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CHAPTER ONE 

 

STUDY OVERVIEW AND RATIONALE 

Historically, cognitive functions have been studied within a vacuum void of affective 

input or grounded within discrete diagnostic classifications, such as depression or schizophrenia 

(Blanchette & Richards, 2010; Mitchell & Phillips, 2007). More recently, academic and clinical 

interests regarding the interaction between dimensional affective processes and cognition have 

increased (Blanchette & Richards, 2010; Blanchard-Fields, 2005; Mitchell & Phillips, 2007; 

Yiend, 2004), largely in response to the National Institute of Mental Health (NIMH) Research 

Domain Criteria Initiative (RDoC; Insel & Cuthbert, 2009). In order to more accurately 

characterize dimensions of function that underlie the range of normal to abnormal human 

behavior, the RDoC encourages applying dimensional approaches to transcend traditional 

categorical nosology regarding normal and abnormal psychological function and integrate 

information across multiple methods/levels of analysis (Insel & Cuthbert, 2009).  

Within the broader domain of cognitive systems, RDoC identifies cognitive control as a 

dimension of human behavior necessitating further investigation. Cognitive control processes, 

which are also commonly referred to as executive functions (EFs), are the mechanisms through 

which humans use internal intentions to guide thought and behavior (Banich, 2009). Miller and 

Cohen (2001) describe cognitive control as higher-order processes that optimize and schedule 

lower-order processes. Further, cognitive 
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control processes are engaged when prepotent (predominant, more automatic) modes of 

responding are not sufficient to meet contextual demands experienced during daily life as well as 

in completion of experimental tasks. The ability to refrain from prepotent response patterns in 

favor of more regulated responding requires the engagement of inhibitory-related cognitive 

control processes. 

For almost a century, modified versions of the classic Color-Word Stroop Test (CWST, 

Stroop, 1935; Klein, 1964; Delis et al., 2001) have been utilized to investigate cognitive 

function, including inhibitory-related cognitive control processes (Harnishfeger, 1995; MacLeod, 

1991). The CWST requires cognitive control processes to engage during conflict situations to 

disregard irrelevant stimulus information and maintain task instructions (thus ignoring a 

prepotent response option) in order to make an appropriate response. A correct response in the 

context of conflicting stimulus input reflects the successful processing of interference. The 

CWST has been used to measure the range of normative EF abilities to deficits in pathological 

populations (Lufi, Cohen & Parnish-Plass, 1990; Wagner et al., 2006; West, 2004). 

Despite common use of the CWST, little is known regarding the influence of naturally 

occurring state affect on the recruitment /allocation of cognitive control resources during 

interference processing. Affect is an individual’s subjective experience of emotion (Diener, Suh, 

Lucas & Smith, 1999). Affect can be represented by state and trait components (Watson, Clark & 

Carey, 1988). While trait affect represents relatively stable patterns of emotional experience, 

state affect is thought to vary over time in relation to exogenous and endogenous factors 

(Watson, Clark & Carey, 1988). Within this context, state affect can also be referred to as an 

individual’s mood or mood state, and reflects current emotional experience at time of 
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assessment. Although laboratory-based explorations of affect have largely utilized mood 

induction procedures to create greater positive or negative mood states within participants, 

individual differences in naturalistic state affect can be measured without induction (Blanchette 

& Richards, 2009; Mitchell & Phillips, 2007). While induced mood differentially influences 

components of cognitive control (Bartolic, Basso, Schefft, Glauser, & Titanic-Schefft, 1999; 

Blanchette & Richards, 2009; Mitchell & Phillips, 2007), understanding how everyday mood 

impacts EF is not as well characterized.  

Most behavioral and neuroimaging studies of the CWST in “healthy” populations have 

not explored the potential role of natural state affect or previous psychopathology, yet evidence 

from several studies indicate that these factors may indeed play a role in behavioral and 

neurophysiological response (Heller, 1993; Liotti, Mayberg, McGinnis, Brannan, & Jerabek, 

2002). In fact, the interplay between cognitive and affective processing is evident within the 

structural and functional organization of the cortex, such that frontocingulate cortical structures 

that support affective function also are engaged during cognitive tasks, and vice versa (Mohanty 

et al., 2007).  

Electroencephalography (EEG) is a noninvasive method of monitoring electrical activity 

elicited by the brain. EEG measures excitatory and inhibitory postsynaptic potentials of highly 

synchronized cortical neurons (Luck, 2012). Recorded EEG activity may be time-locked to 

specific events in order to analyze event-related potentials (ERPs). ERPs are stereotyped 

electrophysiological responses that are recognizable as peaks and troughs within the EEG 

waveform. ERPs are observed in response to endogenous or exogenous stimuli and provide 

measurement of neural response within milliseconds of stimulus onset. The temporal specificity 
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of event-related potentials (ERPs) makes them an ideal vehicle for examining the sequential 

dynamics of affective state on cognitive control processes engaged during the CWST. Previous 

investigations have identified several ERP components relevant to the CWST; however, 

methodological differences across studies have contributed to mixed findings.  

The purpose of this study is two-fold. First, this investigation aims to further 

clarify/elucidate the nature and time course of cognitive resources engaged during the CWST  

within a sample of healthy controls and participants with remitted depression. Healthy controls 

were identified as individuals with no current or lifetime history of psychiatric illness and 

individuals with a lifetime history of depression who do not currently meet diagnostic criteria for 

a major depressive episode were included in the remitted depressed group. Consistent with 

previous research, this study proposes that neural resources will be differentially recruited and 

allocated dependent on task-related demands (presence or absence of interference). Secondly, 

given the established interplay between affect, cognition and behavior, the present investigation 

also aims to investigate how naturally occurring positive mood will influence recruitment of 

cognitive resources and behavioral performance during interference processing.  

Investigating dimensional variations in state affect, including naturally occurring positive 

mood, is important as affect has been found to influence abilities essential for day-to-day 

functioning. Greater understanding of the influence of naturally occurring state affect on EF has 

implications for cognitive interventions, as cognitive demands are likely influenced differently 

by high and low levels of positive and negative affect. The exploration of state affect and EF 

may help to answer questions such as, “how do individual factors influence the ability to 

overcome cognitive conflict/interference and effectively direct behavior and actions?” Naturally 
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occurring Positive affect is theorized to be a key individual difference factor that influences the 

neural correlates of cognitive function. 
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CHAPTER TWO 

 

REVIEW OF THE RELEVANT LITERATURE 

 

Affect 

Variations in mood (affective state) and dispositional affectivity (affective trait) have 

been found to significantly influence everyday activities by modulating thoughts and actions 

(Blanchette & Richards, 2010). Foundational literature has established the dominance of two 

dimensions of valenced affective experience: Positive Affect (PA) and Negative Affect (NA) 

(Davidson, 1998; Heller, 1993; Russell & Carroll, 1999; Russell & Pratt, 1980; Watson & Clark, 

1991; Watson & Tellegen, 1985). The present project conceptualizes PA and NA as discrete 

variables in accordance with the seminal works of Watson, Clark, and Tellegen (Clark & 

Watson, 1991; Watson & Tellegen, 1985; Watson & Clark, 1991; Watson, Clark & Tellegen, 

1988); however, it should be acknowledged that the extant literature is charged with debate as to 

whether PA and NA represent two relatively orthogonal facets of affect, or are better 

conceptualized as bipolar extremes of a singular dimension (Barret & Russell, 1999; Carroll, 

Yik, Russell, Barret, 1999; Kendall et al., 2015; Russell, 1980). While recent research has 

explored additional affective dimensions of intensity, frequency, and arousal (Brown, Chorpita & 

Barlow, 1998; Diener, Larsen, Levine & Emmons, 1985; Heller, 1993; Larsen & Diener, 1987), 

the present investigation focuses primarily on PA
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State affect/mood represents transient fluctuations in emotional experience. As such, 

methods assessing state affect focus on an individual’s current experience of emotion across a 

limited span of time (e.g., several hours or a day). State PA reflects how

 much an individual feels enthusiastic, active and alert across a specified time constraint. 

Individuals experiencing high state PA often endorse affirmative mood states such as feeling 

pleased, engaged, and/or energetic. On the opposing extreme of the PA dimension, individuals 

experiencing low state PA often describe feelings of lethargy and apathy. Therefore low state PA 

is characterized by the absence of pleasantness, vigor, and interest. State NA reflects subjective 

feelings of distress and engagement in unpleasurable experience (Watson & Clark, 1997; Watson 

& Tellegen, 1985; Watson & Naragon-Gainey, 2010). An individual experiencing high state NA 

may describe multiple aversive states such as anger, fear, nervousness, disgust, and hatred. In 

contrast, low state NA is effectively represented in tranquility and peace.  

Positive and Negative Affect: Distinct but Related Dimensional Psychological Constructs  

Building upon previous findings (Bradburn and Caplovitz, 1965), Bradburn (1969) 

proposed that psychological well-being is best conceptualized as a function of two independent 

dimensions, positive and negative affect. Citing evidence from several national samples, 

Bradburn (1969) found, that when measured separately, PA and NA varied independently. In 

other words, the amount of PA endorsed by an individual did not substantially correlate with the 

level of endorsed NA. Prior to Bradburn’s seminal works, most researchers had conceptualized 

affect as a single hedonic dimension with PA and NA defined and measured as bipolar opposites. 

By allowing positive and negative affect to vary independently, subsequent research has found 

that PA and NA often correlate differently with other psychological and neurobiological 
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variables (Cherlin & Reeder, 1975; Harding, 1982; Warr, 1978; Heller, Nitschke & Miller, 1998; 

Mitchell & Phillips, 2007).  

The two-dimensional structure of PA and NA has also been validated and applied within 

the empirical and clinical domains of psychopathology. Given significant overlap in 

symptomatology/diagnostic comorbidity between depressive and anxiety disorders, clarifying 

etiological distinctions and maintenance factors of illness became a significant focus of work in 

order to improve measurement sensitivity and specificity. The tripartite model of depression and 

anxiety theorizes that low positive affect (PA) is specific to depression and anxious arousal is 

specific to anxiety. The model also asserts that high NA is a common factor of both depression 

and anxiety (Clark & Watson, 1991; Watson, Clark & Carey, 1988; Watson, Clark & Tellegen, 

1988). High NA has also more broadly been viewed as a potential general risk factor for 

psychopathology (Clark and Watson, 1991, 1994; Mineka et al. 1998) and low PA has been 

specifically related to the psychiatric construct of anhedonia (Blanchard, Mueser, & Bellack, 

1998; Crawford & Henry, 2004; Kendall et al., 2015). Watson and colleagues (1995) directly 

tested the predictions of the tripartite model on student, adult, and psychiatric patient samples 

through the administration of the Mood and Anxiety Symptom Questionnaire (MASQ; Watson 

& Clark, 1991). Findings indicated superior diagnostic classification of depressive and anxiety 

disorders with incorporation of tripartite model (i.e., depression was differentiated via low levels 

of PA). 

Evidence from neuroscience. Complementing conventional research that has postulated 

PA and NA as distinct but related affective dimensions, human neuroscience research has treated 

these primary affective dimensions in a similar manner with the goal of mapping them onto brain 

structures and functions. Dating to observations from lesion studies in the early 1970s (e.g., 
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Gainotti, 1972), affect implementation in the brain has been conceptualized as lateralized, with 

structures supporting pleasant affect lateralized to left prefrontal cortex (PFC) and those 

supporting unpleasant affect lateralized to right PFC (Heller, Nitschke, & Miller, 1998). Results 

of electroencephalographic (EEG) studies have consistently evidenced increased cerebral 

activation in the left hemisphere relative to activation of the right atmosphere during positive 

mood states (Allen & Kline, 2004; Cacioppo, 2004; Davidson, Ekman, Saron, Senulis, & 

Friesen, 1990; Heller, 1993; Heller, Nitschke, Etienne, & Miller, 1997; Heller, Nitschke, & 

Miller, 1998) as well as relative greater activation in the right hemisphere compared to left 

during negative mood states (Davidson et al., 1990;  Heller, Nitschke, & Miller, 1998; Lee et al., 

2004). Blunted positive and negative affectivity have been associated with bilateral decreases in 

prefrontal cortical activity (Davidson, 1998). These findings further support the proposal that PA 

and NA should be treated as distinct but related dimensional psychological constructs. 

In summary, a large body of work, ranging from self-report to neurophysiological 

methodologies, subdivides affect into two distinct yet related affective dimensions based upon 

valence (PA and NA). Additionally, variations in individual experience of PA and NA can be 

dimensionally assessed through self-report measures such as the Positive and Negative Affect 

Schedule (PANAS; Watson, Clark, & Tellegen, 1988). Given the relative independence of these 

affective dimensions, a low rating of one dimension does not necessitate a high rating of the 

other dimension. 

Affect and Cognitive Control 

Affective processing of both endogenous and exogenous information is fundamental to 

human behavior. As such, all decisions and actions occur in an affective context in which 

cognitive processes, such as cognitive control, are constantly modulated by affective state. 
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Commonalities across several theories of cognitive control suggest that cognitive control 

processes are engaged when: (a) resisting distracting/task-irrelevant input; (b) inhibiting 

familiar/stereotyped behaviors; (c) creating and maintaining attentional set; (d) 

prioritizing/sequencing behaviors; (e) shifting task-demands; (f) utilizing relevant information 

for decision making; (g) organizing/categorizing conceptually-related information about stimuli; 

and (h) processing novel input regarding task demands and situational context (Banich, 2009; 

Friedman & Miyake, 2004). 

A growing body of work provides evidence for the role of affect in cognitive control 

processes. While many studies have examined differences in cognitive control processes across 

categorical classifications of abnormal affective function (i.e., various psychiatric illnesses), less 

is known regarding the dimensional influence of naturally occurring positive and negative mood 

states on cognitive control. The following section first examines psychological theories of affect 

and cognitive control and then reviews empirical investigations of cognitive processes in the 

context of affect. While only literature investigating the effects of affect/mood on cognition will 

be examined, it should be acknowledged that executive processes may play an important role in 

the maintenance and regulation of mood as well, as is likely true in the context of cognitive 

reappraisal (Hofmann, Schmeichel & Baddeley, 2012; Ochsner et al., 2004; Buhle et al., 2014). 

Psychological Theories of Affect and Cognitive Control 

Several psychological theories posit unique implications when examining the effects of 

mood or state affect on cognition/cognitive control. While the majority of research supporting 

these theories has focused on induced-affect/mood, considerations may be drawn for natural state 

characteristics as well. 
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Affect and cognitive load/resource depletion. This framework of affect and cognitive 

control underscores that human processing capacity is limited (Kahneman, 1973) and that 

competition for neural resources will occur under conditions of dual demands (Broadbent, 1958; 

Treisman & Gelade, 1980; Underwood, 1977). As such, both positive and negative affective 

states would be expected to burden cognitive resources in comparison to neutral states due to the 

associated increased activation of widespread networks involved in emotion-related processing. 

For example, the presence of high NA has been associated with rumination about mood-relevant 

thoughts, which may be task-irrelevant (Mitchell & Phillips, 2007; Ottowitz, Dougherty & 

Savage, 2002). According to resource depletion theory, the engagement in task-irrelevant 

processing decreases available resources/capacity to engage in presented cognitive tasks. 

Therefore, according to this framework high levels of both PA and NA would have detrimental 

effects on cognitive control tasks, including inhibitory-related functions tapped during Stroop 

interference processing. 

Affect and information processing style. The feelings-as-information framework set 

forth by Schwarz, Clore and colleagues (Schwarz, 1990; Schwarz & Bohner, 1996; Schwarz & 

Clore, 1996) initially postulated that an individual’s present affect informs him or her about the 

“goodness” or “badness” of the environment, which then influences subsequent information 

processing style. PA has been associated with increased utilization of heuristic and creative 

processing styles in comparison to neutral moods (Bless, Bohner, Schwarz, & Strack, 1990; 

Bodenhausen et al., 1994; Bohner, Chaiken & Hunyadi, 1994). It is thought that given the 

absence of threats in the environment (as assumed when experiencing PA), an individual’s 

motivation to alter his or her environment is attenuated and therefore opens resources for more 

creative processing styles. In contrast, experience of NA generally signals that the environment 
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is problematic and that action should be taken to alter current circumstances. Therefore, 

according to the feelings-as-information framework, NA results in an information processing 

style that is relatively systematic, effortful, and vigilant.  

Others have also categorized PA as inducing more global/holistic information processing 

attributes, with negative affect prompting a more localized/focused analysis of information 

(Bolte, Goschke & Kuhl, 2003; Fredrickson & Branigan, 2005). Similar to the feelings-as-

information framework discussed above, the broaden-and-build theory set forth by Fredrickson 

(1998; 2001) contends that positive emotions broaden attentional scope and expands transient 

thought-action repertoires. By increasing cognitive access to various potential thoughts and 

actions, positive emotion ultimately increases the likelihood of engaging in thoughts and actions 

beyond basic functional requirements. Examples of thoughts and behaviors related to positive 

emotion include play, exploration, savoring, and complex integration (Fredrickson, 2001). The 

theory also highlights the adaptive benefits of select negative emotions (e.g., anger and anxiety) 

momentarily limiting available thought-action repertoires to increase likelihood of engaging in 

context-appropriate action (Fredrickson & Branigan, 2005). A number of empirical studies 

support the broaden-and-build account of mood on attentional focus. For example, Biss, Hasher 

and Thomas (2010) found that individuals in a positive mood were more likely than others to 

utilize previously irrelevant information (distractor stimuli on a previous task) to facilitate 

performance on a subsequent implicit task. Results from this study support a broader, more 

global focus of processing under conditions of high PA as positive mood was associated with 

implicit use of distraction. 

Rowe, Hirsh and Anderson (2007) investigated the effects of positive, neutral, and sad 

mood induction on visuospatial (Eriksen Flanker task) and conceptual (remote associates task, 
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RAT) attentional domains. No significant differences were found on performances for either task 

between sad and neutral inductions, however positive mood induction was related to increased 

access to semantic associations on the RAT and impaired visual selective attention on the 

Flanker task. Together, these results were interpreted to suggest that high PA attenuates 

inhibitory control to increase breadth of conceptual and visuospatial attention.  

Storbeck and Clore (2005) examined whether induced positive or negative moods would 

influence the formation of false memories in two related studies. Utilizing the Deese-Roediger-

McDermott paradigm, which lures individuals to produce false memories, Storbeck and Clore 

(2005) found that negative mood resulted in attenuated false memory effects compared to 

positive mood and non-manipulated mood groups. To further examine whether this effect took 

place at the point of encoding or retrieval, a second study required participants to list words they 

identified as related to the target list of words but were not actually included on the list. Results 

indicated no interaction between lure identification type (lure listed as a part of the target list or 

lure identified as a related word) and mood induction. However, a main effect for mood 

induction found that individuals within the negative mood group were less likely to identify lures 

in general, which supported differences in mood-related processing style at the stage of encoding 

rather than retrieval. Overall, these findings suggest negative mood is related to a more refined, 

limited-scope of processing when encoding information in comparison to positive mood. 

Affect-as-cognitive-feedback account. Emerging in response to empirical evidence 

contradicting the fixed effects of PA and NA on cognition, affect-as-cognitive feedback theory 

suggests that the relation between affect and cognitive processing is malleable (Huntsinger 

2014). This viewpoint asserts that the impact of mood on perceptual processing/attentional scope 

depends upon accessibility of global or local processing orientations, with positive mood 
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generally amplifying whichever processing style is contextually dominant. This theory also 

suggests that when global and local orientations are equally accessible, differences in mood will 

not be related to differences in attentional scope. 

Several studies provide supporting evidence for this theory. Huntsinger, Clore and Bar-

Anan (2010) examined the relation between positive mood and processing focus (global or local) 

across two experiments with each utilizing different mood induction, perspective priming, and 

assessment methodologies to increase generalizability. Results from both studies indicated that 

positive mood amplified processing type dependent on which focus was primed. In other words, 

positive mood was not wholly related to global processing, but rather facilitated adaptation of 

context-specific processing in comparison to negative mood. These findings were further 

substantiated in more recent work by Huntsinger (2012), which examined the effects of focal 

priming on performance during a flanker task. Flanker tasks assess an individual’s perceptual 

attention and inhibitory control. The task requires participants to focus on a target stimulus while 

inhibiting attention to distracter stimuli flanking it. Results indicated that positive mood was 

related to adaptation of whichever perceptual orientation was primed. Further, when global and 

local orientations were primed equally, affect was not found to influence scope of attention.   

Given the above theoretical frameworks, it is evident that the pertinent question is not 

whether mood state influences cognition/cognitive control, but rather how mood state influences 

these higher order processes. Models rooted in concepts of limited capacity and resource 

depletion, suggest that affective input is deleterious to cognitive control processes as it occupies 

related and limited resources. In contrast, recent advances in theories of information processing 

and mood suggest an increasingly malleable role between cognitive approach and affective state. 

More specifically, high positive affect increases adaptability to whichever processing style is 
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most accessible given task context. As the vast majority of existing processing style literature has 

focused on laboratory induced-mood, the relation between naturally occurring mood states and 

information processing style warrants further investigation. 

The Effect of Mood State on Cognitive Control 

While a substantial amount of literature has examined the influence of pathological levels 

of negative affect (e.g., unipolar and bipolar depressive disorders) on cognitive control, less is 

understood regarding sub-threshold dimensional effects of negative mood. Although several 

studies have shown that NA influences cognitive control processes in the context of affective 

stimuli, null findings from a number of studies exploring NA and cognitive control (Blanchette 

& Richards, 2010; Mitchell & Phillips, 2007) suggest that NA may have a more limited role in 

cognitive control processes than PA. In contrast, PA has been related to increased cognitive 

flexibility, creativity, and globally focused processes. High PA has also been related to 

impairments in working memory and inhibition of irrelevant information. Relevant empirical 

investigations are discussed below. 

Martin and Kerns (2010) investigated the effect of positive mood on working memory 

and inhibition. In two studies, participants underwent positive or neutral mood induction via 

video clips and then completed a task of working memory storage capacity (Running Memory 

Span) and prepotent response inhibition (CW-Stroop or Flanker). Results indicated that positive 

mood induction resulted in poorer performance on the test of working memory in comparison to 

neutral mood induction for both studies. No effect for positive mood induction compared to 

neutral was found in either study of inhibitory-related function, suggesting that positive mood 

differentially affects cognitive control functions by impairing working memory but having no 

effect on inhibitory-related function. However, it should be noted that these inhibitory-related 
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findings contrast the findings of Rowe, Hirsh and Anderson (2007), who found that positive 

mood was related to impaired performance on a flanker task. 

The differential effect of positive mood on specific EFs was also examined by Phillips, 

Bull, Adams and Fraser (2002). Subsequent to neutral or happy mood induction, thirty-six 

participants completed four conditions of the CW-Stroop task. Compared to neutral mood 

induction, positive mood was found to impair performance on the switching condition of the 

Stroop test. In a second study, sixty participants underwent neutral or positive mood induction 

and then completed three verbal fluency tasks. Positive mood was related to improved 

performance on a test of verbal fluency requiring the naming of as many novel uses for a cup as 

possible. Significant differences for mood condition were not observed for fluency tasks based 

on initial word letter or alternating between semantic category and phonemic criteria. Overall, 

results from these studies suggest that positive mood is related to increased fluency requiring 

creative responses, but resulted in poorer performance on a task of cognitive flexibility that did 

not require creative response suggesting that PA facilitative effects on cognitive flexibility may 

depend on level of creativity/engagement in novel processes required to complete demands. 

Chepenik, Cornew and Farah (2007) induced and prolonged sad and neutral mood in 

thirty-three healthy volunteers across two laboratory sessions. Following mood induction 

participants completed seven cognitive tasks. Tasks assessed working memory (Object Two-

Back, Digit Span), inhibitory-related function (CW-Stroop, Go/No-Go), and 

attention/perception/memory for valenced materials (Attention Probe, Free Recall and 

Recognition Memory, Facial Emotional Recognition). Sad mood was found to affect memory for 

emotional words and facial emotion recognition, but not performance on other tasks. Sad mood 

was found to bias memory toward negatively valenced words relative to neutral mood 
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conditions, however overall percentage of word recognition was not affected by mood. Sad 

mood was also found to impair facial emotion recognition compared to neutral mood and this 

effect was generalized across recognition of neutral, happy and sad faces. Results of this study 

indicated that sad mood influences cognitive processes that involve an emotional stimulus, but 

not cognitive tasks that do not explicitly involve emotional stimuli.  

 In another study, 14 student volunteers completed a CWST paradigm across three blocks 

of positive, neutral, and negative mood induction (Yuan et al., 2011). Behavioral results did not 

differ between mood induction groups regarding response latency or accuracy. The Stroop-

related N450 ERP component, which is related to conflict effects emanating from anterior 

cingulate cortex and discussed in more detail later, was more pronounced for individuals in the 

positive mood induction group but not the negative mood group in comparison to the neutral 

mood state. Results of this study suggest increased neural processing was required for the 

positive mood induction group to achieve similar behavioral results. Results of this study also 

indicate that investigations utilizing only behavioral methodologies may not be adequate to 

capture the nuanced effects of mood on cognitive control processes. 

Laboratory-induced mood has been related to specific effects in cognitive control 

processes engaged during the CW-Stroop task. However, to date no investigations have explored 

the dimensional affect of naturally occurring PA on Stroop interference and related neural 

response.  

Color-Word Stroop Task (CWST) 

Recent efforts towards providing an integrative and comprehensive account of cognitive 

control have consistently identified inhibitory-related function as a core component of EF 

(Banich, 2009; Friedman & Miyake, 2004). Inhibitory-related control processes include the 
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ability to suppress irrelevant or interfering information at the sequential levels of processing and 

response output. Demands related to everyday life necessitate an ability to control impulses such 

as inhibiting prepotent responses or delaying gratification.  

Modified versions of the classic CWST (Stroop, 1935; Klein, 1964) have been frequently 

utilized to investigate inhibitory-related function. A typical CWST paradigm involves several 

task modules, eliciting a number of neural and behavioral response patterns from participants. 

Module variations may include: (a) word-reading, reading color-words (e.g., “BLUE” or 

“RED”) or non-color words (e.g., “MATH” or “BUN”) in black/grey or color ink; (b) color-

naming, naming ink of color swatches or symbol series/non words (e.g., “XXXX” in red); (c) 

congruent-word color-naming, naming matched ink color of word, such as the word “RED” in 

red ink; (d) incongruent-word color-naming, naming mismatched ink color of word, such as the 

word “RED” in blue ink; and (e) switching trials, which instruct participants to switch between 

task demands (word-reading or color-naming) in the context of incongruent and congruent 

stimuli throughout the condition.  

Additionally, color-naming modules may be presented in “blocked” form during which 

the entire presentation of stimuli is of the same congruency (e.g., all congruent or all 

incongruent), or “mixed” during which the presentation of stimuli alternates between 

congruencies (e.g., both congruent and incongruent types are present within same module). One 

of the most robust findings of the CWST is commonly referred to as the Stroop interference 

effect, described in detail below.     

Stroop Interference 

Classic CWST paradigms direct participants to focus on one component of a stimulus, 

typically ink color, while ignoring other facets of the stimulus, including the written word. 
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Computational and mathematical models assert that independent pathways exist for processing 

color and word information (Cohen & Servan-Schreiber, 1992; Miller & Cohen, 2001). 

Therefore, interference is observed when the task-irrelevant dimension conflicts with the relevant 

dimension resulting in different input for each pathway.  

As the CWST elicits conflict between more automated response (word-reading) and more 

controlled action (color-naming), it requires the engagement of two related inhibitory control 

processes in order to produce a correct response. First, interference control reflects the ability to 

selectively inhibit the processing of irrelevant information (Nigg, 2000). In the context of the 

typical CWST, the irrelevant information is the written word. The other inhibitory-related 

function is prepotent response inhibition, which is the ability to modulate dominant or automatic 

responses (Friedman & Miyake, 2004). A prepotent response is a reflexive response due to 

habituation or the presence of immediate positive/negative reinforcement. In the case of the 

CWST, word-reading represents the more habituated/automated response which must be 

inhibited in choice of the more controlled action of color-naming.  

Within the context of the CWST, interference is observed as an increase in response 

latency under incongruent task conditions in comparison to neutral or congruent conditions 

(hereafter referred to as Stroop interference – reaction time). In some studies, interference has 

also been observed has an increase in relative number of errors under incongruent task conditions 

in comparison to neutral or congruent conditions (hereafter referred to as Stroop interference – 

accuracy). Participants with typical levels of interference control generally have high accuracy 

scores and shorter response times for the congruent trials with somewhat lower accuracy scores 

and increased response latency for incongruent trials. Participants with low interference control 

generally demonstrate a larger difference in accuracy scores and response latencies between 
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congruent and incongruent conditions compared to participants with high interference control 

abilities. 

Several theories have emerged in efforts to explain the observed behavioral and neural 

implications of Stroop interference. Theories of early processing, limited response capacity, and 

parallel processing are described below. 

Perceptual encoding. The perceptual-encoding perspective provides an early processing 

theory of Stroop interference. In comparison to theories placing emphasis on processing after 

encoding, theories emphasizing encoding failed to garner significant theoretical popularity or 

empirical support (MacLeod, 1991). Broadly, this perspective suggests that the perceptual 

encoding speed for information regarding ink-color (e.g., blue) is attenuated due to conflicting 

information from an incongruent color word (e.g., “RED”) in comparison to a neutral word (e.g., 

“STEP”). Support of this theory comes from the work of Hock and Egeth (1970). They altered 

the CWST to require binary verbal classification of colors (“yes” or “no”) to remove the 

semantic relation between responses and stimuli. Interference for incongruent stimuli was still 

observed. Hock and Egeth (1970) interpreted these results as suggesting that interference 

occurred at the stage of implicit color identification/coding rather than at the stage of overt 

response competition. Others have criticized this assumption, indicating that interference at the 

level of response is still present despite binary demands (Dalrymple-Alford & Azkoul, 1972; 

Dyer, 1973). 

Relative speed of processing. This theory posits that Stroop interference occurs due to 

the differential speed of processing of relevant (ink color) and irrelevant (word) stimulus 

information, that ultimately converges upon a singular response channel that only has room for 

one input (Morton & Chambers, 1973). As this theory posits that only one piece of information 
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(color or word) may be accepted into the response channel at a time, priority of response is 

determined by the speed of processing attributed to the respective information pathway (color or 

word). This results in a sort of “attentional bottleneck” to be the first input to reach the response 

stage. Typically words have been found to be read faster than colors are named (Cattell, 1886; 

Fraisse, 1969), therefore this theory suggests that Stroop interference occurs when irrelevant 

stimuli information (word) reaches the response output stage before slower relevant information 

(ink color) resulting in conflict in selecting the correct color response (MacLeod, 1991). 

Evidence against a basic speed-of-processing account comes from studies in which the color and 

word components of the Stroop stimulus were presented with varying stimulus onset 

asynchronies (SOAs; Dyer, 1971; Glaser & Glaser, 1982; Sugg & McDonald, 1994). If 

interference in the CW-Stroop task is primarily due to word meaning being processed more 

quickly than ink color, classic interference should be eliminated if color information is presented 

sufficiently before a word resulting in reverse Stroop interference/facilitation. To date, this 

pattern of results is not typical within SOA empirical efforts suggesting that a speed of 

processing account does not sufficiently explain Stroop interference (MacLead 1991; Maclead 

2015). 

Continuum of automaticity. Similar to the speed of processing theory, an automaticity 

theory of Stroop interference is defined by the parallel processing of multiple stimuli 

characteristics that ultimately bottleneck at the stage of response, as these theories suggest only 

one stream of processing may be inputted into the response selection stage at any given moment. 

This theory differs slightly from the speed of processing theory by emphasizing degree of 

information automaticity and related recruitment of attentional/processing resources (LaBerge & 

Samuels, 1974; Posner & Synder, 1975). While purely automatic processes are defined as 
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operating outside the realm of volitional attention, other processes can develop strong 

automaticity through learning/practice. Processes with high levels of automaticity are believed to 

interfere with less automatic processes (MacLeod & Dunbar, 1988). Kahneman and Chajczyk 

(1983) categorize Stroop interference as an example of partially automatic forces (word reading) 

at odds with less automatic forces (color naming). According to this theory, Stroop interference 

occurs because the level of automaticity is stronger for word reading than color naming, thus 

naming ink color recruits more heavily from attentional resources than reading, ultimately 

increasing response latency when ink color and written word are incongruent. Within this 

context, word reading is often viewed as obligatory (given its large level of automaticity), while 

color naming remains optional requiring top-down attentional control to engage more effortful 

processing. 

 Parallel distributed processing model. Expanding upon the work of Logan (1980), 

Cohen, Dunbar and McClelland (1990) put forth one of the most comprehensive models of 

Stroop interference to date. The Parallel Distributed Processing Model includes many of the 

strengths established in speed of processing and automaticity theories while exchanging the 

limited serial stage approach for a more inclusive system loop. Emphasis within this model is 

placed on pathway strength and not relative speed. Level of automaticity is determined as a 

function of the strength of each pathway and pathways are strengthened through practice. 

Pathways necessitating fewer processing resources are stronger at lower levels of engagement 

compared to those less automated pathways. The volitional direction of cognitive resources can 

increase pathway strength. Therefore, the likelihood and degree of interference occurring is 

determined by the relative strengths and information processing capacities of each engaged 

pathway (MacLeod, 1991). In the context of the CWST, the engaged pathways would be color 
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and word information. This theory refutes the limited-capacity of a singular response channel 

(assumed in both speed of processing and automaticity theories) and instead suggests that there 

can be as many response channels as there are responses. Whichever response channel is most 

strongly activated will ultimately produce the response.  

Neural Correlates of Stroop Interference 

Empirical evidence from a number of electrophysiological and functional imaging studies 

indicate involvement of several regions of the brain during interference control, including the 

anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex (dlPFC), posterior parietal 

cortex, and inferior parietal cortex (Egner, Delano & Hirsch, 2007; MacLeod and MacDonald 

2000; Peterson et al. 2002; Silton et al., 2010; Van Veen & Carter, 2005). ERP studies provide 

the temporal sensitivity necessary to identify the rapid succession of events related to 

interference processing. While several ERP components have been associated with Stroop 

interference, variable findings suggest that the time course of neural processes engaged during 

Stroop interference remains an open question. 

ERPs indicate how the brain responds to a specific event. ERP waveforms are typically 

described in terms of latency, amplitude, and scalp distribution and are generally calculated 

using the averages of numerous trials. Latency refers to the temporal onset of the ERP in relation 

to the event it is “locked” to (e.g., stimulus onset or response). Amplitude reflects the difference 

in voltage between a given electrode site (or collapsed grouping of sites) and the assigned 

reference point. Amplitudes can be positive inflections or negative deflections within the EEG 

waveform. Standard nomenclature for ERPs often reflect both amplitude and latency 

characteristics, typically beginning with a “P” for positive inflections and “N” for negative 

deflections followed by numbers to indicate general latency. ERP amplitudes are typically 
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measured/reported in microvolts (µV). Common methods to calculate amplitudes include 

instantaneous (amplitude at a single latency), peak (the most positive or most negative point 

within a specified time window), and mean amplitude (averaged voltage within a specified time 

window) (Luck, 2012; Sur & Sinha, 2009; Woodman, 2010). Associations between neural 

correlates (ERP latencies and amplitudes) and neural processes must consider how contextual 

factors influence these variables (Luck, 2012; Sur & Sinha, 2009). Previous literature 

investigating the time course of the CWST has analyzed various ERPs including the N200, P300, 

N450 and a late slow wave component discussed below in order of temporal onset.  

N200. The N200 is a negative deflection that peaks approximately 200 to 250 ms 

following the stimulus presentation. The N200 encompasses a family of neural responses that 

differ based upon eliciting context, such as stimulus modality (Ceponien, Rinne & Naatanen, 

2002; Donchin, Ritter & McCallum, 1978; Sur & Sinha, 2009). Subcomponents within the N200 

wave include N200a/Mismatch negativity (N200a/MMN), N200b, and N200c. MMN is elicited 

subsequent to an infrequent change in repetitive stimuli in any sensory modality, but has been 

most frequently studied utilizing auditory paradigms and has a frontocentral distribution 

(Naatanen, Paavilainen, Rinne & Alho, 2007; Pazo-Alvarez, Cadaveira & Amenedo, 2003). The 

N200b, also located frontocentrally, occurs slightly later than the N200a following a task-

relevant change in the stimulus characteristic (Pritchard, Shappell & Brandt, 1991; Folstein & 

Petten, 2007). The N200b has been related to the detection of perceptual novelty, response 

conflict, error monitoring, and inhibiting a prepotent response system (Folstein & Petten, 2007). 

The N200c presents as posterior maximal for visual stimuli and is elicited when the classification 

of disparate stimuli is required, as in identifying targets from non-targets (Pritchard, Shappell & 

Brandt, 1991; Folstein & Petten, 2007). The N200 wave has been observed in CWST paradigms 
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(Holmes and Pizzagalli, 2008; Silton et al, 2010) as well as in other visual interference and 

conflict monitoring tasks (Folstein & Petten, 2007; Kopp, Rist & Mattler, 1996; Yeung, 

Botvinick & Cohen, 2004). Relevant to the CWST, the N200b has differentiated between 

congruencies, with greater amplitudes for incongruent than congruent conditions.   

P300 (P3).  The P3 is often considered an index of cognitive control and has been 

implicated in several CWST studies (e.g., Badzakova-Trajkov, Barnett, Waldie, & Kirk 2009; 

Duncan-Johnson & Kopell, 1981; Ilan & Polich, 1999). The P300 is a positive inflection peaking 

approximately 300 ms following stimulus onset and was first reported over 50 years ago (Sutton 

et al., 1965). The P300 has been broadly regarded as a marker of task-relevant stimulus 

processing/stimulus evaluation and is further subdivided into the P3a and P3b subcomponents 

(Polich, 2007). The P3b is regarded as the “traditional” P300 and is observed to have maximum 

amplitude in parietal regions and it is typically elicited in tasks with two types of stimuli of 

unequal probability, with larger P3b amplitude observed for the infrequent stimuli type (Polich, 

2007).  

In contrast, the P3a evidences a fronto-central distribution and is related to distracter 

information, such as the written word in the context color-naming demands (Polich, 2007). The 

N200b is consistently observed in combination with the P3a, a subcomponent of the P300. 

Several studies have found that the P3a amplitude elicited by incongruent stimuli is smaller than 

that elicited by congruent stimuli (Houston et al., 2004; Ilan & Polich, 1999). Badzakova-

Trajkov, Barnett, Waldie, and Kirk (2009) found no discernible difference between congruent 

and incongruent conditions at P3, but both elicited larger P3 than neutral conditions at central 

and parietal sites. Other studies have also found no difference between congruent and 
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incongruent conditions regarding P3b amplitude (Hanslymayr et al., 2008; Liotti et al., 2000; 

Markela-Lerenc et al., 2004).  

N450. The N450 is one of the most commonly identified ERP components associated 

with the CWST. Distinguishable as a negative-going deflection 300-500ms following stimulus 

onset with fronto-central topography, The N450 ERP waveform typically peaks around 450ms 

following the presentation of a stimulus with high levels of conflict (Liotti et al., 2000; van Veen 

& Carter, 2002; West & Alain, 1999). Results regarding the N450 are robust, with studies 

consistently reporting that incongruent conditions elicit increased amplitude relative to congruent 

or neutral conditions (West, 2003; West, Jakubek, Wymbs, Perry & Moore, 2005). ERP source 

localization efforts have consistently found that diploes placed within the ACC account for the 

most variance in the topography of the N450 (Liotti, Woldorff, Perez & Mayberg, 2000; Szucs, 

Soltesz & White, 2009; Hanslmayr et al., 2008). Further, evidence accrued from functional 

magnetic resonance imaging studies (fMRI) have implicated increased ACC activity in response 

to incongruent compared to congruent stimuli, consistent with a role in conflict processing 

(MacDonald et al., 2000). While some studies have argued that the N450 denotes the resolution 

of conflicting information (Liotti et al., 2000), others regard it as marking the detection of 

conflict (Hanslmayr et al., 2008). Seeking to clarify this discrepancy, Szucs and Soltesz (2012) 

utilized electro-myography (EMG) in conjunction with ERP to determine whether the N450 is 

related to stimulus or response conflict processing. Despite manipulating level of response 

conflict on a trial-by-trial basis (as confirmed by EMG recording), N450 effect remained stable 

suggesting that N450 is best conceptualized as a marker of stimulus conflict rather than response 

conflict.  
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Late activity (Conflict SP).  Several studies have identified a conflict-sensitive slow 

potential (sometimes referred to as the Conflict SP) characterized by a sustained parietal 

positivity and lateral frontal negativity beginning around 500ms post stimulus onset. The 

Conflict SP has been found to be more positive following incongruent than congruent trials over 

temporo-parietal sites (Liotti, Woldorff, Perez III, and Mayberg (2000) and more negative in the 

same comparison at fronto-central sites (Hanslmayr et al, 2008). Liotti and colleagues (2000) 

referred to this later waveform as the Late Positive Complex (LPC) and suggested that this later 

activity may be related to additional processing of word meaning. Hanslmayr and colleagues 

(2008) offered a different perspective, referring to the component as the Late Negativity (LN); 

they suggested that the sustained activity likely reflected additional recruitment/engagement of 

cognitive control mechanisms necessary to select proper response in the context of interference. 

This interpretation is similar to one offered by West and colleagues (2005) who found that 

Conflict SP was correlated with overall RT and accuracy, thus suggesting that it may be more 

reflective of response selection. Additional research is needed to better characterize the time 

course, topography and functional implications of this late ERP complex that has been repeatedly 

observed in the context of the CWST. 

Overall, the N450 remains the most reliable ERP marker of congruency effects in the 

CWST. While not as consistently addressed in CWST literature as N450, N200 has been related 

to the detection of response conflict and prepotent response inhibition in visual interference and 

conflict monitoring tasks. Findings remain mixed regarding processes indexed by P3 and 

localization of later sustained slow wave activity in the context of Stroop interference.. As prior 

research has not addressed the influence of naturally occurring PA on the recruitment/allocation 

of neural resources during interference processing, the present study will investigate the 
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influence of PA on the two most established ERP components related to interference processing, 

N450 and N200.  

Research Overview: Aims & Hypotheses 

The present study investigated the relationship between naturally occurring positive 

mood state (PA) and interference processing during the Color-Word Stroop Task. This study 

proposed that neural resources are differentially recruited and allocated dependent on task-

related demands (presence or absence of interference) and that implementation of these resources 

are influenced by levels of positive affect.   

Aim 1 

This study investigated the behavioral and neural mechanisms of interference processing 

during a modified CWST. Previous investigations utilizing ERPs have resulted in mixed 

findings; therefore the first aim of the present study was to establish the time course and pattern 

of activation of the most reliable ERP components related to interference processing (N200 and 

N450) for different stimulus presentations (blocked and mixed) within this specific version of the 

CW-Stroop task.  

 Hypothesis 1a (reaction time). A behavioral cost of interference is reflected in increased 

response latency (reaction time; RT) for incongruent compared to congruent conditions for both 

blocked and mixed presentations. 

Hypothesis 1b (accuracy). A behavioral cost of interference is reflected in decreased 

accuracy (increased number of errors) for incongruent compared to congruent conditions for both 

blocked and mixed presentations. 

Hypothesis 2a (N200 amplitude) Presence of interference elicits increased negativity at 

fronto-central electrode sites occurring approximately 200 – 300 ms post stimulus-onset (N200) 
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in incongruent compared to congruent conditions. This has been suggested to reflect the 

detection of response conflict and prepotent response inhibition.  

Hypothesis 2b (N200 latency) Presence of interference results in delayed peak latency of 

a negative component occurring approximately 200 – 300ms post stimulus-onset (N200) in 

incongruent compared to congruent trials. 

Hypothesis 3a (N450 Amplitude). Presence of interference elicits increased negativity at 

fronto-central electrode sites occurring approximately 350-500ms post stimulus-onset (N450) in 

incongruent compared to congruent conditions. This has been suggested to reflect the detection 

of interference and recruitment of central executive processing resources rather than the classical 

semantic incongruency effect (Hanslmayr et al., 2008).  

Hypothesis 3b (N450 Latency). Presence of interference results in delayed peak latency 

of a negative component occurring approximately 350-500ms post stimulus-onset (N450) in 

incongruent compared to congruent trials.  

Aim 2 

This study examined the associations between self-reported positive naturalistic state 

affect (PA) and performance on a modified CWST. Behavioral (RT and accuracy) and ERP 

(N200 and N450) indices of performance are analyzed. High Positive Affect (PA) is predicted to 

have a deleterious effect on CW-Stroop interference processing. As individuals with remitted 

depression were included, analyses also accounted for variance associated with diagnostic 

history.  

Hypothesis 1a (Reaction Time). Based on previous mood induction findings, Stroop 

interference – RT is higher for individuals with Higher PA and lower for individuals with Lower 

PA for both blocked and mixed presentations.  
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Hypothesis 1b (Accuracy). Based on previous mood induction findings, increased 

Stroop interference – accuracy is associated with Higher PA for both blocked and mixed 

presentations. 

Hypothesis 2a (N200 Amplitude) Higher levels of PA is related to increased N200 

amplitude on incongruent trials as individuals with high PA will require increased neural 

resources to detect response conflict ad inhibit irrelevant information for both blocked and mixed 

presentations. 

Hypothesis 2b (N200 Latency) Higher levels of PA is related to increased N200 latency 

as individuals with high PA will have slower response time and slower recruitment of neural 

resources necessary to complete trials with interference (incongruent stimuli) for both blocked 

and mixed presentations. 

Hypothesis 3a (N450 Amplitude). Higher levels of PA is related to increased N450 

amplitude on incongruent trials as individuals with high PA will require increased neural 

resources to inhibit irrelevant information in order to process conflicting information for both 

blocked and mixed presentations. 

Hypothesis 3b (N450 Latency). Higher levels of PA is related to increased N450 latency 

since individuals with high PA will have slower response time and slower recruitment of neural 

resources necessary to complete trials with interference (incongruent stimuli).   
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CHAPTER THREE 

METHODS 

Study Overview 

 The present research study was a component of a larger research study. After participants 

were deemed eligible for inclusion in the broader research study, they were invited for three 

laboratory visits during which they completed informed consent, a semi-structured clinical 

interview, self-report measures, and behavioral tasks while electroencephalography (EEG) data 

were recorded. The university Institutional Review Board approved all recruiting and 

experimental methods. 

Participants 

Participants in this study were native English-speaking undergraduate students from an 

urban, Midwestern university. Participants were recruited from a participant-pool based registry 

maintained by a university research laboratory.  

Participants were excluded from the study if they endorsed any of the following 

exclusion criteria, which are known to influence EEG recording: 1) colorblindness, 2) 

neurological medical condition, 3) a sensory impairment (i.e., colorblindness) that would 

influence study procedures, 4) regular substance use, and 5) left handedness. Participants 

reporting past and/or current psychiatric treatment (medication or psychotherapy) were included 

in the study.
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History and current status of depression was determined through diagnostic interview 

(Mini-International Neuropsychiatric Interview, MINI; Sheehan et al., 1998) that was based on 

criteria determined by the Diagnostic and Statistical Manual, 4
th

 edition revised (DSM-IV-TR; 

American Psychiatric Association, 2000). Participants included in the present study either met 

DSM-IV-TR criteria for a lifetime history of depression but did not meet criteria for current 

depression (remitted depressed group) or never met DSM-IV-TR criteria for depression (control 

group). Individuals who met current diagnostic criteria for depression were excluded from the 

present study. 

Participants (N = 49) were paid $15 per hour for their participation. Two participants 

were eliminated from further analysis for the Color-Word Stroop Task due to poor task 

performance (i.e., <50% accuracy on the mixed incongruent condition); eight participants were 

excluded from analyses due to low-quality EEG signal (e.g., number of rejected trials during 

cleaning, electrical noise).  

The final sample included 39 participants with behavioral and EEG data on the Color-

Word Stroop (37 with PANAS data). Of these 39 participants, 20 participants did not have a 

lifetime history of depression and were categorized as controls (age M = 19.75, SD = 1.80, range 

= 18-24; 55% female; 62.7% White, 27.3% Asian American, 10% Hispanic/Latino). 19 

participants presented with a history of depression without meeting criteria for current depression 

and were categorized as remitted depressed (age M = 19.53, SD = 1.10, range = 18-22; 79% 

female; 68% White, 32% Asian American, 0% Hispanic/Latino).  
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Procedure 

Demographic information. Participants reported information regarding age, gender, 

handedness, and ethnicity collected online via survey software utilizing a tablet device in the 

research laboratory. 

Diagnostic evaluation/screening. Participants completed a diagnostic interview using 

the MINI International Neuropsychiatric Interview (MINI; Sheehan, et al., 1998). In the present 

study, the MINI was used to assess for current presentation and history of major depressive 

episodes. Interviewers were master-level students who were trained and supervised by Rebecca 

Silton, Ph.D. Accuracy of diagnosis was reviewed in consensus meetings in order to ensure 

consensus regarding diagnosis. 

Depression severity.  To evaluate current depression severity, the nine-item Patient 

Health Questionnaire (PHQ-9; Kroenke et al., 2001) was administered. PHQ-9 items are scored 

from “0” (not at all) to “3” (nearly every day) and are based on the depression criteria from the 

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition.  

State affect. Participants completed the Positive and Negative Affect Scale (PANAS; 

Watson, Clark, & Tellegen, 1988) before completion of behavioral/EEG measures. The PANAS 

is a 20-item scale that measures the distinct constructs of positive and negative affect. 

Participants answer on a five-point Likert scale how accurately words describe their current 

mood. For example, negative affect words include "afraid, nervous, and guilty" and positive 

affect words include "active, enthusiastic, and interested." The PANAS yields Positive Affect 

(PA) and Negative Affect (NA) subscales. In the present study, the internal consistencies of the 
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PA (α = .86) and NA scales (α = .88) were adequate and commensurate with past studies (i.e., 

Crawford & Henry, 2004; Mehrabian, 1998; Roesch, 1998).  

Behavioral tasks and EEG measurement. Participants completed two cognitive tasks 

while electroencephalography (EEG) data was recorded. Only behavioral and EEG data from the 

modified Color-Word Stroop task were included in the present study. Participants were seated 

100 cm from a 21-inch CRT monitor in a quiet, noise-shielded room. The stimuli were presented 

and responses recorded using E-Prime 2.0 (Schneider, Eschman, & Zuccolotto, 2002). 

 Apparatus and physiological recording. EEG data were recorded from each participant 

using a Biosemi Active2 EEG system. Custom-designed Falk Minow caps with 64 equidistant 

Ag/AgCl active electrodes were used for data collection. Common Mode Sense (CMS) and 

Driven Right Leg (DRL) sensors were placed near the vertex and formed a feedback loop 

serving the job of typical “ground” electrodes. Two electrodes were placed on the mastoid bones. 

Two electrodes were placed on the outer canthus of each eye to monitor horizontal eye 

movements (HEOG). Two additional electrodes were placed on the inferior edge of the orbit of 

each eye to monitor vertical eye movements (VEOG). After placement of the electrode cap, 

electrode positions were digitized. Data were recorded with a band pass filter of 0 –104 Hz, and 

sampled at a rate of 512 Hz 

Stroop interference. To assess interference processing, participants completed an 

electronic Color-Word Stroop task, based upon the Delis-Kaplan Executive Function System (D-

KEFS) Color-Word Interference Task (Delis, Kaplan, & Kramer, 2001). Interference occurs 

when conflicting stimuli are presented simultaneously. In the case of the Color-Word Stroop 

task, conflicting stimuli are presented such that the name of one color (e.g., the word “RED”) is 

printed in the ink of another color (e.g., blue). These task trials are referred to as incongruent 
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trials. Interference does not occur when stimuli characteristics are in agreement (e.g., the word 

“RED” is printed in red ink). Trials in which the word name and ink color match are referred to 

as congruent trials. To obtain an index of accuracy interference, accuracy on incongruent trials 

was subtracted from accuracy on congruent trials. To obtain an index of reaction time 

interference, reaction time on congruent trials was subtracted from reaction time on incongruent 

trials. 

Task design. Stimulus presentation times were based upon previous Stroop tasks 

optimized for EEG recording (Compton et al., 2011; Lansbergen & Kenemans, 2008; Silton et 

al., 2010). Each trial began with a fixation cross in the center of the screen, the presentation of 

which varied between 500-1100 ms to minimize potential habituation to the stimuli presentation 

format. The stimulus was then be presented for 150 ms, followed by a blank screen, during 

which participants had 1500 ms to respond before the onset of the next trial. On each trial, 

participants indicated their response (blue, green, red, or yellow) via a button press. The four 

response options were mapped onto a response box with color-coded keys. 

Participants completed the following task blocks: (a) word-reading congruent (b) word-

reading incongruent, (c) color-naming congruent block, (d) color-naming-incongruent block, (d) 

color-naming mixed congruent and incongruent block, and (e) task-switching. Participants were 

provided 90-second breaks in between each test block. The color-naming blocked and mixed 

conditions for congruent and incongruent stimuli were analyzed for the present study; these 

blocks are further detailed below.  

Prior to beginning the Color-Word Stroop task, participants completed color 

identification practice (16 trials) with written feedback (“correct” or “incorrect”) displayed on 

the screen after each trial. Sixteen practice trials with accuracy feedback preceded each of the 
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task blocks; twenty-four practice trials preceded the switching trials. Feedback was not provided 

throughout the testing blocks of trials.  

Blocked color-naming condition. Participants completed a congruent and incongruent 

condition of color-identification of words. The congruent condition only presented congruent 

stimuli (e.g., the word “RED” printed in red ink), and the incongruent condition only presented 

incongruent stimuli (e.g., the word “RED” printed in blue ink). Each condition was presented in 

two consecutive sets of 48 trials with a 10 second break in between (96 total 

congruent/incongruent total trials were presented).  

Mixed color-naming condition. Participants completed one mixed presentation of color-

identification (see Figure 1). For the mixed condition, the incongruent and congruent stimuli 

were randomly intermixed throughout each presentation. This condition was divided into four 

consecutive sets of 48 trials, with a ten second break in between each set, totaling 96 congruent 

and 96 incongruent trials. 

Figure 1. Schematic of Color-Word Stroop Mixed Color-Naming Block 

 

 

 

 

 

 

Note. Color-Word Stroop mixed color-naming blocks included 96 congruent and 96 incongruent 

intermixed trials that were randomized within each block. The block was presented in sets of 48 

trials, with a ten second break between each trial.  
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EEG data reduction. EEG data processing was performed in Brain Electrical Source 

Analysis software (BESA, Version 6.0). Following the adaptive artifact correction method (Ille, 

Berg, Scherg, 2002) ocular artifacts were corrected using a spatial PCA filter. Muscle and other 

artifact were removed through automated and visual inspection of raw data. Participants with 

fewer than 30% rejected trials across conditions were included in ERP analyses. Baseline 

adjustment was computed using the averaged amplitude of 100 ms pre-stimulus onset. Data were 

referenced using an average reference and were not digitally filtered for analyses. 

Stimulus-locked averages were calculated to ascertain mean amplitudes and peak 

latencies for central N200 and N450 components across conditions. On average, participants had 

77 accepted correct “blocked congruent” trials, 75 accepted correct “blocked incongruent” trials, 

73 “mixed congruent” trials, and 66 “mixed incongruent” trials.  

Electrode selection and temporal windows were informed by visual inspection of data as 

well as a priori judgments based on findings from previous studies investigating these ERP 

components in similar contexts (i.e., Silton et al., 2010). The N200 component was measured 

from 225 to 325 ms post stimulus onset for correct trials of the CW-Stroop Task. The N450 was 

measured from 350 to 500 ms post stimulus onset for correct trials of the CW-Stroop Task. A 

cluster of seven central electrodes was identified for N200 and N450 analyses (Figure 2). 

Amplitude and peak latency data for stimulus-locked averages were calculated for the 

aforementioned N200 and N450 time windows. 
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Figure 2. Electrode Localization for N200 and N450 ERP Analyses. 

35 

 

Enriquez-Geppert et al., 2010; Stockdale et al., 2015; parietal P300: Polich, 2007), as 

well as visual inspection of the data in the present study.  

The N200/P300 complex was measured from 140 to 440 ms post stop-signal onset 

for correct “stop” trials of the Stop-Signal Task. A cluster of four frontocentral electrodes 

was identified for N200/P300 analyses (Figure 6a). On average, participants had 94 

accepted correct “stop-happy” trials and 96 accepted correct “stop-sad” trials. The 

parietal P300 was measured from 230 to 530 ms post stimulus onset for correct “switch” 

trials of the Color-Word Stroop. A cluster of six parietal electrodes was identified for 

P300 analyses (Figure 6b). On average, participants had 55 accepted correct “switch” 

trials. Amplitude scores were obtained for the frontocentral N200/P300 and parietal P300 

following methods used in a study by Silton and colleagues (2010).  

 

Figure 6. Electrode localization for frontocentral N200/P300 and parietal P300 ERPs 

 

 

 

 

 

 

 

 

 

(a) Frontocentral N200/P300 electrode cluster. (b) Parietal P300 electrode cluster.

(a) (b) 
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CHAPTER FOUR 

RESULTS 

Descriptive Analyses 

Skewness analyses were conducted for all variables using guidelines established by 

Tabachnick and Fidell (2001). Conservative alpha levels (.001) were employed to evaluate the 

significance of skewness, in which z-score values greater than 2.00 were considered significantly 

skewed. Since no variables were skewed, data were analyzed without transformation. The means 

and standard deviations for study variables are presented in Table 1. Two-tailed t-tests were 

calculated to assess whether the healthy control and remitted depressed groups differed on affect 

and depression severity. Results did not indicate significant group differences. ERP waveforms 

are presented in Figure 3 and Figure 4.

 

Table 1. Descriptive Statistics for Study Variables 

 Diagnostic Group 

 Healthy Controls Remitted Depressed 

Self-Report Measure M SD M SD 

PANAS - PA 29.00 5.98 27.22 6.54 

PANAS - NA 15.33 5.86 15.56 5.94 

PHQ-9 4.76 4.27 6.81 4.40 
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Congruent Trials – Blocked Condition  M SD M SD 

Accuracy 0.95 0.04 0.95 0.02 

Response Time (ms) 395.92 100.22 383.32 99.10 

N200 Amplitude 0.58 1.99 -0.27 1.37 

N200 Latency (ms) 264.16 17.24 273.87 21.82 

N450 Amplitude 2.84 2.34 1.89 1.89 

N450 Latency (ms) 403.16 32.50 411.96 36.14 

     

Incongruent Trials – Blocked 

Condition  

M SD M SD 

Accuracy 0.92 0.06 0.91 0.04 

Response Time 542.77 125.76 523.71 131.45 

N200 Amplitude 0.73 1.94 -0.37 1.35 

N200 Latency 268.99 14.72 280.32 20.16 

N450 Amplitude 2.28 2.00 0.94 1.91 

N450 Latency 415.63 36.74 424.98 32.09 

     

Congruent Trials - Mixed Condition M SD M SD 

Accuracy 0.96 0.04 .96 0.03 

Response Time 434.43 88.18 434.60 122.95 

N200 Amplitude 0.45 2.27 -0.87 1.59 

N200 Latency 266.75 18.34 274.62 18.98 

N450 Amplitude 2.18 2.00 .88 1.86 

N450 Latency 413.77 39.86 402.12 33.15 

     

Incongruent Trials - Mixed Condition M SD M SD 
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Accuracy 0.90 0.07 0.87 0.06 

Response Time 575.75 126.40 571.09 131.95 

N200 Amplitude 0.46 2.24 -0.42 1.41 

N200 Latency 271.44 16.28 278.77 18.42 

N450 Amplitude 1.97 2.25 1.04 2.23 

N450 Latency 402.93 33.32 424.99 38.18 

     

Stroop Interference – Blocked 

Condition 

M SD M SD 

Accuracy (Con Acc – Inc Acc) 0.03 0.04 0.03 0.04 

Reaction Time (Inc RT – Con RT) 146.85 62.14 139.39 85.26 

     

Stroop Interference – Mixed Condition M SD M SD 

Accuracy (Con Acc – Inc Acc) 0.06 0.06 0.09 0.07 

Reaction Time (Inc RT – Con RT) 141.32 65.77 136.49 60.66 

Figure 3. ERP Waveforms at Cz for Blocked Conditions 
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Figure 4. ERP Waveform at Cz for Mixed Conditions 

 
Correlational Analyses 

 Correlational analyses were conducted for each diagnostic group (healthy control or 

remitted depressed) to assess the relations among relevant study variables. Findings are 

presented in Table 2 and Table 3. Significant correlations involving primary study constructs are 

characterized below. 

Affect and Behavioral/ERP Correlations 

Higher levels of self-reported positive affect (PA) were related to faster onset of N200 

latency during mixed congruent trials for the healthy control group (r = -.52), but later onset 

N200 for the same condition for the remitted depressed group (r = .47). Similarly, higher levels 

of self-reported negative affect (NA) were related to attenuated N200 amplitude for mixed 
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congruent trials for the healthy control group, but larger N200 amplitude during the same 

condition for the remitted depressed group. 

Blocked Condition Behavioral and ERP Correlations 

For the healthy control group, correlations between behavioral performance and neural 

correlates showed an association between Stroop interference reaction time (Stroop interference-

RT, incongruent trials reaction time – congruent trials reaction time) and N450 latency for 

incongruent blocked trials (r = -.52); higher levels of Stroop interference conflict were related to 

faster onset of N450 latency for incongruent blocked trials. Stroop interference-RT was related to 

N450 amplitude, such that higher levels of interference correlated with increased N450 

amplitude during incongruent blocked trials.  

 Stroop interference accuracy (congruent accuracy – incongruent accuracy) for blocked 

trials directly correlated with Stroop interference accuracy for mixed trials for both the healthy 

control group (r = .74) and the remitted depressed group (r = .52). Increased Stroop interference 

accuracy during the blocked presentation of conditions was also related to increased N200 

amplitude during blocked incongruent (r = -.49) and congruent conditions (r = -.46) for healthy 

controls. Increased Stroop interference accuracy during the blocked condition correlated with 

delayed onset of N200 (r = -.51) and more negative N450 amplitude (r = -.56) during blocked 

incongruent trials for the remitted depressed group. 

Mixed Condition Behavioral and ERP Correlations 

Lastly, for healthy controls, Stroop interference accuracy during the mixed condition was 

related to more negative N200 amplitudes for mixed congruent (r = -.56) and incongruent (r = -

.55) conditions. 

  



44 

33 

Table 2. Pearson Correlations for the Healthy Control Group 

 1 2 3 4 5 6 7 

1. PA --       

2. NA -.14 --      

3. PHQ-9 .07 .22 --     

4. Block Interference-RT .31 -.16 .04 --    

5. Mix Interference-RT -.21 -.14 .12 -.03 --   

6. Block Interference-Acc -.02 -.15 -.09 .06 -.18 --  

7. Mix Interference-Acc -.05 -.21 .05 .05 .10 .74* -- 

8. N200 BC Amplitude -.07 .42 .02 .08 .11 -.46* -.57* 

9. N200 BC Latency -.25 .23 .30 -.27 .23 .39 .52* 

10. N200 BI Amplitude -.19 .56* .12 .13 -.06 -.49* -.49* 

11. N200 BI Latency .37 .22 -.03 .04 .07 .27 .31 

12. N200 MC Amplitude -.13 .57* .16 .15 -.14 -.41 -.56* 

13. N200 MC Latency .52* .31 -.36 -.13 .22 .01 .23 

14. N200 MI Amplitude -.15 .46 .09 .22 -.10 -.53* -.55* 

15. N200 MI Latency -.09 .00 -.16 .14 -.02 .32 .42 

16. N450 BC Amplitude .16 .06 -.22 .15 -.03 -.19 -.11 

17. N450 BC Latency -.18 -.16 -.14 -.20 .28 -.03 -.14 

18. N450 BI Amplitude .05 .13 -.10 .10 .09 -.29 -.16 

19. N450 BI Latency -.23 .20 .14 -.52* -.08 .30 .09 

20. N450 MC Amplitude .14 .25 -.06 .10 -.16 -.18 -.27 

21. N450 MC Latency -.41 .34 -.19 -.36 .18 .33 .08 

22. N450 MI Amplitude -.01 .19 .03 .24 .12 -.34 -.35 

23. N450 MI Latency -.37 .06 -.22 -.51* .03 .31 .30 

Notes. PA = positive affect; NA = negative affect; RT = reaction time; Acc = accuracy; BC = blocked congruent; BI 

= blocked incongruent; MC = mixed congruent; MI = mixed incongruent; * = p < 0.05 
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Table 3. Pearson Correlations for the Remitted Depressed Group 

 1 2 3 4 5 6 7 

1. PA --       

2. NA .33 --      

3. PHQ-9 .15 .72* --     

4. Block Interference-RT -.25 -.30 -.07 --    

5. Mix Interference-RT -.35 -.20 .02 .44 --   

6. Block Interference-Acc -.29 -.09 .03 .17 -.21 --  

7. Mix Interference-Acc -.27 -.30 -.24 .26 .46* .51* -- 

8. N200 BC Amplitude .07 -.61* -.63* -.39 -.34 .06 .13 

9. N200 BC Latency .40 .18 -.49 -.09 -.06 .09 .31 

10. N200 BI Amplitude .27 -.10 -.42 -.25 -.21 -.40 -.10 

11. N200 BI Latency .37 .06 -.25 .01 -.40 .51* .23 

12. N200 MC Amplitude -.28 -.54* -.73* -.15 -.10 -.01 .18 

13. N200 MC Latency .47* .04 -.26 .02 .01 .03 .22 

14. N200 MI Amplitude -.28 -.32 -.36 -.23 -.13 -.17 -.09 

15. N200 MI Latency .46 .00 -.35 .00 -.06 .18 .26 

16. N450 BC Amplitude -.15 -.19 .40 -.28 -.12 -.01 -.17 

17. N450 BC Latency -.02 -.18 -.27 -.13 -.24 -.29 -.30 

18. N450 BI Amplitude .05 .04 .18 -.50* -.08 -.56* -.43 

19. N450 BI Latency .13 .14 .40 .07 .08 .00 .19 

20. N450 MC Amplitude -.52* -.29 -.21 -.20 -.11 .03 -.16 

21. N450 MC Latency .10 .25 .00 .04 -.10 -.40 -.27 

22. N450 MI Amplitude -.44 -.22 .03 -.39 -.03 -.14 -.19 

23. N450 MI Latency .39 .22 .21 -.20 -.13 .00 -.07 

Notes. PA = positive affect; NA = negative affect; RT = reaction time; Acc = accuracy; BC = blocked congruent; BI 

= blocked incongruent; MC = mixed congruent; MI = mixed incongruent; * = p < 0.05 
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Hypothesis Testing 

Aim 1 (Stroop Interference) 

A series of repeated measures ANOVA analyses were conducted to evaluate Aim 1 

regarding behavioral and neural correlates of Stroop Interference effects for healthy controls and 

individuals with remitted depression. Behavioral data (i.e., response time or response accuracy) 

and event related potential (ERP) components (i.e., N200/N450 ERP amplitudes and latencies) 

were within-subject variables using a 2x2 design of condition (blocked or mixed) and 

congruency (congruent or incongruent). For all analyses, diagnostic group (healthy controls or 

remitted depressed) was entered as a between-subject factor. Wilks’ lambda statistics are 

reported for all multivariate analyses unless analyses rejected the null hypotheses for 

homogeneity of variance/covariance across diagnostic groups, Pillai’s Trace was conducted to 

account for violation in statistical assumptions. 

A power analysis with a significance level of p <.05 (Aiken & West, 1991; Cohen, 1992) 

was conducted using G*Power version 3.1 (Faul, Erdfelder, Lang, Buchner, 2007) to estimate 

the sample size needed to detect within subject differences between conditions and congruency 

and between-subject differences for lifetime history of depression. A review of literature 

regarding remitted depression and cognition indicated power for a medium effect size 

(Hasselbalch, Knorr & Vedel Kessing, 2011), but how this specifically translates to different 

components of cognitive control is unclear. The power analysis indicated that a sample of N = 44 

participants would be needed to detect a large effect size. A sample of N = 220 would be need to 

detect a medium effect size. As such the following results are discussed in the context of limited 

power. 
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Hypothesis 1a (reaction time). Hypothesis 1a predicted that a behavioral cost of 

interference would be observed via increased reaction time (RT) for incongruent compared to 

congruent trials. A repeated measures ANOVA was conducted to compare the main effects of 

block condition, congruency, and diagnostic group and the interaction effects between these 

variables on RT. As hypothesized, a main effect was found for congruency, F (1, 37) = 266.90, p 

< .01, ηp
2
 = .89, with larger RT observed on incongruent trials (M = 553.33, SE = 19.18) 

compared to congruent trials (M = 412.32, SE = 16.02) confirming the impact of interference 

processing on RT (see Figure 5). A main effect was also found for block condition (see Figure 

6), F (1, 37) = 17.60, p < .01, ηp
2
 = .32, in that RT was longer for mixed trials (M = 503.97, SE = 

18.27) in comparison to blocked trials (M = 461.68, SE = 17.44). Diagnostic group and 

interaction factors between variables were not significant (p’s >.05). 

Figure 5. Main Effect of Congruency on Reaction Time 
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Figure 6. Main Effect of Block Condition on Reaction Time 

 

Hypothesis 1b (accuracy). Hypothesis 1b predicted that a behavioral cost of interference 

would be observed in decreased accuracy for incongruent compared to congruent trials. A 

repeated measures ANOVA was conducted to compare the main effects of block condition, 

congruency, and diagnostic group and the interaction effects between these variables on 

accuracy. As hypothesized, a main effect was found for congruency, F (1, 37) = 51.97, p < .01, 

ηp
2
 = .58, with decreased accuracy observed on incongruent trials (M = .90, SE = .01) compared 

to congruent trials (M = .95, SE = .01) confirming the impact of interference processing on task 

accuracy (see Figure 7). Similar to findings regarding RT, a main effect was also found for block 

condition (see Figure 8), F (1, 37) = 4.64, p < .05, ηp
2
 = .11. Accuracy was lower on mixed trials 

(M = .92, SE = .01) in comparison to blocked trials (M = .93, SE = .01).  
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Figure 7. Main Effect of Congruency on Accuracy 

 

Figure 8. Main Effect of Block Condition on Accuracy 

 

Additionally, a significant interaction for block condition by congruency was observed, F 

(1, 37) = 30.66, p < .01, ηp
2
 = .45. Holm’s sequential Bonferroni post-hoc analyses revealed 

simple main effects for congruency during the blocked condition, F (1, 38) = 26.09, p < .001, ηp
2
 

= .41, and mixed condition, F (1, 38) = 52.74, p < .01, ηp
2
 = .58. Post-hoc analyses also 

confirmed simple main effects for block condition on congruent trials, F (1, 38) = 7.30, p < .05, 
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ηp
2
 = .16, and mixed block condition, F (1, 38) = 18.63, p < .01, ηp

2
 = .33. As shown in Figure 9, 

participants were most accurate on mixed congruent trials (M = .96, SE = .01) and blocked 

congruent trials (M = .95, SE = .01) and had more difficulty on blocked incongruent trials (M = 

.92, SE = .01) and mix congruent trials (M = .89, SE = .01). Diagnostic group and other 

interaction factors between variables were not significant (p’s >.05). 

Figure 9. Interaction of Block Condition x Congruency on Accuracy 

 

Hypothesis 2a (N200 ERP amplitude). Hypothesis 2a predicted that a neural correlate 

of interference processing would be observed in increased amplitude at central electrode sites 

occurring 225 to 325 ms post stimulus onset (N200 ERP component) for incongruent compared 

to congruent conditions. A repeated measures ANOVA was conducted to compare the main 

effects of block condition, congruency, and diagnostic group and the interaction effects between 
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these variables on N200 amplitude. No significant main effects or interaction effects were 

observed (p’s >.05). 

Hypothesis 2b (N200 ERP latency). Hypothesis 2b predicted that a neural correlate of 

interference processing would be observed in delayed onset (peak latency) of the N200 

component for incongruent compared to congruent conditions. A repeated measures ANOVA 

was conducted to compare the main effects of block condition, congruency, and diagnostic group 

and the interaction effects between these variables on N200 latency. A significant main effect 

was found for congruency, F (1, 36) = 10.09, p < .01, ηp
2
 = .22. As hypothesized and shown in 

Figure 10, onset of N200 was delayed for incongruent conditions (M = 274.63, SE = 2.65) 

compared to congruent conditions (M = 269.79, SD = 2.88). No additional significant main 

effects or interaction effects were observed (p’s >.05). 

Figure 10. Main Effect of Congruency on N200 Latency 

 

Hypothesis 3a (N450 ERP amplitude). Hypothesis 3a predicted that a neural correlate 

of interference processing would be observed in increased negativity at central electrode sites 

occurring 350 to 500 ms post stimulus onset (N450) for incongruent compared to congruent 

conditions. A repeated measures ANOVA was conducted to compare the main effects of block 
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condition, congruency, and diagnostic group and the interaction effects between these variables 

on N450 amplitude. A main effect was observed for congruency (see Figure 11), F (1, 36) = 

5.94, p < .05, ηp
2
 = .14. As hypothesized, incongruent conditions resulted in more negative 

amplitude at N450 (M = 1.59, SE = .32) than congruent conditions (M = 1.99, SE = .30). A main 

effect was also observed for block condition (see Figure 12), F (1, 36) = 4.15, p < .05, ηp
2
 = .10, 

in that N4 amplitude was larger for mixed conditions (M = 1.58, SE = .32) in comparison to 

blocked conditions (M = 2.00, SE = .32).  

Figure 11. Main Effect of Congruency on N450 Amplitude 

 

Figure 12. Main Effect of Block Condition on N450 Amplitude 
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Additionally, a significant interaction for block condition by congruency was observed, F 

(1, 36) = 5.76, p < .05, ηp
2
 = .14. Holm’s sequential Bonferroni post-hoc analyses revealed a 

simple main effect for congruency on blocked trials, F (1, 37) = 12.79, p < .01, ηp
2
 = .26, and a 

simple main effect for block condition on congruency, F (1, 37) = 8.96, p < .01, ηp
2
 = .20. As 

displayed in Figure 13, N450 amplitude was larger for blocked incongruent trials (M =1.67, SE = 

.33) compared to blocked congruent trials (M = 2.39, SE = .35). Additionally, N450 amplitude 

was larger for mixed congruent trials (M = 1.64, SE = .32) than blocked congruent trials (M = 

2.39, SE = .35). Diagnostic group and remaining interaction factors between variables were not 

significant (p’s >.05). 

Figure 13. Interaction of Block Condition x Congruency on N450 Amplitude 

 

Hypothesis 3b (N450 latency). Hypothesis 3b stated that a neural correlate of 

interference processing would be observed in delayed onset (peak latency) of the N450 

component for incongruent compared to congruent conditions. A repeated measures ANOVA 

was conducted to compare the main effects of block condition, congruency, and diagnostic group 
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and the interaction effects between these variables on N450 latency. Contrary to the proposed 

hypothesis, no significant main effects or interaction effects were observed (p’s >.05). 

Aim 2 (Positive Affect) 

A series of hierarchical regressions were conducted to examine Aim 2 regarding the 

effect of positive affect (PA) on performance during incongruent trials during blocked and mixed 

conditions of the Color-Word Stroop Task. For all regression models, Group (Healthy Controls = 

0, Remitted Depressed = 1) was entered in the first step, Affect (PA) was entered in the second 

step, and the interaction of Group x Affect was entered in the third step. Outcome variables were 

behavioral and ERP data (see Figure 14). All interaction tests, including post-hoc tests when 

applicable, were conducted using the approach for depicting interaction effects described in 

Aiken and West (1991). Significant findings are reviewed below and regression results for all 

models can be found in Table 4 and 5.  

Figure 14. Aim 2 Regression Analyses 
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Note. Diagnostic group, PA, Group x PA are entered sequentially as independent variables. Behavioral outcomes are 

indicated in light grey and ERP outcomes in dark grey boxes. Hierarchical linear regression analyses were 

conducted for blocked and mixed conditions of incongruent trials. 

A power analysis with a significance level of p <.05 (Aiken & West, 1991; Cohen, 1992) 

was conducted using G*Power version 3.1 (Faul, Erdfelder, Lang, Buchner, 2007) to determine 

whether the sample size was appropriate to detect hypothesized effects. A review of literature 

regarding induced mood state and cognition indicated power for a medium effect size (Rowe et 

al., 2007; Gray 2001). Given that the effects of natural mood state on cognition is unknown, 

analyses were conducted for both medium and large effect sizes. The power analysis indicated 

that a total sample of N = 36 participants would be needed to detect a large effect size and a total 

sample of N = 77 would be need to detect a medium effect size. As such the following results are 

sufficiently powered to detect a large effect size and underpowered to detect a medium or 

smaller effect. 

Stroop interference – reaction time. Regression analyses for incongruent trials in the 

blocked and mixed conditions showed that group, PA, and Group x PA were not significant 

predictors of Stroop Interference – Reaction Time. 

Stroop interference – accuracy. Regression analyses for incongruent trials in the 

blocked and mixed condition did not elicit significant models for Stroop Interference - Accuracy. 

N200 amplitude. Results from the first step of the regression analyses showed that 

diagnostic history significantly contributed to the regression model, F (1,34) = 4.93, p < .05) and 

accounted for 10% of the variance in N200 amplitude for incongruent trials in the blocked 

condition. Findings showed that the remitted depression group demonstrated more negative 

N200 amplitude ( = -.36, p < .05) than the healthy control group on blocked incongruent trials. 
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PA and Group x PA did not contribute significantly to the regression model, F (2,33) = 2.40, p > 

.05; F (3,32) = 2.16, p < .05, respectively. Regression analyses for the same trials in the mixed 

condition did not elicit significant models. 

N200 latency. Results from the first step of the regression analyses showed that 

diagnostic history significantly contributed to the regression model, F (1,34) = 5.10, p < .05 and 

accounted for 13% of the variance in N200 latency for incongruent trials in the blocked 

condition. Findings showed that the remitted depression group exhibited later onset of N200 ( = 

.36, p < .05) than the healthy control group on blocked incongruent trials. PA did not 

significantly contribute to the regression model, F (2,33) = 2.55, p > .05. Group x PA 

significantly predicted N200 latency, F (3,32) = 3.55, p < .05, and accounted for an additional 

12% of the variance in N200 latency during the mixed congruent condition. As shown in Figure 

15, findings indicated that at higher levels of PA those in the remitted depressed group 

demonstrated later onset N200 and those in the healthy control demonstrated earlier onset N200 

on blocked incongruent trials ( = 1.61, p < .05). Regression analyses for the same trials in the 

mixed condition did not elicit significant models for N200 Latency. 
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Figure 15. N200 ERP Latency Predicted by Group x PA 

 

N450 amplitude. Results showed that diagnostic history contributed significantly to the 

regression model, F (1,34) = 5.60, p< .05) and accounted for 14% of the variance in N450 

latency for incongruent trials in the blocked condition. Findings showed that the remitted 

depression group demonstrated more negative N450 amplitude ( = -.38, p < .05) than the 

healthy control group on blocked incongruent trials. PA and Group x PA did not contribute 

significantly to the regression model, F (2,33) = 2.78, p> .05 and F (3,32) = 1.79, p > .05, 

respectively. Regression analyses for the mixed condition did not elicit significant models.  

N450 latency. Regression analyses for incongruent trials in the blocked and mixed 

condition not elicit significant models for N450 latency. 
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Table 4. Regression Summary Statistics for Blocked Incongruent Trials 
A) Reaction Time 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group -4.21 25.39 -.03 -4.81 26.03 -.03 182.16 119.74 1.23 

PA -- -- -- -.33 2.12 -.03 3.33 3.06 .27 

Group * PA -- -- -- -- -- -- -6.63 4.15 -1.28 

R
2
 Change .00 .00 .07 

F for change in R
2
 .03 .03 2.55 

 

B) Accuracy 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group .02 .01 .26 .02 .01 .24 .04 .06 .59 

PA -- -- -- .00 .00 -.11 .00 .00 -.03 

Group * PA -- -- -- -- -- -- .00 .00 -.36 

R
2
 Change .07 .01 .01 

F for change in R
2
 2.36 .41 .20 

 

C) N200 Amplitude 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group -1.27 .57 -.36* -1.27 .59 -.36* -4.67 2.74 -1.31 

PA -- -- -- .00 .05 .00 -.07 .07 -.22 

Group * PA -- -- -- -- -- -- .12 .10 .97 

R
2
 Change .13 .00 .04 

F for change in R
2
 4.93* .00 1.61 
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D) N200 Latency 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group 13.11 5.80 .36* 13.41 5.94 .37* -43.97 26.42 -1.21 

PA -- -- -- .17 .48 .06 -.93 .68 -.32 

Group * PA -- -- -- -- -- -- 2.04 .92 1.61* 

R
2
 Change .13 .00 .12 

F for change in R
2
 5.10* .13 4.94* 

 

E) N450 Amplitude 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group -2.57 .66 -.38* -1.55 .68 -.37* -1.48 3.25 -.36 

PA -- -- -- .01 .06 .04 .02 .08 .05 

Group * PA -- -- -- -- -- -- .00 .11 -.02 

R
2
 Change .14 .00 .00 

F for change in R
2
 5.60* .07 .00 

 

F) N450 Latency 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group 6.88 11.67 .10 6.37 11.96 .09 -50.91 56.21 -.74 

PA -- -- -- -.29 .97 -.05 -1.39 1.44 -.25 

Group * PA -- -- -- -- -- -- 2.03 1.95 .85 

R
2
 Change .01 .00 .03 

F for change in R
2
 .35 .09 1.09 

* p < .05 
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Table 5. Regression Summary Statistics for Mixed Incongruent Trials 
A) Reaction Time 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group -7.21 21.81 -.06 -12.40 21.49 -.10 11.73 102.59 .09 

PA -- -- -- -2.02 1.75 -.28 -2.45 2.62 -.24 

Group * PA -- -- -- -- -- -- -.86 3.56 -.19 

R
2
 Change .00 .08 .00 

F for change in R
2
 .11 2.80 .06 

 

B) Accuracy 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group .03 .02 .21 .02 .02 .18 .09 .10 .73 

PA -- -- -- .00 .00 -.18 .00 .00 -.05 

Group * PA -- -- -- -- -- -- .00 .00 -.56 

R
2
 Change .04 .03 .01 

F for change in R
2
 1.52 1.06 .48 

 

C) N200 Amplitude 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group -1.00 .65 -.26 -1.11 .65 -.28 -.99 3.11 -.25 

PA -- -- -- -.06 .05 -.19 -.06 .08 -.18 

Group * PA -- -- -- -- -- -- .00 .11 -.03 

R
2
 Change .07 .04 .00 

F for change in R
2
 2.40 1.30 .00 
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D) N200 Latency 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group 9.05 5.73 .26 10.09 5.75 .29 -32.72 26.36 -.95 

PA -- -- -- .58 .47 .21 -.25 .67 -.09 

Group * PA -- -- -- -- -- -- 1.52 .91 1.26 

R
2
 Change .07 .04 .07 

F for change in R
2
 2.50 1.55 2.76 

 

E) N450 Amplitude 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group -1.06 .76 -.23 -1.21 .76 -.26 3.00 3.57 .66 

PA -- -- -- -.08 .06 -.23 .00 .09 .00 

Group * PA -- -- -- -- -- -- -.15 .12 -.94 

R
2
 Change .05 .05 .04 

F for change in R
2
 1.92 1.84 1.46 

 

F) N450 Latency 

 Model 1 Model 2 Model 3 

Variable B SE B β B SE B β B SE B β 

Diagnostic Group 19.52 12.04 .27 20.13 12.33 .28 -102.13 54.60 -1.40 

PA -- -- -- .35 1.00 .06 -2.02 1.40 -.34 

Group * PA -- -- -- -- -- -- 4.34 1.89 1.71* 

R
2
 Change .07 .00 .13 

F for change in R
2
 2.63 .12 5.25* 

* p < .05
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CHAPTER FIVE 

DISCUSSION 

Overview 

As deficits in cognitive and emotional functioning are well documented across many 

neurological disorders (e.g., depression, Alzheimer’s disease, and epilepsy), advancing our 

understanding of the interaction between cognitive and emotional processes in both normal and 

abnormal functioning is critical to further elucidating etiological and maintenance factors of 

emotional and cognitive dysfunction (Pessoa, 2008). In addition to implications for pathological 

conditions, understanding the nuanced impact of state affect on cognitive processes, such as 

cognitive control functions, is central to discerning optimal levels of mood in the completion of 

everyday activities as well. While a robust body of literature details the curvilinear nature of 

“optimal” anxiety/arousal (i.e., Zone of Optimal Functioning; Hanin, 1980), the “optimal” levels 

of positive or negative affect for different cognitive demands are not as well defined. In fact, 

empirical findings and theoretical models regarding the impact of positive and negative affect on 

cognitive control processes are riddled with inconsistent and at times contradictory messages. 

Therefore, the purpose of the present study was to replicate and expand upon previous research 

by examining behavioral and neural correlates of interference processing during the CWST and 

to evaluate the impact of varying levels of positive affect on performance. 
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As expected from previous findings (e.g., MacLeod, 1991; Harnishfeger, 1995; West, 

2004; Silton et al., 2011), incongruent trials on the CWST in the present study resulted in 

increased difficulty (i.e., increased reaction time and error rate) and increased recruitment of 

neural resources (e.g., increased ERP amplitude) compared to congruent trials. In addition to 

similarities in observed outcomes across blocked and mixed paradigms of the CWST, differences 

in interference processing across conditions were significant and provide insight into discrepant 

findings in the literature.   

While little is known regarding the influences of naturally occurring positive affect and 

previous psychopathology on the recruitment/allocation of cognitive control resources, evidence 

from several studies indicate that these factors may indeed play a role in behavioral and 

neurophysiological response (Hur et al., 2015; Heller, 1993; Liotti et al., 2002). In fact, the 

interplay between cognitive and affective processing is evident within the structural and 

functional organization of the cortex, such that frontocingulate cortical structures that support 

affective function also are engaged during cognitive tasks, and vice versa (Mohanty et al., 2007; 

Blanchette and Richards, 2009). Findings from the limited studies that have investigated the 

influence of PA on interference processing during the CWST are inconsistent, in that high levels 

of PA were found to either have a deleterious effect (Yuan et al., 2011; Phillips, Bull, Adams and 

Fraser 2002) or did not influence performance (Martin & Kerns, 2010). Of note, these 

investigations did not report nor account for lifetime history of depression. In the present study, 

PA was found to moderate the relationship between diagnostic group and onset of N200 during 

blocked incongruent trials. At high levels of PA, N200 peak latency was delayed in the remitted 

depressed group and had an earlier onset in the healthy control group. These findings expand 

upon previous literature that has identified pervasive cognitive and emotional processing 
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differences in individuals with remitted depression (Paelecke-Habermann, Pohl, & Leplow, 

2005) and suggest that the differential effects of emotional state upon cognitive control is 

dependent upon history of psychopathology.  

Interference Processing 

Interference processing occurs when the presentation of task-irrelevant information 

conflicts with task-relevant information. Therefore, in order to successfully complete a task in 

the context of interference, an individual must disregard irrelevant data in favor of task-relevant 

information. In the CWST, interference processing is pronounced as task-irrelevant information 

is characterized as an automatic/habituated process that is in direct conflict with the prioritization 

of task-relevant information that requires effortful processing (MacLeod, 1991; Kahneman and 

Chajczyk, 1983). While findings in the extant literature illustrate a consistent pattern of 

behavioral outcomes (i.e., increased reaction time and decreased accuracy for incongruent trials), 

data detailing neural correlates of interference processing are inconsistent in regards to relevant 

ERP components and corresponding neural generators (Harnishfeger, 1995; MacLeod, 1991; 

Lufi, Cohen & Parnish-Plass, 1990; Wagner et al., 2006; West, 2004; Silton et al., 2011).  

Behavioral and Neural Correlates of Interference Processing 

Several behavioral and neural correlates of interference processing were observed in both 

blocked and mixed CWST conditions and underscore the robust effects of interference 

processing that transcends factors such as diagnostic group and task presentation. Replicating 

and building upon previous research (MacLeod, 1991; Silton et al., 2011), both healthy control 

and remitted depressed groups showed behavioral costs of interference processing in increased 

reaction time and decreased accuracy for incongruent compared to congruent trials in blocked 
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and mixed conditions. Additionally, increased Stroop interference-accuracy for blocked trials 

was related to increased Stroop interference- accuracy for mixed trials for both groups.  

While differences in N200 amplitude for incongruent compared to congruent trials have 

been observed in other studies (Holmes and Pizzagalli, 2008; Silton et al., 2010), N200 

amplitude was not significantly influenced by congruency in the present study. However, 

incongruent trials resulted in delayed onset of N200 peak latency compared to congruent trials 

across both blocked or mixed presentations. Taken together, these findings in combination with 

relevant literature (Holmes and Pizzagalli, 2008; Silton et al., 2011) further establish N200 as a 

marker of interference processing. In the context of interference processing, N200 has been 

associated with the detection of conflict and source localization analyses have identified regions 

within the anterior cingulate cortex (ACC) as a potential generator (West, Krompinger, Bowry & 

Doll, 2004; Holmes & Pizzagalli, 2008; van Veen & Carter, 2002).  

Shortly after N200, N450 was observed in the present study, which is similarly thought to 

reflect ACC function. While there is currently debate within the literature as to whether N450 is 

reflective of conflict detection (Hanslmayr et al., 2008; Szucs and Soltesz, 2012) or response 

resolution (Liotti et al., 2000), it is generally agreed upon that increased N450 amplitude is 

associated with increased engagement of cognitive control abilities in relation to task demands. 

Consistent with observed behavioral differences between blocked and mixed conditions in the 

present study, N450 amplitude was attenuated in the blocked condition for congruent trials. 

These findings suggest that additional cognitive resources are recruited in order to successfully 

meet the higher task demands of a mixed presentation (e.g., switching between congruent and 

incongruent stimuli) compared to a blocked presentation. In the present study, N450 amplitude 

differentiated congruency conditions only in the blocked presentation. Since N450 amplitude did 
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not differ for congruent and incongruent trials in the mixed block presentation, this finding 

suggests that increased N450 amplitude reflects a broader recruitment of cognitive control 

resources rather than those specific to interference processing. Despite observed behavioral and 

N450 differences between blocked and mixed conditions, no significant differences in N200 

were observed which further establishes N200 as an indicator of conflict detection.   

Lifetime History of Depression and PA Influence CWST Performance 

In order to investigate the influence of affect on cognitive function with consideration for 

long-term implications of previous psychopathology, individuals with a lifetime history of 

depression as well as healthy controls participated in the present study. While there is evidence 

for residual low levels of PA, often characterized as anhedonia, in individuals with remitted 

depression (Wichers, Geschwind, van Os & Peeters, 2010; DelDonno et al., 2017), other findings 

have found no difference in dimensional ratings of mood/depressive symptom severity in 

remitted depression (Vanderhasselt, De Raedt, Dillon, Dutra, Brooks & Pizzagalli, 2012; 

Bylsma, Salomon, Clift, Morris & Rottenberg, 2014). In the present study, there were no 

significant differences between current depression severity as measured by the PHQ-9 or levels 

of PA or NA between healthy control and remitted depressed groups. Diagnostic group was a 

significant predictor of several ERP outcomes during the blocked condition of the CWST. 

Specifically, more negative N200 and N450 amplitude were observed for the remitted depression 

group compared to the healthy control group on blocked incongruent trials. This expands upon 

previous research (Vanderhassel et al., 2012) detailing the residual impact of remitted depression 

on cognition and reflects the greater recruitment of cognitive resources in order to complete task 

demands. Additionally, the remitted depression group exhibited later onset of N200 than the 

healthy control group on blocked incongruent trials. While self-reported PA alone did not 
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significantly predict behavioral or neural outcome measures, PA was found to moderate the 

relationship between diagnostic group and N200 latency, in that higher levels of PA were related 

to later onset N200 for the remitted depressed group and earlier N200 onset for the healthy 

control group on blocked incongruent trials. This finding calls attention to the differential affect 

PA has on cognitive control processes in the context of history of psychopathology and may 

further account for some of the differences found in existing research as both dimensional and 

categorical classifications of emotional functioning are not frequently examined in the same 

study. Lastly, diagnostic history and level of PA were not significant predictors of behavioral or 

ERP outcomes for incongruent trials during the mixed condition or behavioral outcomes in either 

condition. The discrepancy between conditions likely speaks to the difference in task demands 

and nuances of cognitive control processes.  

Limitations and Future Directions 

The present study had several limitations that are discussed below. The final participant 

sample was relatively small, limiting the power to detect small to moderate effects across 

analyses. The participant sample was also predominantly Caucasian with limited diversity across 

other ethnicity or racial groups. Although an area of strength in terms of understanding affective 

and cognitive control processes in early adulthood, the limited age range of the present sample 

also limits generalizability to younger or older populations. 

While this study expands upon existing CWST findings with the incorporation of 

congruent/incongruent trials presented in blocked and mixed conditions, the absence of a neutral 

condition limits comparisons to the absolute differences between congruency conditions. In 

addition to accounting for possible facilitative effects in congruent task demands, the inclusion of 
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a neutral condition would provide an additional comparison condition to better elucidate what 

cognitive processes are sensitive to high/low levels of PA and remitted depression.  

Currently, emotional experience and diagnostic history of mood disorder are infrequently 

assessed in cognitive neuroscience research unless emotional constructs are central to study 

aims. Looking to the future, the interplay of affective and cognitive processes should be further 

investigated to include other cognitive control functions and negative affect. Also, given strong 

empirical evidence for the affective role of intensity, frequency, and arousal variables (Brown, 

Chorpita & Barlow, 1998; Diener, Larsen, Levine & Emmons, 1985; Heller, 1993), 

consideration of these constructs is warranted. 

Conclusions 

In sum, the results of this study expand upon existing literature regarding recruitment of 

neural processes during different conditions of a CWST while also offering novel insight 

regarding the influence of low/high PA in the context of remitted depression. While similar 

patterns were observed for blocked and mixed conditions (i.e., behavioral measures of Stroop 

interference as well as N200 and N450 ERP components), significant effects were also observed 

for condition on behavioral and ERP outcomes such as attenuated N450 amplitude for congruent 

blocked trials and increased response latency for mixed trials. Differences between blocked and 

mixed conditions underscore that while Stroop interference is a robust effect involving conflict 

detection and response resolution, the strength of this effect is sensitive to task design and 

variations in task design have likely contributed to conflicting findings in CWST literature. 

Further, similarities between N450 amplitude for mixed congruent and mixed incongruent trials 

indicates that N450 may not be a direct correlate of conflict detection, but rather broader 

recruitment of cognitive control resources. Findings from the present study also provide further 
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evidence for residual effects of remitted depression on cognitive control processes and indicate 

that high levels of PA moderate the relationship between lifetime history of depression and 

neural processing during the CWST. Higher levels of PA were related to later onset N200 for the 

remitted depressed group and earlier N200 onset for the healthy control group on blocked 

incongruent trials. This suggests that high PA may have a facilitative effect in the recruitment of 

neural resources for individuals without a history of depression, but that the same effect is not 

observed in individuals with a lifetime history of depression. These findings further establish the 

interplay between affective and cognitive processes and posit that this relationship is malleable 

with consideration for individual history of psychopathology. 
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APPENDIX A 

SELF-REPORT MEASURE OF STATE AFFECT  
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PANAS 

This scale consists of a number of words and phrases that describe different feelings and emotions. Read 

each item and then mark the appropriate answer in the space next to the word.  Indicate to what extent 

you feeling this way right now, that is, at the present moment.  Use these numbers to record your answers. 

 

1 2 3 4 5 

very slightly 

or not at all 

a little moderately quite a bit extremely 

_____ cheerful 

  

_____ sad _____ active 

_____ guilty 

 

_____ enthusiastic _____ attentive 

_____ afraid 

 

_____ joyful _____ downhearted 

_____ nervous 

 

_____ distressed _____ happy 

_____ excited 

 

_____ determined _____ strong 

_____ hostile 

 

_____ proud _____ alert 

_____ jittery 

 

_____ interested _____ irritable 

_____ upset 

 

_____ delighted _____ ashamed 

_____ inspired _____ blue _____ scared 
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