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CHAPTER I 

INTRODUCTION 

The dental carious lesion is a decalcification of the 

hard tooth structure by the acidic metabolic end products of 

oral microorganisms. The primary etiological agent of this 

disease is the bacterium Streptococcus mutans which has the 

ability to produce an extracellular polysaccharide capsule, 

dextran, which mediates the adherence of this organism to the 

tooth surface. This capsule dextran functions as the matrix 

for plaque formation by the aggregation of other organisms and 

food debris. Streptococcus mutans produces dextran by a con­

stitutive extracellular enzyme system collectively referred to 

as dextransucrase or glucosyltransferase (E.C. 2.4.1.5). 

This enzyme system produces both water-soluble a (1,6) linked 

and water-insoluble a (1,3) linked dextrans by utilizing the 

glucosyl moiety of sucrose and attaching it to the non-reducing 

terminus of an acceptor sucrose or small dextran (primer) mole­

cule. This organism also produces another constitutive enzyme, 

dextranase, which has the ability to hydrolyze a (1,6) linkages 

in a dextran molecule larger than 10 glucose units. The pur­

pose of the present study is to elaborate on the characteristics 

of the glucosyltransferase enzyme system and determine the role 
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of dextranase in the synthesis of both water-soluble and water­

insoluble dextran molecules. 
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CHAPTER II 

REVIEH OF THE LITERATURE 

The primary cause of tooth decay is the accumulation and 

subsequent metabolic activity of an amorphous mass of oral 

bacteria called "plaque", on the surfaces of teeth. Clark 13 

first demonstrated that the etiological agent of dental caries 

was the morphologically variable bacterium, Streptococcus 

mutans. This species has been shown to be both serologically 5 

and genetically 1 * heterogeneous, consisting of five biotypes 

designated a-e. Other major streptococcal species consistently 

isolated from the oral cavity include; S. sanguis found pri­

marily in plaque, S. salivarius located on the tongue and 

S. mitis an inhabitant of the oral mucosa. 7 Guggenheim* 3 iso­

lated strains of S. mutans and S. sanguis from potentially 

cariogenic plaque. Using gnotobiotic hamsters and rats, he 

demonstrated that S. mutans induced a carious lesion but 

S. sanguis, although forming plaque, showed much less caries 

activity. These S. mutans strains lvere classified as HS and 

FA strains and were identical morphologically to the organism 

described by Clark. DeStoppelaar 17
' 60 also demonstrated that 

there was a direct relationship between the occurrence of 

"caries inducing streptococci" from a human carious lesion and 
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an increase in caries incidence in hamsters. Fitzgerald 30 found 

that gnotobiotic animals monoinfected with S. mutans produced 

plaque with a carious lesion while S. sanguis and S. salivarius 

formed plaque but did not produce a carious lesion. Other 

studies have also corroborated that S. mutans is the "caries 

inducing organism". 26 • 18 • 27 

It was observed clinically that plaque accumulation occurs 

more readily under specific dietery environmental conditions. 89 

An increase in plaque formation was demonstrated when animals 

were placed on a high sucrose diet. 6 This plaque was found to 

contain a sticky dextran-like polymer. 38 Gibbons 39 using 

S. mutans monoinfected rats, showed that this organism was pri­

marily localized in the occlusal fissures of molar teeth, when 

placed on a high sucrose diet. Mutants of cariogenic S. mutans 

which do not produce this sticky or branched polysaccharide in 

plaque 19 had lost the ability to adhere to glass culture flasks 56 

and were shown to have a low caries score in hamsters and rats. 

However, cellular agglutination with cariogenic S. mutans 6715 

was observed in the presence of either linear or branched high 

molecular weight dextran. 40 

Plaque contains a variety of polysaccharides, which can 

be designated into three types, intracellular,cell structural, 

and extracellular. 96 Formation of plaque depends on the pro­

duction and presence of the extracellular polysaccharide, dextran. 
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Levans produced by cariogenic streptococci, however, are involved 

as metabolites, while dextrans demonstrated a matrix function. 73 

Polysaccharide of a dextran nature was sho~vn to be produced en-

zymatically from sucrose by Leuconostoc, 50 and Streptococcus 

b . 28 h"l s 1" . d d 1 95 c . . ovls, w l e . sa lVarlus pro uce evans. arlogenlc strep-

tococci produced a glucose containing polysaccharide83 which 

contained 80% glucose and 18% fructose. 16 Gold~ 2 found that 

after sucrose rinses for three days, human plaque increased in 

total hexose to 1% dextran and 3% levan. Sidebotham92 postulated 

three roles for these polysaccharides in the etiology of dental 

caries: i) a stable matrix, ii) a diffusion restrictive barrier 

enabling low pH to be maintained, iii) a source of fermentable 

carbohydrate. This environment selects for other aciduric organ-

isms such as species of Lactobacilli, an organism long related 

to the dental caries experience.~ 1 

Hotz 55 found two types of glucose polysaccharides in pooled 

plaque, water soluble and water insoluble. Plaque dextran, pro-

duced by cariogenic S. mutans was found to contain a (1,6) linka-

ges in the soluble fraction and both a (1,6) and a (1,3) in the 

insoluble fraction. 63 Levans contained primarily S (1,2) linkages. 3 

Freedman29 studied mutants of S. mutans 6715 and found that those 

which lost the ability to produce insoluble polysaccharide were 

unable to form adhesive deposits on wires. However, these organ-

isms did exhibit the ability to produce water soluble glucans 

and cellular agglutination was not affected. Nalbundian 70 studied 
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the structure of the cellular capsule of cariogenic S. mutans 6715 

with the electron microscope. He demonstrated that adherence did 

not occur in the absence of a fibrillar glucan normally loosely 

associated with the cell, but aggregation was not affected when 

a close, cell associated fibrillar glucan was present. 

Streptococcus mutans synthesizes a constitutive, extracell­

ular, dextransucrase which has the ability to hydrolyze sucrose 

and form the glucose polymer dextran. This enzyme is a member 

of the class of transglycosylases, designated as (1,6)-a-D glucose: 

D fructose-2-D glucosyltransferase (E.C. 2.4.1.5.). 82 Initial 

work with this enzyme dealt primarily with the preparation of 

dextrans for use as a blood plasma substitute. 58 Dextransucrase 

was first sho~vn to exist in the supernatant fluids from species 

of Leuconostoc. 90 • 88 • 51 Kobayaski 57 showed a series of isoenzymes 

both extracellular and intracellular from L. mensteroides after 

separation on DEAE cellulose. Two enzyme activities were isolated 

from Betacoccus arabinosaccous by ethanol precipitation, 1 while 

only one activity could be found in an ammonium sulfate prepara­

tion from S. bovis. 2 Carlson 8 using hydroxylapatite chromatog­

raphy and isoelectric focusing, found only one peak of enzyme 

activity from S. sanguis. This preparation was responsible for 

an insoluble glucan with fifty percent a (1,6) linkages. The 

dextran produced by dextransucrase has been noted to differ in 

its structure depending on the source of the enzyme. 52 It was 
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also demonstrated that dextransucrase produced by S. mutans ex­

isted in multiple forms. 79 Guggenheim~ 6 found seven glucosyl­

transferase activities from an HS strain of S. mutans. After 

paper electrophoresis, Cybulska 15 demonstrated five to seven 

protein fractions with only three peaks having dextransucrase 

activity. It was found later by Chludzinski 10 that only two 

distinctly active enzymes existed after gel electrophoresis. 

These results were verified by Fukii 33 and Mukasa 68 who showed 

that one enzyme fraction formed insoluble glucan and produced 

adherence while the other enzyme fraction formed mainly water 

soluble glucan and no adherence. Characterization of two dex­

tran forming activities from S. mutans GS-5 showed separate 

water insoluble and soluble dextran forming dextransucrases 

after hydroxylapatite chromatography and gel filtration. 62 

S. mutans FA-1 also was shown to produce two dextransucrase ac­

tivities by cellulose and gel filtration. 76 A cell associated 

dextransucrase activity from S. mutans GS-5 was demonstrated 

to exist in both forms, 61 an intracellular and a cell-bound form 

which was distinct from the extracellular enzyme. 

Plaque formation has been shown to require the synthesis 

of water insoluble polymer by cell-bound enzymes and the parti­

cipation of a binding site on the cell surface. 66 This binding 

site was not protei~, 72 but of a dextran nature that binds en­

zyme allowing cellular adherence to glass. 67 McCabe 65 postula­

ted three steps in dextran formation: i) enzyme is reversibly 
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bound to dextran, ii) enzyme is irreversibly bound by physical 

entrapment, iii) enzyme is making insoluble dextran until inac-

tivated. Germaine 3 ~ demonstrated that the presence of endogenous 

dextran increased the activity of dextransucrase allowing rapid 

product-dextran formation to occur, thus showing dextransucrase 

to be "primer-dependent". The mechanism of synthesis of dextran 

was once postulated to be the addition of glucose units to the 

reducing end of the acceptor chain. 75 Now however, synthesis 

is thought to be the addition of glucose units to the non-re-

clueing terminus of primer, acceptor dextran and more than one 

enzyme molecule can bind simultaneously to the high molecular 

weight dextran. 36 ' 2 ~' 11 

Since the plaque matrix consists primarily of dextran, 

dextranase enzymes were examined as a possible therapeutic agent 

in plaque removal and prevention. Dextranase has been widely 

found in nature having been isolated from plants, 5 ~ soil or-

• 7 ~ • • • 1 b . 53 ld 9 1 d gan1sms, gram negat1ve 1ntest1na acter1a, mo s, an 

in the genus Bacteroides. 81 These enzymes consist of a (1,6) 

glucan-6-glucanohydrolases and a (1,3) glucan-3-glucanohydrolases 

which hydrolyze a (1,6) and a (1,3) linkages respectively in 

the dextran molecule. Dextranases can be further classified 

into two types, according to the portion of the dextran mole-

cule that they hydrolyze. The endo-type acts on the interchain 

linkages while the exo-type acts on the end residues of the mole-

cule. 22 



It was originally shown that hamsters given mold dextranase 

in drinking water showed a decrease in plaque formation. 49 • 31 

Rats however, showed either a decrease45 or no effect 59 in plaque 

accumulation when given dextranase while on a high sucrose diet. 

Fitzgerald 32 also showed a decrease in hamster and rat plaque 

but human plaque was not affected when tested with three dif­

ferent dextranase preparations from broth cultures of Penicil­

lium funuculosum. Penicillium dextranase was again shown to 

be effective in reducing plaque in S. mutans monoinfected rats. 

However, when normal oral flora was present, no decrease was 

observed in plaque formation. 47 Guggenheirn48 demonstrated that 

insoluble dextran polymerized in vitro by dextransucrase was 

inhibited by a fungal dextranase. Spicaria violaceae dextranase 

was shown to be effective in removing dental plaque in humans 

when administered as a rinse. 69 The variability in the hydrol­

ysis of plaque dextran is due to a variable proportion of a (1,3) 

linkages to a (1,6) linkages. It was concluded that the more 

a (1,3) linkages present in the native dextran molecule, the 

less susceptible these dextrans are to hydrolysis by mold dex­

tranases.4•9•71 However, it was found that a dextranase prepa­

ration from Cludosporium resinae contained three enzymes capable 

of degrading dextrans. 20 One of these enzymes, an a (1,3) glu­

canase hydrolyzed an insoluble glucan produced by cariogenic 

S. mutans OMZ-176. 21 
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Plaque organisms were investigated in order to determine 

if they produced extracellular dextranase. 85 Among those studied 

thirteen defined S. mutans strains were found to produce detect­

able amounts of enzyme activity. 86 Guggenheim44 isolated an 

endo a (1,6) glucan-6-glucanohydrolase activity from cariogenic 

S. mutans OMZ-176 by hydroxylapatite, BioGel, and DEAE cellulose 

chromatography. Dextranase preparations from oral strains of 

Actinomyces and Bacteroides were equally effective in blocking 

polymer production and adherence of S. mutans in vitro. 80 Dex­

tranase produced by Actinomyces israellei exhibited an endohy­

drolytic action on a (1,6) linked dextran indicating an antagon­

istic function towards S. mutans colonization. 87 Walker93 de­

monstrated that"dextranase isolated from S. mitis released only 

D-glucose, which indicates an exohydrolytic function. Ebisu25 

showed a predominately a (1,3) linked glucan synthesized by only 

cariogenic S. mutans in the presence of a Spicaria violacceae 

dextransucrase preparation. This glucan did not possess the 

adhesive qualities of the dextran produced in the absence of 

dextranase. It was concluded that S. mutans' dextranase func­

tion was involved in the release of endogenous primer for con­

tinued dextran synthesis. 

10 



CHAPTER III 

MATERIALS AND METHODS 

A. Maintenance of Cultures: 

Streptococcus mutans strain S-19, an ultraviolet mutant 

of S. mutans 6715, which produces elevated levels of glucosyl­

transferase,77 was obtained from Dt. G. R. Germaine, U. of 

Minnesota. This organism was grown overnight in Todd-Hewitt 

broth (BBL, Cockeysville, Md.) at 37°C. Cells were centrifuged 

at 4000 X g at 4°C for 20 minutes, resuspended in 2% sterile 

skim milk media (BBL), and lyophilized. Cultures were routinely 

maintained on Mitis-Salivarius agar plates (Difco, Detroit, 

Mich.), with biweekly transfers. Fresh cultures were obtained 

from the lyophilized stock monthly. All cultures were grown 

under anaerobic conditions (GasPak System, BBL or 80% N, 10% H, 

10% co2), at 37°C. 

B. Growth Media: 

Two media were used to grow cells for enzyme purification. 

The first, TYF media described by Germaine, et al., 3 ~ consisted 

of 3% Trypticase Soy Broth (BBL), 2% glucose, 0.5% yeast extract 

(BBL), 0.1 M potassium phosphate buffer, pH 6.8 and supplemented 

with 0.5 M fructose. The second media, TYG, contained 3% tryp­

ticase (BBL), 0.5% yeast extract (BBL), 2.5% glucose, 1.0 mM 
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Mnso4 , 1.0 rnM HgS04 , 0.1 mM (NH4 ) 2so4 , 3.2 mH cysteine-HCl, and 

0.1 M potassium phosphate buffer, pH 6.8. One liter of cells 

were grown for 18 hours to an optical density of 0.9 at 540 nm. 

The cultures were centrifuged at 10,000 X g at 4°C for 30 min­

utes (Beckman Model J-21, Beckman Instruments, Fullerton, Ca.). 

The resultant supernatant was used as a source of enzyme for 

further purification. 

C. Ammonium Sulfate Precipitation: 

Supernatant proteins from either TYF or TYG media were 

precipitated at 4°C by adding granular ammonium sulfate with 

stirring to 55% saturation. This solution was then allowed to 

stir for an additional 30 minutes and centrifuged at 10,000 X g 

for 30 minutes at 4°C. The supernatant was discarded and pro­

tein pellet was resuspended in 0.01 M potassium phosphate buf­

fer, pH 6.5. This preparation was dialyzed for 24 hours at 

4°C against two, two liter changes of the same buffer. 

D. DEAE Cellulose Chromatography: 

Anion exchange DEAE cellulose (Sigma Chern. Co., St. Louis, 

Mo.) was washed, equilibrated with 0.01 H potassium phosphate 

buffer pH 6.5, and degassed according to the methods suggested 

by the manufacturer. The cellulose was loaded into the column 

(2.6 X 40.0 em) and washed with 500 ml of the same buffer. Pro­

tein sample (350 mg for TYF and 170 mg for TYG) ~·!aS added to 
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the column and washed with 0.01 M potassium phosphate buffer, 

pH 6.5, until all unbound protein was eluted. A linear gra-

dient of 0.01 to 0.4 M CKl in 0.01 M potassium phosphate buffer, 

pH 6.5, was used to elute protein at a flow rate of 20 ml per 

hour and 4 ml fractions were collected. A final wash of 1.0 }1 

KCl in the same buffer eluted any additional protein. All 

washes and gradients contained 0.001% sodium azide. Protein 

elution was determined by optical density measurements at 280 nm 

using a Beckman DB-GT Spectrophotometer (Beckman Instruments, 

Fullerton, Ca.). Tubes containing dextransucrase activity were 

pooled and concentrated by dialysis against 20% polyethylene 

glycol in 0.01 H potassium phosphate buffer, pH 6.5. Purifica-

tion was monitored by assaying for enzyme activity as described 

below and by determining total protein by the method of Lowry, 

et a1., 64 using bovine serum albumin as a standard. 

E. Dextransucrase Enzyme Assay: 

The assay mixture contained 1.2 mM NaF, 25.0 mM Sucrose, 

3.0 ~Ci per ml [U- 14c] Sucrose (3.35 Ci per M, New England Nu-

clear, Boston, Mass.), 25 UM T10 Dextran (Pharmacia Fine Chern-

icals, Uppsala, Sweden) as a source of primer dextran where in-

dicated, in 0.05 M sodium acetate buffer, pH 5.5. Levansucrase 

activity was assayed with the same assay mixture except 44.7 ~Ci 

per ml of [ 3H-fructose] sucrose (0.25 Ci perM, New England Nu-

. [ 14 clear) was present instead of U- C] sucrose. Dextransucrase 



activity was assayed as described by Germaine, et al. 37 The 

assay mixture was incubated at 37°C with enzyme and lOA samples 

were removed at the times noted. The samples were spotted onto 

Whatman 3MM filter paper squares, 2 em X 2 em, (Reeve Angel, 

Clifton, N.J.), which were mounted on steel pins and immediately 

placed into a beaker of absolute methanol (Scientific Products, 

McGaw Park, Ill.), containing not less than 10 ml per square. 

All squares were soaked 15 minutes after assay, then batch 

washed twice in the volume of methanol with a 15 minute soak 

between washes. The squares were then dried under a heat lamp 

and placed in glass vials containing 10 ml of scintillation 

fluid. The scintillation fluid consisted of 100 mg of 1,4-bis 

[2-(5-Phenyloxazolyl)] benzene (POPOP, Amersham/Searle, Des 

Plaines, Ill.) and 4 g of 2,5-diphenyloxazole (PPO, J. T. Baker 

Chern. Co., Phillipsburg, N. J.) per liter of Scintillar (Mallin­

ckrodt, St. Louis, Mo.) 10 • The samples were counted on a Packard 

Tri-Carb 3320 liquid scintillation spectrometer (Packard Instr. 

Corp., Downers Grove, Ill.). One unit of dextransucrase activity 

is that amount of enzyme causing the polymerization of 1.0 uM of 

sucrose-derived glucose per minute at 37°C 8 ~. Dextranase-CB 

(55 Units per mg Calbiochem, LaJolla, Ca.) was added to the re­

action mixture at a final concentration of 6 ~g per ml where in­

dicated. 

F. Preparation of Isomaltodextrins: 

14 



Dextran T10 (Pharmacia) at a final concentration of 250 mg 

per ml (20 ml) was boiled in the presence of 0.3 N H2so4 for 60 

minutes in a hot water bath in order to hydrolyze the dextran. 23 

After boiling the solution was neutralized with 1 N NaOH and a 

4.0 ml sample of the isomaltodextrins was put on a Sephadex G-25 

(Pharmacia Fine Chern., Piscataway, N. J.) column (2.6 X 47.0 em), 

previously equilibrated with distilled water. The isomaltodextrins 

were eluted from the column with distilled water containing 0.001% 

sodium azide a room temperature at a flow rate of 18 ml per hr. 

Fractions of 0.75 ml were collected and every third tube was as­

sayed by the methods of Somogyi 79 and Dubois, et al., 9 ~ for total 

hexose and reducing equivalents respectively. The degree of poly­

merization (DP) of the isomaltodextrins was equal to the number 

of glucose residues per reducing end in a fraction. Fractions 

with similar DP were pooled and used as a source of isomaltodex­

trins. Glucose and Blue Dextran were used as standards to deter­

mine the void volume and elution volume of the column. 
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CHAPTER IV 

RESULTS 

Streptococcus mutans' S-19 glucosyltransferase was partially 

purified in order to investigate the enzymatic activity of its 

multiple species in the absence of culture proteins. TYF and TYG 

culture supernatants were purified according to the steps outlined 

in Tables 1 and 2 respectively. Table 1 shows that after ammonium 

sulfate precipitation and dialysis the TYF preparation increased 

38-fold in enzyme purification, with a 35% decrease in total pro­

tein and a 21% increase in enzyme activity. Anion exchange column 

chromatography with DEAE cellulose, followed by dialysis in 25% 

polyethylene glycol in buffer resulted in a final 97-fold purifi­

cation with about 25% of the original protein. Enzyme yield was 

not altered by this procedure. The TYG preparation (Table 2) 

showed a 24-fold purification of enzyme activity by ammonium sul­

fate precipitation with a 94% decrease in the protein content of 

the preparation. Enzyme activity decreased 24% by this procedure. 

DEAE cellulose chromatography of this preparation resulted in the 

separation of two peaks of enzyme activity. Enzyme I was purified 

133-fold and contained 3% of the original protein, while Enzyme II 

was purified 237-fold and contained 2% of the original protein. 

Enzymes I and II combined decreased 13% in enzyme activity by this 

procedure. 
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TABLE 1. Purification of glucosyltransferase from TYF culture supernatent of S. mutans 6715 S-19 

Volume Total Total Specific Purification Yield 
(ml) Protein Activity Activity (Fold) (%) 

Fraction (mg) (U) 10-2U/m& Prot. 

I. Culture Supernatant 1000 10,800 75 0.69 0 100 

II. Ammonium Sulfate 50 350 91 26 38.0 121 

III. DEAE Chromatographed 50 135 90 66.7 97.0 120 
and concentrated 



TABLE 2. Purification of glucosyltransferase from TYG culture supernatent of S. mutans 6715 S-19 

Volume Total Total Specific Purification Yield 
(ml) Protein Activity Activity (Fold) (%) 

Fraction (mg) (U) 10-2U/mg Prot. 

I. Culture supernatant 1000 5600 62 11 0 100 

II. Ammonium Sulfate 50 170 44.5 26.2 24 71 

III. DEAE Chromatographed I. 12.5 20 24.3 146.5 133 47 
and concentrated II. 9.5 9.5 24.8 261 237 40 
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Table 3. Degree of Polymerization (D.P.) of isomaltodextrins fractions 
from Sephadex G-25 T10 hydrolysate as described in Materials and Methods. 

Fraction Elution D.P. Fraction Elution D.P. 
Number Volume Ratio Number Volume Ratio 

(ml) (ml) 

105 140 37.3 155 207 12.2 

110 147 27.9 160 213 6.4 

115 153 34.5 165 220 6.9 

120 160 16.2 170 227 7.9 

125 167 14.5 175 233 4.7 

130 173 13.8 180 240 4.6 

135 180 11.6 185 247 3.5 

140 187 11.8 190 253 2.8 

145 193 8.7 195 260 2.9 

150 200 9.3 200 267 2.5 



The DEAE cellulose chromatography elution profile of the 

TYF ammonium sulfate precipitated culture supernatant proteins 

(Figure 1) exhibited one peak of glucosyltransferase activity. 

This peak of activity eluted at 0.06 M KCl and displayed a small 

shoulder of activity. No other glucosyltransferase activity 

could be eluted by using a 1.0 M KCl wash. The entire peak of 

activity (fractions 80 - 90) was pooled and concentrated and used 

a source of TYF glucosyltransferase for further studies. The 

TYG ammonium sulfate preparation (Figure 2) was eluted in a sim­

ilar manner and two peaks of glucosyltransferase activity were 

observed. The first peak (I) and second peak (II) were eluted 

from the DEAE cellulose column at approximately 0.06 M and 

0.27 M KCl respectively. No other enzyme activity was eluted 

even with a 1.0 M KCl wash. It was also observed in assaying 

for the GTF activity of the elution fractions that fractions in 

peak I produced turbidity in the reaction tubes. This turbidity 

was absent in assaying TYG II and TYF Enzymes for activity. 

Glucosyltransferase is primer dependent, depending on the 

degree of purification of an enzyme and the presence of endo­

genous and exogenous dextran. Since the purification of enzyme 

preparations removed primer, it was necessary to determine the 

effect of linear dextran T10 on the catalytic activity of the 

different enzyme preparations. Figure 3 demonstrates the effect 

of dextran T10 in priming enzyme from both the TYF and TYG 
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FIGURE 1. DEAE cellulose chromatography of ammonium sulfate precipitated and dialyzed 
TYF glucosyltransferase. Enzyme activity expressed as the counts ( 1 ~C) hexose poly­
merized in 20 min. under standard assay conditions. 
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broth supernatants. Glucosyltransferase in the TYF culture su­

pernatant (Figure 3A) was stimulated approximately 3-fold in the 

presence of primer, over the unprimed reaction. Both reactions 

showed a linear increase in alcohol insoluble dextran product. 

The unprimed TYG culture supernatant (Figure 3B) exhibited less 

of a dependency on primer with only a one-fold stimulation of 

activity. The primed TYG reaction was linear, but the unprimed 

reaction had a much lower initial rate that increased gradually 

until 50 minutes whereupon the reaction proceeded at a faster 

rate than the primed reaction. The DEAE cellulose separated glu­

cosyltransferase enzyme activities were also assayed for primer 

stimulation (Figure 4). Glucosyltransferase activity from the 

TYF preparation (Figure 4A) was extremely primer dependent as 

demonstrated by the 6-fold stimulation of activity. Both the 

primed and unprimed reaction rates were linear. The TYG Enzyme I 

(Figure 4B) exhibited only a slight increase (1.3-fold) in ac­

tivity in the presence of added primer. TYG Enzyme II (Figure 4C) 

however, showed more dependence on primer, approximately 5-fold. 

These results were similar to the TYF Enzyme. Levansucrase was 

assayed for in all purified enzyme preparations (Figures 4A,B,C), 

but no activity could be detected in any of the preparations for 

the 60 minute assay incubation period. 

Cariogenic streptococci produced both glucosyltransferase 

and dextranase during normal growth and plaque formation. In 
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order to study this enzyme relationship all glucosyltransferase 

preparations were assayed for alcohol insoluble dextran produc­

tion in the presence of a commercial endohydrolytic dextranase 

preparation. Figure 5 shows the effect of dextranase on dextran 

synthesis by both primed and unprimed TYF culture supernatant 

glucosyltransferase. The unprimed TYF culture supernatant en­

zyme (Figure SA) appeared to be much more susceptible to dex­

tranase action over the primed TYF culture supernatant activity 

(Figure 5B). The unprimed TYF reaction leveled off immediately 

upon the addition of dextranase and did not show any change in 

the net synthesis of dextran for approximately 3 hours. The 

primed TYF reaction showed the same leveling off after the addi­

tion of dextranase but this lasted only 30 minutes, whereupon 

the enzyme resumed its normal rate of dextran synthesis. After 

one hour dextran synthesis again decreased to about half the nor­

mal rate. Comparing both reactions, the primed reaction showed 

a two-fold increase in glucosyltransferase activity over the un­

primed reaction in the presence of dextranase. The TYG culture 

supernatant glucosyltransferase activity in the presence of dex­

tranase is shown in Figure 6. The TYG reaction, although having 

more than a 4-fold increase in enzyme activity over the TYF 

reaction, still showed dextranase susceptibility in net polymer 

production. The comparative effect of dextranase was approxi­

mately equal for both enzyme preparations since the unprimed glu-
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cosyltransferase activity was 3-fold less than the primed. Both 

reactions gave an initial decrease in polymer production, followed 

by an increase with the slight leveling off before resumption of 

dextran synthesis at a reduced rate. The primed TYG preparation 

exhibited this sequence of reactions more rapidily than the un­

primed; however, both reactions gave similar results. 

Similar assays were performed using partially purified en­

zyme preparations. Figure 7 illustrates the effect of dextranase 

on dextran production by TYF DEAE cellulose enzyme preparation. 

The unprimed TYF enzyme showed an initial decrease followed by 

little or no net synthesis of dextran. The primed TYF enzyme 

showed an initial drop in total dextran followed by increases 

and decreases in net polymer production. After 2.5 hours the 

reaction increased in rate approximately equal to the unprimed 

TYF enzyme without dextranase. The separated TYG glucosyltrans­

ferases were similarly tested as shown in Figures 8 and 9. The 

unprimed Enzyme I (Figure 8A) gave a decrease in polymer syn­

thesis for 20 minutes after dextranase was added. This was follow­

ed by a somewhat normal rate of dextran synthesis with only one 

interruption after 75 minutes. Primed TYG Enzyme I (Figure 8B) 

also showed the fluctuation in polymer production, but it occurred 

after a longer time (1 hour) than in the other dextranase involved 

experiments (Figures 5, 6, 7). Also, unlike the unprimed, the 

primed reaction never reached the rate of the normal reaction 
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without dextranase. TYG Enzyme II (Figure 9) exhibited a reac­

tion with dextranase similar to that observed for the TYF glu­

cosyltransferase. After an initial fluctuation, the unprimed 

reaction (Figure 9A) leveled off while the primed (Figure 9B) 

increased during the remainder of the assay time (4 hours). 

Since dextranase altered net dextran production in both 

the primed and unprimed reactions, and this endohydrolase pro­

duces small isomaltodextrins, it was necessary to test the effect 

of small exogenous isomaltodextrins on dextran synthesis. Iso­

maltodextrins were prepared by acid hydrolysis of T10 dextran 

and separation of the isomaltodextrins mixture was performed by 

gel filtration on Sephadex G-25 (Figure 10). Isomaltodextrins 

were detected by measuring total hexose content of each fraction. 

The degree of polymerization (D.P.) of the fractions was de­

termined by measuring the hexose/reducing ends in each fraction 

as described in Materials and Methods. (Table 3.) In Figure 10, 

the position and relative priming ability of the isomaltodextrins 

are shown using TYF Enzyme. The activity of the TYF enzyme as 

the average D.P. increases from 6 to 55, which is approximately 

the size of dextran T10 (10,000 M.W.). Enzyme activity with 

T10 and no primer is sho'm in the left portion of Figure 10. Iso­

maltodextrins with a D.P. of 12 were used as a source of primer 

in order to test their effect on dextranase action against alco­

hol insoluble dextran production by TYF enzyme (Figure 11). 
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Under both conditions of dextranase addition at time 0 and time 

30, no inhibition of net polymer synthesis took place when com­

pared to the reaction with no dextranase. So, water insoluble 

dextran product was not affected by dextranase in the presence 

of isomaltodextrins D.P. 12 as a source of primer. However, the 

characteristic fluctuation resulted. 
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CHAPTER V 

DISCUSSION 

The etiology of dental caries lies in the production of 

extracellular insoluble dextran polymers by the glucosyltransferase 

enzyme system of cariogenic Streptococcus mutans. 29 ,ss,s 3 An ultra­

violet mutant strain, S-19, of the parent strain 6715, was used in 

this study because of its capacity to produce elevated levels of 

the enzyme glucosyltransferase. It was shmm that this organism 

produced an enzyme activity 3- to 6- fold higher than the parent 

strain enzyme. 77 Reports on the properties of glucosyltransferase 

from Streptococcus mutans have been variable depending on the cul­

ture media used, method of purification, etc. Two enzyme fractions 

have been reported, 10 ' 33 ' 76 ' 68 ' 62 ' 78 ' 35 ' 36 'one being a monomer with 

a molecular weight of approximately 40,000 and producing water sol­

uble polysaccharide while the other being an aggregate of the mono­

mer and forming endogenous tlla ter insoluble polysaccharide. 3 6 

The present study reports differences in glucosyltransferase 

properties when the organism is grotm under variable conditions. 

Using an enriched media supplemented with 0.5 :t-1 fructose, TYF, only 

one enzyme peak was resolved after DEAE cellulose chromatography 

(Figure 1). Using a chemically modified media substituting glucose 

for fructose, TYG, two peaks eluted (Figure 2). These results with 

TYG are similar to those reported by Germaine 35 who isolated two 
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glucosyltransferase enzymes with DEAE cellulose chromatography. 

It was concluded from that study, that one enzyme was in an aggre­

gated high molecular weight form, while the other was a smaller 

molecular weight nonaggregated form. Investigations have also 

shown, that when Streptococcus mutans was grown in a defined media 

without the presence of contaminating sucrose, or in a media which 

was high in fructose concentration, aggregation could be reduced. 78 

The TYF media in this study confirms this. Because of the high 

fructose concentration of TYF, only one enzyme was formed in the 

culture media due to competitive inhibition with sucrose by fruc­

tose. Therefore, endogenous dextran formation necessary for ag­

gregation of the enzyme molecules could not take place. Table 1 

shows this phenomenon by illustrating an increase in enzyme yield 

(activity) when fructose was removed from the enzyme preparation. 

In the present study, TYG Enzyme I produced marked precipitation 

of polysaccharides with the added sucrose, under assay conditions. 

TYF Enzyme and TYG Enzyme II however did not. These results are 

also corroborated by others. 35 It can be concluded therefore that 

TYG'I is an aggregated form of the enzyme glucosyltransferase pro­

ducing water insoluble polymer while TYG II and TYF Enzymes are 

nonaggregated or less aggregated forms producing predominantly 

water soluble polymers. 

Under the appropriate conditions, glucosyltransferase is 

prime~ dependent, in that molecules of exogenous or endogenous 

product dextran can act as primer (usually requiring a minimum 
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. f 8 1 •t ) . . . . 10 3~ 36 s1ze o g ucose un1 s , 1ncreas1ng enzyme act1v1ty. ' ' In 

the absence of primer, the reaction proceeds until enough endogenous 

dextran is built up to self prime the reactions resulting in an 

autocatalytic effect. Germaine 36 showed that primer dextran could 

act by binding more than one glucosyltransferase molecule resulting 

in the formation of branch points on the linear dextran chain and 

producing aggregates of an enzyme-dextran complex. In the absence 

of dextran the high molecular weight aggregates did not form until 

the reaction proceeded sufficiently to produce small dextrans, of 

at least 8 glucose residues long resulting in autocatalysis. The 

results of the present study confirm these findings. The non-

aggregated TYF culture supernatant TYF Enzyme and TYG II Enzyme 

preparations (Figures 3A, 4A, 4C) showed this primer dependency 

with an increase in enzyme activity of 2-, 8-, and 6.5-fold respec-

tively. The TYG culture supernatant, having both enzyme forms 

showed a limited primer stimulation while the TYG I Enzyme showed 

no primer stimulation since these preparations were already in the 

aggregated form and no added exogenous dextran could stimulate the 

reaction further. 

Plaque is formed as a result of extracellular polysaccharide 

production, i.e. insoluble a (1,3) linked, a (1,6) branched dextran 

by cariogenic strains of Streptococcus mutans. 66
•

67
• 

72
• 

73
,

79 It 

has also been found that many of the organisms which comprise this 

ecological nitch of the oral cavity produce enzymes which have the 

ability to hydrolyze dextran molecule. Among these are species of 



Actinomyces, Bacteroides and specifically strains of Streptococcus 

mitis and Streptococcus mutans. 80 • 86 • 93 • 87 Guggenheim~~ isolated 

an a (1,6) endohydrolytic dextranase from Streptococcus mutans 

OMZ 176. Because of the seemingly inconsistent phenomenon of 

S. mutans forming and possessing the potential for the breakdown 

of dextran, the action of dextranase on streptococcal dextran for­

mation was studied. It has been shown that in early dextran syn­

thesis, glucosyltransferase forms a (1,6) linked isomaltodextrins, 

by attaching the glucosyl moiety from sucrose to an acceptor mole­

cule at the non-reducing terminus. 92 Utilizing this information, 

Schachtele 80 showed that an exohydrolytic dextranase completely 

blocked glucosyltransferase's water insoluble glucan production 

and its adhesion by inhibition of the initial a (1,6) linkages in 

dextran formation. Ebisu25 showed that the structure of an insol­

uble dextran produced by S. mutans consisted of a linear a (1,3) 

linked glucan, with a (1,6) branches resulting in the insolubility 

and adhesive qualities of the polysac~haride. When formed in the 

presence of an endohydrolytic dextranase, this glucan still retained 

the a (1,3) backbone but no a (1,6) side chains formed. This struc­

ture resulted in an insoluble glucan with no adhesive qualities. 

This endohydrolytic dextranase was also shown by Stuart 87 to hydro­

lyze a (1,6) linked isomaltodextrins with a size no smaller than 

10 glucose units long. These results suggest that an endohydrolytic 

dextranase is capable of degrading a (1,6) linked glucan side chains 

40 



10 glucose units long or longer, which give adherence, but not 

a (1,3) backbone linkages which are responsible for the glucan's 

water insolubility. The results of the present study clearly in­

dicate this point. Since the nonprimed TYF culture supernatant, 

DEAE TYF and TYG II glucosyltransferases (Figures SA, 7A, 9A re­

spectively) are not aggregated, the a (1,6) soluble product from 

these preparations would be inhibited resulting in no autocatalytic 

effect whatsoever. When these same preparations are primed however, 

(Figures 5B, 7B, 9B respectively) the enzymes aggregate and form 

insoluble polysaccharide which is less effected by the action of 

dextranase. Any net loss of total dextran after the addition of 

dextranase was probably due to the limitation of this filter paper 

assay which only retained isomaltodextrins greater than D.P. of 6 

or 7 on the filters. The TYG culture supernatant and TYG Enzyme I 

contain aggregated forms of the glucosyltransferase enzyme. There­

fore, in the absence of primer, the TYG culture supernatant and 

TYG Enzyme I (Figures 6A and 8A) showed no inhibition of net dex­

tran synthesis. On the contrary, both showed a positive net poly­

mer production with the TYG I Enzyme giving higher polymer produc­

tion in the presence of dextranase than in its absence. Supposedly 

this occurs because the isomaltodextrin products of dextranase are 

incorporated into an aggregate which produces insoluble dextrans; 

these insoluble dextrans are less susceptible to dextranase action 

because of their a (1,3) linkages. Therefore the "autocatalytic 
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effect" is not interferred with by dextranase because aggregated 

enzyme which would eventually form from even a monomeric or non­

aggregated enzyme cannot be hydrolyzed, only free dextran longer 

than 10 units long. A dextran molecule 8 units long however can 

prime a reaction and form aggregate. These results are reinforced 

by Germaine, 35 who isolated a- and 8- glucosyltransferase enzymes 

producing water insoluble and water soluble polysaccharides re­

spectively. The a preparation contained a dextranase activity 

which could modify the glucan produced by 8 into water insoluble 

glucan. 

In all dextranase assays, there appeared a fluctuation in 

the net polymer production by glucosyltransferase. The reason 

for this may be the dependence of dextranase on a minimum size 

a (1,6) linked side chain (10 units) for hydrolytic activity. In 

Figure 7B, for example, an initial decrease in net polymer syn­

thesis took place due to the availability of the side chains and 

hydrolysis of them by dextranase resulting in the pieces being 

washed off the filter paper. After one hour, net synthesis re­

sumed apparently due to the reincorporation of these small pieces 

into the aggregate glucosyltransferase. Glucosyltransferase 

molecules could then lengthen these side chains after a period 

of time due to the autocatalytic effect and now make them avail­

able to dextranase again. However, when the cycle repeats it­

self, less side chains are available than before because of an 
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increase in aggregation, and insolubility of the polymer. To 

test the phenomenon isomaltodextrins with varying D.P. were col­

lected from the gel filtration of T
10 

hydrolysate (Figure 10). 

Priming ability of these fractions were tested and fractions 

with a D.P. of approximately 12 or greater had the greatest effect 

in increasing enzyme activity of TYF enzyme. These results are 

corroborated by Germaine. 3 ~ Since isomaltodextrins with a D.P. of 

12 seemed to be the smallest size which could still prime the re­

action, and also be of sufficient size to be hydrolyzed by dex­

tranase, an attempt was made to prime TYF Enzyme in the presence 

of dextranase (Figure 11). Net polymer production was not inhib­

ited by dextranase when primed by the isomaltodextrin. Glucosyl­

transferase activity fluctuated as before, however, due to the 

presence of susceptible primer and side chains. After a period 

of time equilibrium is reached as before with a positive net poly­

mer production due to aggregate formation and less susceptible 

a (1,6) linked side chains. This fluctuation was not as apparent 

when dextranase was added at time 0 minutes than when dextranase 

was added at time 30 minutes. This was due to the fact that dex­

tranase was present in the reaction mix initially and utilized to 

form the insoluble product more gradually, with the same result 

of a positive net polymer production not susceptible to dextran­

ase activity. 
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S~~RY AND CONCLUSIONS 

The effect of dextranase in decreasing plaque formation 

has not been shown by these data. The interrelationships be­

tween the multicomponent glucosyltransferase, endogenous dextran, 

sucrose, and dextranase is too complex to expect dextranase to 

be able to remove plaque by disrupting the plaque matrix: i.e. 

water-insoluble dextran. These data show just the opposite, in 

that dextranase acts to break up water-soluble dextran produced 

by one component of the glucosyltransferase scheme providing 

primer dextran to the other component of the glucosyltransferase 

enzyme system. This primer then functions to form aggregates 

which are impervious to dextranase activity, and the aggregates 

form insoluble polymer, agglutinating the bacterial cell and 

adhering to the tooth surface. 
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