
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Dissertations Theses and Dissertations 

1992 

The Effects of Ethanol on Cultured Serotonergic Neurons by The Effects of Ethanol on Cultured Serotonergic Neurons by 

Denise Kay Lokhorst. Denise Kay Lokhorst. 

Denise Kay Lokhorst 
Loyola University Chicago 

Follow this and additional works at: https://ecommons.luc.edu/luc_diss 

 Part of the Biochemistry, Biophysics, and Structural Biology Commons 

Recommended Citation Recommended Citation 
Lokhorst, Denise Kay, "The Effects of Ethanol on Cultured Serotonergic Neurons by Denise Kay Lokhorst." 
(1992). Dissertations. 3109. 
https://ecommons.luc.edu/luc_diss/3109 

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. 
It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more 
information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 1992 Denise Kay Lokhorst 

https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_diss
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_diss?utm_source=ecommons.luc.edu%2Fluc_diss%2F3109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1?utm_source=ecommons.luc.edu%2Fluc_diss%2F3109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_diss/3109?utm_source=ecommons.luc.edu%2Fluc_diss%2F3109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


:LIBRARY ·LOYOLA UNIVERSITY 
'-'EDICAL CENTER 

TBB EFFECTS OF ETHANOL OH CULTURED SEROTOBERGIC BBUROBS 

by 

Denise Kay Lokhors~ 

A Dissertation Submitted to the Faculty of the Graduate 

School of Loyola University Chicago in Partial Fulfillment 

of the Requirements for the Degree of 

Doctor of Philosophy 

May 

1992 



Copyright, 1992, Denise Lokhorst 

All right reserved. 



To Pete 

Thanks for being there 



ACKNOWLEDGMENTS 

In my struggle to obtain a Ph.D., I have encountered 

numerous obstacles. In helping to overcome them, I am 

grateful to many indivduals. I would like to thank my advisor 

Dr. Manteuffel, for her encouragement over the last few years. 

I would also like to thank my committee members, Drs. Collins, 

Emanuele, and Handa for their advice, and especially Dr. Van 

de Kar for his many helpful discussions and support. Members 

of my laboratory, Allison Kuo, Roberta Gillespie, Jim Woods 

and Nuzhath Tajuddin have provided a constructive environment 

for research. Thank-you Bob Cobuzzi for taking the time to 

teach me cell culture. I would like to extend my appreciation 

to the Arthur J. Schmitt Foundation for their generosity and 

support. 

iv 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 

TABLE OF CONTENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

LIST OF FIGURES. . . . . . . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

LIST OF ABBREVIATIONS. . . . . . . . . . . • . . . . . . • . . . . • . . . . . . . . . . . . ix 

Chapter 

I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

II. REVIEW OF THE RELATED LITERATURE 

The Serotonergic System. . . . • . . . . . . . . . . . . . . . . . . . . 4 

Serotonin Synthesis ..........•.•........... 4 

SerotoninAnatomy ................ .......... 6 

Serotonin Receptors., ....................•. 7 

Function of Serotonin ...................... 11 

Development of Serotonergic Neurons ........ 11 

Serotonin as a Growth Factor/Growth Factors for 
Serotonin Neurons •...•...•......•..... 13 

Serotonergic Neurons in Culture .....•...••• 17 

Fetal Alcohol Syndrome. • . . . • . . . . . . . . . . . . . • . . • . . . 18 

Effects of Ethanol on Neural Development .•. 18 

Effects of Ethanol on Development 
of Serotonergic Neurons ............... 23 

Ethanol in Cell Culture .........•.......... 24 

Possible Mechanisms ..•........•.•.......•.• 29 

Proposed Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 

III. METHODS 

In Vitro Experiments 

Ethanol Determination ...................... 3 5 

V 



Primary Neuronal Cell Culture •.•••••...•.•• 36 

Primary Gl ial Culture. . . . . . . . . . . . . . . . . . . . . . 3 8 

5-HT and GFAP Immunohistochemistry ..•...... 39 

3H-5-HT Uptake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

5-HT Content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 

DNA Content ................................ 44 

Protein Determination .••••......•••••.....• 45 

sos Page Gels .............................. 45 

Statistical Analysis .•..................... 4 7 

In Vivo Experiments 

Animal model ............................... 48 

Dissection ................................. 49 

High Performance Liquid Chromatography ..... 49 

Statistical Analysis ...•..........•........ 50 

IV. RESULTS 

Normal Development of Cultured Rhombencephalic 
Neurons . .............................. 51 

Effects of Ethanol Exposure on Cultured 
Rhombencephalic Neurons •....•••••••••• 52 

Effects of Ethanol on Cultured Glial Cells. 55 

In Vivo Experiments .•...........••.......•• 57 

V. DISCUSSION .. .................................... 81 

VI. REFERENCES CITED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 0 

vi 



LIST OF FIGURES 

Figure Page 

1. Phase contrast photomicrograph of representative 
fields demonstrating the development of neuronal 
cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 8 

2. Development of 3H-5-HT uptake in neuronal cultures 
after 2 and 6 days in vitro ...................... 59 

3. 3H-5-HT uptake in neuronal cultures after acute 
ethanol exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

4. Concentration of ethanol in media after 24 hours. 61 

5. Photomicrograph of representative fields 
demonstrating 5-HT positive neurons in culture after 
4 days of ethanol exposure ....................... 62 

6. 3H-5-HT uptake in neuronal cultures after 4 days of 
ethanol exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

7. 5-HT content in neuronal cultures after 4 days of 
ethanol exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

8. Percentage of 5-HT positive neurons after a 4 day 
ethanol exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

9. Protein content in neuronal cultures after 4 days of 
ethanol exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 

10. Photograph of neuronal proteins separated on a 12% 
sos Page gel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 

11. Representative densitometric scan of protein gel 
from neuronal cultures. . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

12. DNA content in neuronal cultures after 4 days of 
ethanol exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

13. 3H-5-HT uptake, protein and DNA after a 4 day 
exposure to 450 mg/dl of ethanol ................. 70 

vii 



14. No effect of culture media on 3H-5-HT uptake in 
neuronal cultures after 4 days of ethanol 
exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

15. Photomicrograph demonstrating the generation of 
glial cultures ................................... 72 

16. 3H-5-HT uptake in astroglial cultures after acute 
ethanol exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 

17. 3H-5-HT uptake in astroglial cultures after 4 days 
of ethanol exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 

18. Protein content decreases in astroglial cultures 
after 4 days of ethanol exposure. . . . . . . . . . . . . . . . . 7 5 

19. DNA content in astroglial cultures after 4 days of 
ethanol exposure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 

20. Photograph of glial proteins separated on a 12% SOS 
page gel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

21. Representative densitometric scan of protein gel 
from gl ial cultures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 8 

22. 5-HT and 5-HIAA content on G20 of brainstem and 
cortex of rats exposed to ethanol in utero between 
G14-G2 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

23. 5-HT and 5-HIAA content on G20 of brainstem and 
cortex of rats exposed to ethanol in utero between 
G9-G15 ........................................... 80 

viii 



ADH 

DIV 

5,7-DHT 

FAS 

FCS 

G 

GFAP 

HBSS 

HPLC 

HS 

5-HIAA 

5-HT 

MAO 

MEM 

NAO 

NADH 

PBS 

PCPA 

PN 

TH 

LIST OF ABBREVIATIONS 

alcohol dehydrogenase 

days in vitro 

5,7-dihydroxytryptamine 

fetal alcohol syndrome 

fetal calf serum 

gestational day 

glial fibrillary acidic protein 

Hank's balanced salt solution 

high performance liquid chromatography 

horse serum 

5-hydroxyindoleacetic acid 

serotonin 

monoamine oxidase 

minimal essential medium 

nicotinamide adenine dinucleotide 
(oxidized form) 

nicotinamide adenine dinucleotide 
(reduced form) 

phosphate buffered saline 

parachlorophenylalanine 

postnatal day 

tryptophan hydroxylase 

ix 



CHAPTER ONE 

INTRODUCTION 

The leading cause of central nervous system birth defects 

in the Western world is attributed to women drinking ethanol 

during pregnancy. One child out of 3000 births is diagnosed 

with fetal alcohol syndrome (FAS) (Abel and Sokol, 1991). FAS 

describes a set of symptoms that occur in children of 

alcoholic women. FAS associated abnormalities include the 

following: decreased growth; characteristic head and face 

deformities such as a flattened face, drooping eyelids and a 

large space between the lip and nose; major organ 

malfunctions; and central nervous system dysfunction causing 

mental retardation. Most FAS children are mildly retarded; 

their average I.Q. is 65 (Streissguth et al., 1978). Mental 

handicaps are probably the most debilitating aspect of fetal 

alcohol syndrome. 

In an attempt to determine the underlying causes of these 

central nervous system problems, considerable attention has 

been given to the effects of ethanol on the development of 

major CNS neurotransmitter systems in animal models of FAS. 

The affected systems include dopaminergic, noradrenergic, 
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cholinergic and glutaminergic neurons (reviewed by Druse, 

1992). In addition, the development of the serotonergic 

neurotransmitter system is abnormal in rats that were 

prenatally exposed to ethanol (Rathbun and Druse, 1985; 

Tajuddin and Druse, 1989a, 1989b; Druse and Paul, 1989; Druse 

et al., 1990). The results of these studies suggest that the 

offspring of ethanol-fed rats have fewer serotonergic 

projections to cortical areas. 

In addition, a deficiency of serotonin (5-HT) was found 

in embryonic/neonatal rats as well as in older rats. 5-HT is 

important during embryonic development, because it functions 

as a differentiation signal to target areas of the 

serotonergic system, a regulator of neurite outgrowth and 

possibly as a growth factor which autoregulates its own 

development (Lauder and Krebs, 1978; Goldberg et al., 1991; 

Goldberg and Kater, 1989; Whitaker-Azmitia and Azmitia, 1986). 

Consequently, fetal deficiencies of a trophic factor such as 

serotonin may augment the abnormal brain development seen in 

ethanol exposed offspring. 

The mechanisms by which in utero ethanol exposure produce 

FAS are unknown. Several potential mechanisms include the 

following: 1) fetal hypoxia; 2) dysfunctional placental 

transport of nutrients, resulting in malnutrition; 3) excess 

formation of prostaglandin; and 4) direct toxicity of ethanol 

(Schenker et al., 1990). It is also not known whether ethanol 

exerts its negative effects on the development of CNS neurons 
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by altering the levels of another factor (i.e. hormone or 

second messenger) essential for normal growth. The goal of 

this dissertation was to investigate the hypothesis that in 

utero ethanol exposure directly inhibits the development of 5-

HT containing neurons. 

To investigate my hypothesis, primary cultures of fetal 

serotonergic neurons were generated and grown in the absence 

or presence of ethanol ( 5 O, 15 o and 3 o o mg/ dl) . After a 4 day 

ethanol exposure, 5-HT uptake, 5-HT content, and the number of 

5-HT imrnunopositive neurons were measured to assess 

serotonergic function. Protein and DNA content were evaluated 

as a general assessment of total neurons, including both 

serotonergic and non-serotonergic cells. Primary cultures 

were used because they have been shown to be useful for 

investigating developmental phenomena and they permit the 

study of direct effects of drugs on neurons and astrocytes in 

a controlled environment. 

The effects of ethanol on 5-HT uptake sites in primary 

astroglia cultures were evaluated. Astrocytes play an 

important role in guiding neurons to their destination and 

providing growth factors for neuronal development. Astrocytes 

also possess 5-HT uptake sites which may be important during 

development (Katz and Kimelberg, 1985). 

The proposed studies will further our understanding of 

the mechanisms underlying the serotonergic deficiencies seen 

in rats prenatally exposed to ethanol. 



CHAPTER TWO 

REVIEW OF THE RELATED LITERATURE 

The Serotonergic System 

serotonin Synthesis 

The synthesis of 5-HT begins with the hydroxylation of 

the essential amino acid tryptophan to 5-hydroxytryptophan, by 

the action of tryptophan hydroxylase. 5-Hydroxytryptophan is 

then decarboxylated by aromatic L-amino acid decarboxylase to 

produce 5-HT. 5-HT does not enter the brain from the 

circulation, so the brain is not influenced by peripheral 5-HT 

synthesis (Undenfriend et al., 1957). Neurons synthesize their 

own 5-HT from the tryptophan that is transported across the 

blood-brain barrier (Grahame-Smith, 1971). 

Tryptophan hydroxylase (TH) is the rate limiting enzyme 

in the synthesis of serotonin. In brain tissue, the 

concentration of tryptophan is lower than its Km, so the 

enzyme is not saturated (Tong and Kaufman, 1975). Therefore, 

changes in tryptophan concentration can influence the rate of 

synthesis of brain 5-HT (Fernstrom and Wurtman, 1971). 5-HT 

does not exert negative feedback control over TH activity 

(Grahame-Smith, 1964). 

4 



5 

Two full length cDNA clones that encode TH have been 

isolated from a cDNA library of rat pineal gland (Darmon et 

al., 1988). These two clones recognize a 1.8 and 4-kilobase 

mRNA species that differ in the length of their 3 1 

untranslated region, the importance of which is unknown. Both 

clones encode a 51,000 dalton protein that has TH activity. 

Demonstrating that raphe TH is encoded by the same mRNA 

transcripts found in the pineal has been difficult (Dumas et 

al., 1989; Kim et al., 1991) . There appears to be a 

discrepancy between the expression of the TH transcript and 

the enzyme activity. TH activity is high in the raphe, but 

the mRNA level is very low; the opposite situation occurs in 

the pineal (Kim et al., 1991). This disparity can, in part, 

be explained by a difference in translation efficiencies (Kim 

et al., 1991). Post-translational modifications of TH may 

explain the different biochemical properties of TH obtained 

from these two regions (Lovenburg, 1977; Kim et al., 1991). 

5-HT uptake sites are located presynaptically on the 

terminals of 5-HT containing neurons. 

serotonin from the synaptic cleft, 

They function to remove 

and thus terminate the 

response generated by 5-HT release. Once inside the terminal, 

5-HT is deaminated to 5-hydroxyindoleacetaldehyde by 

mitochondrial monoamine oxidase (Tyce, 1990). 5-

hydroxyindoleacetaldehyde is then oxidized by aldehyde 

dehydrogenase to produce 5-hydroxyindoleacetic acid. 
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serotonin Anatomy 

The majority of 5-HT containing cells are located outside 

of the nervous system. Roughly 95% of 5-HT is found in the 

enterochromaffin cells of the gastrointestinal tract. 5-HT is 

also present in low amounts in other tissues such as heart, 

kidney, spleen, thyroid, adrenal, and platelets (Tyce, 1990). 

Neuronal serotonergic cell bodies are, for the most part, 

located within the boundaries of the brainstem raphe nuclei 

(Molliver, 1987; Tork, 1990) . However, some 5-HT cells lie 

outside these boundaries (in the reticular formation) and not 

all raphe cells are serotonergic. The 5-HT system can be 

divided into two subdivisions: an ascending rostral division, 

which projects primarily to the forebrain via the medial 

forebrain bundle; and a descending caudal division which 

projects to the spinal cord (Molliver, 1987; Tork, 1990). 

Both subdivisions innervate the cerebellum and target areas 

within the brainstem. According to the system of Dahlstrom 

and Fuxe (1964), serotonergic cell clusters are coded Bl-B9, 

with B9 being the most rostral cluster. 

The rostral division consists of the dorsal (B7) and 

median raphe (BB) and a ventrolateral (B9) cell group not 

affiliated with raphe nuclei. The dorsal raphe are the most 

prominent brainstem serotonergic nuclei and projects heavily 

to the striatum. The median raphe projects predominantly to 

the hippocampus and septum. Both nuclei have different but 

overlapping projections to the neocortex (Molliver, 1987; 
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Tork, 1990). 

Ascending serotonergic neurons have two principal axonal 

types that form different synaptic contacts. Thin varicose 

axons, arising from the dorsal raphe, are diffuse and branch 

extensively in their target areas. These axons rarely make 

"traditional" synaptic contacts with their targets. Axon 

terminals arising from the median raphe are thick, non­

varicose, with short thin beaded branches. This system makes 

well defined synapses with target cells (Kosofsky and 

Molliver, 1987). The functional significance of this dual 

projection system has not been determined. It is not known 

whether these two axonal systems synapse with specific post­

synaptic neurons or receptors. However, these two classes of 

serotonergic axons appear to have different pharmacologic 

properties. The fine fibers arising form the dorsal raphe are 

selectively vulnerable to amphetamines, while the beaded axons 

from the median raphe are resistant (Mamounas et al., 1991). 

Serotonin Receptors 

Gaddum and Picarelli were the first to demonstrate that 

there are multiple 5-HT receptor sites in the periphery. They 

labelled these receptors D and M based on the ability of 

dibenzyline and morphine to block the contractile response of 

the guinea pig ileum to 5-HT (Gaddum and Picarelli, 1957). 

Almost twenty years later, Peroutka and Snyder (1979) showed 

that two different 5-HT receptor subtypes existed in the 
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brain. Based on their differential affinities for 3H-5-HT, 

they designated these receptors as 5-HT1 (high affinity) and 

5-HT2 (low affinity). The 5-HT1 binding site can be further 

classified based on competition curves using spiperone. The 

component of the 5-HT1 binding site in the rat which shows 

high affinity for spiperone is designated 5-HT1A. A second 

component which shows low affinity for spiperone is designated 

5-HT18 (Pedigo et al., 1981) . The 5-HT1A receptor can be 

selectively labelled with 3H-8-hydroxy-diproplyaminotetralin 

(reviewed by Frazer et al., 1990; Schmidt and Peroutka, 1989; 

Conn and Sanders-Bush, 1987). High densities of the 5-HT1A 

receptor can be found in the hippocampus, septum, amygdala, 

entorhinal cortex and the raphe nuclei. 5-HT1A sites are 

located both pre- and postsynaptically (Crino et al., 1990). 

The presynaptic 5-HT1A receptor is a somatodendritic 

autoreceptor found in the dorsal and median raphe nuclei. 

This autoreceptor inhibits nerve impulse firing within 

serotonergic neurons (VanderMaelen et al., 1986; Adrien et 

al., 1989) . The 5-HT1A receptor is also located 

postsynaptically with respect to serotonergic projections 

(Hall et al., 1985; Crino et al., 1990). The 5-HT1A receptor 

is linked to a G protein which inhibits adenylate cyclase 

(Frazer et al., 1990; Schmidt and Peroutka, 1989; Conn and 

Sanders-Bush, 1987). 

The 5-HT18 receptor is not present in all species. In the 

calf, guinea pig, pig and human the 5-HT10 receptor appears to 
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be functionally equivalent to the 5-HT18 receptor found in rats 

and mice (Hoyer and Middlemis, 1989). The 5-HT18 receptor can 

be labelled using 1~I-iodocyanopindolol (Frazer et al., 1990; 

Schmidt and Peroutka, 1989; Conn and Sanders-Bush, 1987) . 

This receptor is located with high density in the substantia 

nigra and globus pallidus in the rat. This receptor subtype 

is located both pre- and postsynaptically (Crino et al., 1990; 

Frazer et al. , 1990; Schmidt and Peroutka, 1989; Conn and 

Sanders-Bush, 1987). The presynaptic autoreceptor controls 5-

HT release from nerve terminals. As with the 5-HT1A receptor, 

the 5-HT18 receptor is 1 inked to inhibition of adenylate 

cyclase. 

A third 5-HT1 receptor has been classified as 5-HT1c, 

although this receptor appears to have more in common with the 

5-HT2 receptor. They have similar pharmacological profiles, 

are both linked to phosphatidylinositol turnover and have 

similar gene structures (Fargin et al., 1988; Julius et al.; 

1988, Pritchett et al.; 1988, Albert et al., 1990). The 5-HT,c 

receptor is probably misnamed and inappropriately placed in 

the 5-HT1 receptor family. 5-HT1c receptors are located in 

the substantia nigra, globus pallidus, layer III of the 

cerebral cortex and in the choroid plexus, where they play a 

role in the production of cerebrospinal fluid (Frazer et al., 

1990; Schmidt and Peroutka, 1989; Conn and Sanders-Bush, 

198 7) . 

The 5-HT2 receptor is the D receptor first discovered by 
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Gaddum and Picarelli (1957). The 5-HT2 receptor is linked to 

phosphatidylinosi tol turnover through a G protein. These 

receptors are located postsynaptically and are in high density 

in layer IV of the cerebral cortex. 

To date, there is one 5-HT receptor that is not linked to 

a G protein. The 5-HT3 receptor is a ligand gated ion channel, 

and is found in high density in the dorsal hindbrain (Frazer 

et al., 1990; Schmidt and Peroutka, 1989; Conn and Sanders­

Bush, 1987). This receptor was previously known as the M 

receptor (Bradley et al., 1986). 

Recently several 5-HT receptors have been cloned 

including 5-HT1A, 5-HT1c, and 5-HT2 (Fargin et al., 1988; Julius 

et al., 1988; Pritchett et al., 1988; Albert et al., 1990). 

As with other G protein linked receptors, these receptors are 

comprised of a single polypeptide with seven hydrophobic 

regions that span the membrane. The regions of greatest 

homology among members of the G protein linked receptor family 

correspond to the seven hydrophobic domains. The amino 

terminus is located outside the cell, and the carboxy terminus 

is located within the cytoplasm. 5-HT receptors may have 

derived from at least two gene families. The 5-HT1A receptor 

gene is intronless, as are the adrenergic receptors. In 

contrast, the 5-HT1c and the 5-HT2 receptor genes contain 

multiple intrans within the protein coding region (Hartig et 

al., 1990; Julius, 1991). 
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Function of Serotonin 

Functionally, 5-HT has been implicated in diverse systems 

such as temperature regulation, pain, mental illness and 

tolerance to ethanol (Grahame-Smith, 1988; Smith et al., 1978; 

Tabakoff and Hoffman, 1987). 5-HT systems are involved in the 

promotion of sleep (Grahame-Smith, 1988). Inhibition of 5-HT 

synthesis by parachlorophenylalanine (PCPA) induces insomnia 

in the cat. 5-HT has also been implicated in appetite control 

(Grahame-Smith, 1988). Abnormalities in 5-HT function may be 

involved in anorexia nervosa and bulimia. Drugs which release 

5-HT are used as anorectic agents in the treatment of obesity. 

Dysfunctional serotonergic neurons may also lead to the 

development of affective disorders including depression, 

schizophrenic, obsessive-compulsive disorder and panic attacks 

(Van de Kar, 1989). Several 5-HT receptors have been linked 

to regulation of hormone secretion (Van de Kar, 1989). 

Development of Serotonin Neurons 

The birthdate of a neuron is considered to be the day on 

which the precursor cell undergoes its last cell division. 

Differentiation of the neuron begins sometime after its 

birthdate. Neuronal genesis for serotonergic neurons is 

between gestational day (G) 11 and G15 (Lauder et al., 1982). 

The 5-HT nuclei develop as superior (rostral B7-9) and 

inferior (caudal Bl-3) cell clusters. The superior cells 

develop as two bilateral groups connected by fibers that cross 
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the midline. On E18 these two groups fuse forming the dorsal 

and median raphe nuclei. Migration of serotonergic neuronal 

cell bodies occurs between G14 and G19, producing cell cluster 

shapes characteristic of adults. (Lauder et al., 1982; Lidov 

and Molliver, 1982; Wallace and Lauder, 1983; Liu et al., 

1987) . 

Neurons in the superior (rostral) cell group are able to 

synthesize 5-HT shortly (24 hours) after they have been 

generated. 5-HT is first detected (via immunohistochemistry) 

in these cell groups on G12 (Lauder et al., 1982; Lidov and 

Molliver, 1982; Wallace and Lauder, 1983; Liu et al., 1987). 

Dendrites develop within hours 

immunoreactivity (Lidov and Molliver, 

of 

1982) . 

demonstrating 

Al though the 

genesis of the inferior (caudal) nuclei begins on Gll-G12, 

these nuclei do not express 5-HT immunoreactivity until G14. 

5-HT remains low and constant until birth, when its 

levels are about 25-50% of the level found in the adult (Liu 

et al., 1987). By the third postnatal week the level of 5-HT 

reaches adult values. Increases in 5-HT are thought to 

reflect increases in TH activity. TH activity is low until 

postnatal day (PN) 12, at which time there is a dramatic 

increase in activity; adult values are reached by PN24 (Park 

et al., 1986). 5-HT uptake is about 10% of adult values at 

birth (Kirksey and Slotkin, 1979) 

Both 5-HT1 and 5-HT2 receptors are measurable in the rat 

at birth (Smith and Gallager, 1989; Whitaker-Azmitia et al., 



1987; Bruinink et al., 1982). 

interesting developmental pattern. 
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5-HT1 receptors show an 

Their density is high at 

the time of birth, but then decline in number during the first 

two weeks. Adult values are reached after PN30 (Whitaker­

Azmitia et al., 1987) . 5-HT2 receptors in the forebrain, 

which are low at birth, show an age related increase in 

density to reach adult values by PN30 (Bruinink, 1982). 

The onset of dendritic synaptogenesis in serotonergic 

neurons begins on G19. Somatic synaptogenesis does not begin 

until G20, which corresponds with the beginning of increased 

cell size. Only 15% of somatic synaptogenesis takes place 

before birth, the majority of this development occurs during 

the first two weeks of life (Lauder et al., 1982; Lauder and 

Bloom, 1975). 

Serotonin as a Growth Factor/Growth Factors for Serotonergic 

Neurons 

5-HT, in the rostral raphe, is produced early in the 

development of serotonergic neurons. Detectable levels of 5-

HT are found shortly after these neurons begin to 

differentiate, before the functioning of neurotransmission or 

synaptogenesis (Liu et al., 1987). 5-HT cell bodies are 

generated 1-2 days before their known target areas (Lauder and 

Krebs, 1978). These observations led to the hypothesis that 

5-HT may be functioning as a growth or regulatory factor 

during embryonic development. 
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Experimental alterations in fetal 5-HT levels should 

alter the development of target areas sensitive to 5-HT, if 5-

HT has a regulatory function. To test this hypothesis Lauder 

( 1978) treated pregnant rats with parachlorophenylalanine 

( PCPA) , a TH inhibitor. This treatment, which caused a 

reduction in 5-HT, delayed the onset of neuronal 

differentiation in brain regions to which 5-HT neurons 

project. These studies provided evidence that 5-HT may be 

acting as a "differentiation signal" to target areas, by 

causing these neurons to cease cell division and to begin 

differentiation (Lauder et al., 1978). 

In a similar experiment Goldberg and Kater (1989) 

injected 5,7-dihydroxytryptamine (5,7-DHT, a serotonergic 

neurotoxin) into the embryonic mollusk Helisoma trivolvia. 

These animals were then allowed to hatch and develop to sexual 

maturity. The morphology of neurons known to receive 

serotonergic innervation was abnormal. Furthermore, a 

transient decrease in 5-HT content may have stimulated neurite 

outgrowth as suggested by the enhanced synaptic coupling seen 

between adjacent the target neurons (Goldberg and Kater, 

1989) . 

The response of Helisoma trivolvis neurites that are 

sensitive to 5-HT is complex. In a system using cultured 

Helisoma trivolvis neurons, 5-HT inhibited neurites in the 

process of elongating, while stable (non-elongating) neurites 

reinitiated outgrowth (Goldberg et al., 1991). 5-HT increases 
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intracellular Ca2
+ levels, which then regulates growth cone 

behavior (Kater and Mills, 1991). 5-HT is stimulatory or 

inhibitory to neuri te outgrowth depending on the level of 

C 2+ 
intracellular a . In neurites that are actively elongating, 

5-HT increases the intracellular Ca2
+ concentration to a 

greater level than is required for neurite outgrowth. The 

elevated ca2+ inhibits neurite outgrowth. Neurites that are 

not actively elongating can be stimulated to do so if 5-HT 

raises their Ca2
+ levels to optimal levels. 

s-HT also regulates the development of corticosteroid 

receptors (Mitchell et al., 1990a; 1990b). Corticosterone, 

which is released from adrenal glands after stress-induced 

ACTH release, is concentrated in the hippocampus (McEwen et 

al., 1986) . Corticosterone uptake in hippocampal cells is 

mediated by two different types of receptors: type I and type 

II. 5-HT levels in the hippocampus increase during the first 

two weeks of life. This development parallels that of the type 

II receptors (Mitchell et al. , 1990a) . Administration of 5, 7-

DHT (a 5-HT neurotoxin) or ketanserin (a 5-HT2 antagonist) to 

neonates reduces type II receptor binding (Mitchell et al., 

1990a). 5-HT and 5-HT2 agonists increase type II receptor 

density in hippocampal cultures, suggesting that 5-HT acts 

directly on bippocampal cells, rather than an intermediary 

(Mitchell et al., 1990b). 

Interestingly, corticosterone may be required for the 

normal development of tryptophan hydroxylase, the rate 
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limiting enzyme in 5-HT synthesis. (Sze, 1980). Adrenalectomy 

(which reduces circulating corticosteroids) prevents the 

developmental increase in tryptophan hydroxylase activity 

(Sze, 1976). Replacement injections of corticosterone reverse 

the effects of adrenalectomy. Corticosterone treatment in 

intact neonates also increases tryptophan hydroxylase 

activity. However, adrenalectomy does not reduce existing 

levels of TH, but blocks the development or stress-induced 

increases. Corticosterone is thought to play a "permissive" 

role, allowing the induction of tryptophan hydroxylase to 

occur (Sze, 1976; 1980; Meyer, 1985). 

studies of primary cell culture have shown that 5-HT may 

influence the maturation of serotonergic neurons by its 

actions on 5-HT autoreceptors (Whitaker-Azmitia and Azmitia, 

1986; 1989). 5-HT or 5-methoxytryptamine, a 5-HT agonist, 

inhibit 3H-5-HT uptake and neurite outgrowth of cultured 

serotonergic neurons (Whitaker-Azmitia and Azmitia, 1986). 

The neurites in vitro appear to encircle their cell body 

rather than extend forward. Because 5-HT neurons begin their 

development as paired bilateral groups, Whitaker-Azmitia and 

Azmitia (1986) have hypothesized that 5-HT may be inhibiting 

neurite outgrowth from 5-HT neurons to their target areas, 

while promoting collateral formation between the adjacent 

groups. 5-HT also activates serotonergic receptors on glial 

cells, causing them to release growth factors which stimulate 

serotonergic development (Whitaker-Azmitia and Azmitia, 1989). 
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Thus 5-HT actions on the development of serotonergic neurons 

may depend upon the concentration of 5-HT and on the presence 

of neuronal and glial receptors during different developmental 

periods. 

serotonergic Neurons in Culture 

Neuronal cultures have been widely used as a model for 

development, and as an aid in identifying neurotrophic factors 

(Davila-Garcia and Azmitia, 1989; Azmitia and de Kloet, 1987; 

Azmitia and Whitaker-Azmitia, 1987; Azmitia et al., 1988). 

These cultures allow for the study of specific effects of 

drugs and hormones on neurons in a controlled environment. 

Basic assumptions about these cultures are that neurons grown 

in vitro express the same phenotypic characteristics as cells 

in vivo. It is also assumed that responses following 

manipulations of the environment in vitro mimic responses seen 

in vivo. One of the greatest advantages of primary cultures 

is that the impact of experimental changes can be measured 

directly. 

Organ cultures used to study the serotonergic system were 

first performed in the early 1970's when Halgren and Varon 

(1972) cultured the raphe nucleus from neonatal rats. They 

demonstrated that these cultures could be maintained for up to 

three weeks. These cultures were also subjected to hormones 

and drugs known to affect 5-HT metabolism in vivo. Their 

results indicate that organ cultures can be manipulated in the 
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same manner as serotonergic cells in vivo. 

In 1981 Yamamoto was the first to describe cultures of 

dissociated serotonergic neurons taken from embryonic day 13-

15 rat brain stem. 5-HT immunoreactivity was seen in the cell 

bodies and processes as early as 24 hours after plating. The 

morphology of these stained cells were typical: they 

contained either pyramidal cells with multipolar processes or 

fusiform cells with bipolar processes. 5-HT immunoreactivity 

was demonstrated for as long as three weeks in culture. 3H-5-

HT uptake, routinely used as a measure of the maturation of 

serotonergic neuronal terminals, increased with time in 

culture (Yamamoto, 1981; Davila-Garcia and Azmitia, 1989; 

Azmitia and Whitaker-Azmitia, 1987). Thus, 5-HT neurons 

removed from embryonic brains can survive in a dissociated 

cell culture and retain characteristics attributed to 

serotonergic neurons (Yamamoto, 1981; Davila-Garcia and 

Azmitia, 1989; Azmitia and Whitaker-Azmitia, 1987). The 

synthesis of 5-HT by cultured serotonergic neurons can be 

inhibited by PCPA (Yamamoto, 1981). 

Fetal Alcohol Syndrome 

Effects of Ethanol on Neural Development 

One of the main features of FAS is microcephaly. The 

effects of ethanol on brain development are varied and include 

the following: 1) decreased cell number; 2) decreased cell 
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size; 3) irregular axonal and dendritic morphology; and 4) 

abnormal organization of the brain (e.g. Miller 1986; 1987; 

1988; 1989; 1990; West et al., 1986; Bonthius and West, 1990). 

Thus, prenatal ethanol exposure may affect cell proliferation, 

cell death, differentiation, growth and migration. The 

molecular and cellular mechanisms involved are for the large 

part unknown, and most of the work done so far is descriptive 

in nature. 

All neurons are not equally susceptible to the effects of 

ethanol. The developmental state of a neuron may determine 

whether the neuron is sensitive to ethanol. For example, in 

the cortex and hippocampus, it has been suggested that the 

effects of ethanol are greatest during the period of neuronal 

generation. 

inhibit or 

During this period, ethanol has been shown to 

stimulate cell division {Miller, 1989). In 

contrast, cerebellar neurons are more sensitive to ethanol 

when they are differentiating, after they have been generated 

Bonthius and West, 1990). The hypothesis that ethanol affects 

neuronal populations depending on their stage of development 

can be tested by experimenting with the timing of the ethanol 

insult. 

Cortical neurons are born during the last half of 

gestation and are generated from two proliferative zones. 

These two zones are the ventricular zone, which is active 

during the first half of cortical neurogenesis, and the 

subventricular zone, which is active during the second half 
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(Miller, 1989). Both zones are differentially affected by in 

utero ethanol exposure. 

Ethanol depressed the proliferative activity of the 

ventricular zone, as shown by decreased 3H-thymidine 

incorporation (Miller, 1989). In addition, ethanol increased 

the length of time a cell spends in phase Gl of the cell cycle 

immediately following cell division (Miller, 1990). The 

ventricular zone was thinner in ethanol-exposed animals, 

apparently due to a decrease in the number of cells. 

In contrast, the proliferative activity of the 

subventricular zone was stimulated (Miller, 1989) . The 

subventricular zone was thicker in ethanol exposed animals and 

the number of cells incorporating 3H-thymidine was increased. 

Ethanol may be acting directly on cellular processes, 

stimulating cell division. Alternatively, this increase in 

proliferative activity may be compensating for the previous 

loss of cells. The sum of these effects in ethanol exposed 

animals is to delay the onset of neuronal generation in the 

cortex by 1 day and extend it by 2 days. The number of neurons 

born on each day is significantly lowered until G19, when an 

abnormally large number of neurons is generated (Miller, 1986; 

1988). In the somatosensory cortex this leads to an overall 

reduction in the number of neurons and glia, as well as a 

decrease in neuronal cell size (Miller and Potempa, 1990). 

Prenatal ethanol exposure also alters the distribution of 

neurons (Miller, 1986; 1987; 1988) . Normally the cortex 
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follows an inside-to-outside pattern of development (Angevine 

and Sidman, 1961,). Neurons in deep layers such as V and VI, 

are generated first while those in the superficial layers are 

generated last. Consequently, neurons in layers II and III 

must migrate through already existing layers. Neurons migrate 

along radial glial fibers that extend from the proliferative 

zones to the pial surfaces (Hatten, 1990). After neuronal 

migration is complete, radial glial fibers transform into 

astroglia (Schmechel and Rakic, 1979). Misplaced neurons are 

found in all layers of the neocortex in ethanol exposed 

offspring (Miller, 1986; 1987; 1988). This is primarily true 

of late generated neurons, which normally reside in layers II 

and III but are found in layers V and VI. The presence of 

ectopic neurons suggests that ethanol affects neuronal 

migration in the developing cortex (Miller, 1986; 1987; 1988). 

Since the migration of neurons is dependent upon cell adhesion 

molecules located on both neurons and glia (Hatten, 1990), 

ethanol may alter the interaction between the neuron and the 

glia. Alternatively, ethanol may accelerate the 

transformation of the radial glial fibers into astrocytes 

(Miller et al. , 1988) . This latter hypothesis is particularly 

attractive and could explain why later-generated neurons are 

more likely to be misplaced. 

In the hippocampal formation, the development of 

pyramidal and granule neurons are temporally separated; 

pyramidal neurons in the hippocampus are born prenatally, 
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granule cells in the dentate gyrus are generated postnatally 

(Angevine, 1965). While the number of pyramidal cells in the 

CAl region of a mature rat is reduced by prenatal but not 

postnatal exposure to ethanol, CA3 pyramidal cells are 

unaffected (Barnes and Walker, 1981; West et al., 1986; Wigal 

and Amsel, 1990). Stem cell populations that generate granule 

cells also appear unaffected, because the number of granule 

neurons is unchanged by in utero ethanol exposure. Granule 

cell number has been found to either increase or remain 

unaffected by postnatal exposure to ethanol (West et al., 

1986; Bonthius and West, 1990) 

The cerebellum is particularly sensitive to ethanol. 

Cerebellar weights are typically reduced to a greater extent 

than total brain weight (Bonthius and West, 1990; Bauer­

Moffett and Altman, 1977; Goodlett et al., 1990). The 

reduction in cerebellar weight is reflected by decreases in 

neurons that compose the cerebellum. 

Like the hippocampus, the two main cell types of the 

cerebellum are generated at different times relative to birth, 

and are affected differently by ethanol exposure. In contrast 

to hippocampal pyramidal cells, the prenatally formed purkinje 

cells are more sensitive to ethanol after they have been 

generated. Purkinje cell numbers are significantly reduced 

with postnatal ethanol exposure, during differentiation when 

synaptic contacts are being established (Bauer-Moffett and 

Altman, 1977; Philips and Cragg, 1982; Bonthius and West, 
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Interestingly, purkinje cells in early maturing 

cerebellar lobules are reduced to a greater extent than 

purkinje cells in later maturing lobules. It was concluded 

that purkinje cells in a more "mature state of 

differentiation" were more susceptible than those in a less 

mature state (Bonthius and West, 1990), which further supports 

the hypothesis that the developmental state of a neuron 

determines its susceptibility to ethanol. 

The number of cerebellar granule cells, which are formed 

postnatally, is also reduced by postnatal ethanol exposure 

(Bauer-Moffett and Altman, 1977; Bonthius and West, 1990). 

This contrasts with the hippocampus, where granule cells are 

either unaffected or increased by ethanol exposure ( Barnes and 

Walker, 1981; Bonthius and West, 1990). Consequently, it has 

been suggested that, in the cerebellum, ethanol initially acts 

on purkinje cells to reduce their numbers. Cerebellar granule 

cells, which project to and synapse with the purkinje cells 

are secondarily reduced because their target population is 

diminished. Hippocampal granule cells synapse with CA3 

pyramidal cells, whose numbers are not affected by ethanol 

exposure (Wigal and Amsel, 1990). 

Effects of Ethanol on Development of Serotonergic Neurons 

Ethanol exposure during the embryonic period in the rat 

affects the normal development of the serotonergic system. 

5-HT and 5-HIAA levels are decreased in the brainstem 
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(location of the raphe) of Gl5, G19 and PN5 ethanol-exposed 

rats (Druse et al., 1990) . 5-HT1A receptors in the frontal 

cortex are also decreased at PN5 (Druse et al., 1990). Early 

deficiencies of 5-HT may impede further development of 

serotonergic neurons, because 5-HT functions as a growth 

factor during embryonic development, by autoregulating the 

maturation of serotonergic neurons. Indeed, the 5-HT 

deficiency persists into late postnatal development. A 20-50% 

deficiency of 5-HT and 5-HIAA is detected in the motor and 

somatosensory cortex of 19- and 35- day-old offspring of rats 

fed an ethanol containing liquid diet on a chronic basis prior 

to parturition (Rathbun and Druse, 1985). 5-HT uptake in the 

motor cortex as well as 5-HT1 binding sites on membranes from 

motor and somatosensory cortex are reduced 10-40% (Druse and 

Paul, 1989; Tajuddin and Druse, 1989a). 

Neurochemical studies suggest that there is a deficiency 

in the projection of neurons from the raphe to the cortex 

since 5-HT, 5-HIAA, 5-HT uptake and some 5-HT1 receptors are 

located presynaptically. 5-HT2 receptors, located on 

postsynaptic neurons, appear not to be affected by in utero 

exposure to ethanol (Tajuddin and Druse, 1989b). 

Ethanol in Cell Culture 

Traditionally, FAS 

offspring from mothers 

containing liquid diet. 

studies have been conducted on 

that have been fed an ethanol­

However, it is not easy to 
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distinguish the direct effects of ethanol from the indirect 

effects mediated via changes in the mother's status. As 

discussed below, there are many secondary ethanol-related 

changes in the mother, such as undernutrition, placental 

dysfunction, changes in maternal metabolism and endocrine 

imbalances which can also impair prenatal growth (Schenker, 

1990; Snyder, 1986; Savoy-Moore et al., 1989). Direct 

cellular toxicity, independent of the mother, may be involved 

once ethanol reaches the embryo. 

Tissue culture offers the benefit of examining the direct 

effects of known concentrations of ethanol on specific aspects 

of growth and differentiation. Advantages of primary cultures 

are that they are derived from normal tissue and probably 

closely resemble cells found in vivo. In contrast, 

established cell lines are either transformed or are obtained 

from cancerous sources. 

One of the biggest disadvantages of cell culture is that 

growth conditions that simulate an in vivo environment are 

unknown. Conventional tissue culture "wisdom" dictates the 

use of serum, which supplies growth factors necessary for in 

vitro development. The exact components of serum have not 

been defined, and serum may vary from lot to lot. This 

uncertainty has lead some researchers to investigate alternate 

growth supporting media. There are several studies which 

implicate one or more serum factors with ethanol's effects on 

cultured cells. For example, ethanol significantly increased 
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adenylate cyclase activity in PC12 cells grown in serum­

containing media, but not in chemically defined media (Rabin, 

1990) . Significant differences were also seen when the 

chemically defined media was supplemented with serum 

lipoproteins, implying that the observed effects of ethanol 

require the presence of a serum component. In addition, Smith 

et al. (1990) suggest that serum might provide a protective 

barrier to the toxic effects of ethanol. survival of mouse 

dorsal root ganglion neurons was increased in serum-containing 

media treated with ethanol. 

At one time, glial cells were considered "the glue" of 

the nervous system. While structurally important, few 

additional functions were attributed to non-neuronal cells. 

It is now thought that there are regionally specific glial 

cell populations which possess receptors, uptake sites and 

enzymes essential for neuronal functioning. Astrocytes possess 

5-HT uptake sites, receptors and MAO (Katz and Kimelberg, 

1985; Fillion et al., 1983; Fitzgerald et al., 1990). They 

also play a major role during development, in that they 

secrete neurotrophic factors and provide a scaffolding which 

guides neurons to their final destination (Hatten, 1990). 

Considering the importance of glial cells, very little is 

known about how ethanol affects their development. It is 

conceivable that ethanol influences glial development, which 

in turn propagates the abnormal cytoarchitecture and 

neurochemical imbalances associated with FAS. 
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Decreases in cortical astroglia cell number can occur at 

an ethanol dose as low as 200 mg/dl (Davies and Cox, 1991). 

This could potentially happen if ethanol was either toxic to 

the glial cells or inhibited cell division. 3H-Thymidine 

incorporation (measuring DNA synthesis) is decreased, 

suggesting that ethanol inhibits the generation of new cells 

(Geurri et al., 1990) . The reductions seen in protein and RNA 

content (Kennedy and Mukerji, 1984) probably result from this 

reduction in cell number. Inconsistent with these previous 

reports are the findings of Guerri et al. (1990). They found 

that 3H-leucine incorporation (measuring protein synthesis) is 

unaffected by in vitro ethanol exposure. 

Differentiation refers to the process by which embryonic 

cells become specialized. In glial cells this is determined by 

measuring developmental increases seen in glial specific 

proteins. Ethanol causes a decrease in glutamine synthetase 

activity, a marker for astroglial differentiation, which 

parallels the loss of glial protein content (Kennedy and 

Mukerji, 1985). 

Prenatal ethanol exposed astroglial cultured in the 

absence of ethanol, demonstrated a reduction in both 3H­

thymidine and 3H-leucine incorporation (Guerri et al., 1990). 

This diminished proliferative activity suggests that in utero 

ethanol exposure may damage astroglial progenitor cells. 

Consequently, developmental processes occurring after the 

ethanol insult may still be in jeopardy of abnormal growth. 
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cortical astroglia from embryonic chickens are relatively 

resistant to ethanol. DNA, protein content, and 3H-leucine 

incorporation were reduced only at an extremely high 

concentration of 1000 mg/dl. Lower doses of 100 and 500 mg/dl 

had no effect on cell growth and proliferation (Davies and 

vernadakis, 1984). 

Neuronal cell cultures, obtained from a variety of 

sources, appear to be more resistant to a direct toxic effect 

of ethanol. The LD50 for mouse dorsal root ganglion neurons 

is 2000 mg/dl, while the LD50 for non-neuronal cells 

(presumably glia) in the same culture is 700 mg/dl (Scott et 

al., 1986). While ethanol caused a dose-dependent (0-250 

mg/dl) inhibition of nerve growth factor induced neurite 

outgrowth in similar cultures, cell survival was not affected 

(Dow and Riopelle, 1985). Although the number of viable cells 

and protein content in cultured dopaminergic neurons were 

reduced at 550 mg/dl, lower doses of 125 and 200 mg/dl had no 

significant effect (Acosta et al., 1986). In addition, 

ethanol (230 mg/dl) had no effect on dopamine uptake in these 

cultures (Mytilineou et al., 1988; personal communication with 

Mytilineou). Exposure of rat cortical neurons to 920 mg/dl 

ethanol had no impact on the content of neuroactive amino 

acids (taurine, aspartic acid, glutamic acid, glycine and 

GABA) (Kuriyama et al., 1987). The activities of glutamic 

acid decarboxylase, GABA-transaminase, choline 

acetyltransferase and acetylcholinesterase were similarly 
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unaffected. 

possible Mechanisms 

Many hypotheses have been put forward to explain how 

ethanol consumption damages the fetus, but in actuality, very 

little is known about the mechanisms of action. Clinical 

studies are complicated by the fact that alcoholic women 

frequently abuse other drugs. Cigarettes, cocaine and 

marijuana use may all contribute to growth retardation, which 

is also found in the fetal alcohol syndrome (Zuckerman et al., 

1989; Meyer and Tonascia, 1977). Nevertheless, animal models 

have shown that ethanol has deleterious effects on the fetus 

in the absence of these other factors (e.g. Miller 1986; 1987; 

1988; 1990). 

Poor maternal nutrition may impair fetal growth and 

exacerbate the prognosis of the ethanol exposed infant. 

Defective placental transport of nutrients may also compromise 

fetal nutrition (Schenker et al., 1990). Placental nutrient 

transport serves as the primary source of the fetus' nutrient 

and energy supply. Normal fetal growth is dependent upon an 

adequate transport of essential amino acids, glucose and 

vitamins across the placenta. Several studies have shown 

impaired transport of amino acids and glucose in pregnant rats 

fed liquid diets containing ethanol (Henderson et al., 1982; 

Snyder et al., 1986). The human placenta is resistant to 

acute ethanol exposure (Schenker, 1990). However, pathologic 
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placental changes have been observed in chronic alcoholics 

(Schenker et al., 1989; Halmesmaki et al., 1987, Baldwin et 

al. , 1982) . 

Despite the fact that there is considerable evidence that 

malnutrition can augment some of the abnormalities found in 

FAS, it is apparent that even in well-fed animal models of FAS 

significant ethanol associated abnormalities are found (e.g. 

Miller 1986; 1987; 1988; 1989; 1990; West et al. , 1986; 

Bonthius and West, 1990) . In animal models of FAS, both 

control and ethanol-fed animals receive an equal quantity of 

calories and major nutrients. However, impaired placental 

transport of nutrients cannot be excluded. 

Hypoxic episodes resulting from ethanol consumption may 

also be damaging to the developing fetus. A reduction in 

blood flow in the umbilical vessels has been demonstrated in 

rats, monkeys, and humans (Jones et al., 1981; Mukherjee and 

Hodgen 1982; Savoy-Moore et al., 1989). In the human fetus, 

hypoxia primarily affects subcortical regions of the brain, 

especially those in the periventricular tissues (Jorgensen and 

Diemer, 1982) . Interestingly, Miller has found that the 

proliferative zones which line the lateral ventricles are 

affected by in utero ethanol exposure (Miller, 1989) . In 

addition, hypoxia produces cell loss of pyramidal neurons in 

the CAl region of the hippocampus and purkinje cells in the 

cerebellum (Jorgensen and Diemer, 1982). This selective cell 

loss is similar to that observed by Barnes and Walker (1981) 
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and Bonthius and West (1990) following prenatal ethanol 

exposure. The areas that are most susceptible to hypoxic 

damage use aminoacids as excitatory neurotransmitters. 

Hypoxia may produce cell death in these regions by causing a 

release of excess glutamate resulting in overexcitation and 

cell death (Jorgensen and Diemer, 1982) 

Ethanol exposure may also produce changes in factors that 

are necessary for normal development of the fetus. 

Prostaglandins are essential for growth and development of the 

fetus, as well as the maintenance of pregnancy (Challis and 

Patrick, 1980; Goldberg and Ramwell, 1975). Ethanol induced 

increases in PGE2 have been correlated with suppression of 

fetal breathing movements in the near term fetus (Brien and 

Smith, 1990). Aspirin and indomethacin, which inhibit 

prostaglandin synthesis, reduce some of the deleterious 

effects of ethanol (Schenker et al., 1990; Randall et al., 

1990; Brien and Smith, 1990). Ethanol consumption increases 

thromboxane and prostacylin, two vasoactive prostanoids 

important for the regulation of umbilical and placental blood 

flow (Schenker et al., 1990; Randall et al., 1990). 

Inhibition of placental blood flow may produce hypoxia in the 

fetus. 

Since in utero ethanol exposure produces a wide range of 

abnormalities in the development of CNS abnormalities, it is 

possible that ethanol alters the function of growth factors 

that control cell survival, differentiation and migration. 
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Growth factors such as growth hormone-releasing hormone, nerve 

growth factor and epidermal growth factor prevent the ethanol 

induced decreases in choline acetyltransferase activity 

(Kentroti and Vernadakis, 1990; Brodie et al., 1991). In 

addition, Dow and Riopelle (1990) have demonstrated that in 

vitro ethanol exposure inhibits the production of heparin 

sulphate proteoglycans, which have neuri te-promoting activity. 

unfortunately, it is not known whether in utero ethanol 

exposure reduces the concentration of any of these factors. 

The teratogenic effects of ethanol consumption could be 

due to direct effects of ethanol, since ethanol readily 

crosses the placenta (Rosett and Weiner, 1984). The most 

common consequence of gestational ethanol abuse is growth 

impairment. Normal growth is dependent on the ability of the 

organism to replicate and synthesize proteins. Reduced brain 

size may be due to the interference of nucleotide and protein 

synthesis by ethanol. 

Under a variety of conditions, ethanol can inhibit 

protein, RNA and DNA synthesis (Dreosti et al., 1981; Garro et 

al., 1991; Tewari et al., 1987; Rawat, 1985; Sharma and Rawat, 

1989) . Ethanol inhibits the activity of aminoacyl tRNA 

synthetase and the transfer of amino acids to the growing 

polypeptide chains (Lamar, 1972; Fleming et al., 1975). 

Ethanol also disrupts the transportation of RNA across the 

nuclear membrane and reduces ribosomal binding to available 

mRNA (Tewari et al., 1975; 1980) . Ethanol consumption by 
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pregnant mice suppresses DNA methyltransferase activity, 

resulting in hypomethylation of fetal DNA (Garro et al., 

1991). The methylation state of DNA affects gene expression. 

DNA of inactive genes is more heavily methylated than that of 

active genes (Alberts et al., 1989). 

The processes involved with gene transcription and 

translation are essential for cellular growth. Handicaps to 

any of these mechanisms during critical periods may lead to 

the development of certain features of the fetal alcohol 

syndrome. During development, each subsequent phase may 

depend on the normal development of the preceding stage. 

Ethanol-related changes in the protein synthetic machinery at 

any point could potentially affect the final cytoarchitecture 

and circuitry of the brain. 

How much ethanol is too much? This apparently simple 

question is difficult to answer because of the difficulty in 

obtaining accurate reports of a woman's ethanol intake during 

pregnancy. Self-reports are highly inaccurate for two 

reasons. 1) Women must depend upon their memory of how much 

ethanol they drank. 2) Because there is a stigma associated 

with drinking while pregnant, the reported consumption maY be 

lower than the actual consumption (Rosett and Weiner, 1984). 

For these and other reasons, it is not known if there is a 

"safe" lower limit for ethanol intake. Nonetheless, growth 

deficits have been observed in children of mothers who 

reportedly drank as little as two drinks per day (Hanson et 
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al., 1978). No information is available regarding the blood 

ethanol level of these women. This is potentially important 

because blood alcohol content (BAC) is a more accurate 

indicator of intoxication, than the amount of ethanol 

ingested. 

Proposed Studies 

Prenatal exposure to ethanol impedes the development of 

5-HT neurons. Although several potential causes of ethanol­

associated abnormalities have been discussed, the mechanisms 

producing abnormal development of serotonergic neurons is 

unknown. The purpose of this dissertation research was to 

investigate the hypothesis that in utero ethanol directly 

inhibits the development of serotonergic neurons. Primary 

cultures of neurons and astroglia were exposed to a range of 

clinically relevant doses (50, 150 and 300 mg/dl) of ethanol. 

The function of serotonergic neurons and 

assessed after 4 days of ethanol exposure. 

investigated because of their important 

astrocytes were 

Astrocytes were 

role in guiding 

neurons to their destination and providing growth factors for 

neuronal development. 



CHAPTER THREE 

METHODS 

In Vitro Experiments 

Ethanol Determination 

Ethanol levels were measured in culture media and in 

blood samples using an enzymatic kit (Sigma #330-1; st. Louis, 

MO). This kit measures ethanol by measuring the nicotinamide 

adenine dinucleotide (NADH) formed when ethanol is converted 

to acetaldehyde via alcohol dehydrogenase (ADH) and when 

nicotinamide adenine dinucleotide (NAO+) is reduced to NADH. 

An increase in absorbance at 340 nm occurs when NAO+ is 

converted to NADH. 

The ethanol concentration of culture media was analyzed 

3, 6, 12, or 24 hours after the addition of ethanol (50, 150 

and 300 mg/dl). Blood ethanol levels were determined in 

animals that consumed an ethanol-containing liquid diet for 5 

days prior to sampling. These animals were not used in any 

subsequent experiments. Tail vein blood was removed 2 hours 

after the addition of fresh diet to animals that had been 

fasted for 12 hours. Deproteinization of the blood samples 

was performed by the addition of trichloroacetic acid (6.25% 
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w/v). Each sample was tightly capped to prevent evaporation 

of the ethanol and allowed to stand at room temperature for 5 

minutes, followed by a slow speed centrifugation 

(International Clinical Centrifuge, Model CL; International 

Equipment Co., Boston, MA). One hundred microliters of this 

supernatant or 100 µl of culture media were added to a NAD-ADH 

assay vial containing 2. 9 ml glycine buffer ( o. 5 M) and 

incubated at 37°c for 10 minutes. The sample was transferred 

to a cuvette and the absorbance was read at 340 nm (Gilford 

Response spectrophotometer). 

Neuronal Primary Cell Culture 

Timed pregnant Sprague-Dawley rats were purchased from 

Holtzman (Madison, WI. ) . Dissociated cell cultures were 

prepared from rat embryos on Gestational day 14 (day of 

insemination= 0). Gestational day 14 was chosen because by 

this age most of the serotonergic cells located in the 

rhombencephalon have been generated (Konig et al., 1989; 

Lauder et al., 1989). 

Uterine horns were removed from anesthetized rats (60 

mg/kg sodium pentobarbi tal; Anthony Products Co. , Arcadia, CA) 

and placed in a sterile petri dish containing cold Hank's 

Balanced Salt Solution (HBSS: 5.4 mM potassium chloride, 0.4 

mM potassium phosphate monobasic anhydrous, 4. 2 mM sodium 

bicarbonate, 0.14 M sodium chloride, 0.34 mM sodium phosphate 

dibasic anhydrous, 5.6 mM glucose). The embryos were removed 
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from the uterus and transferred to a second sterile petri dish 

containing cold HBSS. 

All dissections were performed under a Zeiss dissecting 

microscope. The portion of the head containing the 

mesencephalon and the rhombencephalon were separated from the 

fetus. All of the surrounding meninges and blood vessels were 

carefully removed. Rhombencephalic cells were obtained by cuts 

made at the rhombencephalic isthmus and at the cervical 

flexure. The dissected tissues were collected in sterile 

HBSS and stored on ice until all fetuses were dissected. 

The dissected brain regions were transferred to 1 ml of 

a solution containing a 0.05% (w/v) trypsin/0.02% (w/v) EDTA 

(Sigma, St. Louis, MO), 0.1% (w/v) DNAse (Sigma, st. Louis, 

MO) solution in HBSS, and incubated at 37°c for 35 minutes to 

allow for dissociation of the tissue. The tissue was then 

triturated with a 10 ml sterile pipette and a sterile Pasteur 

pipette until the tissue had dissociated. Pieces that could 

not be dissociated were allowed to settle to the bottom of the 

tube and were removed by aspiration. Cells were then 

resuspended in Eagles minimal essential medium (MEM, Sigma, 

st. Louis, MO) with 1% (v/v) penicillin-streptomycin (Sigma, 

St. Louis, MO), 20 mM HEPES (JRH Biosciences, Lenexa, KS) and 

10% (v/v) NuSerum (Collaborative, Bedford, MA). Except where 

noted, all neuronal cell cultures were grown in this media. 

Cell viability was determined by trypan blue exclusion. For 

all studies except immunohistochemistry, cells were plated at 
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an approximate density of 1.5 x 106 viable cells on 35mm wells 

(6 well plates, costar, Cambridge, MA} or 4.0 x 106 cells on 

25 cm2 flasks. Cells used for immunohistochemistry were 

plated on 22 mm wells (12 well plates) at a density of 0.5 x 

106 cells per well. Both wells and flasks had been previously 

coated with polylysine (MW>70,000, Sigma, St.Louis, MO, 33 

µg/ml). The cultures were maintained in an atmosphere of 5% 

co2 , 95% air at 37°c. 

Twenty-four hours after initial culturing the media was 

replaced with fresh media. The media was changed again forty­

eight hours after initial culturing and thereafter the cells 

were cultured in the absence or presence of ethanol (50, 150, 

300, or 450 mg/dl) for four days. To prevent ethanol 

evaporation culture plates were wrapped in parafilm and media 

was replaced daily for the duration of the experiment. The 

caps on the flasks were tightly sealed. For experiments in 

which the cells were acutely exposed to ethanol, the cultures 

were grown in the absence of ethanol until the time of 

analysis of 5-HT uptake. 

Glial Primary Culture 

The protocol used to generate rhombencephalic neuronal 

cultures was also chosen to start the rhombencephalic glial 

cultures except that the latter cells were seeded onto plates 

that were not coated with polylysine (Lim and Miller, 1989). 

(Astrocytes attach directly to the plastic surface whereas 
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neurons can only adhere to coated plates or to flattened 

astrocytes.) Glial cells proliferate in media with high serum 

content, thus these cells were cultured in Eagle's MEM.with 

10% (v/v) HS, 5% (v/v) FCS, 1% (v/v) penicillin - streptomycin 

(Sigma, St. Louis, MO) and 20 mM HEPES (JRH Biosciences, 

Lenexa, KS) . 

After initial culturing the cells were incubated at 37°c 

for 2 days without disturbance to discourage aggregation of 

cells. Forty-eight hours after initial culturing the media 

was changed. Thereafter, the media was changed every 3-4 

days. The cells were confluent in 1 week. The cultures were 

represented by a heterogeneous population of cells consisting 

of mainly neurons and astrocytes. On the seventh day after 

culturing the cells were dislodged by incubating the cells 

with 0.05% (w/v) trypsin/0.02% (w/v) EDTA, 0.1% (w/v) DNAse in 

HBSS for 5 minutes. Neurons typically do not survive this 

procedure. The cells were collected by low speed 

centrifugation and subcultured with a 1:4 dilution. The media 

was changed 24 hours later. Thereafter, the astrocytes were 

cultured in the presence or absence of ethanol (50, 150, 300 

mg/dl) for 4 days. The culture plates were wrapped in 

parafilm to prevent ethanol evaporation and the media was 

replaced daily for the duration of the experiment. 

5-HT and GFAP Immunohistochemistry 

5-HT and glial fibrillary acidic protein (GFAP) (both 
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antibodies from Incstar, Stillwater, MN) immunohistochemistry 

was performed using the peroxidase vectastain ABC kit from 

vector Laboratories Inc (Burlingame, CA). Glial filaments are 

composed of GFAP and the presence of this protein is a marker 

for astroglia (Banker and Goslin, 1991). Cultures that were 

used for 5-HT immunohistochemistry were incubated with 100 µM 

L-tryptophan (Sigma, st. Louis, MO) and 10 µM pargyline 

(Sigma, st. Louis, MO) for 24 hours before processing. All 

cultures were washed 3 times with warm phosphate buffered 

saline (PBS: 2.7 mM potassium chloride, 1.5 mM potassium 

phosphate monobasic anhydrous, 0.14 mM sodium chloride, 8 mM 

sodium phosphate dibasic anhydrous) before fixing with cold 4% 

(w/v) paraformaldehyde for 1 hour. After fixation and between 

all subsequent steps the cultures were washed 3 times with 

cold PBS. To block non-specific biotin sites, cultures were 

first incubated with a 50% (v/v) avidin blocking solution (in 

PBS with 1.5% (v/v) normal goat serum) for 30 minutes followed 

by a 30 minute incubation in a 50% (v/v) biotin solution (in 

PBS with 1.5% (v/v) normal goat serum). Cultures were then 

exposed overnight to either anti-5-HT (1:2000 in PBS with 1.5% 

(v/v) normal goat serum) or anti-GFAP (as supplied from 

Incstar). On the following day cultures were incubated first 

with a biotinylated secondary antisera (0.5% (v/v) goat anti­

rabbit IgG in PBS with 1.5% (v/v) normal goat serum) for 30 

minutes, then with the avidin-biotin peroxidase complex (as 

supplied from Vector Labs). Visualization of bound antibody 



was performed in a 0.03% (v/v) H20 2 (Sigma, st. Louis, 

0.01% (w/v) diaminobenzidine (Sigma, St. Louis, MO), 

tris solution. 
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MO), 

0.1 M 

The percentage of 5-HT neurons in the cultures was 

determined by counting the number of positively stained and 

unstained neurons, using a Nikon inverted microscope at a 

magnification of 400x. Six random fields were counted for 

each experiment and these numbers were averaged to produce an 

n=l. Six separate experiments were performed. 

5-HT Uptake 

Uptake was determined by measuring the accumulation of 

3H-5-HT (specific activity 25 Ci/mmol, New England Nuclear, 

Boston, MA) by the neuronal and glial cultures (Lauder, 1989). 

The cultures were first washed 3 times with warm (37°C) HBSS. 

The cultures were then incubated for 20 minutes at 37°C with 

60 nM 3H-5-HT in HBSS containing 0.1 mM L-cysteine (Sigma, St. 

Louis, MO) and 1 x 10-5 M pargyline (Sigma, St. Louis, MO). 

Nonspecific uptake, determined using 1 x 10-5 M fluoxetine 

(Lily, Indianapolis, IN) was 7% to 15% for all experiments. 

For cultures exposed to ethanol for 4 days, the 20 minute 

incubation with 3H-5-HT took place in the absence of ethanol. 

For studies of the effects of an acute ethanol exposure on 

control neurons, the 20 minute incubation with 3H-5-HT took 

place in the presence of either o, 50, 150, or 300 mg/dl 

ethanol. 
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After the 20 minute incubation period, the 3H-5-HT 

containing solution was removed and the cultures were washed 

3 times with ice-cold HBSS. Cultures were allowed to air dry 

and were then extracted with 1 ml of 0.1 N NaOH for 1 hour. 

culture wells were then rinsed with 0.5 ml of 0.1 N HCl. The 

two extracts were combined prior to liquid scintillation 

counting. An aliquot was saved for protein determination. 

5-HT Content 

5-HT content in neuronal cultures was determined by using 

an immunoassay kit from AMAC Inc. (Westbrook, ME). This kit 

makes use of an antibody that is fixed on the inner surface of 

the wells in a microtiter plate and has a high affinity for 

acylated bioamines. Acylated 5-HT, in the sample or standard, 

competes for antibody binding with acetylcholinesterase 

coupled to 5-HT. The absorbance of the standards (0 - 200 nM) 

and samples is read at 410 nm. 

The cell cultures were washed 3 times with HBSS. The 

cells from six wells were pooled into a microcentrifuge tube 

and collected by a low speed centrifugation. The supernatant 

was aspirated and the cells were homogenized in 100 µl of ice 

cold 0.2 N perchloric acid (Mallinckrodt, Paris, KY). An 

aliquot was taken for protein determination. 

then centrifuged for 5 minutes at 10,ooog 

The cells were 

at 4°c. The 

supernatant was removed and neutralized with an equal volume 

of lM potassium borate, pH 9.25 (EM Sciences, Gibbstown, NJ). 
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The samples were centrifuged again for 5 minutes at 10,ooog at 

4°c. The supernatant was then transferred to a new 

microcentrifuge tube and stored at -7o0c for less than 2 

months until the day of the assay. 

On the day of assay the 5-HT standards (0 - 200 nM} were 

prepared by adding 1 ml of distilled water to the vial 

containing the lyophilized 5-HT (concentration after 

reconstitution is 1 x 10-5 M). A serial dilution of the 

reconstituted 5-HT was performed to obtain the desired 5-HT 

concentrations for the standards. Equal volumes of o. 2 N 

perchloric acid and 1 M potassium borate were used as 

diluents. The standards were centrifuged at 10, 000g for 1 

minute at 4Dc and the supernatant, which contained the 5-HT 

standards, was transferred to new tubes. 

In the vials containing the acylating reagent, 100 µl of 

standard or sample were added and then left in the dark for 30 

minutes at room temperature. Following this incubation, 20 µl 

of the acylated standard or sample and 200 µl of the 5-HT­

acetylcholinesterase conjugate (as supplied from AMAC Inc., 

Westbrook, ME) was added to the wells in the microtiter plate. 

The microtiter plate was shaken in the dark for 3 hours at 

room temperature. The well contents were aspirated and the 

wells were washed 3 times with 300 µl of wash solution (as 

supplied from AMAC Inc., Westbrook, ME). Two hundred 

microliters of substrate (as supplied from AMAC Inc., 

Westbrook, ME) was added to each well and shaken at room 
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temperature for 20 minutes in the dark. Fifty microliters of 

stopping reagent (as supplied for AMAC Inc., Westbrook, ME) 

was then added to all wells and the absorbance was read at 410 

nm on a microplate reader (Dynatech, Chantilly, VA). 

DNA Content 

DNA content was assessed using a colorimetric assay 

developed by Burton (1956). All cultures were rinsed 3 times 

with HBSS. To the neuronal cultures 750 µl of 1 N NaOH was 

added directly to each well. The glial cultures were combined 

prior to the start of the assay due to low DNA content. The 

glial cells from six wells were pooled into a microcentrifuge 

tube and collected by low speed centrifugation. The 

supernatant was aspirated and the cells were dissolved in 750 

µl of lN NaOH. 

Two 250 µl aliquots (duplicates) were taken from each 

sample and transferred to new test tubes. The remaining 250 

µl were saved for protein determination. To each sample and 

standard (O - 150 µg DNA dissolved in 1 N NaOH) 250 µl of 20% 

(v/v) perchloric acid was added. Both samples and standards 

were hydrolyzed at room temperature for 3 o minutes. After the 

incubation period, 500 µl diphenylamine (40 mg/ml in glacial 

acetic acid) and 25 µl acetaldehyde (stored as a 16 mg/ml 

stock solution in distilled water and diluted 1:10 prior to 

use) were added and vortexed. The test tubes were then capped 

and shaken overnight in a 3o0c waterbath. On the following day 



45 

the tubes were centrifuged at 800g (Sorvall RT6000) for 10 

minutes. The optical density of the standards and samples 

were read at 595 nm on a Gilford Response spectrophotometer. 

Protein Determination 

Protein levels were assayed by a micromodif ication of the 

method of Lowry et al. ( 1951) . Samples were previously 

collected and dissolved in lN NaOH following the protocol for 

determining DNA content. Samples and standards ( 0-50 µg human 

serum albumin) were incubated in 100 µl of 1 N NaOH for 30 

minutes. To each sample and standard 1 ml of a solution 

(0.1:0.1:10, v/v/v) containing 1% (w/v) cupric sulfate, 2% 

(w/v) ~-Na+ tartrate, and 2% (w/v) sodium carbonate. After 

a 10 minute incubation, 100 µl of 1.0 N Falin phenol reagent 

was added. After a 30 minute incubation, the optical density 

of the standards and samples was determined at 700 nm on a 

Gilford Response spectrophotometer (Gilford Instrument 

Laboratories, Oberlin, Ohio). 

sos Page Gels 

Cells were washed 3 times with cold HBSS. Lysis buffer 

(0.5% (v/v) Triton x-100, 1 mM phenylmethylsulfonyl fluoride, 

5 mM iodoacetamide, and 0.2 U/ml aprotinin in TSA (0.01 M 

tris, 0.14 M sodium chloride, and 0.025% (w/v) sodium azide, 

pH 8.0) was added directly to the culture dishes and allowed 

to incubate on ice for 2 o minutes. The cells were then 
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scraped from the bottom of the plate and transfered to a 

chilled microfuge tube. The lysate was centrifuged at 12, ooog 

for 2 minutes at 4°c (MC15; Hill Scientific, Derby, CT). The 

supernatent was transferred to a fresh tube and stored at -

10°c for less than 3 months until the day of the assay. An 

aliquot was removed for protein determination (Lowry et al., 

1951) . 

On the day of the assay, the samples were thawed on ice. 

An aliquot equivalent to 25 µg protein (neuronal cultures) or 

10 µg protein (glia cultures) was taken from each sample and 

was diluted with an equal volume of twice concentrated loading 

buffer (40 mM tris, 4% (v/v) mercaptoethanol, 1% (w/v) sos, 

40% (v/v) glycerol, and Bromophenol Blue). The samples, along 

with low molecular weight markers (Bio-Rad, Richmond, CA), 

were boiled for 5 minutes before loading onto a 12% (w/v) 

denaturing polyacrylamide gel (30% (w/v) acrylamide, 8% (w/v) 

N,N'-methylene-bisacrylamide, 1.5 M tris-HCl, 10% (w/v) sos, 

10% ammonium persulfate, and TEMED). The gel was run at 100 

volts (constant voltage) in an electrophoresis buffer (0.125 

M tris base, o. 950 M glycine, and O. 05% (w/v) sos. The 

proteins were stained with o .1% (w/v) Coomassie blue, 40% 

(v/v) methanol, 10% (v/v) acetic acid and destained with 40% 

(v/v) methanol and 10% (v/v) acetic aced. A densitometric 

scan was performed using a MicroScan 1000 

(Technology Resources, Inc., Nashville, TN) 

Gel Analyzer 

Two peaks that 

could be identified as being the similiar protein on separate 
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gels were chosen and the numbers constituting the% area were 

subjected to a Students' t-test (neuronal cultures) or a one­

way ANOVA (glial cultures). 

statistical Analysis 

The fetuses from two mothers were combined for each 

experiment. The number of viable cells obtained from these 

fetuses was enough to plate four 6 well plates. These four 

plates were then divided into 4 groups: control; 50; 150; and 

300 mg/dl ethanol. Each plate constituted an "n" of one. 

Thus in those experiments measuring 5-HT uptake, protein, or 

DNA content, the values from each well on a plate were 

averaged to produce n=l. The experiment was then repeated 3-9 

times (n=3-9). Because of the low 5-HT content in neuronal 

cultures, and low DNA content in glial cultures, all 6 wells 

were combined prior to being assayed. 

All experiments in which the cultures were subjected to 

multiple ethanol doses were analysized by a one-way ANOVA and 

a post-hoc Newman Keul's test. Student's 't' test was used to 

determine statistical significance in those experiments had 

only control and one ethanol dose. Each value represents the 

mean± the standard error of the mean. 

represent significant differences. 

P values of <0.05 
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In Vivo Experiments 

Animal Model 

Timed pregnant Sprague-Dawley rats were purchased from 

Holtzman (Madison, WI.). The animals were separated into four 

experimental groups: la) Animals which were fed a 3.3% (v/v) 

ethanol liquid diet between G9-G10, followed by a 6.6% (v/v) 

ethanol liquid diet between Gll-G15; lb) animals which were 

pair-fed a control liquid diet between G9-G15. 2a) Animals 

which received a 3.3% (v/v) ethanol liquid diet between G14-

Gl5 followed by a 6.6% (v/v) ethanol liquid diet between G16-

G20; 2b) animals which were pair-fed a control liquid diet 

between G14-G20. The 3.3% (v/v) ethanol liquid diet was given 

two days prior to initiation of the 6.6% ethanol liquid diet 

to acclimate the animals to drinking a high ethanol content 

liquid diet. The ages were chosen because Gll-Gl5 corresponds 

to the generation of 5-HT neurons (Lauder et al., 1982) and 

G16-G20 corresponds to the developmental time points used in 

the in vitro experiments. The caloric content of the control 

diet consisted of 21% protein, 29% fat, and 50% carbohydrate, 

while the caloric content of the ethanol diet was 21% protein, 

29% fat, 15% carbohydrate, and 35% ethanol (Noronha and Druse, 

1982) . 

cycle. 

Animals were maintained on a 12:12 hour light/dark 
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Q_issection 

The animals were decapitated within two hours after the 

lights were turned on. The fetuses were removed and placed 

into a chilled petri dish. The brains were removed and the 

brainstem and cortex were dissected and frozen immediately. 

High Performance Liquid Chromatography 

5-HT and 5-hydroxyindoleacetic acid levels were measured 

in control and ethanol-treated animals by high performance 

liquid chromatography (HPLC) with electrochemical detection 

(set at 0.8+ volts). The tissues were homogenized (Tekmar 

Tissumizer, Cinncinnati, OH) in o. 1 M perchloric acid and 

centrifuged at 21,800 x g (16,000 RPM) for 20 minutes at 4°c 

(SE12 rotor, Sorvall RC-5B) . Samples were separated by 

reverse phase HPLC using a C-18 microbondapak column (3.9 mm 

x 30 cm; Waters, Milford, MA). The mobile phase consisted of 

0.1 M sodium phosphate-citric acid (pH 4.0), 1.0 mM disodium 

EDTA, 1 mM heptanesulfonic acid, and 7% (v/v) acetonitrile. 

The internal standard isoproteronol (40 ng) was included in 

each sample. The flow rate was 0.7 ml/minute and the sample 

run time was approximately 35 minutes. The HPLC system 

consisted of a Bio-Rad pump (Richmond, CA) , amperometric 

detector LC-4B (Bioanayltic systems, West Lafayette, IN) and 

a Hewlett Packard (Avondale, PA) 3390A integrator. 
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statistical Analysis 

The values reported for 5-HT and 5-HIAA content represent 

the mean value ± the standard error of the mean of six 

samples. student's 't' test was used to determine statistical 

significance. 



CHAPTER FOUR 

RESULTS 

Normal Development of Cultured Rhombencephalic Neurons 

5-HT neurons are generated in the rhombencephalon, or 

hindbrain, between gestational days 11-15. Rhombencephalic 

neurons were cultured on G14 when most of the 5-HT neurons 

have been generated, but before neuronal processes have become 

extensive. The presence of 5-HT neurons in these cultures was 

verified by immunohistochemical staining using an antibody 

against 5-HT. The number of glia cells were kept to a minimum 

by growing the neuronal cultures in media containing 10% (v/v) 

NuSerum (Collaborative, Bedford, MA). NuSerum is a "semi-

defined" serum replacement consisting of growth factors plus 

25% (v/v) newborn calf serum. Thus the final serum 

concentration in the media was 2.5% (v/v) newborn calf serum. 

Glia cells proliferate in medium containing higher 

concentrations of serum, usually 10% (v/v) horse serum and 5% 

(v/v) fetal calf serum (Pettmann et al., 1979; Kaufman and 

Barrett, 1983; Borg et al., 1985). 

When first cultured, the neurons were rounded. However, 

within 48 hours they began to develop processes (Figure 1). 

Considerable outgrowth of these processes occurred within 6 

51 
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days of being cultured, producing a network of intermingled 

neurons and glia. 

3H-5-HT uptake has been used by several workers to 

monitor neuronal maturation (Yamamoto, 1981; Whitaker-Azmitia 

et al., 1986; 1987; 1989). Between 2 days in vitro (DIV) and 

6 days in vitro there was a 400% increase in 3H-5-HT uptake 

indicating a robust growth in 5-HT nerve terminal development 

(Figure 2, top graph). Protein content also increases 85% 

during this time (Figure 2, bottom graph). 

Effects of Ethanol Exposure on Cultured Rhombencephalic 

Neurons 

5-HT uptake by serotonergic neurons was determined by 

measuring the amount of 3H-5-HT accumulated in 20 minutes. 

The acute effects of ethanol were determined in cultures that 

were grown in the absence of ethanol for 6 DIV. Ethanol was 

added to the assay buffer only during the 20 minutes in which 

the uptake experiment was taking place. Figure 3 shows that 

an acute ethanol exposure had no significant effect on 3H-5-HT 

uptake [ F c3,22>=. 21, p>0. 05] . 

Neuronal cultures were also evaluated after a 4 day 

ethanol exposure between 2 and 6 days in vitro. Because the 

concentration of ethanol declined 40% after a 24 hour period 

(Figure 4), the media was changed daily for the duration of 

the experiment. Qualitatively, these neurons appear to 

develop in the same way as control neurons. 5-HT 
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inununoreactive neurons had either bipolar or multipolar 

processes. The gross morphology of 5-HT neurons does not 

appear to be influenced by in vitro ethanol exposure (Figure 

5) • 

Ethanol exposure, which took place during the time 5-HT 

nerve terminals are developing (see Figure 2), does not affect 

3H-5-HT uptake (Figure 6). Although there was a 15% decrease 

in 3H-5-HT uptake at the highest dose ( 3 oo mg/dl) , this 

difference was not significant [Fc3 , 19>=.15, p>0.05). 

Additional measures of serotonergic neurons were also 

unaffected by a 4 day ethanol exposure. 5-HT content (Figure 

7) was unaffected [Fc3,26>=1.25, p>0.05) and there was no 

significant change in the percentage of 5-HT immunopositive 

neurons in cultured rhombencephalic neurons (Figure 8, 

[Fc3 , 20>=.08, p>0.05)). 5-HT immunopositive neurons account for 

approximately 1% of the cultured rhombencephalic cells; the 

remaining neuronal cell types have not been characterized. 

Protein content was reduced 15% at 300 mg/dl ethanol, 

although this was not significant (Figure 9, Fc3 , 20>=.68 

p>0.05). Total proteins, isolated from control and 300 mg/dl 

ethanol treated cultures, were separated on 12% sos 

polyacrylamide gels (PAGE) (Figure 10) to determine if ethanol 

altered the concentration of specific, major neuronal 

proteins. Figure 11 shows a representative densitometric 

scan. Two major proteins with estimated molecular weights of 

40,000 kDa and 35,000 kDa were chosen for quantitation because 
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these were major proteins, which were routinely recognized by 

the scanning densitometer. The relative percentage areas of 

these two proteins were compared in control and 300 mg/dl 

treated cultures. There were no significant differences in 

either the 40,000 kDa protein [tcoF=4,=.445, p>0.05] or the 

35,000 kDa protein [tcoF=4,=.375, p>0.05]. However, this 

technique has many drawbacks. Due to the limitations of the 

densitometer, only major protein peaks that could be 

identified from gel to gel could be analyzed. Thus several 

other proteins could not be analyzed because the densitometer 

did not consistently identify less abundant proteins. 

DNA content, an estimate of total cell number, was 

unaffected by ethanol exposure (Figure 12, Fc3, 20,=.06, p>0.05). 

The next experiments were performed to determine if 

higher concentrations of ethanol have any impact on 

serotonergic cultures. The neurons used for these experiments 

were cultured on 25 cm2 flasks. The relevance of this change 

in procedure is that there is little ethanol evaporation in 

tightly sealed flasks after 24 hours. Thus, these cultures 

are exposed to 450 mg/dl ethanol continuously for 4 days. 

Figure 13 shows that 450 mg/dl ethanol had no significant 

effect on 3H-5-HT uptake [tcoF=1D>=l.483, p> 0.05], protein 

[tcoF=1D>=l.762, p>0.05] or DNA content [toF=1D>=l.783, p>0.05]. 

Glial cells were grown in different media than neuronal 

cells. To confirm that the media in which the glial cells 

were cultured did not influence 3H-5-HT uptake, an experiment 
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was performed in which rhombencepahlic cells were cultured in 

the same type of media that had been used for glial cells. 

35-HT uptake in neuronal cells after a 4 day ethanol exposure 

was compared using the two different media. Figure 14 shows 

that both media produced comparable effects on 3H-5-HT uptake 

[Fc 1, 2n=l.024, p>0.05, two-way ANOVA]. 

Effects of Ethanol on Cultured Glial cells 

Glial cells were generated by plating dissociated 

rhombencephalic cells onto wells that were not coated with 

poly-1-lysine. Glial cells can attach directly to the well, 

but neurons need a substrate (such as poly-1-lysine or glial 

cells) for attachment to occur. The top panel in Figure 15 

shows rhombencephalic cells (7 DIV) that were plated onto 

wells coated with poly-1-lysine and cultured in 10% NuSerum. 

The open arrow is pointing to a neuronal cell that has 

attached directly to the coated well. The shaded arrow is 

pointing to a glial cell. The middle panel in Figure 15 shows 

rhombencephalic cells (7 DIV) that were plated onto uncoated 

wells and cultured in 10% HS, 5% FCS. The open arrow is 

pointing to a neuronal cell that has adhered to a glial cell 

( shaded arrow) • Note that the neuronal process did not 

venture onto an area of the dish where there were no glial 

cells. Plating rhombencephalic cells onto wells not coated 

with poly-1-lysine reduces the number of neurons initially 

adhering. Cultures such as those in the middle panel were 
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trypsinized, subcultured and replated. Neurons typically do 

not survive this procedure. The bottom panel in Figure 15 

shows GFAP positive cells, devoid of neurons. The cells divide 

relatively rapidly, forming a confluent monolayer within a 

week. Prior to reaching confluence these cells were 

pleomorphic. Once the cultures reached confluence they 

exhibited a uniform cobblestone-like appearance. 

Acute ethanol exposure did not affect 3H-5-HT uptake in 

glial cells (Figure 16, Fc3,,9 >= 2.06, p>0.05]). However, the 

top graph in Figure 17 shows a dose-dependent decrease in 3H-

5-HT uptake per well after a 4 day ethanol exposure. 3H-5-HT 

uptake per well was significantly reduced at 300 mg/dl 

(Fc3 , 20>=3.51, p<0.05]. However there were no significant 

differences in uptake when expressed per mg protein (Figure 

17, bottom graph [Fc3, 20>=.16, p>0.05]). This was attributed to 

the finding that there was a concurrent loss of protein per 

well. Protein/well was significantly reduced at 150 and 300 

mg/dl (Figure 18 [Fc3 , 20>=6.91, p<0.05]). In contrast to 

proteins, DNA content was unaffected by a 4 day ethanol 

exposure (Figure 19 [Fc3, 20>=· 34]). 

Proteins isolated from control and ethanol treated 

cultures were separated on 12% SDS PAGE gels (Figure 20) to 

determine if the decreased protein content could be attributed 

to a general reduction in astroglial proteins. A 

representative densitometric scan is shown in Figure 21. Two 

major proteins with estimated molecular weights of 40,000 kDa 
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and 45,000 kDa were quantitated because they are major 

proteins and their density was consistently integrated by the 

scanning densitometer. The relative percentage areas of these 

two proteins were compared in control and ethanol treated 

cultures. There were no significant differences in either the 

40,000 kDa protein [Fc3,,2>=.1529, p>0.05] or the 45,000 kDa 

protein [Fc3,,2>=.811, p>0.05]. 

In Vivo Experiments 

Ethanol consumption in pregnant rats produced a blood 

ethanol level of 145 mg/dl 3 hours after introduction of fresh 

diet following 12 hours of deprivation. 5-HT and 5-HIAA 

content were measured in the brainstem (location of the raphe) 

and in the cortex on G20. There was no significant change in 

5-HT or 5-HIAA content in these areas after in utero ethanol 

exposure between G14-G20 (Figure 22) or G9-G15 (Figure 23). 
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Figure 1. PHASE CONTRAST PHOTOMICROGRAPH OF REPRESENTATIVE 
FIELDS DEMONSTRATING THE DEVELOPMENT OF NEURONAL CULTURES 
OBTAINED FROM G14 RHOMBENCEPHALON. Top panel 5 hours after 
initial plating. Middle panel 48 hours in vitro. Bottom panel 
6 days in vitro. Bar represents 50 µm. 
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Figure 2. DEVELOPMENT OF 35-HT UPTAKE IN NEURONAL CULTURES 
AFTER 2 AND 6 DAYS IN VITRO. Top graph Uptake was determined 
by measuring the amount of 3H-5-HT accumulated in 20 minutes 
as described in Methods. Non-specific uptake was determined 
by adding 10 µM fluoxetine in the assay buffer and was 
subtracted from total uptake. The Bottom graph depicts the 
protein content of cultures. Each value represents the mean 
+ the SEM of values obtained from 4 experiments. 
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Figure 3. 11-5-H'l' UPTAKE IN NEURONAL CULTURES AF'l'ER ACU'l'E 
ETHANOL EXPOSURE. Uptake was measured on the 6th dal in 
vitro. Uptake was determined by measuring the amount of H-5-
HT accumulated in 2 0 minutes in the presence of ethanol. Non­
specific uptake was determined by adding 10 µM fluoxetine in 
the assay buffer and was subtracted from total uptake. Each 
value represents the mean ± the SEM of values obtained from 6-
7 experiments. 
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Figure 4. CONCENTRATION OF ETHANOL IN MEDIA DORINGA 24 BOOR 
PERIOD. Ethanol was incubated in MEM containing 10% NuSerum. 
The culture plates were wrapped in parafilm to prevent ethanol 
evaporation. 
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Figure 5. PHOTOMICROGRAPH OF REPRESENTATIVE FIELDS 
DEMONSTRATING 5-HT POSITIVE NEURONS IN CULTURE AFTER 4 DAYS OF 
ETHANOL EXPOSURE. Doses of ethanol are provided in the lower 
right corner of each picture. Bar represents 50 µm. 
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Figure 6. 311-5-HT UPTAKE IN NEURONAL CULTURES AFTER 4 DAYS OF 
ETHANOL EXPOSURE. Uptake was measured on the 6th da:l' in 
vitro. Uptake was determined by measuring the amount of H-5-
HT accumulated in 20 minutes. Non-specific uptake was 
determined by adding 10 µM fluoxetine in the assay buffer and 
was subtracted from total uptake. Each value represents the 
mean± the SEM of values obtained from 5-6 experiments. 
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Figure 7. 5-HT CONTENT :CN NEURONAL CULTURES AFTER 4 DAYS OF 
ETHANOL EXPOSURE. 5-HT content was measured on the 6th day in 
vitro using an immunoassay kit as described in Methods. Each 
value represents the mean± the SEM of values obtained from 6-
9 experiments. 
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CULTURE TREATMENT PERCENTAGE OF 5-HT POSITIVE 
NEURONS 

Control 1.18±.11 

50 mg/dl 1.22±.11 

150 mg/dl 1. 16±.13 

300 mg/dl 1.14±.14 

Figure 8. THE PERCENTAGE OF 5-HT POSITIVE NEURONS AFTER A 4 
DAY ETHANOL EXPOSURE. The percentage of 5-HT neurons in the 
cultures was determined by counting the number of positively 
stained and unstained neurons, using a Nikon inverted 
microscope at a magnification of 400x. Six random fields were 
counted for each experiment and these numbers were averaged to 
produce an n=l. Values from six separate experiments were 
counted used to obtain the mean± the SEM. 
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Figure 9. PROTEIN CONTENT IN NEURONAL CULTURES AFTER 4 DAYS 
OF ETHANOL EXPOSURE. Protein content was measured on the 6th 
day in vitro. Each value represents the mean± the SEM of 
values obtained from 6 experiments. 
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Figure 10 • PHOTOGRAPH OF COOMASSIE BLUE STAINED NEURONAL 
PROTEINS THAT WERE SEPARATED ON A 12% SDS PAGE GEL. The 
proteins on lanes A and B were obtained from control and 300 
mg/dl ethanol exposed cultures. Numbers on left represent 
molecular weight markers. 



68 

0 0 
0 0 
0 0 .. 
0 "" -::- M 

A ' ' ~ . - -
00 

00 
-- co 

Figure 11. REPRESEN'rATIVE DENSITOMETER SCAN OF COOMASSIE BLUE 
S'l'llHED NEURONAL PROTEINS. A) Control B) Ethanol (300 mg/dl) 
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Figure 12. DNA CONTENT IN NEURONAL CULTURES AFTER 4 DAYS OF 
ETHANOL EXPOSURE. DNA content was measured on the 6th day in 
vitro using a colorimetric assay as described in Methods. 
Each value represents the mean± the SEM of values obtained 
from 6 experiments. 
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Figure 13. 11-5-HT UPTAKE, PROTEIN AND DNA CONTENT AFTER 4 
DAYS EXPOSURE TO 450 MG/DL ETHANOL. Each value represents the 
mean± the SEM of values obtained from six experiments. Top 
graph 3H-5-HT uptake/flask. Middle graph µ.g protein/flask. 
Bottom graph µ.g DNA/flask. 
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Figure 14. EFFECT OF CULTURE MEDIA ON 11-5-HT UPTAKE 
I:N NEURONAL CULTURES AFTER 4 DAYS OF ETHANOL EXPOSURE. Uptake 
was measured on the 6th day in vitro. Uptake was determined 
by measuring the amount of 3H-5-HT accumulated in 20 minutes. 
Nonspecific uptake was determined by adding 10 µM fluoxetine 
in the assay buff er and was subtracted from total uptake. 
Each value represents the mean± the SEM of values obtained 
from 3-6 experiments. 
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Figure 15. PHOTOMICROGRAPH DEMONSTRATING THE GENERATION OF 
GLIAL CULTURES. Top panel contains neurons cultured in 10% 
Nuserum, plated onto wells coated with poly-1-lysine. The open 
arrow is pointing to a neuron, the closed arrow is pointing to 
a glial cell. Middle panel contains neurons cultured in 10% 
HS/5% FCS, plated onto uncoated wells. These cultures were 
subcultured to produce the GFAP positive astroglia shown in 
the Bottom panel. Bar represents 50 µm. 
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Figure 16. 3H-s-RT OPTARE IN ASTROGLIAL COLTORES AFTER ACOTE 
ETHANOL EXPOSORE. Uptake was measured on the 6th day in 
vitro. Uptake was determined by measuring the amount of 60 nm 
3H-5-HT accumulated in 20 minutes in the presence of ethanol. 
Nonspecific uptake was determined by adding 10 µM fluoxetine 
in the assay buffer and was subtracted from total uptake. 
Each value represents the mean± the SEM of values obtained 
from 5-6 experiments. 
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Figure 17. 3u-S-HT UPTAKE IN ASTROGLIAL CULTURES AFTER 4 DAYS 
OF ETHANOL EXPOSURE. Top graph depicts 5-HT uptake per well 
measured on the 6th day in vitro. Each value represents the 
mean+ the SEM of values obtained from six experiments. The 
symbol* indicates that 3H-5-HT uptake in cultures exposed to 
300 mg/dl ethanol for 4 days was significantly different from 
that of control cultures at p<0.05 (one-way ANOVA and Newman 
Keul's). Bottom graph depicts 5-HT uptake per mg protein. 
When uptake was expressed per mg protein there were no 
significant differences in control and ethanol-treated 
cultures. 
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Figure 18. PROTEIN CONTENT DECREASES IN ASTROGLIAL CULTURES 
AFTER 4 DAYS OF ETHANOL EXPOSURE. Protein content was 
measured on the 6th day in vitro. Each value represents the 
mean+ the SEM of values obtained from six experiments. The 
symbol* indicates that values from 150 and 300 mg/dl ethanol 
treated cultures differ significantly from those of control 
cultures (p<0.05, one-way ANOVA and Newman Keul's). 
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Figure 19. DNA CONTENT IN ASTROGLIAL CULTURES AFTER 4 DAYS OF 
ETHANOL EXPOSURE. DNA content was measured on the 6th day in 
vitro using a colorimetric assay as described in Methods. 
Each value represents the mean± the SEM of values obtained 
from 6 experiments. 
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Figure 20. PHOTOGRAPH OF COOMASSIE-BLOE STAINED GLIAL 
PROTEINS THAT WERE SEPARATED ON A 12 % SDS PAGE GEL. The 
proteins on gels A-D were obtained from A) control cultures or 
cultures that were exposed to B) 50 C) 150 D) 300 mg/dl 
ethanol for 4 days. Numbers on left represent molecular weight 
markers. 
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J!'igure 21. REPRESENTATJ:VE DENSJ:TOMETER SCAN OJ!' COODSSJ:B 
BLUE-STAINED GELS OJ!' GLJ:AL PROTEJ:NS. The proteins that were 
separated on gels A-D were obtained from A) control cultures 
or cultures exposed to B) 50 C) 150 D) 300 mg/dl ethanol for 
4 days. 
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Figure 22. 5-HT AND 5-HIAA CONTENT ON G20 OF BRAINSTEM AND 
CORTEX OF RATS EXPOSED TO ETHANOL IN UTERO BETWEEN G14-G20. 
Each value represents the mean± the SEM of values obtained 
from 6 animals. 
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Figure 23. 5-HT AND 5-HIAA CONTENT ON G20 OF BRAINSTEM AND 
CORTEX OF RATS EXPOSED TO ETHANOL IN OTERO BETWEEN G9-G15. 
Each value represents the mean± the SEM of values obtained 
from six animals. 



CHAPTER FIVE 

DISCUSSION 

The objective of this research was to examine the effect 

of ethanol exposure on cultured serotonergic neurons. These 

studies were performed to elucidate the mechanism by which in 

utero ethanol produces abnormal development of the 

serotonergic system. It was hypothesized that ethanol would 

inhibit the in vitro development of serotonergic neurons. 

Several parameters were measured to assess the function of 

serotonergic neurons. These included 3H-5-HT uptake, 5-HT 

content, and the percentage of 5-HT immunoreactive neurons. 

Protein and DNA content were assessed as a general evaluation 

of both serotonergic and non-serotonergic cells. 

The neurons used for these cultures were obtained from 

G14 rhombencephalon, when most of the 5-HT neurons have been 

generated (Lauder et al., 1982). 5-HT neurons, like other 

neurons, are able to survive the dissociation step if they are 

cultured before developing extensive axonal and dendri tic 

arbors. Shortly after the cells attached to the plate, minor 

process formation occurred. Within 2 days of being cultured, 

axonal and dendritic development was apparent. After 6 days 

in vitro the axonal and dendritic network was very dense and 
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Ethanol was added to the media between 2 and 6 

days in vitro, corresponding to an in vivo time point of G16-

G20. During this time 5-HT nerve terminals are maturing, as 

demonstrated by the increase in 3H-5-HT uptake between 2 and 

6 days in vitro. 

A four day ethanol exposure at a dose of 50, 150, 300, or 

450 mg/dl does not inhibit the development of cultured 

serotonergic neurons. 3H-5-HT uptake was only slightly 

reduced at the highest doses. Concurrent with this loss of 

uptake, was a reduction in protein content, suggesting that if 

ethanol was affecting protein synthesis it was not specific to 

serotonergic neurons. Mytilineou et al (1988) found that a 4 

day exposure to 230 mg/dl ethanol also did not affect dopamine 

uptake in cultured dopaminergic neurons. 

There was no evidence of ethanol-induced neurotoxicity to 

serotonergic or non-serotonergic neurons because neither the 

percentage of 5-HT neurons nor DNA content were changed. This 

is in agreement with other researchers who have found that 

neurons in cell culture are resistant to a direct toxic effect 

of ethanol (Scott et al., 1986; Dow and Riopelle, 1985; Acosta 

et al., 1986). Only at a dose of 550 mg/dl ethanol does cell 

viability begin to decrease in dopaminergic cultures (Acosta 

et al., 1986). It is interesting that in vivo, loss of 

neurons is well established with in utero ethanol exposure 

(e.g. Miller and Potempa, 1990; West et al., 1986). 

Rodents metabolize ethanol faster than humans, so in vivo 
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substantial quantities of ethanol have to be administered to 

reach significant BAC. However, it is the resulting BAC that 

is correlated with amount of damage, not the amount of ethanol 

ingested (Pierce and West, 1986; Bonthius and West, 1990). 

With in vitro neuronal models, ethanol is added directly to 

the media to reach experimental ethanol levels. Ethanol is not 

metabolized; all loss of ethanol is presumably due to 

evaporation. The fluctuations in ethanol concentration seen 

in the media over a 24 hour period mimic those seen in vivo. 

For example, after drinking there is a peak in blood ethanol 

levels, which declines over time (Goodlett et al., 1990). 

The concentration of ethanol in the media was in the 

range of clinically relevant doses and in the range of levels 

shown to alter serotonergic development in rats (Rathbun and 

Druse, 1985; Tajuddin and Druse, 1989a; 1989b; Druse and Paul, 

1989; Druse et al., 1990). The animals used in the later 

experiments had BACs of about 120 mg/dl. 

The neuronal cultures were grown in media containing 10% 

NuSerum (Collaborative, Bedford, MA). NuSerum is rich in 

growth factors, thus the possibility exists that an abundance 

of growth factors compensated for any potential adverse 

effects of ethanol. Rabin (1990) and Smith et al (1990) have 

shown that culture conditions influence the response of 

cultured cells to ethanol. The effects of two different 

culture conditions (10% Nuserum and 10% HS, 5% FCS) were 

compared. No change was observed in 3H-5-HT uptake by 
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serotonergic neurons following a 4 day ethanol exposure in 

either media. Nonetheless, rich culture conditions did not 

prevent the development of ethanol-related abnormalities in 

astroglia. 3H-5-HT uptake in astroglia is significantly 

reduced when cultured in media containing 10% HS, 5% FCS. 

Even if suitable culture conditions for neuronal cells 

were established that demonstrate a significant ethanol­

related effect, the results would not necessarily confirm in 

vivo experiments. These experiments, in which a 3.3% (v/v) 

ethanol-containing liquid diet was administered to pregnant 

rats during G14-G15, followed by a 6.6% (v/v) ethanol­

containing liquid between Gl6-G20, did not demonstrate a 

decrease in 5-HT or 5-HIAA content in the brainstem or cortex 

on G20, two regions consistently shown to be affected by 

chronic ethanol exposure (Druse et al. , 1990; Rathbun and 

Druse, 1985). Thus the in vitro experiments in this study may 

be an accurate reflection of the in vivo environment. During 

the time of ethanol exposure, maturation of the serotonergic 

system is occurring in both models. In vivo, 5-HT neuronal 

cell bodies are migrating to their final position, in addition 

to the ascending axonal projections from the rostral nuclei 

(B7-9 complex) are beginning to reach their target areas 

(Lauder et al., 1983; Wallace and Lauder, 1983) . In vitro, 5-

HT nerve terminals are developing. 

Therefore, in the present studies, ethanol does not 

inhibit the maturation of 5-HT neurons in either in vitro or 
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Although the precise mechanism(s) by which in 

exposure is able to adversely affect the 

development of serotonergic system is unknown, there are 

several potential explanations. 

1) The present studies do not rule out the possibility 

that ethanol affects the generation and differentiation of 5-

HT neurons in vivo. Neurons, in culture, may go through one 

more cell division, if so programmed, although they typically 

do not divide in vitro (Banker and Goslin, 1991). Even if 

tissue is removed at a time of active neurogenesis, it is rare 

to observe cells that divide in culture and subsequently 

acquire a neuronal phenotype. Thus the possibility that 

ethanol may affect the generation of 5-HT neurons in vivo is 

difficult to detect using an in vitro model. In utero ethanol 

exposure between G9-G15 [G9-Gl0 at 3.3% (v/v) followed by a 

6.6% (v/v) ethanol-containing liquid Gll-Gl5] when 5-HT 

neurons are being generated, does not reduce 5-HT or 5-HIAA 

content on G20 in either the brainstem or cortex. Although 

these results suggest that ethanol does not interfere with 

generation of 5-HT neurons, precursor cells that give rise to 

5-HT neurons may be able to compensate for any ethanol-induced 

cell loss occurring between G9-G15. 

2) The concentration of tryptophan in brain influences 

the synthesis of 5-HT (Fernstrom and Wurtman, 1971). Thus a 

reduction in fetal tryptophan could be a potential mechanism 

by which in utero exposure results in lower 5-HT content. Lin 
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et al. (1990) have demonstrated reduced tryptophan content in 

the brain, plasma, and liver of fetal rats chronically fed an 

ethanol-containing diet. In the present study, pregnant rats 

were fed an ethanol-containing liquid diet for 6 days between 

either G9-Gl5 or G14-G20. This relatively short ethanol 

exposure may not have been sufficient to impair placental 

nutrient transfer of tryptophan. Alternatively, the 

tryptophan content in the fetus prior to the ethanol exposure 

may have been adequate for the normal synthesis of 5-HT to 

occur. The animals used in previous studies from this 

laboratory were exposed to ethanol for 4 weeks prior to 

conception and all during gestation (Rathbun and Druse, 1985; 

Tajuddin and Druse, 1989a; 1989b; Druse and Paul, 1989; Druse 

et al., 1990). Thus the placenta was chronically exposed to 

ethanol. 

3) The present studies have demonstrated that astroglial 

cells in vitro appear to be more sensitive to ethanol than 

neurons. Abnormalities in astroglia may secondarily produce 

some of the neurochemical imbalances seen in ethanol exposed 

offspring. Protein content is consistently reduced in 

cortical astroglia following a chronic in vivo or in vitro 

ethanol exposure (Kennedy and Mukerji, 1984; Guerri et al., 

1990). Although other researchers have found that 200 mg/dl 

ethanol decreases cell number in cortical astroglial cultures 

(Davies and Cox, 1991), in the present studies DNA content was 

unaffected by ethanol exposure. These results suggest that, 
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contrary to cortical astroglia, ethanol did not inhibit 

rhombencephalic astroglia cell division. 

Astroglia possess several components which may influence 

5-HT function such as 5-HT uptake sites, receptors, and 

monoamine oxidase (Fillion et al., 1983; Katz and Kimelberg, 

1985; Fitzgerald et al., 1990). Chronic exposure of primary 

astroglia cultures to ethanol produced a significant decrease 

in 3H-5-HT uptake per well. The number of uptake sites were 

most likely decreased per cell because there was no change in 

DNA content. A comparable decrease in protein per well was 

seen. Therefore 3H-5-HT uptake per mg protein was unchanged by 

ethanol. 

Although it appears that astroglia 5-HT uptake sites are 

not selectively lost during ethanol exposure, even a general 

deficiency of astroglial 5-HT uptake could have a marked, 

adverse effect on neuronal development. If the 5-HT uptake 

sites on astroglia cells function to remove 5-HT (Katz and 

Kimmelberg, 1985) a reduction in these sites would result in 

a transient increase in 5-HT. Because 5-HT is required for 

the normal development of serotonergic neurons, an increase 

could result in the abnormal development of 5-HT neurons. 

Interestingly, addition of 5-HT or 5-HT agonists inhibits 3H-

5-HT uptake and 5-HT neuri te outgrowth in cultured 

serotonergic neurons (Whitaker-Azmitia and Azmitia (1986). In 

addition, astroglia synthesize and secrete a number of growth 

factors which are essential for normal neuronal development. 
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5-HT stimulates the release of Sl00b from astroglia, which 

regulates the growth of serotonergic neurons (Whitaker-Azmitia 

et al., 1990; Whitaker-Azmitia and Azmitia, 1989). Since 

ethanol nonspecifically reduces protein content in astroglia 

cells, it is likely that the density of this receptor is also 

reduced. A reduction of 5-HT receptors on astroglia could 

potentially lead to a reduction in the release of serotonergic 

growth factors. 

If ethanol acts non-specifically to reduce all proteins 

then one would also expect a reduction in glutamate uptake 

sites which are present on astroglia 

reduction in glutamate uptake may 

(Hansson, 

lead to 

1986). A 

increased 

extracellular glutamate which is neurotoxic (Jorgensen and 

Diemer, 1982). If this hypothesis is correct, then non­

serotonergic as well as serotonergic neurons would be 

affected. Other researchers have shown that astroglial 

components associated with glutamate metabolism are inhibited 

with in vitro ethanol exposure. They have observed a 

reduction in glutamine synthetase, the enzyme which converts 

glutamate to glutamine (Kennedy and Mukerji, 1985). 

4) The role of acetaldehyde as a teratogen is 

controversial. Although it is known that ethanol can cross 

the placenta (Rosett and Weiner, 1984), it is improbable that 

the fetus can oxidize the alcohol into acetaldehyde because 

alcohol dehydrogenase activity is very low in the fetus (Raiha 

et al., 1967). Thus, acetaldehyde is generated primarily in 
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the mother. It was once thought that the placenta prevented 

the diffusion of acetaldehyde into the fetal circulation by 

metabolizing the acetaldehyde (Kesaniemi and Sippel, 1975). 

However there are studies reporting detectable acetaldehyde 

levels in the fetus (Guerri and Sanchis, 1985). Aetaldehyde 

toxicity has been shown to occur in primary cell culture 

(Kuriyama et al. , 1987) , thus the possibility exists that 

acetaldehyde is teratogenic. In the in vivo studies, the 

ethanol exposure may have been too short to produce 

significant developmental abnormalities in the fetus. 

The results of the present studies have demonstrated that 

the maturation of serotonergic neurons is not inhibited by 

either 4 days of in vitro or 6 days of in vivo ethanol 

exposure. Thus the mechanism ( s) by which abnormal development 

of the serotonergic system occurs in the offspring of rats fed 

an ethanol-containing liquid diet on a chronic basis prior to 

parturition remain unidentified. 
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