need for a better understanding of the 

molecular mechanisms underlying adolescent alcohol exposure’s effects, as mood disorders are a 

major public health issue. 
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CHAPTER V 
	

MECHANISTIC INSIGHTS INTO THE EFFECTS OF ADOLESCENT BINGE ALCOHOL 

ON HPA AXIS DYSFUNCTION 

Introduction. 

Our laboratory and others have demonstrated that adolescent binge alcohol exposure re-

sults in long term hyper-reactivity of the HPA axis (Logrip et al., 2013; Przybycien-Szymanska, 

Mott, Paul, et al., 2011). In the previous chapters, I have presented evidence that strongly sug-

gests HPA axis dysfunction may underlie or contribute to the development of an anxiety-like 

phenotype, emphasizing the need to understand how alcohol impacts the HPA axis in this way. 

However, very few studies have focused on the molecular mechanisms by which alcohol produc-

es long term HPA axis dysfunction, a critical gap in the literature that limits our ability to prevent 

or reverse the effects of adolescent binge alcohol consumption. We demonstrated that adolescent 

binge alcohol exposure results in increased PVN CRF expression acutely after adulthood psycho-

logical stress or subsequent exposure to alcohol (Przybycien-Szymanska, Mott, Paul, et al., 

2011), but as demonstrated in chapter IV, this increase in PVN CRF expression does not persist 

24 hours after chronic stress or binge alcohol. Therefore, the cause of adolescent binge alcohol-

induced HPA axis hyper-reactivity seems to be due to an increase in CRF levels in the PVN 

which is resistant to feedback inhibition by glucocorticoids. 

To address the molecular mechanisms by which this feedback inhibition is lacking, our 

laboratory has previously performed a series of in vitro experiments using a PVN-derived cell
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line (IVB cells). The isolation and characterization of IVB cells was first described in 2003, 

where it was demonstrated that these cells retain many of the characteristics of parvocellular hy-

pothalamic PVN neurons (Kasckow et al., 2003). Subsequently, IVB cells have become a widely 

used cell line to investigate the molecular mechanisms pertaining to PVN control of the HPA 

axis (Kageyama & Suda, 2009; Sharma et al., 2013). In our studies, although GR mRNA and 

protein levels remain constant, ChIP assays performed using the IVB cell line revealed that 

EtOH treatment prevents GR binding to the CRF promoter (Przybycien-Szymanska, Mott, & Pak, 

2011). This suggests that after alcohol exposure, either the CRF gene promoter is altered in such 

a way that it cannot be bound by GR, or that GR itself dysfunctional. Furthermore, this same 

study demonstrated that a single dose of EtOH as low as 12.5mM increases CRF promoter activi-

ty in a luciferase assay in a GR-dependent manner (Przybycien-Szymanska, Mott, & Pak, 2011). 

Because the luciferase assay utilized an exogenous reporter construct driven by a CRF promoter, 

this suggests that the deficit lies with GR itself. Therefore, we have focused our current research 

in understanding the effects of alcohol exposure on GR.  

 In animal models of prenatal alcohol exposure, GR nuclear localization is affected in a 

region-specific manner; GR is increased in the nuclei of hippocampal cells but decreased in the 

nuclei of prefrontal cortex cells (Allan, Goggin, & Caldwell, 2014; Caldwell, Goggin, Tyler, & 

Allan, 2014). These observations are interesting for two reasons: 1) both regions can modify 

HPA axis activity, and 2) it suggests that GR nuclear localization may also be affected in the 

PVN after alcohol exposure, particularly during a period of brain development. Our previous 

studies demonstrated a decrease in the ability of GR to interact with the CRF promoter; this find-

ing prompts the question of whether GR nuclear translocation may be decreased in the PVN of 

animals exposed to binge alcohol during adolescence.  
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 Alcohol exposure has also been demonstrated to affect other proteins which are known to 

interact with GR. For example, FKBP5, which binds GR and prevents nuclear translocation, is 

acutely increased in the brains of mice exposed to alcohol in a dose-dependent manner (Kerns et 

al., 2005). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene exist in the human popu-

lation, and lower FKBP5 gene expression levels are associated with higher levels of alcohol con-

sumption (B. Qiu et al., 2016), suggesting a complicated interplay among alcohol consumption, 

FKBP5, and GR activity. Another possible mechanism by which alcohol might affect GR in-

volves phosphorylation of the receptor. Both acute and chronic alcohol use can affect MAPK 

activity (reviewed in Aroor & Shukla, 2004), and various serine residues in the N-terminus of 

GR can be phosphorylated by MAPKs, and these phosphorylation events can have gene-specific 

effects on transcriptional activity (W. Chen et al., 2008). Because GR acts in concert with many 

other proteins including chaperone proteins, adaptor proteins, coactivator and corepressor pro-

teins, etc., it is important to understand which, if any of these protein:protein interactions are af-

fected by adolescent alcohol exposure. 

 Here, our aim was to examine the effects of alcohol exposure on the glucocorticoid re-

ceptor using both in vitro and in vivo models. For the in vivo studies, we utilized the same peri-

pubertal Wistar rat model as described in chapters III and IV, but we euthanized the animals for 

tissue collection one hour after the last dose of alcohol (or water control) to assess GR target 

gene expression and GR interactions with known binding partners. The in vitro studies allowed 

us to assess the effects of repeated alcohol treatment on GR subcellular localization (nuclear vs. 

cytoplasmic) while holding ligand concentration (DEX, a GR agonist) constant. To our 

knowledge, these experiments are the first of their kind to assess GR function in the context of 

adolescent binge alcohol exposure as it relates to HPA axis reactivity. These studies are im-
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portant for understanding the molecular mechanisms by which adolescent alcohol exposure 

causes HPA axis dysfunction, which we must understand in order to develop therapeutics for 

preventing or reversing the effects of teenage binge drinking. I hypothesized that repeated binge 

alcohol exposure would reduce GR nuclear localization upon ligand binding, due to altered pro-

tein:protein interactions, resulting in dysregulated GR target gene expression.  

 

Results. 

Repeated binge-level alcohol exposure subtly reduces GR nuclear localization in a PVN-derived 

cell line 

 Previous studies in our lab using a PVN-derived cell line (IVB) demonstrated that alcohol 

exposure increases CRF promoter activity in a GR-dependent manner due to the inability of GR 

to bind the CRF promoter (Przybycien-Szymanska, Mott, & Pak, 2011). However, in these ex-

periments, the levels of GR transcript or protein were unchanged, suggesting that the same 

amount of GR behaves differently after alcohol exposure. Because GR must translocate from the 

cytoplasm to the nucleus in order to exert its effects on transcription, I hypothesized that repeated 

alcohol exposure might reduce the amount of GR in the nucleus. In order to test this, we exposed 

IVB cells to either 50mM EtOH, 100nM DEX, both, or neither for three consecutive days for 

two hours at a time, then isolated the cytoplasmic and nuclear protein fractions from the cells 

immediately following the last dose to immunoblot for GR. DEX treatment significantly in-

creased the proportion of GR in the nuclear fraction as expected, but there was no effect of EtOH 

treatment (Fig. 11).  
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Figure 11: Effects of repeated ETOH or DEX on GR nuclear localization. After three 
days of denoted treatment, IVB cells were lysed and nuclear and cytoplasmic protein frac-
tions were immunoblotted for GR (representative blot shown in (A)). The proportion of nu-
clear GR was calculated by dividing the relative (to total protein) GR signal protein in the 
nuclear fraction by the relative GR signal in both cytoplasmic and nuclear fractions for each 
sample. The summary data are quantified in (B). Data are expressed as mean ± SEM (n=6), 
and were analyzed by two-way ANOVA, in which p<0.05 was considered significant. There 
was a significant main effect of DEX treatment on the fraction of nuclear GR.  
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Adolescent binge alcohol exposure does not alter the GR:HSP90 interaction in the dorsal hippo-

campus 

 Our previous studies indicated that the total levels of GR do not change after binge alco-

hol exposure (Przybycien-Szymanska, Mott, & Pak, 2011); therefore, one possibility is that the 

dysfunctional GR signaling observed in our in vitro and in vivo models is due to altered pro-

tein:protein interactions. Additionally, because region-specific changes in GR localization have 

been observed in other alcohol models (Allan et al., 2014; Caldwell et al., 2014), we wanted to 

test this possibility in specific brain regions separately. We focused on the interaction between 

GR and the chaperone protein HSP90, because HSP90 is known to be a component of the cyto-

plasmic GR protein complex. In order to test the hypothesis that the interaction between GR and 

HSP90 would be increased in rats exposed to adolescent binge alcohol, we harvested brain tissue 

from rats exposed to our peri-pubertal model one hour after the last dose of alcohol, then per-

formed immunoprecipitation experiments to assess this interaction. However, we did not observe 

a change in the amount of HSP90 in the GR immunoprecipitation samples from the D.Hipp, nor 

did we observe significant changes in the total levels of GR or HSP90 in this brain region (Fig. 

12).  
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Figure 12: GR-HSP90 interaction in the dorsal hippocampus after adolescent binge al-
cohol exposure. D.hipp lysates were subject to immunoprecipitation with a GR-specific anti-
body, then immunoblotted for HSP90 and GR (representative blot shown in (A)). The HSP90 
signal relative to total protein in the i.p. lanes was calculated and quantified in (B). The rela-
tive GR signal in the input lanes was calculated and quantified in (C). The relative HSP90 
signal was calculated and quantified in (D). Data are expressed as mean ± SEM (n=12-16), 
and were analyzed by t-test. 
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Adolescent binge alcohol exposure does not alter the GR:HSP90 interaction in the hypothalamus 

 We next wanted to test whether the interaction between GR and HSP90 is altered in the 

hypothalamus, as this brain region is obviously more relevant for controlling HPA axis function. 

Again, I hypothesized that the interaction between GR and HSP90 would be increased in rats ex-

posed to adolescent binge alcohol. In order to test his hypothesis, we used the same tissue har-

vested from rats exposed to our peri-pubertal model one hour after the last dose of alcohol, then 

performed immunoprecipitation experiments to assess this interaction. However, we did not ob-

serve a change in the amount of HSP90 in the GR immunoprecipitation samples from the hypo-

thalamus, nor did we observe significant changes in the total levels of GR or HSP90 in this brain 

region (Fig. 13).  
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Figure 13: GR-HSP90 interaction in the hypothalamus after adolescent binge alcohol 
exposure. Hypo lysates were subject to immunoprecipitation with a GR-specific antibody, 
then immunoblotted for HSP90 and GR (representative blot shown in (A)). The HSP90 signal 
relative to total protein in the i.p. lanes was calculated and quantified in (B). The relative GR 
signal in the input lanes was calculated and quantified in (C). The relative HSP90 signal was 
calculated and quantified in (D). Data are expressed as mean ± SEM (n=7), and were ana-
lyzed by t-test. 
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Some, but not all, GR target genes are dysregulated in the hypothalamus after adolescent binge 

alcohol exposure 

 Our previous studies demonstrated that adolescent binge alcohol exposure increased CRF 

expression (Przybycien-Szymanska et al., 2010), suggesting a decrease in GR function as a tran-

scription factor (as GR is known to repress CRF expression normally). We therefore assessed 

whether GR function was globally affected, or if this deficit was gene-specific. In order to test 

this, we designed qPCR primers against two other genes, PER1 (which is important for maintain-

ing circadian rhythms) and FKBP5 (which modulates GR activity), which have both been vali-

dated as GR target genes in brain tissue (Mifsud & Reul, 2016). Using RNA isolated from the 

hypothalami of rats exposed to our peri-pubertal alcohol paradigm, we observed that PER1 

mRNA was increased as expected, but there was no change in FKBP5 mRNA levels (Fig. 14). 

This suggests that GR’s ability to regulate FKBP5, like CRF, is dysfunctional, which might indi-

cate that the genes that are dysregulated by adolescent alcohol are those specific to regulating 

HPA axis activity, but not other processes.  

Figure 14: Hypothalamic levels of PER1 and FKBP5. mRNA levels of PER1 (A), and 
FKBP5 (B), in the hypothalamus was measured by RT-qPCR relative to the control group. 
Data are expressed as mean ± SEM (n=7), and were analyzed by t-test where p<0.05 was 
considered significant (*). 
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Discussion. 

 The data presented here contribute to our knowledge regarding the way in which GR 

function is altered after adolescent binge alcohol exposure, thereby providing novel information 

to the field regarding which GR processes are altered after repeated alcohol exposure. DEX 

treatment increased GR nuclear localization as expected; however, repeated EtOH treatment did 

not significantly decrease the proportion of GR in the nuclear protein fraction. There was a trend 

for EtOH to decrease nuclear localization and it is possible that even a subtle shift in the amount 

of nuclear GR might have a large impact on overall cellular function; however, there are likely 

other mechanisms by which alcohol exerts its effects in PVN cells. Furthermore, using our ani-

mal model of adolescent binge alcohol exposure, we demonstrated that GR association with 

HSP90 is not altered in either the dorsal hippocampus or hypothalamus, suggesting that this par-

ticular protein:protein interaction is not what mediates the changes in GR function after binge 

alcohol. Finally, we observed a lack of change in FKBP5 expression in the hypothalamus, but the 

expected increase in PER1 expression, which combined with our previous findings that rats ex-

posed to adolescent binge alcohol have higher circulating CORT levels and increased CRF ex-

pression in the hypothalamus (Przybycien-Szymanska et al., 2010), suggests that repeated ado-

lescent binge alcohol exposure selectively alters GR’s ability to regulate HPA axis-related target 

genes, but not other GR target genes involved in circadian rhythms, for example. Collectively, 

these data provide important information regarding the mechanisms by which alcohol affects GR 

function, while highlighting the need to better understand GR-mediated HPA axis negative feed-

back in general. 

 Our finding that repeated alcohol exposure may slightly reduce GR nuclear localization 

in IVB cells, though subject to the limitations of the use of an immortalized cell line, is generally 
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consistent with our previous studies which demonstrated a decrease in GR association with the 

CRF promoter in vitro after alcohol exposure (Przybycien-Szymanska, Mott, & Pak, 2011), and 

dysfunctional HPA axis negative feedback in our in vivo model of adolescent binge alcohol ex-

posure (Przybycien-Szymanska, Mott, Paul, et al., 2011). Furthermore, others have demonstrated 

that alcohol exposure during a different developmental time period (gestation) results in region-

specific changes in GR subcellular distribution (Allan et al., 2014; Caldwell et al., 2014). This 

would suggest that GR nuclear translocation may also be deficient in our animal model of ado-

lescent binge alcohol exposure; however, because the samples in the current study were flash 

frozen after dissection, it was not possible to assess nuclear localization in the same manner in 

the tissue samples. Future subcellular fractionation and/or immunofluorescent staining studies 

using tissue from our animal model would be beneficial and would likely reveal altered GR sub-

cellular localization as well. 

 In the present study, we were able to use brain tissue samples from our animal model of 

adolescent binge alcohol exposure for a series of GR co-immunoprecipitation experiments. Ulti-

mately, we did not observe a change in the amount of HSP90 interacting with GR in either the 

dorsal hippocampus or hypothalamus, suggesting that this interaction is not mediating alcohol’s 

effects on HPA axis negative feedback. We also attempted to assess the interaction of GR with 

several other known binding partners, including SRC-1, FKBP5, HDAC-1, CREB, and others, 

but were not able to detect a specific interaction by co-immunoprecipitation (data not shown), 

despite reports in the literature demonstrating the existence of these interactions in vitro (Sharma 

et al., 2013). As we have previously reported, we also did not observe significant changes in the 

levels of GR in either brain region (Przybycien-Szymanska, Mott, & Pak, 2011), nor did we ob-

serve significant changes in HSP90 protein levels. This is in opposition to reports that maternal 
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binge alcohol alters other chaperone protein (including HSP70) expression (Ramadoss, Liao, 

Chen, & Magness, n.d.), suggesting that in regard to chaperone protein expression, binge alcohol 

exposure may exert different effects depending upon the developmental timeframe in which that 

exposure occurs. 

 Finally, in the current study, we extended our investigation of adolescent binge alcohol’s 

effects on GR target gene expression. Previously, we demonstrated that, despite higher circulat-

ing CORT levels, rats exposed to adolescent binge alcohol express higher levels of CRF (which 

is normally repressed by liganded GR) in the PVN (Przybycien-Szymanska et al., 2010). Here, 

we assessed the effects of adolescent binge alcohol on two other validated neuronal GR target 

genes whose expression is increased by association with ligand-bound GR: PER1, which is in-

volved in regulating circadian rhythms, and FKBP5, which modulates GR activity by binding the 

receptor and keeping it sequestered in the cytoplasm (Mifsud & Reul, 2016). Interestingly, while 

PER1 expression increased in the adolescent alcohol exposed rat hippocampi (as expected, since 

alcohol exposure increases circulating CORT), FKBP5 expression was not different between the 

two groups. Combined with our previous studies, this raises the interesting possibility that ado-

lescent binge alcohol exposure may selectively alter GR’s ability to regulate HPA axis related 

genes, but not other GR target genes. These data also support the hypothesis that it is GR itself 

that is dysfunctional after adolescent binge alcohol exposure, not the CRF promoter, as other GR 

target genes are also affected. However, the mechanism by which specific GR target genes are 

dysregulated after adolescent binge alcohol exposure while others are regulated normally is 

largely unknown; furthermore, future studies should also investigate more broadly which GR 

target genes are dysregulated after adolescent binge alcohol exposure to gain an appreciation for 

the gene ontology of those affected by alcohol. 
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 Overall, the data presented here demonstrate that while repeated binge alcohol results in 

dysfunction of the HPA axis, possibly through altered GR nuclear translocation, it does not re-

veal which, if any, protein:protein interactions are responsible for this dysfunction. Also, our da-

ta combined with our previous studies suggest that alcohol’s effects on GR dysfunction may be 

specific to certain target genes, which would also suggest alterations in protein:protein interac-

tions within the nucleus specifically. While some of the data presented here represent the ab-

sence of significant results, these experiments were some of the first of their kind to be applied to 

this model of adolescent binge alcohol exposure, and therefore have contributed novel infor-

mation to the field. These studies highlight the need to not only continue studying the mecha-

nisms by which alcohol affects HPA axis function at a molecular level, but also underscore the 

paucity of information regarding the mechanisms underlying GR-mediated HPA axis negative 

feedback in general. 
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CHAPTER VI 
	

CHARACTERIZATION OF THE GLUCOCORTICOID RECEPTOR INTERACTOME 

Introduction. 

Glucocorticoids are pleiotropic hormones that act on numerous tissues throughout the 

body. Normal circulating levels of glucocorticoids follow a circadian rhythm, peaking just before 

the awake period, and exposure to a physical or psychological stressor causes increased gluco-

corticoid release via activation of the HPA axis (S. M. Smith & Vale, 2006). Glucocorticoids can 

bind two different nuclear receptors, the glucocorticoid receptor (GR), and the mineralocorticoid 

receptor (MR); however, most of the stress-induced actions of glucocorticoids are believed to be 

mediated through GR (Ratka et al., 1989; Reul & de Kloet, 1985). Canonically, when GR is oc-

cupied by ligand, it translocates from the cytoplasm to the nucleus of the cell where it exerts 

transactivation or transrepression of target gene expression (Vandevyver, Dejager, & Libert, 

2012). Recent evidence suggests GR also exerts non-genomic effects on the cell which occur 

with much faster temporal resolution (Vernocchi et al., 2013). Depending on the cell type, GR 

signaling can modulate metabolic processes, regulate inflammation and immune responses, and 

control many other functions in peripheral tissues (Chrousos & Gold, 1992). In the brain, gluco-

corticoids have been shown to increase learning and memory, improve cognition, and important-

ly, exert negative feedback on the PVN of the hypothalamus to downregulate HPA axis activity 

after the resolution of a stressful stimulus (McEwen, 2008). Our lab has demonstrated that ado-

lescent binge alcohol exposure disrupts GR-mediated negative feedback in the hypothalamus, 
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rendering it hypersensitive to stress long after the cessation of alcohol exposure (Przybycien-

Szymanska, Mott, & Pak, 2011; Przybycien-Szymanska, Mott, Paul, et al., 2011). However, the 

molecular mechanisms by which GR exerts negative feedback in PVN parvocellular neurons is 

understudied, making it difficult to understand how alcohol might impede this normal process. 

 The glucocorticoid receptor does not act alone to exert its effects on transcription; rather, 

it must interact with numerous proteins throughout its life cycle to carry out its functions in the 

cell.  Generally, apo-GR is localized primarily in the cytoplasm, in complex with various chap-

erone and co-chaperone proteins such as hsp90, FKBP5, PP5, and CyP-40 (Cheung & Smith, 

2000). Upon ligand binding, GR is shuttled into the nucleus via dynein-mediated cytoskeletal 

transport and ultimately passes through the nuclear envelope via importins (Elbi et al., 2004; 

Freedman & Yamamoto, 2004; Silverstein et al., 1999). Inside the nucleus, GR exerts its tran-

scriptional effects by binding coactivator or corepressor proteins, or by interfering with other 

transcription factor signaling (Petta et al., 2016). While it was originally believed that GR re-

pressed CRF expression by binding an nGRE sequence in the CRF promoter, more recent studies 

have demonstrated that direct GR-DNA binding is not necessary to downregulate CRF expres-

sion (Malkoski & Dorin, 1999; Reichardt et al., 1998). Some have suggested that instead, GR 

interferes with PKA signaling, while others have shown that GR recruits a repressive complex 

including MeCP2, Dnmt3b, and HDAC1 (Sharma et al., 2013). Others have provided evidence 

for more indirect fast repression of CRF release via increased endocannabinoid signaling in the 

PVN via plasma membrane associated GR (Evanson et al., 2010). Indeed, it is possible that all of 

these mechanisms may come into play to produce glucocorticoid-mediated negative feedback 

over a long timescale or in response to different types of stressors. 
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 Here, our aim was to characterize the GR interactome in a neuron-like cell line using the 

proximity-dependent biotinylation technology BioID. Although others have attempted to de-

scribe the GR interactome in some peripheral tissues (Petta et al., 2016), this is the first study to 

systematically attempt to classify the neuronal GR interactome, which is likely somewhat differ-

ent from that of peripheral tissues since GR signaling is so cell-type specific. Furthermore, it is 

the first study to utilize this recent technology to investigate GR protein:protein interactions. 

Therefore, I hypothesized that this study would identify novel GR interacting proteins that have 

previously been undetected by traditional techniques in non-neuronal cell types. To test this, we 

expressed a fusion protein consisting of the human GR tagged on its N-terminus by a promiscu-

ous biotin ligase, BirA*, in the human neuroblastoma derived cell line SK-N-SH. After transient 

transfection, excess biotin was supplemented in the culture media, and in some circumstances, 

the GR agonist dexamethasone (DEX) was also added. Then, the biotin-tagged, GR-proximal 

proteins were purified from cell lysates using streptavidin beads and identified by mass spec-

trometry. This study identified several new potential GR interacting proteins, but these interac-

tions should be characterized more thoroughly using orthogonal techniques.  

Results. 

Validation of BioID-GR 

 The BioID-GR construct, consisting of the human glucocorticoid receptor fused on its N-

terminus to a myc-tagged BirA-R188G humanized promiscuous biotin ligase in the pcDNA3.1 

backbone, was created by Gibson assembly cloning. Then, the BioID-GR construct or the BioID 

(ligase only) construct was transfected into HEK293T cells for preliminary validation experi-

ments. To assess construct expression, Western blots using anti-myc and anti-GR primary anti-

bodies revealed a strong myc-immunoreactive band at ~35kD in the BioID lane, and a myc- and 
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GR-immunoreactive band at ~125kD in the BioID-GR lane, each corresponding to the expected 

molecular weights of the proteins expressed by these constructs (Fig. 15A).  Then, lysates from 

HEK293T cells transfected with either BioID or BioID-GR and incubated with biotin-

supplemented media were subjected to purification by pull-down with streptavidin-coated mag-

netic beads and resolved by Western blot, to validate proper function of the biotin ligase activity. 

Staining with an HRP-conjugated streptavidin revealed a diffuse pattern of biotinylated proteins 

in the BioID transfected samples, while the BioID-GR transfected samples had a more restricted 

pattern of biotinylated proteins. Importantly, no biotinylated proteins were detected in the “flow 

through” (i.e. unbound) protein fractions (Fig. 15B top panel). To assess whether known GR-

interacting proteins were present after streptavidin bead pull-down, the same membrane was 

probed with an anti-HDAC-1 antibody, as HDAC-1 has been demonstrated to be part of a repres-

sive GR complex (Sharma et al., 2013). HDAC-1 immunoreactive bands were present in the in-

put and pull-down lanes of both samples (Fig. 15B bottom panel). Next, to assess the functionali-

ty of the GR portion of the BioID-GR construct, HEK293T cells transfected with BioID-GR 

were treated with dexamethasone or vehicle, then subjected to nuclear and cytoplasmic protein 

fractionation. After resolving the protein fractions via Western blot using an anti-GR primary 

antibody, the nuclear proportion of GR was calculated. The DEX-treated samples did have a 

higher proportion of nuclear GR (both endogenous GR and BioID-GR, detected at 90kD and 

125kD, respectively) compared to vehicle-treated (Fig. 15C and D).  
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Figure 15: Validation of BioID-GR function. A) Western blot of HEK293T lysates after 
transfection with BioID (ligase only, left lane, expected MW: 35kD, bottom arrow) or BioID-
GR (fusion protein, right lane, expected MW: 125kD, top arrow). B) Western blot of trans-
fected HEK293T lysates after incubation with biotin-supplemented media. Top panel: stain-
ing with streptavidin-HRP; bottom panel: anti-HDAC1 primary antibody. C) Western blot of 
HEK293T lysates after DEX or vehicle treatment and nuclear/cytoplasmic protein fractiona-
tion. Top arrow: BioID-GR; bottom arrow: endogenous GR. D) Quantification of the propor-
tion of nuclear GR staining (normalized to actin) from panel C.  
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Identification of biotinylated proteins from BioID-GR lysates 

 To assess the putative GR interactome in a neuron-like cell system, the GR-BioID con-

struct (or the BioID or GFP-GR constructs as controls) was transfected into the human neuro-

blastoma-derived cell line, SK-N-SH. After transfection, the cells were treated with biotin-

supplemented media containing either DEX or vehicle, then lysed after 24 hours of treatment. 

Each condition (construct/treatment) was performed in biological triplicate. The lysates were 

subjected to streptavidin bead pull-down to purify the biotinylated proteins, which were then re-

solved on an SDS-PAGE gel. Each gel lane was cut into five fractions, then prepared for LC-

MS/MS by in-gel digestion. Identification by LC-MS/MS was conducted in collaboration with 

the Midwest Proteome Center at Rosalind Franklin University on a Thermo Orbitrap Elite mass 

spectrometer equipped with a Dionex Ultimate 3000 RSLC-nano LC. Protein “hits” were identi-

fied by PEAKS 8.0 software, with a PEAKS score ≥ 60 and at least two unique peptides corre-

sponding to the identified protein. The hits were further refined by excluding proteins which 

were inappropriately sized for the fraction in which they were identified. For a hit to be consid-

ered associated with either or both of the BioID-GR samples, it had to be unique to at least one 

of the replicates of that condition, or if it was identified in all three biological replicates of a giv-

en condition, it was permitted to have been identified in one of the control samples. Table 3 lists 

proteins associated with both BioID-GR vehicle and BioID-GR DEX samples. Table 4 lists pro-

teins associated with only the BioID-GR vehicle-treated samples. Table 5 lists proteins associat-

ed with only the BioID-GR DEX-treated samples.  
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Protein name (Gene) Accession MW (Da) 

Transcription activator BRG1 (SMARCA4) P51532|SMCA4_HUMAN 184644 
Matrilin-2 (MATN2) O00339|MATN2_HUMAN 106837 
Neuropilin-1 (NRP1) O14786|NRP1_HUMAN 103134 
Collagen alpha-1(VI) chain (COL6A1) P12109|CO6A1_HUMAN 108529 
Nuclear autoantigen Sp-100 (SP100) P23497|SP100_HUMAN 100417 
Glucocorticoid receptor (NR3C1) P04150|GCR_HUMAN 85659 
SRSF protein kinase 1 (SRPK1) Q96SB4|SRPK1_HUMAN 74325 
Cell division cycle 5-like protein (CDC5L) Q99459|CDC5L_HUMAN 92251 
Tubulin beta-2B chain (TUBB2B) Q9BVA1|TBB2B_HUMAN 49953 
Glutathione S-transferase kappa 1 (GSTK1) Q9Y2Q3|GSTK1_HUMAN 25497 
Serpin B12 (SERPINB12) Q96P63|SPB12_HUMAN 46276 
Thioredoxin (TXN) P10599|THIO_HUMAN 11737 
Eukaryotic translation initiation factor 3 subunit A (EIF3A) Q14152|EIF3A_HUMAN 166569 
116 kDa U5 small nuclear ribonucleoprotein component (EF-
TUD2) 

Q15029|U5S1_HUMAN 109436 

Gem-associated protein 6 (GEMIN6) Q8WXD5|GEMI6_HUMAN 18824 

Table 3: Proteins identified in both BioID-GR samples. Bold face type denotes proteins iden-
tified in more than one biological replicate from each treatment condition. Gray text denotes pro-
teins identified in only one vehicle-treated and one dexamethasone-treated BioID-GR sample. 
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Protein name (Gene) Accession MW (Da) 

ATP-dependent 6-phosphofructokinase platelet type (PFKP) Q01813|PFKAP_HUMAN 85596 
Leucine-rich repeat-containing protein 17 (LRRC17) Q8N6Y2|LRC17_HUMAN 51800 
Heat shock 70 kDa protein 6 (HSPA6) P17066|HSP76_HUMAN 71028 
Gelsolin (GSN) P06396|GELS_HUMAN 85697 
Plasma membrane calcium-transporting ATPase 4 (ATP2B4) P23634|AT2B4_HUMAN 137920 
Ephrin type-A receptor 2 (EPHA2) P29317|EPHA2_HUMAN 108266 
Heat shock 70 kDa protein 1-like (HSPA1L) P34931|HS71L_HUMAN 70375 
Coatomer subunit beta (COPB2) P35606|COPB2_HUMAN 102487 
Leucine-rich PPR motif-containing protein mitochondrial 
(LRPPRC) 

P42704|LPPRC_HUMAN 157904 

Protein phosphatase 1G (PPM1G) O15355|PPM1G_HUMAN 59272 
Complement component C9 (C9) P02748|CO9_HUMAN 63173 
Merlin (NF2) P35240|MERL_HUMAN 69690 
Importin subunit beta-1 (KPNB1) Q14974|IMB1_HUMAN 97170 
Pumilio domain-containing protein KIAA0020 (KIAA0020) Q15397|K0020_HUMAN 73584 
Zinc finger protein 800 (ZNF800) Q2TB10|ZN800_HUMAN 75236 
Sp110 nuclear body protein (SP110) Q9HB58|SP110_HUMAN 78396 
Protein SDA1 homolog (SDAD1) Q9NVU7|SDA1_HUMAN 79871 
Adenosylhomocysteinase (AHCY) P23526|SAHH_HUMAN 47716 
Elongation factor 1-gamma (EEF1G) P26641|EF1G_HUMAN 50119 
Signal recognition particle 19 kDa protein (SRP19) P09132|SRP19_HUMAN 16156 
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 
subunit 1 (RPN1) 

P04843|RPN1_HUMAN 68569 

Table 4: Proteins identified in only BioID-GR vehicle samples. Bold face type denotes pro-
teins identified in more than one biological replicate. Gray text denotes proteins identified in on-
ly one replicate.  
 

 

 

 

 

 

	



83	

	

Protein name (Gene) Accession MW (Da) 

AT-rich interactive domain-containing protein 1B (ARID1B) Q8NFD5|ARI1B_HUMAN 236121 
SWI/SNF complex subunit SMARCC2 (SMARCC2) Q8TAQ2|SMRC2_HUMAN 132879 
Nuclear receptor coactivator 2 (NCOA2) Q15596|NCOA2_HUMAN 159156 
Mediator of RNA polymerase II transcription subunit 1 (MED1) Q15648|MED1_HUMAN 168477 
TOX high mobility group box family member 4 (TOX4) O94842|TOX4_HUMAN 66195 
Zinc finger and BTB domain-containing protein 11 (ZBTB11) O95625|ZBT11_HUMAN 119384 
RNA-binding protein 25 (RBM25) P49756|RBM25_HUMAN 100186 
Serine/threonine-protein kinase TAO1 (TAOK1) Q7L7X3|TAOK1_HUMAN 116070 
Zinc finger protein 512B (ZNF512B) Q96KM6|Z512B_HUMAN 97264 
Putative helicase MOV-10 (MOV10) Q9HCE1|MOV10_HUMAN 113671 
Yorkie homolog (YAP1) P46937|YAP1_HUMAN 54462 
Myocyte-specific enhancer factor 2D (MEF2D) Q14814|MEF2D_HUMAN 55938 
Coagulation factor X (F10) P00742|FA10_HUMAN 54732 
28S ribosomal protein S5 mitochondrial (MRPS5) P82675|RT05_HUMAN 48007 
Histone H1x (H1FX) Q92522|H1X_HUMAN 22487 
Glutathione peroxidase 1 (GPX1) P07203|GPX1_HUMAN 22088 
Peptidyl-prolyl cis-trans isomerase B (PPIB) P23284|PPIB_HUMAN 23743 
Serpin B4 (SERPINB4) P48594|SPB4_HUMAN 44854 
Hemoglobin subunit beta (HBB) P68871|HBB_HUMAN 15998 
Calmodulin-like protein 5 (CALML5) Q9NZT1|CALL5_HUMAN 15893 
Laminin subunit alpha-5 (LAMA5) O15230|LAMA5_HUMAN 399740 
Growth arrest and DNA damage-inducible proteins-interacting pro-
tein 1 (GADD45GIP1) 

Q8TAE8|G45IP_HUMAN 25384 

SWI/SNF-related matrix-associated actin-dependent regulator of 
chromatin subfamily D member 3 (SMARCD3) 

Q6STE5|SMRD3_HUMAN 55016 

Table 5: Proteins identified in only BioID-GR dexamethasone samples. Bold face type de-
notes proteins identified in more than one biological replicate. Gray text denotes proteins identi-
fied in only one replicate. 
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Proteins identified by BioID-GR are enriched in nucleic acid binding proteins and proteins with 

known interactions 

 After the protein hit refinement described above, the lists of protein hits were pooled and 

subject to further analysis. PANTHER protein class analysis (pantherdb.org) revealed enrich-

ment of nucleic acid binding proteins and transcription factors in both the high-confidence asso-

ciated protein list (the 16 bold face type proteins listed in Tables 3-5) and the total associated 

protein lists (all 59 proteins listed in Table 3-5) (see Fig. 16). Furthermore, STRING analysis 

(string-db.org) revealed that the combined dataset (consisting of all 59 proteins identified in the 

BioID-GR samples) was significantly enriched in interacting proteins (PPI enrichment p-value = 

0.00111), though this does not necessarily mean the dataset is enriched for physically interacting 

proteins, just biological interactions (see Fig. 17). Notably, only two of the 16 high-confidence 

associated proteins (BRG1/SMARCA4 and SMARCC2) have been previously reported to inter-

act with GR directly in other organisms, though others (i.e. ARID1B) have been demonstrated to 

interact with GR-interacting proteins. Furthermore, other proteins known to interact with GR (i.e. 

NCOA2) were identified in the total set of 59 associated proteins, while other known GR inter-

acting proteins, such as HSP90, were identified in the BioID-GR samples as well as other control 

samples (BioID or GFP-GR transfected samples), and therefore excluded from these lists.  
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Figure 16: PANTHER protein class analysis of BioID-GR associated proteins. A) PAN-
THER analysis of the 16 high-confidence BioID-GR associated proteins. B) PANTHER 
analysis of all 59 BioID-GR associated proteins. White numbers indicate the number of pro-
teins in the designated protein class. 

A 

B 
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Figure 17: STRING analysis of BioID-GR associated proteins. STRING analysis depict-
ing the types of biological interactions known between the 59 BioID-GR associated proteins 
identified. 
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Discussion. 

 Here, we have identified a cohort of proteins which are proximal to (and potentially in-

teract with) the glucocorticoid receptor in a neuron-like cell line using the proximity dependent 

biotinylation technology, BioID. This includes a total of 59 proteins, 16 of which are high-

confidence protein hits, the vast majority of which are novel putative GR-interacting proteins. As 

one might have expected, transcription factors and other nucleic acid binding proteins are en-

riched in the lists of putative GR-interacting proteins. These data contribute novel information 

regarding the neuronal GR interactome, and lay the framework for further studies to validate and 

further investigate these new interactions in normal GR signaling and in the development of dis-

ease.  

 Some of the proteins identified by the BioID-GR screen were already known to be GR-

interacting proteins, lending validity to the screen itself. Importantly, as GR is known to ho-

modimerize, GR itself was identified in all of the BioID-GR transfected samples (and none of the 

control samples). Another example, the transcription activator BRG1 (SMARCA4), here identi-

fied in both BioID-GR conditions, has been previously characterized to interact with GR and 

other nuclear receptor family members as part of larger chromatin remodeling complexes, in-

cluding the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the 

neuron-specific chromatin remodeling complex (nBAF complex) (Archer & Fryer, 1998). In the 

mammalian system, this has been shown to be an indirect interaction mediated by BRG1-

associated factor 60a (BAF60a), and GR mutants that cannot bind BAF60a and therefore cannot 

bind the larger BRG1 complex cannot properly activate transcription via chromatin remodeling 

(Hsiao, Fryer, Trotter, Wang, & Archer, 2003). Additionally, in the DEX treated BioID-GR 

samples, we identified two other components of the nBAF/npBAF complexes: AT-rich interac-
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tive domain-containing protein 1B (ARID1B) and SWI/SNF complex subunit SMARCC2 

(SMARCC2) (Hurlstone, Olave, Barker, van Noort, & Clevers, 2002; Kadam et al., 2000), lend-

ing further support that the observation of these proteins in our screen indeed represents a true 

interaction between GR and these three “hits.” In neuronal cells specifically, BRG1 has also been 

demonstrated to form a repressive complex with Rb and HDAC-1 at the c-Fos promoter, which 

is then undergoes a “switch” during neuronal stimulation and calcium influx, allowing for activi-

ty-dependent c-Fos transcription (Z. Qiu & Ghosh, 2008). However, this particular model has not 

thus far incorporated nuclear receptor signaling into the repressive actions of BRG-1.  

Some other proteins identified here are related to proteins known to bind GR, or are part 

of a larger complex that has been demonstrated to be important for GR signaling. For example, 

we identified tubulin beta-2B chain (TUBB2B) in both BioID-GR transfected conditions. It is 

now accepted that GR nuclear translocation is mediated by active transport along microtubules, 

which are composed of tubulins (Galigniana et al., 1998). We additionally identified several oth-

er tubulin components throughout both the BioID-GR and control samples, but the beta-2B chain 

was the only one identified specifically in the BioID-GR samples. In the vehicle-treated BioID-

GR samples, we identified heat shock 70 kDa protein 6 (HSPA6), and to a lesser degree of con-

fidence, heat shock 70 kDa protein 1-like (HSPA1L). Hsp70 is well characterized to interact with 

GR in the cytoplasm, particularly with nascent GR to aid in proper folding/assembly (Pratt, 

Morishima, Murphy, & Harrell, 2006). Similar to the tubulins identified, we identified hsp70 al-

pha and beta in both the BioID-GR and other control samples, but these two hsp70 family mem-

bers were specifically identified in the BioID-GR samples. Collectively, these data support the 

validity of this screen for the identification of GR-interacting proteins.  
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The novel, putative GR-interacting proteins identified here must be further validated to 

confirm a true interaction, but the techniques that may be used to do this (i.e. co-

immunoprecipitation, etc.) are much lower throughput than the present screen. Therefore it is 

important to identify the most interesting or logical candidates that might be a true GR-

interacting partner. A handful of the high-confidence BioID-GR associated proteins identified 

here are of particular interest due to their nuclear localization and activity in modulating tran-

scription and/or splicing. For example, the nuclear autoantigen Sp-100 (SP100) was identified in 

both BioID-GR conditions. Sp-100 has been demonstrated to act as both a co-activator and co-

repressor in conjunction with ETS-1 and ETS-2 (Wasylyk, Schlumberger, Criqui-Filipe, & 

Wasylyk, 2002; Yordy et al., 2004). Of note is the fact that GR has been demonstrated to interact 

with ETS-2 in 3T3 murine fibroblast cells (Mullick et al., 2001). Therefore, while this may prove 

to be an indirect interaction via ETS-1 or -2, the association of GR with Sp-100 should be exper-

imentally validated. Other identified proteins of interest include cell division cycle 5-like protein 

(CDC5L), which is best known for its role in mediating splicing, but may also act as a transcrip-

tion activator (Ajuh et al., 2000). SRSF protein kinase 1 (SRPK1) is another interesting putative 

GR-interacting protein, as it has been shown to regulate numerous cellular processes including 

splicing, and interacts directly with hsp40, which results in dynamic interactions with hsp70 and 

hsp90, all chaperones known to also interact with GR (Sanidas et al., 2010; Zhong, Ding, Adams, 

Ghosh, & Fu, 2009). The other high-confidence BioID-GR associated proteins represent addi-

tional interesting potential GR-interacting proteins, but precedence should be given to the pro-

teins listed above due to their logical incorporation into known GR signaling pathways. 

 There are some limitations to the interpretation of the results of the current study due to 

the experimental design. First, because we did not use a labeling technique (such as SILAC or 
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iTRAQ), it was not possible to reliably quantify proteins among different samples, meaning we 

had to take an all-or-nothing approach to the data analysis. This approach likely led to the exclu-

sion of GR-interacting proteins from the identified “hits,” as highly abundant proteins were like-

ly tagged non-specifically by the ligase-only controls or non-specifically bound to the streptavi-

din beads. For example, HSP90 (a well-characterized GR-interacting protein) was detected in all 

samples. Use of a labeling technique may have revealed enrichment of HSP90 and other abun-

dant proteins in the BioID-GR samples, but in the current study, it was not possible to reliably 

make that distinction. In an attempt to overcome this limitation, we used spectral counting to 

quantify among the different samples. While a handful of proteins were found to be enriched in 

the BioID-GR samples, because we could not reliably quantify the total protein amount after 

streptavidin bead pull-down due to the presence of contaminating streptavidin, this enrichment is 

likely an artifact. Another major limitation of this study is the inability to distinguish between 

GR-interacting and GR-proximal proteins. While one might assume that a protein within ~10nm 

of a protein for a period of time long enough to be labeled by the BirA* enzyme is interacting 

with the protein of interest (either directly or as part of a macromolecular complex), this assump-

tion is not always true. Therefore, some of the detected hits could be false-positives (i.e., they 

were in close proximity to GR but not physically interacting with GR), particularly those which 

were only detected in one of the three biological replicates. Proteins which were detected across 

multiple biological replicates of the same treatment are more likely to be true interacting partners, 

but in any case, the identified novel interactions should be validated using orthogonal techniques 

like co-immunoprecipitation, preferably in conjunction with knock-down experiments. Inevitably, 

another possible source of error in this screen could be due to the necessity to exogenously over-

express the BioID-GR bait protein, and the use of an immortalized cell line which cannot com-
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pletely replicate a “natural” cellular environment. While these limitations could potentially be 

overcome by using alternative techniques (for example, by knocking-in the bait protein using 

gene editing in primary cultured cells), those methods would be much more labor intensive and 

would still require further validation due to the other limitations of this type of screen. Finally, a 

limitation of any proteomic experiment is related to the coverage of the proteome in general. 

While our study identified a number of proteins from each sample that is in the “ball-park” of 

other similar proteomic experiments, it is possible that true interactions were not detected be-

cause they did not produce tryptic peptides capable of being efficiently detected by LC-MS/MS, 

or because they were present at such low concentrations compared to other proteins that they 

were not selected for dissociation and identification by MS2. Some methods to increase this cov-

erage might include using a different enzyme or enzymes to digest the proteins, further fraction-

ating the gel samples, or altering the LC run time or gradient to better separate the peptides. 

However, the methods used here were standard to the field in general, so while it may not be 

possible to identify every GR-interacting protein in the cell, we were able to identify several 

novel putative GR-interacting proteins, thereby moving the field forward.  

 The full characterization of the GR interactome is a daunting task which cannot be fully 

accomplished by one study. While these experiments lay the framework for a more detailed de-

scription of the neuronal GR interactome, there are some important considerations going forward 

which will aid in this endeavor. First, this study highlights the need to use a labeling technique to 

quantify among samples to ensure that true GR-interacting proteins are not excluded due to pos-

sible non-specific interaction with the ligase-only control (a commonly used control in the field). 

The ideal method for this would likely be SILAC, in which cells are cultured in heavy- or light-

labeled amino acid-supplemented media, such that proteins are labeled prior to lysis and pooled 
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before streptavidin bead pull-down. This eliminates the need to quantify the proteins after the 

pull-down, and allows all the samples being compared to be run on the LC-MS/MS at the same 

time, saving time and eliminating inter-run variability. The disadvantage to this technique, how-

ever, is that it limits the number of samples being compared to two or three (if a “medium” la-

beled culture condition is included). Therefore, one could compare BioID-GR samples treated 

with DEX or vehicle to one control (untransfected? GFP-GR? Ligase only? Treated or untreated 

with agonist?), but the choice of that control introduces limitations to the interpretation of the 

results. An alternative quantification technique would be labeling with iTRAQ or TMT isobaric 

tags, which can compare quantities of proteins in up to 10 different samples at once. However, 

this technique requires that proteins be quantified after streptavidin bead pull-down, and would 

likely require further purification after elution from the beads to suspend the proteins in a buffer 

compatible with isobaric label tagging. In our hands, we were unable to reliably quantify the pro-

teins after the pull-down due to the presence of contaminating streptavidin that had leached off 

the beads which overwhelmed the quantity of protein from our actual samples. Another consid-

eration which would generally increase the yield of biotinylated proteins from the same amount 

of cells would be to create a stable cell line expressing the BioID or BioID-GR constructs. After 

selecting for transduced cells, this would ensure that ~100% of the cells express the appropriate 

construct (as opposed to ~30-50% after transient transfection in the SK-N-SH cell line), therefore 

increasing the proportion of the sample with biotinylated proteins. Furthermore, this would allow 

for the use of different cell lines that are difficult to transfect but might be sufficiently transduced 

by retrovirus to create a stable cell line. Low transfection efficiency is the main reason we did 

not use the PVN-derived IVB cell line for these experiments, but also because IVB cells are de-

rived from rat PVN and our BioID-GR construct expresses the human GR. While it would take 
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some time to clone the BioID-GR construct into a lentiviral backbone, generate the virus, and 

select for transduced cells, the investment of a couple months of work would greatly increase the 

efficiency of the experiment. Finally, as discussed above, future experiments should focus on 

validating the “hits” identified here (and/or by future iterations of this experiment) using orthog-

onal techniques. 

 Overall, the current study has preliminarily identified 59 putative GR-interacting proteins, 

many of which have not been previously described in the context of GR signaling. Sixteen of 

these proteins were high-confidence hits (two specific to DEX-treated BioID-GR samples, three 

specific to vehicle-treated BioID-GR samples, and 11 specific to both BioID-GR conditions), 

therefore, this short list of proteins should be the first to be validated in follow-up studies. The 

identified proteins were enriched in transcription factors and nucleic acid binding proteins, which 

is logical given the glucocorticoid receptor’s known function as a ligand-activated transcription 

factor. This study provides novel information regarding GR signaling under “normal” conditions; 

future studies can therefore assess the effects of repeated binge drinking or other chronic stress-

ors on these novel interactions. 

	



94	

CHAPTER VII 
	

FINAL DISCUSSION 

Summary. 

The mechanisms by which adolescent binge alcohol exposure ultimately leads to HPA 

axis dysfunction and an increased propensity toward mental health disorders remain unknown. 

Furthermore, the exact molecular processes by which glucocorticoids exert feedback inhibition 

on the hypothalamus remains understudied, with various models suggesting both genomic and 

nongenomic effects mediated by the glucocorticoid receptor. Therefore, the goals of this project 

were to characterize the behavioral and neuroendocrine responses to various adulthood stressors 

in our rat model of adolescent binge alcohol exposure, to understand what molecular pathways 

were disrupted in the adolescent brain after repeated binge alcohol treatment, and to investigate 

the neural glucocorticoid receptor interactome. The overarching hypothesis of this work was that 

binge alcohol exposure during adolescence alters the GR’s interactions with other proteins, re-

sulting in increased CRH expression and aberrant HPA axis signaling, which contributes to in-

appropriate neuroendocrine and behavioral responses to psychological stress during adulthood. 

In Chapter III, the data demonstrate that rats with a history of adolescent binge alcohol exposure 

exhibit increased anxiety-like behaviors and a hypersensitive neuroendocrine response after 

acute psychological stress. In Chapter IV, the data suggest that both homotypic and heterotypic 

adult stresses cause similarly dysfunctional behavioral and HPA axis changes in rats with a histo-

ry of adolescent binge alcohol exposure. In Chapter V, the data demonstrate that these changes 
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due to adolescent binge alcohol exposure are likely not due to significantly altered GR subcellu-

lar localization, nor are they due to increased interactions between GR and the chaperone HSP90, 

suggesting adolescent binge alcohol exposure selectively alters certain GR mediated signaling 

pathways but not global GR function. In Chapter VI, the data describe known and novel GR in-

teracting proteins identified by a proximity-dependent biotinylation proteomic screen in a neu-

ronal-like cell type. Collectively, these studies provide novel information regarding the molecu-

lar mechanisms underlying glucocorticoid receptor mediated HPA axis negative feedback, which 

is disrupted in response to adolescent binge alcohol exposure, contributing to an increase in 

mood disorder susceptibility.  
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Figure 18: Graphical summary of key findings. Adolescent binge alcohol exposure com-
bined with acute or chronic stress in adulthood increases anxiety-like behavior and HPA axis 
sensitivity. Inlay: Schematic of CRF neuron GR signaling, denoting putative novel GR-
interacting proteins identified by BioID-GR. 
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Key Findings 

Chapter III: Effects of adolescent binge alcohol on behavioral and neuroendocrine re-

sponses to acute psychological stress 

• History of adolescent binge alcohol exposure and acute restraint stress increased risk 

assessment behaviors 

• History of binge alcohol exposure alone did not increase canonical anxiety-like be-

haviors or alter ethological behaviors 

• Both history of binge alcohol exposure and acute restraint stress increased plasma 

CORT 

• Acute restraint increased cFos and CRF expression, decreased GR in V.Hipp 

Chapter IV: Effects of adolescent binge alcohol on behavioral and neuroendocrine re-

sponses to chronic stressors 

• Animals with a history of adolescent binge alcohol exposure trended toward an anxie-

ty-like phenotype in response to a chronic adulthood stressor 

• Repeated homotypic (binge alcohol) and heterotypic (restraint) stressors had similar 

effects in animals previously exposed to binge alcohol during adolescence 

• History of adolescent binge alcohol exposure decreased PVN CRF expression after 

behavioral testing in all groups 

• Animals with a history of adolescent binge alcohol exposure may have a prolonged 

CORT response to chronic stressors 
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Key Findings 

Chapter V: Glucocorticoid receptor function after repeated adolescent binge alcohol 

exposure 

• Adolescent binge alcohol exposure did not alter GR-HSP90 interactions or expression 

of either protein in the dorsal hippocampus or whole hypothalamus 

• Adolescent binge alcohol exposure increased PER1 expression in the hypothalamus, 

but not hypothalamic FKBP5 expression (both are neuronal GR target genes) 

• Repeated 50mM EtOH exposure did not significantly decrease DEX-induced GR nu-

clear localization in IVB cells 

Chapter VI: Characterization of the glucocorticoid receptor interactome 

• The BioID-GR construct used in these experiments was validated to be functional	

• 59 putative GR interacting proteins were identified by the BioID screen, including 16 

high-confidence hits, the majority of which had not been previously reported to inter-

act with GR	

• The identified proteins were enriched for transcription factors and nucleic acid bind-

ing proteins	
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Final Thoughts. 

Adolescent binge alcohol exposure and mood disorder development 

 The data presented in Chapters III and IV support the hypothesis that adolescent binge 

alcohol exposure promotes the development of an anxiety-like phenotype, specifically in combi-

nation with exposure to an acute or chronic stressor during adulthood. This is in agreement with 

numerous other animal studies that suggest adolescent alcohol exposure not only causes an anxi-

ety-like phenotype, but also depression-like phenotypes. For example, i.p. alcohol injections dur-

ing adolescence increase adulthood anxiety-like behaviors in the light-dark box and elevated-

plus maze tests (Pandey et al., 2015). This anxiety-like phenotype is not solely based on behav-

ioral observations; rodent studies have also demonstrated that adolescent binge alcohol exposure 

results in hypersensitivity of the HPA axis (Brunell & Spear, 2005; Przybycien-Szymanska, Mott, 

Paul, et al., 2011). Furthermore, adolescent alcohol exposure has been demonstrated to result in 

anhedonia, a depressive-like behavior, in multiple animal models (Briones & Woods, 2013b; 

Varlinskaya, Kim, & Spear, 2017). It is important to acknowledge that not all animal studies that 

have investigated mood disorder-like behaviors after adolescent binge alcohol exposure have ob-

served statistically significant differences (Coleman et al., 2011); however, the collective body of 

evidence does point to a causative role of adolescent binge alcohol exposure in the development 

of these disorders.  

 These animal studies are also in agreement with human epidemiological studies which 

demonstrate that teenage binge drinking increases the risk of developing a mood disorder later in 

life (McCambridge et al., 2011; Rose et al., 2014; Viner & Taylor, 2007). Furthermore, HPA ax-

is dysfunction in adolescent binge drinkers has been observed, lending further support to the idea 

that the development of mood disorders after adolescent binge alcohol use might be mediated by 



100	

	

changes to HPA axis reactivity (Wemm et al., 2013). This is important, not only because of the 

great socioeconomic burden that mood disorders place on our society, but also because both al-

cohol consumption and mood disorders can alter other cognitive aspects, including learning and 

memory tasks (Goldstein, Déry, Pilgrim, Ioan, & Becker, 2016). 

Adolescent binge alcohol exposure and sex differences 

 In the current studies, the effects of adolescent binge alcohol exposure on the adult re-

sponses to acute and chronic stress were only assessed in male rats. This is because previous 

studies from our laboratory demonstrated that the effects of adolescent binge alcohol on the HPA 

axis are sexually dimorphic; female rats do not exhibit the same alterations in CRF or AVP gene 

expression as observed in males, and their CORT response does habituate to repeated alcohol 

doses (Przybycien-Szymanska et al., 2010). Furthermore, we demonstrated that these sex differ-

ences were due to the presence of 17β-estradiol, as ovariectomized adolescent rats do not habitu-

ate to repeated alcohol doses (Przybycien-Szymanska et al., 2012). Interestingly, studies using 

Sprague-Dawley rats administered alcohol vapors during adolescence that were subsequently 

challenged with intragastric alcohol during adulthood demonstrated that male rats exhibited an 

increase in PVN CRF mRNA in response to adult alcohol challenge, and this CRF increase was 

abolished by a history of adolescent alcohol, while female rats exhibited in increase in PVN AVP 

mRNA that was blunted by a history of adolescent alcohol exposure (Logrip et al., 2013). This 

suggests that the HPA axis is differentially affected by alcohol in males and females during 

adulthood and in the context of adolescent alcohol exposure. Therefore, future studies using our 

laboratory’s animal model could continue to investigate the effects of adolescent binge alcohol 

exposure on adult behavioral and neuroendocrine outcomes, but experiments using female rats 

would likely produce different results than those that were obtained in the current studies.  
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 Human studies have also demonstrated that males and females can exhibit deleterious 

effects of teen binge drinking, further emphasizing the need to characterize these sex differences 

in animal models. For example, female college students with self-reported problematic drinking 

habits exhibited dysfunctional physiologic stress responses (measured by salivary cortisol levels) 

in response to a psychological stress; however, males were not assessed in this study (Wemm et 

al., 2013). Imaging studies have also demonstrated sexually dimorphic effects of binge drinking; 

female binge drinkers have increased brain volume in areas relevant to inhibitory control and 

motivated behaviors compared to their healthy counterparts, whereas male binge drinkers exhib-

ited decreases in volume in these areas compared to healthy males (Kvamme et al., 2016). How-

ever, it is difficult to determine if these sexually dimorphic changes are an effect of binge drink-

ing, or if they had existed prior to the onset of alcohol consumption. Longitudinal studies have 

failed to find sex differences in the developmental changes in brain region volumes due to the 

onset of binge drinking, suggesting any sex differences may have existed prior to binge drinking 

onset (Squeglia et al., 2015).  

 Whether or not the effects of adolescent alcohol use produce sexually dimorphic effects 

on the individuals who themselves choose to engage in binge drinking, ongoing research in our 

laboratory and others aims to investigate the effects of adolescent binge alcohol exposure on the 

outcomes of offspring with no direct exposure to adolescent alcohol themselves. We observed 

numerous differentially methylated cytosine residues (DMCs) in the hypothalami of male rat 

pups born to parents with a history of adolescent alcohol exposure; furthermore, these DMCs 

were different depending on if the “family” history of adolescent binge drinking came only from 

the maternal side, the paternal side, or from both parents (Asimes et al., 2017). In human studies, 

children from a family with multiple alcohol-dependent relatives have an increased risk of be-
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coming alcohol dependent themselves (Hill, Tessner, & McDermott, 2011). Indeed, environmen-

tal factors likely play an overwhelming role in these families, but a better understanding of the 

biological mechanisms by which alcohol’s effects can be passed between (male or female) parent 

and offspring are necessary to be able to effectively manage these intergenerational changes.  

Alcohol and other stressors 

 The results of Chapter III demonstrate that adolescent binge alcohol exposure leads to an 

anxiety-like phenotype (behaviorally and in terms of HPA axis function) in response to an acute 

psychological stressor during adulthood. However, while we observed increases in risk assess-

ment, which is likely a component in the development of an anxiety disorder, we did not observe 

increases in the amount of time spent in the closed arms of the EPM or a decrease in the time 

spent in the open arms. This is in contrast to some other studies in the field, which utilized slight-

ly different models of adolescent binge alcohol exposure (Briones & Woods, 2013b; Pandey et 

al., 2015). Although an acute stressor is normally expected to activate the HPA axis over a short 

period of time, it should not result in long term behavioral or neuroendocrine dysfunction. How-

ever, this is exactly the case in patients with PTSD, in which a single traumatic event results in 

long term behavioral and neuroendocrine symptoms (Carrasco & Van de Kar, 2003; Simeon et 

al., 2007). Because of the timing of the current study, it is unclear if the increases in anxiety-like 

behavior that we observed in animals with a history of adolescent binge alcohol exposure and 

adult acute stress would persist for hours, days, or longer. If these differences were to persist, this 

then raises questions regarding the role of teenage binge drinking in relation to subsequent adult 

activities. For example, due to the likelihood that an individual might encounter a traumatic, 

near-death event in military combat, might screening for a history of teen binge drinking be in-

cluded in military intake questionnaires? Should these individuals be prevented from holding 
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combat positions in the military, or should they continue to do the same work but be monitored 

more closely? As our understanding of the effects of teenage binge drinking unfolds, these socie-

tal questions will undoubtedly need to be addressed as well.  

 The results of Chapter IV demonstrate that adolescent binge alcohol exposure increases 

the propensity toward an anxiety-like phenotype in rats subsequently exposed to some sort of 

repeated stress during adulthood, whether that is a homotypic (alcohol) or heterotypic (restraint) 

stressor. This supports the general idea that adolescent binge alcohol consumption can lead to the 

development of mood disorders, particularly in addition to other chronic stressors later in life. 

Others have demonstrated that adolescent binge alcohol exposure combined with repeated adult-

hood stress likewise results in social deficits and a depressive-phenotype (Varlinskaya et al., 

2017). Although that particular study used a different rat model of adolescent binge alcohol 

(Sprague-Dawley rats administered alcohol from PND25-45 every other day), they also used re-

peated restraint stress as the adulthood stressor, as we did for one of the groups in our study. The 

observation that adolescent binge alcohol also results in increased depressive behaviors after 

adult chronic stress is extremely important, as chronic stress itself is known to be a stimulus for 

the development of depression (J. Chen et al., 2015; Willner et al., 1992). Furthermore, we ob-

served dysfunctional changes to HPA axis effector levels, and HPA axis dysfunction is also 

known to be associated with depression, particularly after chronic stress (Guidotti et al., 2013; 

Naughton et al., 2014). Collectively, this suggests that adolescent binge alcohol exposure alters 

the resulting responses to adulthood chronic stressors in such a way that furthers the develop-

ment of mood disorders. 

 It is important to note that while these studies have investigated the effects of acute and 

chronic systemic or psychological stressors in the context of adolescent binge alcohol exposure, 
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that alcohol itself not only activates the systemic neuroendocrine stress response, but also pro-

duces cellular stress, primarily in the form of oxidative stress. In the brain, this oxidative stress 

has been associated with mitochondrial dysfunction, long term decreases in synaptic plasticity, 

neuroinflammation, increases in cell death, and ultimately behavioral deficits in learning and 

memory paradigms (Hansson et al., 2010; Tajuddin, Przybycien-Szymanska, Pak, Neafsey, & 

Collins, 2013; Tapia-Rojas et al., 2017). Interestingly, inhibition of fatty acid amide hydrolase 

(FAAH) and the resulting increase in anandamide has been demonstrated to reduce oxidative 

stress in the prefrontal cortex of adolescent rats (Pelição et al., 2016). Whether oxidative stress 

plays a role specifically in the dysfunction of glucocorticoid feedback inhibition in the PVN re-

mains to be seen, but similar therapeutics targeting antioxidant pathways might be useful if that 

is proven to be the case.  

The effects of alcohol on glucocorticoid signaling 

 Previous studies from our lab using the rat PVN-derived cell line, IVB, have demonstrat-

ed that alcohol treatment increases CRF promoter activity and decreases GR binding to the CRF 

promoter region (Przybycien-Szymanska, Mott, & Pak, 2011). The results of chapter V suggest 

that this CRF promoter dysregulation is not due to major changes in GR subcellular localization. 

While these observations are helpful in deciphering potential molecular pathways affected by 

alcohol exposure, due to the general limitations of using an immortalized cell line (absence of 

feedback from other cell types, inability to replicate the adolescent developmental period, etc.), 

these data alone are insufficient to draw meaningful conclusions based on the molecular effects 

of adolescent binge alcohol exposure in an entire organism. Therefore, Chapter V also investi-

gated the functionality of GR in our in vivo adolescent binge alcohol model, and demonstrated 

that only some GR target genes seem to be specifically affected by alcohol, and that global GR 
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binding to the chaperone HSP90 is not affected in the hippocampus or hypothalamus. Although 

it was not possible to assess GR nuclear localization in samples from our animal model, collec-

tively the in vitro data and the qPCR data from the animal tissue samples suggest that changes in 

GR nuclear localization are NOT the major cause of adolescent alcohol-induced dysfunction of 

CRF expression and HPA axis negative feedback. 

 Unfortunately, there are few other studies that have investigated the effects of alcohol on 

GR, and even fewer that specifically investigated the role of adolescent binge alcohol exposure 

(as opposed to fetal or more chronic abuse models) on GR function. Animal models of chronic 

alcohol exposure have demonstrated decreases in GR expression in various brain regions includ-

ing during alcohol withdrawal; furthermore, alcohol withdrawal also resulted in decreased GR 

binding to a GRE probe (Roy, Mittal, Zhang, & Pandey, 2002). It is important to note, however, 

that our animal model of adolescent binge alcohol exposure does NOT produce traditional alco-

hol withdrawal effects (i.e. seizure activity) (Callaci et al., 2004; Przybycien-Szymanska et al., 

2010), so it is unclear how these data might translate to subclinical drinking patterns in human 

adolescents. On another note, in models of fetal alcohol exposure, region-specific changes in GR 

subcellular localization have been observed (Allan et al., 2014; Caldwell et al., 2014). These data 

are in contrast with the data presented in Chapter V, though this discrepancy is likely due to the 

administration of alcohol during completely different developmental time periods. Interestingly, 

in a monocytic cell line, alcohol actually increases GR nuclear translocation (Ng et al., 2017). 

This emphasizes the fact that alcohol’s effects on GR signaling can be highly cell-type specific. 

 Finally, it is important to note that the interaction between alcohol exposure and GR sig-

naling is not a one-way street. Studies in human adolescents have demonstrated that polymor-

phisms in the NR3C1 gene (which encodes GR) are associated with early onset of alcohol con-
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sumption and drunkenness in young teens (Desrivières et al., 2011). Likewise, polymorphisms in 

the FKBP5 gene (which encode FKBP51 that downregulates GR nuclear translocation) have also 

been associated with increased alcohol consumption in humans (B. Qiu et al., 2016). It is there-

fore important to better characterize the functional effects of these naturally-occurring polymor-

phisms on GR intracellular signaling dynamics. 

Novel glucocorticoid receptor interactions 

 Finally, because of the dearth of information regarding the molecular mechanisms of GR-

mediated CRF repression, chapter VI investigated the neuronal GR interactome in the context of 

agonist (DEX) or vehicle treatment. We preliminarily identified 59 putative GR-interacting pro-

teins, 16 of which were highly associated with BioID-GR transfection, and the majority of which 

were novel possible interactions. Of the proteins identified, three (BRG-1, ARID1B, and 

SMARCC2) had previously been demonstrated to interact directly or indirectly with GR as part 

of the nBAF complex (Hsiao et al., 2003; Hurlstone et al., 2002; Kadam et al., 2000). However, 

it is so far unknown if this gene regulatory complex would specifically influence CRF gene ex-

pression in the context of HPA axis function. Of the novel putative GR-interacting proteins we 

identified, a few stand out as logical primary candidates for validation and further investigation 

as they are localized in the nucleus and are known to influence transcription or splicing, includ-

ing Sp-100 and CDC5L.  

 Our study was the first to attempt to characterize the GR interactome in a neuron-like cell 

line, but a handful of other studies have attempted to characterize the effects of glucocorticoids 

on the proteome of various other cell types. One study of liganded and unliganded GR isolated 

from rat liver lysates by immunoprecipitation that was then subject to 2D-DIGE and identifica-

tion of differentially bound proteins by mass spectrometry identified several proteins known to 
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interact with GR (i.e., HSP90, FKBP51, etc.); however, our observed GR interactome had very 

little overlap with what had been reported in that study (Hedman et al., 2006). These discrepan-

cies are likely due to different experimental techniques as well as the completely different cell 

types used in the two studies. Other studies have simply investigated the proteomic effects of 

glucocorticoid treatment (not necessarily in conjunction with purification of GR-interacting pro-

teins) in mouse glomerular podocytes or the THP-1 monocytic cell line (Billing et al., 2007; 

Ransom, Vega-Warner, Smoyer, & Klein, 2005). Again, while there was little overlap between 

our study and these two, one protein of interest identified in both of the abovementioned studies, 

as well as our study to a lesser degree of confidence, was the actin binding protein, gelsolin. Gel-

solin is of particular interest because it has been shown to interact with other nuclear receptors 

and act as a transcriptional coregulator; furthermore, our laboratory has demonstrated that the 

interaction of gelsolin with ERβ changes in response to age and estrogen deprivation (Mott et al., 

2014; Nishimura et al., 2003). Should the GR-gelsolin interaction be validated in the neuronal 

system, the mechanisms by which this interaction is altered might be of interest due to its likely 

functional importance. Collectively, these studies highlight the cell-specific nature of the effects 

of glucocorticoids and GR signaling, emphasizing the need to better characterize GR pro-

tein:protein interactions and their ultimate effect on function in various tissues. 

Future Directions. 

 The work presented here contributes significantly to our collective understanding of GR 

signaling in neuronal cells, how adolescent alcohol may impact that signaling, and ultimately the 

behavioral and neuroendocrine consequences of adolescent binge alcohol exposure. Together, 

these data generally support the hypothesis that adolescent binge alcohol exposure alters GR sig-
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naling leading to long term behavioral and neuroendocrine dysfunction. However, the results of 

these studies open the doors for many new lines of investigation. 

 The studies described in Chapters III and IV demonstrate that a history of adolescent 

binge alcohol exposure, combined with adult acute or chronic stress, leads to an anxiety-like be-

havioral phenotype and HPA axis dysfunction. However, repeated stress is also a well-known 

factor in the development of depression, and adolescent alcohol consumption is most closely as-

sociated with alcohol use disorders (Naughton et al., 2014; Viner & Taylor, 2007). Further stud-

ies should investigate the role of adolescent binge alcohol exposure in the development of a de-

pressive-like phenotype, for example using the forced swim or sucrose preference behavioral 

tests. It would be prudent to do so both in the context of adolescent binge alcohol exposure alone, 

and in combination with other adulthood stressors, as we did here for anxiety-like behaviors. It is 

expected that animals with a history of adolescent binge alcohol exposure would similarly exhib-

it increased depressive-like behaviors, particularly in combination with chronic stress exposure 

during adulthood. Additionally, the role of adolescent binge alcohol exposure in the development 

of addictive behaviors should be investigated. While this line of research is active in many labs, 

each particular animal model has slightly different effects on behavior. Therefore, it is important 

to determine if this model results in an increased propensity toward spontaneous alcohol or other 

drug consumption, or if it lowers the threshold for the development of addictive behaviors. Fur-

thermore, it is important to characterize if this is specific to the development of alcoholism, or if 

adolescent binge alcohol exposure might also increase the risk of developing addiction to other 

drugs, and if so, which drugs.  

 The results described in Chapters V and VI, in combination with previous studies from 

our laboratory, ultimately address the mechanisms underlying the effects of adolescent binge al-
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cohol exposure. We have previously demonstrated that the adolescent alcohol exposure results in 

hypersensitivity of the HPA axis due to decreased glucocorticoid feedback inhibition in the hy-

pothalamus, and that alcohol exposure reduces the ability of GR to bind the CRF promoter and 

downregulate CRF promoter activity (Przybycien-Szymanska, Mott, & Pak, 2011; Przybycien-

Szymanska, Mott, Paul, et al., 2011). Chapter V demonstrated that this GR dysfunction is not 

due to dysregulated chaperone binding or major changes to its ability to translocate to the nucle-

us; rather, alcohol seems to specifically alter its regulation of genes relevant to HPA axis sensi-

tivity, at least acutely after alcohol administration. Chapter VI therefore examined the GR in-

teractome using a proximity-dependent biotinylation screen, and ultimately identified known and 

novel GR-interacting proteins, many of which also reside in the nucleus and may act as transcrip-

tional coregulators. These studies lay the groundwork for future investigation into the mecha-

nisms underlying glucocorticoid feedback inhibition of CRF expression under normal physiolog-

ical conditions and in response to adolescent alcohol exposure. The immediate next steps involve 

improving the screening techniques used and validation of the identified, putative GR-interacting 

proteins. A logical method to validate these interactions is by adapting the GR co-

immunoprecipitation techniques used in Chapter V to investigate the interactions of GR with 

each identified protein “hit,” preferably in combination with knock-down experiments to ensure 

specificity of the antibodies. Once these interactions are validated, they should be further charac-

terized to determine if the interactions are relevant to GR’s ability to regulate CRF expression 

and which other genes might be regulated by GR’s interactions with these proteins. A targeted 

way to address this (in the context of one or a handful of promoters) would be to use reporter 

gene assays driven by the promoter of interest. A broader way to address this would involve 

more complicated, high-throughput assays, such as combinatorial ChIP-seq experiments, or other 
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techniques depending on which regulatory process is hypothesized to be affected by the validat-

ed protein:protein interactions.  

 It is also important to characterize how differential protein:protein interactions among 

GR and its novel interacting partners come about, and how these interactions might change GR’s 

ability to interact with other molecules within the cell. For example, GR is known to be post-

translationally modified at several residues; primarily, GR phosphorylation has been studied, but 

other GR modifications (i.e. SUMOylation) have recently been demonstrated to have functional 

consequences as well. It would be important to address whether any of these modifications alter 

the ability of GR to interact with its binding partners. For example, in the case of GR phosphory-

lation sites, phospho-mimetic and phospho-null mutants can be utilized in conjunction with co-

immunoprecipitation experiments (or other techniques to assess protein:protein interactions) to 

address these types of questions. However, other post-translational modifications can be more 

difficult to measure or modify experimentally. Furthermore, it would be interesting to note if the 

identified protein:protein interactions influence GR’s ability to bind DNA, or if these interactions 

change GR’s preferred DNA sequence that it may bind. Additionally, as some of the novel GR 

interacting proteins identified are known to regulate mRNA splicing, it would be intriguing to 

investigate if GR indeed has a role in regulating splicing, or even the processing of other, non-

coding RNAs.  

 The possible new lines of investigation brought on by this work in conjunction with re-

cent studies that demonstrate the cell- and context-specific nature of GR signaling is essentially 

endless. Because of the relative difficulty of studying molecular pathways in the neuronal system, 

particularly large gaps in our knowledge remain regarding GR’s signaling in PVN neurons, as 

well as in other brain regions which exert neuronal control over the HPA axis. While this work 
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has addressed some of the unknowns in this regard, there is still much work to be done in order 

to fully comprehend the complexities of this system. Better characterization of these pathways 

will ultimately lead to better treatment options for the effects of adolescent binge alcohol use, 

and likely for the treatment of mood disorders in general.  

Clinical Implications. 

 The investigation of drugs that modulate HPA axis activity for the treatment of mood 

disorders has fallen out of popularity in recent years; however, the data presented herein suggest 

that the right therapeutics, delivered in a more specific manner, may have potential clinical im-

pact, particularly in individuals with a history of adolescent binge drinking. At very least, tests 

that assess HPA axis dysfunction could be a helpful tool in diagnosing mental health disorders 

and potentially guiding which therapeutic options are best for patients, although these tests 

would likely need to be used in conjunction with standard diagnostic tools as they have thus far 

not been specific in their ability to diagnose mood disorders alone. Furthermore, although the 

research here did not examine the effects of exogenously administered glucocorticoids, the 

mechanistic investigation into the neuronal GR interactome could shed some light on the side 

effects associated with glucocorticoid treatment.  

 Interestingly, antagonism of GR with mifepristone has been demonstrated in animal 

models of alcoholism and in human alcoholics to decrease alcohol-seeking behaviors (L. F. 

Vendruscolo et al., 2012; Leandro F. Vendruscolo et al., 2015). This is likely because stress is 

known to increase alcohol- (or other drug-) seeking behaviors and blocking the stress response 

may therefore decrease the stress-induced urge to consume alcohol (Tunstall, Carmack, Koob, & 

Vendruscolo, 2017). However, it would be ideal to formulate a therapy that could prevent the 

transition from subclinical drinking behaviors to full-blown alcohol dependence, particularly in 
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individuals with a history of binge drinking during the teen years. Because our laboratory’s data 

suggest that GR-mediated HPA axis negative feedback is dysfunctional, it is unclear if GR an-

tagonist treatment would make matters better or worse. 

In the last 15 years, a push to create GR-directed drugs with fewer side effects has been 

made with the intention of treating inflammatory conditions like rheumatoid arthritis, preventing 

the rejections of transplants, and treating certain blood cancers. This ultimately led to the synthe-

sis of SEGRAMs (selective glucocorticoid receptor agonists/modulators), most of which at this 

point abolish GR-mediated transactivation while retaining transrepression abilities, therefore re-

taining the immunosuppressive effects of GR signaling without the unwanted risk of hypergly-

cemia, skin atrophy, and other side effects (Sundahl, Bridelance, Libert, De Bosscher, & Beck, 

2015). More recent research is also targeted at creating SEGRAMs that selectively promote 

monomeric or dimerized GR states to expand the repertoire of drugs that can modulate GR sig-

naling (De Bosscher, Beck, Ratman, Berghe, & Libert, 2016). Thus far, however, there are no 

clinically available SEGRAMs approved for use in this country. Because many SEGRAMs pro-

mote transrepression of gene expression, it is likely that these drugs would be beneficial in 

downregulating CRF expression, thereby blunting the HPA axis responsiveness in individuals 

with a hypersensitive response to stress (for example, in individuals with a history of teen binge 

drinking). Without target drug delivery, however, this might also produce peripheral effects, par-

ticularly on immune function, which in this case would be an unwanted side effect. Furthermore, 

it is possible that alcohol alters GR (or its interacting proteins) in such a way that its dysfunction 

could not be overcome by these ligands; for example, if GR is aberrantly post-translationally 

modified, it may be resistant to the effects of SEGRAMs.  
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 Due to its almost ubiquitous expression and pleiotropic effects, one could argue that GR 

itself is not the most attractive therapeutic target. By identifying novel GR-interacting proteins 

(as we have done here), it is possible that particular GR signaling pathways could be better mod-

ulated by targeting the particular coregulators, posttranslational modifying enzymes, splicing fac-

tors, etc., with which GR interacts, or by interfering with the surfaces on either GR or one of its 

interacting partners which allow for these protein:protein interactions to occur. The development 

of such drugs is completely dependent on gaining a better understanding of GR protein:protein 

interactions in a cell-, context-, and promoter- specific manner. Collectively, this highlights the 

necessity of basic research into the mechanisms involved in GR signaling.  

Take Home Message. 

 Teenage binge drinking impacts the structural development of the brain and has function-

ally been shown to result in decreased learning and memory capabilities, poor decision making, 

and increased susceptibility to mood disorders. Animal models of adolescent binge alcohol expo-

sure have demonstrated that alcohol plays a causative role in these structural and functional 

changes, and furthermore allow for the study of the molecular mechanisms behind these changes. 

Repeated binge alcohol exposure during adolescence results in long term changes in HPA axis 

function, rendering it hypersensitive to stressors due to deficient glucocorticoid feedback inhibi-

tion. The work presented here demonstrates that adolescent binge alcohol exposure can alter the 

behavioral responses to acute and chronic stressors during adulthood, as well as induce changes 

to HPA axis function, suggesting HPA axis dysfunction likely plays a role in dysfunctional be-

havioral responses to stress. The glucocorticoid receptor is widely implicated in mediating the 

negative feedback of glucocorticoids on the hypothalamus. However, repeated binge alcohol ex-

posure does not seem to alter global glucocorticoid receptor signaling in hypothalamic cells or 
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tissue samples. Rather, adolescent binge alcohol exposure appears to selectively alter signaling 

pathways involved in modulating HPA axis activity. Because of the relative lack of information 

regarding glucocorticoid receptor-mediated feedback inhibition in the hypothalamus, we also 

sought to characterize the GR interactome in a neuronal-like cell line. We identified 59 BioID-

GR associated proteins, 16 of which were high-confidence “hits.” These included members of 

the nBAF complex, some of which had previously been shown to interact with GR, while the 

majority of the identified proteins were novel putative GR-interacting partners. Taken together, 

the work presented here lends support to the hypothesis that adolescent binge alcohol consump-

tion alters GR function, which results in HPA axis hypersensitivity, which contributes to an in-

creased propensity toward the development of mood disorders. Collectively, this provides ra-

tionale for targeting the glucocorticoid receptor and its regulation of the HPA axis in the preven-

tion or treatment of mental health disorders, particularly in those with a history of teenage binge 

drinking. 
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CHAPTER VIII 
	

GENERAL METHODS 

Chapter III. 

Ethics Statement 

All animal protocols were approved by the Loyola University Medical Center Institutional Ani-

mal Care and Use Committee (IACUC) permit #2013034. All measures were taken to minimize 

animal numbers and suffering. 

Animals 

Male Wistar rats were purchased from Charles River Laboratories (Wilmington, MA) at weaning 

(post-natal day [PND] 25) and allowed to acclimate for five days after arrival. Animals were 

pair-housed on a 12:12 light/dark cycle with lights on at 7:00h. Food and water were available ad 

libitum.  

Experimental Paradigm  

Repeated binge alcohol exposure. After acclimation to the housing environment, begin-

ning on PND 30, animals were handled for 5 min. once per day for seven days by the same indi-

vidual, between 09:30 and 11:00 hrs. Pubertal binge ethanol (EtOH) treatments commenced on 

PND 37, which is defined as peri-puberty in this species (Ketelslegers et al., 1978; Södersten et 

al., 1977). Animals were randomly assigned to either 1) binge EtOH treated (n=20), or 2) water 

treated control (n=20) groups. The binge EtOH treated animals received 3g/kg ethanol (20% v/v 

in water) intragastrically (i.g.) via oral gavage once per day at 10:00h for three consecutive days, 
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then an equivalent volume of water i.g. for two days, then an additional three days with EtOH. 

This once/day (total of eight days) binge paradigm has been used previously to mimic the pattern 

of binge alcohol consumption in adolescents (Lauing, Himes, Rachwalski, Strotman, & Callaci, 

2008; Przybycien-Szymanska et al., 2010). Our previous studies, and others, have demonstrated 

that this dose and method of EtOH delivery resulted in blood alcohol concentrations (BAC) be-

tween 150-180 mg/dL one hour after the last dose, and does not interfere with normal growth 

rates or feeding behavior, nor does it result in overt alcohol withdrawal symptoms (i.e. seizure 

activity) (Callaci et al., 2004; Prins, Przybycien-Szymanska, Rao, & Pak, 2014; Przybycien-

Szymanska et al., 2010; Walker & Ehlers, 2009). Furthermore, the calories from alcohol admin-

istered are >2% of the rats’ daily caloric intake (average lab rat daily energy consumption is 

~100 kcal/day per 100g body weight (Abdoulaye et al., 2006), and a 263g rat receives only 5 

kcal from the 3g/kg dosage), therefore it was unnecessary in this model to control for the calorie 

content of alcohol administered. The water treated control group received eight days of an equiv-

alent volume of water i.g via oral gavage.  

Acute stress paradigm. After pubertal binge alcohol treatments, both groups of animals were left 

undisturbed for three weeks (see Fig. 3). At the end of this three week period, the animals were 

again handled 5 min. once per day for seven days, as described above. At 10:00h on PND 73, 

prior to further manipulation, animals were given a trial test in the elevated plus maze (EPM) to 

establish a baseline level of anxiety-like behavior. Then, animals within each group were ran-

domly assigned to either a) a restraint stress group (n=10 per group), or b) an unstressed control 

group (n=10 per group). Next, on PND 74 at 09:30h, animals in the restraint stress group were 

placed in a plastic rodent restraint tube (Stoelting Co. #51335) inside a fresh cage for 30 min., 

then 5 min. after being removed from the restraint tube, the rats were tested in the EPM again, 
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and 5 min. after ending the EPM test, the animals were euthanized. It has been previously 

demonstrated that plasma corticosterone (CORT) levels reach a peak after 30 min. inside a plas-

tic restraint tube (Cole et al., 2000). Animals in the unstressed control group were placed singly 

in a fresh cage for 35 min, then tested in the EPM again, and 5 min after ending the EPM test, the 

animals were euthanized. Refer to Figure 3 for schematic of experimental paradigm. 

Elevated Plus Maze Testing  

Elevated Plus Maze testing was conducted with the Rat Elevated Plus Maze apparatus (Stoelting 

Co. #60240) and recorded using a video camera and ANY-maze software (Stoelting Co.). Test-

ing was conducted in a dimly-lit room (~5 lux) with white noise generated by a HoMedics Sound 

Spa Relaxation machine (~70dB, equivalent to the white noise generated by the HVAC system 

in the animal housing room). Rats were placed singly in the center of the maze facing an open 

arm by a female experimenter, marking the beginning of the test period. The rat was then al-

lowed 5 min. to explore the maze freely, after which the recording stopped automatically, and 

then the rat was returned to its cage. Later, both spatiotemporal and ethological analyses were 

conducted using the recorded videos and ANY-maze.  

Elevated plus maze analysis. All parameters were analyzed from the video recordings by an in-

vestigator blinded to the animal treatment paradigms. For the spatiotemporal analysis, the maze 

was divided into three zones, specified using the ANY-maze software: the open arms, the closed 

arms, and the intersection. In order to be considered in the open or closed arms, at least 80% of 

the rat’s body surface area had to be inside that zone (consistent with the “four-paw rule”). The 

rat was considered to be in the intersection if it was not considered to be in either the open or 

closed arms. The amount of time spent in any given zone was divided by the total test duration to 

calculate the percentage of time spent in the zone. The total distance travelled and average speed 
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were also measured to consider differences in overall locomotor activity. For the ethological be-

havioral analyses, scoring of head dips, stretched attend postures, and rearing behaviors were 

manually recorded by a blinded trained observer. A head dip was defined as the rat extending its 

head over the edge of the maze and down toward the floor. A stretched attend posture was de-

fined as the rat extending forward with its front paws, then retracting back to its original position. 

A rearing was defined as the rat sitting back on its hind paws and elevating its front paws, mov-

ing vertically.  

Tissue Processing 

Animals were euthanized humanely by rapid decapitation after anesthesia with inhaled isoflurane. 

Trunk blood was immediately collected in heparinized tubes on ice, centrifuged at 3000 rpm at 

4°C for 10 min., then the plasma was stored at -20°C. Brains were rapidly dissected and flash 

frozen in isopentane chilled with dry ice, then stored at -80°C. Plasma CORT levels were meas-

ured using a Corticosterone ELISA Kit (Enzo Life Sciences #ADI-900-097), both according to 

manufacturer instructions. Microdissection of the paraventricular nucleus of the hypothalamus 

(PVN) and ventral hippocampus (V.Hipp) was performed as previously described (Prins et al., 

2014; Przybycien-Szymanska, Mott, Paul, et al., 2011). Briefly, brains were sectioned at 200µm 

using a Leica CM3050 S cryostat, then the specified brain regions were microdissected using a 

Palkovit’s brain punch tool (Stoelting Co.) and confirmed using The Rat Brain in Stereotaxic 

Coordinates, Fourth Edition Atlas (G. Paxinos and C. Watson). For the PVN, we microdissected 

0.75 mm area on each side of the third ventricle between 0.8 mm and 2.12 mm posterior to 

Bregma, 8 mm below the top of the brain. For the V.Hipp, we microdissected between 3 mm and 

6 mm lateral to the midline, between 4.16 mm and 6.05 mm posterior to Bregma, 3 mm below 

the top of the brain and 2 mm above the bottom of the brain. Brain tissue punches were stored at 
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-80°C; later, genomic DNA, RNA, and protein were isolated using an AllPrep 

DNA/RNA/Protein Mini Kit (Qiagen #80004), according to manufacturer instructions. This kit 

first removes genomic DNA by column centrifugation before the separation of RNA and protein.  

RT-qPCR 

Total RNA (250-350 ng) was reverse transcribed using the First-Strand Synthesis SuperMix for 

RT-qPCR (Invitrogen). cDNA products were treated with RNase H (Promega). PCR was per-

formed in triplicate using iTaq™ Universal SYBR® Green Supermix and the following primers: 

rat AVP forward 5’-GGGCAGGTAGTTCTCCTCCT-3’, rat AVP reverse 5’- CAC-

CTCTGCCTGCTACTTCC-3’; rat cFos forward 5’-AGCATGGGCTCCCCTGTCA-3’, rat cFos 

reverse 5’-GAGACCAGAGTGGGCTGCA-3’; rat CRF forward 5’-

GAGAAAGGGGAAAGGCAAAG-3’, rat CRF reverse 5’-ATCAGAATCGGCTGAGGTTG-3’; 

rat GR forward 5’-CACCCATGATCCTGTCAGTG-3’, rat GR reverse 5’-

AAAGCCTCCCTCTGCTAACC-3’; rat HPRT forward 5’-GTTCTTTGCTGACCTGCTGGAT-

3’, rat HPRT reverse 5’-CCAACACTTCGAGAGGTCCTTT-3’. All primer sets were intron-

spanning, with the exception of the GR primer set. RT-negative control reactions were per-

formed to ensure that there was no interfering genomic DNA contamination. All samples were 

normalized to the hypoxanthine guanine phosphoribosyl transferase 1 (HPRT) housekeeping 

gene, as it is not altered by EtOH treatment (Przybycien-Szymanska et al., 2010), and transcript 

fold changes were calculated using the ΔΔCt method (Livak & Schmittgen, 2001). 

Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 7. The EPM pre-test data (baseline, 

trial one) were analyzed using unpaired t-tests (n=20 per group). The biochemical (ELISA, qRT-

PCR) and EPM post-test (after acute stressor, trial 2) data were analyzed by two-way ANOVA, 
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with Sidak’s multiple comparisons post-hoc tests (n=10 per group, except PVN cFos mRNA, 

where n=7-9 per group due to sample exhaustion). In all cases, p<0.05 was considered signifi-

cant. 

Chapter IV. 

Animals 

As in Chapter III, male Wistar rats were purchased from Charles River Laboratories (Wilming-

ton, MA) at weaning (post-natal day [PND] 25) and allowed to acclimate for five days after arri-

val. Animals were pair-housed on a 12:12 light/dark cycle with lights on at 7:00h. Food and wa-

ter were available ad libitum.  

Experimental Paradigm  

Repeated binge alcohol exposure. The repeated binge alcohol exposure paradigm was conducted 

on PND37-44 as described in the methods for Chapter III, with 18 animals per group (36 total).  

Chronic stress paradigms. After pubertal binge alcohol treatments, both groups of animals were 

left undisturbed for two weeks (see Fig. 8). At the end of this two week period, the animals were 

again handled 5 min. once per day for seven days, as described above. Then, animals within each 

group were randomly assigned to either a) a repeated restraint stress group (n=6 per group), b) a 

repeated binge EtOH group (n=6 per group), or c) an unstressed control group (n=6 per group). 

Next, on PND 67 at 09:30h, animals in the repeated restraint stress group were placed in a plastic 

rodent restraint tube (Stoelting Co. #51335) inside a fresh cage for 30 min., then returned to their 

home cage; this was repeated daily through PND 74, for a total of eight days. For the animals in 

the repeated binge EtOH group, these animals underwent another three-day EtOH, two-day water, 

three-day EtOH repeated binge alcohol exposure (as described above) from PND 67-74. For the 

animals in the unstressed control group, animals were simply handled for 5 min. per day from 
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PND 67-74.  On PND 75 at ~10:00h (24 hours after the last stressor), all of the rats were tested 

in the EPM, and 5 min. after ending the EPM test, the animals were euthanized. Refer to Figure 8 

for schematic of experimental paradigm. 

Elevated Plus Maze Testing  

Elevated Plus Maze testing was conducted as described in the methods for Chapter III. 

Tissue Processing 

Euthanasia, plasma CORT measurements, and brain microdissection and DNA/RNA/protein iso-

lation were conducted as described in the methods for Chapter III. 

RT-qPCR 

RT-qPCR for HPRT, CRF, AVP, and GR were conducted as described in the methods for Chap-

ter III. 

Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 7. The biochemical (ELISA, qRT-

PCR) and EPM data were analyzed by two-way ANOVA, with Sidak’s multiple comparisons 

post-hoc tests (n=6 per group). In all cases, p<0.05 was considered significant. 

Chapter V. 

In vitro repeated EtOH and DEX treatment 

Rat PVN-derived IVB cells were cultured in DMEM supplemented with 10% FBS (growth me-

dia). Cells were routinely tested for the presence of mycoplasma contamination using the My-

cosensor PCR Assay Kit (Agilent), and discarded if tested positive. 24 hours after plating 10^5 

cells per 10-cm culture dish, the culture media was changed to DMEM+10% charcoal-stripped 

FBS (stripped media). The next day, cells were treated with 100nM dexamethasone, 50mM etha-

nol, both, or vehicle, diluted in stripped media for two hours inside air-tight chambers. On the 
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first two treatment days, the media was then replaced with fresh stripped media. On the third day, 

the cells were immediately lysed after treatment. 

Cytoplasmic and nuclear protein fractionation 

Cytoplasmic and nuclear protein fractionation was conducted using the Thermo Scientific NE-

PER Nuclear and Cytoplasmic Extraction Kit (catalog #78835) according to manufacturer proto-

col. Briefly, after the third day of cell treatment, the culture dishes were washed 3x with cold 

PBS, then cells were scraped in PBS into a 15mL conical tube and centrifuged at 1000g for 3 

min. to pellet the cells. Then, the PBS supernatant was removed, and the pellet was resuspended 

in CER-I buffer with protease and phosphatase inhibitor cocktail (Pierce catalog #88668). After 

incubating 10 min. on ice, CER-II buffer was added, then the samples were vortexed and centri-

fuged to pellet the nuclei (the supernatant was saved as the cytoplasmic protein fraction). Nuclei 

were resuspended in NER buffer with protease and phosphatase inhibitors, vortexed 15 sec. eve-

ry 10 min. four times (40 min. total), then centrifuged (supernatant was saved as nuclear protein 

fraction). Protein concentration was measured by BCA assay (Pierce catalog #23225).  

Western blotting 

25µg total protein from each sample was boiled at 95°C for 5 min. with 4x Laemmli sample 

buffer, resolved on an 8% SDS-PAGE gel for ~one hour at 120V, then transferred to a 0.045µm 

PVDF membrane for one hour at 100V. Total protein staining was conducted using LI-COR 

REVERT Total Protein Stain (catalog #926-11011) according to manufacturer instructions, then 

imaged on a LI-COR Odyssey. After destaining, membranes were blocked for one hour at room 

temperature with Odyssey blocking buffer (LI-COR catalog #927-50000) diluted 1:1 with 1X 

TBS, then incubated in primary antibody solution diluted in Odyssey blocking buffer 1:1 with 

1X TBST (0.1% Tween) overnight at 4°C. The GR primary antibody used was IA-1 (a generous 
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gift from Miles Pufall), diluted 1:2500. The next day, membranes were washed 2x10 min., then 

incubated with the appropriate secondary antibody diluted in Odyssey blocking buffer 1:1 with 

1X TBST (0.1% Tween) for one hour at room temperature. The 680RD-conjugated anti-rabbit 

secondary antibody was diluted 1:10,000. Membranes were washed 2x10 min. before imaging on 

a LI-COR Odyssey (laser intensity for both 700 and 800 channels was 5.0). Densitometry was 

performed using LI-COR Image Studio Lite version 5.2, and protein bands of interest were nor-

malized to total protein staining. To calculate the proportion of nuclear GR, the normalized GR 

intensity in the nuclear fraction was divided by the sum of the normalized GR intensity in the 

cytoplasmic and nuclear fractions, using the formula: 

  

Animals 

As in Chapters III and IV, male Wistar rats were purchased from Charles River Laboratories 

(Wilmington, MA) at weaning (post-natal day [PND] 25) and allowed to acclimate for five days 

after arrival. Animals were pair-housed on a 12:12 light/dark cycle with lights on at 7:00h. Food 

and water were available ad libitum.  

Experimental Paradigm  

Repeated binge alcohol exposure. The repeated binge alcohol exposure paradigm was conducted 

on PND37-44 as described in the methods for Chapter III, with 16 animals per group (32 total). 

Animals were euthanized one hour after the last dose of EtOH or water on PND 44. 

Tissue processing 

One hour after the last dose of alcohol or water, animals were euthanized and tissue was collect-

ed and microdissected as described in the methods for Chapter III. Tissue punches were sus-
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pended in 400µL cold co-IP buffer (0.1% CHAPS, 40 mM HEPES, pH 7.5, 120 mM NaCl, 1mM 

EDTA, 10mM Na Pyrophosphate and 10mM β-glycerophosphate; supplemented with protease 

and phosphatase inhibitor cocktail), homogenized using a hand-held homogenizer, vortexed 

briefly, frozen and thawed three times, then centrifuged at 12,000 rpm for 20 min. at 4°C (super-

natant was collected). Protein concentration was measured by BCA assay (Pierce catalog 

#23225). 

Co-immunoprecipitation 

600µg of total protein per sample was incubated with 2µg of antibody overnight at 4°C with end-

over-end mixing. The GR antibody used was IA-1 (from Miles Pufall), or the control antibody 

was normal rabbit IgG (Millipore). The next day, 50ul of washed bead slurry (Millipore PurePro-

teome Protein A/G Mix Magnetic Beads, catalog #LSKMAGAG10) was added to each anti-

body:antigen complex and incubated 1 hour at room temperature with end-over-end mixing. The 

beads were washed three times with co-IP buffer, then the proteins were eluted with 2X Laemmli 

sample buffer by heating at 70°C for 10 min. After transferring samples to a new tube, samples 

were boiled at 95°C for 5 min., then run alongside 10% input samples on an 8% SDS-PAGE gel. 

Proteins were then transferred to a 0.045µm PVDF membrane for 1 hour at 100V. Total protein 

staining was conducted using LI-COR REVERT Total Protein Stain (catalog #926-11011) ac-

cording to manufacturer instructions, then imaged on a LI-COR Odyssey. After destaining, 

membranes were blocked for 1 hour at room temperature with Odyssey blocking buffer (LI-COR 

catalog #927-50000) diluted 1:1 with 1X TBS, then incubated in primary antibody solution dilut-

ed in Odyssey blocking buffer 1:1 with 1X TBST (0.1% Tween) overnight at 4°C. The GR pri-

mary antibody used was IA-1 (a generous gift from Miles Pufall), diluted 1:2500, and the HSP90 

antibody was from Abcam (catalog #ab1429), diluted 1:400. The next day, membranes were 
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washed 2x10 min. with TBST, then incubated with the appropriate secondary antibodies diluted 

in Odyssey blocking buffer 1:1 with 1X TBST (0.1% Tween) for 1 hour at room temperature. 

The 680RD-conjugated anti-rabbit secondary antibody and 800CW-conjugated anti-mouse sec-

ondary antibody were both diluted 1:10,000. Membranes were washed 2x10 min. before imaging 

on a LI-COR Odyssey (laser intensity for both 700 and 800 channels was 5.0). Densitometry was 

performed using LI-COR Image Studio Lite version 5.2, and protein bands of interest were nor-

malized to total protein staining. 

RT-qPCR 

Total RNA isolation was performed on sonicated tissue samples using Trizol reagent (Invitrogen 

Inc., Carlsbad, CA) according to the manufacturer’s directions. Reverse transcription was per-

formed using SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen catalog 

#18080-51). PCR was performed in triplicate using FastStart Universal SYBR Green Mastermix 

(Roche catalog #04913914001) and the following primers: rat FKBP5 forward 5’-	CGG-

GATGTGGTGTTCGTCAT-3’, rat FKBP5 reverse 5’-TTCTTTGGCCTTTTCGAAGCTC-3’, 

rat HPRT forward 5’-GTTCTTTGCTGACCTGCTGGAT-3’, rat HPRT reverse 5’-

CCAACACTTCGAGAGGTCCTTT-3’, rat PER1 forward 5’-GTGCATCTCAGCGGAGTTCT-

3’, rat PER1 reverse 5’-CACTGGTAGACGGGTTGTCC-3’. All primer sets were intron-

spanning, with the exception of the GR primer set. RT-negative control reactions were per-

formed to ensure that there was no interfering genomic DNA contamination. All samples were 

normalized to the hypoxanthine guanine phosphoribosyl transferase 1 (HPRT) housekeeping 

gene, as it is not altered by EtOH treatment (Przybycien-Szymanska et al., 2010), and transcript 

fold changes were calculated using the ΔΔCt method (Livak & Schmittgen, 2001). 
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Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 7. The co-immunoprecipitation data 

were analyzed using unpaired t-tests (n=7 per group for hypothalamus, n=12 and 16 for dorsal 

hippocampus control and EtOH, respectively). The in vitro GR nuclear localization data were 

analyzed by two-way ANOVA, with Sidak’s multiple comparisons post-hoc tests (n=6 per 

group). In all cases, p<0.05 was considered significant. 

Chapter VI. 

Constructs and cloning 

 The pEGFP-hGR (#47504) and pcDNA3.1-mycBioID (#35700) constructs were pur-

chased from Addgene (Cambridge, MA). The pcDNA3.1-mycBioID-hGR construct was created 

using Gibson Assembly. Briefly, the NR3C1 gene (hGR) was amplified by PCR with Q5 High-

Fidelity DNA polymerase (NEB) from the pEGFP-hGR construct with the primers 5’-

ggagaaatctccctgagaagcgcagagaagatggactccaaagaatcattaactcct-3’ and 5’-

caacagatggctggcaactagaaggcacagtcacttttgatgaaacagaagttttttgatatttcc-3’. The pcDNA3.1-

mycBioID construct was linearized and amplified by PCR with Q5 DNA polymerase and the 

primers 5’-accaggagttaatgattctttggagtccatcttctctgcgcttctcaggg-3’ and 5’-

atcaaaaaacttctgtttcatcaaaagtgactgtgccttctagttgccag-3’. After ensuring that the PCR products were 

a single band (by running a sample on a 1% agarose gel), the PCR products were purified with 

the Wizard SV Gel and PCR Clean-Up System (Promega), then combined in a 7:1 insert : vector 

molar ratio (in 10µL ddH2O) mixed with 10µL 2X Gibson Assembly Master Mix (NEB), and 

incubated at 50⁰C for 1 hour. 2µL of the Gibson Assembly product was directly used for trans-

formation into competent E. coli (NEB 5α). Colonies were then subject to DNA mini-prep and 
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the resulting construct DNA was sequenced with the primer 5’-ggctccttacctgagcagat-3’ to ensure 

correct product sequence.  

Cell culture 

HEK293T cells were cultured in DMEM supplemented with 10% FBS (HEK growth media). 

SK-N-SH cells were cultured in MEM+Earles salts supplemented with 1% L-glutamine, 1% 

non-essential amino acids, and 10% FBS (SK-N-SH growth media). Both cell lines are commer-

cially available and have been widely characterized. Cells were routinely tested for the presence 

of mycoplasma contamination using the Mycosensor PCR Assay Kit (Agilent), and discarded if 

tested positive. Cells were plated at 10^5 cells per 10-cm culture dish for small scale experiments 

(Western blotting) or 2x10^5 cells per 150-mm culture dish for large scale experiments (LC-

MS/MS). When the cells reached ~50% confluence, the culture media was changed to “stripped 

media,” containing all the components of the appropriate growth media, with the replacement of 

FBS with charcoal-stripped FBS. The next day, cells were treated with 100nM dexamethasone or 

vehicle (0.001% EtOH) in stripped media supplemented with 50µM biotin. After 24 hours of 

treatment, cells were lysed with RIPA buffer (for pull-down, Western blotting, and/or LC-

MS/MS), or subject to cytoplasmic and nuclear protein fractionation as described in the methods 

for Chapter V (only for Western blotting).  

Streptavidin bead pull-down 

Pull-downs were performed generally as described in Le Sage, et al. (2016). RIPA lysates were 

incubated with streptavidin-coated magnetic beads (Dynabeads MyOne Streptavidin C1, Invitro-

gen) at a ratio of 500µg total protein : 100 ul bead slurry overnight at 4°C with end-over-end 

mixing. The following day, the supernatants were removed, then the beads were washed for 8 

min. with buffer 1 (2% SDS in ddH2O), then 8 min. with buffer 2 (50mM HEPES pH 7.5, 
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500mM NaCl, 1mM EDTA, 0.1% deoxycholic acid, 1% Triton X-100), then 8 min. with buffer 3 

(10mM Tris HCl pH 7.4, 250mM LiCl, 1mM EDTA, 0.1% deoxycholic acid, 1% NP-40). Beads 

were briefly washed with 50mM Tris pH 7.4 to remove detergents, before elution of biotinylated 

proteins with 1X Laemmli sample buffer with boiling at 95°C for 5 min. Supernatants were then 

resolved by SDS-PAGE, then either used for further Western blotting (as described in Chapter 

V), or SDS-PAGE gels were cut for further LC-MS/MS sample prep. For LC-MS/MS, technical 

duplicates of each sample were run side-by-side, then pooled prior to SDS-PAGE. For Western 

blotting, primary antibodies used were mouse anti-myc (Proteintech catalog #66004-1-Ig, diluted 

1:10,000), mouse anti-actin (Proteintech catalog #66009-1-Ig, diluted 1:5000), IA-1 rabbit anti-

GR (generous gift from Miles Pufall, diluted 1:2500), or rabbit anti-HDAC-1 (Abcam catalog 

#ab19845, diluted 1:5000).  

Preparation of samples for mass spectrometry-based proteomics analysis 

The gel bands of interest were excised by new razor blades with clean surfaces and fur-

ther reduced by cutting the size of gel pieces to 1 – 2mm in each dimension to optimize peptide 

recovery and minimize peptide loss. After excision, the proteins present in gel pieces were 

washed twice with HPLC-grade water (Optima LCMS, Fisher Chemical, USA) and 1:1 v/v of 

0.1M NH4HCO3/H2O for 15 min. each with agitation. The washing solution was then removed 

completely and enough HPLC-grade acetonitrile (ACN, Optima LCMS, Fisher Scientific, USA) 

was added to cover the gel pieces. All the solvent volumes used in the washing steps were rough-

ly equal to twice the gel volume. After the gel pieces shrunk and stuck together, the ACN was 

removed and the gel pieces were rehydrated in 0.1M NH4HCO3 for 10 min. An equal volume of 

ACN was then added to finally get 1:1 v/v of 0.1M NH4HCO3 /ACN.  
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After incubation, removing all liquid, and drying down the gel pieces in a vacuum centri-

fuge, proteins were reduced with 10mM dithiothreitol and alkylated with 55mM iodoacetamide 

in 0.1M NH4HCO3 . After reduction and alkylation, gel pieces were washed as described above. 

Following tryptic digestion (Pierce Trypsin Protease, MS grade), with a ratio of 1:20 trypsin : 

analytes, for 24 hours at 37�C, the peptides were recovered and extracted from the gel pieces by 

addition of a 10µL of 25mM  0.1 M NH4HCO3 and 5% formic acid and ACN (5µL of each). 

Pooling and drying down all the extracts, the tryptic peptides were dried and re-dissolved in 

10µL of 95% ACN with 5% formic acid and let it sit for 10 min. in preparation for the LC-

MS/MS analysis. 

Identification of proteins with LC-MS/MS 

Tryptic digests of proteins from the gel bands were first purified and enriched by a pre-

column (C18 PepMap 100, 5µm, 100 Å, 300µm i.d. x 5mm, Thermo Scientific, USA) at the flow 

rate 30µL/min. for 5 min. and then separated by a analytical reversed-phase column (C18 Ac-

claim PepMap 100, 75µm x 15cm, nanoViper, Thermo Scientific, USA) at the flow rate 

200nL/min. for 66 min. using a linear gradient from 98% solvent A (98% water, 2% ACN, 1% 

formic acid) and 2% solvent B (2% water, 98% ACN, 1% formic acid) to 35% solvent B over 50 

min. The eluted peptides were introduced directly by electrospray into the LTQ Orbitrap mass 

spectrometer (Thermo Orbitrap Elite, Thermo Scientific, USA).  

Data dependent acquisition (DDA) was carried out for LC-MS/MS of digested samples. 

Each survey scan acquired in the Orbitrap at the mass range 200 – 1600 Da and FT resolution 

120000 fwhm was followed by 10 MS/MS scans of the most intense precursor ions in the linear 

ion trap with enabled dynamic exclusion for 20 sec. The normalized collusion energy by colli-

sion induced dissociation (CID) was set to 35% and one microscan was acquired for each spec-
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trum. The charge state screening was employed to select for ions with at least two charges and 

rejecting ions with undetermined charge state. CID was triggered when the precursor exceeded 

100 ion counts. The ion accumulation time was set to 300 ms (MS) for precursor scan and 50 ms 

(MS/MS) for product scan. 

Data processing 

The resulting LC-MS/MS data was analyzed by PEAKS, version 8.0 (Bioinformatics So-

lutions Inc.) with the homo sapiens database downloaded from the Uniprot website 

(http://www.uniprot.org/). In data refinement, charge status was set as 1 – 4 and filter quality was 

set as more than 65%. For de novo section, error tolerances, 15 ppm for parent mass and 0.5 Da 

for fragment mass were set to limit false discovery rate (FDR). With chemical modifications, 

carbamidomethyl cysteine residues were selected as a fixed modification and oxidization of me-

thionine was set as a variable modification. Three max missed cleavages were allowed. 

The statistical and probabilistic models using generated ion probabilities of peptide se-

quences sometimes increase the error of the match number of spectra that are present in the spec-

tral library, so in order to enhance the accuracy of peptide identification, 1% was set as FDR val-

ue for peptide match and at least two unique peptides were identified for a protein.  

 Search results were further refined by excluding proteins which were inappropriately 

sized for the fraction in which they were identified. For a hit to be considered associated with 

either or both of the BioID-GR samples, it had to be unique to at least one of the replicates of 

that condition, or if it was identified in all three biological replicates of a given condition, it was 

permitted to have been identified in one of the control samples. 
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Figure 19: Dot plots depicting anxiety-like behavior under resting conditions. The 

percent of time in the closed arms (A), intersection (B), and open arms (C) of the elevated 

plus maze was calculated by dividing the amount of time spent in the given zone by the total 

duration of the test (300s). The number of stretched attend postures (D), head dips (E), and 

rearing behaviors (F), were scored by a blinded observer. The total distance travelled (G), and 

the average speed (H) were used as indicators of overall motor activity. Data are expressed as 

mean ± SEM, and were analyzed by two-way ANOVA with Sidak’s multiple comparisons 

post-hoc tests, in which p<0.05 was considered significant (n=20 per group). 
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Figure 20: Dot plots depicting anxiety-like behavior following acute restraint stress. The 

percent of time in the closed arms (A), open arms (B), and intersection (C) of the elevated 

plus maze was calculated by dividing the amount of time spent in the given zone by the total 

duration of the test (300s). The number of stretched attend postures (D), head dips (E), and 

rearing behaviors (F), were scored by a blinded observer. The total distance travelled (G), and 

the average speed (H) were used as indicators of overall motor activity. Data are expressed as 

mean ± SEM, and were analyzed by two-way ANOVA with Sidak’s multiple comparisons 

post-hoc tests, in which p<0.05 was considered significant (n=10 per group). There was a 

significant main effect of gavage on time spent in the intersection of the arms (C), and 

significant main effects of gavage and restraint on stretched attend postures (D). Asterisk (*) 

denotes significant pairwise comparisons between indicated groups. 
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Figure 21: Dot plots depicting regional levels of CRF, AVP, and cFos transcripts. mRNA 

levels of corticotropin releasing factor (A and C), cFos (B and D), and arginine vasopressin 

(E), in the ventral hippocampus (A and B) and paraventricular nucleus of the hypothalamus 

(C-E), measured by RT-qPCR relative to the unrestrained H2O group. Data are expressed as 

mean ± SEM, and were analyzed by two-way ANOVA with Sidak’s multiple comparisons 

post-hoc tests, in which p<0.05 was considered significant (n=10 per group). There were 

significant main effects of restraint on V.hipp cFos (B), PVN CRF (C), and PVN cFos (D) 

levels. Asterisk (*) denotes significant main effect of restraint in panel B and significant 

pairwise comparisons between indicated groups in panels C and D. 



 

 

135 

 

 

 

 

 

Figure 22: Dot plots depicting plasma CORT and brain region expression of GR. 

Circulating plasma levels of corticosterone (A), measured by ELISA. mRNA levels of 

glucocorticoid receptor in the ventral hippocampus (B), and paraventricular nucleus of the 

hypothalamus (C), measured by RT-qPCR relative to the unrestrained H2O group. Data are 

expressed as mean ± SEM, and were analyzed by two-way ANOVA with Sidak’s multiple 

comparisons post-hoc tests, in which p<0.05 was considered significant (n=10 per group). 

There were significant main effects of gavage and restraint on plasma CORT (A), and a 

significant main effect of restraint on V. hipp GR mRNA (B). Asterisk (*) denotes significant 

pairwise comparisons between indicated groups in panel A and significant main effect of 

restraint in panel B. 
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Figure 23: Dot plots depicting anxiety-like behavior following adolescent binge alcohol 

and either adult binge alcohol or adult repeated restraint stress. The percent of time in 

the closed arms (A), intersection (B), and open arms (C) of the elevated plus maze was 

calculated by dividing the amount of time spent in the given zone by the total duration of the 

test (300s). The number of stretched attend postures (D), head dips (E), and rearing behaviors 

(F), were scored by a blinded observer. The total distance travelled (G), and the average 

speed (H) were used as indicators of overall motor activity. Data are expressed as mean ± 

SEM, and were analyzed by two-way ANOVA in which p<0.05 was considered significant 

(n=6 per group).  
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Figure 24: Dot plots depicting regional levels of CRF, AVP, and GR transcripts. mRNA 

levels of corticotropin releasing factor (A and B), arginine vasopressin (C), and 

glucocorticoid receptor (D and E), in the paraventricular nucleus of the hypothalamus 

(A,C,E) and ventral hippocampus (B and D), measured by RT-qPCR relative to the 

unrestrained H2O group. Circulating plasma levels of corticosterone (F) were measured by 

ELISA. Data are expressed as mean ± SEM, and were analyzed by two-way ANOVA with 

Sidak’s multiple comparisons post-hoc tests, in which p<0.05 was considered significant 

(n=6 per group). There was a significant main effect of adolescent alcohol on PVN CRF (A).  
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Figure 25: Dot plot depicting effects of repeated ETOH or DEX on GR nuclear 

localization. After three days of denoted treatment, IVB cells were lysed and nuclear and 

cytoplasmic protein fractions were immunoblotted for GR (representative blot shown in (A)). 

The proportion of nuclear GR was calculated by dividing the relative (to total protein) GR 

signal protein in the nuclear fraction by the relative GR signal in both cytoplasmic and 

nuclear fractions for each sample. The summary data are quantified in (B). Data are 

expressed as mean ± SEM (n=6), and were analyzed by two-way ANOVA, in which p<0.05 

was considered significant. There was a significant main effect of DEX treatment on the 

fraction of nuclear GR.  
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Figure 26: Dot plots depicting GR-HSP90 interaction in the dorsal hippocampus after 

adolescent binge alcohol exposure. D.hipp lysates were subject to immunoprecipitation with 

a GR-specific antibody, then immunoblotted for HSP90 and GR (representative blot shown in 

(A)). The relative HSP90 signal in the i.p. lanes was calculated and quantified in (B). The 

relative GR signal in the input lanes was calculated and quantified in (C). The relative HSP90 

signal was calculated and quantified in (D). Data are expressed as mean ± SEM (n=12-16), 

and were analyzed by t-test. 
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Figure 27: Dot plots depicting GR-HSP90 interaction in the hypothalamus after 

adolescent binge alcohol exposure. Hypo lysates were subject to immunoprecipitation with 

a GR-specific antibody, then immunoblotted for HSP90 and GR (representative blot shown in 

(A)). The relative HSP90 signal in the i.p. lanes was calculated and quantified in (B). The 

relative GR signal in the input lanes was calculated and quantified in (C). The relative HSP90 

signal was calculated and quantified in (D). Data are expressed as mean ± SEM (n=7), and 

were analyzed by t-test. 



 

 

141 

 

 

 

 

Figure 28: Dot plots depicting hypothalamic levels of PER1 and FKBP5. mRNA levels of 

PER1 (A), and FKBP5 (B), in the hypothalamus was measured by RT-qPCR relative to the 

control group. Data are expressed as mean ± SEM (n=7), and were analyzed by t-test where 

p<0.05 was considered significant (*). 
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