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ABSTRACT 

Many signal transduction pathways are regulated by guanine nucleotide-binding (Gα) 

proteins, which function as molecular switches fluctuating between active and inactive 

conformations. Proper function depends on three flexible switch regions that are involved in the 

relatively slow hydrolysis of GTP. Deep sequencing studies have found mutations in the GNAS 

and GNAI1 genes involved in tumorigenesis, among which include a mutation corresponding to a 

highly conserved arginine residue in the switch II region. A mutation in GNAI1 encoding an 

R208Q change in Gαi1 has been linked to intestinal cancers. We investigated the molecular basis 

of oncogenesis of this mutant by studying the kinetics of nucleotide binding and single-turnover 

GTP hydrolysis. We demonstrated that, relative to the corresponding wild-type proteins, this 

mutation hindered nucleotide exchange; however, the rate of GTP hydrolysis was lower in 

R208Q Gαi1. The R208Q Gαi1 mutant was crystallized and its X-ray structure was compared to that 

of the wild-type protein and was also used to conduct molecular dynamics simulations. These 

studies suggested that changes in the rates of hydrolysis can be attributed to alterations in the 

microenvironments of the nucleotide binding site which seemingly destabilize the switch II 

region but do not perturb the surface of the protein. The mutation presumably results in a 

decrease in the production of the secondary messenger cAMP via its interaction with the 

effector adenylyl cyclase that might promote oncogenesis in tumor cells. Furthermore, we 

investigated the folding and structural integrity of the protein with three spectroscopic 
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techniques. We showed that for the mutant, both the active and inactive conformations have 

similar melting temperatures, which are comparable to the inactive conformation of the wild-

type protein but lower relative to the active conformation. 
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CHAPTER ONE 

CELL SIGNALING AND THE HISTORY OF G-PROTEINS 

Complex organisms are composed of a remarkably complex network of individual cells 

working harmoniously to form what we know as life. Cell signaling is central for survival and is 

the relay of messages between cells, which are involved in everything from cell division to 

apoptosis. A signaling molecule, such as a hormone or a neurotransmitter, binds to an 

extracellular receptor. It then transmits the signal to the inside of the cell using a variety of 

intermediary proteins that function as binary switches, alternating between “on” and “off” states 

that propagate the signal via secondary messengers. Guanine nucleotide-binding proteins (G-

proteins) are among the most common signal transducing proteins found in the cell.  

Alfred Gilman and Martin Rodbell conducted the initial landmark studies on G-proteins. 

Their work was deemed so important that they received the Nobel Prize in 1994 in Physiology or 

Medicine (1-3). All G-proteins are involved in signaling but differ in their mechanisms and are 

classified as either monomeric small GTPases, such as the Ras superfamily, or larger 

heterotrimeric membrane-bound proteins (4). This study will focus on the latter.  

Heterotrimeric G-proteins 

Heterotrimeric G-proteins are comprised of an  (G),  (G), and a  (G), subunit and work 

synergistically with a heptahelical transmembrane receptor protein, a G-protein coupled 

receptor (GPCR) (4). In the resting state, the GDP-bound G trimer interacts with a GPCR. When 
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the GPRC becomes stimulated, a conformational change in the G subunit occurs that causes it 

to release GDP and bind GTP, which further leads to the dissociation from the G subunits and 

the receptor (Figure 1). The active G•GTP diffuses along the membrane until it reaches an 

effector, which then uses secondary messengers to induce a response inside the cell. The signal 

terminates when the bound GTP hydrolyzes to GDP at which point the G complex is reformed 

(Figure 1). GTPase activity, which requires a Mg2+ cofactor, is relatively inefficient to permit 

adequate signal propagation. Therefore, the intensity of the signal is dependent on the time it 

takes G to hydrolyze GTP to GDP (4-6).  

Humans have roughly 865 different GPCRs that elicit different cellular responses using 

relatively few G-protein complexes (7). There are 16 G genes that encode 23 different proteins, 

5 G genes that encode 6 proteins and 12 G genes (7). G proteins vary widely in their function 

and expression patterns and are classified into four subfamilies according to sequence 

homology: Gs, Gi, Gq, G12 (Table 1) (4, 8-11). Gαi1 (and to a lesser extent Gαs) are the primary 

focus of this research.  

The α Subunit 

Gα proteins are highly conserved and found in almost all eukaryotes (12). Sequence 

similarity between G proteins vary between 35% and 95% but all are composed of two domains: 

a GTPase domain and a -helical domain (Figure 2). The GTPase domain is structurally and 

mechanistically similar to the small monomeric GTPase family of G-proteins and is comprised of 

five -helices surrounding six-stranded -sheets at the core (5). Beginning at the N-terminus, 

each individual α-helix are numbered α1-α5 and each β-sheet as β1-β6 (Figure 2). 
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Figure 1. Schematic representation of the pathway of G-protein coupled receptor signaling. 
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Table 1. Families of Gα subunits and their effects on cell signaling. For further detail see (4). 

Gα protein Expression  Receptor(s) for Effector(s) Cellular Response 

Gαs - subfamily     

    Gαs (S, L) Universal Adrenalin, noradrenalin, dopamine, glucagon Adenylyl Cyclase  cAMP ↑ 

    Gαolf Olfactory cells Odorants Adenylyl Cyclase  cAMP ↑ 

Gαi - subfamily     
    Gαi1 Neuronal cells Noradrenalin, prostaglandins, opiates Adenylyl Cyclase  cAMP ↓ 

    Gαi2 Universal Noradrenalin, prostaglandins, opiates Rap1, GAP cGMP ↓ 

    Gαi3 
Nonneuronal 
cells Noradrenalin, prostaglandins, opiates GRIN1, GRIN2 cGMP ↓ 

    Gαt1 Rods Photons cGMP-PDE cGMP ↓ 

    Gαt2  Cones Photons cGMP-PDE cGMP ↓ 

Gq - subfamily     

    Gαq Universal 
Acetylcholine, serotonin, vasopressin, 
epinephrine PLC Ca2+ ↑ 

G12 - subfamily     
    Gα12  Universal LPA, thrombin PLD NO ↑ 

    Gα13 Universal LPA, thrombin iNOS  NO ↑ 
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Switch I 

 

Switch I 

 

Switch I 

 

Switch II 

 

Switch II 

 

Switch II 

Switch III 

 

Switch III 

 

Switch III 

 

Switch III 

α5 

 

α5 

 

α5 

 

α5 

N-terminus 

 

N-terminus 

 

N-terminus 

C-terminus 

 

C-terminus 

 

C-terminus 

 

α4 

 

α4 

 

α4 

 

α4 

β6 

 

β6 

 

β6 

 

β6 Figure 2. Crystal structure of WT Gαi1•GTPγS (colored [PDB ID: 1GIA]) superimposed on Gαt•GDP (gray [1TAG]) to illustrate the structural differences between 
the active and inactive conformations. Gαi1•GDP is disordered in the switch II region. Gαt•GDP closely resembles Gαi1•GDP and is used in place of Gαi1 to 
illustrate the differences in the switch II region. The GTPase domain (blue) contains the active site in which the switch regions are located (green). The amino 
and carboxyl termini (purple) and the adenylyl cyclase binding site (yellow and switch II) are also in the GTPase domain. The α-helical domain denoted in pink.  

α3 

 

α4 

 

α4 

 

α4 



6 

 

The GTPase domain contains the active site where there are five highly conserved sequences 

necessary for binding of the nucleotide and the cofactor. The diphosphate binding P-loop 

(GXGESGKS) and the guanine ring binding motifs (NKXD) and (TCAT) bind the guanine nucleotide 

while two conserved motifs (RXXTXGI) and (DXXG) anchor the Mg2+ cofactor (4, 5).  

Also of importance in the GTPase domain are the three flexible regions known as 

switches I, II, and III. The switches are the most dynamic regions of the protein and reside near 

the  - phosphate of GTP; their positioning is dependent on the type of nucleotide that is bound 

(Figure 2 shown in green). In the inactive conformation, the switches are unordered which allows 

for GDP to escape the active site (13, 14) but upon binding to GTP, switches II and III  become 

more rigid and form a lid over the nucleotide (15, 16). Switches I and II are also important 

interfaces with G for the formation of the heterotrimer (17), and interact with effectors in some 

instances (18-20). Finally, the N-terminus in the GTPase domain also undergoes a post-

translational modification and becomes lapidated. Gαi1 becomes myristoylated by myristoyl CoA 

while Gαs becomes palmitoylated by palmitoyl CoA (21-23). In the case of Gαi1, the N-terminus is 

unordered but upon myristoylation, forms an ordered α-helix (21, 22, 24). The myristol group, a 

14-carbon fatty acid, attaches to a glycine residue at the N-terminus via an amide bond, which 

allows the G subunit to interact with the Gβγ complex via the Gγ subunit and anchor the complex 

to the membrane (21, 24-26).  

The α-helical domain contains six α-helices designated by letters A through F with A being 

closer to the N – terminus and F being near the C – terminus (5). Interestingly, there is less 

homology amongst Gα proteins in the  helical domain, which enhances the specificity of G 
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proteins to distinct receptors and effectors (27, 28). The  helical domain also gives the G-

protein an increased affinity for guanine nucleotides (29, 30).  

GTPase activating proteins (GAPs) are proteins that add an additional layer of regulation. 

The binding of a GAP (such as regulator of G – protein signaling 4 [RGS4]) to a Gα protein 

enhances the GTPase activity and promotes GTP hydrolysis (31, 32). GTPase rates can be as 

much as 1000 fold higher when a GAP is present (33).  

Mechanism of GTP Hydrolysis  

 Conceptualizing a mechanism for GTP hydrolysis has proven to be challenging. Gα 

proteins contain highly conserved catalytic residues that act to stabilize charge build-up around 

GTP. Furthermore, Gαi1 proteins properly position a water molecule for a nucleophilic attack near 

the γ – phosphate of GTP (Figure 3). The transition state of GTP during its hydrolysis is not well 

understood due to the presence of d orbitals on the phosphorous atom of the γ-phosphate. 

Furthermore, it is not known if the mechanism of hydrolysis is associative, dissociative, or a 

combination thereof (34, 35). An associative transition state would utilize a base that would 

remove a proton from a molecule of H2O at the active site, priming it for a nucleophilic attack on 

the γ – phosphate. Conversely, a dissociative mechanism would involve bond cleavage between 

the terminal phosphates resulting in a shift in negative charge from the γ to the β phosphate 

causing the γ – phosphate to become a stable leaving group (35). There are two highly conserved 

residues in the switch II region of Gα proteins that could accomplish this (6). In wild-type Gαi1 

(WTGαi1), Glutamine (Q) 204 and the carbonyl functional group of glycine (G) 203 are in a 
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position to facilitate such a mechanism. Similarly, arginine (R) 187 in the switch I region has been 

shown to be critical for catalytic activity (36-38).  

The βγ Heterodimer 

The G and the G subunits are always complexed together, as there are no known 

instances in which they are separated. There are five known G isoforms numbered 1-5, and 

each is composed of seven β-sheets oriented in the shape of a propeller, and an α-helix at the N-

Figure 3. Key interactions that facilitate GTP hydrolysis. 
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terminus. There exist 12 G isoforms, numbered 1-12, that consist of two α-helices connected by 

a loop (39, 40). The G and G subunits have two points of contact: 1) at their N-terminal, helices 

as well as an interaction between β5/β6 of the G subunit, and 2) at the C-terminal, the α-helix 

of the G subunit. Many possible combinations between G and G subunits are possible (41). 

Specificity is dictated by regions on the G subunit as small as 14 residues (42). Upon activation 

of the G-protein, the G separates from the G complex and, similarly to the G subunit, 

continues to relay the signal through interactions with effectors (39).  

The Adenylate Cyclase Effector 

Each cell relies on a myriad of signaling pathways to incite changes within the cell to an 

ever-changing environment. Effectors are responsible for the production of a secondary 

messenger necessary to invoke a response to an extracellular stimulus. A common effector acted 

on by both the G subunit and the G complex is adenylyl cyclase (AC). AC is a membrane-bound 

protein that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine 

monophosphate (cAMP) and pyrophosphate (PPi) which acts as a secondary messenger. To 

propagate the signal, cAMP activates protein kinase A (PKA), which in turn promotes glucose 

metabolism (43, 44). Alternatively, cAMP will bind exchange factor directly activated by cAMP I 

(EPAC) which has many intracellular targets involved in cell proliferation (45-49). There are 10 

known isoforms of AC, each of which is composed of two pseudo-symmetrical transmembrane 

domains referred to as C1 and C2 (50).  

AC is a unique effector in that it is both activated (Gs) and inhibited (Gi1) by a G 

protein. Both G subunits are structurally similar and a comparison of the two crystal structures 
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results in a 1.07 Å root mean square deviation (RMSD) between the Cα atoms (22). It is therefore 

surprising that Gαs and Gαi1 interact with different AC subunits using distinctly different motifs 

and have opposite effects on the activity of AC. Scanning mutagenesis of Gαs identified important 

residues for the activation of AC located on the switch II and α4β6 loop (51). Further studies that 

solved the crystal structure of active Gs complexed with AC and the non-hydrolyzable GTP 

analog GTPγS (Gs•GTPγS•AC) revealed that the interaction occurs between the switch II region 

of Gs and the C2 domain of AC. The interface between Gαs and AC includes the following 

residues: leucine (L) 272, asparagine (N) 279, arginine (R)280, tryptophan (W) 281, L282, R283, 

threonine (T) 284, R231, R232, glutamine (Q) 236, and N239 (52). To date, crystallization of the 

Gi1•GTPγS•AC complex has not been reported. Unlike Gs, Gi1 requires the post-translational 

addition of a myristoyl fatty acid in order to bind AC, making it more difficult to crystallize. 

Nonetheless, evidence suggests that Gi1 interacts exclusively with C1 of AC while Gs interacts 

solely with C2 (22). Because of the structural similarity between Gs and Gi1, it is reasonable to 

presume that Gi1 switch II and α4β6 loop regions interact with the AC C1 domain in a similar 

manner. Point of contact residues between Gαi1 and AC have been experimentally determined 

as: arginine (R) 208, lysine (K) 209, isoleucine (I) 212, K312, R313, K314, K315, T316, and 

glutamate (E)318 as the residues involved in binding to AC (52-54).  

Folding of G-Proteins and Disease States 

Folding Overview 

Eukaryotic organisms rely on intercellular signaling for all biological processes, including 

growth, senescence and apoptosis. Aberrations in proteins involved in signal transduction can 
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affect protein folding, catalytic function, or protein-protein interactions. This can lead to 

aberrant cellular signaling, which is the basis for several human diseases.  

Folding is crucial for the structural integrity of proteins and directly responsible for their 

physiological function. Protein folding is an elegant process in which a nascent protein co-

translationally folds into a higher order structure. Although it is not fully understood, it is thought 

to proceed through an energy landscape that includes multiple pathways with a variety of 

intermediates, or molten globules, each one with progressively lower free energy (55-57). The 

native structure at the end of the path has the lowest free energy and is, therefore, the most 

stable (Figure 4). Under denaturing conditions, a protein will unfold, altering the secondary 

structure and revert to a molten globule state, which may retain some activity (58, 59). 

Furthermore, molten globules that are high in β-sheet content pose an increased risk for 

aggregating and amyloid fibril formation, which are described in many devastating diseases such 

as Alzheimer’s and Huntington’s disease (60-62). In vitro studies using thermal or chemical 

denaturants are physiologically unrealistic, but suitable methods for the investigation of the 

relative stability of a wild-type protein compared to a mutant as the non-covalent interactions 

are altered, causing different unfolding properties for each protein (63, 64).  

G-Proteins and Cancer 

Cancer is the second most common cause of death in the US and ranks similarly across 

the rest of the developed world (65). Neoplastic disease is defined as the uncontrolled growth of 

cells and can occur in nearly every tissue type. Tumorigenesis starts in cells carrying a repitoir of 

genetic alterations that lead to aberrant cellular signaling. This aberrant signaling will often result 
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in accelerated growth and inhibition of apoptosis signaling, allowing diseased cells to be further 

propagated. Furthermore, since several of these genetic alterations result in inactivation for DNA 

repair pathways, diseased cells accumulate additional genetic changes with time, which is 

thought to be one mechanism of multidrug resistance. Some genetic changes are germline, i.e., 

inherited and therefore exist in every cell in the body. However, the vast majority of genetic 

alterations are somatic, as they originate in a single cell after birth.  

Cancer-related, genetically-altered genes can affect tumorigenesis or tumor progression 

and are classified as being either oncogenes or tumor suppressor genes. When oncogenes 

become mutated, they are endowed with a gain of function to often evade inhibitory signals and 

are aberrantly activated. Tumor suppressor genes are genes involved in the suppression of 

growth and the promotion of senescence and apoptosis. These genes are mutationally 

inactivated or deleted in cancers (66, 67).  

GNAI1 and GNAS are two oncogenes that encode the Gαi1 and Gαs proteins, respectively 

(68). The R208Q mutation in the switch II region of Gαi1 has been associated with colorectal 

cancer (68). The corresponding mutation in Gαs is R231H, which has been linked with 

neuroectodermal tumors (68). G-proteins have been implicated in various diseases, including 

bipolar disorder (69-71) and McCune-Albright syndrome (72) but are one of the most highly 

targeted protein families in drug design because of their association with human cancers (68, 73-

77). 
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Spectroscopic Techniques Used for Studying Gα Proteins 

Fluorescence Spectroscopy 

Fluorescence is a radiative decay process in which an excited molecule releases a photon 

as it returns from the ground vibrational level of the first excited state to the ground state 

(Figure 5A). The energy difference between the excited state and the ground state is quantized 

and governed according to the equation: ΔE = h*ν where ΔE is the energy change, h is Planck’s 

constant and ν is the frequency. A more convenient expression to relate ΔE to the wavelength (λ) 

utilizes the speed of light constant (c): ΔE = h*c*λ-1. Not every molecule has this ability, but the 

ones that do are considered fluorophores.  

Figure 4. Schematic representation of the energy landscape during folding. Reused with permission 
from (57). 
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Fluorophores are typically organic compounds that contain conjugated π-bonds. In 1954, 

Weber and Laurence studied the environmental effects on fluorescence intensity (78). Their 

work involved many polycyclic organic compounds. They found that, in water, they did not 

fluoresce, but became fluorescent upon the addition of serum albumin. Their work paved the 

way for small molecule fluorescent dyes and one of the dyes they worked with was 8-

anilinonaphthalene-1-sulfonic acid (ANS) (Figure 5B, inset). Weber and Laurence found that the 

quantum yield and the Stoke’s shift were dependent on the polarity of the solvent. A less-polar 

solvent such as octanol caused the maximal wavelength (λmax) to become shorter, creating a blue 

shift while increasing the quantum yield (79). The opposite is true for ANS in a more polar 

solvent such as ethylene glycol (Figure 5B). The shift in the wavelength at maximal absorbance 

(Δλmax) is explained by comparing the dipole moment of the excited state versus the ground 

state. The dipole moment of the excited state can be considerably different from the ground 

state due to distinct electron distributions. Typically, the excited state has a larger dipole 

moment causing it to become more polar relative to the ground state. In a hydrophobic solvent, 

this leads to a disruption of the dynamics within the solvent’s environment, rendering it less 

stable, thereby increasing the energy gap between the excited state and the ground state (Figure 

5A).  

The effects of solvent on quantum yield (i.e. fluorescence intensity) are a result of 

intersystem crossing. Electrons in the ground state are paired with opposite spins. When an 

electron becomes excited, it retains its spin initially and is in a singlet state. Polar environments 

interact more with the excited state and facilitate a spin conversion to the triplet state resulting   
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Figure 5. Jablonsky diagram outlining the process of fluorescence. A) A fluorophore is excited at a given 
wavelength (blue arrow) and emission occurs at a lower wavelength (green and red arrows). The solvent 
can affect the energy of the photon. Used with permission from (79). B) The wavelength is blue shifted 
and the intensity increases as the fluorophore (ANS – structure shown in top right of diagram) is placed 
in different solvents of decreasing polarity. Recreated from (78). 

 

A) 

B) 
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in unpaired electrons. A transition from the triplet state to the ground state is forbidden, 

resulting in a slower internal conversion to the ground state without the emission of a photon 

causing a lower fluorescence intensity.  

Gilman and coworkers used these phenomena to obtain an indirect measurement of G-

protein activity by monitoring the intrinsic tryptophan fluorescence following the addition of 

GTPγS, a non-hydrolyzable analog of GTP (80, 81). Tryptophan (W) is a highly conjugated residue 

that contains a large degree of overlap between its p-orbitals, rendering it a fluorophore. As the 

protein moves into the active conformation, the W microenvironments change to become more 

hydrophobic and the intensity increases as a result (82). Gα proteins are not consistent with the 

number of tryptophan residues they contain. For example, Gαt contains two tryptophan residues 

while Gαi1 and Gαs have three and four, respectively. While tryptophan residues are generally 

seen at the core of the protein, they are distributed around the protein at various frequencies 

and therefore, do not equally contribute to the change in the overall fluorescence.  

Chabre et al. (83) determined that Gαt could be placed in an active conformation by the 

addition of tetrafluoroaluminate (III) (AlF4
-) and that this method of activation was a zero order 

reaction. The AlF4
- mimics the γ phosphate so the GDP is left in place and the rate is not 

dependent on the exchange, unlike activation with GTPγS. Henceforth, activation using AlF4
- and 

Mg2+ will be referred to as AMF activation. Additionally, Chabre (84) investigated the 

contribution of the two-tryptophan residues in Gαt towards the overall fluorescence in the 

protein. Using tryptophan mutants, Chabre found that W207, rather than W127, was primarily 

responsible for the change in fluorescence (in Gαt, W207 is in the switch II region, but W127 is 
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not). Furthermore, activated Gαt•AMF and Gαt•GTPγS exhibited an increase in fluorescence 

intensity vs Gαt•GDP that was accompanied by a red shift of λmax (83, 84). 

Using intrinsic tryptophan fluorescence, Hamm and co-workers (85) found Gαi1•AMF also 

exhibited a red shift. Analysis of crystal structures of Gαi1•GDP (86) and Gαi1•AMF (16) reveals 

that W211 is a part of the switch II region that moves from an unordered state to an ordered 

state upon binding of AlF4
-. The new environment is more hydrophobic, which would normally 

coincide with a blue shift. Therefore, this observation was unexpected. It was later determined 

that the red shift arises from the formation of a π – cation interaction between W211 and R208 

in the active conformation (85). Electrostatic interactions can form within a protein between 

residues bearing a positive charge (such as lysine and arginine) and ones with π – electron 

systems (such as phenylalanine, tyrosine, and tryptophan). The electrons are distributed more 

with the sp2-hybridized carbons of a ring structure, creating a partial negative charge toward the 

interior of the ring and a partial positive charge around the edge (Figure 6) (87-90). The strength 

of this interaction is dependent on the distance and the angle between the residues, and 

typically range from 1 – 5 kcal*mol-1 (91). Other interactions such as π – π stacking between π – 

electrons of nearby residues interact with each other (92), and less common, π – anion 

interactions have also been described (93, 94), in which a negatively charged residue such as 

aspartate or glutamate interacts with the π – electrons of a nearby residue.  

Najor et al. (95) determined the contribution of each of the three-tryptophan residues in 

Gαi1 to the overall change in fluorescence. Gαi1 contains three tryptophan residues: W131 in the 

α-helical domain, W211 in the switch II region, and W258 in the GTPase domain. They found that 
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the W211F mutant abolishes the change in fluorescence while the W131F mutant showed an 

increase in the change of fluorescence. The W258F mutant had a change in fluorescence similar 

to WT (95).  

Fluorescence is a useful technique for studying Gα proteins because it offers a tool to 

probe both structural and functional characteristics. The overall structure can be monitored 

during thermal denaturation as the fluorescence signal decreases and eventually disappears 

when the protein is fully unfolded. Similarly, by monitoring the red shift, the π-cation interaction 

reveals information about the structural integrity. Functionally, the changes in conformation 

from the inactive to active correlate to the changes in fluorescence intensity.   
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A) 
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B) 

Figure 6. A) The carbons that form the benzene ring have a higher electronegativity than the hydrogen atoms they are bound to creating a 
partial negative at the center of the ring. B) A positive charge can interact with the center of the benzene ring where the partial negative 
charge has formed. C) The electrostatic potential map of six benzene derivatives illustrating the charge distribution. Part C) reused with 
permission from (94) 
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Ultraviolet/Visible Spectroscopy 

Ultraviolet/visible (UV/Vis) spectroscopy is a commonly used technique for studying 

proteins and quantifying protein concentrations. UV/Vis spectroscopy is similar in theory to 

fluorescence spectroscopy. While fluorescence spectroscopy considers the relaxation of an 

excited electron to the ground state, UV/Vis spectroscopy focuses on the transition from the 

ground state to the excited state and measures the absorption of light at a given wavelength 

within the ultraviolet-visible light spectrum. Similar to fluorescence, the difference in energy is 

given by the equation: ΔE = h*c*λ-1 while the absorbance is given by the Beer-Lambert Law: 

A=ε*c*l where ε is the molar extinction coefficient, c is the concentration, and l is the path 

length. Although the wavelength of a photon that a molecule can absorb is quantized, broad 

peaks in a UV/Vis spectrum are common that arise from different vibrational and rotational 

states that change the energy difference.  

Three amino acid residues contain conjugated structures that absorb light in the UV/Vis 

region and therefore can act as chromophores: tryptophan (W), tyrosine (Y), and phenylalanine 

(F). Phenylalanine shows the lowest absorption and absorbs at a wavelength of 260 nm with an 

extinction coefficient of 125 M-1 *cm-1. Tryptophan and tyrosine both absorb at 280 nm but 

tryptophan has a higher extinction coefficient (5690 M-1 *cm-1 vs 1280 M-1 *cm-1) and therefore 

absorbs more light than tyrosine. Although tryptophan absorbs more light, they are relatively 

uncommon relative to the frequency of tyrosine residues making the latter more relevant. The 

extinction coefficient of a polypeptide can be estimated simply from the sum of multiplying the 
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number of tryptophan and tyrosine residues by their respective extinction coefficient. Gαi1 has an 

extinction coefficient of 36,495 M-1 *cm-1 (96).  

Gαi1 has thirteen Y resides and three W residues (Figure 7). Unfolding a protein causes the 

chromophore residues to become more exposed, allowing them to absorb more light leading to 

a hyperchromic effect. Melting temperatures (Tm) can be deduced from the midpoint of the 

change in absorption as the protein unfolds.  

Circular Dichroism Spectrophotometry  

Circular dichroism (CD) uses circularly polarized light to determine the secondary 

structure of a polypeptide. Light consists of the sum of an electric and a magnetic component. 

Polarization occurs when each of the two components is limited to one respective plane normal 

to each other. Most common is linear polarization, which occurs when the two wave functions 

are in phase with each other. Circular polarization is when one of the wave functions is out of 

phase by 90 ° (Figure 8A). Circular dichroism results from a chiral molecule (e.g. polypeptide) 

interacting with one polarized state more than the other. CD is affected by the overall structure 

of the macromolecule, rather than the individual chiral centers, and each secondary structure 

has a signature pattern. An α-helix has a high absorption at 190 nm and then goes into a valley 

and creates a double hump between 210 nm and 230 nm. In contrast, a β-sheet starts out at a 

much lower absorption and decreases into a single hump (Figure 8B and C).  

Quantifying the concentration of each type of secondary structure species requires the 

aid of computer algorithms that use a set of reference proteins of known structure to analyze 



 

 

2
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Figure 7. Crystal structure of Gαi1 bound to GTPγS depicting the various residues that are 
key for spectral analysis (PDB: 1GIA). The three-tryptophan residues (cyan) contribute to 
the change in fluorescence as the conformation changes from inactive to active. Thirteen 
tyrosine residues are used in UV/Vis (pink). 
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Figure 8. A) Schematic representation depicting the vertical and horizontal phases of a wave to illustrate circularly polarized 
light. B) Common secondary structures in proteins. C) The α-helix (red) produces a signature double hump pattern in a CD 
spectrum while a β-sheet (blue) shows only a single hump. Random coils (black) start with a negative ellipticity that then turns 
positive. 
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the spectrum (97). This approach is necessary for determining the secondary structure content 

of WT Gα proteins and mutants at different stages of unfolding. 

Project Aims 

 The overall goal of this research is to gain insight into why the R208Q mutation in Gαi1 

promotes tumor growth. A better understanding of the biology of this mutant protein may lead 

to better therapeutic options for patients whose cancers harbor mutations in this gene (68). The 

specific aims addressed in this dissertation are as follows: 1) structural analysis of the R208Q 

mutant and comparison with the WT protein; 2) determination of functional activity of the 

R208Q mutant and how the mutation affects the rate of GTP hydrolysis vs WT; and 3) elucidation 

of mechanistic consequences of the R208Q mutation.  

We began by studying the structural properties of wild-type (WT) and mutant Gαi1, with 

the ultimate goal of gaining insight into how changes in the structural properties of the mutant 

proteins promotes neoplastic disease.  

We used several biophysical techniques to study the WT and the R208Q mutant of Gαi1 in 

three conformations (Gαi1•GDP, Gαi1•AMF, Gαi1•GTPγS) to better understand the global 

structures of these proteins. Fluorescence spectroscopy is able to take advantage of the 

relatively uncommon tryptophan residues at the core of the protein, as it can be used for 

monitoring the conformation of the protein as it transforms from the inactive to the active 

conformation. We further used UV/Vis spectroscopy to study protein unfolding, by monitoring 

the absorbance of tyrosine residues on the surface of the protein. In order to obtain an 

appreciation for the global structural changes, we turned to CD, as it monitors the types of 
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secondary structures present in the protein. Taken together, these three techniques offer a 

glimpse into the structural integrity of the protein characterized by melting temperatures (Tm). 

Gα proteins hydrolyze GTP at an inefficient rate with turnover times that are 

exponentially slower than other enzymes. In this respect, Gα proteins are not considered 

enzymes but have evolved with this trait to provide time to propagate their signal. In the case of 

Gαi1, the duration in the active state is directly related to the cellular concentrations of the 

secondary messenger cAMP. Studying the rates of GTP hydrolysis is necessary to determine 

downstream effects of the R208Q mutation. Fluorescence spectroscopy can be used to monitor 

the conformation as the protein goes from the inactive conformation to the active GTP-bound 

conformation and back as it hydrolyzes GTP. Malachite green is a dye that binds inorganic 

phosphate (Pi) that results from GTP hydrolysis, and is quantifiable via UV/Vis spectroscopy as 

the bound and free malachite green absorb light at different wavelengths. The combination of 

these techniques offers a parallel analysis of GTP hydrolysis and are used in conjunction to 

determine a more accurate rate of GTP hydrolysis.  

We turned to in silico computational analysis to study the interactions within the protein 

to investigate the consequences of the R208Q mutation on an internal relay between key 

residues involved in normal function. This approach has been an invaluable resource for 

integrating the structural data with the functional GTP hydrolysis results. 

Cancer is a complicated disease, with each patient harboring a unique milieu of genetic 

alterations leading to aberrant cellular function. Modern cancer therapies exploit unique protein 
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products or signaling properties of diseased genes. Because of the large variety of genetic 

alterations, there is a constant need to better understand the biology of mutant proteins found 

in cancer. By comparing the differences between the wild-type and R208Q versions of Gαi1, we 

are able to better understand the altered G-protein signaling and attempt to elucidate a 

mechanism for cancer progression associated with this mutant protein. We hope these results 

will be useful for designing treatments for people with mutations in these genes and will expand 

our knowledge of cell signaling, which can be translated to other systems or cancers.  
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CHAPTER TWO 

COMPARISON OF THE STRUCTURE-FUNCTION RELATIONSHIPS IN WILD-TYPE Gαi1 AND IN ITS 

R208Q MUTANT  

 Heterotrimeric G proteins are composed of α, β, and γ subunits that act as binary 

switches oscillating between “on” and “off” states, amplifying extracellular signals into the 

cytoplasm in the form of secondary messengers. G-proteins work synergistically with receptors 

at the surface of the cell. In the inactive conformation, complexes are formed between G-protein 

coupled receptors (GPCR) and a GDP-bound heterotrimer. When an extracellular ligand binds to 

a specific receptor, a conformational change ensues, causing the Gα subunit to exchange GDP for 

GTP, and release the receptor and the Gβγ subunit. The Gα protein further relays the signal 

through direct interactions with effector proteins until GTP is hydrolyzed, which results in a 

return to the inactive state (5, 6).  

 Folding in Gα proteins is highly conserved and consist of two domains: an α helical 

domain and a GTPase domain (6). The former is composed of six α helices and is important for 

effector and regulator selectivity (6). The GTPase domain is similar in structure and function to 

those of the Ras superfamily and contains six β sheets at the core surrounded by five α helices 

(31). This domain houses the nucleotide binding site, which contains a Mg2+ cofactor, and is 

surrounded by three flexible switch regions designated switch I through III. The switch regions 
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contain many conserved residues that are oriented around the γ-phosphate of GTP and are 

crucial for GTP hydrolysis (98).  

Gα proteins have a relatively slow turnover rate compared to most enzymes (81, 99). The 

ability to remain active for a longer period is important to allow for appropriate signal 

propagation through interactions with an effector. The extent to which the cell responds to 

stimuli is dependent on the time the Gα subunit is in the active conformation, which in turn is 

dictated by the rate of GTP hydrolysis. Homeostasis relies on a delicate equilibrium that can be 

deleterious. Therefore, cellular signaling must be highly regulated.  

Mutations in genes that encode Gα proteins have been shown to be involved in several 

diseases, including cancer (68, 74, 100). Admittedly, cancer is not the result of any single 

mutated gene and there are a plethora of tissue-specific permutations that can give rise to 

cancer (101). Although cancer can arise from improper regulation of pathways involving many Gα 

proteins, this study focuses on the cAMP pathway, which is stimulated by Gαs and inhibited by 

Gαi1 through interactions with AC (6). Cyclic nucleotides are secondary messengers commonly 

associated with tumor progression and have been found to be either upregulated or 

downregulated, depending on the type of cancer (102).  

The R231H Gαs and the corresponding R208Q Gαi1 mutations have been reported in 

tumors of the central nervous system and large intestine, respectively (68, 103, 104). This highly 

conserved arginine is located in the switch II region, which contains residues critical for GTP 

hydrolysis. To investigate the effects of these mutations on the function of each Gα protein, GTP 
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hydrolysis studies were conducted. Gαi1 and Gαs contain Trp residues, which upon activation, 

move into more hydrophobic environments. As a result, the increase in fluorescence intensity 

can be used as an indirect measurement of protein activity (80). This phenomenon is primarily 

due to the movement of the switch II Trp residue (W211 in Gαi1 and W234 in Gαs). Exchange of 

GDP for GTP is accompanied by an increase in fluorescence which returns to the original 

intensity at a rate proportional to GTP hydrolysis (81). The steady-state rate of GTP hydrolysis is 

determined by the rate of GDP release. For obtaining the time the protein is in an active 

conformation, which is more biologically relevant when studying effects downstream in the 

signaling pathway (36), fluorescence measurements were used to calculate single turnover rates 

under conditions of pre-steady state kinetics. Malachite green was also used for measuring the 

increase in the concentration of inorganic phosphate (Pi) that was released during the course of 

a single turnover of the enzyme (105, 106). 

We investigated how the functional differences observed by fluorescence and malachite 

green assays for WT Gα proteins and their corresponding mutants could be rationalized in terms 

of structure. To determine if differences in the active conformation exist between WT Gαi1 and 

its oncogenic mutant, we solved the X-ray structure R208Q Gαi1 protein bound to GTPγS (a non-

hydrolyzable GTP analog) and compared it with that of the published WT Gαi1•GTPγS (16). 

Furthermore, to probe the microenvironments in the vicinity of the mutations that are located in 

the flexible switch II region, molecular dynamics (MD) simulations were conducted on both 

R208Q and R231H mutants, as well as on WT Gαi1 and WTGαs proteins. We found that a network 

of molecular interactions was disrupted as a result of the mutations in the switch II region, which 
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propagated to other local motifs within the protein. In the case of Gαi1, catalytic residues 

involved in Mg2+ binding and in the orientation of a nucleophilic water moved away from the 

nucleotide binding site, while the opposite was seen in the simulated Gαs mutant. Interestingly, 

the residues involved in binding to AC were left mostly unchanged for both WT Gαi1 and Gαs and 

their respective mutants.   

Using a combination of spectroscopic and in silico techniques, we were able to elucidate 

the functional consequences of oncogenic mutations in the switch II regions of Gαs and Gαi1. We 

propose that both mutants result in lower cellular concentrations of cAMP as a result of altered 

GTP hydrolysis. 

Materials and Methods 

Cloning and Mutagenesis  

 Wild-type Gαi1-C-His6x from rat and wild-type bovine Gαs-C-His6x have previously been 

cloned into DpnI in the pQE-60 vector (Qiagen) via restriction sites and co-transformed into BL21 

E. coli with the pREP4 repressor plasmid. Site-directed mutagenesis was performed to create the 

R208Q Gαi1 point mutation using the QuikChange II kit (Agilent) and the forward, 5′′- GCC CAG 

AGA TCA GAG CAG AAG TGG ATT CAC -3′’, and the reverse, 5′′- GTG AAT CAA CTT CTG CTC TGA 

TCT CTG GCC -3′′, primers, which introduces a c.G623A mutation. The R231H Gαs mutant plasmid 

was purchased from Bio Basic in the pQE-60 vector and was subcloned into BL21 E. coli cells 

containing a pREP4 repressor plasmid. 
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Expression, Purification, and Preparation of Gα proteins 

Recombinant proteins were expressed and purified as described (107) to a purity of ≥ 

95% and stored at -80 °C. All purified proteins were subject to a time - based fluorescent 

emission assay to ensure proper activity prior to any further functional assays.  

Mg 2+-free Gα•GTPγS proteins were prepared by dialysis for six hours in 50.0 mM TrisCl 

pH 8.0, 0.005 % n,octyl-β-D-glucopyranoside, 1.0 mM EDTA, and 10.0 mM DTT, and again in 50.0 

mM TrisCl pH 8.0, 0.01 mM GTPγS, and 10.0 mM DTT for an additional six hours.  

Fluorescence Assays for Nucleotide Binding and Hydrolysis 

  Experiments were performed with a PTI QuantaMaster fluorimeter (Photon 

Technologies, Inc., Mirmingham, NJ). Time-based assays were conducted with excitation and 

emission wavelengths set at 280 nm and 340 nm, respectively. Apo Gα•GDP was incubated with 

20.0 μM GTP for 3 hours at 20.0 °C to exchange GDP for GTP.  

Malachite Green Assay 

 Malachite green (Abcam) assays were performed on a Biotek ELx808 microplate reader 

OD. An aliquot of 10.0 μM Apo Gα•GDP was incubated with 5.0 μM GTP for three hours at 4°C 

(50.0 mM HEPES pH 7.4, 2.0 mM EDTA, 100.0 μM GTP, 1.0mM DTT, and 0.2 mg*mL-1 BSA). 

Following GTP exchange, 1.0 mM MgSO4, and 40.0 μM GTPγS were added to the reaction 

mixture. After 10 minutes, the reaction was quenched with 30.0 μL malachite green and 

protected from light for 30 min. Pi was then determined by addition of 230.0 μL to a 96 – well 

plate using phosphate standards.  
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Crystallization Conditions, Data Collection and Structure Determination 

 Purified R208Q Gαi1•GTPγS was crystallized by using the hanging drop vapor diffusion 

method under slightly modified conditions (108). The total drop size of 6.00 μL was composed of 

4.80 μL protein solution (7.0 mg*mL-1 Gαi1•GTPγS, 80.0 mM HEPES pH 7.4, 120.0 mM succinic 

acid, 8.0 mM DTT, 1.0 mM GTPγS, and 25.0 mM MgSO4) and 1.20 μL reservoir solution (2.0 M 

(NH4)2SO3 pH 8.0). Aliquots of 1.0 mL reservoir solution were placed in each well of a 24 – well 

plate (VDX). Crystals formed after six days at 20 °C. The R208Q Gαi1•GTPγS crystals with the best 

morphology were transferred into a cryo-protectant (well solution supplemented with 25% (v/v) 

glycerol) before being flash cooled in liquid nitrogen. 

Monochromatic data sets were collected at the LS-CAT, Advanced Photon Source (APS) at 

Argonne National Laboratory (ANL). Diffraction data was collected at a wavelength of 0.98 at 

100K using a Dectris Eigen 9M detector. All data sets were indexed and integrated using 

HKL2000 . The best data set was processed to a resolution of 2.07Å. Data collection statistics are 

summarized in Table 3. 

The structure of R208Q Gαi1•GTPγS was solved by molecular replacement using PHASER 

in the Phenix software suit (109). The initial search model was based on a previously published 

structure of WT Gαi1•GTPγS (PDB code: 1GIA). Model building was performed using Coot and 

refined using Phenix and the structure was analyzed using Coot and UCSF Chimera (110). Final 

refinement statistics are presented in Table X (PDB code: XXXX). Structural figures were created 

using UCSF Chimera (110). 
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Molecular Dynamics Simulations 

 The coordinates of Gαi1•GDP (PDB ID: 1BOF,(86)) and Gαi1•GTPγS (PDB ID: 1GIA, (16)) 

were downloaded from the Protein Data Bank (PDB, (111)). Missing loops in the Gαi1 structures 

were modeled using Swiss-Model (112) and the corresponding transducin structures (PDB ID: 

1TAG,(13), 1TAD, (113) and 1TND,(15)). The simulations were done using procedures previously 

described (95). Unrestrained dynamics were run for 14 ns before the data were acquired for an 

additional 1 ns. The simulations were done at 37 °C (310 K) and 50 °C (328 K). These data were 

then used in the analyses. The R231H point mutation models were generated using VMD (114) 

and subjected to the same equilibration procedure as the wild-type structures. All molecular 

graphics diagrams were generated using UCSF Chimera (110). Pairwise Van der Waals and 

electrostatic interaction energies were calculated using nanoscale molecular dynamics (NAMD) 

(115). The solvent accessible surface area (SASA) was measured with the SASA routine in VMD. 

The values presented in Table 4 and in Figure 13 and Figure 14 were calculated for the final 1 ns 

in each simulation and then averaged. The simulation was equilibrated for 15 ns, and the 

interaction energy (Ei) between networking residues were calculated using NAMD. 

Results and Discussion  

Fluorescence Changes Resulting from Nucleotide Exchange 

 To determine if the oncogenic mutations affected GTP binding, we measured the rates of 

GDP exchange for GTPγS (a non-hydrolyzable GTP analog) in WT and mutant proteins. Time-

based intrinsic tryptophan fluorescence is a surrogate measure of Gα protein activity (80). 

Activation with nucleotide triphosphate results in an increase in fluorescence intensity 
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emanating from a change in the environment surrounding tryptophan residues to one that is 

more hydrophobic. Upon the addition of GTPγS, both WT Gαi1 and WT Gαs showed an increase in 

fluorescence intensity of approximately 35-40 % over a 100 min timespan (Figure 9A and B), 

which is within the expected range of 30-35 % for GTPγS activation reported in the literature 

(80). The mutants showed impaired increases in fluorescence intensity compared to their 

respective WT counterparts: the R208Q Gαi1 mutant exhibited an approximate increase of 20 % 

(Figure 9A), while the R231H Gαs mutant showed a 25 % increase (Figure 9B). W211 in Gαi1 and 

W234 in Gαs are the major contributors toward the intrinsic fluorescence of these proteins (95). 

The differences in the maximal fluorescence intensities between the WT proteins and their 

respective mutants can be attributed to these specific Trp residues moving into environments 

with different levels of hydrophobicity.  

The pseudo first-order rate of GTPγS exchange is limited by the rate of dissociation of 

GDP (kapp) (116). Using a similar analysis for the rate of change in fluorescence that was 

previously described (83, 117), the calculated kapp values for WT Gαi1 was 0.03 min-1 and 0.02 

min-1 for the R208Q mutant (Table 2). Under the same conditions, the WT Gαs showed a GTPγS 

exchange rate of 0.52 min-1 whereas, for the R231H mutant, kapp was 0.27 min-1 (Figure 9). 

Although the kapp values previously reported for Gαs are approximately two-fold higher, 0.28  

min-1 vs our observed 0.13 min-1, respectively (118)), their ratio is similar to that in our study, 

which might be due to the different methodology used and experimental conditions. In 

conclusion, both Gα mutants showed a decreased nucleotide exchange rate, but they were still 

able to bind GTP and attain the active conformation.  
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Figure 9. Changes in time-based fluorescence emission resulting from exchange of GDP for GTPγS 
bound to Gα proteins. Fluorescence intensities were normalized to zero upon nucleotide addition. (A) 
WT Gαi1 (black) vs R208Q Gαi1 (red). (B) WT Gαs (gray) vs the R231H mutant (blue). 
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Fluorescence Changes Resulting from GTP Hydrolysis 

 G-proteins function as molecular switches that turn on or off cellular responses. 

Therefore, the rate of GTP hydrolysis is what dictates the magnitude of the cellular response. 

Because the rate for nucleotide exchange is much slower than for hydrolysis, the steady-state 

turnover rate is largely determined by the release of GDP (81). All GTPases require a Mg2+ 

cofactor to function, and a highly conserved Ser is critical for Mg2+ coordination and holding it in 

the nucleotide binding site (13). In the GTPγS conformation, Mg2+ has an octahedral geometry 

and in addition to a Ser residue, is coordinated to a Thr residue, the β and γ phosphates of the 

nucleotide, and two water molecules. Uncoupling the conformational change from GTPase 

activity is critical for investigating the time the protein remains in the active state because it 

bypasses the much slower rate of nucleotide exchange (36).  

The single turnover rate of GTP hydrolysis was measured using two indirect, pre-steady-

state techniques. The fluorescence approach that was first used monitored the change in the 

hydrophobicity of key tryptophan residues that track conformational changes. As Mg2+ was 

added to apo Gα•GTP, the fluorescence intensity increased as a result of burial of Trp residues in 

the active state, but it quickly returned to zero as the bound GTP was hydrolyzed to GDP and 

inorganic phosphate (Pi) (Figure 10A, inset) (81). The half-life (t1/2) of the decay process was 

found to be 13.9 s for WT Gαi1 (Figure 10A) and 11.9 s for WT Gαs (Figure 10B). From t1/2, kcat 

values were calculated from the equation: kcat = ln(2)*t1/2
-1, resulting in a kcat of 2.9 ± 0.2 min-1 

for WT Gαi1 and 3.4 ± 0.5 min-1 for WT Gαs (Table 2). 
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Figure 10. GTP hydrolysis monitored by time-based fluorescence emission. Due to 
differences in Trp environments, the maximal fluorescence intensities of WT and 
mutant proteins were different. The decays were therefore normalized to a range of 
0 to 100. The assay was initiated by addition of Mg2+ at time zero (inset). (A) WT Gαi1 
(black) vs R208Q Gαi1 (red). (B) WT Gαs (gray) vs R231H Gαs (blue). 
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Previous research showed the rate of hydrolysis for WT Gαi1 to be 0.42 min-1 (36, 119), but upon 

the addition of RGS4, a GTPase activating protein (GAP), it was found to increase from 2.0 to 4.0 

min-1 via stabilization of the transition state (116, 119-121). WT Gαs shows a turnover rate 

comparable to Gαi1 at 3.4 ± 0.5 min-1 (Table 2), and with the value that was previously reported, 

3.5 min-1 (122). A malachite green assay was also used to confirm the fluorescence 

measurements. With this technique, the kcat value for Pi formation resulting from GTP hydrolysis 

was found to be 3.0 ± 0.1 min-1 for WT Gαi1 while for WT Gαs it was 3.6 ± 0.2 min-1 (Table 2). The 

R208Q Gαi1 showed lower kcat values by both methods: 1.5 ± 0.3 min-1 using fluorescence 

spectroscopy and 1.9 ± 0.3 min-1 with malachite green, indicating that the mutant has 

diminished hydrolytic activity. Conversely, the R231H mutant showed higher rates of GTP 

hydrolysis compared to WT Gαs with kcat values of 4.8 ± 0.2 min-1 and 4.4 ± 0.9 min-1 for the 

fluorescence and malachite green assays, respectively (Table 2).  

Structure of the R208Q Gαi1 mutant 

 The R208Q Gαi1 structure was solved by molecular replacement using a previously 

published structure of the WT Gαi1•GTPγS (PDB code: 1GIA ) (Figure 11)). The data was 

processed in the space group P 32 2 1, refined to a final Rwork/Rfree (%) 16.8/19.7 and, to a 

Table 2. Pseudo first-order rate constants for GTPγS exchange and GTP hydrolysis. 

Protein GTP exchange GTP hydrolysis Pi formation

WTGiα1 0.03 ± 0.01 2.9 ± 0.2 3.0 ± 0.1

R208Q Giα1 0.02 ± 0.01 1.5 ± 0.3 1.9 ± 0.3

WTGsα 0.52 ± 0.03 3.4 ± 0.5 3.6 ± 0.2

R231H Gsα 0.27 ± 0.02 4.8 ± 0.2 4.4 ± 0.9

Rate constants given in units of min-1

Errors reported as standard deviations, n≥3
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resolution of 2.07 Å. The final refinement statistics were done by Dr. Mascarenhas and are 

shown in Table 3. The X-ray crystal structure of the R208Q Gαi1 mutant closely resembles the 

previously solved WT Gαi1 structure (PDB entry 1GIA (16)). The most pronounced changes occur 

within the switch II region where the mutation is located. Arg is a longer residue than Gln, as 

shown by the electron density in the R208Q mutant, which properly correlates to a Gln residue 

length at the 208 position. In the WT protein, R208 forms a salt bridge with E245 of the α3 helix 

but because Gln is not charged, E245 in the R208Q mutant is only capable of hydrogen bonding 

with E245, thereby weakening the interaction between the switch II and α3 helix (Figure 11). 

Furthermore, R208 of the WT protein forms a hydrogen bond with R205 (also in the switch II 

region), constraining it away from the nucleotide binding site. Because Q208 is shorter, this 

hydrogen bond is not possible, allowing R205 to freely rotate. Compared to the WT Gαi1 protein, 

the R208Q mutation causes the Cα of the Q208 residue to move slightly toward the α3 helix by 

approximately 0.7 Å.  

Superimposition of the WTGαi1•GTPγS and the R208QGαi1•GTPγS structures revealed a 

root mean square deviation (RMSD) of 0.632 Å at the site of the mutation, but only 0.255 Å 

between 345 aligned alpha carbons (Cα) in the overall proteins. However, the functionally 

important motifs saw relatively more deviation from the WT. The RMSD of the switch I region 

(residues 177-183) is approximately 70% greater (0.367 Å). Focusing only on the switch II motif 

(residues 202-215), the RMSD drastically increases to 0.453 Å. The switch III region (residues 

232-240) experiences a minor increase with an RMSD of 0.292 Å. The α4-β6 loop, which is 

important for effector binding and is located near the posterior surface relative to the nucleotide 
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binding site, has an RMSD value of 0.244 Å. These 

calculations suggest that the microenvironments in 

the immediate vicinity of the mutation are altered 

while the distal motifs are left unperturbed. Given 

that the mutation is located on the flexible switch 

II region and is positioned near the similarly 

flexible switch I region, these results are not 

surprising. Because we were unable to obtain 

crystals for R231H Gαs, a similar analysis was not 

possible.  

 

Table 3. Refinement statistics of R208Q Gαi1 crystal structure  

Space group

Cell dimension

α, β, γ (deg)

a, b, c (Å)

Resolution (Å)

Rmerge 
a (%)

I/σ (I)

Rpim 
c (%)

CC ½ d

Completeness (%)

Multiplicity

No. Reflections

No. Unique Reflections

Rwork 
e/Rfree 

f(%)

No. of Atoms

protein

ligand

water

B factors

protein

RMSD

bond lengths (Å)

bond angles (deg)

Ramachandran plot (%)

most favored

allowed

outliers
aRmerge = Σ|Iobs − Iavg|/ΣIavg.
b The values for the highest-resolution bin are in 

parentheses.

d Pearson correlation coefficient of two “half”data 

cPrecision-indicating merging R 

eRwork = Σ|Fobs − Fcalc|/ΣFobs 

f Five percent of the reflection data were selected at 

random as a test set, and only these data were 

used to calculate R free.

0

Refinement

Data Proc essing

0.002

0.476

98.4

1.6

2565

32

207

28.9

10.7(8.0)

258246

24084

16.8/19.7

2.07

7.4(65.0)b

33.1 (2.8)

2.2(22.9)

0.999(0.871)

100.0(100.0)

P 32 2 1

90.0, 90.0, 120.0

79.5, 79.5, 105.4
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Figure 11. Structure of R208Q Gαi1•GTPγS (teal) superimposed on the structure of WT Gαi1•GTPγS (PDB ID 
1GIA, gray). Mg2+ (green) and GTPγS bind at the active site, which is surrounded by the three switch regions 
and the P-loop (above). The interaction between the switch II and the α3 helix are weakened resulting in the 
weakened interaction between the two motifs which also leads to R205 becoming mobile (right).  
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Computer Modeling of Intermolecular Interactions 

 G-proteins are highly conserved proteins both at the primary and the secondary structure 

levels. Key residues for GTP hydrolysis by Gαi1 have been identified: R242 (123), E43 (123), and 

S47 (124) (Figure 12). These residues are known to make up an intricate network involving 

hydrogen bonds, electrostatic interactions, and hydrophobic forces. R178 has been shown to be 

directly involved in hydrolysis by stabilizing the negative charge on the γ-PO4
2- (16). Solving the 

crystal structure for the R208Q Gαi1 mutant provided the opportunity for using computer 

modeling to probe intermolecular interactions in a dynamic state. It has been reported that the 

R208A Gαi1 mutant has an insignificant effect on GTP hydrolysis (36). This mutant proved to be 

useful in understanding the interactions present in GTP hydrolysis. We were able to model the 

R208A Gαi1 mutant after the previously solved WT Gαi1 structure (16). Although we were unable 

to obtain crystals for the R231H Gαs protein, the mutation was also simulated from the 

previously solved WT structure (52).  

As WT Gαi1•GTPγS shifts into the active conformation, a π-cation interaction is formed 

between R208 and W211, which contributes to the stability of the switch II region (85, 95). A 

similar interaction in WT Gαs occurs between the corresponding R231 and W234 residues. 

Following our MD simulation, the RMSD between the Cα of the 208 residue in Gαi1 became 3.82 

Å and 1.3 Å for the corresponding 231 position in Gαs, which suggests that the region around the 

mutation has become unstable in the Gαi1 but much less so in Gαs.  

We calculated interaction energies to determine if the destabilization of the switch II 

region propagated to the switch I and the α3 helix regions and, if present, how it affected the 
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specific interactions involved in GTP hydrolysis (Table 4). R242 in WT Gαi1 is located at the other 

end of the α3 helix relative to the affected W258. Its interaction with E43 has been shown to 

promote the transition to the active state and allow for nucleotide exchange (123). The WT 

Gαi1•GTPγS had a total interaction energy (sum of electrostatic and van der Waals) of -60.1 

kcal*mol-1 at a distance of 3.0 Å between R242 and E43, while, for the R208A Gαi1 mutant, the 

value was -62.3 kcal*mol-1 at a similar distance. The R208Q Gαi1 mutant exhibited an interaction 

with a magnitude of approximately half (-30.8 kcal*mol-1) of the WT protein at an increased 

distance of 5.2 Å (Table 4). The Gαs counterparts are R265 and E50. Table 2 shows that the 

corresponding interactions in Gαs remained unchanged as did the inter-residue distances.  

The P-loop is located near the β and γ phosphates of GTP and is a critical motif for the 

transition to the active state. In the inactive GDP-bound conformation, it forms an electrostatic 

interaction with the catalytic R178 Gαi1 (R201 Gαs) that is known to stabilize the leaving Pi in the 

switch I region (16, 117). A key difference between heterotrimeric Gα proteins and their Ras 

counterpart is the noticeable lack of an equivalent Arg in the latter. Ras proteins have 

significantly lower rates of basal GTP hydrolysis, however, the rate is dramatically increased by 

GTPase Activating Proteins (GAP), which contains a functionally equivalent switch I Arg (125). For 

WT Gαi1 and R208A Gαi1 proteins, E43 was at a distance of 4.6 Å or 5.1 Å from R178 and with 

similar interaction energies. In the R208Q Gαi1 mutant, E43 was positioned between the 

nucleotide and R178 at a much shorter distance (1.8 Å), resulting in a strong electrostatic 

interaction of -92.0 kcal*mol-1 (Table 4 and Figure 12A). For WT Gαs and R231H Gαs, both E50 and 
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R201 remained at comparable distances (Table 4 and Figure 12B) to that between E43 and R178 

in WT Gαi1, 4.0 and 4.8 Å, respectively, vs. 4.6 Å.  

Simulating the interaction between the R178 and γ-PO4
2- resulted in an Ei of -100.0 

kcal*mol-1 for WT Gαi1 and -72.7 kcal*mol-1 for R208A mutant at a distance of 2.8 Å for both. The 

R208Q interaction was drastically decreased to -27.0 kcal*mol-1 at a distance of 5.6 Å (Table 4). 

Therefore, the increased interaction with E43 hinders R178 from binding to γ-PO4
2- (Figure 12A). 

Gαs experienced the opposite trend where WT interacted with γ-PO4
2- with an Ei of -40.8 

kcal*mol-1 at a distance of 6.9 Å while the R231H mutant exhibited an attraction of -103.5 

kcal*mol-1 at a distance of 3.4 Å. In neither case, however, was there any structural hindrance of 

the Arg residue with γ-PO4
2-, as seen in Gαi1.  

Also in the P-loop are highly conserved Ser residues necessary for Mg2+ binding: S47 in 

Gαi1 and S54 in Gαs. Across all three Gαi1 simulations, this interaction was minimally altered: -38.9 

kcal*mol-1 for WT Gαi1, -30.2 kcal*mol-1 for R208Q Gαi1, and -30.3 kcal*mol-1 for R208A Gαi1, and 

the difference in the movement was 0.1 Å (Table 4and Figure 12A). Gαs underwent a more 

drastic change in which the R231H mutant showed an increased affinity for the Mg2+ ion with an 

Ei of -46.9 kcal*mol-1 vs -29.7 kcal*mol-1 seen in the WT protein. GTPase activity has been shown 

to be regulated by Mg2+ concentration (126), therefore the increased affinity for Mg2+ could be 

contributing to the higher rate of GTP hydrolysis seen in the R231H mutant. The R208Q mutation 

affected Gαi1 through perturbations in the α3 helix, and propagated to the P-loop and the switch 

I region, which ultimately prevented R178 from interacting with γ-PO4
2-. Conversely, the α3 helix 
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was not affected significantly in the R231H Gαs mutant, however, R201 in the switch I region and 

in the S54P-loop moved closer to the γ-PO4
2- and Mg2+, respectively.  

A)  R178 
E43 

R242 

R208 

Q208 

S47 

Switch II 

Switch I 

P-loop 

R201 

E50 

R265 

R231 

H231 

B)  

S50 

Switch II 

Switch I 

P-loop 

Figure 12. Superposition of the WT and mutant nucleotide binding sites after simulation. (A) R208Q 
Gαi1 mutant (teal) and WT Gαi1 (gray). (B) R231H Gαs mutant (blue) and WT Gαs (gray). Mg2+ is shown 
in green and the phosphates of the nucleotide are depicted in orange. 
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Gαi1     Gαs    

 Interaction Energy  Distance (Å)   Interaction Energy  Distance (Å) 

Interaction WT R208Q R208A  WT R208Q R208A  Interaction WT R231H  WT R231H 

R242 - E43 -60.1 -30.8 -62.3  3.0 5.2 2.0  R265 - E50 -87.2 -84.6  2.1 2.0 

E43 - R178 -33.0 -92.0 -32.0  4.6 1.8 5.1  E50 - R201 -34.6 -32.0  4.0 4.8 

R178 - γPO4
2- -100.0 -27.0 -72.7  2.8 5.6 2.8  R201 − γPO4

¯ -40.8 -103.5  6.9 3.4 

Mg 2+ - S47 -38.9 -30.2 -30.3  2.2 2.3 2.1  Mg 2+ - S54 -29.7 -46.9  2.2 2.0 
Interaction Energy reported in kcal*mol-1 

Table 4. Interaction energies and distances between networking residues that are involved in GTP hydrolysis. Interaction energies calculated are a combination of electrostatic and 
Van der Waals interactions 
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Within the switch II region, an interaction between F215 and W258 in the WT Gαi1 seems 

to be missing in the R208Q mutant, which causes the α3 helix to shift away compared to WT. 

This interaction is not found in WT Gαs and therefore the α3 helix is left largely unperturbed.  

In both proteins, Q204 in Gαi1 (Q227 in Gαs) is believed to be crucial for hydrolysis to 

occur via interactions with a nucleophilic water (6). Our simulations are inconclusive as to 

whether the catalytic Q204 is affected by the R208Q mutation because this residue may orient 

the nucleophilic water but cannot be observed in a water box and remain in the nucleotide 

binding site. We attempted to use the nucleotide as a reference point but the modeled R208A 

Gαi1 interaction energies were not significantly different from those for the R208Q Gαi1 mutant, 

which is not consistent with the known similarity of the rates of GTP hydrolysis of WT and R208A 

proteins.  

There are currently no crystal structures of Gαi1 in complex with AC but the contact 

residues have been identified as E207, R208, K209, and I212 from the switch II region, and K312, 

R313, K314, K315, T316, and E318 of the α4-β6 loop (52). To determine if the oncogenic 

phenotype is a result of an inability to properly bind AC, the surface accessible surface area 

(SASA) values for the Gαs-AC complex interface were compared to those for WT Gαi1 and its 

R208Q Gαi1 mutant alone (Figure 13A). Of these, only the R313 and K314 residues have 

significantly different SASA values. WT R313 has a SASA value of 156.9 ± 13.4 Å2 and is less 

exposed to solvent than R313 in the R208Q mutant, which has a SASA of 178.5 ± 12.6 Å2. The 

SASA value of K314 in WT Gαi1 was 56.5 ± 8.2 Å2 vs 102.3 ± 12.6 Å2 in the R208Q mutant. The 

difference in SASA between the WT and R208Q proteins is -34.9 Å2, suggesting that the interface 
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between the R208Q Gαi1 – AC would be largely left unaltered, and the interaction with AC would 

be similarly efficient. Using the overall SASA values to estimate the relative strengths of the 

WTGαi1 – AC and R208Q Gαi1 – AC interfaces is limited by the fact that the calculations are based 

on models rather than on actual structures of Gαi1 complexes. This assessment also fails to take 

into account the post-translational myristoylation at glycine 2 that has been shown to be 

necessary for Gαi1 to bind AC (22).  

Although Gαs undergoes a post-translational lipidation in which a palmitoyl group is 

added to the N-terminus that allows it to bind the membrane, however, it is not necessary to 

bind AC (23). A crystal structure of Gαs in complex with AC has been solved (PDB ID 1AZS) and the 

interface is known. R231, R232, W234, Q236, N239, L272, N279, R280, W281, L282, R283, and 

T284 have been shown to interact with the C2 domain of AC (54). In vivo studies have previously 

shown that the R231H Gαs mutation decreases cAMP accumulation (118, 127). Furthermore, it 

has been shown that the R231H mutation does not inhibit binding of Gαs to AC (118). Using the 

structure of WT Gαs complexed with AC (54), we were able to confirm these results by modeling 

the interface residues. The sum of the interactions between interface residues was -192.9 

kcal*mol-1 for WT Gαs and -191.5 kcal*mol-1 for the R231H mutant (Figure 14). Additionally, the 

SASA of Gαs alone was comparable to the results seen in Gαi1, the surface area of all the residues 

that contact AC was not changed significantly (Figure 13B). These calculations agree with those 

findings by showing that since the R231H Gαs mutant shows an increased rate of GTP hydrolysis, 

the overall duration of the stimulating Gαs – AC interaction would be shorter, therefore, resulting 
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in decreased cAMP production by AC. Conversely, the lower GTPase activity of Gαi1 results in a 

longer inhibiting Gαi1 – AC interaction that would also lead to lower cAMP concentrations.  
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Figure 13. SASA of the residues that interact with the C1 domain of AC. A) WT Gαi1 (black) vs R208Q Gαi1 (red) B) 
WT Gαs (gray) vs R231H Gαs (blue). Values given in Å2, and errors reported as standard deviation. 
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Conclusion  

The crystal structure of the R208Q Gαi1 mutant is similar to the WT but important 

differences in the switch regions likely affect the function of the protein. Using two indirect 

experimental approaches, we showed that the GTPase activity is decreased in the Gαi1 mutant 

but increased in the Gαs mutant. MD simulations suggest that the microenvironments in the 

vicinity of the mutations are altered thereby affecting the interaction of key residues in the 

nucleotide binding site. In R208Q Gαi1, the energy of the interaction between E43 and R178 

increased hindering catalysis by preventing the guanidinium group of the R178 from stabilizing 

the negative charge on the leaving Pi. R231H Gαs is affected in the opposite manner with an 

increase in Ei between the comparable R201 and γ-PO4
2- compared to the WT protein, which is 

amplified by the increased Ei seen between S50 and the Mg2+ cofactor. Modeling the binding site 

of Gα proteins and AC shows that the interface is minimally affected suggesting that the 

Figure 14. Interaction energies between Gαs and AC modeled from 1AZS structure. WT Gαs (gray) vs 
simulated R231H Gαs (blue). Units of kcal*mol-1, errors reported as standard deviations. 
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differences in cAMP accumulation reported by in vivo studies are primarily a result of changes in 

the rates of GTP hydrolysis.  
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CHAPTER THREE  

PROTEIN FOLDING OF THE R208Q MUTANT 

Guanine nucleotide-binding proteins (G-proteins) are regulatory membrane-bound 

proteins that play an indispensable role in transferring extracellular information across the cell 

membrane to affect intracellular events. G-proteins are heterotrimeric in that they are 

composed of an α subunit (Gα), which regulates the activity of the effector protein, and a βγ 

subunit complex (4). Inactive Gα subunits are complexed with G-protein coupled receptors, that, 

once activated by specific ligands, induce conformational changes in the Gα subunits, which 

prompt the exchange of guanosine 5’-diphosphate (GDP) for guanosine 5’-triphosphate (GTP) 

and the dissociation of the βγ dimer (128-130). An α-subunit regulates the appropriate enzyme 

through direct contact. This process is self-regulated, with hydrolysis of bound GTP to GDP 

effectively deactivating Gα and reforming the heterotrimeric G-protein (128).  

G-proteins are involved in stimulus-sensitive signal transduction pathways that have been 

fine-tuned to allow the cell to respond to changes in the environment. Disruptions in this balance 

may lead to disease states. While there are four families of Gα proteins (8), we limited this study 

to Gαi1 and Gαs, which regulate the activity of adenylyl cyclase (AC) (Figure 15) (131). Gαs, 

encoded by the GNAS gene, up-regulates the synthesis of the secondary messenger cyclic AMP, 

and the GNAI1 gene that encodes for Gαi1, decreases the concentration of cAMP (50). GNAS 

mutations are found in several cancers, including thyroid, large intestine, pituitary, adrenal 
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glands, biliary tract, pancreas, and the central nervous system (68, 74). Mutations in GNAI1, on 

the other hand, are associated with carcinomas in the large intestine and are found in 

hematopoietic and lymphoid tissue, and in the upper digestive tract (68). The mutations in GNAS 

and in GNAI1 genes have been observed in 4.2% and 0.4% of human cancers, respectively (68, 

104). 

One mutation of interest involves an arginine (Arg) located close to a tryptophan (Trp) in 

the conserved switch II region of Gα subunits (52, 86, 132). Figure 15 shows that the guanidinium 

group of R231 in Gαs (R208 in Gαi1) is involved in a π-cation interaction with the indole ring of 

W234 Gαs (W211 in Gαi1) when the protein is in the active conformation (13, 15, 17, 85). The 

oncogenic mutations, R231H in Gαs and R208Q in Gαi1, disrupt this interaction, which has been 

shown to be crucial for protein stability (133). Furthermore, it has been reported that the R231H 

Gαs mutation results in a decrease in cAMP production (118), although the mechanism of action is 

unknown. Loss of the π-cation interaction could cause changes in the secondary structure by 

altering the points of contact between Gα subunits and AC. Alternatively, these mutations could 

cause changes in the positions of residues vital to GTPase activity.  

The focus of this study is to gain an understanding of the structural differences on the 

protein stability of the oncogenic R231H in Gαs and R208Q in Gαi1 mutants. Several biophysical 

spectroscopic techniques was used for monitoring temperature-induced denaturation. Our 

results indicate that the Arg mutations that resulted in the loss of the π-cation interaction were 

not evident in the secondary structures at room temperature, but a decrease in protein stability 

was observed at higher temperatures. Computational methods were used to interpret the 
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structural variations in the WT Gαs and Gαi1 proteins and their corresponding mutants. 

 

Materials and Methods 

Expression and Protein Purification  

Gαi1 and Gαs were obtained and purified as previously described (95, 107). Arg single-

point mutants of Gαi1 were prepared by site-directed mutagenesis using a Quickchange II kit by 

Agilent (La Jolla, CA). Gαs mutant was purchased from Bio Basic. After purification on a Ni2+ 

affinity column followed by a Superdex 200-pg size exclusion column, the purity of GDP-bound 

Figure 15. Crystal structure of WT Gsα•GTPγS displaying its four tryptophan residues (green), fourteen tyrosine residues 
(purple), GTPγS bound nucleotide (yellow), Mg2+ (green sphere), and R234 (red) that is involved in a π-cation interaction with 
W234. (PDB ID: 1AZT)  
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Gα proteins was found to be greater than 95% as estimated by SDS – PAGE. Protein was stored at 

-80 °C in 20 mM Tris, pH 8.0 buffer containing 10% (v/v) glycerol, and 1 mM DTT.   

Fluorescence-Monitored GTPγS Exchange  

Experiments were performed with a PTI QuantaMaster fluorimeter (Photon 

Technologies, Inc., Mirmingham, NJ). Indirect activity assays were conducted with excitation and 

emission wavelengths set at 280 nm and 340 nm, respectively. Assays were initiated after 60 sec 

by the addition of 20 μM of GTPγS to pre-incubated 400 nM Gα• GDP protein samples in buffer 

containing 50 mM HEPES, pH 7.5, 2 mM MgSO4, and 1 mM DTT, and was monitored for 3 hr at 

25 °C. The GDP- and GTPγS- bound proteins that were characterized by the activity assays were 

used in the following denaturation studies.  

Fluorescence-Measured Protein Denaturation. 

Emission spectra for both GDP- and GTPγS-bound proteins were recorded over the 

wavelength range of 300 to 400 nm with the excitation wavelength set at 280 nm.  Signal 

integration time was 0.2 sec with the bandpass for excitation and for emission set at 5 nm. The 

denaturation experiments started at a temperature of 4 °C followed by 4 °C increments and 

concluding at the highest temperature before precipitation occurred.  There was a 2 min 

equilibration period at each set temperature. All Tm values were calculated from fluorescence 

intensities at the spectral λmax positions for the selected temperatures, using methods adapted 

from those previously described (134).  

 



56 

 

UV/Vis-Measured Protein Denaturation   

The environments of Tyr (and to a lesser extent Trp) residues in Gα proteins were 

monitored on a Hewlett Packard UV – Vis spectrophotometer.  All samples contained 50 mM 

Tris, pH 7.5, 1 μM Gα•GDP protein, 1 mM DTT, and 2 mM MgSO4.  Prior to initiating the 

experiments, samples were incubated with their respective nucleotide, 2.5 μM Gα•GDP or 20 μM 

GTPγS, at room temperature for 1 hr. The temperature was increased from 20 °C to 80°C, at 0.3 

°C*min-1 over 180 mins. For each temperature studied, samples were equilibrated for 1 min and 

the absorbance was monitored in the wavelength range of 220 – 300 nm.  All melting 

temperatures were calculated from the absorbance values at 280 nm values for the different 

temperatures, using methods previously described (135). 

CD-Measured Protein Denaturation  

Experiments were performed using an Olis DSM 20 circular dichroism 

spectrophotometer.  All samples were placed in a cylindrical quartz cuvette with a 1 mm 

pathlength and contained either 3 μM Gα•GDP or 24 μM Gα•GTPγS, in 10 mM phosphate, pH 7.5 

buffer, 1 mM DTT, and 2 mM MgSO4. Data were collected at 150 V every 1 nm in the wavelength 

range of 190 nm to 260 nm. The temperature was increased from 20 °C to 100 °C at 4 °C 

increments with an incubation time of 3 min at each temperature studied.  The CONTIN LL 

algorithm was used to deconvolute the spectra using reference sets with denatured proteins 

(97) to calculate the percent of each type of secondary structure and Tm values for each protein 

studied (136, 137).   



57 

 

Results and Discussion 

The π-Cation interaction in Gα Subunits:  

Upon activation, the Trp located in the switch II region of Gα proteins moves from a less 

hydrophobic into a more hydrophobic microenvironment, which results in a 30-45% increase in 

the fluorescence intensity (Figure 16) (85, 95)(80, 95, 138). We observed a red-shift when 

comparing the differences in wavelengths at maximal emission intensities (λmax) of the WT Gαs 

and its R231H mutant in the GDP and GTPγS conformations (Figure 17A). The red-shift was a 

result from a π-cation interaction between the positively charged guanidinium group of R231 in 

Gαs (R208 in Gαi1) with the π-electron system of W234 Gαs (W211 in Gαi1) (85, 95). Red-shifts of 

3.1 ± 0.3 nm and 3.45 ± 1.0 nm were observed at 20 °C for WT Gαs and WT Gαi1, respectively 

(Figure 17B and Figure 18). The red-shift for WT Gαs gradually decreased up to 52 °C, after which 

it became a blue-shift until precipitation occurred at 68 °C. This observation signifies that the 

electrostatic interaction between W234 and R231 weakens as the protein unfolds and severs at 

higher temperatures resulting in a blue-shift. The R231H Gαs mutation afforded a Δλmax value of 

1.6 ± 0.2 nm (blue-shift) at 20 °C, revealing a disruption of the π-cation interaction when 

compared to the WT Gαs (Figure 17B). R231H Gαs is missing the positive charge of the Arg 

residue, thus the π-electrons of W234 can no longer form electrostatic interactions and instead 

move into a hydrophobic pocket after activation. With an increase in temperature, the Δλmax 

value of the R231H Gαs mutant did not change significantly until R231H Gαs•GDP precipitated at 

72 °C, indicating that W234 does not form new interactions with other charged residues in the 

switch II region during thermal denaturation.  
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Figure 16. The microenvironment hydrophobicity surrounding W211 as it goes from it inactive to its active 
conformation. Blue represents a more hydrophilic red represents a more hydrophobic environment. From PDB: 
1GIA. 
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Similar to the WT Gαs protein, the red-shift of WT Gαi1 was inversely correlated with 

temperature, but it did not become blue-shifted as the temperature increased (Figure 18). The 

differences in the two systems could be attributed to the increased stability of the WT 

Gαi1•GTPγS compared to WT Gαs•GTPγS (139). The greater stability would require higher 

temperatures to disrupt non-covalent interactions, protecting the π-cation interaction in the 

active conformation of WT Gαi1. As for the behavior of the R231H mutant discussed above, a 

temperature-dependent decrease in the magnitude of the blue-shift would be expected for the 

R208Q Gαi1 mutant. However, a red-shift of 1.7 ± 0.7 nm was observed at 20 °C. The red-shift 

gradually declined to a negligible Δλmax value of 0.3 ± 0.8 nm until denaturation occurred at 60 °C 

(Figure 18). The measured red-shift at 20 °C was unexpected, suggesting the presence of another 

interaction mechanism for stabilization of π-electrons that was absent in the WT Gαi1, R208Q 

Gαi1•GDP, and Gαs systems.  

Figure 17. A) Normalized emission spectra of WT Gαs•GDP•Mg2+before (blue) and after (red) activation with GTPγS at 20 °C; 

B) Temperature variation of the difference between the max values of the GTPS and GDP conformations of WT Gαs (gray) 
and Gαs R231H (blue). 
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To investigate this possibility, we applied molecular dynamics to WT Gαi1 and R208Q Gαi1. 

To determine the conformation-dependent intermolecular changes that give rise to the red shift, 

we used the inactive protein as a reference to calculate the differences in the electrostatic 

interaction energies of the GTPγS and GDP conformations. For WT Gαi1 the difference in 

interaction energy between the W211 and the R208 residues is -3.98 kcal*mol-1, while, for the 

R208Q mutant, the W211-Q208 interaction is weakened to -0.84 kcal*mol-1 (Table 5) indicating 

that, because there is a weaker interaction with W211, the red-shift is unlikely due to an 

interaction between these residues (140). Further examination revealed that, for the mutant, 

Q208 has a weaker electrostatic interaction with E245 (-1.22 kcal*mol-1) at the end of the α3 

helix, than R208 in WT Gαi1•GTPγS (-79.75 kcal*mol-1), thus perturbing both the α3 helix and the 

switch II region (141). These disruptions propagate outwards towards F215 and orient it into a 

position that can interact with F199 (Figure 19). A T-oriented π-π stacking with Van der Waals 

interaction energy of -1.59 kcal*mol-1 is formed in the active conformation, which is not found in 

the WT Gαs, R231H Gαs, and WT Gαi1 systems.  

In addition to calculating interactions energies (Table 5), changes in surface area solvent 

accessibility area (SASA) when GDP is exchanged for GTP (Table 6) were also determined to gain 

Table 5. Interaction energies within residues from the WT Gαi1 and Arg mutants  

 

WT R208Q WT R208Q WT R208Q WT R208Q

-3.98 -0.84 -6.24 0.99 -10.22 0.15 4.42 6.13

-79.75 -1.22 2.28 0.04 -77.47 -1.18 2.61 5.07

0.04 -0.01 -0.16 -1.59 -0.12 -1.6 8.93 4.83

1.9 -1.05 -0.16 -0.27 1.73 -1.31 6.05 5.2

F215-F199

W258-F259
Calculated interaction are in kcal/mol

Distances  measured in Å

Electrostatic VdW Total Distances 

W211-R208(Q)

R208(Q)-E245
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insight into the interactions in these proteins. The 

change in SASA value for W211 in WT Gαi1 was -121 

Å2 compared to -57 Å2 in R208Q, but for W258, it 

decreased to -98 Å2 in the R208Q protein from -37 

Å2 in the WT Gαi1 (Table 6). Therefore, as an 

interaction between F199 and F215 is formed during activation, a gap opens up between the 

switch II region and 3 helix, allowing water to enter, thereby reducing the contribution of W211 

the fluorescence intensity as measured by an increase in SASA. The changes in SASA values 

indicate that W258 becomes the primary contributor towards fluorescence intensity at 350 nm 

as well as explains the lower intensity observed in the R208Q mutant (Figure 20). In both WT and 

R208Q proteins, the W258 residue interacts with F259 in a π-π interaction. In WT and R208Q Gαi1 

proteins, the calculated total interaction energies are relatively strong -18.47 and -16.46 
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Figure 18. Temperature variation of the difference between the max values 

of the GTPS and GDP conformations of carious WT Gαi1 (black) and Gαi1 
R208Q (red). 
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W211 -121 -57
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kcal*mol-1, respectively (Table 5). Therefore, when W258 in the R208Q moves into a 

hydrophobic environment, a red shift is predicted as observed at 20 °C (Figure 18).  

Temperature Denaturation of Gα Proteins:  

Cation-π interactions contribute to protein stability and previous experiments suggest 

that disruptions in mutant proteins can propagate through networks of non-covalent interaction 

(87, 133, 142, 143). To gain a complete picture of the impact of disrupting π-cation interactions, 

thermal denaturation experiments were used to test the structural stability of the WT and 

mutant proteins. The melting temperatures (Tm) values were estimated for the active and 

Figure 19. Relative interresidue interactions in WT Gαi1  (gray) and in R208Q 
(green) in the GTPγS  conformation. 
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inactive conformations of the Arg mutants and compared to the respective WT proteins. 

Denaturation was measured via the changes in fluorescence intensity and UV absorbance 

resulting from changes in the solvent exposure of Trp and from tyrosine (Tyr) residues, and from 

the change in the percent secondary structure.  

Solvent Exposure of Trp residues:  

The fluorescence emission spectra profile of the oncogenic mutants was measured 

between 20 - 80 °C. The decrease in fluorescence intensity due to the exposure of Trp to 

increasingly hydrophilic environments during unfolding was used to estimate melting 

temperatures for WT Gαs , R231H Gαs, WT Gαi1, and R208Q Gαi1 proteins (Figure 21A, Table 7). 

The fluorescence intensity of WT G1α1•GDP decreased by 53% as the protein was heated from 

20 °C to 50 °C (Figure 22A), and continued declining until 70 °C, at which point there was no 

change in intensity and the protein was fully unfolded. A Tm value of 41.1 ± 3.0 °C was previously 

Figure 20. Emission Spectra of WT (black) and R208Q (red) Gαi1 proteins in the GTPγS conformations 
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determined for WT Gαs•GDP and the 39.0 ± 1.1 °C for WT Gαi1•GDP (Table 7) (139). The observed 

fluorescence Tm values for the R231H Gαs•GDP and R208Q Gai1•GDP mutants were not 

significantly different (0.2 to 0.9 °C lower) when compared to their WT counterparts (Table 7), 

which is reflected in 52% decreases in fluorescence intensity for both mutants in the GDP 

conformation (Figure 22 A and C). The π-cation interaction only forms in the active conformation 

and the Arg residue is not involved in structurally significant interactions in the GDP 

conformation. Therefore, the loss of the stabilizing effect from the π-cation interaction would 

not be evident in non-covalent interactions in the inactive conformation (139). Although the Tm 

measurements are technique-dependent, there were no significant differences between the 

mutant and their respective WT protein in the GDP conformation (Table 7) (139).  

Table 7. Estimated melting temperature (°C) for Gα WT and mutant proteins using three spectroscopic methods. Protein variant GDP GTPγS GDP GTPγS GDP GTPγS

Gαs WT 41.1 38.7 51.9 57.4 53.5 63.7

Gαs R231H 38.8 34.8 50.9 56.3 50.5 54.9*

Gαi1 WT 39.0 48.7* 44.2 70.9* 47.6 66.5*

Gαi1 R208Q 35.1† 36.9*† 44.1 56.8*† 46.6 59.5*†

Temperatures  given in °C, S.E.M. ≤ 3, n ≥ 3 for a l l  measurements

* = P ≤ 0.05 vs  GDP-bound conformation

† =  P ≤ 0.05 vs  WT in the same conformation

Fluorescence CD UV/Vis

Protein variant GDP GTPγS GDP GTPγS GDP GTPγS

Gsα WT 41.1 ± 1.7 38.7 ± 1.0 51.9 ±  2.0 57.4 ± 1.5* 53.5 ± 1.4 63.7 ± 1.1

Gsα R231H 38.8 ± 0.5† 34.8 ± 0.8* 50.9 ± 2.7 56.4 ± 2.4* 50.5 ± 1.8† 54.9 ± 0.9*

Giα1 WT 39.0 ± 0.6 48.7 ± 2.0* 44.2 ± 0.5 70.9 ± 2.0* 47.6 ± 0.1 66.5 ± 0.2*

Giα1 R208Q 35.1 ± 2.5† 36.9 ± 0.3*† 44.1 ± 2.1 56.8 ± 1.8*† 46.6 ± 0.1 59.5 ± 0.2*†

† = Stastically different than WT with comparable conformation

Fluorescence Circular Dichroism UV/Vis Spectroscopy

Temperatures given in °C

* = Stastically different than GDP-bound conformation of same variant
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In the case of the active conformation, the melting temperature profiles for WT and 

mutant proteins are different. The Tm value for the R231H Gαs•GTPγS mutant is significantly 

lower than that of the WT in the active and inactive conformations. The Tm values for the R208Q 

Gαi1 mutant was 11.8 °C lower compared to the WT. The larger ∆Tm observed for the Gαi1 protein 

is consistent with the propagation of the destabilizing effect of the R208Q Gαi1 mutation as 

evidenced by the continued presence of a red-shift, corroborating the changes to the non-

covalent interactions. A comparison of the fluorescence intensities at 20 °C and 50 °C for R208Q 

Gαi1•GTPγS and WT Gαi1•GTPγS illustrates the drastic difference in Trp microenvironments at 

Figure 21. Temperature dependence of the A) 
Fluorescence emission spectra of R231H Gαs •GTPγS 
as a fuction of temperature (20 -100 °C) B) 
Absorption spectra of 2.5 μM WT Gαi1•Mg2+ in the 
GDP (blue) and GTPγS (red) conformations, and of 
the C) CD spectra of 1.0 μM WT Gαi1•GDP•Mg2+. 
Temperature given in °C. 
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higher temperatures. A 62% decrease in fluorescence intensity (Figure 22D) was observed for 

R208Q Gαi1•GTPγS compared to 33% decrease for WT Gαi1•GTPγS (Figure 22B).  

Solvent Exposure of Tyr residues and temperature dependence of secondary structure:   

Analogous to the fluorescence experiments, the estimated Tm values from UV/Vis 

spectrophotometry and from the secondary structures for the mutants were significantly lower 

than the respective WT proteins in the GTPγS conformation (Table 7). The ∆Tm occurred only for 

the active conformation, whereas the R231H Gαs mutant was 8.8 °C lower (Figure 21B) and the 

R208Q Gαi1 was 7.0 °C lower for UV/Vis, and, for circular dichroism (CD), R231H Gαs mutant was 

4.0 °C lower (Figure 21C) and the R208Q Gαi1 was 14.2 °C lower for CD than their WT 

counterparts (Table 7). These calculations support the hypothesis that the π-cation interaction is 

integral to the stability of Gα subunits in the active conformation and that, at higher 

temperatures, its disruption propagates outward, thereby altering the non-covalent interactions 

in the overall protein structure.  

Interestingly, the loss of the π-cation interaction results in a change in the unfolding 

progression. For the active conformation of WT Gαs, the calculated Tm values indicate that the 

denaturation initiates at the hydrophobic Trp microenvironments and then radiates toward the 

secondary structure, followed by the Tyr residues at the surface. In contrast, for the WT Gαi1, the 

disruption begins in the Trp environments, though the unfolding around Tyr residues precedes 

the loss of the secondary structure. However, both Arg mutants deviate from these paths. 

Starting from the local Trp environments, the secondary structure and the outer surface unfold 
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simultaneously, indicating that the lack of the π-cation interaction changes the propagation of 

the non-covalent network within the mutant proteins (144, 145).  

Secondary Structure Content:  

Circular dichroism was also used to probe the secondary structure content of the inactive 

and active conformations at various temperatures. The measured R231H Gαs•GDP α-helical 

content at 20 °C was 32.7 ± 1.2 % vs. 34.8 ± 1.6 % in WT Gαs•GDP, showing an insignificant 

difference in the secondary structure compared to literature values (13, 52, 86, 139). Like the 

inactive conformations, GTPγS-bound proteins exhibited an α-helical content of 33.0 ± 1.7 % for 

R231H Gαs•GTPγS vs. 36.0 ± 2.7 % for WT Gαs•GTPγS at 20 °C. The R208Q Gαi1 mutation resulted 

in similarly insignificant differences in α-helical content for the active and inactive conformations 

of the WT and mutant Gαs proteins. These results were unexpected given that there was a 

significant decrease in the stability of the arginine mutants. This suggests that, although there is 

a change in protein stability, the arginine mutation may not change the interaction with the AC 

effector. The change in the cAMP production caused by the arginine mutation is more likely due 

to a change in the rate of hydrolysis of the GTP nucleotide.  

When the temperature was increased from 36 °C to 64 °C for the active conformations of 

WT as well as for the Gαs and Gαi1 mutant proteins, the CD spectra showed a dramatic change in 

secondary structure, with a 15% – 20 % decrease in the amount of α helices. The primarily α – 

helical proteins became increasingly dominated by β – sheets, increasing from 10 % to 30 % 

(Figure 23). Temperatures above 64 °C displayed little change in the spectra and the protein 

eventually precipitated at 84 °C. 
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Neither mutation significantly diverged from their WT counterpart, as was expected from the 

previously discussed stability study. 

In the case of the active GTPγS conformations, the secondary structure of the WT and 

mutants of Gαs and Gαi1 proteins did not significantly diverge in the temperature range 20 °C to 

40 °C, but for temperatures between 32 °C and 64 °C a dramatic deviation from WT Gαs was 

observed in the α – helical content of R231H Gαs (Figure 23) and R208Q Gαi1 mutants (data not 

shown). The occurrence of unfolding in the α-helical structure at different temperatures may be 

related to the lack of the π-cation interaction in the mutant proteins.  
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Figure 22. Intrinsic Trp florescence of WT and R208Q Gαi1 proteins. Emission spectra of 0.4 μM of 
Gαi1•Mg2+ at 20 °C (blue) and 50 °C (red) of WT in the A) GDP or B) GTPγS conformations, and of R208Q 
in the C) GDP or D) GTPγS conformations.  
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Conclusion  

This study highlights the importance of the π-cation interaction towards protein stability. 

Mutations of an essential Arg residue involved in the interaction leads to a destabilization of the 

switch II region and the complete loss of the red-shift in the case of R231H Gαs. The R208Q 

mutation in Gαi1 did not abolish the red-shift with an increase in temperature, leading us to 

conclude that the decreased interaction between residues Q208 and E245 results in the 

weakening the structural integrity in the immediate vicinity of the residues. The weak Q208-E245 

interaction propagated outward, leading to the formation of an F199-F215 π-π interaction in 

R208Q Gαi1•GTPγS. As a result, the W258 residue, which is involved in a π-π stacking interaction 

with F259, moves into a more hydrophobic microenvironment thus accounting for a red-shift.  

Figure 23. Calculated % secondary structure of A) α - helices and B) β - sheets in the GTPγS conformations of WT Gαi1 
(black) and R208Q (red) as a function of temperature. 
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Although the mutations alter the position of several residues, they do not change the 

secondary or tertiary structures at room temperature as measured by CD. These results suggest 

that the differences in production of cAMP between WT and mutant proteins are not a 

consequence of changes in the contact points between AC and Gα subunits (118). While the 

structures are not changed at room temperatures, at higher temperatures there are significant 

decreases in the percent of α – helices. The cleavage of the π-cation interaction most likely does 

not directly modulate the levels of cAMP by altering the secondary structure, but the changes in 

the non-covalent interaction network could translate in functional modifications at the level of 

GTP hydrolysis.  
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APPENDIX A  

EFFECT OF A DOUBLE MUTANT ON THE SWITCH II REGION
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 Chapter 3 investigated the π - cation interaction between W211 and R208 present in the 

active conformations of Gαi1 proteins (85) where we demonstrated that disrupting this 

interaction had consequences for stability as measured by relative Tm values. We further 

explored this feature to determine if the proximal R205 residue can interact with W211 to create 

the π - cation interaction seen in WT and R208Q proteins. By using the same spectroscopic 

techniques as in chapter 3, we investigated whether the double mutant (R205A/R208Q) can act 

as a substitute for a π-cation interaction.  

The crystal structures of the Gαi1 proteins in the inactive GDP-bound conformation (86), 

active conformation using GTPγS (a non-hydrolyzable GTP analog) (16), as well as in the AlF4
- (a 

γ-phosphate mimetic) (120), have been solved. Gα is composed of two domains: the α-helical 

domain and the GTPase domain. In the GTPase domain there are switch regions known as switch 

I, switch II, and switch III that are located near the nucleotide-binding site. The switch regions 

undergo a drastic structural change when going from the inactive GDP-bound conformation to 

the active GTP-bound conformation (146). In the GDP-bound state, switch II and switch III are 

unordered, but, upon activation, they become ordered around the γ-phosphate of GTP.  

The R208Q mutation in Gαi1 is observed in intestinal cancers (68). However, the 

mechanism by which this mutation contributes to tumor progression is not known. The Arg in 

the switch II region of the GTPase domain is involved in two events during the hydrolysis of GTP. 

First, the formation of a π-cation interaction formed with W211 (Figure 24), promoting a 

conformational change to the active state. Secondly, R208 represents an important member in a 

network of residues necessary for the binding and stabilization of GTP and magnesium (Mg2+). 
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This arginine plays a central role in the function of Gαi1. Further analysis of the structure reveals a 

similarly positioned R205 residue which is also part of a random coil in the switch II region, giving 

it the freedom to rotate freely. R205, therefore, could be a potential π-acceptor, allowing the π-

cation interaction to form and further stabilize the protein. The double mutant Gαi1 

R205A/R208Q was prepared to test this hypothesis. 

Figure 24. WT Gαi1 structure. Switch I (green) switch II (orange) and switch III (pink) undergo significant structural changes 
upon activation. This brings R208 near W211 which creates a π-cation interaction causing a red shift. 
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The focus of this study was to determine if R205 could be used as a substitute to R208 in 

the π-cation interaction in the active conformation and to compare the stability of the WT Gαi1 to 

a double mutant of the Gαi1 protein carrying both R205A and R208Q. We did this from different 

vantage points including inside the core of the protein to its surface of the protein and overall 

secondary structure. The structural stability of WT was compared to the oncogenic R208Q and 

the R205A/R208Q double mutant by measuring melting temperatures (Tm) calculated from 

several biophysical techniques.  

Gilman and colleagues have reported that fluorescence could be used as an indirect tool 

to monitor the GTPase activity of Gα-proteins (80, 81). As the protein moves into the active 

conformation, the intrinsic tryptophan fluorescence increases, while the net tryptophan 

movement is to a more hydrophobic environment. Gilman and colleagues found that a properly 

functioning Gαi1 should see a ~40% increase in fluorescence of upon activation. Unbound 

tetrafluoroaluminate (III) (AlF4¯) resembles a phosphate in size and geometry however upon 

binding, switches from a tetrahedral to square planar geometry. AlF4¯ activation does not 

require GDP exchange resulting in the first order reaction rate which mimics the transition state 

and can be measured with fluorescence. Using this technique for WT Gαi1, we also report an ~40 

% increase in following the addition of AlF4¯ (Figure 25), which is in agreement with the results 

found by Gilman (80). Activation of the R208Q and the R205A/R208Q double mutant resulted in 

significantly smaller changes in fluorescence, an approximately 28.5 % change for both mutant 

proteins (Figure 25).  
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Hamm and colleagues (85) described a red shift upon activation due to the interaction 

between R208 and W211 in the wild-type Gαi1 protein. We wished to expand on this by 

determining how the R208Q mutation would affect the red shift. We observed similar results for 

WT proteins at room temperature (with shifts of 3.45 ± 1.04 nm for GTPγS and 2.93 ± 1.25 nm 

for AMF, respectively). The red shift became progressively smaller as the temperature increased 

(Figure 26) and at 60 °C, still existed for GTPγS activation, which was 1.63 ± 1.24 nm. In contrast, 

a 0.67 ± 1.06 nm blue shift formed with AMF activation, indicating that W211 had moved to a 

more hydrophobic environment, ceasing the π – cation interaction. When measuring the red 

shift at room temperature in the R208Q mutant, the red shift persisted regardless of whether 

AlF4
- (0.88 ± 0.81 nm) or GTPγS (1.67 ± 0.66 nm, chapter three) was used to activate the protein 

Figure 25: Activation with AlF4¯ of WT Gαi1 (black), R208Q Gαi1 proteins (red), and the R205A/R208Q double 
mutant (green). 
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(Figure 25). Furthermore, both the AMF and GTPγS induced red shifts disappeared at higher 

temperatures, albeit at different temperatures (Figure 26A vs B). The AMF red shift disappeared 

by 50 °C and continued to shift to a lower wavelength (blue shift) until 60 °C when the blue shift 

was 1.56 ± 0.97 nm at which point the protein became unstable. The R208Q mutant lacks the 

key arginine residue necessary for providing the positive charge needed for the π-cation 

interaction, and thus, the existence of a red shift was unexpected.  

We created the R205A/R208Q double mutant to further explore the continued red shift 

observed in the R208Q mutant. The double mutant allows us to determine if the observed red 

shift was due to this proximal Arg residue in the 205 position. Eliminating both arginine residues 

abolished the red shift and gave rise to a -2.0 to -5.0 nm blue shift at all temperatures for AMF 

activations. However, for GTPγS activations, a +1.0 nm red shift persisted at lower temperatures 
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and behaved similarly to the R208Q single mutant in that it was a 0.04 ± 0.63 nm blue shift by 60 

°C.  

To examine the solvent exposure resulting from the conformational change, trypsin 

digestion was used. Gilman and colleagues first noted the different cleavage patterns between 

active and inactive WTGα (116). Upon activation of the GTPγS conformation, rapid cleavage at 

the N-terminus occurs while the middle of the protein is protected (where R208 is located), 

resulting in the accumulation of 37 to 39 kDa polypeptides. GDP, on the other hand, is digested 

into relatively small fragments suggesting that R208 is cleaved only when complexed to GDP 

while becoming inaccessible in the active conformation. AMF activation leads to partial 

digestion. It is thought this is a result of increased mobility of the R208 residue causing it to be 

exposed in short intervals (95).  

Surprisingly, similar cleavage patterns were observed for the R208Q mutant, the 

R205A/R208Q double mutant and the WT. This suggests that R205 is subject to the same 

environmental changes as R208, resulting in its cleavage when in the GDP-bound conformation, 

while it remains protected in the GTPγS conformation (Figure 27, lanes 5-7). The R205A/R208Q 

double mutant was cleaved at the N-terminus but since both R205 and R208 are no longer 

cleavable by trypsin, the result is an accumulation of relatively smaller fragments (Figure 27, 

lanes 8-10).  
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To investigate the melting properties of the R208Q mutant, and to better understand the 

roles of R205 and W211, we compared three techniques: fluorescence, CD, and UV/Vis, to obtain 

a global understanding of the protein’s folding. Fluorescence measures the Trp residues at the 

core of the protein while UV/Vis depends on the Tyr residues at the surface. CD measures the 

proteins as a whole as the secondary structure changes.  

Fluorescence intensity as a function of temperature was used to determine the melting 

temperature (Tm). As the temperature increased, the fluorescence intensity decreased indicative 

of protein unfolding. In the inactive conformation, Tm WT is 39.0 °C and the Tm R208Q is 35.1 °C. 

Surprisingly, activation with AlF4
- yielded insignificant changes to the Tm (p = 0.45), and all three 

proteins had Tm values around 35 °C (Table 8). Activation with GTPγS exhibits a stark contrast 

between the WT and both the R208Q mutant and the R205A/R208Q double mutant where the 

Tm for the WT protein is 48.7 °C, and the two mutant proteins are 36.9 °C.  

Computer algorithms are able to calculate Tm values from the CD spectra. We calculated 

a Tm value for WTGαi1•GDP of 44.20 °C, WTGαi1•AMF 47.50 °C, WTGαi1•GTPγS of 70.90 °C. The 

GDP conformation of the R208Q mutant and the R205A/R208Q double mutant were similar to 

Figure 27. Trypsin digest of Gα  proteins in the inactive and active conformations.  

R205A/R208Q
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that of the WT at around 44 °C. For the R208Q mutant, both active conformations show 

significantly lower melting temperatures compared to the WT protein of the same conformation 

with the AMF conformation having a Tm of 39.33 °C and the GTPγS of 56.75 °C (Table 8). The 

R205A/R208Q double mutant also had a lower Tm value compared to WT and to the R208Q 

mutant (Table 8). 

In both the inactive conformations and in the AMF active conformations of all three 

proteins, the Tm values were similar and around 47 °C (Table 8). When activating with GTPγS the 

same trend was observed; Tm of WT Gαi1 was the highest followed by the R208Q mutant and the 

R205A/R208Q double mutant was the smallest (Table 8). 

In a study of Trp mutants done previously in this lab by Najor et al (95), the W211F 

mutant was characterized. Since the π-cation interaction is thought to occur between R208 and 

W211, we thought it would be interesting to compare the results of the W211F mutant to the 

R208Q mutant. Using fluorescence, the W211F mutant had a Tm of 35.30 °C in the GDP 

conformation, 34.10 °C in the AMF conformation and 37.20 °C in the GTPγS conformation. CD 

yielded results that were inconsistent with both WT and the R208Q mutants, 54.30 °C for the 

GDP, 57.00 °C for the AMF and 56.50 °C for the GTPγS (Table 8). These results are 

uncharacteristically high for Gαi1 and may need to be reevaluated at a later time. Regardless, it is 

important to note that both active conformations are not significantly different than the GDP-

bound conformation. UV/Vis calculations are consistent with fluorescence results with Tm 

calculations of 46.80 °C, 45.78 °C, and 52.30 °C, respectively, for GDP, AMF and GTPγS 

conformations.  
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The R205A/R208Q double mutant behaves similarly to the R208Q mutant, confirming 

that the π-cation reaction does contribute a significant amount toward the overall stability of the 

protein. However, the R205A/R208Q Gαi1 double mutant follows a similar trend as the R208Q 

mutant and is similar to the R208Q mutant despite technique used leading us to believe that 

R205 is not additionally stabilizing the protein in the active conformation. Future in silico 

experiments to determine the role of the R205 residue in the stability and/or activity of the 

protein would include interaction energies of R205 with nearby residues that have been shown 

to be important for GTP hydrolysis, similar to those done in chapter 2.

Table 8. Tm estimates using three spectroscopic techniques for all three proteins is the inactive and both active conformations. 

GDP AMF GTPγS GDP AMF GTPγS GDP AMF GTPγS

WT 39.00 38.30 48.70* 44.20 47.50* 70.90* 47.60 48.60* 66.50*

R208Q 38.1 36.41 36.89† 44.10 39.33† 56.75*† 46.60 46.55† 59.52*†

R205A; R208Q 34.80 35.01 36.92† 44.05 ― 48.56*†‡ 46.33† 45.07*† 51.47*†‡

W211F 35.30 34.10 37.20† 54.30†‡ 57.00†‡ 56.50† 46.80† 45.78† 52.30†

‡ =  P ≤ 0.05 vs R208Q in the same conformation

Fluorescence CD UV/Vis

* = P ≤ 0.05 vs GDP-bound conformation

† =  P ≤ 0.05 vs WT in the same conformation

S.E.M. ≤ 3, n ≥ 3 for all measurements

Giα1 variant

― = Data not collected
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APPENDIX B 

GLYCOGEN SYNTHASE KINASE 3β 
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 Glycogen Synthase Kinase 3β (GSK3β) is a constitutively active serine/threonine kinase, 

which was named so because it originally was shown to regulate cellular glycogen levels through 

inhibition of glycogen synthase (GS), and is itself inhibited by insulin among others (147). 

Extensive studies have provided evidence that GSK-3 functions as an important regulatory kinase 

for at least 50 targets and is involved in a number of important roles including inflammation, 

apoptosis, embryonic development, heart function, and synaptic transmission in neurons (148-

153). Similar to G-proteins, GSK-3 has been shown to provide important regulation in an array of 

signaling pathways vital for homeostasis. 

 There are two GSK-3 isoforms, GSK-3α (51kDa) and GSK-3β (47kDa), which are expressed 

by the GSK3A and GSK3B genes, respectively. GSK-3β exists in two different splice variants GSK-

3β1 and GSK-3β2, where GSK-3β1 is a shorter variant and lacks exon 9 (a 13 residue exon) while 

GSK-3β2 is longer and does contain the 13-residue exon 9 in the catalytic domain. While GSK-

3β1 is expressed in tissues ubiquitously, GSK-3β2 is expressed exclusively in the central nervous 

system (CNS). The function of exon 9 in GSK-3β2 is still largely unknown, therefore unless 

otherwise stated, the rest of this section will be referring to GSK-3β1. 

 Serine/threonine kinases typically utilize an alpha helix and a beta sheet, which must be 

aligned into a specific conformation for activity. While GSK-3 does contain this secondary 

structure, the mechanism by which they are aligned is unique (Figure 28). Most kinases use 

phosphorylated residues in an activation domain to achieve an active conformation. GSK-3 is 

more tightly regulated and phosphorylation may inhibit or activate it depending on the 

phosphorylation site. GSK-3 is inactivated when phosphorylated at the amine terminal serine (S) 
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9 (GSK-3β) or S21 (GSK-3α). When phosphorylated at these residues, a primed pseudo-substrate 

is formed in the active site, which acts as a competitive inhibitor (Figure 28) (154). In contrast, 

phosphorylation at Tyrosine (Y) 216 or Y279 in GSK-3β or GSK-3α, respectively, seems to 

promote activity but because GSK-3 is a constitutively active enzyme, it is unknown how 

important this phosphorylation actually is for activity.  

Crystal structure analysis shows GSK-3 prefers a phosphoserine on the substrate. More 

specifically, GSK-3β recognizes the sequence S/TXXXS, in which the P + 4 serine has been 

previously phosphorylated by another kinase. When the substrate has been “primed” by a prior 

phosphorylation event, GSK-3β is found to be exponentially more efficient (155). Similar to Gα 

proteins, GSK-3 activity must be closely regulated. Cells have four mechanisms for regulating 

GSK-3: phosphorylation of GSK-3 itself, phosphorylation of the substrate, subcellular localization, 

and the formation of protein complexes (156). Natively, the most effective mechanism of 

regulation is through phosphorylation of key residues of GSK-3. Hyperactive GSK-3 has been 

linked to several devastating illnesses, including Alzheimer’s (149), diabetes (150), and cancer 

(148, 157). Inhibition of GSK-3 has, therefore, become a critical research topic. Li+ has been 

shown to inhibit GSK-3 and is effective in the 1-2 mM range (158, 159), therefore at 

physiologically-relevant concentrations, inhibition is minimally effective. Like many enzymes, 

GSK-3’s active site requires a Mg2+ cofactor to function (Figure 28). Li+ is a noncompetitive 

inhibitor of GSK-3 with respect to the substrate but evidence has shown that Li+ is a competitive 
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inhibitor with respect to Mg2+ (160, 161). This is a fairly unusual mechanism in that Li+ binds the 

enzyme-substrate complex by displacing the Mg2+ cofactor from the active site. Mechanistically, 

it is a plausible hypothesis because Li+ can compete with the native Mg2+ cofactor in the active 

site (162-164). Because both Li+ and Mg2+ are similar in atomic radius, and both are positively 

Figure 28. The crystal structure of GSK-3β has been solved. An ADP molecule is located in the active site situated around the 
Mg2+ cofactor. The basic arginine and lysine residues just next to the active site explain GSK-3β’s preference for “primed” 
substrates. PDB ID: 1J1C 
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charged, Li+ is thought to be able to fit in the active site and displace the Mg2+ ion. Because Li+ is 

a monovalent cation, as opposed to Mg2+ , a divalent cation, Li+ is unable to interact with ATP in 

the same manner, thus, inhibiting the enzyme.  

Conflicting evidence suggests that GSK-3β may have two Mg2+ binding sites (164). 

Inhibition of GSK-3β with a second and more potent inhibitor beryllium (Be2+) show a further 

reduced activity of GSK-3β. This “dual inhibition analysis” hints that there are two active sites 

present in GSK-3β but only one is sensitive to Li+. It is important to note that these studies also 

suggest that Be2+ binds to both the Mg2+ and an ATP molecule in the active site whereas Li+ does 

not interact with ATP (164).  

The goal of this research was to enhance our understanding of Li+ as a pharmaceutical 

agent by 1) gaining better insight into the effects of Li+ on the enzyme and the mechanism of 

GSK-3β and 2) to better understand the structural significance of GSK-3β and the relationship to 

Li+.  

We were able to successfully amplify both the long and short splice variants of human 

GSK-3β using PCR with DNA from the H1299 cell line (generously provided by Dr. Abde 

Abukhdeir from Rush University). The recombinant GSK3B gene was transformed into a bacmid 

in DH10Bac cells. The bacmid was transformed into sf-9 insect cells to generate baculovirus 

containing either the GSK3B1 or GSK3B2 gene, which was then used to infect naïve sf-9 cells at 

~50 % confluency for 5 days at 37 °C to create the P0 stock (Figure 29). Infected cells can be 

visually inspected as the radius of infected cells grows to be twice the size of non-infected cells 
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(Figure 30). A viral plaque assay was used to quantify 

the baculovirus titer. Once a high-titer baculovirus 

stock (with a multiplicity of infection (MOI) ≥ 1.0×108 

pfu) had been generated, the Sf9 cells were infected 

and further cultured on a larger scale to create the P1 

stocks which can be harvested for recombinant protein 

production (and Figure 31). 

Unfortunately, we were unable to scale up 

production to express large enough quantities of 

protein to use for further biophysical studies. Future 

experiments would need to determine a cost-effective 

method for gaining high-yield protein preparations. It 

would then be possible to investigate GSK-3β activity 

by the efficiency of transfer of [γ- 32P]-ATP to a 

synthetic GSM peptide substrate. Li+ vs. Mg2+ would 

then be used to compare the effect of Li+ on the 

activity of GSK-3β. Furthermore, folding studies in conjunction with X-ray crystallography might 

provide ample information with regard to the structure of GSK-3β. Although the structure has 

previously been solved, all existing X-ray structures show only one Mg2+ binding site. We would 

be able to compare the electron density at the metal binding site(s) of GSK-3β by conducting a 

crystallographic titration with Mg2+ in the presence and absence of Li+. The hypothesis is that the 

Figure 29. PCR analysis of bacterial colonies. 
Colonies at the top are expressing GSK-3β2 while 
the ones on the bottom are expressing GSK-3β1. 
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existing crystal structures only capture one Mg2+ binding site because the second binding site 

may have a much lower affinity for Mg2+, which can be displaced by Li+ under crystallization 

conditions.  

Figure 30. Transfected Sf-9 Cells under a light microscope magnified 100x. The red arrows show examples of 
infected cells which show a significant increase in cell diameter. 
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50 kDa α-GSK-3β1 

Figure 31. Western blot analysis confirms the presence of GSK-3 in Sf-9 whole cell lysate. This blot compares different 
MOI and incubation times to determine the optimal incubation conditions. 
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