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Joseph F. Costello 

Loyola University Chicago 

THE ROLE OF METHYLATION AND CHROMATIN STRUCTURE IN THE 

REGULATION OF THE 06-METHYLGUANINE DNA 

METHYLTRANSFERASE GENE IN HUMAN GLIOMA CELLS 

There is considerable interest in identifying factors responsible for expression 

of the 0-6-methylguanine DNA methyltransferase (MGMT) gene as MGMT is a 

major determinant in the response of glioma cells to the chemotherapeutic agent 1,3 

bis(2-chloroethyl)-1-nitrosourea (BCNU). Since the majority of glioma cells express 

the MGMT gene, understanding factors that regulate MGMT expression is critical 

for the design of therapeutic strategies to inhibit MGMT expression and thereby 

overcome BCNU resistance. MGMT expression is presumed, but not proven to be 

regulated at the transcriptional level. Consistent with a transcriptional level of 

regulation, preliminary studies suggested that cytosine methylation may be one 

factor that influences MGMT expression. This dissertation was therefore designed 

to address the role of cytosine methylation in MGMT gene expression in human 

glioma cells. 

In order to develop the probes for examining methylation within the MGMT 

gene, a map of the coding sequences of the MGMT gene was generated by screening 

a genomic library (derived from a human fibroblast cell line) with an MGMT cDNA 

probe. Twenty MGMT genomic clones were isolated, mapped with restriction 
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enzymes (RE) and aligned, yielding a map of the gene containing four translated 

exons spread over > 80 kb. Several regions of the cloned MGMT gene with an 

overabundance of potential methylation sites (CpG dinucleotides) were identified 

with RE that recognize and cleave DNA at various CpG containing sequences. 

These and other regions across the body of the MGMT gene were then used to 

analyze MGMT gene methylation in human glioma cells. 

To determine if methylation in the body of the gene correlates with MGMT 

expression, the methylation status of CpGs throughout the body of the MGMT gene 

were examined in nine human glioma cell lines exhibiting a wide range of MGMT 

expression. Methylation in the body of the MGMT gene was analyzed by Southern 

blot analysis of glioma DNA digested with methylation sensitive REs. All of the 

MGMT gene regions tested were methylated in the MGMT expressing (MGMT+) 

glioma cells and relatively unmethylated in the nonexpressing cells (MGMT-). 

Quantitative analysis of methylation at an intron I CpG demonstrated graded 

methylation and a strong, positive correlation between methylation and glioma 

MGMT mRNA levels. These results suggest that methylation is uniform over the 

entire body of the MGMT gene and correlates in a direct, graded fashion with 

MGMT expression. This correlation is consistent with an indirect mechanism by 

which uniform methylation over the body of the MGMT gene may influence 

chromatin structure and hence MGMT expression. 

To determine if the association between methylation in the body of the 

MGMT gene and MGMT expression is mediated by changes in chromatin structure, 

iv 



the accessibility of RE to the MGMT gene within intact nuclei was assessed. The 

unmethylated body of the MGMT gene was clearly more accessible to RE in nuclei 

from all MGMT- glioma cell lines tested relative to the methylated gene in nuclei 

from MGMT+ cells. The only accessible sites within the MGMT+ nuclei 

corresponded exactly to the few sites that were also unmethylated. These 

experiments demonstrate that methylation and chromatin structure in the body of 

the MGMT gene are closely linked, and are likely involved in MGMT expression. 

To determine if promoter methylation is also an important component of 

MGMT expression, this dissertation research addressed the complex interactions 

between methylation, chromatin structure, and in vivo transcription factor 

occupancy in the MGMT promoter of glioma cells. The level of MGMT promoter 

methylation, assessed by linker mediated PCR, was also graded across the cell lines 

(at 21 of 25 CpGs tested), but correlated in an inverse, rather than direct fashion 

with MGMT expression. The basal promoter in MGMT+ glioma cells was entirely 

accessible to RE, suggesting that this region may be free of nucleosomes. The basal 

promoter in MGMT- nuclei was entirely inaccessible to RE, supporting the idea that 

methylation and chromatin structure in the promoter are also associated. Despite 

the presence of the relevant transcription factors in all the cells examined, in vivo 

footprinting showed DNA-protein interactions at 6 Spl binding sites and one novel 

binding site in MGMT+ glioma cells but no such interactions in MGMT- cells. In 

contrast to previous in vitro studies, these data indicate that Spl is an important 

component of MGMT transcription. The data also strongly suggest that 
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methylation and chromatin structure, by determining whether Spl and other 

transcription factors can access the MGMT promoter, set the transcriptional state 

of the MGMT gene. 

In summary, these data provide compelling evidence for the involvement of 

methylation and chromatin structure, both in the promoter and body of the MGMT 

gene, in the regulation of MGMT expression. If these factors are also critical in 

glioma cells within tumors, the "accessible" chromatin in the MGMT expressing, and 

hence BCNU resistant, glioma cells may be a good target for inhibition of MGMT 

expression, possibly through triple helix formation. 
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CHAPTER I 

INTRODUCTION 

Gliomas are the most prevalent form of primary brain cancer and include 

tumors arising primarily from astrocytes, but also less frequently, from 

oligodendrocytes and ependymal cells. All patients with gliomas eventually die from 

their tumors, often within months or a few years of diagnosis, unless other diseases 

predominate (Ransohoff, et al., 1991). Although the etiology of gliomas is unknown, 

late age of onset, poor neurological status and significant residual tumor volume 

following surgery are factors intimately associated with decreased length of survival 

(Ransohoff, et al., 1991). As the incidence of gliomas is increasing in the United 

States (Greig ..fi_fil., 1990), there is considerable interest in elucidating the 

biochemical and genetic defects leading to glioma formation and malignant 

progression, and in developing effective therapies to treat gliomas. 

Gliomas are classified by neuropathologic criteria into stages of increasing 

malignancy, from benign to anaplastic to glioblastoma multiforme (Ransohoff, et 

al., 1991). These stages represent a continuum of glioma progression within each 

patient, although many patients do not survive through the anaplastic stage. 

Increased malignancy is closely associated with decreased survival time. Precise 

molecular and cytogenetic changes occurring at each stage of glioma progression 

have recently been described and may eventually be used in conjunction with the 
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neuropathologic criteria for more accurate diagnosis of the degree of malignancy 

(Collins and James, 1993). Such accuracy in diagnosis is critical, as the 

malignancy stage strongly determines the response to and usefulness of various 

therapies currently used to treat gliomas (Weingart and Brem, 1993). 

The initial treatment for gliomas is surgical removal of the tumor. However, 

because these tumors have very irregular shapes and ill-defined borders, residual 

tumor cells remain in the patient following surgery, and invariably, the tumor 

recurs (Ransohoff, et al., 1991). Surgery is therefore followed with radiation therapy 

and often chemotherapy in attempt to eliminate the residual tumor cells. 

Gliomas are treated most effectively with the chemotherapeutic agent l,3-

bis( chloroethyl)-1-nitrosourea (BCNU)(Walker, et al., 1980). BCNU is useful in 

treating brain tumors for two reasons. First, the lipid soluble nature of BCNU 

molecules allows them to cross the relatively impermeable barrier between the blood 

vessel interior and brain tissue (the blood-brain barrier) and reach the brain tumor 

site (Rall, et al., 1962). Second, the chloroethyl group adducts at the 0 6-position 

of guanine produced by BCNU rearrange to form DNA interstrand crosslinks that 

are cytotoxic to rapidly dividing cells (Kohn, 1977; Ewig and Kohn, 1978; Erickson, 

et al., 1978). Because the vast majority of normal brain cells are in a nondividing 

state, BCNU is much more toxic to the tumor cells. Initially, responses to BCNU 

(tumor stasis or partial tumor regression) are seen in approximately one-half of all 

glioma patients treated with BCNU (Walker, et al., 1980). At undefined points 

during or after recurrence however, the majority of these gliomas become resistant 
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to BCNU chemotherapy, and the tumor progresses rapidly (Weingart and Brem, 

1993). Research designed at elucidating the mechanisms conferring BCNU 

resistance in glioma cells is paramount for improving the currently ineffectual 

treatment of resistant gliomas. 

Seventy percent of human glioma cell lines and many human glial tumors 

are resistant to the cytotoxic effects of BCNU (Kornblith,..n..fil. 1981; Sariban, et al., 

1987; Day, et al. 1990; Ostrowski, et al., 1991). BCNU resistance is conferred by the 

DNA repair protein, 0 6-methylguanine DNA methyltransferase (MGMT) (Pegg,~ 

al., 1982; Tano, et al., 1990). MGMT removes the BCNU-induced chloroethyl group 

adducts from 0 6-guanine in the glioma cell DNA, preventing the formation of 

cytotoxic interstrand crosslinks (Erickson, et al., 1980). Thirty percent of BCNU

sensitive brain tumor cell lines are devoid of the MGMT mRNA and MGMT protein 

despite the presence of an intact MGMT gene (Day, et al., 1990, Ostrowski, et al., 

1991; Costello, et al., 1994). This and other observations suggest that the BCNU

sensitive phenotype of these brain tumor cells appears to result, at least in part, 

from suppression of MGMT gene transcription (Ostrowski, .Il_fil., 1991, Costello, et 

al., 1994a). Examining factors that may suppress MGMT gene transcription is 

essential for designing therapeutic strategies to overcome BCNU resistance in 

MGMT-expressing brain tumors. 

Transcriptional control of gene expression is mediated by a variety of 

mechanisms including DNA cytosine methylation (reviewed in Jost and Saluz, 1993). 

In the DNA of all human cells, a subset of cytosines in the dinucleotide CpG are 



4 

modified by an endogenous methylating enzyme (Bestor, et al., 1988). Addition of 

a methyl group to cytosines of a CpG is a normal DNA modification that plays a 

central role in transcriptional regulation of gene expression (Jost and Saluz, 1993). 

Regions of DNA known as CpG islands contain clusters of CpG dinucleotides 

(relative to the majority of bulk DNA which is CpG-depleted) that are normally 

maintained in the unmethylated state (Bird, 1986). Because the MGMT cDNA has 

an overabundance of CpGs (Tano, et al., 1990), one or more of the MGMT exons 

comprising the cDNA sequence may be part of a CpG island. Processes which are 

associated with abnormal de novo CpG island methylation such as tumorigenesis 

(De Bustros, et al., 1988), viral transformation (Vertino, et al., 1993) and cell 

culture (Antequera, et al., 1990), are also frequently associated with loss of MGMT 

gene expression (Green, et al., 1990; Fornace, et al., 1990). Abnormal methylation 

of potential MGMT gene-associated CpG islands could therefore be one mechanism 

by which transcription of the MGMT gene is suppressed. Indeed, preliminary 

evidence suggests that the methylation status of MGMT exons is altered in virtually 

all MGMT nonexpressing (MGMT-) cell lines tested (Pieper, et al., 1991; Wang, et 

al., 1992). The purpose of my dissertation research is thus to determine the 

relationship between cytosine methylation and MGMT expression in human brain 

tumor cells. I have proposed three specific aims to examine this relationship: 

Aim 1: To isolate regions of the MGMT gene that contain CpG island 
characteristics. 

Aim 2: To determine the relationship between the methylation status of potential 
MGMT gene-associated CpG islands and MGMT gene expression in human glioma 
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cells. 

Aim 3: To examine the mechanism by which methylation may influence MGMT 
expression in human glioma cells. 

The hypothesis that this dissertation research attempts to validate is that 

glioma cells regulate expression of the MGMT gene by virtue of differential 

methylation of MGMT gene-associated CpG islands. Methylation of the CpG island 

regions, through methylated DNA binding proteins, alters the local chromatin 

structure such that accessibility of other proteins necessary for transcription of the 

MGMT gene is altered. 

Understanding the relationship between cytosine methylation and MGMT gene 

expression is important because it may ultimately be useful in the development of 

therapies designed to inhibit MGMT expression. Inhibition of MGMT expression 

followed by BCNU administration might then enhance the antitumor activity of 

BCNU, significantly reduce the number of residual tumor cells following surgery 

and thereby improve chemotherapy of BCNU-resistant gliomas. 



Primm Brain Cancer 

CHAPTER II 

LITERATURE REVIEW 

Approximately 16,000 new cases of primary brain cancer occur each year and 

the incidence is increasing in the United States (RansohofT, et al., 1991). The 

etiology of primary brain cancer is unknown. Primary brain cancer rarely, if ever, 

metastasizes outside the central nervous system, yet many forms of primary brain 

cancers are fatal (Weingart and Brem, 1993). 

Gliomas are the most prevalent form of primary brain cancer. Gliomas 

include tumors arising predominantly from astrocytes, but also less frequently from 

oligodendrocytes or ependymal cells. All glioma patients die of their tumors within 

months or a few years of diagnosis. The most important prognostic criteria for 

increased length of survival for glioma patients are younger age of onset, better 

neurologic status, and decreased residual tumor volume following surgical resection 

of the tumor (RansohofT, et al., 1991). 

Gliomas are classified in grades of malignancy according to neuropathologic 

and genetic criteria. Gliomas often progress from benign to anaplastic to 

glioblastoma multiforme (GBM) within each patient, although many patients die 

before the most malignant stage (GBM) is reached. At diagnosis, all gliomas are 

6 
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visible by magnetic resonance imaging (MRI). Neuropathologically, benign tumors 

are identified by the presence of microcysts and uniformly sized nuclei, while 

anaplastic gliomas are identified by hyperplasia of blood vessel endothelial cells 

within the tumor, and GBMs are identified by the presence of geographic necrosis 

(Kornblith, et al., 1985). Recently, identification of specific genetic abnormalities 

occurring at high frequencies within each of the neuropathologically-defined 

malignancy stages have yielded genetic definitions of glioma progression. The 

genetic changes identified in gliomas involve deletions, gene amplifications, and 

mutations, with many of the changes imparting a growth advantage in the tumor 

cell. Regions of chromosomal deletion are thought to involve the loss of tumor 

suppressor genes, whereas gene amplifications in gliomas are exclusively associated 

with oncogenes. Mutations within chromosomes may involve either tumor 

suppressor genes or oncogenes. Genetic changes found at similar frequencies in all 

stages, such as deletions within chromosome 13q, 17p and 22q (James, et al., 1988; 

Fults, et al., 1990), may be related to tumorigenesis and likely occur early in tumor 

progression. Progression from benign to malignant glioma is accompanied by 

additional deletions, within chromosome 9p (Miyakoshi, et al., 1990) and 19q (von

Deimling, et al., 1992), mutations in the tumor suppressor gene p53 (James, et al., 

1989), and/or MDM2 gene amplification (Collins and James, 1993). Genetic 

changes found only in later stages (GBM), such as complete loss of one copy of 

chromosome 10, deletions with lOp and lOq (Karlbom, et al., 1993), and 

amplification of the epidermal growth factor receptor (in 40% of all 
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GBMs)(Libermann, et al., 1985), may be exclusively involved in malignant 

progression. The frequent loss of one copy of chromosome 10 in GBMs is especially 

relevant to this dissertation, as the MGMT gene resides on this chromosome 

(Rydberg, et al., 1990; Natarajan, et al., 1992). Genetic analysis of gliomas in 

conjunction with neuropathology may thus provide for more accurate diagnosis of 

malignancy stage. Such accuracy in diagnosis is critical, as the malignancy stage 

strongly determines the response to, and usefulness of, various therapies currently 

used to treat gliomas. 

The standard therapy for gliomas involves surgical removal of the tumor, 

followed by radiation therapy, and often chemotherapy. While there are no curative 

therapies available, surgical excision of gliomas is the treatment most clearly 

associated with increased survival. However, gliomas are nonencapsulated tumors 

and grow in a highly irregular, multidirectional fashion making complete surgical 

resection impossible. Radiation and chemotherapy are therefore used to eliminate 

residual tumor cells following surgery. Radiation treatment of gliomas also has 

survival benefit, but recurrent gliomas and especially GBMs eventually become 

unresponsive to further radiation therapy (Weingart and Brem, 1993). A variety of 

chemotherapeutic agents have been tested for efficacy against gliomas, with initial 

responses (tumor stasis or partial tumor regression) to several agents observed in 

approximately 50% of glioma patients (Wilson, et al, 1970; McVie, 1993). As with 

radiation therapy, gliomas also become unresponsive or resistant to chemotherapy. 

Understanding and eventually inhibiting the mechanisms by which glioma cells 



9 

become resistant to chemotherapy is a current goal of cancer research. 

Understanding these resistance mechanisms relies first on a clear knowledge of the 

mechanisms by which the chemotherapeutic agents exert their cytotoxicity and 

antitumor activity. 

Chloroethylnitrosoureas (CENU) are a class of chemotherapeutic agents, of 

which 1,3 bis(2-chloroethyl)-l-nitrosourea (BCNU) is the most commonly used and 

most effective antitumor agent against gliomas (Wilson, ..e!.J!l, 1970; Walker, ..rt...al., 

1980). BCNU is a lipid soluble DNA alkylating agent, and when administered 

intravenously to glioma patients, can easily cross the blood-brain barrier to reach 

the tumor site (Rall and Zubrod, 1962). BCNU spontaneously decomposes under 

physiological conditions to form a chloroethylating moiety and a carbamoylating 

moiety (Tong, et al., 1982). The chloroethylating moiety forms several DNA adducts 

including frequent N7-hydroxylethyl and N7-chloroethyl adducts on guanines and 

much less frequent 0 6-chloroethyl adducts on guanines (Tong, et al., 1982). A wealth 

of data indicates that the 0 6-chloroethyl group adducts on guanine are the adducts 

most relevant to the cytotoxicity induced by BCNU (reviewed in Erickson, 1991). 

Over a period of several hours, the 0 6-chloroethyl adducts undergo an 

intramolecular rearrangement to form a cyclized intermediate, 0 6-N1-ethanoguanine, 

and finally, through interaction with the cytosine on the complementary DNA 

strand, form a guanine-N1-cytosine-N3 DNA interstrand crosslink (Tong, et al., 

1982). The frequency of DNA interstrand crosslinks correlates well with degree of 

BCNU-induced cytotoxicity, supporting the idea that the crosslink is a relevant 
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cytotoxic lesion (Erickson, et al., 1980). Few if any BCNU-induced DNA interstrand 

crosslinks are formed in BCNU-resistant human glioma cell lines and xenografts. 

Accordingly, a great deal of research has been directed towards elucidating the 

mechanism by which resistant cells prevent BCNU-induced crosslink formation. 

0 6-Methylzmanine DNA Methyltransferase (MGMT) 

Initial investigations of mechanisms of CENU toxicity and CENU-resistance 

were significantly advanced by several studies in the late 1970s and early 1980s. 

After it was established that the alkylating moiety ofCENUs was capable of forming 

DNA interstrand crosslinks (Kohn, 1977; Ewig and Kohn, 1978), high levels of 

CENU-induced crosslinks were observed in CENU-sensitive human colon carcinoma 

cells (BE) but few or no crosslinks were detected in a CENU-resistant colon tumor 

cell line (HT29) (Erickson et al., 1978). The relationship between response to 

CENU and presence of DNA interstrand crosslinks was demonstrated in a dose

dependent fashion with at least four different CENU (including BCNU) (Erickson, 

et al., 1980, 1980a). It was proposed that the lack of crosslinks in CENU-resistant 

cells was due to a DNA repair mechanism operating in these cells but absent from 

CENU-sensitive tumor cells (Ewig and Kohn, et al., 1978; Erickson et al., 1980a). 

In 1980, the CENU studies converged with other studies examining repair of 

DNA damage produced by the DNA methylating carcinogen N-methyl-N'-nitro-N

nitrosoguanidine (MNNG)(Day, ~., 1980). Human tumor cell lines tested for 

their ability to repair, and hence reactivate, MNNG-damaged adenovirus fell into 
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two groups. One group of tumor cell lines reactivated the MNNG-damaged 

adenovirus and was designated methylation repair positive, or Mer+. The group 

that was incapable of adenovirus reactivation, and hence incapable of methylation 

repair was termed methylation repair negative, or Mer-. Soon after this report, it 

was demonstrated in blinded studies that the CENU-resistant cell lines, which were 

capable of preventing CENU-induced crosslinks, were also Mer+ and the CENU

sensitive cell lines were Mer- (Erickson, et al., 1980). Additional studies firmly 

defined the Mer phenotype on the basis of a cell's ability to reactivate MNNG

treated adenovirus, prevent CENU-induced DNA interstrand crosslinks, and repair 

0 6-methylguanine in DNA (Day, et al. 1980a, and Erickson, et al., 1980a). A DNA 

repair protein responsible for the CENU resistance, termed 0 6-methylguanine DNA 

methyltransferase, was subsequently identified in mouse liver (Bogden, et al., 1981), 

rat liver (Pegg, et al.,1983), and normal human liver (Pegg, et al., 1982). 

0 6-methylguanine DNA methyltransferase (MGMT) is a major determinant 

in the sensitivity of glioma cells to CENU. MGMT confers resistance to CENU 

(and other agents that alkylate the 0 6-position of guanine) by transferring alkyl 

group adducts, including chloroethyl adducts, from the 0 6-position of guanine in 

DNA to a cysteine acceptor site at cys-145 within the MGMT protein (reviewed in 

Pegg, 1990). MGMT can also form covalent interactions with the CENU-DNA 

cyclized intermediate (Gonzaga, et al., 1992). The transfer reaction restores guanine 

to its unmodified state, thus preventing crosslink formation, and inactivates one 

MGMT molecule per lesion. MGMT does not require any other proteins or 
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cofactors for the transferase activity in vitro. Although CENU resistance may 

involve mechanisms other than MGMT in a limited number of cases (Karran and 

Stephenson, 1990; Bronstein, et al., 1992; Branch, et al., 1993), the demonstration 

that specific pharmacologic inhibition of MGMT sensitizes CENU-resistant cells 

(Zlotogorski and Erickson, 1983 and 1984; Dolan, .rt_fil., 1990) clearly establishes 

a dominant role for MGMT in conferring CENU resistance. This and other studies 

(Futscher, et al., 1989; Marathi, et al., 1993) also demonstrate the feasibility and 

usefulness of inhibiting MGMT for therapeutic benefit. 

The cDNA for the 0 6-methylguanine-DNA methyltransferase has been cloned 

(Tano, et al., 1990; Hayakawa, et al., 1990; Rydberg, et al., 1990), the chromosomal 

location of the MGMT gene defined (Rydberg, et al., 1990; Natarajan, .!1.Jtl., 1992) 

and the presence of MGMT mRNA verified in Mer+ cells (Rydberg, et al., 1990). 

The human MGMT cDNA was first isolated by transforming repair deficient 

bacteria with a cDNA library made from a Mer+ cell line, followed by phenotypic 

rescue of repair proficient cells in MNNG-containing media (Tano, et al., 1990). 

The protein coding portion of the MGMT cDNA is 624 nt and is flanked on the 5' 

end by at least 96 nt and 224 nt on the 3' end. The cDNA sequence also contains 

a consensus sequence for poly-A tail addition. The predicted amino acid sequence 

does not contain any clear nuclear localization signals as would be expected for a 

DNA repair protein. The MGMT protein is, however, localized exclusively in the 

nucleus (Ayi et al., 1992). 

The level of MGMT expression in normal human tissue is cell type specific, 
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tissue specific and varies among individuals. Normal human brain and lung are 

low in MGMT activity and mRNA relative to liver, which has the highest level of 

MGMT in any normal tissue tested (Pegg, 1978; Citron, et al., 1991). Different cell 

types within the liver (Swenberg, et al., 1982) and kidney (Wani, et al., 1992) have 

10-fold variations in MGMT levels. For example, MGMT mRNA is highest in distal 

tubular and glomerular epithelial cells and low in the Bowman's capsule cells, 

collecting and proximal tubular cells. The MGMT expression levels in specific cells 

of the liver and kidney correlate well with variations in persistence of 0 6
-

alkylguanine lesions in these cells following exposure to alkylating agents. It has 

not been determined whether the levels of MGMT vary in a cell type specific 

manner in normal human brain (eg. neurons versus glia). MGMT measurements 

in peripheral blood lymphocytes showed a 7-fold interindividual variance 

(D' Ambrosio, et al., 1990), although no such interindividual variation was seen in 

MGMT mRNA levels in human kidney cells (Wani, et al., 1992). 

The level of MGMT expression in human glioma tissue is highly variable. A 

one hundred-fold variation in MGMT activity among 27 unrelated glioma samples, 

including 22% with no detectable MGMT activity, was reported in one study 

(Citron, et al., 1991). Another study of 60 glioma samples showed a similar 

frequency (27%) of MGMT deficient gliomas (Silber,..tl.fil., 1993). These studies are 

consistent with the reported 20-30% of MGMT deficient human glioma cell lines 

(Ostrowski, et al., 1991). The frequency of MGMT deficient gliomas is not a 

universal finding however (Wiestler, et al., 1984) and even the existence of such 
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tumors is debated by some researchers. 

MGMT expression is presumed, but not proven, to be regulated at the 

transcriptional level. Although all the glioma cell lines tested have an intact 

MGMT gene, the glioma cell lines devoid of MGMT activity are also lacking the 

MGMT protein, as measured by western blot analysis, and MGMT mRNA, as 

measured by northern blot analysis (Ostrowski, ..H__fil., 1991). Using the more 

sensitive PCR technique however, small amounts of MGMT mRNA are detectable 

in populations of some Mer- cell lines, indicating that MGMT transcription may 

occur at very low levels, or at higher levels with a concomitant decrease in mRNA 

stability, in these cell lines (Pieper, et al., 1990). A defect at the transcriptional 

level appears more likely though, as there were no differences in MGMT mRNA 

stability in cell lines with vastly different levels of MGMT mRNA (Kroes and 

Erickson, 1992). Attempts to measure transcription rates by detection of MGMT 

heteronuclear RNA (hnRNA), either through nuclear run-on assays or PCR, have 

been unsuccessful, even in cells with high levels of MGMT mRNA (Kroes and 

Erickson, 1992; Russell Pieper, personal communication). This may indicate that 

in MGMT expressing cells, the rate of MGMT transcription is too slow to detect 

and/or that other events such as processing of MGMT hnRNA occur rapidly after, 

or even concurrent with, transcription. Consistent with transcriptional differences 

in MGMT expression, a recent study has demonstrated that the level of cytosine 

methylation in MGMT exons is consistently decreased in MGMT deficient tumor 

cells (Pieper et al., 1991). 
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cytosine Methylation and Gene Egression 

Methylation of the CS-position of cytosine is a normal, covalent DNA 

modification found in all mammalian cells. Methylation occurs exclusively at the 

dinucleotide CpG and approximately 60% of all CpGs are methylated (Bestor, et al., 

1984). Cytosine methylation is accomplished by enzymatic transfer of a methyl 

group from S-adenosylmethionine to a cytosine within a CpG. The preferred 

substrate for the enzyme, cytosine methyltransferase (MTase), is hemimethylated 

DNA (Gruenbaum, et al., 1982). The methylation reaction occurs during DNA 

replication (Leonhardt, et al., 1992), allowing methylation patterns to be transmitted 

in a stable manner through each cell generation, and is thus termed maintenance 

methylation. In mammalian development, establishment of methylation patterns 

occurs in the postimplantation embryo by de novo methylation. Although the 

mechanism responsible for de novo methylation is unknown, establishment of 

appropriate methylation levels is critical for normal development and survival in 

mammals (Li, et al., 1993). 

The distribution of the potential methylation site, CpG, is nonrandom. The 

overall genome is depleted ofCpGs 5-fold from the expected CpG frequency, derived 

from base composition alone (McClelland and lvarie, 1982). The genome-wide CpG 

depletion is thought to result, at least in part, from the spontaneous deamination 

of methylated cytosines to thymine (Salser, 1977). This mechanism of CpG 

depletion is consistent with the observed overabundance of TpG and ApG 

dinucleotides in the genome. Accordingly, methylation and subsequent deamination 
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tend to deplete potential methylation sites, and conversely, CpGs are more likely to 

be preserved through many cell divisions by being maintained in the unmethylated 

state. 

In contrast to the majority of the genome, short segments of DNA, together 

comprising approximately 1 % of the genome, have the theoretically expected 

frequency of CpGs and are termed CpG islands. CpG islands are defined as 

regions of DNA characterized by the following three features: 1) 0.3 to 3.0 kb in 

length, 2) the expected frequency of CpG dinucleotides (compared to the 5-fold 

CpG depletion seen in the genome overall), and 3) a guanine + cytosine (GC) 

content of >50% (compared to <40% in the genome overall) (Gardiner-Garden and 

Frommer, 1987). Additionally, CpG islands are normally maintained in the 

nonmethylated state, thus increasing the likelihood that these CpGs will be 

preserved (Bird, 1986). Approximately 45,000 CpG islands are present in the 

human genome and, similar to CpGs, are distributed non-randomly throughout the 

genome (Antequera and Bird, 1993). The non-random distribution and maintenance 

of CpG islands in the unmethylated state implies that there is some functional 

importance associated with CpG islands. 

Virtually all known CpG islands are associated with genes, predominantly in 

the 5' region of genes, but also less frequently in 3' gene regions (Gardiner-Garden 

and Frommer, 1987). The promoters for all known housekeeping genes (genes 

essential for cell survival) are within, or part of, a CpG island. Forty-five thousand 

of the estimated 80,000 genes in the human genome are likely associated· with a 
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CpG island (Antequera and Bird, 1993). Because the MGMT gene is considered a 

housekeeping gene it is likely that the MGMT promoter is associated with a CpG 

island. Because the MGMT cDNA is very GC rich and has an overabundance of 

CpGs, it is possible that one or more of the MGMT exons may also be part of a 

CpG island. 

A variety of evidence indicates that CpG islands have a critical role in the 

regulation of genes with which they are associated. CpG islands invariably contain 

nucleosome free regions that are very accessible to diffusible factors (Tazi and Bird, 

1990). Such accessible DNA sequences are essential for interaction with 

transcription factors and maintaining a transcriptionally active state. Although the 

nucleotide sequence among individual CpG islands is highly variable, most CpG 

islands have consensus sites for a common set of transcription factors (eg. Spl), 

and these sites are indeed essential for transcription of the associated gene (Pugh 

and Tjian, 1990). Although CpG islands are usually unmethylated, the de novo 

methylation of CpG islands does occur, concomitant with suppression of 

transcription from the associated gene. The methylation status of CpG islands is 

therefore a critical parameter of gene regulation. 

Changes in the methylation status of CpGs within CpG islands and CpGs 

located in non-island sequences may occur as a result of one or several normal (X 

chromosome inactivation, imprinting, tissue specific gene expression) or abnormal 

(tumorigenesis, viral transformation, cell culture) processes (reviewed in Jost and 

Saluz, 1993). The aberrant methylation changes noted in many, but not all, tumor 
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cells are described as widespread hypomethylation (Goelz and Vogelstein, 1985) and 

regional hypermethylation (De Bustros, .n...fil,, 1988). Widespread hypomethylation 

refers to an overall decrease in the level of methylated CpGs in the genome and 

probably involves gene and non-gene sequences. Regional hypermethylation in 

tumor cells occurs at normally unmethylated CpG islands. The frequency of 

methylation changes in tumor cells is not clear, although one study of the calcitonin 

gene-associated CpG island demonstrated hypermethylation in only 2 of 31 chronic 

myelogenous leukemia (CML) patients in less advanced stages (Nelkin, et al., 1991). 

Hypermethylation was detected much more frequently (11 of 12 patients) in 

advanced stage CML. This study suggests that methylation changes may contribute 

to tumor cell progression. In contrast to CML, colon cancer patients have frequent 

abnormal CpG island methylation in the calcitonin gene and chromosome 17p (a 

region thought to harbor a tumor suppressor gene) in the early, benign stages 

(Silverman, et al., 1989), suggesting that methylation changes may also contribute 

to tumorigenesis. Gliomas have not been tested for similar changes in methylation. 

Tumorigenic transformation produced by viral infection or by transfection of 

oncogenes also alters methylation within affected cells (Vertino, ~., 1993). 

Methylation changes in cultured cell lines have also been noted, with an estimated 

one-half of all CpG islands being subject to aberrant hypermethylation (Antequera, 

et al., 1990). The mechanisms involved in, or leading to, abnormal changes in 

methylation are not defined, although increased expression of the MTase gene has 

been noted in some tumor cells (El-Deiry, et al., 1991). As the MTase is a 
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maintenance methylase, overexpression of MTase alone cannot account for the high 

level of de novo methylation in tumor cells or cell lines. In X chromosome 

inactivation, tumorigenesis, viral transformation, and cell culture, the documented 

methylation changes are also accompanied by changes in expression of the 

associated gene. Since the tumorigenic state, cell culture, and viral transformation 

are conditions also associated with frequent loss of MGMT gene expression, it 

seems likely that the methylation status of the MGMT gene, possibly including 

MGMT gene-associated CpG islands, is altered in at least some of the cells in these 

conditions. 

In the majority of genes studied, the methylation status of CpGs in the 

promoter correlates in an inverse, all-or-none fashion with gene expression. 

Whether the methylation status of a given promoter is a result of normal or 

abnormal processes, methylated promoters are associated with inactive genes and 

unmethylated promoters are associated with active genes (reviewed in Saluz and 

Yost, 1993). During X-chromosome inactivation for example, the CpG island 

promoter for the phosphoglycerate kinase (PGK-1) gene becomes methylated at 119 

of 121 CpGs on the transcriptionally inactive X chromosome but remains 

unmethylated at all 121 sites on the active X chromosome (Pfeifer,~., 1990). 

The inactivation of the X-linked genes precedes the CpG island methylation 

however, indicating that for these genes, methylation may serve to "lock in" the 

transcriptionally inactive state rather than cause gene silencing. On the other hand, 

methylated, inactive genes (including PGK-1) can be reactivated by exposing cells 
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to the demethylating agent 5-azacytidine. Additionally, a large number of studies 

have demonstrated that in vitro methylated genes are transcriptionally inactive 

when transfected into cells, whereas the unmethylated, transfected genes are 

expressed (Stoger, et al., 1993; Boyes and Bird, 1992). In general, unmethylated 

promoters are necessary but not sufficient for gene expression. 

As opposed to promoter methylation, the relationship between the methylation 

status of CpGs in the body of genes and gene expression is poorly defined. A direct, 

rather than inverse, correlation between body methylation and gene expression has 

been noted in several studies. For several X chromosome linked (Wolf, .§.J!l., 1984) 

and autosomal (Razin and Riggs, 1980; Stein, et al., 1983) genes, extensive 

methylation of over entire body sequences is associated with active transcription. 

In the transcriptionally inactive state, the body of these genes is variably 

methylated, but generally much less methylated than the body of active genes. The 

body of the gene encoding the developmentally regulated transplantation antigen H-

2K is unmethylated in cells that do not express H-2K, but upon differentiation, the 

H-2K gene becomes methylated coincident with transcriptional activation (Tanaka, 

et al., 1983). The active H-2K gene can then be suppressed by 5-azacytidine-induced 

demethylation of the body of the gene, further strengthening the direct relationship 

between body methylation and gene expression. In other genes such as the 

maternally imprinted Igt2-r gene, methylation of the body of the gene correlates 

directly with expression, but only in a very specific region (2 kb of 130 kb 

analyzed)(Stoger, et al., 1993). In vitro methylation of CpGs in the body of genes, 
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without promoter methylation, influences gene activity (Keshet, et al., 1985). In yet 

other genes, no obvious relationship is detected between methylation and gene 

expression (McKeon, .n._m., 1982). Although a mechanism by which methylation 

in the body of genes influences gene expression has not been defined, the conserved 

methylation status of CpGs in the body and promoter of many genes suggests that 

there is functional importance associated with methylation of both of these regions. 

Additionally, the direct association between methylation and gene expression in the 

body of genes and inverse association in promoters suggests that body methylation 

and promoter methylation, by different mechanisms, may be involved in setting the 

expression state of genes as active or inactive. 

Two models have been proposed to mediate the relationship between 

methylation and gene expression (Antequera, et al., 1989). The first, "direct model" 

postulates that cytosine methylation interferes directly with the binding of 

transcription factors to their specific recognition sequence in regulatory regions of 

DNA. This model is supported by experiments comparing the transcriptional 

activity of methylated to nonmethylated cyclic adenosine monophosphate (cAMP) 

response element (CRE) sequence in cloned DNA. Methylation of a single cytosine 

within the CRE was sufficient to abolish both binding of the CRE binding protein 

to CRE and transcriptional activation of genes linked to CREs (Sanae and 

Schaffner, 1989). This mechanism however, is obviously limited to CpG-containing 

binding sites and is irrelevant to transcription factors such as Spl, whose binding 

is methylation independent (Harrington, et al., 1988). A second, "indirect model" 
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suggests that cytosine methylation interferes with transcription via proteins that 

bind specifically to methylated DNA (MeCPs) and alter the local DNA conformation 

such that these DNA regions become transcriptionally inactive (Antequera, .n._ru., 

1989, 1990). This model is supported by the identification of four such proteins 

that bind selectively to DNA containing methylated cytosines (Wang, et al., 1986; 

Antequera, et al., 1989; Jost and Hofsteenge, 1992; Lewis, et al., 1992). Additional 

evidence for the indirect model comes from experiments using methylation sensitive 

DNA restriction enzymes (17). The DNA recognition sequence of the restriction 

enzyme Mspl (CCGG) contains a potential methylation site (CpG dinucleotide). 

While Mspl cleaves naked DNA (no protein) irrespective of methylation, it does not 

cleave DNA at methylated CCGG sequences contained within isolated, intact nuclei 

(protein bound DNA), suggesting that MeCPs, if present, block Mspl accessibility 

to the DNA. The interrelationship of MeCPs with other chromosomal proteins (eg. 

histones) in the formation or maintenance of the methylation-related inactive 

chromatin is not understood. Methylation-related chromatin structures could 

explain why many genes, including MGMT, are not expressed in cells that contain 

all the relevant transcription factors (Antequera, et al., 1989). 

While methylation clearly can be involved in setting the state of gene 

activation/inactivation, a limited amount of studies suggest that graded 

methylation, both in promoter and body regions of genes may be associated with 

more graded levels of gene expression. One study used an artificial system in which 

the entire human a-globin gene was methylated to low, intermediate and high levels 
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in vitro and then transfected into HeLa cells (Boyes and Bird, 1992). In this study, 

both the level of methylation and binding of MeCPs correlated inversely with 

expression of the transfected Q-globin gene. Similar results were seen with SV40 

promoter containing constructs methylated in vitro and transfected into mouse cells 

(Levine, et al., 1992). These studies raise the possibility that methylation, in 

addition to being a mechanism associated with regulation of gene expression in an 

all or none fashion, may also be associated with subtle changes in the level of gene 

expression. 



Cell Culture 

CHAPTER III 

METHODS 

The ten glioma cell lines used were established from grade III-IV human 

astrocytomas and glioblastomas. The glioma cell lines used were A1235, CLA, CRO, 

NAT (L. Erickson, Loyola University Medical Center, Maywood, IL.) SF763, SF767 

(Brain Tumor Research Center, University of California, San Francisco, CA), 

Hs683, T98, U138, and U373 (purchased from American Type Culture Collection). 

The cell lines were all grown in a-minimal essential medium (Hyclone Laboratories) 

with 10% bovine calf serum (Hyclone), glutamine, vitamin B12/Biotin, sodium 

pyruvate, gentamycin and nonessential amino acids. The cell lines were maintained 

in log phase growth at 37°C in a 95% air;5% C02 atmosphere. 

MGMT cDNA probe SJ'llthesis - An MGMT cDNA was obtained by polymerase 

chain reaction (PCR) amplification of reverse transcribed T98 RNA using two 

MGMT-specific oligonucleotides. First strand synthesis was performed in a 20 µl 

reaction containing 1 µg of T98 mRNA, 1 X PCR buffer (10 mM Tris-Cl, pH 8.3/50 

mM KCl/3.0 mM MgC12/0.01% gelatin), 1 mM each of dCTP, dATP, dGTP and 

dTTP (Perkin Elmer Cetus (PEC) ), 0.32 µg oligo dT (Bethesda Research 

24 
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Laboratories (BRL)) and 200 U Moloney murine leukemia virus reverse 

transcriptase (BRL). The reaction was incubated at 25°C for 10 min, 37°C for 1 hr, 

and 95°C for 10 min, followed by cooling on ice. 10 X PCR buffer (without 

magnesium), dNTP mix and ddH20 were added to give a final volume of 100 µl, 200 

µM each dNTP, and a 1 X PCR buffer concentration. Fifty pmol each of two 

primers complementary to the published MGMT cDNA (Tano, li...fil., 1990) were 

added to the reaction. The 5' primer was 5'

AAGGTACCGTTTGCGACTTGGTACTTG-3' and the 3' primer was 5'

TAGTCGACCATCCGATGCAGTGTTACACG-3'. Both primers contain 7 

nonMGMT-complementary nt at the 5' end (for cloning purposes). Three units of 

Taq polymerase (Perkin, Elmer, Cetus) were added and the reaction was amplified 

by PCR (95°C for 5 min followed by 30 cycles of 95°C for 30 sec, 55°C for 30 sec, 

and 72°C for 45 sec and a final incubation at 72°C for 10 min). The products of 

the reaction were electrophoresed through a 1.5% agarose gel and a gel slice 

containing the single PCR product (730 bp) was removed. The DNA was isolated 

from the gel slice by centrifugation (5 min, 12000 RPM) through glass wool (Alltech, 

Deerfield, II.), and was ethanol precipitated, and resuspended to 10 ng/µl in ddH20. 

Twenty-five ng of the purified amplification product was used to synthesize a 

radiolabelled MGMT cDNA probe by the random primer method (Feinberg, et al., 

1984) with [a-32P] dCTP (specific activity 3000 Ci/mmol, Amersham, Arlington 

Heights, IL.). The specific activity of the labelled MGMT cDNA was typically > 109 

cpm/µg. Human histone H3.3 cDNA was generated in the same manner as the 
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MGMT cDNA except with the following histone-specific primers: 5' primer, 5'· 

CCACTGAACTTCTGATTCGC-3'and3'primer,5'-GCGTGCTAGCTGGATGTCTT-

3'. 

Genomic Library Screenin& and Restriction Emme Mappin& 

A genomic library constructed from the DNA of a human fibroblast cell line 

(Wl38) inserted in the phage vector Lambda FIX II (Stratagene, La Jolla, CA.) was 

screened according to the manufacturer's protocol. Approximately 1 X 106 plaque 

forming units (PFU) were screened with the MGMT cDNA probe as follows: In 

each of 20 tubes, approximately 50,000 PFU were mixed with 600 µl of O.D.600 = 0.5 

PLKl 7 bacteria, incubated for 15 min at 37°C, and added to 3 ml of 48°C top agar 

(LB broth (Difeo), 0.7 % agarose (FMC). This mixture was poured on room 

temperature LB plates and incubated for 6 - 14 hours at 37°C, and then at 4°C for 

2 hr. Twenty bacterial plates each with 50,000 of these plaques were used in the 

primary library screening. 

In order to test the DNA from each plaque for hybridization to the MGMT 

cDNA, two nitrocellulose membranes were sequentially laid on the plates for 60 sec 

and then removed. Each filter was then submerged sequentially in denaturing 

solution (1.5 M NaCl/0.5 M NaOH, 2 min), neutralizing solution (1.5 M NaClf0.5 

M Tris-Cl pH 8.0, 5 min) and rinsing solution (0.2 M Tris-Cl pH 7.5/2X SSC). The 

filters were air dried on Whatman 3MM paper and the DNA was crosslinked to the 

filter by U.V. irradiation (Stratalinker, Stratagene). These duplicate membranes 
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were hybridized in a standard hybridization buffer (50 % formamide/10 % dextran 

sulfate/5X SSPE/EDTA buffer/1% SDS/250 µg per ml of denatured salmon sperm 

DNA/lX Denhardts solution) with a uniformly 32P-labelled MGMT cDNA. The 

filters were washed under stringent conditions [0.1 X standard saline phosphate 

(SSPE) (lX SSPE = 180 mM NaCl/10 mM sodium phosphate/I mM EDTA, pH 

7.0)/0.1% sodium dodecyl sulfate, 60°C for 5 min] in a Disc-Wisk washing system 

(Schleicher and Schuell, Keene, NH.), dried and autoradiographed (12 - 24 hr with 

intensifying screens). 

The autoradiograph was lined up with the original bacterial plate to 

determine which phage plaque corresponded to the positive signal on the 

autoradiograph. Identical hybridization signal on the autoradiograph of duplicate 

filters confirmed the specificity of the hybridization. Twenty plaques corresponding 

to positive signals were removed from the LB plate with the wide end of a pasteur 

pipette. Bacteriophage particles were eluted ( 4°C, overnight) into 100 µI - 1 ml SM 

buffer (1 L = 0.1 M NaCI/8.1 mM MgS04/50 mM Tris-HCl pH 7.5/.01% gelatin). 

The 20 positive phage populations isolated in this way were then purified through 

secondary and tertiary screening carried out in the same manner as the primary 

screening. 

The twenty clones were divided into four groups based on hybridization to one 

of four MGMT cDNA restriction fragments. The four cDNA fragments, listed 5' to 

3', are as follows: An 154 bp Pvull fragment spanning nucleotides 1 - 154 of the 

PCR amplified cDNA; a 207 bp Hinfl fragment spanning nucleotides 100 - 307; an 
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107 bp Hinfl/Hhal fragment spanning nucleotides 307 - 414; and an 137 bp Sstl 

fragment spanning nucleotides 584 - 721. 

Within each genomic clone, the MGMT gene fragment is internal to 17 bp T3 

and T7 promoter sequences which are in turn flanked by various restriction enzyme 

(RE) sites, including Notl sites. Cutting the entire recombinant DNA molecule with 

Notl therefore excises a DNA fragment containing the MGMT gene fragment 

flanked by the T3 and T7 promoter sequences. In order to arrange all of the 

isolated MGMT gene fragments into a continuous length of DNA covering the 

coding portions of the MGMT gene, the Notl-excised DNA from each different 

phage was analyzed by RE mapping. 

RE (BamHI, Hindlll and EcoRI,) maps of the twenty cloned MGMT gene 

fragments were generated as follows: The MGMT gene fragments were cut from 

phage vector DNA by complete digestion with Notl (5 U/µg DNA, Stratagene). The 

DNA products of the Notl digest were then partially digested in separate reactions 

with BamHI, Hindlll, or EcoRI, (0 U, .05 U, 0.5 U, 5 U, and 50 U, for 15 min, 37°C, 

(BRL)) and analyzed by Southern blot (as described below) with a 32P end-labelled 

T3 or T7 promoter primer (Stratagene). Rehybidization of these Southern blots 

with a 32P-labelled MGMT cDNA identified MGMT exons within each genomic 

clone. The number and position of restriction sites within each clone (the 

restriction map) were used to determine if the DNA fragments were overlapping or 

discontinuous with respect to their positions in the genome. Eight genomic clones 

with the minimal amount of overlap were then aligned to generate a discontinuous 
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map of the coding sequences of the MGMT gene. 

Analysis of MGMT Exons 

Four exons were identified in the genomic clones by Southern blot analysis 

with radiolabelled MGMT cDNA fragments (listed above). To facilitate sequencing 

of two MGMT exons, the genomic DNA fragments containing the exons were 

subcloned into plasmid vectors. A 4.8 kb BamHI/Hindlll fragment of genomic 

clone le containing the 5'-most exon (designated exon 2) of the cDNA used, was 

subcloned into the plasmid pGEM-3Zf (Promega, Madison, WI.), and a 2.8 kb 

Notl/Nael fragment (from genomic clone 7c) containing a second exon (designated 

exon 3) was subcloned into pBluescriptll SK+ (Stratagene). The resultant 

subclones were designated p5'BH and p7cNN, respectively. The exon regions of 

these subclones were sequenced with MGMT cDNA primers using the dideoxy 

sequencing method (Taq Track Sequencing System, Promega). Hybridization of a 

32P-labelled Hinfl/Hhal fragment of the MGMT cDNA (see above) to Southern blots 

of genomic clone Sb identified a third translated exon, designated exon 4. 

Nucleotides complementary to the MGMT cDNA within the 3'-most exon were 

identified in cloned genomic DNA by PCR amplification (as described above) using 

primers complementary to the 3' end of the MGMT cDNA (primer 1, 

complementary to nucleotides 590-610, primer 2, complementary to nucleotides 776-

755). This region was designated exon 5. 
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Generation of Intron Specific Probes 

An intron 1 region, 5 kb 5' of exon 2, was derived from an EcoRI digest of 

genomic clone ld. Following electrophoresis of the digestion products through a 

0.5% low-melt agarose (FMC) gel, a 3.8 kb EcoRI fragment was cut from the gel and 

recovered by centrifugation (5 min, 12,000 x g) through siliconized glass wool 

(Alltech, Deerfield, IL.). A 3.8 kb EcoRI fragment, 10 kb 3' from exon 3 was used 

as an intron 3-specific probe. An Eagl fragment, 4 kb 3' of exon 5, was used as a 

probe to examine methylation at the 3' end of the MGMT gene. Approximately 25 

ng of the intron fragments were used as templates for generating intron-specific 

probes by random priming. 

Identification and Sequencine of CpG Islands within Genomic Clones 

Potential CpG islands within each MGMT genomic clone were identified by 

RE mapping as described above except using CpG island-sensitive RE (BssHII, 

Eagl, Nael, Nari, Notl, Smal, Sacll). Restriction sites for CpG island-sensitive REs 

are rare in bulk DNA, but occur relatively frequently in CpG island DNA (Lindsay 

and Bird, 1987). 0.5-3.0 kb clusters of the CpG island-sensitive RE sites thus 

identified potential CpG islands within the 12-23 kb MGMT gene fragments. Three 

MGMT gene regions containing clusters of these RE sites (designated region 1, 2, 

and 3), all within one genomic clone (7c), were subcloned and sequenced to 

determine if these regions had CpG island characteristics. The 5' - most region, 

containing part of exon 3, was excised from the genomic clone 7c by digestion with 
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Notl and Nael. The 2.6 kb Notl/Nael fragment was then ligated into Notl/Smal-

cut pBluescriptIISK + plasmid (Stratagene) in a 10 µl ligation reaction containing 

o.7 units of T4 DNA ligase, lX ligase buffer, and an approximately 3:1 molar ratio 

of insert to vector DNA. Following incubation at 14°C for 12 hr, the reaction was 

diluted 1:5 with 10 mM Tris-HCL/1 mM EDTA pH 8.0, and 1 and 3 µl aliquots of 

the diluted reaction were used to transform competent bacteria (DH5a) according 

to the manufacturer's protocol (BRL). 9, 90, and 900 µl aliquots of transformed 

bacteria were then spread onto separate LB bacterial plates containing 0.5 mM 

IPTG (Fisher), 40 µg/ml X-Galactose (Promega), and 100 µg/ml ampicillin (Sigma). 

Several white bacterial colonies were removed from the plates and used to inoculate 

LB broth containing ampicillin. The inoculated LB broth was subsequently placed 

in a 37°C shaking incubator (250 cycles/min.) for 8 -12 hr. 50 - 100 µg of the 

recombinant plasmid DNA (p7cNN) was recovered from the transformed bacteria 

(Quiagen minicolumn). To facilitate sequencing of relevant areas, p7cNN was 

digested with Eagl, which removed a 1.2 kb Notl/Eagl fragment, and religated to 

generate the 1.6 kb Eagl/Nael insert in p7cEN. 

A 4.7 kb EcoRI fragment (middle of 7c) and 3.8 kb EcoRI fragment (3' in 7c) 

of genomic clone 7C, which also contain clusters of the recognition sites for CpG 

island sensitive restriction enzymes, were subcloned in a similar manner into EcoRI 

digested pBluescript plasmid. To facilitate sequencing of regions of interest, these 

subclones were further subcloned as 3.1 kb and 1.6 kb Smal/EcoRI fragments (for 

the 4.7 kb middle subclone) and as 2.4 kb BssHII/Notl fragment (for the· 3.8 kb 

subclone). A nucleotide sequence for each subclone was determined using the 



32 

dideoxy sequencing method (Taq Track, Promega). 

Northern Blot Analysis of MGMT mRNA 

Total cellular RNA was isolated from each glioma cell line by a guanidinium 

isothiocyanate lysis procedure (Chirgwin,n_fil., 1979). Twenty µg of RNA from each 

glioma cell line was denatured by incubation at 50°C for 1 hr in a 21 µl reaction 

composed of 3 µl of 7 M glyoxyl, 10.5 µl DMSO, 2.1 µl 0.1 M NaH2P04 pH 6.8 and 

5.4 µl RNA. The denaturing reaction was then briefly cooled on ice before addition 

of 4 µl loading buffer ( 40'fo sucrose/0.25% bromophenol blue (BPB) ), Following 

electrophoresis (100 V, 4.5 hr) in a 1% agarose gel (1.4 g agarose/140 ml 10 mM 

NaP04 pH 6.8) the RNA was transferred to a nylon membrane by capillary 

blotting. The membrane was then soaked sequentially in 50 mM NaOH for 15 sec 

and lX standard saline citrate (lX SSC = 0.15 M NaCl/15 mM sodium citrate, pH 

7.0), 0.2 M Tris-HCl pH 7.5 for 30 sec. The RNA was fixed to the membrane by UV 

crosslinking (Stratalinker) once the membrane had air dried. To confirm that the 

RNA was intact, the 28s and 18s rRNA bands were visualized on the filter under UV 

light. The membrane was prehybridized in standard prehybridization solution (same 

solution as for library screening) for 4 hr at 42°C. Following addition of 32P

labelled MGMT cDNA probe, the membrane was washed initially in lX SSPE/0.1% 

SDS, 25°C for 15 min and then at 60°C, O.lX SSPE/0.1% SDS for 6 min in a Disc 

Wisk apparatus. Relative hybridization of the probe to glioma RNA was determined 

with a Betascope 603 blot analyzer (Betagen). Additionally, the membranes were 
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autoradiographed for 4-8 days. 

The membranes were subsequently stripped of bound probe by submersion in 

a boiling solution composed of 1 % SDS, 10 mM Tris pH 8, 1 mM EDTA for 30 

min. After drying, the membranes were prehybridized and hybridized with a 

radiolabelled histone H3.3 cDNA probe. Hybridization of the probe to histone H3.3 

mRNA was visualized by autoradiography. 

MGMT Protein Assay 

The relative amount of MGMT DNA repair activity in each glioma cell line 

was determined by an in vitro assay which measures the extent to which glioma cell 

sonicates repair methyl group adducts at 06-guanine within a 32P-end-labelled 18 bp 

DNA substrate (Wu, et al., 1987; Futscher, et al., 1989). 

2-5X106 cells from each glioma cell line were centrifuged and the cell pellet 

was washed twice with cold lX phosphate buffered saline (lX PBS = 0.137 M 

NaCl/2.68 mM KCl/10.14 mM Na2HP04/1.76 mM KH2P04, pH 7.4). The cells 

were resuspended in 400 µl ice cold assay buffer (50 mM Tris pH 8.0/1 mM 

EDTA/5 mM dithiothreitol/5% glycerol) and sonicated on ice in 12-5 sec bursts 

(with 5 sec off time between each burst to prevent the sonicator probe from heating 

the cell sonicates) of 0.3 relative output with a Virsonic cell disrupter (Virsonic). 

Following centrifugation (12,000 RPM, 30 min) the protein concentrations of the 

supernatants were determined spectrophotometrically. The extent of absorption of 

595 nm light in a 1 ml solution composed of 1 or 2 µl aliquots of the supernatant 
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from each glioma cell line, 200 µl protein assay dye reagent (Biorad, Richmond, 

CA), and ddH20 was measured spectrophotometrically and then converted to µg of 

protein/ µl of glioma sonicate by a Bradford protein assay program. The µl 

amounts of sonicate equaling 5, 10, and 25 µg protein for each cell line were then 

incubated separately in 150 µl reactions with 0.2 pmol of radiolabelled 18 hp 

MGMT substrate at 37°C for 2 hr. The labelled DNA substrate was then extracted 

three times with phenol/chloroform:isoamyl alcohol (24:1), once with 

chloroform:isoamyl alcohol and then precipitated (-70°C, 1 hr) with 1/10 vol. 3M 

sodium acetate pH 5.2, 3 vol 100% ethanol. After centrifugation (12,000 RPM, 30 

min) the DNA was washed with 70% ethanol and lyophilized. The lyophilized DNA 

was resuspended in 17 µl ddH20 and incubated with 10 units of Pvull (BRL) for 1 

hr at 37°C. Three unreacted control samples were incubated with no RE, Pvull, or 

Haelll. The digestion reactions were then terminated by adding 9 µl of 96% 

formamide dye (96% formamide/lmM EDTA/0.1% BPB/0.1% xylene cyanol). After 

a 5 min incubation at 95°C and a quick cooling on ice, 10 µl of each sample was 

electrophoresed on a 20% denaturing polyacrylamide gel for 1.5 hr. The relative 

amount of radiolabelled, cleaved to uncleaved DNA substrate was then determined 

with a Betascope blot analyzer. 

autoradiographed for 2-3 hr. 

DNA Isolation 

Additionally, the gels were directly 

Genomic DNA was isolated from 10 - 20 X 106 cells of each glioma cell line. 
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The cells were centrifuged (2200 RPM, 5 min), washed twice with cold lX PBS pH 

7.4, and lysed in cell lysis buffer [17 mM NaHCOi27.6 mM Na2C03/1 mM EDTA 

pH 8.0/0.4% N-lauroylsarcosine/.024% proteinase K (Merck)]. Following 

incubation at 37°C for 4 - 7 hr, DNA was recovered by three 

phenol/chloroform:isoamyl alcohol (24:1) extractions, one chloroform:isoamyl 

alcohol extraction, and an ethanol precipitation (0.2 volumes 11 M ammonium 

acetate/2.5 volumes 95% ethanol). The DNA pellet was washed twice in 70% 

ethanol, resuspended in 4 ml of ddH20, and treated with 40 µg of RNAse for 30 min 

at 37°C. The extraction, precipitation and ethanol washing steps were repeated, 

followed by DNA resuspension in 400-800 µl 10 mM Tris-HCl/1 mM EDTA, pH 8.0. 

Analysis of the Methylation Status of the Body of the MGMT Gene 

Analysis of the methylation status of the body of the MGMT gene in the 

glioma cell lines was accomplished by Southern blot analysis of genomic DNA 

digested with the methylation sensitive and insensitive isoschizomers Hpall and 

Mspl, respectively (BRL). Ten µg of genomic DNA from each cell line was 

incubated (37°C, 6-8 h) in a 200 µl reaction containing lX RE buffer and Hpall (7-

10 U/µg DNA) or Mspl (7-10 U/µg DNA). To control for completion of digestion, 

aliquots (20 µl) of the final reaction mixture were removed from each digestion 

reaction and incubated with a uniformly 32P-labelled MGMT cDNA. Generation of 

the expected restriction fragment pattern of the labelled MGMT cDNA, as assessed 

by autoradiography of these control samples following electrophoresis and transfer 
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to a nylon membrane, reflected complete digestion in the primary digests. DNA 

from the primary digests was then extracted, precipitated, and resuspended in 20 

µl ddH20. For analysis of intron 1 and the 3' end of the gene, the DNA samples 

were further digested with EcoRI (10 U / µg) for 6 hr. Equal amounts (10 µg) of 

DNA from each digest were electrophoresed (15-20 V, 24 hr) through 0.7 % agarose 

gels. The DNA was then depurinated by soaking the gel in 0.25 M HCl for 15 min. 

After rinsing the gel in dH20, the DNA was denatured by soaking the gel in 0.5 M 

NaOH/1.5 M NaCl for 30 min. Following a brief dH20 rinse, the gel was submerged 

in neutralization solution (0.5 M Tris pH 7.5/3 M NaCl) for 45 min. DNA was then 

transferred from the gel to a nylon membrane by capillary blotting in lX SSC. 

Following the transfer, the membrane was submerged in 0.4 N NaOH for 45 sec, 

and then in 0.2 M Tris/2X SSC for 90 sec. After allowing the membrane to dry at 

room temperature, the DNA was covalently bound to the membrane by UV 

crosslinking (UV Stratalinker). The membrane was prehybridized and then 

hybridized to various MGMT intron specific probes in a manner analogous to that 

described for northern blots. 

Ouantitation of Methylation at an MGMT Intron 1 Site 

The percent of MGMT gene alleles within each glioma cell line that are 

methylated at an intron 1 site, located 5 kb 5' of the translation start site, was 

determined by Southern blot analysis of EcoRI digested glioma cell line DNA 

hybridized with the 3.8 kb EcoRI intron I probe described above. DNA (10 - 20 µg) 
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from each glioma cell line was digested with 75 U EcoRI for 6 hr at 37°C and then 

overnight with an additional 100 U EcoRI. Relative hybridization of the 

radiolabelled intron I fragment to the 3.8 kb (unmethylated) and 4.5 kb 

(methylated) EcoRI digestion products was assessed with a Betascope 603 blot 

analyzer. The percent methylation of the EcoRI site was calculated as the ratio of 

4.5 kb fragments to 3.8 + 4.5 kb fragments multiplied by 100. The relationship 

between percent methylation and MGMT mRNA levels was examined by linear 

regression analysis (SigmaPlot5). 

linker-Mediated PCR Analysis CLMPCRl of MGMT Promoter Methylation 

For methylation analysis by LMPCR, nuclei were isolated from the glioma cell 

lines according to a method described by Wijnholds, et al., 1988. 1X107 
- 1X108 

glioma cells were washed with ice-cold lX PBS, centrifuged (2300 RPM, 5 min) and 

resuspended in 5 ml ice-cold buffer A (0.3 M sucrose/60 mM KCl/15 mM NaCl/60 

mM Tris-Cl pH 8.0/0.5 mM spermidine/0.15 mM spermine/2 mM EDTA). 5 ml 

cold buffer A with 1 % Nonidet P40 (NP-40, Sigma) was added and the samples were 

incubated on ice for 5 min. The sample was centrifuged (lOOOXg, 5 min) and the 

nuclei pellet was washed with 15 ml of cold buffer A. DNA was isolated from the 

nuclei according to Saluz, et al., 1987 by resuspending the nuclei in 5 ml of buffer 

B (150 mM NaCI/5 mM EDTA pH 7.8), adding 5 ml of room temperature buffer 

C [20 mM Tris-Cl/20 mM NaCI/20 mM EDTA/1% SDS/600 µg/ml proteinase K 

(Sigma)] and incubating the samples at 37°C for 3 hr. RNase was added (100 
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µg/ml) and the samples were incubated at 37°C for 1 hr. DNA was extracted and 

precipitated as described above and then cut with EcoR I (5 U/µg) to reduce 

viscosity. Following extraction and precipitation, the DNA was dialyzed for 20 hr 

in 3 changes (at 4 hr, 18 hr and 19 hr) of 4 L ddH20. Forty µg of DNA was 

cleaved with genomic sequencing chemicals as described by Maxam and Gilbert, 

1980. For sequencing of plasmid DNA, 1 µl of BamH I cut plasmid (containing the 

1.2 kb MGMT promoter) was added to 40 µg of dialyzed, sheared salmon sperm 

DNA. 

The LMPCR protocol was based on the method described by Pfeifer, .rt_fil., 

1989 and consisted of extension, ligation and amplification steps. All DNA primers 

for LMPCR were gel purified except an 11 nt linker primer (see below). For 

extension reactions, a 15 µl reaction containing 5.0 µg of cleaved genomic DNA, 0.5 

pmol of the extension primer (for promoter region I; 5'

CGGGCCATITGGCAAACTAAG-3', corresponding to MGMT promoter nt 655-675, 

for region II; 5' -AGGCACAGAGCCTCAGGCGGAAGCT -3', corresponding to nt 805-

823), and lX sequenase buffer [United States Biochemical (USB)] was incubated 

at 95°C for 3 min, and then 60°C for 30 min. The reaction was cooled on ice and 

7.5 µl of dNTP mix [final concentration in mix was 0.062 mM dGTP/0.188 mM 7-

deaza dGTP/0.2 mM each of dCTP, dATP, dTTP (Pharmacia)], 0.5 µl of 0.5 M 

MgC12, 0.95 µl of 1 M dithiothreitol and 1.5 µl of a 1:4 dilution (in TE pH 8.0) of 

Sequenase version 2.0 (USB) were added. Following primer extension (48°C, 15 

min), the reactions were cooled on ice, 6 µl of cold 300 mM Tris, pH 7. 7 was added, 
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and the Sequenase was heat inactivated (67°C, 15 min). The reaction was cooled 

on ice. In ligation steps, a double stranded DNA linker (see below) was ligated to 

the extension products by addition of 45 µl of a ligation mix (13.33 mM MgC12/30 

mM DTT/1.66 mM ATP/83.3 µg BSA/100 pmoles linker DNA and 3 U/reaction T4 

DNA ligase (Promega)) to each reaction. After ligation (18°C, 12-16 hr) the 

reaction was heated (70°C, 10 min) and then cooled on ice. The DNA was 

precipitated (along with 10 µg yeast tRNA), washed with 70% ethanol, lyophilized 

and resuspended in 67 µl ddH20. The ligated DNA was then incubated in a 100 µl 

reaction containing 10 µl of dNTP mix (0.067 mM dGTP/0.133 mM 7-deaza 

dGTP /0.2 mM each of dATP, dCTP, dTTP), lX Stoffel fragment buffer, 2.5 mM 

MgC12, 10 U Stoffel fragment ofTaq Polymerase (Perkin Elmer Cetus), and 10 pmol 

each of the longer (25 mer) linker primer and a nested gene-specific primer (for 

promoter region 1; 5'-AGGCACAGAGCCTCAGGCGGAAGCT-3', nt 674-698, for 

promoter region 2; 5'-TGGGCATGCGCCGACCCGGTC-3', nt 841-861)(13) and 

amplified by PCR (5 min, 95°C followed by 18 cycles of 95°C for 1 min, 66°C for 2 

min and 76°C for 3 min with a 5 sec extension of the 76°C step after each cycle and 

10 min at 76°C after cycle 18). 32P labelled PCR products were generated through 

two additional PCR cycles with a second nested end-labelled primer (promoter 

region I; 5'-AGGCACAGAGCCTCAGGCGGAAGCTGGGA-3', nt 674-702, promoter 

region 2; 5'-TGGGCATGCGCCGACCCGGTCGGG-3', nt 841-864). Seven µl of a 

mix containing lX Stoffel buffer, 2.5 mM MgC12, 0.1 U Stoffel fragment/ µl and 4.0 

pmol of the 32P labelled primer (see below) was added to the amplification reaction. 
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Following two cycles of PCR (same parameters as above except annealing was at 

67°C and extension at 77°C), the DNA was extracted, precipitated, and resuspended 

in 10 µl of LMPCR dye (80% formamide/45 mM Tris base/45 mM boric acid/1 mM 

EDTA/.05% BPB/.05% xylene cyanol). Five µl of the sample was electrophoresed 

(55 Watts, 2 • 3 hr) through a 6 % denaturing polyacrylamide gel. Radiolabelled 

amplification products were detected by autoradiography (6-18 hr exposure). 

In Vivo Dimethylsulfate CDMSl Footprint Analysis of the MGMT Promoter 

Glioma cells were treated with 0.1 % DMS in fresh media (37°C, 2 min) and 

then washed three times with lX PBS. DNA was then isolated, resuspended in lM 

piperidine and heated for 30 min at 95°C. Following precipitation, the DNA was 

washed twice with 80 % ethanol and lyophilized overnight. The DNA was 

resuspended in ddH20 and 5 µg was analyzed by linker-mediated PCR as described. 

Gel Purification and Radiolabelin& of LMPCR Primers 

DNA Primers were gel purified according to published protocols (Ausubel, fil. 

al., 1992). 100-120 µg of each primer was diluted 2-fold in 2X formamide loading 

buffer [lX TBE (lX TBE = 89 mM Boric Acid/89 mM Tris base • 2.0mM 

EDTA)/90% deionized formamide/0.5% BPB], heated to 95°C for 5 min and placed 

on ice. The entire sample (80 - 120 µl) was loaded on a 15 % denaturing 

polyacrylamide gel using lX TBE for running buffer. The samples were 

electrophoresed (300-500 V, 2-3 hr) after which the gel was removed from the 
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apparatus and wrapped in saran wrap. The gel was placed over a thin-layer 

chromatography plate with flourescent indicator and the DNA was visualized with 

a U.V. lamp (U.V. shadowing). A gel slice containing the appropriately sized primer 

DNA was removed, crushed, and the DNA was eluted (37°C, overnight, shaking 

incubator) from the acrylamide in 0.3 M sodium acetate, pH 7.5. The primer DNA 

was extracted once with phenol and once with chloroform before ethanol 

precipitation. The primers were end-labelled in a reaction containing 25 - 35 pmol 

primer (1 pmol/µl), 300 - 500 µCi gamma-32P-ATP ( > 5000 Ci/mmol), lX T4 

polynucleotide kinase buffer (Promega) and 0.05 U polynucleotide kinase/ µl. The 

reaction was incubated for 30 - 60 min at 37°C, 2 min at 95°C and cooled on ice. 

Unincorporated gamma-32P-ATP was removed from the reaction by centrifugation 

(4 min, 3800RPM) through a G-25 sephadex column (5 Prime - 3 Prime) 

equilibrated with 3 ml of ddH20. 

Linker Annealine 

The linker primer sequences and annealing reactions were as described by 

Mueller and Wold, 1989. The 25 nt linker primer was 5' 

GCGGTGACCCGGGAGATCTGAATTC - 3' and the 11 nt linker primer was 5' -

GAATTCAGATC - 3'. The primers were annealed in a 300 µl reaction containing 

6000 pmoles of each primer and 250 mM Tris-Cl pH 7. 7. The reaction was heated 

to 95°C for 5 min, centrifuged briefly and incubated at 70°C for 10 min. The 

reaction was cooled to 25°C over 2 hr (2°C decrease every 5 min) and incubated at 
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25°C for 1 hr. After cooling to 4°C (2°C decrease every 5.5 min), the reaction was 

incubated at 4°C for 12 hr and stored at -20°C. 

Analysis of Restriction Enzyme Accessibility to the MGMT Gene within Nuclei 

Glioma cells were washed twice with cold lX PBS and harvested by scraping 

into Sml of fresh lX PBS. The cells were centrifuged (5 min, 3500 RPM) and then 

resuspended in 1.0 ml of cold RSB buffer (10 mM Tris,pH 8.0/10 mM NaCl/3 mM 

MgC12) and .05 % NP-40 to disrupt the cell membranes. Nuclei were pelleted by 

centrifugation (12,000RPM, 4 sec), washed twice in lX RE buffer and resuspended 

in 350 µl fresh lX RE buffer. Nuclei equivalent to 30 µg of DNA were incubated (10 

min, 37°C) with either Mspl (20 - 400 U), Avail (16 U), Alul (6 - 40 U), or DNAsel 

(0.6 - 60 U). DNA was then isolated from the nuclei, precipitated, and resuspended 

in ddH20 (1.0 µg DNA/µ1). For the promoter studies, 5.0 µg of DNA from the 

nuclei digests was analyzed by LMPCR as described above, except autoradiograph 

exposures were 2-5 hr, with intensifying screens. For analysis of RE accessibility to 

the body of the gene, DNA was isolated from the nuclei, precipitated, and 

resuspended in 16 µl dH20 + 2 µl lOX EcoR I buffer. All DNA samples were 

digested with 100 U EcoRI (2 hr, 37°C), one sample with EcoRI and Mspl, (10 

U/µg) and one with EcoRI and Hpall (10 U/µg). 10 µg of each digest was then 

analyzed by Southern blot as described above. 
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Gel Shift 

To prepare protein extract for gel shift analysis 5 - 10Xl06 cells (glioma cells 

and for control reactions, HeLa cells) were centrifuged (12,000 RPM, 5 sec), the 

supernatant was discarded and the cells were quickly frozen in liquid nitrogen. The 

cells were resuspended in 5 volumes buffer C (25 % glycerol/420 mM NaCI/1.5 mM 

MgC12/0.2 mM EDTA/up to 100 ml with ddH20/20 mM Hepes pH 7.9/0.5 mM 

DTT/0.5 mM PMSF), centrifuged (100,000xg, 5 min), and the supernatant pipetted 

into a new tube. Ten µg cell extract (measured spectrophotometrically, as described 

for MGMT assay) was incubated with 0.1 ng (1 ng/µg) of a double stranded, 32P

end-labelled, 22 hp DNA fragment (10,000 - 50,000 CPM/ µl containing a single Spl 

binding site (Spl oligonucleotide, Promega) in a 25 µl reaction containing 1.0 µl 

poly(dl)poly(dC)(0.5 µg/µl), 1.0 µl of BSA (10 mg/ml), and lX binding buffer (lX 

= 10 mM Tris pH 7.5/50 mM NaCl/1 mM EDTA/5% glycerol/1 mM DTT). For 

the specific competition experiment, an 100-fold excess unlabelled Spl 

oligonucleotide was added 20 min prior to addition of HeLa cell extract. A 100-fold 

excess unlabelled heat shock factor oligonucleotide (non-specific competitor)(5'

CTAGAAGCTTCTAGAAGCTTCTAG-3') was added to a separate tube prior to 

addition of HeLa cell protein extract. Each reaction (HeLa controls and glioma 

samples) was incubated for 20 min at 25°C, 2.5 µl dye (50 % glycerol - 0.2 % BPB -

0.2 % xylene cyanol) was added and the sample was electrophoresed (120 - 160 V, 

2 - 3 hr) through a 4 % polyacrylamide gel. The gel was autoradiographed for 1 -

5 hr. 



CHAPTER IV 

RESULTS 

Analysis of the MGMT Gene Codina= Sequences 

To examine the organization of the human MGMT gene coding sequences, a 

genomic library was screened with an MGMT cDNA probe. Twenty positive clones 

isolated after primary screening were purified to homogeneity through secondary 

and tertiary screening. The primary, secondary and tertiary screenings of a 

representative clone (7c) are shown in fig. 1. The clones were divided into four 

groups based on hybridization to one of four cDNA restriction fragment probes 

(fig.2). Two MGMT genomic clones (lb/2e) hybridized to cDNA fragments 3 and 

4, suggesting that these clones may contain two or more exons, one common to 

group 3 clones and one common to group 4. Each clone was analysed for BamHI, 

Hindlll, and EcoRI restriction sites, and then aligned with the other clones. Eight 

of these clones with minimal overlap were used to generate a preliminary map of 

the coding sequences of the MGMT gene consisting of four translated exons and 

spanning > 80 kb (fig.3) ( exon 1, not shown here, is nontranslated (Harris, et al., 

1991). Comparison of the nucleotide sequence of the S' most exon, derived from 

sequencing genomic subclone pS'BH (fig.3), to the published cDNA sequences (Tano, 

.ru.i., 1990) demonstrated that the 135 bp comprising this exon was contiguous with 

44 
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Figure 1. Primary, secondary and tertiary screening of a human genomic library 
with a radiolabeled MGMT cDNA. Approximately 1X106 clones were tested for 
hybridization to the 730 hp MGMT cDNA probe (which includes all the protein 
coding portions). Tuenty positive clones were identified by the presence and 
identical location of positive signal on duplicate filters (from the same LB plate). 
A LB plug containing each of these clones corresponding to a positive signal (eg. 
arrow in 1° panel) was removed from the plate, eluted in 1 M SM buffer, and then 
purified through secondary (2°) and tertiary (3°) screening. Every phage plaque 
present on the tertiary screening plates hybridized to the MGMT cDNA probe, 
indicating that these phage populations contained MGMT gene fragments and were 
purified to homogeneity. 
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Figure 2 Relative placement of genomic clones into one of four groups based on 
hybridization to MGMT cDNA fragment probes. Tuo µg of each genomic clone 
were cleaved with Notl (10 U for 1 hr) and analyzed by Southern blot, as described, 
with sequential hybridization to each of the four cDNA fragment probes (open bars 
with vertical lines). Positive hybridization to genomic clones 2e and lb was seen 
with the two 3' probes. 
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Figure 3. Restriction enzyme map of the coding sequences of the human MGMT 
gene. A genomic library derived from a human fibroblast cell line DNA was 
screened with a 32P-labelled MGMT cDNA that spanned nucleotides 70-777 (which 
includes the entire protein coding region). Eight positive clones analyzed by 
restriction enzyme mapping with BamHl(B), EcoRl(E), and Hindlll(H), were 
aligned to form a discontinuous map of the gene. Exons (open triangles) within two 
genomic subclones, p5'BH and p7cNN, were sequenced and compared to the 
corresponding cDNA nucleotides. Nucleotides complementary to cDNA sequences 
590-776 were identified within genomic clone llb (exon 5) by PCR amplification 
with primers defining this cDNA region. Gaps in the map represent intron regions 
of unknown size. The positions and length of the intron probes used for 
methylation analysis are indicated by solid lines located below the subclones. The 
dashed line immediately 5' of the intron 3 probe indicates the position of a 4. 7 kb 
EcoRI probe also used to examine methylation. 
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exon 1 in the MGMT cDNA. This region was therefore designated exon 2. Exon 2 

contains approximately 12 nontranslated nucleotides followed by the translation 

start site and nucleotides encoding amino acids 1 through 41. Exon 3 encodes > 

41 amino acids, beginning with amino acid 42, and is followed by two 3' exons which 

were separated by an intron of less than 7 kb. The first of these two exons ( exon 

4) was identified by hybridization of a 3' MGMT cDNA fragment to genomic clone 

Sb DNA. The 3'-most exon (exon 5), analysed by PCR amplification of genomic 

clone llb DNA with 3' MGMT cDNA specific primers, spans > 185 hp and extends 

into the 3' nontranslated region. These genomic clones include all translated exons 

and span the body of the MGMT gene (Nakatsu, et al., 1993). 

Map_pina= of CpG Island Sensitive RE Sites within MGMT Genomic Clones 

Because the MGMT cDNA is very GC rich and contains and overabundance 

of CpGs, it is possible that one or more of the exons which comprise the cDNA 

sequence may be part of a CpG island. In order to identify potential CpG islands 

within the MGMT gene, the sites for CpG island-sensitive RE were mapped within 

genomic clones from each MGMT gene region. The recognition sites for CpG island 

sensitive RE are entirely composed of cytosines and guanines and contain one or 

more CpG dinucleotide. These sites are therefore rare in bulk DNA, but occur 

relatively frequently in CpG island DNA (Lindsay and Bird, 1987). Clusters of 

three or more of these sites within 0.5 - 3.0 kb indicate the location of potential 

CpG islands. MGMT genomic clones from each of the four groups were analyzed 
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Figure 4. Map of sites for CpG island-sensitive RE in genomic clone 7c. The 
position of sites for BssHII (B), Eagl (E), Nael (N), Notl (Nt) Saeli (Sc) and Smal 
(S) were determined within clone 7c DNA by RE mapping. Subclones containing 
each of the three clusters of the CpG island-sensitive RE sites are shown directly 
below the region of 7c from which they were derived. Ee, EcoRI site, and (open 
triangles), position of exon 3. Sequence data from each of the subcloned regions is 
shown in table 1. 
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for potential CpG islands by mapping the restriction sites for the CpG island-

sensitive REs BssHII, Eagl, Nari, Nael, Notl, Smal, and Sacll. Although most of 

the MGMT genomic clones contained only a few of these sites and generally not in 

clusters, three obvious clusters of these sites were found within genomic clone 7c 

(fig. 4). The 5' most cluster was associated with exon III and the middle and 3' 

clusters are contained in intron 3. DNA containing each cluster of sites was 

subcloned and partially sequenced to determine if these regions have the high GC 

content ( > 50%) and overabundance of the dinucleotide CpG [a ratio > 0.6, 

calculated from the equation ((#CpG/#G x #C) x #nucleotides analyzed)] 

characteristic of CpG islands (Gardiner-Garden and Frommer, 1987). The results 

of the sequence analysis are shown in table 1. All three regions analyzed did have 

an overabundance of CpGs relative to bulk DNA and a GC content between 40-60% 

The overabundance of CpGs however, was clearly below the frequency found in CpG 

islands. Analysis of these sequences in segments of 125 - 565 nt, rather than as a 

whole, revealed small but CpG-rich regions of the MGMT gene. The significance 

of small CpG-rich segments of DNA is unknown, but because of the high content 

of CpGs the methylation status of these regions may be relevant in a potentially 

methylation-mediated establishment or maintenance of glioma MGMT gene 

expression. 

Analysis of MGMT Expression in 10 Human Glioma Cell Lines 

MGMT expression in each glioma cell line was determined at the mRNA and 
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Table 1. Analysis of GC content and CpG ratios in regions cf the 
MGMT gene that contain a cluster of recognition sites for CpG island 

sensitive restriction enzymes 

I I 

DNA Region : Nucleotides 
I 

%GC ! CpG ratio• 
! Analyzed I 

I 
I 

CpG island DNA 500-2000 >50% >0.60 

Region 1- exon 3 1600 54.0% 0.41 
1.6kb Eag-Nae (1-1600) 

565 57.2 0.53 
(1035-1600) 

536 50.7% 0.35 
. (5' 1-536) 

Region 2- intron 3 160 58.0 0.48 
4.7kb Eco-Eco (5' 1-160) 

994 ;~; ~~,:~ 53.0% 0.32 
(3 '1-994) 

150 58.4 0.53 
(3' 1-150) 

880 43.0% 0.30 
(5' 1-180) 

Region 3- intron 3 490 49.3 0.45 
3.8kb Eco-Eco (5' 390-880) 

765 53.9% 0.29 
(3' 1-765) 

150 63.0% 0.46 
(3' 1-150) 

Bulk DNA I - II <40.0% I 0.20 I 
• CpG ratio calculated from the equation: LpU ratio = l #LpU dmucleotJ des/ (#C X 

#G)] X # nucleotides analyzed. 
Note: Region 2 and 3 were sequenced inward from both ends of the subclones. In the 
Nucleotides Analyzed column the sequences are therefore denoted as 5' or 3' with respect . 
to their ends within the MGMT gene. 
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Figure 5. Northern blot analysis of MGMT mRNA levels in 10 glioma cell lines. 
Twenty µg of total cellular RNA from MGMT+ and MGMT- glioma cell lines was 
denatured, electrophoresed, transferred to a nylon membrane and hybridized with 
a 32P-labelled MGMT cDNA (top panel). Following MGMT probe removal, the 
membrane was hybridized with a histone H3.3 cDNA probe (bottom panel). The 
membranes were washed under stringent conditions (60°C, 7 min, 0.1 % SDS/O.lX 
SSPE in a circulating water bath) and exposed to x-ray film (4-7 days) in the 
presence of intensifying screens. 
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protein levels. 

The relative amount of MGMT mRNA in each glioma cell line was measured 

by northern blot analysis with an MGMT cDNA probe. The results of a 

representative northern blot, seen in figure 5, demonstrated that MGMT mRNA was 

present in 1'98, U138, SF763, SF767, NAT, U373, and HS683 but was not detectable 

in Al235, CLA, or CRO (top panel). The amount of MGMT mRNA within each cell 

line was quantitated and then expressed as the average of two independent northern 

blots (Table 2). In order to ensure that the lack of detectable MGMT mRNA in 

Al235, CLA and CRO was not simply due to degraded RNA in these samples, the 

northern blots were rehybridized with the cDNA complementary to the histone H3.3 

gene. Histone H3.3 mRNA should be present in all the cell lines as histone H3.3 

gene expression is constituitive and cell cycle independent (Wellman, et al., 1987). 

Figure 5 (bottom panel) shows that histone H3.3 mRNA was present in the RNA 

from all the cell lines indicating that the lack of detectable MGMT mRNA in A1235, 

CLA, and CRO was not due to degraded RNA in these samples. 

The relative levels of MGMT activity were determined from an in vitro assay 

that measures the ability of glioma protein extracts to remove a methyl-group 

adduct from the 0-6 position of guanine in an 18 hp DNA substrate (Wu, et al., 

1987; Futscher, et al., 1989). Five, ten, or twenty-five µg of protein (lanes 1,2,3 of 

each triplet, respectively) from glioma cell sonicates were incubated with a 

radiolabelled 18 bp DNA fragment that contains a methyl group adduct at 0 6
-

guanine within a Pvull RE site (CAGCTGme). The amount of MGMT activity in 
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Figure 6. In vitro assay of MGMT activity within each glioma cell line. Five, ten or 
twenty-five µg of glioma cell sonicates were incubated (2 hr, 37°C) with a 
radiolabelled 18 hp DNA substrate containing a methyl-group adduct at the 0-6 
position of guanine within a Pvull recognition site. Unreacted 18 hp probe was 
incubated with Pvull (P), Haelll (H) or no enzyme (C). The DNA from control and 
glioma cell sonicate-reacted samples was extracted, precipitated, and resuspended 
in lX Pvull buffer (except the Haelll control sample (H) which was resuspended 
in lX Haelll buffer). The DNA was digested with Pvull (1 hr, 37°C), 9 µI of 95% 
formamide dye was added and one third of the reaction was electrophoresed (1 - 2 
hr, 26 mA) through a 20% denaturing polyacrylamide gel. The gel was 
autoradiographed for 1 - 3 hr in the presence of intensifying screens. 



Table 2. Quantitation of MGMT mRNA and MGMT activity in 
ten glioma cell lines 

Glioma Cell MGMT MGMT 
Line mRNA levels Activity 

(% of T98) (%of T98) 

T-98 100% 100% 

SF-763 78.8 121 + 15 

U-138 76.8 96 + 12 

SF-767 61.6 110 + 19 

Nat 48.5 79 + 12 

U-373 38.4 38 + 2 

HS-683 33.3 38 + 9 

A1235 0 <1 

Cla 0 <1 

Cro 0 <1 
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Table 2. Quantitation of MGMT mRNA and MGMT activity in ten glioma cell lines. 
3MGMT mRNA levels in each cell line were quantitated (Betascope 603 blot 
analyzer) from two independent northern blots, averaged, and expressed as the 
percent of '1'98 MGMT mRNA level. Within each cell line the average difference 
between duplicate experiments was < 12%. bValues for MGMT activity, determined 
by an in vitro assay that measured the ability of glioma cell sonicates to remove a 
methyl group adduct from the 0 6-position of guanine in a 32P-labelled 18 bp DNA 
substrate, are the mean ..±. S.D. of three independent experiments expressed as 
percent of '1'98 MGMT activity. 
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glioma cell sonicates is thus proportional to the relative levels of repaired 18 bp 

DNA substrate following incubation of the 06-methylated 18 bp DNA with glioma cell 

sonicates. After incubation, the methyl-adducted and repaired 18 bp DNA were 

distinguished by digestion with Pvull. (Pvull is sensitive to methyl adducts at 0 6
-

guanine and therefore does not cut the adducted 18 bp DNA). The products of 

Pvull digestion of the repaired 18 bp DNA were radiolabelled 8 bp and unlabelled 

10 bp DNA. The 8 bp and 10 bp DNA were size separated from the adducted (and 

therefore uncleaved) 18 bp DNA by electrophoresis through a 20 % denaturing 

polyacrylamide gel. The gel was autoradiographed directly to detect the 

radiolabelled 8 nt and 18 nt DNA. The relative proportion of 8 bp to 18 bp DNA 

following incubation of the 0 6-methylguanine-containing 18 bp DNA with glioma 

cell sonicates is thus directly related to the amount of MGMT activity within the 

cell sonicate. 

Figure 6 shows an MGMT assay of glioma cell sonicates. There was no 

detectable cleavage of the unreacted probe with (P) or without (C) Pvull digestion, 

indicating that prior to incubation with glioma cell extracts the probe was fully 

methylated at the 0 6-position of guanine. Substantial (70-90%) digestion of the 

probe to a 12 bp fragment by Haelll (H) indicated that the probe DNA was not 

inherently resistant to RE digestion. MGMT activity increased in a linear fashion 

with increasing amounts of protein added. Quantitation of MGMT activity in each 

cell line, expressed as a mean+/- standard deviation from three independent assay 

samples, is shown in table 2. The rank order of the MGMT expressing glioma cell 



58 

lines according to MGMT activity, from highest to lowest, was SF763, SF767, T98, 

U138, NAT, HS683, and U373. MGMT activity is undetectable, in this assay system, 

in glioma cell lines A1235, CLA and CRO, consistent with the lack of detectable 

MGMT mRNA in these cell lines. Differences in the rank order of cell lines 

according to MGMT mRNA versus MGMT activity may reflect small differences in 

post-transcriptional events such as mRNA stability, translation efficiency or protein 

half-life. 

Analysis of MGMT Gene Arraneement 

The absence of MGMT expression in CLA, CRO, and A1235 could result from 

a deletion or rearrangement of the MGMT gene as gliomas frequently lose one copy 

of chromosome 10 (Collins and James, 1993) and/or have deletions of lOq 

(Karlbom, et al., 1993), the location of the MGMT gene (Natarajan, et al., 1992). 

The structure of the MGMT gene was therefore assessed in each glioma cell line 

by Southern blot analysis. Figure 7 A and 78 represent Southern blots of Mspl and 

EcoRI digested DNA, respectively, hybridized with a radiolabelled MGMT cDNA. 

The identity of hybridization patterns across all cell lines in each blot (except SF763 

in the Msp blot) indicates that the lack of MGMT expression in the 3 MGMT- cell 

lines was not a result of deletion or gross rearrangement of the MGMT gene. The 

additional MGMT cDNA-recognized Msp fragment in the MGMT+ cell line SF763 

is likely unrelated to (or not required for) MGMT expression as it is not detected 

in any of the other MGMT+ cell lines. The lack of MGMT mRNA and MGMT 
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Figure 7. Southern blot analysis of MGMT gene structure in glioma cells. Ten µg 
of DNA from each glioma cell line was digested with Mspl (10 U / µg DNA) or EcoRI 
(10 U / µg DNA). The DNA was extracted, precipitated and resuspended in ddH20 
and loading dye. The DNA was electrophoresed through a 1% agarose gel, 
transferred to a nylon membrane and hybridized to a 730 hp radiolabelled MGMT 
cDNA probe. The membranes were washed under stringent conditions (as des.cribed 
in fig.5), dried and autoradiographed for 2 - 4 days in the presence of intensifying 
screens. 
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activity, despite the presence of an intact MGMT gene suggests that the MGMT 

gene is regulated at the transcriptional level. The possibility that point mutations 

or very small deletions inactivate the MGMT gene cannot be excluded, but is 

considered unlikely, as the low frequency of point mutations in genes is incongruous 

with the high incidence of MGMT- cell lines (20 - 30%). Recent studies have 

suggested that other mechanisms of gene inactivation, such as changes in cytosine 

methylation, which occur frequently in tumor cells (Goelz and Vogelstein, 19S5; De 

Bustros, et al., 19SS), may influence MGMT gene expression (Pieper, et al., 1991). 

Quantitative Analysis of MGMT Gene Methylation in Glioma Cell Lines 

In order to examine the relationship between methylation and MGMT 

expression in a quantitative fashion, the percent of MGMT gene alleles that were 

methylated at an MGMT intron I site, 5kb upstream of the translation start site (* 

in fig. 3), within each glioma cell line was determined by Southern blot analysis with 

EcoRI digested glioma DNA (fig. SA) and then compared to MGMT mRNA levels 

by linear regression analysis (fig.SB). As a result of the methylation sensitivity of 

EcoRI (EcoRI will not cleave at its recognition site, GAATTC, if the cytosine is 

followed by a guanine and the cytosine of this CG dinucleotide is 

methylated)(Nelson, .fil.Jtl., 19S9), when the 3' EcoRI site flanking the 3.S kb EcoRI 

intron 1 segment of the MGMT gene (see tig.3) was methylated in glioma DNA, the 

DNA was cut at the next available EcoRI site, approximately 0.7 kb downstream, 

generating a larger, 4.5 kb fragment. The proportion of 4.5 kb to 4.5 kb + 3.S kb 
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fragments in the DNA of each cell line was therefore a measure of the percent of 

methylated (at this site) MGMT gene alleles within a population of glioma cells. 

In figure SA, the cell lines are arranged from left to right in order of decreasing 

MGMT expression. The results of this analysis demonstrate that methylation was 

graded across the cell lines at the intron 1 EcoRI site and increased with increasing 

MGMT expression (fig.S). The methylation status of this intron 1 site correlates 

(r= O.S57, p < .001, fig.SB) with MGMT mRNA levels in a similar, positive fashion 

as previously seen in MGMT exons (Pieper, et al., 1991). The two minimally 

MGMT+ cell lines had methylation levels similar to those in MGMT- cell lines. 

The percent methylation at this site within each cell line varied on average less than 

20 percent between two experiments (which were done four months apart) 

indicating that the partial methylation status of this site within each cell line may 

be stable over time. 

Analysis of the Methylation Status of Introns of the MGMT Gene 

To determine if the graded relationship between methylation and MGMT 

expression noted at the intron 1 site (and previously in exons) is present in a 

uniform fashion across the body of the MGMT gene, the methylation status of 

intron regions, 4-10 kb distant from the nearest exons and >25 kb distant from 

each other, across the body of the gene was examined in the glioma cells lines. 

Southern blots ofMspl (methylation insensitive) and Hpall (methylation sensitive) 

digested glioma DNA were hybridized separately with 3 intron probes. The probes 
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Figure 9. Southern blot analysis ofMspl/Hpall site (CCGG) methylation in MGMT 
intron 1. DNA from MGMT expressing (MGMT+) and nonexpressing (MGMT-) 
glioma cell lines was digested with either A) Mspl (7-10 U/µg DNA) or B) Hpall 
(7-10 U/µg DNA), followed by digestion with EcoRI (10 U/µg DNA). Following 
electrophoresis through a 1.0% agarose gel and transfer to a nylon membrane the 
DNA (10 µg/sample), arranged from left to right in order of decreasing MGMT 
expression in the cell line of origin, was hybridized with a 32P-labelled 3.8 kb 
MGMT intron 1 fragment derived from genomic clone ld and located 5 kb 5' of 
exon 2 (see fig.3). Hybridized membranes were washed under stringent conditions 
(as described in fig.5) and then autoradiographed (4 days) in the presence of 
intensifying screens. 
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were derived from 5', middle, and 3' intron regions of the MGMT gene. The 

locations of each intron segment within the MGMT gene are depicted in fig. 3. 

Southern blot analysis of the methylation status of a 3.8 kb MGMT intron 1 

region, located approximately 5 kb 5' of exon 1 and 45 kb 3' of the MGMT 

promoter (see fig.3, intron probes), in the glioma cell lines is shown in figure 9. The 

pattern of intron 1 probe-hybridization to Mspl digested DNA from the glioma cell 

lines (fig.9A) was the same in all lanes (with the exception the MGMT gene in CRO, 

lane 7, which has a point mutation or very small deletion in all alleles)), indicating 

that the 3.8 kb intron 1 region was identical, with respect to the number and 

location of Mspl/Hpall sites. Southern blot analysis of Hpall digested DNA from 

glioma cell lines (fig.9B), arranged from left to right in order of decreasing MGMT 

expression, indicates that the intron 1 segment of the MGMT gene was relatively 

unmethylated (lower molecular weight, greater degree of Hpall digestion) in the 

minimally MGMT+ and MGMT- cell lines and methylated (higher molecular 

weight, less Hpall digestion) in the MGMT+ cell lines, consistent with the 

quantitative analysis of methylation of the EcoRI CpG bordering this region. 

Additionally, the similarity in percent methylation of the intron 1 EcoRI site in 

HS683 and U373 (both minimally MGMT+ cell lines) compared to MGMT- cell 

lines was also detected in the extent of Hpall site methylation in intron 1 (fig.9B). 

The presence of both the methylated and unmethylated fragments in Hpall digested 

DNA from the MGMT+ glioma cell lines (fig. 9B, lanes 1-4) suggests the existence 

of allelic differences (within a single cell) and/or population differences (within 
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Figure 10. Analysis of the extent of Mspl and Hpall digestion of the samples 
described in fig.9. Aliquots (20 µl) of each digestion reaction were removed from 
the primary digests (Mspl and Hpall digests, fig.9) and incubated with a uniformly 
32P-labelled MGMT cDNA. The samples were electrophoresed through a 1.5 % 
agarose gel, transferred to a nylon membrane and autoradiographed (1 - 4-hr) in 
the presence of intensifying screens. 
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Figure 11. Southern blot analysis of Mspl/Hpall site methylation in MGMT intron 
3. A) Mspl and B) Hpall digested DNA from each glioma cell line was analyzed 
by Southern blot analysis as described in fig.9 except that hybridization was with 
a 32P-labelled MGMT intron 3 fragment derived from genomic clone 7c and located 
10 kb 3' of exon III (see fig.3). Complete digestion of all samples was determined 
as described in fig.10. 
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each cell line) in MGMT gene methylation patterns. The variable hybridization 

intensities within each lane and across lanes likely reflect the degree of 

heterogeneity in methylation at various MGMT intron sites, i.e., a greater degree of 

heterogeneity in MGMT gene methylation within a cell line results in fewer copies 

of a given Hpall fragment and thus weaker hybridization signal for that fragment. 

To exclude the possibility that the differences in the extent of Hpall digestion of the 

MGMT gene from each glioma cell line might be due to incomplete Hpall digestion, 

rather than methylation differences, control digests were performed. Incubation of 

20 µl of each primary Hpall digest (as well as Mspl digests) with a uniformly 32P

labelled MGMT cDNA, followed by electrophoresis and autoradiography, resulted 

in an identical digestion pattern in all the samples (fig.10). This suggests that the 

digestion was complete in the primary Hpall and Mspl digests, and the differences 

in extent of digestion in the primary samples can be attributed to methylation. 

Control digests were performed for each independent experiment. 

Southern blot analysis of the methylation status of a 3.8 kb intron 3 region, 

10 kb 3' of exon 3 (see fig.3, intron probes) is shown in figure 11. Analysis of Mspl 

digested glioma DNA indicated that the number and position of Mspl/Hpall sites 

in this intron 3 region was the same in all cell lines, regardless of MGMT 

expression (fig.HA). Figure 118 demonstrates that Hpall sites throughout this 

intron 3 region (6 kb through 14 kb 3' of exon 3) were methylated in MGMT+ 

glioma cell lines and relatively unmethylated in minimally MGMT+ and MGMT

glioma cell lines. The presence of a 1.1 kb fragment in all lanes (fig.118) indicates 
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Figure 12. Southern blot analysis of Mspl/Hpall site methylation in the 3' end of 
the MGMT gene. A) Mspl and B) Hpall digested DNA samples from each glioma 
cell line were analyzed by Southern blot analysis as described in fig.9 except 
hybridization was with a 32P-labelled 3.5 kb Eagl fragment derived from genomic 
clone llb and located 4 kb 3' of exon 5. Complete digestion of all samples was 
determined as described in fig. 10. 
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Figure 13. Southern blot analysis of Mspl/Hpall site methylation in normal human 
T lymphocytes (T cells) and brain, and in a brain tumor sample (GBM). Mspl 
(lanes 1 - 4) and Hpall (lanes S - 8) digested DNA from the human normal and 
tumor cells was analyzed by Southern blot analysis as described in fig.9 (including 
use of the same intron 1 probe). 
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that the two Hpall sites flanking this fragment were unmethylated to an extent, 

estimated by hybridization intensity, in all cell lines, with the greater number of 

unmethylated alleles in the MGMT- cell lines (fig. llB). The strong hybridization 

to high molecular weight Hpall fragments from MGMT+ cell lines (fig.11, lanes 1-

4) indicates that in a large number of these cells all Hpall sites were methylated 

over 7-12 kb of intron 3. 

Analysis of methylation in the 3' end of the MGMT gene, shown in fig.12 

yielded results similar to those in intron 1, intron 3 and exons, i.e. the MGMT gene 

was methylated in MGMT+ cell lines and relatively unmethylated in minimally 

MGMT+ and MGMT- cell lines. These results suggest that, within each cell line, 

the methylation status of the MGMT gene is uniform over > 80 kb defined by the 

probes used and correlates in a positive, graded fashion with MGMT expression. 

The body of the MGMT gene was also heavily methylated in several 

noncultured human cells that express the MGMT gene. Figure 13 shows a Southern 

blot analysis of Mspl/EcoRI (lanes 1-4) and Hpall/EcoRI (lanes 5-8) cut DNA 

from a normal human brain sample, a glioblastoma multiforme tumor sample 

(GBM), and T lymphocytes, hybridized with the MGMT intron 1 probe. The 

number and position of Mspl sites in this region was the same in T cells and 

normal brain, but an additional band of 2.4 kb was present only in the tumor 

sample. The 2.4 kb band corresponds exactly to the Mspl fragment seen in the 

intron I from CLA cells (fig.9A) and may therefore be derived from a point 

mutation, common to CLA cells and > 50 % of the cells in the tumor sample, that 
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destroys an Mspl site flanking the 2.0 kb Msp I fragment. The MGMT gene was 

methylated at virtually all the Hpall sites in intron 1 of T lymphocytes, which have 

relatively high levels of MGMT activity (approximately 3-4 times the level in the 

T98 cell line). The MGMT gene in the tumor and normal human brain samples 

was also methylated to a level similar to the MGMT+ glioma cell lines, which 

express similar levels of MGMT, but to a lesser extent than in T lymphocytes. The 

somewhat decreased level of methylation in the brain sample compared to the tumor 

was consistent with the slightly lower level of MGMT activity in the brain sample. 

The apparent heterogeneity of MGMT methylation in the normal brain sample 

might be explained by differences in MGMT gene methylation patterns in the 

different cell types present in this sample. 

RE Accessibility to the Body of the MGMT Gene within Intact Nuclei 

The observation that methylation of the body of the MGMT gene correlated 

in a direct, graded fashion with MGMT expression suggested that there may be 

methylation related differences in chromatin structure of the body of the gene. The 

chromatin structure of the body of the MGMT gene was examined by determining 

the relative accessibility of Mspl, Alul, and DNasel to the body of the MGMT gene 

within isolated nuclei from MGMT+ and MGMT- glioma cells. Since both histones 

and methylated DNA binding proteins (MeCps) block RE digestion in nuclei (Tazi 

and Bird, 1990; Antequera, et al., 1989) ), this analysis assesses, at least, the 

combined effect of these proteins on chromatin structure. 
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Figure 14. Southern blot analysis of Mspl accessibility to and methylation of an 
MGMT intron 1 region. For analysis of Mspl accessibility to the MGMT gene, 
nuclei from MGMT+ (SF767) and MGMT- (CLA) glioma cells were incubated with 
Mspl (lanes 1,6; 20 U Mspl for 10 min, lanes 2,7; 150 U Mspl for 2 hr), the DNA 
was isolated and further cleaved with EcoRI. For analysis of intron 1 methylation, 
DNA was also isolated from untreated nuclei and digested with Mspl/EcoRI (lanes 
3,8), Hpall/EcoRI (lanes 4,9) or EcoRI only (lanes 5,10). The DNA from all the 
samples was analyzed by Southern blot as described in fig.9 (including use of the 
same intron 1 probe). 
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Figure 15. Southern blot analysis of Mspl accessibility to and methylation of an 
MGMT intron 1 region in MGMT+ (1'98) and MGMT- (A1235) glioma cells. 
Analysis ofMspl accessibility to the MGMT intron 1 region within intact nuclei and 
methylation analysis of naked DNA were performed exactly as described in fig.14. 
Lanes 1,6; nuclei incubated with 20 U Mspl for 10 min, lanes 2,7; nuclei incubated 
with 150 U Mspl for 2 hr, lanes 3,8; Mspl/EcoRI cut naked DNA, lanes 4,9; 
Hpall/EcoRI cut naked DNA, lanes 5,10; EcoRI cut naked DNA. 
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Figure 16. Southern blot analysis of Mspl accessibility to and methylation of an 
MGMT intron 1 region in MGMT+ (T98) and MGMT- (Colo) cells. Analysis of 
Mspl accessibility to the MGMT intron 1 region within intact nuclei and 
methylation analysis of naked DNA were performed exactly as described in fig.14. 
Lanes 1,6; nuclei incubated with 20 U Mspl for 10 min, lanes 2,7; nuclei incubated 
with 150 U Mspl for 2 hr, lanes 3,8; Mspl/EcoRI cut naked DNA, lanes 4,9; 
Hpall/EcoRI cut naked DNA, lanes 5,10; EcoRI cut naked DNA. 
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The recognition site for Mspl (CCGG) contains a CpG and Mspl 

accessibility to DNA in nuclei may therefore be directly influenced by MeCps 

(Antequera, et al., 1989). Comparison of the relative accessibility of Mspl to 

MGMT gene sequences within nuclei as well as confirmation of the methylation 

status of the MGMT gene was accomplished by Southern blot analysis using the 3.8 

kb Eco RI intron 1 probe described above. As a result of the methylation sensitivity 

of EcoRI, the 3.8 kb intron 1 probe recognized two fragments in the EcoRI only 

digests of naked DNA (fig.14-16 lanes 5, each panel). The larger, 4.5 kb fragment 

was generated from MGMT alleles methylated at the EcoRI site that defines the 3' 

end of this probe. The MGMT expressing cell lines had a greater proportion of the 

4.5 kb fragments (fig.14-16, lanes 5) indicating a greater degree of methylation at 

this site in MGMT+ cells compared to MGMT- cells (lanes 10). Consistent with 

the EcoRI digests, the EcoRI/Hpall (fig. 14-16, lanes 4,9) digests also confirm that 

the intron 1 region was methylated in the MGMT+ cell lines and relatively 

unmethylated in the MGMT- cell lines. There was no difference in digestion 

patterns when the glioma DNA was incubated with the methylation insensitive 

enzyme, Mspl (fig.14-16, lanes 3,7). Comparison of the Msp digests of DNA in 

nuclei demonstrates that the unmethylated MGMT gene-intron 1 region in MGMT

cells is more accessible to Mspl relative to the methylated intron 1 in MGMT 

expressing cells, indicated by the presence of three additional probe-recognized 

fragments in the DNA from MGMT- cells (fig. 14-16, ~,lanes 1-2) not seen in the 

digests of DNA from MGMT+ cells (SF767, lanes 6-7). Incubation of the nuclei 
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with 20 U Mspl for 10 min (fig. 14-16, lanes 1,6) yielded the same degree of 

digestion as incubation with 150 U Mspl for 2 hrs (lanes 2,7). The differential Msp 

accessibility in the intron 1 region is consistent across all 5 cell lines tested (fig. 14-

16), suggesting that the methylation-related chromatin structure in the body of the 

gene may be a relevant component of MGMT transcription. Furthermore, the 

positions of the accessible Mspl sites were identical in the nuclei from all three 

unrelated MGMT- cell lines tested, and two minimally MGMT+ cell lines (which 

are also relatively unmethylated) supporting the idea that methylation and 

chromatin structure in the body of the MGMT gene are closely linked, possibly 

through MeCps. 

As opposed to Mspl, enzymes With non-CpG-containing recognition sites are 

only blocked by MeCps if their sites are near a CpG (Antequera, et al., 1989). To 

determine if the differences in chromatin structure can be detected with enzymes 

that do not contain CpGs in their recognition sequence, the accessibility of Alul to 

the MGMT gene within nuclei was tested. Nuclei from 2 MGMT+ and 2 MGMT

glioma cell lines were incubated with increasing amounts of Alul, the DNA was 

isolated and cleaved with EcoRI and analyzed by Southern blot with the 3.8 kb 

intron 1 probe (fig.17-18). Increasing the amount of Alul in the reaction resulted 

in increased cleavage primarily in the MGMT- nuclei, but also, to a much lesser 

degree in one of the two MGMT+ nuclei (fig.17, SF767). The extent of Alul 

digestion of the MGMT gene was nevertheless significantly greater in MGMT

nuclei compared to MGMT+ nuclei, especially in nuclei incubated with 60 U Alul 
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Figure 17. Southern blot analysis of Alul accessibility to an MGMT intron 1 region 
within intact nuclei from MGMT+ (SF767) and MGMT- (CLA) glioma cells. 
Nuclei were incubated with Alul (0 - 60 U for 10 min), the DNA was isolated and 
further cleaved with EcoRI. Ten µg of DNA from each digest was analyzed by 
Southern blot with the intron 1 probe as described in fig.9. 
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Figure 18. Southern blot analysis of Alul accessibility to an MGMT intron 1 region 
within intact nuclei from MGMT+ (T98) and MGMT- (A1235) glioma cells. Nuclei 
were incubated with Alul (0 - 60 U for 10 min), the DNA was isolated and further 
cleaved with EcoRI. Ten µg of DNA from each digest was analyzed by Southern blot 
with the MGMT intron 1 probe as described in fig.9. 
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Figure 19. Southern blot analysis of DNasel accessibility to an MGMT intron 1 
region within intact nuclei from MGMT+ (SF767) and MGMT- (CLA) glioma cells. 
Nuclei were incubated with DNasel (0 - 60 U for 10 min), the DNA was isolated and 
further cleaved with EcoRI. Ten µg of DNA from each digest was analyzed by 
Southern blot with the intron 1 probe as described in fig.9. 
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Figure 20. Southern blot analysis of DNasel accessibility to an MGMT intron 1 
region within intact nuclei from MGMT+ (T98) and MGMT- (A1235) glioma cells. 
Nuclei were incubated with DNasel (0 - 60 U for 10 min), the DNA was isolated and 
further cleaved with EcoRI. Ten µg of DNA from each digest was analyzed by 
Southern blot with the intron 1 probe as described in fig.9. 
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(flg.17,18, compare lanes 4 and 8). Thus, the different chromatin structures of the 

MGMT gene within MGMT- and MGMT+ nuclei can be distinguished at CpG

containing and nonCpG-containing sites. 

The chromatin structure of the body of the MGMT gene was also analysed 

with a non-sequence specific enzyme, DNAsel, which cleaves DNA in the minor 

groove (reviewed in Gross and Garrard, 1988). DNAseI cleaves at nucleosome free 

regions (often synonymous with DNAseI hypersensitive sites) when added at low 

concentrations to nuclei, and at internucleosomal and intranucleosomal DNA at 

much higher concentrations. Nuclei from two MGMT+ and two MGMT- glioma 

cell lines were incubated with increasing amounts of DNAseI, after which DNA was 

isolated, cleaved with EcoRI and analyzed by Southern blot with the MGMT intron 

1 probe (fig.19, 20). DNaseI did not cleave intron 1 at any of the concentrations 

shown in these experiments (fig.19,20). The average sized DNA fragment from these 

digests, as determined by visual inspection of the agarose gels prior to transfer, 

decreased with increasing DNaseI, indicating that much of the genome was cleaved 

by DNase, yet the body of the MGMT gene was very resistant to cleavage. 

Incubation of the nuclei with 120 U DNase resulted in complete loss of hybridizable 

DNA fragments in each cell line. Thus, there were no detectable differences in the 

presence or absence of nucleosomes in the body of the MGMT gene in nuclei from 

MGMT+ and MGMT- glioma cell lines. 

In summary, MspI and AluI accessibility to the body of the MGMT gene was 

greater in nuclei from MGMT- cells relative to MGMT+ cells but MspI 
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accessibility was independent of Mspl concentration whereas Alul accessibility 

increased with increasing Aloi added. The greater Mspl and Aloi accessibility in 

MGMT- nuclei was likely not a result of the absence of nucleosomes in these cells 

since no differences in DNasel digestion were seen at any of the DNasel amounts 

tested, but may involve MeCps. Binding of MeCps to the methylated MGMT gene 

could be relevant in mediating the relationship between methylation and MGMT 

expression by maintaining the chromatin structure of the MGMT gene in a manner 

that facilitates transcription. These data suggest that alterations in methylation 

and chromatin structure in the body of the MGMT gene may be a common feature 

associated with loss of MGMT gene expression. 

Analysis of Methylation in the MGMT Promoter 

The methylation status of the MGMT promoter was determined by linker

mediated PCR (LMPCR) analysis of hydrazine treated glioma DNA. As hydrazine, 

in the presence of 1.5 M NaCl, reacts preferentially with cytosine but not 5-

methylcytosine (Ohmori, et al., 1978), methylated cytosines decrease the intensity, 

or cause the disappearance of cytosine bands in sequenced DNA. Methylation was 

analyzed in two regions of the MGMT promoter that together likely contain all the 

basal promoter elements and approximately 60 percent of full promoter activity 

(Harris, et al., 1991). Region I includes nucleotides 703-800 and region II, which 

includes the transcription start site (nt 955), spans the basal promoter elements 

(nucleotides 865-1020) (Harris, et al., 1991). The full nucleotide sequence of these 
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Figure 21. Methylation analysis of the MGMT promoter in MGMT+ (SF767), 
minimally MGMT+ (Hs683) and MGMT- (CLA) glioma cells by LMPCR. DNA 
from the glioma cell lines and plasmid DNA containing a 1.2 kb BamH I/Sst I 
fragment of the MGMT promoter was reacted with genomic sequencing chemicals. 
All nucleotides (G, guanine, A, adenine, T, thymine, C, cytosine) in the cloned DNA 
and guanines and cytosines in the glioma DNA spanning promoter nt 703-800 (A, 
region I) and 865-1020 (B, region II) were analyzed by LMPCR. A MGMT 
promoter-specific primer (region I, nt 655-675 and region II, nt 805-823), was 
annealed to the cleaved DNA and extended (48°C, 15 min) with Sequenase. 
Extension products were ligated to a double stranded linker and then amplified by 
PCR (5 min, 95°C followed by 18 cycles of 95°C for 1 min, 66°C for 2 min and 76°C 
for 3 min with a 5 sec extension of the 76°C step after each cycle and 10 min at 
76°C after cycle 18) with the longer (25 mer) linker primer and a nested gene
specific primer (for promoter region 1, nt 674-698, for promoter region 2, nt 841-
861). 32P labelled PCR products were generated through two additional PCR cycles 
with a second nested end-labelled primer (for promoter region I, nt 674-702, for 
promoter region 2, nt 841-864). Following two cycles of PCR (same parameters as 
above except annealing was at 67°C and extension at 77°C), the DNA was extracted, 
precipitated, and resuspended in 10 µI. 3 - 5 µl of the sample was electrophoresed 
through a 6 % denaturing polyacrylamide gel and then detected by autoradiography 
(6-18 h exposure). (•)indicate cytosines within a CpG. 
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regions in the cloned promoter as well as the positions of guanines in the glioma 

DNA were also confirmed using genomic sequencing chemicals and LMPCR. 

Figure 21A and 21B represent autoradiographs of the promoter methylation 

analysis in region I and region II, respectively. In both promoter regions, the 

relative intensity of most bands representing potentially methylated cytosines 

(numbered arrows) decreases, indicating fewer unmethylated cytosines, from SF767 

(MGMT+) to Hs683 (minimally MGMT+) and CLA (MGMT-) amplified DNA. 

Methylation in these MGMT promoter regions appears uniform within each cell line 

and correlates in an inverse, rather than direct, fashion with MGMT expression. 

The radioactive signal from 25 of the cytosine bands (of a CpG) was 

quantitated directly from the polyacrylamide gels and compared to a nearby non 

CpG cytosine to obtain a relative ratio (CpG cytosine/non-CpG cytosine) that 

reflects the level of methylation at that site. Determining relative values in this 

manner eliminates value variations potentially due to unequal ligation, 

amplification, or sample loading. The relative ratios from glioma cell DNAs were 

compared to plasmid DNA containing the MGMT promoter (100 percent 

unmethylated at all sites)(region I, fig.22A) or to the SF767 cell line DNA (region 

II, fig.22B). The results are expressed as percent of MGMT promoter alleles within 

each cell line that were unmethylated at a particular site, as the signal measured 

was a result of unmethylated cytosines. Methylation appears uniform within each 

cell line and graded across the cell lines at eight of ten sites (exceptions are sites 

3 and 6) in region I and thirteen of fifteen sites (exceptions are sites 11 and 13) in 
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Figure 22. Quantitation of promoter methylation in MGMT+ (SF767), minimal],~ 
MGMT+ (Hs683) and MGMT- (CLA) glioma cell lines. Promoter methylation w~~ 
quantitated by measuring radioactive signal from the LMPCR products i~ 
polyacrylamide gels using a betascope 603 blot analyzer. Methylation values of eac~ 
CpG were calculated as the ratio of unmethylated cytosine (in a CpG) to ~ 

neighboring non-CpG cytosine. A, For promoter region I (nt 703-800), methylatio~ 
from each cell line was expressed relative to the MGMT promoter in plasmid DN~ 
(100 % unmethylated), and was the average of two independent experimen \ 
(average difference of 8.6 % between experiments). B, Methylation of CpG's ·~ 
region II (nt 865-1020) was expressed relative to the SF767 cell line. 
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region II, and correlates in an inverse, rather than direct fashion with MGMT 

expression. Of the four apparently non-graded sites, three (sites 3,6,11) are still 

methylated to a greater extent in the nonexpressing cell lines compared to 

expressing cell lines, and one (site 13) is unmethylated in all cell lines. The graded 

methylation patterns at the majority of sites across the cell lines implies that there 

is a close, inverse relationship between methylation of the promoter and MGMT 

expression. 

Restriction Enzyme Accessibility to the MGMT Promoter within Nuclei 

Because the methylation status of the MGMT promoter was associated with 

MGMT expression in a graded, inverse fashion, the possibility that methylation may 

influence the chromatin structure of the MGMT promoter, and thus MGMT 

transcription, was investigated. The chromatin structure of the MGMT promoter 

was analyzed by incubation of nuclei from MGMT expressing and nonexpressing 

cells with AvaII or Mspl followed by LMPCR analysis of the DNA. 

Figure 23A and 23B show the results of LMPCR analysis of the AvaII 

accessibility to promoter region I and region II, respectively. The LMPCR products 

of 127 nt (fig.23A) and 140 nt (flg.23B) correspond exactly to the distance between 

the labelled LMPCR primers and the Avail sites at nucleotides 773 and 953 of the 

MGMT promoter, respectively. The large amount of LMPCR product generated 

from DNA of the SF767 nuclei digests and virtual absence from equal amounts of 

Hs683 and CLA DNA indicates that the MGMT promoter is much more accessible 



91 

l:'- ' C") l:'- C") 

co co co CO. 
l:'- co eel l:'- co (1j 
r:... rn - r:... rn ....... 
r/) ::r: u r/) ::i:: u 

A B 
nt 

-152 -
-140 -
-146 -

-141-

-137-

.. -127-

-120-

-116 -

Figure 23. LMPCR analysis of Avail accessibility to the MGMT promoter within 
intact nuclei. Nuclei isolated from MGMT+ (SF767), minimally MGMT+ (Hs683) 
and MGMT- (CLA) glioma cells were incubated with 16 U Avail for 10 min at 37°C. 
DNA was isolated from the nuclei and 5 µg was analyzed by LMPCR as described 
in fig. 21, except only one-fifth of the final reaction was analyzed, and 
autoradiograph exposures were 2-5 h with intensifying screens. The LMPCR 
products of 127 nt (arrow in A, promoter region I) and 140 nt (arrow in B, 
promoter region II) are derived from glioma DNA cut at the Avail site at promoter 
nt 776 and nt 956, respectively. 
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at both Avall sites, and possibly in a more open chromatin conformation, in nuclei 

from MGMT+ cells (SF767) relative to minimally MGMT+ (Hs683) and MGMT

cells (CLA). The difference in Avall accessibility between the three cell lines was 

reproducible in independent experiments. It is interesting to note that the 

differentially accessible Avall site at nucleotide 953 falls in the immediate vicinity 

of the transcription start site (955) and several potential Spl binding sites 

(Harris,et al., 1991), where chromatin structure might directly influence MGMT 

transcription. 

Figure 24 represents the LMPCR analysis of MspI accessibility to the MGMT 

promoter in nuclei from MGMT+ (SF767), minimally MGMT+ (Hs683) and 

MGMT- (CLA) glioma cell lines. Incubation of the nuclei with 20 U MspI (lanes 

1- 3) resulted in a much greater cleavage at all promoter MspI sites tested in SF767 

nuclei compared to Hs683 and CLA. The difference in MspI accessibility was also 

reproducible in independent experiments. Together, all the MspI and Avall sites 

are accessible in nuclei from SF767 cells and encompass 372 nt (nt 712-1084, 

including an additional MspI site (nt 884) and an Avail site (nt 1084)), a region 

of accessible DNA much larger than would be expected if normal nucleosomal 

phasing was present (McGhee, et al., 1980). Incubation of nuclei (from the same 

isolation) with an excess of MspI (lanes 4-9) resulted in measurable cleavage at all 

sites, indicating that the absence of LMPCR products is likely not a result of 

contaminants from the nuclei isolation that inhibit MspI digestion or contaminants 

that inhibit enzymes used in LMPCR. The MspI sites at 712, 722 and 738 ·(lanes 
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Figure 24. LMPCR analysis of Mspl accessibility to the MGMT promoter within 
intact nuclei. Nuclei from MGMT+ cells (SF767), minimally MGMT+ cells 
(Hs683) and MGMT- cells (CLA) were incubated with either 20 U (lanes 1-3), 200 
U (lanes 4-6) or 400 U (lanes 7-9) Mspl, the DNA was isolated and 5 µg was 
analyzed by LMPCR. One fifth of each reaction was separated on a 6 % denaturing 
polyacrylamide gel and autoradiographed for 2-5 hr in the presence of intensifying 
screens. 
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1-3) appear to have graded degrees of accessibility across the cell lines that parallel, 

in an inverse fashion, the graded promoter methylation, suggesting that methylation 

and chromatin structure are closely linked in the MGMT promoter. The restriction 

enzyme inaccessible promoter in cells with little or no MGMT expression may also 

be inaccessible to endogenous transcription factors. The chromatin structure of the 

promoter may therefore determine, in part, the expression state of the MGMT gene. 

In Vivo Footprintin& of the MGMT Promoter 

Specific in vivo protein-DNA interactions in the MGMT promoter were 

examined by linker-mediated PCR of DNA from glioma cells that were exposed to 

dimethylsulfate (DMS). As DMS reacts preferentially with the N7 position of 

guanines, and subsequent piperidine treatment of the isolated DNA results in 

cleavage of the DNA at DMS-methylated guanines (Mattes, et al., 1986), the 

LMPCR products generated from this DNA represent the guanines that are 

accessible to DMS within intact cells. As DMS is not blocked by nucleosomes or 

MeCPs but DNA is protected from DMS by many transcription factors (Pfeifer, et 

al., 1989a), the DMS footprinted protein-DNA interactions are qualitatively different 

from those assessed by Mspl accessibility. 

Figure 25 shows the in vivo footprint analysis of the MGMT promoter, in 

MGMT expressing and nonexpressing cells, from nucleotides 700-865 (fig.25A) and 

865-1050 (fig.25B), which together include the transcription start site (nt 955) and 

likely all the basal promoter elements. There are no detectable footprints in any of 
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Figure 25. In vivo footprint analysis of DNA-protein interactions in the MGMT 
promoter. Normal human T lymphocytes (lane 1) and two glioma cell lines all with 
high levels of MGMT expression (lanes 2-3), one minimally MGMT+ glioma cell 
line (lane 4), and three MGMT- glioma cell lines (lanes 5-7) were incubated with 
0.1 % DMS (2 min, 37°C). DNA was isolated from the cells, cleaved with piperidine, 
and 5 µg analyzed by LMPCR. One half of the reaction was separated on a 6 % 
denaturing polyacrylamide gel and autoradiographed for 6-18 hrs. A, Analysis of 
promoter nt 700-865; B, analysis of promoter nt 865-1050. Open rectangles are Spl 
sites unoccupied in all cells tested. Filled rectangle (I) indicates site that is 
footprinted in lanes 1-3 but not in lanes 4-7. Except for the footprint at nt 845-855 
(in A, nt sequence given vertically), which is an as yet uncharacterized site, all 
footprinted regions are Spl consensus sequences (GGGCGG). -+ in B indicates 
transcription start site. 
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the cells in the region spanning nucleotide 700-845 (fig.25A), which includes a 

putative Spl recognition site (nt 708-713). The guanines at positions 849,851, and 

852 however, are protected from DMS in the MGMT+ cells (lanes 1-3) but not in 

the minimally MGMT+ (lane 4) and MGMT- cells (lanes 5-7), indicating the 

presence of an MGMT expression-associated DNA-protein interaction. The 

protected sequence does not match with any known consensus sequence for 

transcription factor binding and may thus represent a novel protein binding site. 

In the promoter region spanning nt 865-1050 there are 6 footprints in the MGMT+ 

cells but none in the minimally MGMT+ or MGMT- cells. All six of these 

footprints correspond to Spl recognition sequences and have 5' hypersensitive 

guanines followed by at least five protected guanines, indicating that in MGMT+ 

cells, these sequences are likely protected by Spl. There are no footprints at the two 

overlapping Spl-like sequences spanning nt 875-885, or at the putative CCAAT box 

(nt 870-876) in any of the cells tested (fig.258). Normal human T cells, which have 

high levels of MGMT expression, have an identical pattern of footprints as the 

MGMT+ glioma cell lines, indicating that these DNA-protein interactions are not 

confined to cell lines. Spl appears to be a common feature of and possibly critical 

for efficient basal level MGMT transcription. These data strongly suggest that the 

chromatin structure of the MGMT promoter determines whether Spl and other 

transcription factors can interact with the promoter in vivo, and likely influences 

the expression state of the MGMT gene. 
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Figure 26. Gel mobility shift analysis of basal Spl binding activity. Ten µg of 
protein extract from each cell line were incubated with a double-stranded, . 32P
labeled oligonucleotide containing Spl consensus sequences. The protein-bound and 
unbound (free) oligonucleotides were separated by electrophoresis through a 4% 
non-denaturing polyacrylamide gel and then detected by autoradiography. Lane 1: 
no protein, lane 2; 10 µg HeLa protein extract, lane 3; Hela extract preincubated 
with excess cold Spl oligonucleotide (specific competitor), lane 4; HeLa extract 
preincubated with excess cold HSE oligonucleotide (nonspecific competitor), lane 
5-14; 10 µg protein extract from various cell lines, as noted. 



100 

Analysis of Spl Hindin& Activity 

To ensure that the absence of Spl footprints in MGMT- was not simply due 

to a lack of Spl protein in these cells, Spl binding activity was measured in protein 

extracts from all the glioma cell lines by gel shift analysis. Ten µg of protein 

extract from each glioma cell line was incubated with a radiolabelled 22 bp DNA 

probe that contains a single Spl binding site. Spl binding activity was detected by 

separating the free probe from Spl-bound probe (migrates much slower) by 

electrophoresis through a 6% nondenaturing polyacrylamide gel and 

autoradiography. 

The results of the Spl gel shift analysis are shown in fig. 26. Probe alone (no 

protein extract) migrates near the bottom of the gel (lane 1). Three control 

reactions were performed to demonstrate that the protein bound to the Spl probe 

is in fact Spl. Incubation of the probe with HeLa cell extract (positive control for 

Spl) resulted in a slower migration of the probe through the gel because it is bound 

by Spl (a "gel shift," lane 2). Complete elimination of the HeLa cell Spl gel shift 

by preincubation of the HeLa extract with an excess of unlabelled Spl probe (self 

competition, lane 3) but no such effect by preincubation with an excess with an 

unlabelled 22 hp heat shock DNA (nonself competition, lane 4) indicated that the 

protein responsible for the gel shift was specific for the Spl probe and likely was 

Spl. Gel shifts identical to that seen with HeLa cell extract were easily detectable 

in all the glioma cell lines tested (lanes 4-13). All the glioma cell lines therefore 

have functional Spl protein, regardless of MGMT expression. These data clearly 
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demonstrate that the lack of Spl footprints in vivo in MGMT- cells was not due to 

a lack of Spl in these cells and coupled with the data described above, provides 

compelling evidence for the involvement of methylation and chromatin structure in 

MGMT expression. 



CHAPTERV 

DISCUSSION 

This dissertation was designed to examine the role of cytosine methylation in 

the regulation of MGMT gene expression in human glioma cells. The results of 

these experiments strongly support the hypothesis that methylation and chromatin 

structure are important components of MGMT gene expression in human glioma 

cells. The interpretation, significance, and potential limitations of the results 

leading to this conclusion are discussed below. 

From the outset it should be acknowledged that regulation of MGMT gene 

expression has not been proven to occur at the level of transcription. The protein 

coding portions of the MGMT gene are spread over greater than 80 kb (Costello, 

et al., 1994) and the entire gene spans more than 170 kb (Nakatsu, et al., 1993), yet 

the MGMT mRNA is only 1 kb. The standard explanation for generation of the 

mature 1 kb MGMT mRNA involves transcription of all 170 kb of the MGMT gene, 

followed by or concurrent with accurate removal (splicing) of 99.4% of the primary 

transcript (MGMT hnRNA). In a simplistic sense, the process of generating a 

mature MGMT mRNA seems inefficient, and if the RNA polymerase transcribing 

the MGMT gene proceeds at a rate similar to other eukaryotic RNA polymerases, 

generation of a single MGMT hnRNA or mRNA would take at least 17 minutes. It 
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is expected that multiple MGMT transcripts initiated in this time period would 

increase the number of transcripts generated in a given time period. The high 

stability of the MGMT mRNA (half-life > 12 hr (Kroes and Erickson, 1992)), may 

also counterbalance the presumably slow MGMT transcription and thereby 

maintain higher levels of MGMT expression. Currently, it is unknown whether the 

MGMT gene is transcribed in a fashion similar to most other genes. The only 

evidence suggesting that the MGMT gene transcription may be atypical is based on 

negative data. As opposed to the measurable transcription rate of the majority of 

genes, MGMT transcription has not been detected by either nuclear run-on analysis 

or PCR amplification of reverse transcribed hnRNA (Russell Pieper, personal 

communication; Kroes and Erickson, 1992). It is unclear if these negative results 

reflect extremely slow transcription, immediate processing of hnRNA, technical 

artifacts, or some combination of these phenomena. MGMT transcription, and thus 

transcriptional regulation of MGMT expression, cannot be directly assessed in 

either MGMT+ or MGMT- cells. 

Several experiments described in this dissertation and elsewhere (Ostrowski, 

~., 1991) provide indirect evidence for transcriptional regulation of MGMT 

expression. The absence of MGMT mRNA in three of the glioma cell lines, despite 

the presence of a relatively intact MGMT gene suggests that there is a defect in 

transcription in these cells. Additionally, the similarity in the rank order of glioma 

cell lines according to MGMT mRNA levels and MGMT activity indicates that post

transcriptional regulatory events play little, if any, role in determining the level of 
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MGMT expression (Costello, et al., 1994). The consistently different methylation 

status of the MGMT gene, in both the body and promoter, in MGMT+ cells relative 

to MGMT- cells is also indirect evidence for transcriptional regulation of MGMT 

expression, since transcriptional regulation of gene expression is thought to be 

influenced by cytosine methylation. Additionally, the transcriptionally inactive 

chromatin and absence of bound transcription factors in the promoter of MGMT

glioma cells strongly supports the idea that the MGMT gene is not transcribed in 

these cells. Thus, MGMT expression is presumed, but not proven, to be regulated 

at the transcriptional level. 

Recently, studies of MGMT gene regulation were advanced by the isolation and 

characterization of the human MGMT promoter (Harris et al., 1991; Nakatsu, et 

al., 1993). The promoter for the MGMT gene has CpG island characteristics and 

lacks TATA and CAAT boxes, similar to promoters for many housekeeping genes. 

MGMT promoter elements required for basal promoter activity (41% of full activity) 

are located between nucleotides 886 and 1157 of the 1157 bp promoter, and contain 

the transcription start site (nt 955) and six putative Spl recognition sites (Harris, 

et al., 1991). In human tumor cells transfected with chloramphenicol 

acetyltransferase (CAT) constructs containing the MGMT promoter, both MGMT 

expressing and nonexpressing cell lines contained the factors necessary for 

transcription initiation from the MGMT promoter (Harris, .rt.J!!., 1992), implying 

that differences between the transfected and endogenous MGMT promoters such as 

methylation status and/or chromatin structure may be important. Changes .in the 
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body of the gene may also however, be relevant in MGMT expression as several 

studies have shown that the cytosine methylation patterns in MGMT exons are 

altered in nonexpressing tumors cells relative to expressing cells (Pieper, fil...Jll., 

1991; Wang, et al., 1992; Cairns-Smith and Karran, 1992). Analysis of the role of 

methylation and chromatin structure in transcriptional regulation of MGMT 

expression must therefore consider both the body and promoter of the MGMT gene. 

In this dissertation, the graded methylation and correlations between 

methylation and MGMT expression suggest that in both the promoter and body of 

the MGMT gene, methylation may influence the level of MGMT expression. Several 

studies have attempted to analyze methylation in the MGMT promoter in cells with 

different levels of MGMT expression. One study examining the methylation status 

of Hpall sites in the MGMT promoter failed to show a clear association between 

promoter methylation and MGMT gene expression, although the close proximity of 

the fourteen Hpall sites in the promoter region precluded resolution, by Southern 

blot, of the methylation status of these sites (Von Wronski,~., 1992). Analysis 

of the methylation status of a single site 70 bp upstream of the transcription start 

site demonstrated a negative, but not absolute association between methylation and 

MGMT expression, although MGMT promoter activity studies demonstrated that 

deletion of 76 bp 5' from, and including this site did not alter promoter strength 

(Harris, et al., 1992). Another study examining methylation at Hpall sites in the 

MGMT promoter concluded that the promoter was methylated to a greater extent 

in MGMT expressing cell lines compared to nonexpressors, although this study also 
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used Southern blot analysis and thus did not resolve the relevant HpaII fragments 

(Nakatsu, et al., 1993). It is unclear from these studies whether the methylation 

status of the MGMT promoter is associated with MGMT expression. Because of 

the single nucleotide resolution of polyacrylamide gels and the very sensitive nature 

of linker-mediated PCR, the analysis of methylation presented here overcame the 

inadequate resolution noted in previous studies. The graded methylation across the 

cell lines at 21 of 25 CpGs tested in the MGMT promoter indicates that the 

methylation status is uniform within each cell line and that there is a close, inverse 

association between overall promoter methylation and MGMT expression (Costello, 

et al., 1994). The overall promoter methylation, expressed as the average "percent 

unmethylated" of all CpG sites, was similar in region I and II. For region I, the 

level was 93 % in SF767, 73 % in Hs683 and 45 % in CLA. In region II, the 

promoter was 100% unmethylated in SF767, 74 % unmethylated in Hs683, 58% 

unmethylated in CLA. These measurements reflect the average methylation within 

a population of MGMT gene alleles. The region II values were expressed relative 

to SF767 because the intensity of cytosine bands corresponding to the more 3' 

cytosines in the plasmid DNA was somewhat diminished, and thus difficult to 

accurately quantitate. As the three 5' most cytosines of CpGs in the plasmid region 

II were similar in degree of unmethylation to those in the SF767 cell line however, 

and as most sites in SF767 region I were completely unmethylated (given the 8.6 % 

average experimental error), it seems reasonable to assume region II cytosines in 

SF767 DNA are nearly 100 % unmethylated. It should be noted that in cells that 
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do not express the MGMT gene, methylation of the promoter, while less than in 

expressing cells, was still only 50 %, rather than 100 % methylation noted in X

linked inactive genes (Pfeifer, .§_fil., 1990). These data suggest that while inactive 

genes on the X chromosome may be 100 % methylated, complete methylation may 

not be necessary for processes involved in promoter inactivity. Using linker

mediated PCR with hydrazine-reacted DNA, methylated cytosines are identified by 

the absence of hydrazine reactivity and hence the disappearance of cytosine bands. 

Point mutations that change a cytosine to any other base could also account for the 

disappearance of cytosine bands and would be erroneously interpreted as 

methylated cytosines. This possibility was completely eliminated in the MGMT 

promoter studies by the demonstration that the nucleotide present on the 

complementary DNA strand, and base paired with the base in question, was always 

guanine (unpublished data). These results suggest that an unmethylated promoter 

is required for efficient MGMT expression and that the level of promoter 

methylation is closely associated with the level of MGMT gene expression. 

In contrast to promoter methylation, the relative contribution of methylation 

in the body of genes to the control of gene expression is less understood. However, 

the conserved methylation status in the body of many genes implies that these sites 

are important, at least in genes in which the body methylation correlates with gene 

expression. While methylation in the MGMT promoter correlates inversely with 

MGMT expression, the uniform methylation over the body of the MGMT gene and 

graded methylation at the intron 1 EcoRI site correlated directly with MGMT 
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expression, suggesting that methylation in the body may also influence MGMT 

expression in a graded fashion. Although the intron 1 EcoR I site analysis is 

consistent with the methylation analysis at Hpall sites in the same region, the 

possibility that the inhibition of EcoRI digestion at the internal EcoRI site in 

MGMT intron 1 is a result of a point mutation or small deletion that destroys the 

EcoRI site cannot be excluded. This possibility is unlikely, however, as the 

probability of this specific mutation occurring independently in all 10 of the 

unrelated glioma cell lines tested is exceptionally low. Two limitations of the Hpall 

site methylation analysis should also be acknowledged. First, CpGs within Hpall 

sites (CCGG) account for only 1/16 of all CpGs in a given region of DNA. The 

possibility that the non-Hpall CpGs are not differentially methylated in MGMT+ 

cells relative to MGMT- cells exists but is highly unlikely, as Hhal sites 

(GCGC)(unpublished data) and the EcoRI site in the intron 1 region were also 

differentially methylated. Second, for technical reasons, the analysis of Hpall 

fragments by Southern blot is limited to DNA fragments greater than 300 bp. If 

< 300 bp clusters of Hpall sites exist within the analyzed regions of the body of the 

MGMT gene, many of these sites, if unmethylated, would not be included in the 

methylation analysis. On the other hand, the presence of large probe-recognized 

fragments in the DNA of the MGMT+ cells indicates that all Hpall sites within 

those fragments are methylated, including any potentially clustered Hpall sites. 

Because the body of the MGMT gene is methylated in MGMT expressing normal 

human brain cells and T lymphocytes, the close association between 
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hypomethylation of the MGMT gene and lack of MGMT expression in glioma cell 

lines suggests that maintenance of appropriate levels of methylation in the body of 

the gene may be important for MGMT expression. The picture that emerges from 

the methylation data is that for efficient MGMT transcription, the MGMT promoter 

should be unmethylated and the body of the gene, heavily methylated. Conversely, 

increased methylation in the promoter and decreased body methylation are 

associated with decreased MGMT expression. The graded nature of this 

relationship suggests that methylation and MGMT gene expression are closely, and 

possibly causally, linked. 

Several recent studies suggest that in general, methylation and gene 

expression are causally linked, possibly in both a direct and inverse fashion. A 

study of mutant mice deficient in cytosine methyltransferase (MTase) provided 

examples in which preventing normal methylation inhibited gene expression in some 

genes and, in other genes, caused activation of normally silent genes (Li, _gt_fil., 

1993). For example, in normal mice, the methylated (in the promoter), paternal 

allele of the H19 gene is transcriptionally inactive (Bartolomei et al., 1991), but in 

MTase deficient mice, this H19 allele is unmethylated and expressed. In contrast, 

2 kb of an intron of the transcriptionally active maternal lgf-2r gene is methylated 

in normal mice (Stoger, et al., 1993), but in MTase deficient mice, this intron region 

is unmethylated and the maternal Igf-2r gene is not expressed (Li, et al., 1993). 

These studies indicate that, at least for the H19 and Igf-2r genes, methylation and 

gene expression are causally linked. These studies also demonstrate that 
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methylation can have completely opposite effects on gene expression, apparently 

depending on the region of the gene involved. Methylation in the promoter of genes 

inhibits gene expression, whereas methylation in introns may facilitate gene 

expression. In other genes, a cause and effect relationship between methylation and 

gene expression has been tested with the methylation inhibitor 5-azacytidine. For 

example, the 5-azacytidine-induced reactivation of the inactive, methylated HPRT 

gene occurs only following significant demethylation of the 5' CpG island (Sasaki, 

et al., 1992). Several studies have attempted to establish a causal relationship 

between MGMT gene methylation and MGMT expression by treating MGMT+ and 

MGMT- tumor cells with 5-azacytidine. Treatment of a MGMT+ tumor cell line 

with 5-azacytidine decreased methylation in the body of the gene to a level 

comparable to a MGMT- cell line and significantly decreased MGMT mRNA levels 

(Pieper, .rt_fil., 1991). Additionally, two reports (Mitani, et al., 1989; Ishida and 

Takashi, 1988) have demonstrated that treatment of MGMT- human cell lines with 

5-azacytidine did not restore MGMT expression. These studies suggest that the 

absence of MGMT expression is not solely due to a reversible promoter 

hypermethylation, as has been demonstrated in the X-linked HPRT gene, but may 

also involve methylation in the body. In contrast, an induction in MGMT 

expression was observed following exposure to 5-azacytidine in two additional 

MGMT nonexpressing cell lines, although these studies did not assess methylation 

in the body of the gene (von Wronski and Brent, 1994). In sum, these experiments 

suggest that 5-azacytidine-induced demethylation can increase or decrease MGMT 
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expression, depending on the pre-treatment methylation status and the extent of 

induced demethylation of the MGMT gene. The interpretation of these results is 

complicated by the fact that 5-azacytidine, in addition to altering gene expression 

through demethylation of DNA, can also lead to chromosomal damage and 

instability that also potentially alter gene expression. Other more specific methods 

of inhibiting methylation, such as inhibition of MTase expression through MTase 

antisense oligonucleotides, might be more appropriate in addressing a potentially 

causal relationship between methylation and MGMT gene expression. Recent in 

vitro studies indicate that methylation of an MGMT promoter-CAT construct with 

bacterial CpG methylases reduced CAT gene expression, although it should be noted 

that both the MGMT promoter and body of the CAT gene were methylated in these 

studies (Harris, et al., 1994). This in vitro study of methylated and unmethylated 

MGMT promoter-CAT constructs and the 5-azacytidine studies are inherently 

incapable of addressing the relative contribution of methylation in the body and 

methylation in the promoter to MGMT gene expression. Although the results of 

most of these MGMT gene methylation studies, aside from their limitations, seem 

to indicate that there is a cause/effect relationship between methylation and MGMT 

gene expression, the events leading to the changes in methylation have not been 

identified. Conclusive testing of the potential cause/effect relationship between 

methylation and MGMT expression relies first on the identification of the 

process(es) leading to aberrant MGMT gene methylation. The expectation is that 

methylation changes will precede, or occur concurrent with, MGMT gene 
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inactivation, if altered methylation actually causes suppression of MGMT 

transcription. 

Although a temporal relationship between changes in methylation and MGMT 

expression has not been investigated in gliomas or glioma cell lines, deficits in 

maintenance of normal methylation during tumorigenesis or tumor progression 

could be one mechanism by which the MGMT promoter (CpG island) 

hypermethylation and body hypomethylation, and possibly loss of expression, of the 

MGMT gene occurs. Clearly, this issue needs to be addressed in human glioma 

samples, as the methylation status of the DNA in the glioma cells used in this 

dissertation may be influenced by cell culture conditions as well as tumorigenesis. 

Examining potential MGMT methylation changes in the well defined stages of 

glioma progression could yield information about the temporal relationship between 

alterations in methylation and MGMT expression and might eventually be useful 

in identifying MGMT deficient, BCNU-sensitive gliomas. 

One potential mechanism mediating the relationship between methylation and 

MGMT expression involves alterations in chromatin structure. Analysis of Avall 

and Mspl accessibility demonstrated that chromatin structure and methylation in 

the MGMT promoter are closely linked. The MGMT promoter was much more 

accessible to RE in cells with a completely unmethylated promoter compared to cells 

with promoters that are, on average, only 74 % unmethylated (Hs683) or 50 % 

unmethylated (CLA). The close association between methylation and chromatin 

structure was demonstrated by the graded fashion in which accessibility of.at least 



113 

3 Mspl sites correlated with methylation. The accessibility of all sites tested over 

372 nt (712-1084) of the basal promoter in the nuclei from SF767 cells (fig. 27) 

indicates that this may be a nucleosome-free region, as DNA wrapped in 

nucleosomes would be protected from restriction enzyme digestion (Tazi and Bird, 

1990). Conversely, the inaccessibility of the promoter at all sites over 372 nt in the 

CLA cells (fig. 27) suggests that nucleosomes and/or methylated DNA binding 

proteins are present and possibly involved in setting the transcriptionally inactive 

state of the promoter in these cells. The results of the chromatin structure analysis 

of the MGMT promoter are consistent with the idea that chromatin structure is an 

important part of MGMT transcription. Similar to the promoter, methylation and 

accessibility in the body of the gene were also closely associated in the expected 

fashion. The unmethylated gene in nuclei from three MGMT- cell lines was more 

accessible at three Mspl sites, relative to the methylated gene in nuclei from two 

MGMT+ cell lines. The only Mspl accessible sites in MGMT+ nuclei 

corresponded exactly to the few unmethylated sites in this region within MGMT+ 

nuclei. These data demonstrate that methylation and chromatin structure in the 

body of the MGMT gene are intimately associated and suggest that MeCPs may be 

mediating this association. These differences in accessibility can also be detected 

with Alul, which cleaves DNA at non-CpG containing sites. This suggests that 

either the Alul sites are sufficiently close to a CpG and are blocked by a nearby 

MeCP, or that some other component of the chromatin structure, such as histones, 

is present in MGMT+ cells but is absent or displaced from the MGMT gene in 
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Figure 27. Summary diagram of in vivo footprints in, and restriction enzyme 
accessibility to the MGMT promoter in MGMT+ (SF767) and MGMT- (CLA) 
glioma cells. Filled rectangle (I) indicates footprinted Spl site, open rectangle 
indicates unoccupied Spl sites. Filled oval denotes footprinted site of undefined 
nature and the open oval is the same site unoccupied. .a. indicates restriction 
enzyme accessible site; M, Mspl, A, Avail. 



115 

MGMT- cells. The latter possibility in unlikely though, as DNAsel, which readily 

cleaves histone-free DNA but not DNA within nucleosomes, does not cleave the 

MGMT gene in any of the nuclei. The ~ssociation between decreased Mspl/Alul 

accessibility and active transcription in these cells however, is surprising, as 

transcription is generally associated with a more open, accessible chromatin 

conformation. A mechanism by which the more "closed" chromatin conformation 

in the body of genes might facilitate transcription has not been defined. The 

identical nature of the closed conformation in all MGMT+ cell lines tested, and the 

absence from all three MGMT- cell lines however, suggests that there is some 

functional importance associated with the chromatin structure in the body of the 

MGMT gene. Additionally, the fact that more than 30 unrelated cell lines are 

differentially methylated in the body of the gene (Pieper, .rtJtl., 1991; Wang, .rtJtl., 

1992) in the same manner described here, suggests that disruption of the 

methylation-related chromatin structure may be a common event contributing to 

loss of MGMT expression. The results of the chromatin structure analysis of the 

body and promoter are consistent with the idea that chromatin structure is an 

important part of MGMT transcription. The chromatin structure in the promoter 

of the gene may influence MGMT expression by allowing or excluding transcription 

factor access to relevant promoter sequences. 

The methylation-related chromatin structure in the MGMT promoter is closely 

associated with in vivo transcription factor occupancy. In addition to the general 

association between accessible chromatin and transcription factor occupancy, 
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several footprints that are positioned closely to restriction enzyme accessible sites 

reveal specific examples of this association. For example, the protected guanine at 

nt 852 was only 3 nt away from an accessible Mspl site and the presumably Spl 

protected guanine at 965 was only 7 nt away from an accessible Avail site (fig. 27). 

Spl is the only detectable factor interacting with the minimal promoter elements (nt 

886-955), indicating that Spl may be sufficient, in conjunction with protein-protein 

interactions, for basal level MGMT transcription. DNA-protein interactions were 

not detected on the opposite strand (nontranscribed strand) in the basal promoter 

(Russell Pieper, personal communication), which includes an imperfect Spl 

consensus sequence. The possibility that other transcription factor-promoter 

interactions relevant to basal expression occur at non-guanine residues cannot be 

excluded, although there are no other known transcription factor sites within the 

minimal promoter elements. In fact, no other DNA-protein interactions can be 

detected at guanines on either strand of the entire 1157 bp MGMT promoter 

(Russell Pieper, personal communication). It is not unexpected that there are no 

discernable footprints in the promoter of Hs683 cells, which express very low levels 

of MGMT, because the Hs683 promoter is inaccessible, relative to SF767. It is 

probable that Spl does nevertheless interact with the Hs683 promoter, but only too 

infrequently, as dictated by accessibility, to detect with DMS footprinting. The 

footprint at nt 845-852, while not within the proposed minimal promoter, is 

associated with MGMT transcription, as it is present in the expressing cell lines 

and T cells and absent from all three non-expressing glioma cell lines. This 
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presumably expression-related protein-promoter interaction is of note for three 

reasons. First, previous in vitro studies showed that addition of promoter nt 807-

883, which includes the footprinted site, to the minimal promoter did not increase 

MGMT promoter-driven CAT expression (Harris,fil.Jll., 1991), suggesting that these 

sequences are inconsequential to MGMT promoter activity. As the effect of deletion 

of only these sequences from the full promoter was not tested, it remains possible 

that these sequences are important for promoter activity, but that their contribution 

is influenced by interactions with other promoter regions. Such interactions have 

been noted for synergistically functioning, yet distant Spl sites (Su,~., 1991). 

Second, the DNA-protein interaction is novel as it involves nucleotides that do not 

correspond to any known transcription factor binding site. Although the footprinted 

sequence has minimal homology to an Spl site (7 of 10 nt), and several sequences 

that deviate from the canonical Spl site can bind Spl (Brown, .§.Jtl., 1992), the 

pattern of the protected sequence is distinct from the canonical Spl protection, as 

seen at the other 6 footprints in the MGMT promoter. Third, in contrast to the 

single strand Spl footprints, the novel footprint is present on both DNA strands 

(Russell Pieper, personal communication). The data indicate that the protein 

interacting with promoter nucleotides 845-852 is not Spl and suggest that it may 

be a novel transcription factor, or a known transcription factor interacting with a 

novel binding site. Three additional sequences previously described as potential 

Spl sites based on sequence analysis (12), are not protected in any of the cells 

tested, suggesting that these sites do not function as Spl sites in vivo. Since these 
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sites have only marginal similarity to Spl sites (7of10 nt) it is possible that these 

sequences are incapable of binding Spl. These in vivo results further support the 

idea that methylation-related differences in chromatin structure of the MGMT 

promoter determine whether Spl, and possibly other factors necessary for MGMT 

expression, can interact with the MGMT promoter. 

Given some latitude for speculation, the correlative data presented in this 

dissertation can be incorporated into a model of MGMT transcription. The MGMT 

promoter, like other CpG island-containing promoters, must be maintained in the 

unmethylated state for efficient transcription initiation. Maintenance of the 

unmethylated state could occur through binding of the 6 Spl molecules per 

promoter. If these sites are occupied by Spl shortly after DNA replication, Spl may 

block access to the basal promoter by cytosine MTase, and thus, maintain the 

unmethylated state. This part of the model is compatible with the fact that several 

CpGs 5' to the Spl sites are not protected by proteins, and are also methylated in 

MGMT+ and MGMT- cells (Qian, ..tl__fil., 1994). Spl may therefore serve two 

purposes in MGMT expression. Spl may help maintain the unmethylated state of 

the basal promoter and likely also facilitates the assembly of the transcription 

complex. There is no obvious spatial pattern to the occupied Spl sites, although 

all 6 Spl molecules contact guanines which are likely on the same face of the double 

helix. This arrangement may be relevant to the known transcription activating 

function of Spl. Spl is not bound to the methylated basal promoter possibly 

because MeCPs (or other chromatin structure proteins) bind these sites before or 
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more efficiently than Spl. Alternatively, the methylated promoter, similar to other 

methylated sequences, may be replicated at a later stage when much of the Spl has 

been committed to other gene regulatory sequences. According to these 

suppositions, the affinity of Spl for each site in the unmethylated MGMT promoter 

would be much higher than the affinity of MeCPs (if MeCPs bind unmethylated 

DNA at all). As methylation increases to 25% (as in Hs683) the relative affinities 

may approximate each other and transcription may be initiated much less 

frequently, only when Spl can occupy a critical number of sites. These less frequent 

Spl-promoter interactions would probably not be detectable by standard DMS 

footprinting. Between 25% and 50% basal promoter methylation, the promoter 

affinity shifts in favor of MeCP, resulting in exclusion of Spl and suppression of 

transcription initiation. Analysis of the Sp 1 footprints at all stages of the cell cycle 

in synchronized cells might provide indirect evidence for thi.s scheme. Any model 

of MGMT transcription must also incorporate the relative efficiency of transcription 

elongation, as the methylation-related chromatin structure in the body of the 

MGMT gene is different in MGMT+ compared to minimally MGMT+ cells (or 

MGMT+ cells treated with 5-azacytidine) and might facilitate or impede the 

transcription elongation complex. Since the changes in chromatin structure in the 

body of the gene are clearly related to methylation, MeCPs are possible candidates 

for mediating this relationship. Binding of MeCPs across the body of the gene 

could establish an efficiently transcribed DNA conformation by preventing binding 

of other proteins, such as histone Hl, that are known to contribute to 
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transcriptionally inactive chromatin. Binding of MeCPs in the body of the gene 

would likely be weak because the CpG density is low relative to CpG islands. Thus, 

the MeCPs in the body of the gene could facilitate transcription by preventing the 

binding ofhistone Hl-like proteins, while being easily displaced by RNA polymerase 

II during elongation. Alternatively, MeCPs may be bound to the body of the gene 

at specific sites to properly position the gene sequences within a transcriptionally 

active region of the nucleus. MeCPs might accomplish this through maintaining 

appropriate DNA attachment to the nuclear matrix, or orienting the exons near 

each other on adjacent chromatin loops to facilitate accurate and immediate 

splicing events. The conserved chromatin structure in the MGMT+ cells and 

disrupted chromatin structure at the same, specific sites in each of the minimally 

MGMT+ and MGMT- cells supports the idea that chromatin structure in the body 

of the gene is relevant to transcription. 

The findings that the promoter in the MGMT expressing cells is unmethylated, 

accessible and occupied by transcription factors, suggest that MGMT expression is 

dependent on these factors. Since MGMT expression is a major determinant in 

sensitivity versus resistance to BCNU (Day, et al., 1980), methylation, chromatin 

structure and transcription factor occupancy of the promoter could be viewed as 

critical elements of the molecular mechanisms that determine the chemosensitivity 

of these glioma cells. In support of this, MGMT expressing SF767 cells are much 

more resistant to BCNU compared to the non-expressing CLA cells (Sariban, et al., 

1987; Mitchell, et al., 1992). The fact that gliomas of oligodendrocytic origin are 
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especially sensitive to nitrosourea-based chemotherapy (MacDonald, ~., 1990) 

implies that MGMT gene inactivation may be a frequent event, possibly mediated 

by changes in methylation, chromatin structure and transcription factor access, in 

these tumors. Consistent with this speculation, a recent study has demonstrated 

that oligodendroglioma tumor samples are in fact very low in MGMT activity (Nutt, 

et al., 1994). Furthermore, as inhibition of MGMT in tumor cells is a current goal 

of BCNU-based chemotherapy, the "open" chromatin conformation of the promoter 

in MGMT-expressing (and hence BCNU resistant) glioma cells may be a good 

target for inhibition of MGMT expression, possibly through triple helix formation. 

To be of therapeutic value, inhibition of MGMT through triple helix forming 

oligonucleotides should be tumor specific. Since the MGMT promoter in normal 

and BCNU-resistant tumor cells is likely identical, the tumor specificity of MGMT 

inhibitors relies on tumor-specific delivery of these molecules. Direct delivery of 

BCNU to glioma cells has been accomplished by implanting BCNU-saturated 

anhydrous wafers directly into the tumor area following surgery. The results from 

phase I clinical trials of this therapy in glioma patients indicates that the BCNU

induced systemic side-effects are significantly reduced or absent (Brem, et al., 1991). 

Incorporation of potential inhibitors of MGMT expression, such as triple helix 

forming oligonucleotides, into the slow-release wafers might then also provide 

tumor-specificity of MGMT inhibition and hence sensitization to BCNU. Obviously, 

testing triple helix-forming oligonucleotides in MGMT inhibition is the next 

preliminary step towards achieving these therapeutic goals. 
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