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REACTIVITY OF ANTI-GROUP A TYPE 12 STREPTOCOCCAL 

CELL MEMBRANE MONOCLONAL ANTIBODY TO HUMAN 

GLOMERULAR BASEMENT MEMBRANE 

Infection with group A nephritogenic streptococci has long been 

associated with development of sequelae diseases such as 

poststreptococcal glomerulonephritis (PSGN). The etiology of PSGN 

is unknown, but postulated to be mediated by immune complex 

deposition in the GBM or mediated by antibodies evoked by 

streptococcal cell membrane (SCM) which react with a shared epitope 

in the glomerular basement membrane (GBM). A murine mAb was 

produced against group A type 12 SCM and was hypothesized to react 

with human renal cortical tissue and isolated GBM. This mAb, IIF4, 

was examined for reactivity with a panel of 26 human, isolated, 

enzyme digested GBMs. IIF4 reacted with all digests of GBM digests 

(trypsin, collagenase or pepsin) equivalently and with all 26 GBMs 

to a significantly greater extent than an isotype matched mAb did 

with the GBMs. Two groups of GBMS were indicated when extent of 

IIF4 reactivity was examined. IIF4 was hypothesized to react with 

a component of GBM and was established to react with collagen IV, 

which is a major component of the GBM. IIF4 did not react with 

fibronectin, laminin or heparan sulfate proteoglycan or collagen I. 

Attempts were made to identify the location of the epitope on the 



collagen IV molecule. Generally, IIF4 reacted with polypeptides of 

120 and 100 kDa from collagenase digested GBM or collagen IV and 

polypeptides of 100 kDa from pepsin digested GBM. These 

polypeptides were analyzed for amino acid content and each 

contained a high number of cysteine residues (15-30). The size and 

cysteine content of these and similarly sized polypeptides from 

pepsin digested collagen IV was consistent with the IIF4 reactive 

polypeptide as part of the triple helical domain and the NCl domain 

and the IIF4 reactive site as a globular portion of a collagen IV 

polypeptide. The significance of reactivity of an anti-SCM mAb 

with collagen IV is discussed with regard to molecular mimicry as 

it pertains to autoimmune disease and development of PSGN. 
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INTRODUCTION 

The clinical association between streptococcal infection and 

subsequent development of glomerulonephritis has long been 

established (Futcher, 1940; Rammelkamp, Weaver, and Dingle, 1952; 

stollerman, 1969). Streptococci are grouped by surface 

polysaccharides; in group A, streptococci are serologically typed by 

surface M protein. Clinically, in the United states, of over 70 M 

types, ten have been termed nephritogenic (Stollerman, 1969). 

Infection with one of these types of streptococci can lead to 

complications of glomerulonephritis. A question that our laboratory 

would ultimately like to answer is what is the nature of the 

association between infection with a nephritogenic strain of 

streptococci and development of glomerulonephritis. Experimental 

immunochemical evidence, gathered in our laboratory over the last 

twenty years, has pointed to an antigenic relationship between the 

cell membrane of group A type 12 streptococci and a component of the 

glomerular basement membrane (Markowitz and Lange, 1964; Lange, 

1980b). In order to examine this question more closely, murine 

monoclonal antibodies were generated to group A type 12 SCM 

(Fitzsimons, Weber, and Lange, 1987). Screening and clone selection 
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was based on the ability of the monoclonal antibody to display 

reactivity to both pooled glomerular basement membrane antigen as 

well as streptococcal cell membrane antigen. One of these 

monoclonal antibodies, IIF4, was chosen for use in this study of the 

glomerular antigen related to an SCM antigen. 



LITERATURE REVIEW 

Streptococci are grouped by surface polysaccharide. In beta 

hemolytic, group A streptococci (the major pathogenic group), 

streptococci are typed by surface M protein; this work was 

accomplished by Lancefield ( Stollerman, 1975). There are over 70 

serologic types of group A streptococci and of these 70, ten have 

been clinically correlated with nephritis. In the United States, 

types 1, 2, 4, 12, 18, 25, 49, 55, 57, and 60 are termed 

nephritogenic (Stollerman, 1969). Type 12 has been most frequently 

associated with pharyngeal infections leading to glomerulonephritis. 

This clinical correlation between infection with streptococci and 

development of glomerulonephritis was first noted by Richard Bright 

in the early 19th century after a patient developed nephritis 

following an upper respiratory infection and scarlet fever 

(Williams, 1987). Subsequently, group A nephritogenic streptococci 

were implicated in the development of glomerulonephritis, rheumatic 

fever and skin diseases such as impetigo and scarlet fever following 

infection of the pharynx or skin (Futcher, 1940; Zabriskie, 1971; 

Rammelkamp, Weaver, and Dingle, 1952). 

Infection with a nephritogenic strain of streptococci and 

subsequent development of life-threatening nephritis is a rare 

occurrence in the United States. However, in the developin9 third 

3 
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world countries, these sequelae diseases pose serious problems for 

health care workers and serious health problems for children, 

especially in tropical climates (Williams, 1987; Rodriguez-Iturbe, 

1984; Sorger et al., 1987; Fischetti, 1989). 

The M protein classifies the serotype of the streptococci; 

however, streptococci are defined as nephritogenic if that M type of 

streptococci is isolated from a patient who developed acute 

glomerulonephritis (Rodriguez-Iturbe, 1984). It is known that a 10-

15% incidence of glomerulonephritis results after nephritogenic 

streptococcal infection (Anthony et al., 1969; Dillon, 1972) and 

this attack rate is related to the site of infection. The M protein 

is also the means by which the streptococci escape the host immune 

response. M proteins are long fibril proteins projected from the 

cell wall surface of the streptococci; it is composed of alpha 

helical coiled coil proteins (Beachey, Seyer, and Kang, 1978; 

Phillips et al., 1981). The M protein must be opsonized before host 

phagocytic cells can engulf and destroy the bacteria (Fischetti, 

1989; Beachey et al., 1986). 

M proteins have been shown to share homology with myosin 

(Fischetti, 1989; Krisher and Cunningham, 1985; Dale and Beachey, 

1985; Jones et al., 1986; Cunningham et al., 1989). M protein was 

also reported to share an epitope with the intermediary filament 

vimentin (Kraus et al., 1989) and a 46 kDa component of glomerular 

tissue (Goroncy-Bermes et al., 1987; Kraus and Beachey, 1988). 

Clearly, the M protein is a complex protein with several indicated 

shared epitopes with mammalian tissue. 
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Although the M protein is responsible for host invasiveness, 

what defines a streptococci as nephritogenic? This is an unresolved 

issue (Rodriguez-Iturbe, 1984). Two theories have been generated to 

explain the role of streptococci in the development of 

glomerulonephritis. In the first theory, immune complexes between 

streptococcal components and antibody are formed and then deposited 

in the GBM (Michael et al., 1966; Friedman et al., 1984). 

Circulating immune complexes have been isolated from patients with 

poststreptococcal glomerulonephritis (Van de Rijn et al., 1978; 

Rodriguez-Iturbe 1980; Jennette et al., 1982). 

Alternatively, cationic antigens are deposited in the GBM and immune 

complexes are formed in situ (Vogt et al., 1983; Stinson et al., 

1983). 

In acute poststreptococcal glomerulonephritis, antibodies are 

made against streptococci; this is judged clinically by patient 

serum titers to streptolysin-o, a hernolysin of group A streptococci 

(Sorger et al., 1983; Williams, 1987). Some investigators have 

shown the presence of streptococcal antigen in glorneruli from 

patients with poststreptococcal glornerulonephritis, especially in 

the acute phase of the disease (Yoshizawa et al., 1973; Anders et 

al., 1966; Michael al., 1966; Treser al., 1970). However, the 

streptococcal component of the immune complex or .the immune 

complexes in patients with poststreptococcal glomerulonephritis 

could not always be demonstrated. Furthermore, the nature of the 

immune complex streptococcal component is controversial (Rodriguez­

Iturbe, 1984). 



The second theory postulates that a component 

6 

of 

nephritogenic streptococci, the cell membrane, and a component of 

the glomerulus, the basement membrane, share a common antigenic 

component (Markowitz and Lange, 1964). The theory predicts that 

antibodies raised to a component of SCM react with GBM. The 

reaction is antibody mediated and therefore may be classified as 

potentially autoimmune. This is based on immunochemical evidence 

which showed that an anti-serum raised to type 12 SCM reacted with 

extracts of human glomeruli; anti-serum raised to glomerular extract 

reacted with SCM (Markowitz and Lange, 1964). A chemical 

relationship between SCM and GBM was indicated by amino acid and 

carbohydrate analysis of GBM and SCM enzyme digest derived fragments 

which were found to be antigenically related through the use of 

anti-SCM and anti-GBM sera (Lange, 1969). These studies indicated 

that SCM and GBM were related antigenically. 

Further evidence of antigenic relatedness was shown with 

anti-SCM serum reactive with GBM in kidney sections (Markowitz and 

Lange, 1964; Blue and Lange, 1975). This activity could be absorbed 

by isolated GBM, or glomeruli, but not with liver or spleen 

homogenates. Likewise, anti-glomerular serum reacted with GBM in 

tissue sections and this activity could be absorbed by SCM. These 

experiments also indicated that the glomerular carbohydrate masked 

the anti-SCM serum reactive sites on murine GBM, particularly in 

relatively carbohydrate rich adult tissue as compared to neonatal 

tissue (Blue and Lange, 1975; Blue and Lange, 1976; Lange, 1980a). 

In general, young human and murine glomerular tissue was more 
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reactive with anti-SCM serum in immunofluorescence than adult 

tissue. Thus, an immunochemical basis was established for the 

antigenic relatedness of GBM and SCM. 

In order to investigate the nature of the antigenic 

relatedness between GBM and SCM, anti-SCM serum was used as an 

immunizing agent and a surrogate for streptococcal infections. 

Guinea pigs injected with anti-SCM serum developed necrotic skin 

lesions (Lange, 1973). These studies indicated that the anti-SCM 

serum was responsible for significant skin pathology. Mice injected 

with anti-SCM serum presented with subepithelial granular deposits 

on the GBM as judged by electron microscopy and had incorporation of 

praline into GBM proteins; these proteins were suggested to be a 

noncollagenous glycoprotein and a collagenous protein from rate of 

incorporation (Nayyar, Lange, and Borke, 1985). Anti-SCM serum 

alone was responsible for the skin and renal pathology seen in these 

two reports. 

The pathology seen in human acute poststreptococcal 

glomerulonephritis is characterized by glomerular infiltration by 

neutrophils, and the proliferation of mesangial cells. Also, 

electron dense deposits are located subepithelially or 

subendothelially on the GBM and the presence of C3 and f ibrinogen in 

an irregular deposition pattern on the GBM is noted (Rodriguez-

Iturbe, 1984). Poststreptococcal glomerulonephritis is associated 

with the expression of HLA-DRl, HLA-B7, and HLA-B44 (Naito, Kohara, 

and Arakawa, 1987). This may allow classification of 

poststreptococcal glomerulonephritis with autoimmune diseases such 
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as ankylosing spondylitis and Reiter's syndrome. Glomerulonephritis 

can be induced by anti-SCM serum or SCM components. 

Glomerulonephritis was induced in rhesus monkeys actively by 

injections of soluble glycoprotein from SCM or passively by 

injections of antibodies raised against SCM glycoprotein. In both 

cases, clinical signs of glomerulonephritis were present (Markowitz 

, 1971). Mice injected with anti-SCM serum presented kidney 

pathology similar to pathology present in kidney biopsies from 

patients with acute poststreptococcal glomerulonephritis (Nayyar, 

Lange, and Volini, 1985). Presence of neutrophils, increased 

cellularity in the mesangium and subepithelial electron dense 

'humps' were noted. The evidence indicated a direct action of the 

anti-SCM serum on the glomerulus. 

It can be argued that the use of a serum is not specific 

enough to detect common antigens in two discrete proteins. Serum 

contains a mixture of host antibodies directed towards many 

immunogens. Therefore, a series of murine monoclonal antibodies 

generated to group A type 12 SCM were produced and mAbs were 

selected for reactivity with GBM as well as lung basement membrane 

(Fitzsimons, Weber, and Lange, 1987). Isolated murine or human 

enzyme digested (trypsin or collagenase) GBM could inhibit binding 

of several of the rnAbs to its autologous antigen, SCM (Fitzsimons, 

Weber, and Lange, 1987; Zelman and Lange, 1989). These experiments 

indicated that an antigenic relatedness between GBM and SCM existed 

based on the definition of an mAb reacting with a unique, specific 

epitope. 
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The SCM component containing the epitope shared with GBM has 

not been identified, but a tryptic digestion fragment of the 

component was isolated by anti-SCM mAb affinity chromatography. A 

13 kDa polypeptide was isolated, but other, 2.3 to 11.2 kDa, 

polypeptides were noted to bind the anti-SCM mAB affinity column 

when each was isolated by molecular sieving and then passed over the 

affinity column. Relative epitope densities were assigned to each 

polypeptide based on their molecular size and molar ratio of 

polypeptide bound to mAb. Relative epitope density increased with 

the size of the polypeptides. This was interpreted to mean that the 

intact SCM polypeptide consisted of repeating epitopes (Zelman and 

Lange, 1989). 

Evidence based on anti-SCM mAb reactivity with isolated GBM 

indicated that SCM and GBM shared an epitope. However, the GBM 

component containing this common epitope was unknown. Basement 

membranes are complex extracellular matrices composed of several 

proteins. The functions of basement membranes are 

compartmentalization of organs, stability of tissues, inhibition of 

tissue invasion by cells, and filtration of macromolecules. 

Basement membranes are found in kidney, the blood-brain barrier, 

placenta, gut, lung, skin, cornea, and blood vessels and can be 

found encircling muscle, nerve and fat cells (Glanville, 1987). 

Cells surrounding basement membrane generally produce the membrane 

and remain in close contact with the membrane; this is thought to be 

mediated by cellular receptors binding to extracellular matrix 

ligands (Timpl, 1989). 
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GBM is a specialized extracellular matrix which serves as a 

border between the urinary side and the capillary side of the 

glomerular capillary wall. Capillary endothelial side cells are a 

continuous sheet of cells punctuated by fenestrae. Urinary 

epithelial cells have characteristic podocyte morphology and the 

foot processes are separated by filtration slits. Mesangial cells 

face the remaining parts of the membrane. Ultrastructurally, the 

GBM is composed of three layers; the lamina rara externa (urinary 

side), the lamina densa (slightly more electron dense than the other 

layers), and the lamina rara interna (capillary side) (Wieslander, 

1983; Timpl, 1989). Both the endothelial and epithelial cells are 

known to produce extracellular matrix which fuses to form the 

basement membrane (Timpl and Aumailley, 1989). 

The specialized function of the qBM is to ultrafilter the 

blood plasma to begin the process of urine formation. The GBM has 

an overall negative charge and allows proteins of less than 70 kDa 

to filter into the urine (Vogt et al., 1983; Timpl, 1989). The 

electrostatic charge of the plasma proteins is important. Proteins 

of greater than 70 kDa with a pI of greater than 8.5 can accumulate 

in the GBM and form in situ immune complexes with circulating 

antibody (Vogt et al., 1982). The integrity of the GBM is a crucial 

matter; immune complexes or antibody deposited in the GBM can lead 

to an inflammatory response of complement activation, neutrophil 

chemotaxis and lysosomal enzyme release and damage to the GBM 

leading to proteinuria and renal failure in some cases (Rodriguez-
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Iturbe, 1984) . Thus, the integrity of the GBM is an important 

matter. 

The components of the GBM are collagen IV (which is a three 

chain coil) composed of alpha l(IV) and alpha 2(IV) chains, laminin 

which is composed of an A, Bl and B2 chains, nidogen or entactin, 

heparan sulfate proteoglycan, BM-40 and possibly other components. 

(Timpl, 1989; Timpl and Aumailley, 1989). 

Collagen IV is the major component of the GBM comprising 

between 30% and 80% of its total mass. Collagen IV derived from 

human placental membrane and bovine capsular membrane is well 

characterized. Collagen IV is believed to provide the structural 

network for the GBM (Kuhn et al., 1981; Timpl, 1989). Collagen IV 

is a distinct collagen type found only in basement membranes and is 

distinctly different from classical fibril-type interstitial 

collagens I, II, and III (Kefalides, 1973). Collagen IV is the only 

type of collagen (eleven types have been identified) that forms non­

fibrillar networks (Kuhn, 1987). All collagens contain three alpha 

chains which are composed of repeating triplet of glycine-X-Y which 

account for the helical structure of the molecule. Hydroxy lated 

proline and lysine are found interspersed in the X-Y positions and 

are only found in collagen molecules (Kuhn, 1987). 

Collagen IV differs from classical collagens in two major 

characteristics. First, collagens are synthesized as a procollagen 

precursor with globular domains at the amino and carboxyl termini of 

the alpha chain. Three alpha chains wound in a triple helix form 

procollagen. In classical collagens, the globular domains are 
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cleaved by extracellular enzymes and are not incorporated into the 

collagen molecule or fibril. However, in types IV and VI collagen, 

these globular domains are retained. Second, collagen IV has 21 

small, globular interruptions in the three alpha chains; these are 

believed to allow for flexibility of the collagen molecule in 

basement membrane assembly (Kuhn, 1987; Glanville, 1987). 

Mature collagen IV is composed of three alpha chains (each 

with amino and carboxyl globular domains) wound into a superhelix. 

There are four forms of the type IV alpha chain: alpha l(IV), alpha 

2(IV), alpha 3(IV) and alpha 4(IV). Classically, collagen IV 

molecules were thought to be composed of two alpha 1 (IV) and one 

alpha 2 (IV) chain although it is not known if all collagen IV 

molecules in a basement membrane will be composed similarly. 

Collagen IV molecules have been identified with one alpha 1 (IV) 

chain and two alpha 2(IV) chains (Timpl, 1989; Brazel et al., 1988). 

In addition to this heterogeneity, alpha 3 (IV) chains have been 

identified in GBM with alpha l(IV) and alpha 2(IV) chains. The 

occurrence of alpha 3(IV) chains is now thought to be wide spread 

(Timpl, 1989; Hudson al./ 1989) • This greatly increases the 

potential heterogeneity of the collagen IV molecule in a GBM. 

The human alpha l(IV) chain, which is 1669 amino acid 

residues in length, is composed of a signal peptide (amino acids 1-

27), the amino terminal overlap and cross link 7S globular domain 

(28-172), the central alpha helical region (173-1440) and the 

noncollagenous NCl domain (1441-1669) (Brazel et al., 1988). Alpha 

1 (IV) chains from mouse and Drosophila have also been amino acid 



sequenced as well as alpha 2 (IV) in human and mouse. 

13 

All alpha 

chains have some homology with each other (Timpl, 1989). The 7S 

domain of each alpha chain has a high percentage of hydrophobic 

amino acids as well as 4 cysteine residues and two lysine residues; 

these are responsible for inter- and intramolecular crosslinks with 

other alpha chains and other collagen IV molecules. Another 

cysteine residue (position 98) is exclusively involved in 

intermolecular crosslinks. The number and position of cysteine 

residues are conserved in human alpha l(IV) and alpha 2(IV) chains 

(Glanville, 1987). The NCl domain of an alpha chain has a high 

percentage of hydrophobic amino acids and a total of 12 cysteine 

residues per domain. Two homologous subregions (35\ homology with 

an additional 21\ conservative substitutions) each contain 6 

cysteine residues (Glanville, 1987, Timpl, 1989). 

The function of the two major globular domains of collagen IV 

in basement membrane formation are aggregation (7S domain) and dimer 

formation (NCl domain). Two models for the assembly of the collagen 

IV backbone in basement membranes have been proposed; the network 

and the hexagonal model (Yurchenco, 1990; Timpl, 1989). These two 

theories are based on rotary shadowed electron microscopy of 

isolated collagen IV molecules. In the network assembly model, the 

intact 7S domain consists of the aggregation and overlap of 7S 

domains of 4 collagen IV molecules (12 alpha chains total) and the 

dimer formation of NCl domains from two collagen IV molecules. This 

assembly model leads to a chicken wire-like network of assembled 

collagen IV molecules. In the hexagonal model, self asseriibly is 
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initiated by NCl dimer formation, followed by association of 12 

collagen molecules (36 alpha chains) (Yurchenco, 1990; Glanville, 

1987). Regardless of the correctness of either model, the end 

result is a highly disulfide-stabilized, cross-linked association of 

75 to 75 domains and NCl to NCl domains. This forms the backbone of 

the basement membrane. 

Another major GBM component is laminin. Murine laminin is 

best characterized. Laminin (800 kDa) is composed of three 

disulfide-linked polypeptides chains: Bl and 82 (200 kDa each) and A 

(400 kDa with isoforms). These chains are folded into a cross-like 

structure with 3 short arms and one long arm. Each arm has globular 

and rod-like domains with marked alpha helical domains at the 

carboxyl terminus of each arm. Each of the 4 arms are homologous in 

1200 amino acids at their amino termini. The short arms are 

cysteine rich and have similarity to epidermal growth factor. In 

addition, the long arm has a unique globular domain at its carboxyl 

terminus distal to the junctional region of the cross (Timpl and 

Aumailley, 1989; Ekblom et al., 1990; Abrahamson et al., 1989). 

Laminin has several binding and biologic properties. Nidogen, a 150 

kDa single polypeptide chain with a dumbbell shape, is stably, 

noncovalently bound to laminin in an equimolar ratio with the short 

arm of laminin (Timpl, 1989; Mann et al., 1989). Nidogen may be 

identical to entactin, a sulfated 15 kDa protein found in cell 

cultures (Mann et al., 1989). It has been suggested that 

nidogen/entactin mediates laminin binding to collagen IV (Timpl, 

1989). On the opposite short arm from nidogen, is a cell binding 
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site; another cell binding site is located on the globular end of 

the long arm. Although this has not been proven for laminin, the 

cell binding sequence, arginine-glycine-asparagine (RGD) has been 

demonstrated in collagen IV. The RGD sequence mediates cell binding 

in fibronectin, vitronectin, von Willebrand factor, osteopontin, 

integrins, nidogen and collagen I (Timpl and Aumailley, 1989; 

Pierschbacher and Ruoslahti, 1984; Mann et al., 1989). The globular 

domain of the long arm has also been implicated in heparin binding 

(Timpl, 1989; Martin and Timpl, 1987). Like collagen IV, laminin 

molecules can polymerize which may contribute to the assembly of the 

basement membrane (Yurchenco and Furthmayr, 1984). 

The major proteoglycan in GBM is heparan sulfate 

proteoglycan; murine and human heparan sulfate proteoglycan have 

been characterized. There are two forms of heparan sulfate 

proteoglycan: low and high buoyant density. The protein core for 

the low density form (30% by weight carbohydrate) is 480 kDa with 

three heparan sulfate chains attached to it. The heparan sulfate 

chains (in human) are each 18 kDa and are anionic (Van Den Heuvel 

al., 1989; Timpl, 1989; Schleicher et al., 1989). Polyanionic 

heparan sulfate proteoglycan is believed to give the basement 

membrane the majority of its negative charge. Small heparan sulfate 

proteoglycans (high density) have also been identified in the GBM; 

these star-shaped molecules (130 kDa) have a protein core with four 

heparan sulfate chains attached (Edge and Spiro, 1987; Timpl, 1989). 

Chondroitin sulfate proteoglycan and dermatin sulfate proteoglycan 

have been identified in small amounts in the GBM by chemical 
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characterization and immunochemical localization (Paulsson et al., 

1985) • 

Formation of the basement membrane is dependent on divalent 

cations, especially calcium. Laminin polymerization is calcium 

dependent (Yurchenco and Furthmayr, 1984) and the association of 

laminin and nidogen is calcium dependent (Paulsson et al., 1987). 

Another calcium dependent basement membrane protein is BM-40 (also 

called osteonectin or SPARC) which is a single chain 35 kDa protein. 

BM-40 binds calcium and is ubiquitous in basement membranes (Timpl 

and Aumailley, 1989). 

In total, the GBM is a complex structure of heterogeneous 

collagen IV, laminin, nidogen/entactin, heparan sulfate proteoglycan 

with small amounts of other proteoglycans, BM-40 and possibly other 

unidentified components. The exact percentages of each component in 

a basement membrane are unknown and, in the GBM, may vary with the 

age of the individual. Also, the exact mechanism of GBM assembly is 

unknown and therefore the ultrastructural localization of each 

component is not fully understood (Yurchenco, 1990; Yurchenco et 

al. I 1986) • The importance of the integrity and maintenance of 

function of the GBM is, however, indisputably critical. 

Important characteristics of the GBM are its antigenicity and 

immunogenicity. In experimental nephritis, a proliferative 

glomerulonephritis can be induced by injection of heterologous GBM 

into sheep (Steblay, 1962). This evidence along with many other 

reports (Unanue and Dixon, 1965; Dixon, Feldman, and Vasguez, 1961; 

Hammer and Dixon, 1963; Hoedemaeker et al., 1972), established the 
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antigenicity and immunogenicity of GBM and its ability to initiate 

nephrotoxic disease. This experimental system attempts to parallel 

the conditions in some human glomerulonephritis. Patients with 

glomerulonephritis possess antibodies reactive with GBM (Wieslander, 

Bygren and Heinegard, 1983; Wilson and Dixon, 1974; Lerner, 

Glasscock, and Dixon, 1967) although the exact target of these 

antibodies is not determined (Wieslander, Bygren and Heinegard, 

1983). In Goodpasture syndrome, which has glomerular and pulmonary 

hemorrhagic involvement, autoantibodies are directed to a specific 

component of collagen IV (Wieslander et al., 1984; Kefalides et al., 

1986; Pusey et al., 1987). Serum from a Goodpasture patient reacts 

specifically with the NCl portion of the alpha 3 (IV) chain (Hudson 

et al., 1989). The specific portion of the NCl domain reactive with 

Goodpasture sera is a 26 kDa monomer (designated M2*) which is a 

noncollagenous polypeptide believed to be sequestered within the 

hexameric structure of the NCl domain. There is also reactivity to 

an apparently nonreduced 52 kDa dimer (Wieslander, Kataja, and 

Hudson, 1987; Pusey et al., 1987; Weber, Meyer zum Buschenfelde, and 

Kohler, 1988) • Reactivity of the Goodpasture serum to collagenase 

digested collagen IV or basement membrane from bovine lens capsule, 

lung, or placenta or human placenta, lung, or glomeruli indicated 

that the Goodpasture antigen is widespread (Weber et al., 1987; Fish 

et al., 1984; Weber, Meyer zum Buschenfelde, and Kohler, 1988; 

Wieslander, Kataja, and Hudson, 1987). It has been speculated that 

the Goodpasture antigen is sequestered, masked or otherwise 

privileged and only revealed after dissociation of the NCl hexamer 
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by toxic, infective or other traumatic episode (Weber, Meyer zum 

suschenfelde, and Kohler, 1988). The Goodpasture autoantigen is the 

most studied of the defined glomerular antigens. 

Another GBM antigen involved in an autoimmune disease, IgA 

nephropathy, has been suggested to be part of the alpha helical 

portion of collagen IV. Patient IgA antibodies react with the 

triple helical portions of the alpha chains (reactivity was 

destroyed by collagenase digestion) of collagen IV, collagen I and 

collagen II after pepsin digestion (Cederholm et al., 1986). The 

autoantigen in familial Alport syndrome involves collagen IV. It 

has been found that the basement membrane in Alport patients do not 

have a 'normal' 28 kDa monomer integrated in the NCl domain. 

Evidence points to a different NCl monomer in the alpha 3(IV) chain 

that is the autoantigen (Kleppel et al., 1989). This autoantigen is 

closely related to the Goodpasture antigen (Savage et al., 1986) • 

Thus, collagen IV has been identified as the repository of several 

autoantigens highly associated with specific autoimmune diseases. 

The purpose of this thesis is to determine the reactivity of 

an anti-SCM mAb with human GBM. The association of nephritogenic 

streptococcal infection and development of glomerulonephritis has 

been established along with the autoantigenic qualities of several 

GBM antigens. This thesis seeks to investigate the immunochemical 

link between SCM and GBM by examining the reactivity of anti-SCM mAb 

with a panel of human GBMs and to identify the anti-SCM mAb reactive 

component in GBM. 



METHODS AND MATERIALS 

Production of Ascites From Mice 

Ascites containing monoclonal antibody were produced by 

standard methods (Johnstone and Thorpe, 1982). Pristane (2,6,10,14 

tetramethylpentadecane, Aldrich Chemicals, Milwaukee, WI) primed 

Balb/c mice (Jackson Laboratories, Bar Harbor, ME) were injected in­

traperitoneally with lx106 to lxl07 cloned hybridoma cells. 

Hybridoma cells were produced by the fusion of spleen cells from 

Balb/c mice immunized with group A type 12 streptococcal cell mem­

brane and P3-X63-Ag8 nonsecreting plasmacytoma cells (Fitzsimons, 

Weber and Lange, 1987). Twelve to fourteen days post injection, 

mice were sacrificed by ether inhalation, jugular vein severing and 

exsanguination. Blood, ascites and hybridoma cells were recovered 

and heart, kidney and lung tissues collected for examination. 

Isotyping of Ascites and Sera 

Isotyping of ascites and sera was performed via ELISA 

according to manufacturer's instructions (Isotyping kit, HyClone, 

Logan, UT). Briefly, 96 well plates (Becton Dickinson, Oxnard, CA) 

were sensitized with goat anti-mouse immunoglobulins and then 

blocked with 1% BSA in PBS. Ascites or sera (0.1 ug/ml protein of 

19 
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each) were added to wells; a 1:500 dilution of normal mouse serum 

and normal rabbit serum were used as positive and negative controls, 

respectively. After washing, goat anti-mouse IgGl, IgG2a, IgG2b, 

IgG3, IgA, and IgM monoclonal (as supplied by HyClone) antibodies 

were added to the plate. Bound antibodies were detected with alkal­

ine phosphatase labeled goat anti-mouse immunoglobulins and a para­

nitrophenyl phosphate based substrate (both were supplied by 

HyClone). Optical density of individual wells was read at 405 nm 

with a microplate reader (MR-600, Dynatech, Alexandria, VA). Reac­

tions were considered positive when above 0.600 optical density. 

Euglobulin Precipitation of Ascites 

Euglobulin fractionation of ascites is a quick and gentle 

process to isolate IgM from sera or ascites (G rcia-Gonz les, et 

al., 1988). Ascites was placed in dialysis tubing, 10,000 molecular 

weight cutoff (Union Carbide, Chicago, IL), and dialyzed versus dis-

tilled water for 18 hours at 4°c. Recovered material was then 

centrifuged (Eppendorf, Brinkmann) for 3 minutes. The recovered 

precipitate was the solubilized in borate buffered saline, pH 8. 5 

(0.1 M boric acid, 25 mM sodium tetraborate, 75 mM NaCl) at 4°c. 

Quantitation of Murine IgM 

For ELISA, 96 well plates were sensitized with goat anti­

mouse IgM (0.1 ug/ml) (HyClone) in 0.05 M carbonate buffer, pH 9.6 

for 18 hours at room temperature (RT) and then blocked with 1% 

bovine serum albumin in phosphate buffered saline (PBS), pH 7.4 for 
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3 hours. After washing, dilutions of the sera, ascites or euglobu­

lin fractions were applied to the plate. TEPC 183 (murine myeloma, 

IgM, Sigma, St. Louis, MO) was applied to the plate in dilutions of 

20 ug/ml to 0.016 ug/ml. After incubation and washing, goat anti­

mouse IgM conjugated to peroxidase was applied to the plate at 0.1 

ug/ml. After incubation and washing, substrate [equal parts of 

0.02% 2,2' -azinodi-(3-ethylbenzthiazoline sulfonic acid, Sigma) in 

O.l M citrate buffer, pH 4.1 and 0.01% H202 in PBS) was applied to 

the plate and the optical density read at 405 nm in the microplate 

reader at 30 minutes. A standard curve of TEPC 183 concentration 

versus optical density was generated and the IgM concentration of 

the sera, ascites or euglobulin fractions was read from this curve. 

Quantitation of Murine IgGl 

Quantitation of anti-collagen type IV monoclonal antibody 

(mAb) was accomplished using MOPC 21 (murine myeloma, IgGl, Sigma) 

and the same methodology as previously described for murine IgM 

except that peroxidase labeled goat anti-mouse IgG was used as the 

detecting antibody and the 96 well plate was sensitized with 0 .1 

ug/ml goat anti-mouse immunoglobulins in 0.05 M carbonate buffer, pH 

9.6. 

Protein Determination 

The bicinchoninic acid (BCA) protein determination assay is 

based on the interaction of protein and copper ion (Cu+2 ) in 

alkaline solution to produce cuprous ion (Cu+l); this ion interacts 



22 

with BCA to form a colored reaction product. Bovine serum albumin 

(BSA) ( 1000 ug/ml to 15. 7 ug/ml) are applied to a 96 well plate 

along with dilutions of the unknown. The BCA reagents are applied 

to the plate according to the manufacturer (Pierce Chemicals, 

Rockford, IL) and incubated at 37°c for 30 minutes. Absorbance was 

read at 560 nm in the microplate reader. A standard curve of BSA 

concentration was produced and the concentrations of the unknowns 

were read from the curve. 

Examination of Tissue for Antibody Binding 

Human kidneys (whole or sections) were obtained from National 

Diabetes Research Interchange, Philadelphia, PA. All tissues were 

negative for HIV and Hepatitis B virus. Tissues were collected upon 

autopsy and no tissue was used in this study from any individual 

with overt kidney disease. Age at time of death was 56 ± 19 years; 

this study used the tissue from 16 males and 11 females. Cortical 

sections were embedded in O.C.T. compound, quick frozen, and held at 

-10°c until use. 

Cryostat Sectioning of Frozen Tissue 

Tissue sections embedded in o.c.T. compound were mounted on 

brass buttons and warmed to -3o0 c in the cryostat (International 

Equipment co., Needham, MA). Sections of 3 microns were cut and 

dried onto methanol cleaned and Histostik (Accurate Chemical, 

Westbury, NY) coated glass slides. Tissue sections were fixed onto 

the slides with acetone for 5 minutes and then washed three times in 
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PBS. Tissue sections were kept in a moist chamber for im-

munofluorescence processing. 

rmmunofluorescence Staining of Tissues 

Tissues were examined for localization of antibody binding by 

indirect immunofluorescence (Johnson, Holbrow, and Dorling, 1978). 

Tissue sections were treated by direct application of ascites, sera, 

euglobulin fraction or isolated monoclonal antibody (IIF4, NMS, TEPC 

183 [IgM}; anti collagen IV mAb, MOPC 21 [IgGl}) at 10 ug, 5 ug, and 

2. 5 ug per section in 1 % BSA for one hour at RT. After three 5 

minute PBS washings, the appropriate conjugate antibody [fluorescein 

conjugated goat anti-mouse IgM, fluorescein-conjugated goat anti­

mouse immunoglobulins; both at 10 ug Ig/ml (HyClone, Logan, UT)} in 

0.1% BSA was applied to the sections for one hour at RT. After 

washing, cover slips were placed on the slides with buffered glycine 

containing ortho-phenylenediamine as a fluorescence quencher 

(Johnson and de Nogueira Araujo, 1981). Sections were viewed with a 

fluorescent microscope (Leitz, Midland, Ontario, Canada). 

Photography of Immunofluorescently Stained Tissue 

Photographs were taken of immunofluorescently stained tissue 

sections with the camera attachment on the Leitz microscope. Black 

and white film (Tri-X Pan,Kodak, Rochester, NY) and color slide film 

(Ektachrome, Kodak) (each at ASA 400) were exposed for 30 seconds. 

Black and white negatives were developed in Microdol (Kodak) diluted 

1:2 for 10 minutes at 20°c, washed, fixed (Kodak fixer) for 15 
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minutes at 20°c, washed and air-dried. Prints were made on F4 paper 

(Kodak), developed in Dektol (Kodak) at 1:2 at 20°c for 1 minute, 

washed, fixed (Kodak fixer) for 10 minutes, washed and air dried. 

Growth of GS-~ Streptococcus mutans 

§. mutans (GS-5) (provided by Dr. Brian Shearer, Department 

of Microbiology, LUMC) 50 ml feeder cultures were grown in 

sterilized tryptic soy broth (TSB, BBL, Beckton-Dickinson, 

Cockseyville, MD) with 2.5 mg/ml yeast extract (BBL) at 37°c with 

shaking overnight (Stinson et al., 1983). Cultures were shown to 

contain one bacteria type by aliquots streaked on blood agar plates 

(Baxter Scientific Products, McGraw Park, IL) and incubation at 37°c 

for two days. Feeder cultures were added to TSB (2 L) and incubated 

at 37°c with shaking for 6 hours. At this time, 50 ml of filter 

sterilized 5% glucose (Sigma) and 50 ml of sterilized 5% bicarbonate 

(Mallinckrodt, Inc., St. Louis, MO) were added to the cultures to 

boost growth. After 24 hours of incubation, bacteria were collected 

by centrifugation at 4424 x g (J2-21 Centrifuge, Beckman, Oxnard, 

CA) for 10 minutes and washed with PBS-0.05% NaN3 (Sigma) until the 

supernatants read <0.2 O.D. at 278 nm. Bacteria were heat killed at 

a density of 10% in PBS-azide at 80°c for 15 minutes with shaking. 

Total culture killing was checked by aliquots streaked on blood agar 

plates incubated at 37°c for two days. 
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preparation of Group ~ .IYPg 12 Streptococci 

Whole cells of heat killed group A type 12 streptococci 

(previously prepared in this laboratory) were washed repeatedly in 

saline at 17699 x g (Beckman) until the supernatants read <0.2 O.D. 

at 278 run (Model 139, UV-Vis Spectrophotometer, Hitachi Perkin­

Elmer, Danbury, CT). 

Preparation of Bacterial Cell Membrane 

Bacterial cells were disrupted with the BeadBeater cell 

disrupter (Biospec Products, Bartlesville, O.K.) using 0.1 mm 

diameter glass beads previously washed in 50% sulfuric acid and 

several volumes of distilled water. The BeadBeater chamber was one­

third filled with glass beads, bacteria, distilled water and 

surrounded with ice. Two volumes of glass beads to one volume of 

bacteria was used for maximum bacterial breakage. The cells were 

disrupted by a five minute on, five minute off cycle repeated five 

times (Bleiweis, Karakowa and Krause, 1964). Examinations of Gram 

stains and wet mounts under phase contrast confirmed presence 

disrupted cells. Differential centrifugation isolated bacterial 

cell membrane. Centrifugation at 4424 x g for 10 minutes pelleted 

whole cells and some cell wall; centrifugation at 6370 x g for 10 

minutes pelleted cell wall and centrifugation at 34957 x g for 10 

minutes pelleted bacterial membranes. Membrane preparations were 

dialyzed (3000 molecular weight cutoff, Sephraphor, Spectrum Medical 

Industries, Inc., Los Angeles, CA) against distilled water and 

lyophilized (Freezemobile 12, The Virtis Co., Gardiner, NY). 
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The isolation of group A type 12 streptococcal cell membrane 

was carried out by Mark Zelman in this laboratory; his preparations 

are used throughout this study. 

Rhamnose Determination of Cell Membrane 

The procedure of Dische and Shettles (1946) was used to 

determine rhamnose (methyl pentose) level in the membrane 

preparations. A level of <0.1% is acceptable for purified group A 

type 12 streptococcal cell membrane (Markowitz and Lange, 1964). 

4.5 ml chilled 87.5% sulfuric acid was added to ice cold solutions 

of methyl pentose (Mann Research Laboratories, New York, NY) (2.75, 

5.50, 8.25, 10.0 ug/ml) in 1 ml saturated benzoic acid with constant 

shaking in an ice bath. After standing 10 minutes at RT, the tubes 

were placed in boiling water for 3 minutes. After cooling to RT, 

0.1 ml of 3% cysteine hydrochloride monohydrate was added to each 

tube. After two hours at RT, the absorption was read at 396 nm and 

430 run. A blank containing 1 ml saturated benzoic acid, 4. 5 ml 

87. 5\ sulfuric acid and O .1 ml cysteine hydrochloride monohydrate 

was read. The difference in the absorptions (396 run - 430 run) gave 

the rhamnose concentration (ug/ml). The principle of this assay is 

based on the absence of methyl pentose absorbance at 430 run. 

Hexoses, pentoses, glucuronic and galacturonic acids have 

symmetrical absorption curves such that the absorbance at 430 run and 

396 run is the same. Subtraction of the absorbance at 430 run from 

the absorbance at 396 run corrects for all the absorbance except for 

that due to methyl pentose. The membrane and cell wall samples were 
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first digested in 87.5% sulfuric acid by boiling for 3 minutes. The 

percent rhamnose was determined by examining the standard curve and 

assigning a concentration to the unknown. 

% rhamnose = ug rhamnose in sample x 100 

ug membrane in assay. 

Cell membrane prepared from group A type 12 streptococcal 

cell membrane was judged to be free of cell wall contaminants by 

determining the rhamnose concentration of the preparation. The 

trypsin digested SCM was found to have less than 0. 08% rhamnose; 

this is considered free of cell wall contaminants (Markowitz and 

Lange, 1964; Lange, 1980a). 

Cell membrane was isolated from ~- mutans. The yield of ~· 

mutans cell membrane was 0.135 grams. A 9.5 gram wet weight is e-

quivalent to 2-4 grams dry weight of bacteria. Bacterial membrane 

is approximately 10% of the cell. The minimal expected weight of 

isolated membrane is 0.2 grams; the yield of ~- mutans cell membrane 

is approximately 67.5%. 

Trypsin Digestion of Bacterial Cell Membrane 

Lyophilized SCM or ~· mutans cellular membrane was weighed 

and 1 mg trypsin (Sigma) in PBS, pH 6. 0, was added per 100 mg 

membrane preparation (Markowitz and Lange, 1964; Lange, 1969). This 

preparation was rotated at 37°c for 18 hours, centrifuged at 483 x g 

for 10 minutes and the supernatant was dialyzed against distilled 

water overnight at 4°c with a membrane cutoff of 3000 molecular wei­

ght (Sephraphor). The supernatant was concentrated to a small vol-
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ume (Speed-vac, Savant Instruments, Inc., Hickville, NY). The 

concentrated, digested membrane was stored at -20°c until use. 

Isolation of Human Glomeruli 

Glomeruli were isolated as previously described (Greenspon 

and Krakawer, 1950; Markowitz and Lange, 1964; Blue and Lange, 

1975). Human kidneys were weighed and cortical tissue was separated 

from medullary tissue with scissors. Cortices were then forced 

through a 64u mesh screen into a watch glass on ice adding cold PBS 

with 30 uM tannic acid (Aldrich Chemicals, Milwaukee, WI) and the 

nonspecific protease inhibitor, PMSF (phenylmethylsulfonyl fluoride; 

1 nM final concentration, Sigma), as needed to facilitate the proc­

edure. Cortical material was collected from the watch glass and al­

lowed to settle in cold PBS with tannic acid and PMSF and the super­

natant was aspirated. This was repeated six times yielding a rela­

tively pure preparation of whole glomeruli free of other cells and 

debris; this was checked by phase contrast microscopy. Glomerular 

basement membrane was prepared from isolated glomeruli (Carlson 

al., 1978). The glomeruli were then osmotically shocked with dis­

tilled water with 0.05% NaN3 and PMSF overnight at RT with gentle 

shaking to free the glomerular basement membrane (GBM). The prep-

aration was centrifuged for 10 minutes at 483 x g and the 

supernatant was aspirated. 3% Triton-X 100 was added and the tubes 

were rotated for 2-4 hours. The preparation was centrifuged as 

above and the pellet treated with 2000 units of DNase in 1 M NaCl 

and gently shaken and incubated for 1-2 hours at 37°c. The prepara-
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tion was centrifuged and the pellet treated with 4% deoxycholate for 

2 hours at RT. After centrifugation, the pelleted material was 

washed 5 times in azide-water. The recovered sediment was judged by 

microscopic review to be >95% purified glomerular basement membrane 

and was stored at -20°c until digestion. This procedure yields a 

preparation that is enriched· for glomerular basement membrane. 

Enzyme Digestion of Human GBM or Collagen 

Enzymatic digestions of membrane preparations were 

essentially as previously described (Markowitz and Lange, 1964; 

Lange, 1969). Some modifications are as follows. 

Glomerular basement membrane (GBM) sediment, collagen type I 

(Sigma) or collagen type IV (Sigma) was weighed and 1 mg bacterial 

collagenase (Sigma) in PBS, pH 7.4, with 0.01 mM calcium lactate and 

1 mM PMSF was added per 100 mg of GBM sediment or collagen. 

Preparations were rotated slowly for 18 hours at 37°c and then 

centrifuged at 483 x g for 30 minutes. Supernatants were stored at 

-20°c until use. 

Glomerular basement membrane, collagen I, or collagen IV was 

weighed and 1 mg of trypsin (Sigma) in PBS, pH 6.0, was added per 

100 mg sediment or protein. Preparation were rotated for 18 hours 

at 37°c and then centrifuged at 483 x g for 10 minutes. 

natants were stored at -20°c until use. 

Super-

GBM, collagen I, or collagen IV were pepsin digested (Qian 

and Glanville, 1984; Glanville et al., 1985). GBM sediment (GBM 

18509 N, 18274 N) or protein was digested by adding 0.02 milligrams 
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of pepsin (Nutritional Biochemicals Corporation, Cleveland, OH) per 

milligram of material to be digested in 0.5 M formic acid (pH 2.0) 

at 4°c with mixing for 16 hours. After neutralization with 10 N 

NaOH, the mixture was centrifuged and stored at -20°c until use. 

Amino Acid Analysis 

Protein, isolated polypeptide or whole collagenase or trypsin 

digested glomerular basement membrane was digested to single amino 

acids with constant boiling 5.7 N HCl in sealed N2 flushed, 

evacuated tubes for 22 hours. Preparations were dried a desiccator 

containing NaOH pellets which absorb HCl from the sample. Dried 

preparations were dissolved in sample buffer and analyzed (Beckman 

6300 Amino Acid Analyzer) using an ion exchange column and lithium 

buffers and a program that compares amino acid composition of the 

preparation to a standard separation of amino acids. Amino acid 

composition was converted to percent amino acid per 100 amino acid 

and total weight (microgram) of preparation using a spreadsheet 

(Lotus 1-2-3, Cambridge, MA). 

Enzyme Linked Immunosorbant Assay (ELISA) 

Proteins, polypeptides, or tissue isolates were tested for 

reactivity to anti-SCM mAb by ELISA (Voller, Bidwell and Bartlett, 

1980). Plates ( 96 wells) were sensitized with 5 ug/ml of the 

material to be assayed in 0.05 M carbonate buffer, pH 9.6, overnight 

at RT. Wells were blocked with 1% BSA in PBS for two hours at RT. 

Dilutions of a known antibody concentration of mAb, serum or ascites 



were applied to the plates for one to two hours at RT. 
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For IgM 

primary antibody,dilutions of 20 ug/ml to 0.078 ug/ml (100 ul/well) 

were applied to the plates in triplicate. For IgGl primary an­

tibody, dilutions of 45 ug/ml to 0.01 ug/ml were applied to the 

plates. After extensive washing with PBS-0.05% Tween 20, enzyme 

conjugated detector antibody was added to the wells ( 100 ul/well) 

for one hour at RT. A peroxidase-labeled goat anti-mouse IgM 

antibody (HyClone, Logan, UT) and a peroxidase labeled goat anti­

mouse IgG antibody (HyClone) were used at 0.1 ug/ml in 1% BSA-PBS 

for IgM and IgGl primary antibodies, respectively. After extensive 

washing, substrate was applied to the wells (150 ul/well) and 

allowed to develop for 30 minutes and then read with a microplate 

reader at 405 nm. For peroxidase conjugated detector antibody, 

equal parts of 0.02% 2,2'-azinodi-(3-ethylbenzthiazoline sulfonic 

acid) {Sigma) in 0.1 M citrate buffer, pH 4.1 and 0.01% H202 in PBS 

were used as substrate. Absorption was read at 405 nm at 30 

minutes. Mean optical density and standard deviation were 

calculated for each reading and plotted versus ug/ml of antibody. 

Competitive Inhibition Studies of IIF4 Reactivity 

a. Streptococcal cell membranes .!!.§. competitors 

Dilutions of trypsin digested SCM or trypsin digested §.. 

mutans cell membrane {final concentration: 40 ug/ml to 0.1 ug/ml) 

were added with IIF4 (final concentration: 2.5 ug/ml) in PBS and 

incubated at 37°c for two hours. After centrifugation,, 100 ul/well 

was applied to a trypsin digested SCM (0.5 ug/ml) sensitized and BSA 
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blocked 96 well plate. After a one hour incubation and extensive 

washing with PBS-0.05% Tween 20, plates were processed as described 

in ELISA and tested for unbound antibody on plates sensitized with 

trypsin digested SCM or pepsin digested collagen IV. These assays 

were performed with at least three replicates and each experiment 

was performed at least three times. 

~· Fibronectin, heparan sulfate proteoglycan, laminin, and bovine 

~ albumin as competitors 

Laminin, and heparan sulfate proteoglycan are major 

components of GBM along with collagen IV. Native fibronectin (human 

serum; Boehringer Mannheim, Indianapolis, IN), native laminin 

(derived from Englebreth-Holm-Swarm Mouse sarcoma; Sigma, St. Louis, 

MO.), heparan sulfate proteoglycan (derived from bovine kidney; 

Sigma) and bovine serum albumin (Sigma) were diluted in PBS (final 

concentrations, 1.0 to 0.00001 ug/ml) were incubated with IIF4 

(final concentrations, 2. 5 ug/ml) at 37°c for two hours and then 

processed as above. 

~· Enzyme digests of collagen !, collagen IV, and GBM .9..2 competitors 

This assay was used to determine IIF4 reactivity with the 

major constituent of GBM, collagen IV, and as a comparison, collagen 

I and with GBM. Dilutions of collagenase digests of GBM and human 

placenta collagen IV (Sigma) and pepsin digests of human placenta 

collagens I and IV (final concentration,10 to 0.0001 ug/ml) were 
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incubated with IIF4 (final concentration, 2.5 ug/ml) at 37°c for two 

hours and then processed as described above. 

competitive Inhibition of anti-collagen IV mAb reactivity 

As a comparison for competitive inhibition of IIF4 

reactivity, the anti-collagen IV mAb reactivity was competitively 

inhibited by pepsin digested human placenta collagens I and IV, 

fibronectin, and trypsin digested SCM. Dilutions of SCM, pepsin 

digested collagens I and IV and fibronectin (final concentration, 10 

to 0.00001 ug/ml) were incubated with anti-collagen IV mAb (final 

concentration, 0.5 ug/ml) for two hours at 37°c and then processed 

as described in ELISA except that the antibody-inhibitor mixture was 

applied to 96 well plates sensitized with trypsin digested GBM at 

0.5 ug/well and peroxidase labeled goat anti-mouse IgG at 0.1 ug/ml 

was used as the secondary antibody. 

SOS-PAGE of Proteins 

Bacterial membrane preparations, glomerular basement membrane 

preparations, isolated proteins, or immunoprecipitated complexes 

were separated on sodium dodecyl sulfate polyacrylamide elec-

trophoresis (SOS-PAGE) (Lammeli, 1970). A 10% or 15% gel ( 10% or 

15% acrylamide, 1% N-N methylene bis-acrylamide crosslinker, Kodak) 

was polymerized using ammonium persulfate ( 1. 7 mM final 

concentration) and TEMED (0. 52 mM final concentration) (Sigma). 

Stacking gels of 5% were used. Proteins to be applied to gels were 

denatured by incubating at 90°c for 5 minutes in sos-sample buffer 

(0.06 M Tris, 10% (v/v) glycerol, 5% (v/v) 2-mercaptoethanol·, 2.3% 
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SOS / pH 6 • 8 ) • Proteins of known molecular weight were used as 

standards (Bio-Rad, Richmond, CA.): phosphorylase B, 97.4 kDa; 

bovine serum albumin, 66.2 kDa; ovalbumin, 42. 7 kDa; carbonic an­

hydrase, 31.0 kDa; soybean trypsin inhibitor, 21.5 kDa; lysozyme, 

14.4 kDa. Proteins were electrophoresed through the stacking gel at 

70 V and through the separating gel at 175 V. The runs were ter­

minated when the bromophenol blue dye (1% aqueous) included in the 

standard molecular weight protein mixture reached the bottom of the 

gel. 

Staining of and Duplicating Protein Gels 

Gels were stained with Coomassie Brilliant Blue R-250 or were 

silver stained (described below). Gels were stained in 10% 

Coomassie Brilliant Blue R-250 (Sigma) in 50% trichloroacetic acid 

(Sigma) for 1-2 hours with agitation. Gels were destained in 7.5% 

acetic acid and 5% methanol for several hours. Coomassie stained 

gels were duplicated by positive photographic images with EDP 

Electrophoresis Duplicating Paper (Kodak). Under a lA red safelight 

filter, EDP paper was placed emulsion side up on a flat surface. An 

amber filter (supplied by the manufacturer) was placed between the 

EDP paper and the gel to be duplicated. A 15-watt incandescent 

light source was placed 36 inches over the EDP paper/filter/gel 

assembly and the paper was exposed for 15-20 seconds. EDP paper was 

developed in Dektol at 1: 1 for 2 minutes at RT, washed and then 

fixed (Kodak fixer) for 2 minutes at RT, washed for 2 minutes and 

then air dried. 
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KJ..ution of Protein from SOS-PAGE 

Protein preparations containing higher molecular weight 

proteins (100-140 kOa) of interest were separated on 6.5\ SOS-PAGE, 

stained with Coomassie Brilliant Blue and destained. Stained bands 

of interest with cut from the gel and minced into small ( 1 mm3) 

pieces. Gel pieces were washed in. distilled water and then 

equilibrated in 0.05 M NH4co3, 0.1\ SDS for 2 hours at RT. After 

equilibration, gel pieces were placed on the cathode side of a 

lucite chamber; chamber halves were separated by a dialysis membrane 

(3000 MW cutoff, Sephraphor). The lucite chamber was cooled at all 

times in an ice bath to prevent overheating of the gel pieces. 

After 50 milliamperes were applied for approximately two hours, 

supernatant was recovered from both halves of the chamber, dialyzed 

against 20% methanol overnight at 4°c, dialyzed against distilled 

water for 2 hours at 4°c, and lyophilized. Protein in eluted 

material was quantitated and then subjected to amino acid analysis. 

Recovery of protein from SDS-PAGE, elution and dialysis was poor, in 

the range of 15-20\. This was determined by comparing the density 

of the polypeptide band to the total density of the total protein in 

the lane. 

Immunoprecipitation 

In order to specifically detect proteins or polypeptides 

reactive with anti-SCM mAb, immunoprecipitation was done (Chen 

al., 1986; Weir, 1979). Immunoprecipitation of proteins reactive 

with anti-SCM mAb was carried out using goat anti-mouse IgM ·coupled 
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to agarose beads (Sigma). The beads will bind a maximum of 0.4 mg 

IgM per ml of bead. The agarose beads were washed extensively with 

PBS. GBM, SCM, or other protein aliquots were pre incubated by 

treatment with pre-washed beads for one hour with mixing at 37°c. 

The SCM, GBM or other protein aliquots were recovered by 

centrifugation. To couple ·mAb to the beads, either anti-SCM mAb, 

IIF4, TEPC 183, or IgM from the euglobulin fraction of normal mouse 

serum was reacted with the pre-washed beads at 0.5 mg/ml for 18 

hours at 4°c with gentle mixing. The beads are then washed four 

times in 4 volumes of cold PBS to remove unbound mAb. Protein to be 

precipitated (SCM, GBM or other protein) was added to the bead/mAb 

complex at 1 mg/ml (100 ug total) and incubated at 4°c for 18 hours 

with gentle mixing. After three washings in four volumes of PBS, 

precipitated material was eluted from the beads with 0 .1 acetic 

acid, 0 .15 M NaCl, pH 2. 4 for 3-5 minutes with gentle mixing. 

Eluted material was recovered by centrifugation, neutralized with 10 

N NaOH, dialyzed against distilled water for 15 minutes and 

concentrated to a small volume (approximately 30 ul). Eluted mater­

ial was then denatured in SOS sample buffer and applied to 10% or 

15% SOS-PAGE. After electrophoresis, gels were silver stained. 

Preclearing of Immunoprecipitable Material 

In order to demonstrate specificity of the 

immunoprecipitation reaction, a preclearing step was added to the 

above protocol. Protein that was preincubated with the agarose 

beads was subjected to immunoprecipitation as described above with 
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IIF4 or TEPC 183 conjugated beads. The supernatant of the 

immunoprecipitation reaction was reacted again with fresh IIF4- or 

TEPC 183-conjugated beads. Material was eluted and processed as 

described in the immunoprecipitation section. 

silver staining of SOS-PAGE 

Gels were silver stained in order to detect small amounts of 

protein (Gooderham, 1984). After electrophoresis, gels were pre-

fixed in 50% methanol overnight. Gels were fixed in 10% 

glutaraldehyde for 30 minutes with agitation. Gels were washed free 

of excess glutaraldehyde with four distilled water washes of 30 

minutes each. Gels were treated with ammoniacal silver. 8.0 ml of 

0. 07 3 mM AgN03 was added to a solution of 93% 0 .1 N NaOH and 7% 

NH40H ( 45 ml total). This was the diluted to 200 ml (total) an 

added to a gel for 20 minutes with rocking, washed twice with 

distilled water and then developed (0.1 grams of citric acid, 0.1 ml 

of 37% formaldehyde in 200 ml distilled water) for 20 minutes. Gels 

were held in 50% methanol until photographed. 



RESULTS 

Anti-SCM mAb is IgM Isotype 

After production of murine monoclonal antibodies to group A 

type 12 SCM (Fitzsimons, Weber and Lange, 1987), one of the mAbs was 

isotyped. As positive controls, a 1:500 dilution of normal mouse 

serum, 0.5 ug/ml each of murine myeloma TEPC 183 mAb (IgM), murine 

myeloma MOPC 21 mAb (IgGl), and anti-collagen IV mAb (IgGl) were 

used. The isotypes of TEPC 183, MOPC 12 and anti-collagen IV were 

previously known from the supplier and were used as monoclonal 

controls for the isotyping system. As demonstrated in Table 1, all 

mAbs with previously known isotypes reacted as expected; normal 

mouse serum contains all isotypes and all isotypes were detected. As 

a negative control, a 1: 500 dilution of normal rabbit serum was 

used; since this is a murine isotyping system, no murine isotypes 

were detected in normal rabbit serum. The anti-SCM mAb, IIF4, was 

isotyped as IgM. 

Reactivity of IIF4 with SCM and ~. mutans Cell Membrane 

This experiment was performed to demonstrate the reactivity 

of anti-SCM mAb, IIF4, with its autologous antigen, group A type 12 
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TABLE 1. 

Isotype of Murine Monoclonal Antibodies 

Monoclonal Isotype 

Anti-collagen IV IgGl 

MOPC 21 IgGl 

TEPC 183 IgM 

IIF4 IgM 

Control sera 

normal mouse serum + all isotypes 

normal rabbit serum - all isotypes 

All monoclonal antibodies were tested at 0.5 ug/ml; sera were 
tested at a dilution of 1:500. 
Euglobulin fraction of ascites IIF4 was tested. 
A positive isotype was an optical density > 0.600 at 405 nm. 
Isotypes of anti-collagen IV mAb, TEPC 183, and MOPC 21 were 
previously known and used as controls. 

39 
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scM and compare this reactivity to §. mutans cell membrane. In an 

ELISA, O. 5 ug of either trypsin digested SCM or §. mutans cell 

membrane were reacted with equal amounts of IgM in IIF4, TEPC 183, 

or normal mouse serum (5 ug/ml to 0.313 ug/ml). In Figure 1, IIF4 

reacted with SCM and not another streptococcal cell membrane, §. 

mu tans membrane (at 5. 0 and 2. 5 ug/ml IIF4, p < 0. 001) • TEPC 183 

and IgM from normal mouse serum did not react with SCM (at 5.0 and 

2.s ug/ml IgM, p < 0.001). Reactions of IIF4 and TEPC 183 with the 

cell membrane from §. mutans were not statistically different (at 

5.0 and 2.5 ug/ml IgM, p>0.05). This result indicates that anti­

group A type 12 SCM mAb reacted with its autologous antigen, group A 

type 12 SCM. §. mutans cell membrane will be used as a negative 

control for SCM. 

Competitive Inhibition of IIF4 Reactivity with SCM and §. mutans 

Cell Membrane as Inhibitors 

IIF4 reactivity, as presented in Figure 1, with its 

autologous antigen, SCM and not with another streptococcal cell 

membrane from §. mutans was confirmed by competitive inhibition. 

Trypsin digested SCM, at 5000 ng, inhibited IIF4 reactivity 

to a maximum of 50%. Trypsin digested cell membrane from §. mutans 

did not inhibit IIF4 reactivity t6 any extent distinguishable from 

background (Figure 2). This result confirmed and demonstrated that 

IIF4 reacted with its autologous antigen, SCM, and not another 

streptococcal cell membrane from §. mutans. 



£igure £. Reactivity of IIF4 with Trypsin Digested Group A ~ 12 

scM and Trypsin Digested Cell Membrane from §. mutans 

IIF4, TEPC 183 and IgM from NMS (serial dilutions of 5.0 to 0.313 

ug/ml IgM) were applied to 96 well plates sensitized with 5.0 ug/ml 

of either trypsin digested SCM or trypsin digested §. mutans cell 

membrane. After application of peroxidase labeled goat anti-mouse 

IgM at O.l ug/ml and peroxidase based substrate, color development 

was recorded at 405 nm at 30 minutes. 
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Figure £. Competitive Inhibition of IIF4 Reactivity with Bacterial 

Cell Membranes 

IIF4 reactivity with trypsin digested SCM (5.0 ug/ml bound to a 96 

well plate) was competitively inhibited with trypsin digested SCM, 

but not trypsin digested ~. mutans cell membrane. IIF4 (2.5 ug/ml) 

was reacted with dilutions of SCM or ~· mutans cell membrane for two 

hours at 37°c. Aliquots (100 ul/well) were then applied to trypsin 

digested SCM plates. After processing as described in METHODS, 

color development was recorded at 405 nm at 30 minutes. Each assay 

was preformed a minimum of three times with a minimum of three 

replicates for each point and the average and standard deviation of 

IIF4 reactivity is presented. 
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Anti-SCM mAb Binding is Localized to GBM 

IIF4 was hypothesized to recognize an epitope in human GBM. 

cortical tissue from human kidneys (18274 N, 19442 N, 19226 N, 19763 

N) was assayed for binding of anti-SCM mAbs. Cortical tissue 

treated with TEPC 183 showed no binding of antibody on indirect im-

munofluorescence. However, equal amounts of anti-SCM mAb IIF4 

showed immunofluorescence of GBM in the cortical tissue preparations 

examined (Figure 3). A granular pattern of immunofluorescence was 

consistently seen in all cortical tissue examined. Nuclei of 

mesangial cells were autofluorescent (yellow-orange in color). Some 

immunofluorescent staining was also seen of tubular basement membr­

ane, mesangial matrix, and vessel walls. 

Analysis of 25 GBMs 

Twenty five human GBMs were analyzed for amino acid 

composition. In Table 2, the compiled percentage of each amino acid 

in the GBMs is given. The presence of hydroxyproline and 

hydroxylysine in the 25 GBMs established these GBMs as containing 

collagen; only collagen contains these amino acids. 

Reactivity of Anti-SCM mAb with Isolated Human Glomerular Basement 

Membrane (GBM) 

IIF4 was hypothesized to react with isolated, human GBM. To 

test this, GBMs were isolated as described from 26 human kidneys. 

5 ug of isolated, solubilized GBMs were individually coated 



Figure J. Indirect Immunofluorescence of Human Renal Cortical Tissue 

with IIF4 and TEPC 183 

cryostat sectioned human renal cortical tissue was treated with IIF4 

or TEPC 183 ( 10 ug of IgM in 1% BSA) for one hour at RT. After 

washing, tissue sections were incubated with fluorescein-conjugated 

goat anti-mouse IgM for one hour at RT, washed and viewed on a 

fluorescent microscope. Panel A is IIF4 treated cortical tissue; 

IIF4 bound to GBM in a granular pattern, mesangial matrix, and 

tubular basement membrane. TEPC 183 (Panel B) did not bind to the 

cortical tissue. Mesangial nuclei were auto-fluorescent. 
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TABLE 2. 

Amino Acid Composition of 
Human Glomerular Basement Membrane 

(percent amino acid) 

Percent Amino Acid 
Amino Acid (mean +/- SD) 

Cysteic acid 0.98 +/- 0.99 
Aspartic acid 8.86 +/- 0.48 
Hydroxyproline 3.62 +L- 1.32 
Methionine sulfoxide 0.57 +/- 0.31 
Threonine 4.53 +/- 0.58 
Serine 4.32 +/- 0.52 
Glutamic acid 12.73 +/- 0.84 
Pro line 6.85 +/- 0.61 
Glycine 13.57 +L- 2.50 
Alanine 4.70 +/- 0.41 
Hexosamines 0.16 +/- 0.15 
Valine 4.66 +/- 0.76 
Cysteine 0.45 +/- 0.37 
Methionine 0.84 +/- 0.41 
Isoleucine 4.04 +/- 0.42 
Leucine 7.85 +/- 0.85 
Tyrosine 3.27 +/- 0.46 
Phenylalanine 4.25 +/- 0.19 
Hydroxy lysine 2.43 +L- o. 72 
Lysine 4.47 +/- 0.60 
Histidine 2.20 +/- 0.26 
Arginine 4.76 +/- 0.85 
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Twenty five human, isolated GBMs were analyzed for amino acid 
content. Each GBM was analyzed twice. The mean is the mean of the 
means for the 25 samples for each amino acid. 
SD-- standard deviation. 
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on 96 well plates and reacted with IIF4 and TEPC 183. In Figure 4, 

the individual results of 26 GBMs reactivity with IIF4 and TEPC 183 

at 5.0 ug/ml IgM are compiled and shown. As represented in this 

paired data, all GBMs reacted with to a greater extent with IIF4 

than TEPC 183 (p<0.01, at minimum significant difference). The GBM 

with the least difference in reactivity between the levels of IIF4 

and TEPC 183 reactivity displayed significantly greater reactivity 

with IIF4 (at 5.0 and 2.5 ug/ml IgM, p<0.02, in both cases). At 5.0 

ug/ml IgM, the mean of the means of the GBMs for IIF4 reactivity was 

significantly greater than the mean of the means for TEPC 183 (at 

p<0.001). These data indicated that all of the GBMs reacted 

preferentially with IIF4 as compared to TEPC 183. These data further 

indicated that IIF4 reacted with isolated human GBM and reacted with 

all GBMs tested. 

IIF4 Reactivity with Trypsin or Collagenase Digested GBMs 

Since IIF4 was shown to react with isolated GBMs, reactions 

of IIF4 with trypsin digested GBMs and collagenase digested GBMs 

were examined. IIF4 reacted to an equal extent with trypsin 

digested GBMs and collagenase digested GBMs (Figure 5). In this 

paired data, the mean of the means at 5.0 ug/ml IIF4 indicated no 

difference in IIF4 reactivity to the two types of enzyme digested 

GBMs (p>0.2 for trypsin versus collagenase digested GBMs). TEPC 183 

reactivity with trypsin digested GBMs was less than with collagenase 

digested GBMs; reactions of TEPC 183 with collagenase digested GBMs 



Figure ~· IIF4 Reactivity with 26 Human GBMs 

Isolated, trypsin digested or collagenase digested human GBMs were 

reacted with IIF4 and TEPC 183 in ELISA. Plates were sensitized 

with 5.0 ug/ml of the GBM and reacted with IIF4 or TEPC 183 (10 to 

0. 05 ug/ml IgM) for one hour at RT. After washing, plates were 

processed as described in METHODS and MATERIALS. Each GBM was 

assayed in triplicate at least three times. Reactivity of the GBMs 

at 5.0 ug/ml of IIF4 and TEPC 183 is shown as paired data. 
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Figure ~- IIF4 does not React Differently to Trypsin and Collagenase 

Digested GBMs 

IIF4 reactivity of trypsin versus collagenase digests of GBM was ex-

amined at 5.0 ug/ml of IIF4 and TEPC 183. Reactions of TEPC 183 

with trypsin digested and with collagenase digested GBMs are also 

shown. 
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Figure ~- Bimodal Distribution of IIF4 Reactivity with 26 GBMs 

IIF4 reactivities at 5.0 ug/ml with the GBMs were placed in optical 

density groups of 0.05 and plotted for frequency of occurrence 

without regard to standard error. There are two groups of GBM with 

respect to extent of IIF4 reactivity when reactivity is examined in 

this manner. 
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were greater than with trypsin digested GBMs, but reactivity of TEPC 

183 with collagenase digested GBMs is significantly less than IIF4 

reactivity with collagenase digested GBMs (at 5.0 ug/ml IgM, 

p<0.05). However, the range of TEPC 183 reactivity with trypsin 

digested GBMs was encompassed by the range of TEPC 183 reactivity 

with collagenase digested GBMs. These results indicate that TEPC 

183 reactivity in this system was variable and was considered 

nonspecific. These results demonstrated that IIF4 reacted equally 

well with trypsin and collagenase digested GBMs; this strongly 

suggested that the IIF4 epitope exists in both types of enzyme 

digested GBM preparations. 

Bimodal Distribution of Reactivity with 

Values for IIF4 reactivity at 5. 0 ug/ml IgM with 26 human 

trypsin or collagenase digested GBMs were placed in 0.05 o.o. groups 

and plotted for frequency occurrence without regard to standard 

error of the reactivity of each GBM with IIF4. As shown in Figure 

6, two groups of GBMs were evident. These data suggested that two 

groups of GBM, one with higher IIF4 reactivity and one with lower 

IIF4 reactivity, existed in the population of 26 GBMs examined. 

Comparison of IIF4 Reactivity among Bacterial Cell Membranes, 

Isolated Proteins Comprising GBM, and GBM 

Anti-SCM mAb, IIF4, was hypothesized to recognize an epitope 

common to SCM and GBM. It is useful to compare IIF4 reactivity with 

SCM, proteins comprising the GBM and the GBM itself so that one may 
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begin to understand how IIF4 reacts with preparations thought to 

contain the common epitope. Figure 7 compares IIF4 reactivity among 

these protein preparations. 

Figure 7, panel A represents data in which trypsin digested 

SCM reacted to a significantly greater extent than trypsin digested 

~- mutans cell membrane (at 5.0 and 2.5 ug/ml IgM, p<0.001) (Figure 

1). In Panel B, IIF4 and TEPC 183 reactivity among collagenase, 

trypsin, or pepsin digests of GBMs is represented. In this sample of 

IIF4 reactivity with enzyme digested GBMs, all GBM preparations 

reacted with IIF4 to a similar extent; these results are examined in 

more depth in Figure 8. All enzyme digested GBMs reacted with IIF4 

to a significantly greater extent than with TEPC 183 (for each 

preparation, at 5.0 and 2.5 ug/ml IgM, p<0.01, at minimum 

significant difference). 

Panel C represents IIF4 reactivity with collagenase digested 

collagen I and collagenase digested collagen IV, and native laminin. 

IIF4 did not react with laminin to any extent significantly 

different from TEPC 183 reactivity with laminin (at all antibody 

concentrations, p>0.2). However, collagenase digested collagen I 

and collagenase digested collagen IV did react with IIF4 to a 

significantly greater extent than with TEPC 183 (for both 

preparations, at all antibody concentrations, p<0.001). 

Panel D represents IIF4 reactivity with pepsin digested 

collagen I or collagen IV, trypsin digested collagen I and native 

fibronectin. IIF4 did not react with fibronectin to any extent 

greater than with TEPC 183 (at 5.0 and 2.5 ug/ml IgM, p>0.05). IIF4 
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did react with pepsin digested collagen I and pepsin digested 

collagen IV to a significantly greater extent than the digests did 

with TEPC 183 (at 5.0 and 2.5 ug/ml IgM, p<0.01, at minimum 

significant difference). Trypsin digested collagen I also reacted 

with I IF4 to a greater extent than with TEPC 183 (at 5. O and 2. 5 

ug/ml, p<O.l). The reactivity of collagen I with IIF4 was re-

evaluated in competitive inhibition studies (Figure 8). These 

results indicated that a collagen compound contained the epitope 

reactive with IIF4; this epitope was not part of laminin or 

fibronectin. 

Conformation of IIF4 Reactivity with Collagen IV 

The experiments indicated that collagen IV contained the 

epitope recognized by IIF4; to confirm this result, IIF4 was 

competitively inhibited by isolated components of GBM (Figure 8). 

a. IIF4 Reactivity is not Inhibited f!.:l Laminin, Fibronectin, Heparan 

Sulfate Proteoglycan, or Bovine Serum Albumin 

IIF4 (2.5 ug/ml) was reacted with proteins (100 to 0.01 

ug/ml). Unbound IIF4 antibody was assayed for by applying the IIF4 

protein reaction mixture to trypsin digested SCM plates. The lower 

panel of Figure 8 represents IIF4 reactivity not inhibited by 

laminin, fibronectin, heparan sulfate proteoglycan and bovine serum 

albumin; none of these proteins was able to inhibit IIF4 reactivity 

to any extent distinguishable from no or very low levels of antibody 

inhibition. Bovine serum albumin was included as a globular protein 
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not part of the GBM. These results confirm the ELISA data 

previously presented; IIF4 did not react with GBM components 

fibronectin, laminin, heparan sulfate proteoglycan. 

~· IIF4 Reactivity is Inhibited .Q.y Collagen IV 

IIF4 was reacted with GBM and collagen preparations and 

unbound antibody was assayed as described. The upper panel of 

Figure 8 represents IIF4 reactivity inhibited by enzyme digested 

GBMs and enzyme digested collagen I and IV. Pepsin digested collagen 

I did not inhibit lIF4 reactivity with SCM to any extent 

distinguishable from no or very low levels of IIF4 reactivity 

inhibition. Trypsin digested, collagenase digested, or pepsin 

digested GBMs inhibited IIF4 reactivity to maxima of 52%, 40%, and 

63%, respectively. These results confirmed the IIF4 reactivity with 

trypsin, collagenase, or pepsin digested GBMs as indicated in Figure 

7. Results presented in Figure 8 also confirmed that collagen IV 

contained the epitope recognized by IIF4. IIF4 was inhibited to 

maxima of 73% and 43% by pepsin digested collagen IV and collagenase 

digested collagen IV, respectively. These results confirmed that 

collagen IV, and not other GBM components and not collagen I, 

contains the IIF4 reactive epitope. A level of 40% IIF4 inhibition 

was chosen to include the reproducible 40% inhibition of IIF4 

reactivity by collagenase digested GBM. Amounts of GBM preparations 

and collagen IV preparations required to inhibit 40% of IIF4 

reactivity are summarized in Table 3. 



Figure ]... Comparison of IIF4 Reactivity with Streptococcal Cell 

Membranes, Isolated Components of GBM, and GBM 

This figure is a compilation of IIF4 reactivity versus bacterial 

cell membrane components, isolated GBM components and enzyme 

digested GBMs. All assays were performed with 96 well plates coated 

with 0.5 ug/ml of the appropriate protein. After blocking, plates 

were treated with serial dilutions of IIF4 or TEPC 183 (10.0 to 0.05 

ug/ml IgM in PBS). Plates were processed as described in METHODS 

AND MATERIALS. Each assay was performed a minimum of three times 

and the average reading and standard error is shown. 



1.200 

1.000 

E 0.800 

c: 
0.600 

Li) 

0 0.400 
v 

0.200 

(j) 0.000 
c: c 1.200 
(]) 

E 
0 

1.000 

on 
(_) 0.800 

+-' 
0.600 

0 
0.400 

0.200 

0.000 

• .... 

A 

(closed symbols- llF4) 

• Trypsin digested group A type 12 SCM 
& Trypsin digested §.. mutons cell membrane 

• - • Collagenase digested human placenta collagen IV 
• - • Collagenase digested human placenta collagen I 
& & Native lominin 

0.300 1.00 

(open symbols- TEPC 183) 

• •4415NCGBM 
& & 4415N T GBM 
•-• 7415NTGBM 
+ + Pepsin digested GBM 

+ - + Pepsin digested human placenta collagen I 
" " Pepsin digested human placenta collagen IV 
• • Trypsin digested human placenta collagen I 
& · · & Native Fibronectin 

10.00 0.300 1.00 

µg/ml lgM 

10.00 CJ\ 
...... 



62 

£· IIF4 Reactivity with Pepsin Digested Collagen IV is Inhibited Q.y 

Trypsin Digested SCM and Pepsin Digested Collagen IV 

Competitive inhibition experiments demonstrated that 

collagenase or pepsin digested collagen IV inhibited IIF4 reactivity 

with the IIF4 autologous antigen, SCM. Figure 9 represents 

experiments in which the ability of SCM to inhibit IIF4 reactivity 

with pepsin digested collagen IV was tested. Pepsin digested 

collagen IV inhibited IIF4 reactivity with pepsin digested collagen 

IV to a maximum of 58% while SCM inhibited IIF4 reactivity with 

pepsin digested collagen IV to a maximum of 42%. These results are 

compared for amount of inhibitor required to achieve 40% inhibition 

of IIF4 reactivity (summarized in Table 3). These results further 

show the IIF4 reactive epitope is located in collagen IV. 

~. Summary of IIF4 Inhibition Q.y Bacterial Membranes, GBMS, and GBM 

Components. 

Table 3 represents the compilation of the IIF4 competitive 

inhibition studies presented in Figures 2, 8, and 9. The ability of 

trypsin digested SCM or .§.. mutans cell membrane to inhibit IIF4 

reactivity with SCM to 40% was examined by first-order linear 

regression. It was found that 900 ng of SCM were required to 

achieve this level of IIF4 inhibition; .§.. mutans cell membrane was 

found to be non-inhibitory for IIF4. 



Figure ~. Competitive Inhibition of IIF4 Reactivity with Isolated 

Proteins from the GBM 

Competitive inhibition of IIF4 reactivity was assayed by testing the 

ability of an inhibitor to bind IIF4 and prevent IIF4 from binding 

to a trypsin digested SCM sensitized 96 well plate. The assay is 

described in METHODS and MATERIALS. As represented in the lower 

panel, fibronectin, bovine serum albumin heparan sulfate 

proteoglycan, and laminin are competitively reacted with IIF4. As 

represented in the upper panel, whole enzyme digested GBM 

preparations and enzyme digested collagens are competitively reacted 

with IIF4. These data are summarized in Table 3. 
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~· Competitive 

Competitive inhibition of IIF4 reactivity was assayed by testing the 

ability of an inhibitor to bind IIF4 and prevent IIF4 from binding 

to a pepsin digestad sensit~zed 96 well plate as described 

in Materials and Methods. This experiment is the reciprocal of the 

experiment represented in Figure 8. 

Table 3. 

These data are represented in 
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Amounts of collagenase, trypsin, or pepsin digested GBMs 

required to achieve 40% inhibition of IIF4 reactivity were 900 ng, 

500 ng, and 1000 ng, respectively. Approximately one-half the 

amount of trypsin digested GBM was required to inhibit IIF4 as 

compared to amounts required of collagenase or pepsin digested GBMs 

to inhibit IIF4. Approximately the same amount of SCM was required 

to inhibit IIF4 as was required of collagenase or pepsin digested 

GBMs. 

Other components of the GBM, fibronectin, laminin, and 

heparan sulfate proteoglycan, were found to be non-reactive with 

IIF4. Bovine serum albumin was also non-inhibitory for IIF4. 

Contrary to data presented in Figure 7, pepsin digested collagen I 

was found to be non-inhibitory for IIF4 in these competitive 

inhibition studies. 

Amounts of pepsin digested collagen IV and collagenase 

digested collagen IV required to achieve 40% inhibition of IIF4 

reactivity with SCM were 300 ng and 1050 ng, respectively. The 

amount of pepsin digested collagen IV required to achieve 40% 

inhibition of IIF4 was one-third the amounts required of SCM, 

collagenase digested GBM and pepsin digested GBM. 

The ability of SCM, §.. mutans cell membrane, and pepsin 

digested collagen IV to inhibit IIF4 reactivity with pepsin digested 

collagen IV was also compared for 40% inhibition of IIF4 reactivity 

and are summarized in Table 3. §.. mutans cell membrane was found to 

be non-reactive with IIF4 while 2000 ng and 200 ng of SCM and pepsin 

digested collagen IV, respectively, were required to achieve 40% 
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inhibition of IIF4 reactivity. These values are approximately the 

same as required of these inhibitors to inhibit IIF4 reactivity with 

SCM. These results confirm the presence of the IIF4 epitope in 

collagen IV. Pepsin digested collagen IV was the best inhibitor of 

IIF4 reactivity with SCM. 

IIF4 Reactive Polypeptides in Collagen IV and GBM 

Competitive inhibition studies established collagen IV as the 

GBM component containing the IIF4 recognized epitope. Collagen IV is 

a complex molecule consisting of three chains (any combination of 

alpha 1 chains and alpha 2 chains). IIF4 reacted with collagen IV 

and it was hypothesized that the location of the IIF4 reactive 

epitope on collagen IV could be identified. Immunoprecipitation of 

collagen IV and GBM polypeptides from enzyme digests were used to 

test this hypothesis. 

~. Immunoprecipitation of GBM Polypeptides with IIF4 

In order to demonstrate GBM polypeptide reactive with IIF4, 

immunoprecipitation with IIF4 was performed with eight GBMs. IIF4 

immunoprecipitated polypeptides of 120, 100, and 36 kDa from 

collagenase digested GBM 11741 N (Figure 10, lane 3). No GBM 

polypeptides were precipitated with TEPC 183 (lane 5). In 

collagenase digested GBM 7415 N, only the 120 kDa polypeptide was 

IIF4 immunoprecipitated (Figure 11, A) and not with TEPC 183. In 

collagenase digested GBM 19763 N, IIF4 did immunoprecipitated the 



TABLE 3. 

SUMMARY OF COMPETITIVE INHIBITION STUDIES 
Inhibition of IIF4 Reactivity 
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Nanogram amount of inhibitor 
required to achieve 40% 
inhibition of IIF4 reactivity 

(OH A TRYPSIN DIGESTED SCH PLATE) 
Inhibitor (at 250 ng of IIF4) 

Trypsin digested SCM 900 +/- 250 ng 
Trypsin digested .§. mu tans 

cell membrane NI 

Collagenase digested GBM 900 +/- 300 ng 
Trypsin digested GBM 500 +/- 95 ng 
Pepsin digested GBM 1000 +/- 300 ng 

Bovine serum albumin NI 
Human serum fibronectin NI 
Murine lam in in NI 
Bovine kidney heparan sulfate 

proteoglycan NI 
Pepsin digested human placenta 

collagen I NI 
Pepsin digested human placenta 

collagen IV 300 +/- 150 ng 
Collagenase digested human 

placenta collagen IV 1050 +/- 360 ng 

Nanogram amount ofinhibitor 
required to achieve 40% 
inhibition of IIF4 reactivity 

(at 250 ng of IIF4) 
(OH A PEPSIN DIGESTED COLLAGEN IV PLATE) 

Trypsin digested SCM 
Trypsin digested .§. mutans 

cell membrane 

Pepsin digested collagen IV 

2000 +/- 700 ng 

NI 

200 +/- 100 ng 

NI-- not inhibitory at 40% inhibition of IIF4 reactivity. 
Nanogram inhibitory values were determined from a first­
order linear regression plot of each inhibitor and at 40% 
inhibition of IIF4 reactivity. 



polypeptides of 120, 

70 

100, and 39 kDa; TEPC 183 did not 

irnmunoprecipitate any apparent GBM polypeptides (Figure 11, B). In 

two of the GBMs, the 120 and 100 kDa polypeptides were IIF4 

irnmunoprecipitated [collagenase digested GBMs: 11778 N (Figure 12) 

and 9662 N (Figure 13) (Table 4)]. These experiments indicated that 

IIF4 reacted with higher molecular weight collagenase digestion 

products of GBM (120 and/or 100 kDa) and sometimes with a 36-39 kDa 

GBM polypeptide. 

In Figure 14, collagenase digested GBM, 8961 N, was 

irnmunoprecipitated with IIF4. A 120, 100, and 26 kDa GBM 

polypeptide with IIF4 immunoprecipitated (lanes 3 and 4; lane 4 was 

a reaction of one half the amount of GBM in the 

irnmunoprecipitation). This reaction appeared to be specific since 

preclearing of the collagenase digested GBM with IIF4 prior to 

irnmunoprecipitation with IIF4 removed the 120, 100, and 26 kDa GBM 

polypeptides from the reaction mixture (lane 5). TEPC 183 did not 

precipitate any GBM polypeptides and preclearing of the GBM 

preparation with TEPC 183 did not have any effect on the elution 

profile (lanes 6 and 7, respectively). 

For comparison, a pepsin digest of GBM was made and immuno­

precipitated by IIF4. IIF4 irnmunoprecipitated two polypeptides from 

a pepsin digested GBM which were 100 and 85 kDa (Figure 15, lane 3). 

IIF4 precleared these polypeptides (lane 4) and TEPC 183 did not 

immunoprecipitate any polypeptides of pepsin digested GBM. 

results are summarized in Table 4. 

These 



Figure 10. Immunoprecipitation of Collagenase Digested GBM 

Polypeptides with IIF4 

IIF4 bound to goat anti-mouse agarose beads was reacted with 100 ug 

of collagenase digested GBM 11741 N and processed as described in 

METHODS AND MATERIALS. Lane 2 represents the separation profile of 

collagenase digested GBM on 15% SOS-PAGE. Lane 3 is the profile of 

IIF4 immunoprecipitated GBM. Lane 5 represents TEPC 183 

precipitated GBM polypeptides. Lane 4 represents IIF4 

immunoprecipitated alone. The gamma, mu, light, and J chains are as 

labeled. 
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Figure 11. Immunoprecipitation of Polypeptides from Collagenase 

Digested GBMs 7415 N and 19763 N 

Collagenase digested GBMs 7415 N and 19763 N were processed as 

described. In panel A, IIF4 immunoprecipitated GBM 7415 N is 

represented Lane 4 represents TEPC 183 immunoprecipitated GBM 7415 

N. In panel B, IIF4 immunoprecipitated GBM 19763 N is represented 

(lane 7). TEPC 183 precipitated GBM 19763 N is represented in lane 

8. 



N ...., .p. a-
"' ~ .... ...., a- " 

"' 0 " ;_, ~ :< 
.... 
0 ...., 

N 

...., 

.p. 

'I 

.... N ... .p. a- "' ii .p. .... ...., 
"' " ~ "' 0 " ;,,, ~ :< 

.... 
0 ...., 

-- ... t . 

I 

Molecular weight 
markers 

Coomass ie Blue stained 
collagenase digested 
GBM 7415 N 

11F4 iDmlunoprecipitated 
collagenase digested 
GBM 7415 N 

TEPC 183 iDD11unoprecipitated 
collagenase digested 
GBM 7415 N 

Molecular weight 
markers 

Coomassie Blue stained 
collagenase digested 
GBM 19763 N 

IIF4 iDmlunoprecipitated 
collagenase digested 
GBM 19763 N 

TEPC 183 J 11n11u111 .• p r <: i pi l l l"d 

GBM 1976 3 N 



Figure 12. Immunoprecipitation 12.Y. IIF4 of Polypeptides from Col-

lagenase Digested GBM 11778 li 

Collagenase digested GBM was processed as described in Figure 10. 

IIF4 immunoprecipitated collagenase digested GBM 11778 N (lane 3) 

and TEPC 183 immunoprecipitated GBM (lane 4) are represented. IIF4 

immunoprecipitated alone (lane 5), TEPC 183 immunoprecipitated alone 

(lane 6), and goat anti-mouse IgM agarose beads processed alone 

(lane 7) are included as antibody chain mobility references. 
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Figure 13. Immunoprecipitation .Qy IIF4 of Polypeptides from Col-

lagenase Digested GBM 9662 N 

Collagenase digested GBM was processed as described in Figure 10. 

IIF4 immunoprecipitated collagenase digested GBM 9662 N in lane 3 

and TEPC 183 imrnunoprecipitated GBM polypeptides (lane 4) are 

represented. IIF4 immunoprecipitated alone (lane 5), TEPC 183 

immunoprecipitated alone (lane 6), and goat anti-mouse IgM agarose 

beads processed alone (lane 7) are included as antibody chain 

mobility references. 



....... N \_..) .i:-- °' .,.. ..... ..... \_..) °' . . . . . 

.i:-- I.II 0 ..... !',,) 

' 
,, 

8l 

'° ..... . 
.i:--

I II 
.-~ 

~ 
x 
..... 
0 

\_..) 

Molecular weight 
markers 

Collagenase digested 
pBM 9662 N 

IIF4 immunoprecipitated 
GBM 9662N 

TEPC 183 iunnunoprecipitated 
GBM 9662 N 

IIF4 alone immunoprecipitat 

TE PC 183 alone 
immunoprec ip i~ated 

Goat anti-mouse l gM 
a l one 



Figure 14. Immunoprecipitation of Polypeptides from Collagenase 

Digested GBM 8961 li 

Collagenase digested GBM (100 ug) was IIF4 immunoprecipitated (lane 

3). Collagenase digested GBM (50 ug) was IIF4 immunoprecipitated 

(lane 4). IIF4 precleared GBM digest is represented in lane 5. 

TEPC 183 irnrnunoprecipitated and TEPC 183 precleared of the GBM are 

represented (lanes 6 and 7, respectively). IIF4 immunoprecipitated 

alone (lane 8), TEPC 183 irnrnunoprecipitated alone (lane 9), and goat 

anti-mouse IgM agarose beads processed alone (lane 10) are included 

as antibody chain mobility references. 
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Figure 12_. Immunoprecipitation of Pepsin Digested GBM with IIF4 

Separation of pepsin digested GBM polypeptides is represented in 

lane 1. IIF4 immunoprecipitated pepsin digested GBM is represented 

in lane 3. IIF4 precleared GBM is represented (lane 4). TEPC 183 

precipitated pepsin digested GBM polypeptides is represented (lane 

5) • 
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~. Polypeptides from Collagenase Digested Collagen IV Reactive with 

IIF4 

Collagenase digested co 11 agen IV was subjected to 

irnmunoprecipitation with IIF4 or TEPC 183 (Figure 16). Collagen IV 

polypeptides of 120 and 100 kDa were immunoprecipitated by IIF4. 

~· Polypeptides from Pe::isin Digested Collagen 1. and Collagen IV 

Reactive with IIF4 

IIF4 irnmunoprecipitated polypeptides of 200, 140, and 90 kDa 

pepsin digested collagen IV (Figure 17A, lane 2) and these 

polypeptides were precleared by IIF4 (lane 3). This indicated that 

these polypeptides were specific for IIF4. TEPC 183 did not 

precipitate these polypeptides (lane 4). Preclearing the pepsin 

digested collagen IV with TEPC 183 demonstrated higher molecular 

weight polypeptides (200, 140, and 90 kDa) which corresponded to the 

polypeptides IIF4 irnmunoprecipitated with IIF4 (lane 2). Since TEPC 

183 had not immunoprecipitated these polypeptides (lane 4); this 

result is puzzling and it may not be concluded that IIF4 

specifically irnmunoprecipitated these polypeptides. Laminin was not 

immunoprecipitated by either IIF4 or TEPC 183 (Figure 17B, lanes 6-

10). 

For comparison, pepsin digested collagen I was 

immunoprecipitated by IIF4. Neither IIF4 nor TEPC 183 

immunoprecipitated any pepsin digested collagen I polypeptides 

(Figure l 7B, lanes 2, 4 and 7, 9 respectively) and preclearing 

pepsin digested collagen I with either IIF4 of TEPC 183 had no 
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effect on the elution profile (lanes 3 and 5, respectively). These 

results are summarized in Table 4. 

Amino Acid Analysis of IIF4 Reactive Polypeptides 

In order to characterize IIF4 reactive polypeptides from GBM 

and equivalently sized polypeptides from collagen IV, collagenase 

and pepsin digested collagen IV and GBM (19474N, 19763N) were sepa­

rated on 6. 5% SOS-PAGE. The 120 and 100 kDa polypeptides were 

recovered from the collagenase digests of the GBMs and from collagen 

IV; the 100 kDa polypeptides were recovered from the pepsin 

digestions of the GBM and collagen IV. All recovered polypeptides 

were subjected to amino acid analysis (Figures 18 and 19). The IIF4 

reactive polypeptides from collagenase digested GBM or collagen IV 

( 120 and 100 kDa} were similar in their content of aspartic acid 

(10%), glutamic acid (11\), leucine (8%), and lysine (8%). Each 

polypeptide had collagenous character: glycine (10%), hydroxyproline 

and hydroxylysine (1%). Of particular note is the cysteine residue 

content of 2-4%. The 100 kDa polypeptides from pepsin digested 

collagen IV or GBM were similar in their content of aspartic acid 

(8%), serine (8%), glutamic acid (4%) and leucine (7%). Each 

polypeptide had collagenous character: glycine (17%), hydroxylysine 

and hydroxyproline (l-3%). 



Figure 16. IIF4 Immunoprecipitated Polypeptides from Collagenase 

Digested Collagen IV 

Lane 2 represents IIF4 immunoprecipitated collagenase digested 

collagen IV. Lane 3 represents TEPC 183 immunoprecipitated 

collagenase digested collagen IV. IIF4 immunoprecipitated alone 

(lane 4), TEPC 183 immunoprecipitated alone (lane 5) are included as 

antibody chain mobility references. 
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17A. IIF4 Irnrnunoorecipitation of Pepsin Digested Collagen IV 

The IIF4 immunoprecipitati6n of pepsin digested collagen IV is 

represented. IIF4 irnrnunoprecipitated pepsin digested collagen IV is 

represented in lane 2. IIF4 precleared collagen IV is represented 

in lane 3. TEPC 183 immunoprecipitated and TEPC 183 precleared 

collagen IV are represented in lanes 4 and 5, respectively. IIF4 

immunoprecipitated alone (lane 6), TEPC 183 irnrnunoprecipitated alone 

(lane 7), and goat anti-mouse IgM agarose beads processed alone 

(lane 8) are included as antibody chain mobility references. The 

data represented in Figure 178 was part of the experiment shown 

here. 
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Figure 178. IIF4 did not. Immunoprecipitate any Polypeptides from 

Pepsin Digested Collagen I Q.£ Laminin 

These data are part of the experiment shown in Figure 17A. IIF4 and 

TEPC 183 immunoprecipitated or precleared pepsin digested collagen I 

are represented (lanes 2, 3, 4, and 5). IIF4 or TEPC 183 

immunoprecipitated or precleared laminin is represented (lanes 7, 8, 

9, 10) . IIF4 immunoprecipitated alone (lane 11), TEPC 183 

immunoprecipitated alone (lane 12) and the goat anti-mouse agarose 

beads processed alone (lane 13) are included for antibody chain 

mobility references. 
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SUMMARY OF IMMUNOPRECIPITATIO~ DATA 

Collagenase digested GBMs: 
11741 N 
11778 N 

9662 N 
7415 N 

19763 N 
8961 N 

Pepsin digested GBM1 

Pepsin digested collagen rv2 -200, 

Pepsin digested collagen I 

Collagenase digested collagen IV 

Laminin 

140, 

140, 

kDa polypeptide 
immunoprecipitated 
with IIF4 

120, 100, 37 
120, 100 
120, 100 
120 
120, 100, 40 
120, 100, 

100, 85 

90 

none 

120, 100, 45 

none 

91 

27 

1 Two aliquots of GBM (18274) were pepsin digested separately and 
subjected to IIF4 or TEPC 183 immunoprecipitation. The data 
presented here and in Figure l 7A is a compilation of these two 
digestions and immunoprecipitations. 
2 IIF4 alone did not imrnunoprecipitate pepsin digested collagen IV 
polypeptides; TEPC 183 also had reactivity with these polypeptides 
(Figure 17A). The data is included here for comparison and 
completeness. 
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Anti-collagen IV mAb Reactivity with GBM 

As seen with IIF4, anti-collagen IV mAb reacted with the GBM 

in human cortical tissue (Figure 20). Anti-collagen IV mAb reacted 

with the GBM in a linear deposition pattern as well as reacting with 

mesangial matrix, tubular basement membrane (not shown in 

photograph) and the Bowman's capsule. MOPC 21 did not react with 

the cortical tissue; yellow-orange autofluorescence of cortical 

nuclei was seen in MOPC 21 staining as it had been in TEPC 183 

staining (Figure 3B). These results demonstrated that anti-collagen 

IV mAb reacted with tissue components known to contain collagen IV. 

Comparison of Anti-Collagen IV mAb Reactivity among Bacterial Cell 

Membranes, Isolated Proteins Comprising the GBM, and GBMs 

Since, as represented in Figures 7, 8, and 9, IIF4 reacted 

with collagen proteins and not laminin or fibronectin, and since 

collagen IV comprises up to 80% of the GBM (Wieslander, 1983), the 

reactivity of the bacterial cell membranes and GBM preparations with 

anti-collagen IV mAb was investigated. This was done to contrast 

anti-collagen IV mAb reactivity with IIF4 reactivity among GBM 

components. 

Trypsin digested SCM and trypsin digested cell membrane from 

~. mutans were reacted with anti-collagen IV mAb and MOPC 21 as a 

control (20 to 2.0 ug/ml IgGl). Both bacterial cell membrane 

preparations did not react above background levels of MOPC 21 

reactivity with anti-collagen IV mAb (Figure 21, A). 



Figure 18. Amino S£!.g profile of polypeptides from collagenase 

digested GBM and collagen IV 

The amino acid quantity from each eluted polypeptide is shown here 

as an average of two determinations for that polypeptide. All 

collagenase digests of the 120 and 100 kDa GBM and collagen IV 

polypeptides had similar amounts of cysteine, aspartic acid, 

threonine, serine, glutamic acid, alanine, isoleucine, leucine, 

tyrosine, lysine, and arginine. All digests contained small amounts 

of hydroxyproline and hydroxylysine. 
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Collogenase digested Human GBM 

polypeptide t 20 kOo 

Collogenose digested collagen IV 

polypeptide t 20 kOa 

Collogenase digested Human GBM 

polypeptide t 00 kOa 

Collagenase digested collagen IV 

polypeptide 100 kDo 

CD~ MTS EP GAJ V LYF~KHR 

Amino Acid 
HOP-hydroxyproline J-hexosomines HOL-hydroxylysine 



Figure 19. Amino acid profile of polypeptides from pepsin digested 

GBM and collagen IV 

Isolated polypeptides from pepsin digested GBM or collagen IV of 100 

kDa had very similar amounts of most amino acids. Each polypeptide 

contained an equivalent amount each of cysteine, hydroxyproline, 

hydroxylysine, and glycine. 
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Figure 20. Indirect Immunofluorescence of Human Renal Cortical 

Tissue with Anti-Collagen IV mAb 

cryostat sectioned human renal cortical tissue was reacted with 10 

ug of anti-collagen IV mAb or MOPC 21. After processing, sections 

were viewed under a fluorescent microscope. In A, reactivity of 

human cortical tissue with anti-collagen IV mAb is shown. Bowman's 

capsule, the GBM and mesangial matrix were reactive with anti-

collagen IV mAb. In B, MOPC 21 did not react with any portion of 

the cortical tissue. Mesangial nuclei were autofluorescent. 
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Reactions of anti-collagen IV mAb and enzyme digested GBMs 

are represented (panel B). Only pepsin and trypsin digested GBMs 

reacted with anti-collagen IV mAb. There was a distinct difference 

in the reactivity of anti-collagen IV mAb with the two trypsin 

digested GBMs shown: at 4 ug/ml anti-collagen IV mAb, trypsin 

digested GBM 4415 N reacted to a significantly lesser extent with 

anti-collagen IV mAb than with GBM 7415 N (p<0.001), but the 

reactivity of GBM 4415 N with anti-collagen IV mAb was significantly 

greater than the reactivity of GBM 4415 N with MOPC 21 (p<0.01). 

Only trypsin and pepsin digested GBMs contained the anti-collagen IV 

mAb epitope. 

The reactivity of anti-collagen IV mAb with collagenase 

digested collagen I or collagen IV and with laminin is represented 

in Panel c. Laminin did not react above background levels of MOPC 

21 reactivity with as much as 20 ug/ml IgGl of anti-collagen IV mAb. 

Collagenase digested collagen I or collagen IV also did not react 

with as much as 20 ug/ml of anti-collagen IV mAb and this very low 

level of reactivity was indistinguishable from reactivity with MOPC 

21 (in both cases, p>0.2). This result is consistent with the data 

presented in Panel B. Pepsin or trypsin digested collagen I or 

collagen IV reacted with anti-collagen IV mAb (Panel D). 

Trypsin or pepsin digested GBM or collagen reacted with anti­

collagen IV mAb to significantly greater degrees than with MOPC 21 

(in all cases and for all IgGl concentrations, p<0.001). 

Collagenase digested GBM or collagen could not react with anti­

collagen IV mAb. These data indicated that the anti-collagen IV mAb 
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recognized epitope is destroyed by collagenase treatment and this 

implied that the anti-collagen IV mAb recognized epitope is located 

in the triple helical domain of collagen. 

Fibronectin reacted with anti-collagen IV mAb (panel D). 

This result will be re-evaluated in COMPETITIVE INHIBITION OF ANTI­

COLLAGEN IV mAb REACTIVITY. 

Anti-Collagen 1.Y mAb Reactivity with Trypsin .Q!:. Collagenase Digested 

GBM 

As seen in Figure 21, two collagenase digested GBMs and 

collagenase digested collagen I or IV did not react with anti-

collagen IV mAb. As represented in Figure 22, none of the 

collagenase digested GBMs reacted with anti-collagen IV mAb to any 

significant extent while all trypsin digested GBM could react with 

anti-collagen IV mAb. The collagenase digested GBM most reactive 

was not significantly greater in reactivity with anti-collagen IV 

mAb than any other col lagenase digested GBM (at 5. 0 and 2. 5 ug /ml 

IgGl, p>O.l). 

Competitive Inhibition of Anti-Collagen IV mAb Reactivity 

For a comparison of inhibition of IIF4 reactivity with GBM or 

GBM components, competitive inhibition of anti-collagen IV mAb 

reactivity was performed. Both pepsin digested collagen I and IV 

inhibited anti-collagen IV mAb reactivity to maxima of 88 and 76%, 

respectively at 10,000 ng of collagen I or collagen IV. Neither 



Figure 21. Anti-Collagen IV Reactivity filth Bacterial Membranes, 

Isolated Components of the GBM, and ~ 

Anti-collagen IV mAb reactivity with bacterial cell membranes, 

isolated GBM components, and enzyme digested GBMs was assayed in 

ELISA. Reactivity of anti-collagen IV mAb with trypsin digested SCM 

and §. mutans cell membrane is represented in Panel A. Pepsin or 

trypsin digested collagen I and collagen IV reactions with anti-

collagen IV mAb or MOPC 21 are represented in Panel B. Panel C 

represents anti-collagen IV mAb or MOPC 21 reactivity with laminin 

and collagenase digests of collagen I or IV. Panel D represents 

anti-collagen IV mAb and MOPC 21 reactivity with pepsin or trypsin 

digested collagen IV, pepsin digested collagen I and fibronectin. 
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trypsin digested SCM nor native fibronectin inhibited anti-collagen 

IV mAb reactivity in this assay (Figure 23). The results of these 

assays are summarized in Table 5. 

Summary of Inhibition of Anti-Collagen IV mAb Reactivity 

Neither trypsin digested SCM nor native fibronectin inhibited 

anti-collagen IV mAb reactivity with trypsin digested GBM. Both 

pepsin digested collagen I and collagen IV inhibited anti-collagen 

IV mAb. Approximately twice as much collagen IV as collagen I was 

required to inhibit 40% of anti-collagen IV mAb reactivity. Since 

anti-collagen IV mAb reacted with both types of collagen, this 

result indicated that the anti-collagen IV mAb recognized epitope is 

located in domains shared by collagen IV and collagen I. This is 

the triple helical domain. 



Figure 22. Trypsin Digested GBM and Collagenase Digested GBM Did Not 

React Equally with Anti-Collagen IV mAb 

The reactivity of anti-collagen IV mAb and MOPC 21 with 7 trypsin 

digested GBMs and 12 collagenase digested GBMs is represented. 
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Figure 23. Competitive Inhibition of Anti-Collagen IV mAb Reactivity 

with Collagens I~ IV, Fibronectin, and Trypsin Digested SCM 

Competitive inhibition of anti-collagen IV mAb reactivity was assayed 

as described for IIF4 reactivity in Figure 13 except that 0.5 ug/ml 

anti-collagen IV mAb was used and inhibition of anti-collagen IV mAb 

reactivity was assayed on trypsin digested GBM ELISA plates. Native 

fibronectin, trypsin digested SCM, pepsin digested collagen I and 

pepsin digested collagen IV were used as inhibitors of anti-collagen IV 

mAb reactivity with trypsin digested GBM. A level of 50% inhibition of 

anti-collagen IV mAb reactivity was chosen for comparison of extent of 

anti-collagen IV mAb reactivity and this data is summarized and 

presented in Table 5. 
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TABLE 5. 

SUMMARY OF COMPETITIVE INHIBITION STUDIES 

INHIBITION OF ANTI-COLLAGEN IV mAb REACTIVITY 

Inhibitor 

Trypsin digested SCM 

Human serum fibronectin 

Pepsin digested human 
placenta collagen I 

Pepsin digested human 
placenta collagen IV 

Nanogram amount of inhibitor 
required to achieve 50% 
inhibition of anti-collagen IV 
mAb reactivity 

(at 50 ng of anti-collagen IV mAb) 

NI 

NI 

1000 +/- 240 ng 

2050 +/- 530 ng 

NI-- not inhibitory at 50% inhibition of anti-collagen IV mAb 
reactivity. 
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Nanogram inhibitory values were determined from a first order linear 
regression plot of each inhibitor and at 50% inhibition of anti­
collagen IV mAb reactivity. 



DISCUSSION 

The long established clinical association between infection 

with a nephritogenic strain of streptococci and development of 

glomerulonephritis (Futcher, 1940; Stollerman, 1969) has led many 

researchers to speculate upon and examine possible etiologies for 

poststreptococcal glomerulonephritis. One hypothesis is that 

streptococcal component-antibody immune complexes deposit in the GBM 

or complexes form in situ (Friedman et , 1984; Stinson et • I 

1983). Another hypothesis this that antigenic relatedness exists 

between the streptococcal cell membrane and a GBM component 

(Markowitz and Lange, 1964; Lange, 1980b; Fitzsimons, Weber, and 

Lange, 1987; Zelman and Lange, 1989). A murine monoclonal antibody 

generated to type 12 SCM was used to investigate the relationship 

between SCM and GBM. 

The first major hypothesis of this thesis is that an anti-SCM 

mAb (IIF4) can react with isolated, human GBM; the second hypothesis 

is that IIF4 will react with the majority of GBMs tested. IIF4 

reacted with isolated, human GBM and IIF4 reacted with all 26 GBMs 

tested. In this study, the IIF4 reactive epitope in GBM was pepsin, 

collagenase, and trypsin insensitive. It was also noted that two 

109 
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groups of GBMs were evident when extent of IIF4 reactivity with the 

panel of GBMs was examined. 

The third hypothesis was that IIF4 would recognize a specific 

component of GBM. This mAb reacted with collagen IV. The fourth 

hypothesis was that IIF4 wou_ld recognize an identifiable location on 

collagen IV. Attempts were made to accomplish this and the data was 

consistent with the IIF4 reactive epitope was in fragments of 

collagen IV which had included part of the triple helical region 

and the NCl globular domain. Comparisons were made between IIF4 and 

a conventional anti-collagen IV mAb; it was seen that these two 

antibodies did not recognize the same epitope; the anti-collagen IV 

mAb recognized epitope was collagenase sensitive. The hypotheses 

addressed in this dissertation were aimed at furthering our 

understanding of the incidence of this epitope in GBM. 

While this evidence does not prove the role of SCM in the 

etiology of poststreptococcal glomerulonephritis, the demonstration 

of the reactivity of an anti-SCM mAb to a GBM antigen does support 

the hypothesis of antigenic relatedness between these two entities. 

These data will be discussed in relation to the two models of 

post streptococcal glomerulonephritis development and the 

significance of reactivity of an anti-SCM mAb with collagen IV. A 

model will be presented for the generation of an anti-SCM mAb 

reactive with GBM and collagen IV and its possible roles in 

poststreptococcal glomerulonephritis. 
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Characterization and Reactivity of the anti-SCM mAb, IIF4 

The first consideration in this study was the partial 

purification, quantitation and characterization of the anti-SCM mAb, 

IIF4. These qualitative and quantitative determinations are the 

basis for the use of IIF4 in all the studies in this dissertation. 

IIF4 was isotyped as IgM (Table l). Murine IgM is known to 

be a characteristically difficult monoclonal antibody with which to 

work. For example, murine IgM is not readily bound to Protein A or 

Protein G (Kronvall, Grey and Williams, 1970; Lindmark, Thoren­

Tolling, and Sjoquist, 1983) which are commonly used to partially 

purify IgG antibody species. In this study, euglobulin prec-

ipitation was found to be an easy, quick and inexpensive means of 

partially purifying murine IgM. Albumin and transferrin are removed 

by euglobulin precipitation from the ascites and primarily IgM and 

IgG3 remain (Garcia-Gonzales et al., 1988). Purity of the 

euglobulin fraction was demonstrated by SDS-PAGE and calculated to 

be 65-85% on average. 

An important consideration in working with murine IgM 

antibodies is that IgM are generally considered to be of low 

affinity. A hallmark of a primary immune reaction is a polyclonal 

IgM response. As the response matures to a secondary reaction, 

dogma states that a relatively few high affinity IgM clones are 

switched to IgG production and expanded while the low affinity 

clones are not expanded. Thus, the isolation of an IgM clone of low 

affinity is potentially high. Affinity data for IIF4 is 

unavailable. However, studies done on naturally occurring IgM 
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producing clones have found these mAbs to be multireactive 

(Rousseau, Mallett, and Smith-Gill, 1989). Naturally occurring IgM 

clones from murine neonates were also found to be multireactive for 

other IgM molecules (Holmberg et al., 1984). In the present study, 

IIF4 and TEPC 183 reactivity with a number of proteins is presented. 

TEPC 183 appears to bind to many proteins to some extent. The TEPC 

183 ligand is not known, but this low level of binding to many 

proteins is probably due to the nature of the IgM molecule. The 

general rule for IgM affinity is low affinity, high valence number 

and high affinity, low valence number. It has been noted in some 

IgM molecules that approximately half the binding sites are 

relatively higher affinity than the other binding sites; the authors 

did not ascribe this to different combining sites in one molecule, 

but the effect of conformation of the decavalent IgM molecule 

(Pascual and Clem, 1988). Lower affinity sites could lead to 

increased nonspecific binding of the IgM antibody. However, TEPC 

183 is used here as an isotyped match to control for any nonspecific 

binding of murine IgM which may be expected in these types of 

experiments. Statistical data is given to indicate when the IIF4 or 

TEPC 183 reactivity with a protein is significantly different. 

IIF4 reactivity was characterized with its autologous 

antigen, SCM, and another streptococcal cell membrane from ~. 

mutans. The use of the cell membrane from §. mutans was appropriate 

for the comparison with SCM since §. mutans cell membrane has been 

cited as having an immunological relationship with heart muscle (Van 

De Rijn, Bleiweis, and Zabriskie, 1976; Hughes et al., 1980) and 
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kidney tissue (Albini et al., 1985). Human anti-heart sera was 

capable of binding polypeptides from ~. mutans cell membrane 

(Ayakawa et al., 1985). Disrupted ~- mutans has been used in the 

generation of sera and the sera was capable of binding to human GBM 

and heart muscle and this reactivity could be absorbed by the cell 

membrane (Nisengard, Stinson, and Pelonero, 1983). ~- mutans has 

also been implicated in the generation of glomerulonephritis. 

Disrupted streptococci injected into rabbits resulted in 

poststreptococcal-like kidney pathology and deposition of ~· mutans 

antigens in the GBM (Albini et al., 1985). Thus, evidence does exist 

that ~. mutans, possibly the cell membrane, and heart and kidney 

tissue share a common antigen. 

IIF4 was found to react significantly with SCM and not with 

.§.. mutans cell membrane (Figure 1). Furthermore, TEPC 183, was 

found to react significantly less with SCM than IIF4 did with SCM. 

Competitive inhibition of IIF4 reactivity to SCM was tested with SCM 

and .§.. mutans cell membranes as inhibitors (Figure 2). SCM did 

inhibit IIF4 reactivity with SCM while .§.. mutans cell membrane was 

unable to inhibit IIF4 reactivity to any extent distinguishable from 

background. These two sets of data confirmed that the IIF4 reactive 

epitope resides in its homologous antigen, SCM, and not in another 

streptococcal cell membrane from .§.. mutans. 

Characterization of GBMs and IIF4 Reactivity with ~ 

The first major hypothesis of this thesis was that IIF4, an 
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anti-SCM mAB, reacts with GBM. In indirect immunofluorescence, IIF4 

was found to bind to renal cortical GBM, mesangial matrix and 

tubular basement membrane {Figure 3A). The green 

immunofluorescence due to IIF4 that stained the GBM, mesangial matr­

ix, and tubular basement membrane was of a spotty or hazy, granular 

nature. Others have reported a granular type pattern seen in human 

kidneys using a monoclonal antibody generated to cultured glomerular 

cells {Nakamura, 1986). Antibodies derived from patients with acute 

poststreptococcal glomerulonephritis stained glomeruli from these 

patients in a granular pattern (Yoshizawa al., 1973). The 

localization of fluorescence in the renal cortical tissue is 

consistent with the IIF4 recognized epitope as a component of the 

GBM, tubular basement membrane, and in association with the 

mesangial cells. 

Autofluorescent (yellow-orange) mesangial nuclei were found 

in all renal tissues examined regardless of antibody type used in 

the experiment. The autofluorescence is helpful in recognizing 

anatomical structures; for example, the unique cellular array of the 

glomeruli or tubules is readily evident. This condition may be due 

to the variable time interval between demise, autopsy and freezing 

of the kidney tissue. Autodegradation is commonly known to occur 

and the variable intensity of nuclear autofluorescence may be due to 

breakdown and exposure of nuclear compounds in the tissues. 

As a comparison, anti-collagen IV mAb was used to stain human 

kidneys; a linear pattern was seen. Other anti-GBM sera have 
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stained GBM in linear patterns. Acid eluates from kidney biopsies 

of patients with Goodpasture's syndrome yielded antibodies reactive 

with GBM in a linear fashion (Lerner, Glasscock, and Dixon, 1967). 

Monoclonal antibodies developed to collagenase solubilized GBM also 

produced linear patterns along the GBM (Pusey et al., 1987). When a 

heterologous rabbit anti-human GBM anti-serum was generated, it 

stained human kidney tissue in a linear pattern with intense 

staining of the inner endothelial zone and outer epithelial zone 

with mesangial matrix involvement (Fish et ., 1983). Antibodies 

from a patient with anti-GBM nephritis, as well as an anti-NCl sera, 

produced a linear staining pattern on normal human kidney sections 

(Thorner et al., 1989). Antiserum to components of the GBM such as 

heparan sulfate proteoglycan produced intense linear patterns along 

the GBM (Van Den Heuvel al., 1989). Clinically, the type of 

fluorescence seen is used as a diagnostic sign and are classed as 

starry sky (fine granular deposits of IgG/IgM and C3), mesangial (C3 

deposits), or garland (IgG and C3 deposits) (Sorger et al., 1983; 

Rodriguez-Iturbe, 1984). The ultrastructural significance of any 

type of staining is unknown, but each type may reflect a distinct 

antibody reactivity localization with a component or components of 

the GBM. 

In order to characterize the indicated IIF4 reactivity in the 

GBM, GBM was isolated from 26 human kidneys (Greenspan and Krakawer, 

1950; Carlson et al., 1978). A conunon method of GBM characterization 

is amino acid analysis (Wieslander, 1983; Spiro, 1967; Kefalides, 

1972; Lange, 1969). While this method cannot determine the identity 
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of proteins comprising the GBM, this method can demonstrate 

characteristic amino acids of known proteins. The 25 GBMs assayed 

for amino acid composition revealed the presence of hydroxyproline 

and hydroxylysine (Table 2); these amino acids are found only in 

collagenous proteins. The amino acid composition analysis of the 25 

GBMs is consistent with previously reported GBM analyses in that 

hydroxyproline, hydroxylysine and a high glycine level (greater than 

or equal to 10%) are present (Wieslander, 1983; Westberg and 

Michael, 1970) . 

The panel of GBMs was further characterized by reactivity 

with IIF4. All 26 individual GBM preparations reacted with IIF4. 

These data indicate that all GBMs (in this study) contain the IIF4 

recognized epitope. This study was differentiated from other studies 

of antibody reacting with GBM by using a panel of 26 human GBMs and 

examined anti-SCM mAb reactivity to each GBM. Previously, studies 

have been conducted with human GBM using a pool of several GBMs 

(Westberg and Michael, 1970; Wieslander, 1983; Lange, 1980b; 

Markowitz and Lange, 1964). The reactivity of anti-SCM sera with 

individual GBMs was also studied (Blue and Lange, 1976; Lange, 1969; 

Lange, 1980a). These studies indicated that an anti-SCM sera could 

react with glomeruli in tissue sections, but since sera were used, 

the shared epitope concept could not be invoked. This study was 

also unique in that the panel of human GBMs was screened for 

reactivity with an anti-SCM mAb. Other studies have looked at the 

reactivity of GBM components with a patient's serum; this is 

especially true for reactivity of Goodpasture's patients serum 
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reacting with the NCl domain of collagen IV which was derived from a 

pool of human GBM tissue (Pusey et al., 1987; Weber, Meyer zum 

Buschenfelde and K hler, 1988; Fish et 1984). Extensive 

studies have characterized Goodpasture's patient serum reacting 

specifically with monomers .of 26 kDa and dimers of 52 kDa derived 

from the NCl domain of collagen IV. This antigen is the best 

characterized glomerular polypeptide involved in autoreactivity. 

Other studies have characterized the GBM with monoclonal an­

tibodies reactive with protein components of the GBM such as laminin 

(Kefalides et al., 1986) and heparan sulfate proteoglycan (Van Den 

Heuvel et al., 1989; Edge and Spiro, 1987). These studies have 

sought to define the structure and the role of the individual 

components in a basement membrane complex. In distinction, studies 

with anti-SCM mAb seek to characterize the reactivity of such 

antibodies with human GBMs and focus on the presence of the IIF4 

reactive epitope in that GBM component. 

Relatively high and low IIF4-reactive groups of GBMs could be 

seen. There are several possible explanations for this variability 

seen in extent of IIF4 reactivity (Figures 7, B, and 9). The GBMs 

used in this study were each isolated from human kidneys. Each 

kidney was collected and frozen upon autopsy at variable times after 

death. This is an uncontrolled factor in these experiments; it is 

well known that autolysis will take place in tissue after demise and 

evidence of autodegradation was seen in the autofluorescence of 

mesangial nuclei in all tissues examined. However, each GBM was 

isolated and enzyme digested under equivalent conditions. Variable 
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amounts of autolysis had most likely taken place in each kidney 

prior to GBM isolation and enzyme digestion. The IIF4 reactive 

epitope may be more readily available for binding in some GBM 

preparations than in others. This may be due to the complex 

structure of the components of GBM when the GBM is enzyme 

solubilized. The IIF4 reactive epitope may occur in varying 

densities in each GBM. These experiments can not distinguish among 

these possibilities of the variation seen of IIF4 reactivity with 

the GBMs. 

IIF4 also reacted equivalently with pepsin, collagenase or 

trypsin digested GBM (Figure 7, panel B); thus, the IIF4 reactive 

epitope was trypsin, collagenase, and pepsin insensitive. Bacterial 

collagenase specifically cleaves the peptide bond in collagen 

molecules between the .. Y .. and the glycine residues in the "Gly-X-Y­

Gly-X-Y" repeating triplet of the triple helical of the collagen 

molecule (Harper, 1980). Trypsin is highly specific for positively 

charged side chains with arginine and lysine (Brown and Wold, 1973). 

Pepsin cleaves proteins at aromatic amino acids (Ryle, 1970). The 

data generated here indicated that the IIF4 reactive epitope was not 

part of the triple helical region of collagen, did not have an 

arginine/lysine within or near the epitope, and did not contain 

aromatic amino acids. 

Characterization of IIF4 Reactivity with Components of GBM 

The next goal of this dissertation was to identify the IIF4 

reactive GBM component. This was accomplished by examining major 
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IIF4 reacted to an 

equivalent extent with collagenase digested collagen IV and collagen 

I, with trypsin digested collagen I, and with pepsin digested 

collagen I and collagen IV (Figure 7). This data clearly targets 

the IIF4 reactive protein as collagen. In order to confirm IIF4 

reactivity, another method was employed. 

IIF4 reactivity with enzyme digested GBMs, enzyme digested 

collagen I and collagen IV, and other major components of GBM was 

evaluated by competitive inhibition. Trypsin, collagenase or pepsin 

digested GBM all inhibited IIF4 reactivity significantly. Twice the 

amount of collagenase or pepsin digested GBM was required to achieve 

the same extent of inhibition as trypsin digested GBM. Possible 

explanations of this result are that more IIF4 reactive epitopes 

exist in the trypsin digested GBM or trypsin digestion best opens up 

the quaternary structure of the GBM to reveal IIF4 reactive 

epitopes. In any case, all enzyme digests of GBM significantly (at 

least 40%) inhibited IIF4 reactivity with SCM. 

Low molecular weight, trypsin digestion derived, murine GBM 

polypeptides were found to competitively inhibit anti-SCM mAb 

reactivity with SCM peptides (Zelman and Lange, 1989). It was seen 

that 20 pM of a 5 kDa GBM peptide completely inhibited the 

reactivity of 12.5 pM of anti-SCM mAb. The interpretation of these 

and other data was that the 5 kDa fragment contained two epitopes 

available for anti-SCM mAb binding. These studies also stressed the 

importance of the size of the epitope containing fragment. As the 

epitope containing fragment increased in size, the more eteric 
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In the 

present study, the native size of the pepsin or collagen digested 

collagen IV polypeptide bound to IIF4 is unknown, but if the 

polypeptides are assumed to be an average of 200 kDa, 5. 8 pM of 

pepsin digested collagen IV. were required to inhibit (at 40%) 1 pM 

of IIF4. Likewise, 20 pM of collagenase digested collagen IV were 

required to inhibit (at 40%) 1 pM of IIF4. The polypeptides from 

the pepsin digests are probably large, since extensive reduction is 

required to produce smaller (-100 kDa) pepsin fragments (Glanville 

et al., 1985). Interference of paratope binding due to steric 

hindrance of large c-200 kDa) polypeptides may explain the large 

amount of antigen needed to inhibit antibody activity. These 

results confirmed that IIF4 exhibited specific binding to human GBM 

and to a collagen molecule. 

Other major components of the GBM were used as competitors of 

IIF4 reactivity with SCM. Neither human serum fibronectin, bovine 

kidney heparan sulfate proteoglycan nor murine sarcoma derived 

laminin could inhibit IIF4 reactivity with SCM to any extent 

distinguishable from no inhibition of IIF4 reactivity. Fibronectin 

was used in these studies since fibronectin can be associated with 

collagen IV, although not a native part of GBM (Mauger et al., 1987; 

Hahn et al., 1980). These results demonstrated that these major 

components of the GBM did not contain the IIF4 reactive epitope. 

IIF4 had reactivity with collagenase, trypsin, or pepsin 

digested collagen I (Figure 7) which is not a reported constituent 

of GBM (Timpl, 1989). Pepsin digested collagen I was unable to 
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competitively inhibit IIF4 reactivity (Figure 8). Solution based 

competitive inhibition is a common method used to confirm antibody 

reactivity (Zelman and Lange, 1989; Dale and Beachey, 1985; 

Cunningham et al., 1989; Kraus et al., 1989). solid phase assays 

are considered more sensitive for high affinity antibodies while 

fluid phase assays, such as a Farr assay, are considered more 

sensitive for lower affinity antibodies (Kennel, 1982; Nimmo et al., 

1984; Butler et al., 1978; Peterman, Voss and Butler, 1985). In 

these assays, a fluid phase assay, competitive inhibition, may be 

more reliable for determination of murine IgM reactivity. Epitopes 

shared by collagen types have been easily detectable by ELISA and 

Western blot. In a study of familial nephritis, IgA patient serum 

reacted with the triple helical domain of collagens I, II, and IV, 

indicating that antibodies directed to this moderately conserved 

domain will have a wide span of reactivity with types of collagen 

(Cederholm et al., 1986). Thus, based on the isotype used and the 

reported sensitivity of these assays when using IgM, it seems 

unlikely that collagen I is a IIF4 target antigen. 

IIF4 reactivity with SCM was significantly inhibited by 

enzyme digests of collagen IV. Collagenase digested GBM or collagen 

IV inhibited IIF4 reactivity with SCM to approximately the same 

extent. This may be due to the fact that GBM and isolated collagen 

IV are somewhat resistant to collagenase digestion (Cederholm et 

al., 1986; Risteli et al., 1980; Siebold et al., 1987). The 

products of collagenase digestion of collagen IV are large ( -100 

kDa) polypeptide chains which are highly associated with one 
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Possibly, collagenase digestion of GBM or collagen IV 

reveals a limited number of IIF4 reactive epitopea even though 

collagen IV was purified away from other placental basement membrane 

constituents. 

Three times the amount of pepsin digested GBM as pepsin 

digested collagen IV was needed to inhibit IIF4 reactivity to the 

same extent. Pepsin digests of isolated collagen IV are commonly 

used to study collagen IV polypeptides (Glanville et al., 1985; Qian 

and Glanville, 1984; Glanville, Rauter, and Fietzek, 1979) and it is 

known that pepsin digestion of collagen IV produces large (-95 kDa) 

polypeptide chains (Qian and Glanville, 1984; Glanville et al., 

1985). This data suggested an approximate 3 fold increase or 

enrichment of available IIF4 reactive epitopes in isolated, pepsin 

digested collagen IV as compared to pepsin digested GBM. Pepsin 

digested collagen IV inhibited IIF4 reactivity with SCM the greatest 

extent among all enzyme digests of GBM and collagen IV assayed. 

Trypsin digested SCM and pepsin digested collagen IV were able to 

inhibit IIF4 reactivity to pepsin digested collagen IV (Figure 9). 

Pepsin digested collagen IV could achieve 40% inhibition of IIF4 

reactivity with amounts of pepsin digested collagen IV comparable to 

those needed to inhibit IIF4 reactivity with SCM (Table 3). 

However, twice as much SCM was required to inhibit IIF4 reactivity 

with pepsin digested collagen IV as with SCM. This may be due to 

better availability of the IIF4 reactive epitope in the complex of 

pepsin digested collagen IV polypeptides as compared to the complex 

of trypsin digested SCM polypeptides. This trend was also apparent 
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in the collagen IV inhibition of IIF4 reactivity with SCM (Table 3). 

These experiments demonstrated that collagen IV contained the IIF4 

reactive epitope and these results indicated that the binding 

availability or incidence of available epitopes was greater in 

pepsin digested collagen IV polypeptides than in trypsin digested 

SCM polypeptides. 

Characterization of IIF4 Reactive Polypeptides in GBM and Collagen 

The next purpose of this dissertation was to identify the 

portion or domain of collagen IV reactive with IIF4. The method 

chosen to answer this question was immunoprecipitation of enzyme 

digested GBM, collagen IV, and other GBM components by IIF4 and 

goat-anti-mouse IgM coupled agarose and separation on SDS-PAGE. 

This was the most economical, technically simple and widely accepted 

method available for demonstrating reactions of an antibody with 

specific proteins, polypeptides, or peptides (Weir, 1986; Chen et 

al. , 1986). In this type of experiment, the eluted, 

immunoprecipitated material contains IgM, IgG derived from the goat 

anti-mouse agarose beads, and proteins bound to IgM, if any. Thus, 

the eluted material contains mu chain (65 kDa), gamma chain (51 

kDa), light chains (30 kDa), J chain from IgM ( 16 kDa), and any 

immunoprecipitated proteins. Results presented contain a 

representation of material eluted from the goat anti-mouse IgM 

agarose beads/antibody complex as well as the beads alone and 

demonstrated on silver stained SOS-PAGE. Material eluted from the 
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goat anti-mouse IgM agarose beads contains polypeptides other than 

only garmna and light chain; polypeptides of 37, 40, 44, 55, and 66 

kDa have been detected (Figures 10, 118, 12, and 14). These 

polypeptides are of unknown origin, but are derived from the beads 

or antibodies themselves. Polypeptides of these molecular weights 

are not considered immunoprecipitated when they are present in the 

representation of a IIF4 or TEPC 183 immunoprecipitated sample. 

Polypeptides which appear in IIF4 immunoprecipitated sample as well 

as in the TEPC 183 irnmunoprecipitated control are considered 

nonspecific. Immunoprecipitated proteins of molecular weight equal 

or similar to any of the antibody chains may be undetected. This 

method can, however, detect immunoprecipitated polypeptides that are 

reproducibly present and of a molecular weight distinct from the 

antibody chains. 

As summarized in Table 4, the IIF4 irnmunoprecipitation of 

polypeptides from collagenase or pepsin digested GBM, collagen I, 

collagen IV and laminin indicated that IIF4 generally reacted with 

GBM and collagen IV polypeptides of 100-200 kDa. In four GBM 

samples, other IIF4 reactive polypeptides from collagenase digested 

GBM of lower molecular weight were seen (Figure 10, 11 B, and 14). 

IIF4 reacted with -200, 140, 100, and 60 kDa polypeptides from 

pepsin digested GBM (Figure 15). It was also suggested that IIF4 

was reactive with polypeptides of -200, 140, and 90 kDa from pepsin 

digested collagen IV (Figure 17A); in this experiment, TEPC 183 was 

seen to have some reactivity with these collagen IV polypeptides. 

IIF4 did not react with polypeptides from pepsin digested collagen I 
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or native laminin (Figure 17B). With the exception of pepsin 

digested collagen IV polypeptides, these results strongly supported 

and were in agreement with data that demonstrated the IIF4 reactive 

GBM component was collagen IV. 

Although these experiments indicated IIF4 reactive 

polypeptides of similar or equivalent molecular weight from digests 

of collagen IV or GBM, these experiments did not identify the domain 

of collagen IV reactive with IIF4. Collagenase digests of GBM and 

of collagen IV contain polypeptides of 54 and 26 kDa that are 

reactive with anti-Goodpasture's antibody (Pusey et al., 1987; Weber 

et al., 1987). An antigen reactive to Goodpasture antibody has been 

identified as residing in a 26 kDa monomer of the NCl globular 

domain of collagen IV (Pusey al., 1987; Butkowski et al., 1985; 

Wieslander, Kataja, and Hudson, 1987). IIF4 reacted in only one 

case with a 27 kDa polypeptide from collagenase digested GBM (Figure 

14), but this was not seen in IIF4 reactivity with collagenase 

digested collagen IV. A 45 kDa polypeptide from collagenase 

digested collagen IV was IIF4 reactive, but this molecular weight 

has not been reported for the dimer form of the Goodpasture' s 

antigen (Pusey et al., 1987). This indicates that the IIF4 reactive 

epitope is probably not the Goodpasture' s antigen; however, this 

does not rule not other possible epitopes in the NCl globular domain 

of collagen IV as IIF4 reactive. 

Interstitial collagen I and basement membrane collagen IV 

differ in tissue distribution (Kuhn, 1987), but share sequence 

similarity in their triple helical regions. This large domain in 
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both types of collagen is predominantly "Gly-X-Y" repeating triplets 

in three chains that are wound around each other. There is a small 

amount of dissimilarity amongst the triple helical domains of 

collagen I and collagen IV. The most striking difference between 

the two collagen types is that collagen I has no globular domains at 

its amino and carboxyl termini. IIF4 was not reactive with collagen 

I in competitive inhibition with IIF4 or immunoprecipitation with 

IIF4. This suggested that IIF4 was reactive with a globular domain 

in collagen IV. The 7S and NCl globular domains are the largest 

globular domains in collagen IV and are structurally prominent 

(Yurchenco, 1990; Yurchenco et al., 1986; Yurchenco and Furthmayr, 

1984). Human collagen IV alpha l(IV) chain does contain 21 

globular-like interruptions of its triple helical domain that are 8 

amino acid residues or larger; the human alpha 2(IV) chain has 23 

similar globular interruptions of its triple helix. 

is unique to collagen IV (Brazel et al., 1988). 

This property 

These globular 

domains are possible candidates for the location of IIF4 reactivity 

as suggested by these studies. 

IIF4 reactive polypeptides from pepsin digested GBM were 100 

and 85 kDa. Pepsin digestion and reduction of collagen IV yields 

polypeptides of 140 (alpha 1 chain), 120 (alpha 2), 100 (alpha 1), 

75 (alpha 2), 50, and 25 kDa (Qian and Glanville, 1984; Brazel et 

al., 1988; Glanville and Rauter, 1981). These polypeptides from 

pepsin digested collagen IV have been identified as entire or a 

slightly truncated versions of the two types of alpha chains 

commonly found in collagen IV (Qian and Glanville, 1984; Glanville 
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The 100 kDa polypeptide from pepsin digestion of 

collagen IV has been sequenced (Qian and Glanville, 1984). Although 

there has been much confusion in the literature, it has been 

determined that these polypeptides originate in the NCl globular 

domain (Glanville, 1987). IIF4 was not shown to specifically 

irnrnunoprecipitate polypeptides of these molecular weights from 

pepsin digested collagen IV; TEPC 183 had some reactivity with these 

polypeptides (Figure 17A). However, the determination of collagen 

IV as the GBM protein reactive with IIF4 and the demonstration of 

pepsin digested GBM polypeptides of 100 and 85 kDa as IIF4 reactive 

targeted similar collagen IV polypeptides as containing the IIF4 

reactive epitope. 

In studies using an mAb to type IV collagen, reduced 

polypeptides from a crude pepsin digestion of collagen IV were found 

to be 180, 140, 120, 90, 40, and 15 kDa with a nonreduced size of 

260 kDa (Kina et al., 1988). This mAb did not react with collagen I, 

collagen v, collagen III, collagenase digested collagen IV, 

fibronectin or laminin. It did react with denatured collagen IV 

indicating that the epitope was not part of the triple helical 

conformation or conformation defined. Amino acid analysis of the 

native pepsin digested collagen IV polypeptide reactive with this 

mAb indicated 15 cysteine residues in this polypeptide. The authors 

speculated that these pepsin digest fragments originated in the NCl 

domain. 

In another study, a mAb generated to collagen IV was found 

to react with a high molecular weight (250 kDa) polypeptide that 
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could be localized to placenta, bovine lens capsule, and GBM. This 

polypeptide was pepsin and collagenase resistant and distinct from 

alpha 1 (IV) and alpha 2 (IV). Anti-serum to this polypeptides 

stained the GBM in a linear pattern with mesangial involvement. The 

authors postulated that this may be a new alpha chain or possibly 

the alpha 4(IV) (Scheinman and Tsai, 1984). Both of these studies 

indicate that collagen IV is a highly complex molecule with many 

potential sites that are capable of eliciting antibody generation. 

Sequencing of the IIF4 reactive polypeptides to identify the 

IIF4 epitope was impractical. The polypeptides were too large for 

sequencing and too large to allow for the identification of the IIF4 

reactive epitope. However, in order to support the hypothesis that 

the IIF4 reactive polypeptides originated in the NCl domain, the 

IIF4 reactive polypeptides were isolated and subjected to amino acid 

analysis. The IIF4 reactive polypeptides from collagenase digested 

GBM or collagen IV (120 and 100 kDa) were similar in the content of 

some amino acids. Of particular note is the cysteine residue 

content. In a 120 or 100 kDa polypeptide, a 2-4% cysteine reside 

content corresponds to approximately 13-32 cysteine residues. 

Similarly, the IIF4 reactive polypeptide from pepsin digested GBM 

and the equivalently sized polypeptide from pepsin digested collagen 

IV had high cysteine content (30 residues). High cysteine content 

was previously noted in peptide mapped GBM fragments (Lange, 1969). 

This data is consistent with the IIF4 reactive polypeptides in GBM, 

and potentially in collagen IV, as consisting of part of the triple 

helical and NCl domains. 
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Reactivity of Anti-Collagen IV mAb with GBM 

Having shown that IIF4 was reactive with collagen IV, it was 

prudent to compare its reactivity to that of an anti-collagen IV mAb 

and examine differences and similarities in their reactivity with 

GBM and GBM components. Significantly, anti-collagen IV mAb reacted 

with GBM differently than did IIF4 in indirect immunofluorescence. 

A linear pattern of antibody binding along the GBM was seen with 

anti-collagen IV mAb while IIF4 stained the GBM in a granular 

pattern. Additionally, other whole anti-GBM anti-sera are known to 

stain GBM in a linear pattern (Thorner et al., 1989; Fish et al., 

1984) . These data suggest that the IIF4 recognized epitope in GBM 

was different than the epitope recognized by anti-collagen IV mAb. 

Anti-collagen IV mAb did not react with trypsin digested SCM, 

~· mutans cell membrane, laminin or fibronectin; this was the 

expected result. Anti-collagen IV mAb did react with isolated, 

trypsin or pepsin digested GBM or collagen IV, but not with 

collagenase digested GBM or collagen IV. These results indicate 

that the anti-collagen IV mAb recognized epitope was collagenase 

sensitive. The IIF4 recognized epitope, however, was not 

collagenase sensitive. Collagenase digestion of collagen IV and GBM 

is known to be incomplete (Risteli et al., 1980). Possibly the 

anti-collagen IV mAb reactive epitope is part of the interwinding 

superstructure of the three alpha chains of collagen IV at exposed 

sites and can be cleaved by collagenase treatment. Again, these 
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data suggested that the IIF4 reactive epitope was not part of the 

Gly-X-Y repeating unit. 

Anti-collagen IV mAb also reacted with pepsin digested 

collagen I. At 50% inhibition of anti-collagen IV mAb reactivity, 

twice the amount of collagen IV was required to inhibit the mAb as 

was required of collagen I. This may be due to the availability of 

the epitope in these two collagens. 

These data, along with the inability of anti-collagen IV mAb 

to react with collagenase digested GBM or collagen IV indicated that 

the anti-collagen IV mAb epitope was located on the triple helical 

region of collagen molecules. In contrast, it was suggested that 

IIF4 reactivity could not be inhibited by collagen I, but did react 

with collagenase digested GBM or collagen IV. These two mAbs 

clearly recognized different epitopes in the same collagen molecule. 

Significance of IIF4 Reactivity with Collagen IV 

The reactivity of IIF4 with collagen IV is significant in two 

areas; molecular mimicry and development of glomerulonephritis. 

l· Significance of anti-SCM mAb reactivity with collagen IV in 

molecular mimicry. 

The concept of molecular mimicry is based on the antigenic 

relatedness of two distinctly different antigens. Many autoimmune 

diseases have been implicated as having a basis in molecular 

mimicry. The classic example of this is of ankylosing spondylitis 

(AS). The development of arthritis in AS has been linked to 
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infection with Salmonella, Shigella, Yersinia, and especially with 

Klebsiella pneumoniae. The HLA 827 molecule and the ~. pneumoniae 

nitrogenase were reported to share an epitope (Schwimmbeck, Yu and 

Oldstone, 1987); this shared epitope would explain the high 

incidence of AS patients who are HLA 827+. Other bacterial proteins 

have been implicated in sharing epitopes with mammalian tissue and 

correlated with incidence of autoimmune disease. Evidence supports 

a shared epitope between streptococcal M proteins and cardiac myosin 

(Krisher and Cunningham, 1985; Dale and 8eachey, 1985) and this 

relationship has been implicated in the development of rheumatic 

fever. Hepatitis 8 virus polymerase and the encephalitogenic site 

of myelin basic protein are believed to share an epitope and be 

involved in the etiology of experimental allergic encephalomyelitis 

(EAE) (Fujinami and Oldstone, 1985). Ankylosing spondylitis, 

rheumatic fever, and EAE are all be thought to be caused by foreign 

antigens which share epitopes with host tissue; infection with these 

agents may induce an autoimmune response. This study indicated that 

anti-SCM mAb, IIF4, reacted with collagen IV; this adds more 

evidence for the existence of molecular mimicry which could 

theoretically lead to an autoimmune response. 

i. Development of poststreptococcal glomerulonephritis, CPSGN) 

One theory of the etiology of PSGN is that immune complexes 

are formed in the circulation or in situ at the G8M with 

streptococcal antigens (Cameron, 1982; Rodriguez-Iturbe, 1984; 

Friedman et al., 1984). In this model, circulating streptococcal 
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antigens bind with IgG or IgM and are deposited in the kidney. 

Complement is activated; vasoactive peptides are released and 

mediate vascular permeability, chemotaxis and activation of 

neutrophils. Neutrophils enter the tissue and attempt to phagocytize 

the immune complexes. If phagocytosis is not accomplished due to 

size, location or tightness of binding of the immune complex to the 

GBM, the neutrophil releases its lysosomal enzymes and GBM damage 

results (Williams, 1987). 

renal function failure. 

This leads to loss of GBM integrity and 

The data presented here does not support or refute the immune 

complex model for development of post streptococcal 

glomerulonephritis, however, it does support a second model. In 

the second model, antibodies evoked by streptococcal antigens are 

directed to a common epitope located in the GBM (Lange, 1980a; 

Markowitz and Lange, 1964). A monoclonal antibody, IIF4, generated 

to type 12 SCM was shown to react with collagen IV. IIF4 reactivity 

with collagen IV alone does not prove, but ·indicates that SCM and 

GBM share an epitope. Formal proof of a shared epitope requires the 

isolation of and sequencing of small, IIF4 reactive peptides from 

GBM and SCM, but attempts to date have been unsuccessful (Zelman and 

Lange, 1989). 

Collagen IV is found in all basement membranes: skin, 

placenta, kidney, gut, lung, cornea and blood vessels (Glanville, 

1987). Thus, the reactivity of anti-SCM mAb with collagen IV has 

implications beyond that of reactivity with 9lomerular components 

alone; other basement membranes may be targets for anti-SCM 
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antibodies present after streptococcal infection or autoantibodies. 

It is possible that a IIF4-like antibody could bind to the epitope 

in collagen IV in another basement membrane. Upon basement membrane 

damage, an immune complex of IIF4-like antibody and collagen IV 

fragment could be carried to and lodged in the GBM. This is another 

mechanism by which GBM may be damaged by a IIF4-like antibody, but 

this model, in an immune complex with a self antigen. 

In this study, IIF4 reacted with all the panel of isolated 

GBM from normal kidney tissue. Presumably, not all 26 tissue 

sources were infected with type 12 streptococci at the time of 

demise; no overt kidney pathology was noted. It is possible that 

the epitope recognized is present in all GBMs. This study indicated 

100% incidence of the epitope in the GBMs tested. A precedent for 

the widespread occurrence of an basement membrane autoantigen is the 

Goodpasture antigen. It too appears ubiquitously in basement 

membrane containing tissues and is present in bovine basement 

membranes (Hudson et al., 1989). The Goodpasture antigen appears to 

be required for renal integrity and function; a strain of Samoyed 

dogs who have been shown to lack the Goodpasture antigen frequently 

present with renal failure and complete loss of integrity of the GBM 

(Thorner et al., 1988). There is no strong indication from this 

present study that the IIF4 reactive collagen IV epitope is or is 

not the Goodpasture antigen. However, injection of a related anti­

SCM mAb or intraperitoneal injection of the antibody-producing 

hybridoma cells into uninfected mice caused lung and kidney 

pathology highly similar to that found in patients with Goodpasture 
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syndrome (Fitzsimons and Lange, 1991). This may indicate that the 

IIF4 reactive epitope is related to the Goodpasture antigen and this 

awaits further study. 

These data support the model of a common epitope between SCM 

and the GBM component, collagen IV, and the autoimmune component of 

poststreptococcal glomerulonephritis. 

Model for development of poststreptococcal glomerulonephritis: GBM 

damage caused !2Y antibodies reactive with ,a common epitope in SCM 

and GBM 

Host protection from infection with a nephritogenic strain of 

streptococci involves bacterial elimination by opsonization. Host 

failure to produce opsonizing antibodies or subsequent release of 

streptococcal components after phagocytic bacterial destruction 

would allow the host to produce antibodies against streptococcal 

cell membrane antigens. These antibodies may arise from newly 

stimulated pre-existing autoreactive clones or they may arise de 

This model predicts that IIF4 reactive epitope need not be 

sequestered, as is the belief with the Goodpasture antigen, since a 

foreign antigen evokes the antibodies. This may imply that a form 

of control over the development of autoreactive antibodies to the 

IIF4 reactive epitope is operating (such as suppression of 

autoreactive clones). GBM damage, loss of integrity and renal 

failure would follow the same course as described for the immune 

complex model. However, the anti-SCM antibodies are specific for an 

self antigen and thus are autoantibodies. Anti-SCM antibodies may 
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bind directly to collagen IV in the GBM or collagen IV in other 

basement membranes in the body and may lodge in the GBM as an immune 

complex with a fragment of collagen IV as an autoantigen. Anti-

collagen IV reagents are directed to the majority of the GBM in 

immunofluorescence. IIF4, however, bound to GBM in a granular and 

less contiguous pattern. This may indicate potential initiation 

sites of GBM damage if autoantibodies are evoked. The GBM is 

exposed to the vascular flow by the fenestration of the endothelia; 

it is not privileged and is available for binding autoantibodies. 

Collagen IV comprises the majority of the GBM and it is an integral 

part of the structure and function of the GBM. Damage to the GBM 

and subsequent loss of renal function is a serious, possible 

consequence of host response to an epitope shared by SCM and GBM. 



SUMMARY 

The etiology of poststreptococcal glomerulonephritis is 

unknown, but development of glomerulonephritis after infection with 

a nephritogenic strain of streptococci has long been clinically 

correlated. The major purpose of this thesis was to investigate the 

antigenic relatedness between group A type 12 SCM and human GBM. 

Anti-type 12 SCM mAb, IIF4, was specifically reactive with 

its autologous antigen, SCM, and not cell membrane from ~· mutans. 

SCM was hypothesized to contain an epitope also expressed in GBM. 

This hypothesis was substantiated by experiments demonstrating IIF4 

reactivity with GBM, mesangial matrix and tubular basement membrane 

in human renal cortical tissue in indirect irnmunofluorescence. IIF4 

reacted with all individuals in a panel of 26 isolated, enzyme 

digested human GBMs to a significantly greater extent than an 

isotype matched control did with all GBMs. IIF4 reacted to an 

equivalent extent with trypsin, collagenase or pepsin digested GBMs 

indicating that the IIF4 recognized epitope is insensitive to these 

enzymes. Two populations of IIF4 highly and moderately reactive 

GBMs were noted. 
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IIF4 

was established to react with collagen IV, a major component of GBM, 

and not with laminin, fibronectin, heparan sulfate proteoglycan, or 

a related collagen, collagen I. This data also suggested that the 

IIF4 recognized epitope may reside in a globular portion of collagen 

IV. An attempt was made to isolate the IIF4 reactive component of 

collagen IV and of GBM. Size and amino acid content, especially 

cysteine content, of pepsin digested fragments of GBM were 

consistent with the polypeptides consisting of a portion of the 

triple helical domain and of the NCl domain of collagen IV. 

IIF4 reactivity and anti-collagen IV mAb reactivity with 

isolated GBMs and collagen IV was compared. The anti-collagen IV 

mAb recognized epitope in GBM, collagen IV, and collagen I was 

collagenase sensitive; this suggested that the anti-collagen IV mAb 

recognized epitope is located in the collagen triple helix. IIF4 

and anti-collagen IV mAb recognized distinctly different epitopes. 

The significance of an anti-SCM mAb reacting with human 

collagen IV and human GBM is discussed as it pertains to molecular 

mimicry. The importance and significance of a common epitope 

between SCM and GBM is discussed in relation to development of 

poststreptococcal glomerulonephritis. A model of poststreptococcal 

glomerulonephritis is discussed with collagen IV as the autoimmune 

target reactive with anti-SCM mAb. 
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