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CHAPTER I 

INTRODUCTION 

Parkinson's disease (PD) is a degenerative disorder of the central nervous 

system (CNS) that develops in individuals primarily between the ages of 50 and 79, 

and effects up to 1.5% of the population between 70-79 years of age (Martilla, 1987). 

The clinical characteristics of PD include akinesia, rigidity and tremor (Agid, 1991). 

These symptoms occur as the result of a profound decrease in nigrostriatal dopamine 

(DA) content which is concurrent with the loss of pigmented (melanin-containing) DA 

neurons in the zona compacta of the substantia nigra (Hirsch et al., 1988) (see fig. 1). 

In addition to the degeneration of the nigral neurons, the presence of eosinophilic 

cytoplasmic inclusions, termed Lewy bodies, is considered neuropathological 

confirmation of PD (Agid, 1991). Furthermore, Niznik et al. (1991) have observed a 

reduction in DA uptake sites in parkinsonian postmortem tissues and found that there 

was no detectable levels of the DA transporter in parkinsonian putamen, and the 

number of these sites is reduced in the caudate by approximately 65%. 

Although the neurochemical and physiological manifestations of PD have been 

well characterized, the etiology remains enigmatic. Numerous hypotheses have been 

advanced to explain the selective degeneration of nigrostriatal DA neurons in 

idiopathic PD. Aging, heredity, stress, trauma, lack of neurotrophic hormone and 

exposure to toxins have all been proposed as putative pathogenic factors, but none of 

these have been definitively implicated (Maret et al., 1990; Poirier et al., 1991; Tanner 

et al., 1987). The clinical onset of PD appears to be preceded by a subclinical period 
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that may be initiated by one or more of these factors at least 20-30 years prior to the 

manifestation of clinical symptoms (Martilla, 1987). Consequently, most of the 

research on the etiology of PD has focused on the search for the elusive precipitating 

factor(s). 

The research described in this dissertation is based upon the hypothesis that 

one or more of a family of putatively endogenous compounds, N-methylated B

carbolines (BC+s) or 3,4-dihydro-B-carbolines (DHBC+s), may act as causative agents 

in idiopathic PD (Collins and Neafsey, 1985; Ohkubo et al., 1985; Ramsden and 

Williams, 1985; Testa et al., 1985). These compounds are structural analogues of N

methyl-2,3-dihydropyridinium (MPDP+) and N-methyl-4-phenylpyridinium (MPP+) 

which are the oxidation products of the illicit narcotic contaminant, N-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP produces a syndrome which 

closely mimics PD in both its clinical and pathological manifestations (Davis et al., 

1979; Langston et al., 1983). Consequently, MPTP and its toxic metabolite, MPP+, 

have become the most widely applied experimental tools in the study of idiopathic PD, 

and they serve as comparative models for other potential parkinsonian toxins. 

The purpose of this dissertation is to examine the direct cytotoxic effects of the 

putative parkinsonian neurotoxins, N-methylated BC+s and DHBC+s. To this end, the 

following specific aims are proposed: 

Aim I. Employing the clonal, catecholaminergic cell line (PC12) as a model 

system, the cytotoxic potential of a series of N-methylated BC+s and DHBC+s and the 

relative potencies of the toxic species would be determined. In order to assess 

toxicity, three parameters would be measured: 1) The release of the cytosolic enzyme 

lactate dehydrogenase (LDH) into the growth medium by damaged or dead cells, 2) 

the cell protein concentration in the wells as a measure of cell viability, and 3) the 

uptake of radiolabeled DA by viable cells. 
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Aim II. To investigate the hypothesis that N-methylated fiC+s and DHBC+s 

are accumulated by dopaminergic neurons via the DA uptake system, the specificity of 

the various compounds for PC12 cell catecholamine uptake sites would be determined. 

This was done by assessing the abilities of the N-methylated BC+s and DHBC+s to 

inhibit the binding or accumulation of radiolabeled ligands specific for the DA and 

norepinephrine (NE) uptake sites in PC 12 cells. 
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Lateral 
Ventricl 

Substantia 
nigra 

Afferent projections 
..,_ __ ...,.._ from Substantia nigra 

to Striatum 

Fig. 1. SCHEMATIC REPRESENTATION OF THE AFFERENTS FROM THE SUBSTANTIA NIGRA 
ZONA COMPACTA TO THE STRIATUM (CAUDATE NUCLEUS AND PUTAMEN) THAT ARE 
DESTROYED IN PD. In this coronal section through a human brain, the zona compacta of the substantia 
nigra comprises the dorsal portion of the nuclei (top portion in this figure), and it contains the pigmented cell 
bodies. The ventral portion of the substantia nigra, the zona reticulata, is not pigmented. Figure was adapted 
from Nolte (1981). 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

As mentioned in Chapter I, there are numerous hypotheses concerning the 

etiology of idiopathic PD, but no single factor has been definitively implicated. The 

role of heredity in PD has been examined extensively (Calne and Langston, 1983; 

Duvoisin et al., 1981; Poirier et al., 1991; Tanner et al., 1987; Ward et al., 1983), but 

the results of these studies were inconclusive. Likewise, no causal relationships have 

been established for either viral infection or stress factors such as head trauma (Poirier 

et al., 1991; Tanner et al., 1987). Many of the other proposed posits for the 

degeneration of the nigral neurons implicate a toxic insult of either endogenous or 

exogenous origin superimposed on either normal aging or a genetic predisposition. 

Since this general tenet is the basis for the underlying hypothesis of this dissertation, it 

will be the focus of the first section of this chapter. 

The chapter is divided into three primary sections. The first of these, The 

Etiology of Parkinson's Disease, discusses various risk factors under consideration for 

the development of PD. The second section, MPTP and PC12 Cells, summarizes the 

literature on the mechanism of MPTP neurotoxicity and discusses its effects on PC12 

cells. The third section, 8-Carbolines and 3,4-Dihydro-8-Carbolines, reviews the 

literature on 8Cs and DHBCs, and concludes with a discussion of their neurotoxic 

effects. 
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The Etiolo2v of Parkinson's Disease 

Although it does not appear to play a primary role in the development of PD, 

aging is certainly a prominent factor. It has been reported that an approximately 80-

90% decrease in DA, relative to age-matched controls, is necessary before the 

appearance of the clinical manifestations of PD (Bemheimer et al., 1973; Kish et al., 

1992; Pifl et al., 1990; Zigmond and Stricker, 1989). Kish et al. (1992) have observed 

that approximately 60% of the DA is lost in both striatal nuclei throughout the normal 

aging process, but the pattern of this degeneration differs from that observed in a PD 

brain, where the loss is more pronounced in the putamen than the caudate nuclei. 

However, the substantial decrease in striatal DA due to normal, age-related processes 

may lower a patient's tolerance to insult, thus contributing to the manifestation of PD 

in the aged. 

Metabolic Defects 

Under normal conditions, xenobiotic compounds are absorbed and 

enzymatically metabolized to excretable forms. If such compounds are not so 

converted, they are retained within the body and often diffuse across the blood-brain 

barrier (BBB) into the brain where they may induce a toxic effect (Waring et al., 

1989). An example of this type of metabolic enzyme is the hepatic cytochrome P450 

isozyme, P-450IID1 (Fonne-Pfister et al., 1987; Fonne-Pfister and Meyer, 1988). This 

and other cytochrome P450 enzymes are responsible for the hydroxylation of a 

number of drugs including debrisoquine, sparteine, bufuralol, propanolol, 

nortryptiline, desipramine, 4-methoxyamphetamine and dextromethorphan (Fonne

Pfister and Meyer, 1988). Certain individuals have genetic polymorphisms which 

impair their ability to metabolize these compounds. In particular, those individuals 
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who are unable to 4-hydroxylate the anti-hypertensive, debrisoquine are homozygous 

for an autosomal recessive gene and have been termed poor metabolizers (PM) 

(Barbeau et al., 1985). 

Among PD patients, it has been reported that there is a higher incidence of the 

PM phenotype, and that those patients tended to have an earlier onset of PD (Barbeau 

et al., 1985). Because hydroxylation by this enzyme is an important xenobiotic 

detoxification pathway, Barbeau and colleagues (Barbeau et al., 1985) reasoned that 

individuals who possessed such a defect would be more susceptible to toxic factors 

and possibly more likely to develop PD. However, in a later paper (Poirier et al., 

1987) the authors noted that they had not controlled for their patients' use of other 

drugs in their earlier study (Barbeau et al., 1985). Therefore, the observed differences 

between PD and control patients were a consequence of the extraneous medication 

(Barbeau et al., 1985). Other groups have also examined debrisoquine metabolism in 

PD patients (Comella et al., 1987; Steventon et al., 1989a; Steventon et al., 1989b) 

and found no relationship between the PM phenotype and PD. 

Other research indicates that there may in fact be a link between metabolism 

and PD. Williams and colleagues at the University of Birmingham have examined the 

roles of other metabolic defects in the etiology of PD (Green et al., 1991; Steventon et 

al., 1989b; Waring et al., 1989). The enzyme thiolmethyltransferase catalyzes S

methylation of aliphatic sulphydryl compounds, such as the neurotoxin, hydrogen 

sulphide, which is formed endogenously and is present in the environment (Waring et 

al., 1989). Waring et al. (1989) measured the activity of thiolmethyltransferase in the 

red blood cells of PD patients and found that activity was decreased in this population. 

This same group also examined S-oxidation capacity in PD patients by administering 

the expectorant, S-carboxymethyl-L-cysteine, and measuring the formation of S-oxide 

metabolites in the urine (Steventon et al., 1989b). Since the endogenous role of S-
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oxidation is the cleavage of inorganic sulphate from cysteine, which is the rate

limiting step in the formation of soluble sulphate conjugates, they also measured the 

formation of sulphate-conjugates of paracetamol (acetaminophen) (Steventon et al., 

1989b ). As with S-methylation, a decreased level of S-oxidation activity was 

observed in PD patients relative to controls. 

Recently, the Williams group reported increased N-methylation activity in PD 

patients (Green et al., 1991). They examined the formation of N-methyl

nicotinamide (NAM) from nicotinamide by cytosolic N-methyltransferases. 

Concurrent with the increase in NAM, there was a decreased formation of the 

hydroxylated metabolite, N-methyl-2-pyridone. This indicated that there was 

impaired hydroxylation activity in PD patients, but whether the defect was in the 

cytochrome P450 system, as discussed previously, or in another oxidative enzyme, 

such as xanthine or aldehyde oxidase, was not clear (Green et al., 1991). The authors 

suggest that the increased N-methylation combined with the decreased hydroxylation 

may make such individuals more susceptible to compounds whose methylated 

derivatives are more toxic than the parent compound, such as pyridines, isoquinolines 

and 13-carbolines (Green et al., 1991). 

In general, the metabolic studies discussed here support the idea that PD may 

arise from a toxic insult superimposed on a genetically-derived metabolic impairment. 

Although this is an appealing hypothesis, the possibility remains that these metabolic 

dysfunctions occur as a result of PD and are not themselves the cause of the disease. 

This latter idea is supported by the fact that a large number of compounds, including 

MPTP and the DHBC, harmaline, have been shown to inhibit the aforementioned 

cytochrome P450IID1 enzyme (Fonne-Pfister and Meyer, 1988). Consequently, the 

search for a precipitating parkinsonian factor continues. 
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Mitochondrial Defect 

The finding that MPP+ elicits its toxic effect by inhibition of complex I of the 

electron transport chain ( discussed in detail later in this chapter) has prompted a search 

for defective mitochondria in PD patients. Postmortem reductions have been 

identified in complex I activity that were specific for the nigrostriatal system in PD 

patients (Mizuno et al., 1989; Schapira et al., 1989). Similar decrements were also 

reported in the mitochondria from skeletal muscle (Bindoff et al., 1989) and platelets 

(Parker et al., 1989) of living PD patients, but the validity of these peripheral deficits 

has been disputed (Bravi et al., 1991 ). If PD patients do have deficient mitochondrial 

function, its etiology remains unclear. In a report by Lestienne and colleagues (1990), 

no demonstrable deletions in the mitochondrial genome of postmortem PD brains 

were observed, even though the activity of the enzyme was decreased. From these 

results they concluded that the deletions were either in the subunits encoded by the 

nuclear genome or the enzyme activity was decreased in response to either 

metabolites, toxins or increased iron (Lestienne et al., 1990). Similarly, Schapira et 

al. (1990) indicated that they believed the observed complex I deficiency in PD brains 

was the result of a toxic effect, although they do not exclude the idea of a genetic 

predisposition to such an effect. 

Oxidative Dama:e 

It has been proposed that the nigral DA cell loss associated with PD may occur 

by a free radical-mediated mechanism resulting in accelerated aging of the 

dopaminergic neurons in the substantia nigra (Barbeau, 1984; Mann and Yates, 1982). 

Hydrogen peroxide (H202) is formed in these neurons due to normal processes such 

as oxidative deamination of DA by monoamine oxidase (MAO) B, and the formation 

of the pigment, neuromelanin, by DA auto-oxidation (Youdim et al., 1990). Under 
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normal conditions, the neurons are protected from peroxide damage primarily by 

glutathione peroxidase (Youdim et al., 1990). However, decreased levels of reduced 

glutathione (Perry and Yong, 1986) and another free-radical scavenger, catalase 

(Ambani et al., 1975), and increased superoxide dismutase activity (Saggu et al., 

1989) have been observed in postmortem parkinsonian brains. Under such conditions, 

high concentrations of H20:z would be generated in the brains of PD patients. 

H2O2 can react with free ferrous iron (Fe2+), in what is termed a Fenton 

reaction, to form cytotoxic oxygen species such as the hydroxyl radical ("OH) 

(Youdim et al., 1990). Likewise, the binding of ferric iron (Fe3+) to neuromelanin in 

the presence of H20:z can also liberate "OH (Youdim et al., 1990). The concentration 

of iron in brain regions such as the basal ganglia is high under normal conditions, but 

in PD patients a regionally specific increase in iron content has been reported in the 

substantia nigra zona compacta (Dexter et al., 1986; Dexter et al., 1989; Earle, 1968; 

Sofie et al., 1988), particularly within Lewy bodies (Hirsch et al., 1991), and may be 

the result of decreased ferritin concentrations (Dexter et al., 1990). This, combined 

with the high concentration of neuromelanin and decreased anti-oxidative capacity of 

this region, may lead to increased concentrations of · OH resulting in lipid 

peroxidation and neuronal degeneration (Youdim et al., 1990). Dexter et al. (1986 & 

1989) have reported an increased level of the lipid peroxidation product, 

malondialdehyde, specifically in the substantia nigra of postmortem parkinsonian 

brains, so it is possible that such a mechanism is an underlying factor in PD. 

However, the questions of how and why iron accumulates in the substantia nigra, and 

why it is in higher concentrations in PD patients, remain to be answered (Youdim et 

al., 1990). 

Factors other than iron have also been shown to produce potentially destructive 

oxygen species. Like iron, chronic manganese intoxication may work through an 
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oxidative mechanism to produce cytotoxic ·oH radicals resulting in an irreversible 

syndrome closely related to PD (Tanner et al., 1987). It has been posited that the 

parkinsonian therapeutic drug, L-3,4-dihydroxyphenylalanine (L-DOPA), may form 

toxic oxygen radicals and thereby contribute to the nigral degeneration (Graham et al., 

1978: Wick et al., 1977). Barbeau and Roy (1985) have postulated that toxic oxygen 

species could result from the accumulation in the brain of environmental chemicals 

such as paraquat. Although the damage caused by paraquat is more diffuse than that 

seen in PD (Barbeau and Roy, 1985), it does support the increasingly popular 

hypothesis that PD develops in response to chronic exposure to an environmental 

toxin. 

Environmental Toxins 

A higher prevalence of PD has been reported among the populations of 

established, industrial nations than among those that are newly industrialized or non

industrialized (Tanner, 1989). Exposure to industrial chemicals, and to pesticides and 

herbicides in rural areas have been suggested as putative risk factors (Tanner, 1989). 

To date, however, there have been no environmentally abundant substances that have 

been demonstrated to produce all of the symptoms of idiopathic PD in either humans 

or animal models (Tanner, 1989). In fact, in a recent report by Stern et al. (1991) the 

authors indicated that they were unable to implicate well water or exposure to 

herbicides, pesticides or industrial toxins as causative factors in PD. However, the 

possibility still exists that an as yet unidentified agent may prove to be the underlying 

factor in idiopathic PD. Those agents that have been identified as producing 

syndromes closely related to PD, such as MPTP, have proven to be useful models in 

identifying possible parkinsonian factors and their toxic mechanisms. 
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MPIP and PC12 Cells 

MYfP Neurotoxicity 

Introduction In 1983, a paper in Science (Langston et al., 1983) reported that 

MPTP was a contaminating by-product in "synthetic heroin" (l-methyl-4-phenyl-4-

propionoxy-piperidine, MPPP) injected by four individuals in northern California. [A 

similar finding had been reported previously (Davis et al., 1979), but not much interest 

was generated by that report.] Upon clinical examination, these individuals were 

found to exhibit the classical symptoms of PD, and their condition showed no signs of 

remission even after five months, but they were responsive to L-dopa/carbidopa 

therapy administered in conjunction with DA agonist (bromocriptine or lisuride) 

(Langston et al., 1983). A postmortem examination of Davis's patient revealed 

destruction of substantia nigra nerve cell bodies and other pathology similar to that 

observed in PD patients (Davis et al., 1979; Langston et al., 1983). Langston et al. 

(1983) concluded their paper by stating the following: "Given the pathologically 

studied case, the relative purity of the clinical syndrome seen in our patients, and its 

remarkable clinical resemblance to Parkinson's disease, the drug may be of value in 

producing an animal model of Parkinson's disease." These words proved prophetic as 

they stimulated an explosion of research on MPTP toxicity and propagated a global 

search for possible toxic agent(s) of either environmental or endogenous origin 

involved in the etiology of PD. 

Since the report by Langston and colleagues (1983), MPTP has been shown to 

produce parkinsonian effects in primates similar to those observed in humans (Bums 

et al., 1983; Collins and Neafsey, 1985; Jenner et al., 1984; Kolata, 1983; Langston et 

al., 1984a; Neafsey et al., 1986). These effects include destruction of nigral cell 

bodies and their afferent projections to the caudate nucleus and putamen (Caine and 

Langston, 1983; Langston et al., 1984a). Also, other pathological hallmarks including 
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lesions in the locus ceruleus and the presence of Lewy body-like inclusions have been 

reported in aged primates after chronic MPTP treatment (Forno et al., 1988; Forno et 

al., 1986; Miyoshi et al., 1988). MPTP has also been shown to produce neuronal 

damage in mice (Fuller and Hemrick-Luecke, 1985; Hallman et al., 1985; Heikkila et 

al., 1984a). In contrast, the rat is relatively insensitive to MPTP administered in vivo, 

possibly due to differences in metabolism and in the blood-brain barrier (Johannessen 

et al., 1985b; Kalaria et al., 1987). However, isolated rat cells grown in culture, both 

primary and clonal, are susceptible to MPTPfMpp+ -induced toxicity and have been 

used extensively as experimental models (Basma et al., 1990; Denton and Howard, 

1984; Mytilineou and Cohen, 1984; Reinhard et al., 1990a; Sanchez-Ramos et al., 

1986; Schinelli et al., 1988; Snyder et al., 1986). 

Bioactivation of MPTP. Since MPTP itself is not particularly neurotoxic, it 

must first be oxidized to its active form, MPP+. The first step in this process is the 

conversion of MPTP to the two-electron oxidation product, MPDP+, and subsequently 

to the four-electron oxidation product, MPP+ (Chiba et al., 1984; Markey et al., 1984). 

MPTP is one of the best known substrates for MAO B (Chiba et al., 1984; Salach et 

al., 1984). It has been shown that purified MAO-A and MAO-B both oxidize MPTP, 

but the rate of oxidation is 14 fold higher for the B form than for the A form (Singer et 

al., 1986; Singer et al., 1985). Interestingly, there is very little or no MAO B in the 

nigrostriatal dopaminergic cells; it is found mostly in glial cells and serotonergic 

neurons, and neither of these cell types displays toxic sensitivity to the MPTP 

metabolites which they generate (Westlund et al., 1985). Even though both the A and 

B forms of the enzyme oxidize MPTP, only MAO-B selective inhibitors (such as 

deprenyl and pargyline) prevent MPTP-induced neurotoxicity, where.as MAO-A 

inhibitors such as clorgyline are ineffective (Heikkila et al., 1984b; Langston et al., 
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l 984b; Markey et al., 1984 ). Chiba et al. ( 1984) have also shown that clorgyline is 

ineffective in preventing brain mitochondrial oxidation of MPTP. 

The exact mechanism of the conversion of the intermediate (MPDP+) to the 

final product (MPP+) is not clear. It has been shown that both MAO A & B readily 

carry out the oxidation of MPDP+ to MPP+, and MPDP+ can also undergo 

spontaneous air oxidation (Salach et al., 1984; Singer et al., 1985). DiMonte et al. 

(1987) have suggested that MPDP+ exits the cell where it was formed and then 

spontaneously oxidizes to form MPP+. Wu et al. (1986) have also shown that 

synthetic dopamine-melanin and human neuromelanin potentiate the formation of 

MPP+ from MPDP+, which would indicate that it is MPDP+ that is accumulated by 

the dopaminergic neuron and not MPP+. However, there is not much evidence to 

support this latter hypothesis. 

In rat mesencephalic explant cultures, MPTP selectively destroyed DA neurons 

(Mytilineou and Cohen, 1984), but was ineffective in dissociated mesencephalic cell 

cultures (Sanchez-Ramos et al., 1986). Schinelli et al. (1988) observed that MPTP 

was taken up and metabolized to MPP+ in co-cultures containing astrocytes, and then 

the MPP+ was released into the extracellular milieu where it was specifically taken up 

and concentrated by DA neurons. In contrast, MPTP is not taken up by dopaminergic 

cultures (Schinelli et al., 1988), which may explain the absence of toxic effects seen 

by Sanchez-Ramos et al. (1986), where the glial cells had been killed by addition of 

anti-mitotics to the culture medium, thereby preventing the production of MPP+ 

(Mytilineou and Friedman, 1988). It has since been demonstrated in vivo that 

destruction of the astroglial cells in the rat substantia nigra prevents MPTP toxicity to 

the neurons in that region (Takada et al., 1990). Further support for the role of 

astrocytes comes from a recent paper by Marini et al. ( 1992) which reported that 

MPTP is accumulated by astrocytes, sequestered to high concentrations within 
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Iysosomes, converted to MPP+ and released into the local environment where it can be 

taken up by those cells that efficiently accumulate the compound. Accumulation and 

oxidation of MPTP by serotonergic neurons is also possible as these neurons also 

contain MAO-B (Brooks et al., 1988), but all of the data mentioned above indicate 

that it is probably the astrocytes. It remains to be determined why the cells that carry 

out the conversion of MPTP to MPP+ appear to be immune to the toxic effects of 

MPP+. 

Accumulation of MPP\ Most of the MPTP that is converted to MPP+ is 

accumulated in regions of the brain susceptible to its toxicity, notably the nigral 

neurons (Irwin and Langston, 1985; Johannessen et al., 1985b). Accumulation of 

MPP+ has been shown to occur by an active process in striatal synaptosomal 

preparations using radiolabeled MPP+ (Chiba et al., 1985; Javitch et al., 1985), and 

the kinetic characteristics of MPP+ uptake were shown to be similar to those for DA 

(Chiba et al., 1985). The accumulation of MPP+ by the striatal synaptosomes can be 

competitively inhibited by DA (Chiba et al., 1985; Javitch et al., 1985) and also by 

DA uptake blockers such as mazindol and nomifensine, but not by the NE uptake 

inhibitor, desipramine (Javitch et al., 1985). Mazindol protects against MPTPfMpp+ _ 

induced striatal DA depletion in rodents (Melamed et al., 1985a; Sundstrom and 

Jonsson, 1985), but there is some discrepancy over the effectiveness of similar 

compounds in primates (Barnes et al., 1987; Schultz et al., 1986). Javitch et al. 

( 1985) have shown that synaptosomal preparations from other brain regions are 

capable of active accumulation of MPP+, including those from noradrenergic regions. 

However, this uptake is only 10-20% of that in striatal synaptosomes (Chiba et al., 

1985). 
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From the above data it appears that the uptake and accumulation of MPP+ by 

the DA uptake system of the nigrostriatal cells is essential for the occurrence of 

neurotoxicity. However, it is not clear what property of the nigral neurons makes 

them more susceptible to the degenerative effects of MPTP. D'Amato et al. (1986) 

have shown that MPP+ binds with high affinity to neuromelanin, and that the 

neuromelanin could be acting to sequester the MPP+ in the nigrostriatal neurons of 

primates, which, unlike most rodents, possess high concentrations of neuromelanin in 

this area. These authors (D'Amato et al., 1986) suggest that there is a good correlation 

between MPTP-induced neurotoxicity and species that possess neuromelanin in their 

dopaminergic neurons. Therefore, it has been postulated that binding of MPP+ to 

neuromelanin within the cell and its gradual release to its site of action are important 

factors in the selectivity of this neurotoxin (D'Amato et al., 1986). Further support for 

this hypothesis was obtained when D'Amato et al. (1987) observed that the 

antimalarial drug chloroquine binds to neuromelanin and prevents the parkinsonian 

effects of MPTP in primates. However, Marini and colleagues (1992) have reported 

that chloroquine prevents MPTP-induced toxicity by inhibition of astrocytic 

accumulation of MPTP. Consequently, the role of neuromelanin, if any, in the 

susceptibility of nigral neurons to the toxic effects of MPTP remains uncertain. 

Mitochondrial toxicity. Nicklas et al. (1985) found that MPP+ (0.5 mM) 

inhibited oxidation of NADH-linked substrates in the electron transport chain of liver 

and brain mitochondria, and suggested that this may be the mechanism of cell death. 

This was the first mechanism proposed, and is still the most widely accepted. It has 

been observed that both rat liver and brain mitochondria accumulate MPP+ by an 

active, energy-dependent uptake system, against the gradient into the mitochondrial 

matrix (Ramsay et al., 1989; Ramsay et al., 1989; Sayre et al., 1989; Singh et al., 
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1991). Because of the energy dependence of this uptake system, uncouplers inhibit 

this action and actually stimulate an efflux of accumulated MPP+ (Ramsay et al., 

1986; Ramsay and Singer, 1986). In contrast, MPTP and 4-phenylpyridine .(the 

desmethylated isomer of MPP+) are not substrates for the mitochondrial carrier 

(Ramsay et al., 1986). However, Hoppel et al. (1987) have demonstrated that neutral 

pyridine compounds (including 4-phenylpyridine) are more potent inhibitors of 

complex I in sub-mitochondrial particle preparations (where the electron transport 

chain is directly exposed) than the corresponding N-methylated compounds, but the 

charged species appear to be much more effective inhibitors in intact mitochondria. 

These authors (Hoppel et al., 1987) suggest that the charged species are better 

inhibitors because they are accumulated and concentrated within the mitochondria by 

an energy-dependent process similar to that for MPP+, whereas the uncharged species 

are not. From these results it has been suggested that there may be a strict requirement 

that the responsible toxin be positively charged to be effectively concentrated within 

mitochondria (Hoppel et al., 1987). Because the MPP+-induced inhibition does not 

effect succinate oxidation, it is noted that the inhibition must occur before coenzyme 

Q (the point where succinate feeds into the pathway), and also that the inhibition is 

independent of the energy-coupling system (Singer et al., 1987). It has been 

suggested that the specific site of inhibition is between the Fe-S cluster with the 

highest oxidation potential and ubiquinone (coenzyme Q10) (Ramsay et al., 1986; 

Singer et al., 1987). Ramsay et al. (1991) have recently reported that the site of 

inhibition is the rotenone and piericidin binding site, lending further support to the 

hypothesis that MPP+ elicits its toxic effects by direct inhibition of mitochondrial 

respiration. The biochemical mechanism by which this inhibition occurs is not well 

defined, but there is evidence that inhibition of complex I results in the production of 

free radicals which further and selectively inhibit complex I resulting in the production 
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of more free radicals (Cleeter et al., 1992). Overall, the effects of inhibition of the 

NADH dehydrogenase complex are a decrease in cellular ATP levels (DiMonte et al., 

1986), a depletion in reduced glutathione (DiMonte et al., 1987), and disruptio_n of 

intraneuronal calcium homeostasis (Kass et al., 1988). The ultimate result of these 

processes is cell death (Maret et al., 1990). 

Although inhibition of mitochondrial respiration is the most widely accepted 

mechanism for MPTP-induced neurotoxicity, other mechanisms for the neurotoxicity 

of MPTP have also been proposed. These include the idea of a toxin induced auto

oxidation of DA, which would produce toxic semi-quinone species (Poirier et al., 

1985). However, Schmidt et al. (1985) argue against this by showing that 

manipulations of brain DA levels in vivo did not effect MPTP-induced neurotoxicity. 

The formation of an MPP+ radical (MPP") by a one-electron reduction, as seen with 

the herbicide paraquat (a structural analogue of MPP+), has also been postulated 

(Johannessen et al., 1985a). However, Sayre et al. (1986) have shown that the redox

potential of MPP+ is insufficient to support this hypothesis. Another posited 

mechanism of MPTP-induced damage is the disruption of intracellular calcium 

homeostasis (Kass et al., 1988), which has been implicated in cell death (Boobis et al., 

1989; Orrenius et al., 1989; Youdim et al., 1990). 

Summary. Based upon the literature reviewed in this section, the following 

model of MPTP-mediated neurotoxicity has been proposed (fig. 2): MPTP, a lipid 

soluble molecule, crosses the BBB into the CNS. MPTP then undergoes a series of 

oxidations to the final toxic product MPP+ by MAO B in either astrocytes or 

serotonergic (5-HT) neurons. MPP+ is then released into the extracellular milieu from 

which it is taken up into the dopaminergic neurons of the substantia nigra by the high 

affinity DA uptake system. Once MPP+ is inside the cytosol, it is transported into the 
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mitochondrial matrix where it inhibits the NADH dehydrogenase complex (complex I) 

of the electron transport chain, resulting in decreased cellular ATP levels and eventual 

cell death. 

pC12 Cells 

Biochemical properties. PC12 is a clonal cell line derived from rat 

pheochromocytoma cells that extends neuritic processes in the presence of nerve 

growth factor and thereby acquires a neuron-like appearance (Greene and Tischler, 

1976). These cells synthesize and store DA and NE in granular vesicles, and these 

vesicles can be induced to secrete catecholamines into the extracellular medium by 

K+-evoked depolarization in the presence of Ca2+ (Greene and Rein, 1977; Greene 

and Tischler, 1976; Koide et al., 1986; Rebois et al., 1980; Schubert and Klier, 1977; 

Takashima and Koike, 1985). Transport of catecholamines into the granules, like 

chromaffin granules and synaptic vesicles, is driven by a transmembrane proton 

gradient (acidic inside) powered by a Mg2+ _ATPase in the granule membrane (Rebois 

et al., 1980). Granular accumulation of catecholamines is inhibitable by reserpine, but 

not by ouabain or desipramine (Rebois et al., 1980). The DA content of PC12 cells is 

between 3 (Greene and Tischler, 1976) and 20 (Rebois et al., 1980) times the NE 

content. Intact cells accumulate catecholamines by a saturable process that follows 

Michaelis-Men ten kinetics and is both energy and Na+ -dependent (Greene and Rein, 

1977). The apparent Km of [3H]NE uptake is approximately 2 µM, and it is 

inhibitable by desipramine and cocaine with approximate ICso values of 10 nM and 1 

µM, respectively (Greene and Rein, 1977). Snyder et al. (1986) have reported a Km 

of approximately 0.6 µM for [3H]DA. Denton and Howard ( 1984) have suggested 

that it is the same transport system that accumulates both DA and NE. Banerjee et al. 
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( 1987) have also suggested that bovine adrenomedullary chromaffin cells (BAMC, 

non-transformed equivalents of the rat adrenomedullary PC12 cells) accumulate 

catecholamines by the same, or closely related, high and low affinity sites on the 

plasma membrane. 

Metabolically, PC12 cells are glycolytic in nature; that is, they derive most of 

their ATP from glycolysis (Denton and Howard, 1987). Also, a substantial portion of 

the total cellular ATP is stored in vesicles (Denton and Howard, 1987; Reynolds et al., 

1982). Reynolds et al. (1982) reported that since the inhibition of oxidative 

phosphorylation in PC12 cells did not effectively decrease ATP stores, it would be 

necessary to inhibit both glycolysis as well as oxidative phosphorylation to deplete 

ATP. 

Bioactivation of MPTP. The prevalent form of MAO in PC12 cells is the A 

form (Youdim et al., 1986) rather than the B form of the enzyme (the active form in 

vivo) (Heikkila et al., 1984a; Langston et al., 1984b; Markey et al., 1984; Salach et 

al., 1984). However, this does not appear to be a limitation in the use of PC 12 cells 

because it has been shown that the inhibition of MAO-A by clorgyline prevented 

MPTP toxicity in PC12 cells (Marongiu et al., 1988). Also, MAO-A has been shown 

to play a significant role in the neurotoxic effects of simple substituted MPTP 

molecules (Kindt et al., 1988; Sonsalla et al., 1987). 2'Ethylphenyl-MPTP (2'Et

MPTP), which is a good substrate for MAO-A, is a more potent toxin in mice than 

MPTP (Youngster et al., 1987; Youngster et al., 1989). Basma et al. (1990) have 

shown that this compound (2'Et-MPTP) was considerably more cytotoxic in PC12 

cells than MPTP. This is consistent with the idea that it is the oxidized (charged) 

pyridinium species (MPP+ or 2'Et-MPP+) that is toxic to the cells, and not the neutral 

tetrahydropyridine (MPTP or 2'Et-MPTP). 
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Accumulation of MPP\ The catecholamine uptake system in PC12 cells, like 

that in DA neurons (Chiba et al., 1985; Javitch et al., 1985), has been shown to be the 

mechanism of MPP+ accumulation in PC12 cells (Denton and Howard, 1987; Snyder 

et al., 1986). In fact, the Km and V max values for the uptake of MPP+ in these cells 

were approximately the same as those for DA (Snyder et al., 1986). Snyder et al. 

(1986) also suggested that in PC12 cells both the NE and DA systems are active in the 

uptake of [3H]MPP+, and the NE system is the predominant pathway. This latter 

conclusion was based upon pharmacological data showing that the ICso for 

desipramine (NE uptake inhibitor) was 30 nM, that the non-specific catecholamine 

uptake inhibitor, mazindol, blocked the accumulation of [3H]MPP+ with an ICso of 

approximately 3 nM, and that the ICso for the selective DA uptake antagonist, GBR 

12909, was 700 nM (Snyder et al., 1986). Denton and Howard (1987) also mentioned 

that desipramine protected PC12 cells from MPP+-induced toxicity, and these authors 

had previously suggested that the same system transports both DA and NE in PC12 

cells (Denton and Howard, 1984). Reinhard et al. (1990a) have reported in BAMC 

cells that desipramine (50 µM) antagonized the toxic effects of a 3 day exposure to 

500 µM MPP+. These results are interesting, because Javitch et al. ( 1985) have shown 

that dopamine uptake inhibitors blocked MPP+ accumulation by rat striatal 

synaptosomes, but desipramine did not. Therefore, it may be that adrenomedulla

derived cells such as chromaffin cells, which are noradrenergic, and PC12 cells, which 

were initially cloned from a noradrenergic tumor (Greene and Tischler, 1976), possess 

a general catecholamine uptake site. Whether this is true or not, PC12 cells have been 

shown to mediate MPP+ accumulation by a catecholamine uptake system, similar to 

what has been observed in the brain. 

Another interesting point is that inhibition of toxicity with catecholamine 

uptake blockers effects only a partial attenuation and not a complete inhibition of 
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toxicity (Denton and Howard, 1984; Reinhard et al., 1990a; Reinhard et al., 1990b). 

Reinhard et al. ( 1990b) suggest that this is because MPP+ can delocalize its positive 

charge through the pyridinium ring to form a neutral species. This could allow neutral 

MPP to passively diffuse across the cell membrane without aid of a carrier protein. It 

is also possible that desipramine does not completely block the accumulation of MPP+ 

by the chromaffin cells. Banerjee et al. (1987) have shown that there are two distinct 

types of plasma membrane sites for [3H]NE accumulation into BAMC cells. The high 

affinity site is sensitive to cocaine and tricyclic antidepressants of which desipramine 

is the most potent (ICso = 130 nM) (Banerjee et al., 1987). In contrast, these 

compounds have only low potency at the low affinity site even at high concentrations 

of inhibitors (> 30 µM) (Banerjee et al., 1987). Reinhard et al. (1990b) had co

incubated their BAMC cells in the presence of 100 µM MPP+ and 10 µM desipramine 

for 3 days. It is possible that MPP+ can be accumulated by the low affinity uptake site 

as well as the high affinity site, and as a result at least a portion of the MPP+ would 

enter the cell. Consequently, the uptake site(s) does appear to play a role in the 

accumulation of MPP+ by catecholaminergic cells. 

Mechanism of toxicity. As mentioned previously (Biochemical Properties), 

one limitation of PC12 cells as an experimental model for the study of compounds like 

MPTP and MPP+ is that they are glycolytic, and are thus capable of maintaining 

vesicular stores of ATP even in the presence of inhibitors of mitochondrial respiration 

(Denton and Howard, 1987; Reynolds et al., 1982). Snyder et al. (1986) demonstrated 

that 50% of PC12 cells survive a 5 day treatment of 100 µM MPP+. Denton and 

Howard (1987) showed that PC12 cells not only survived a 4 day exposure to 100 µM 

MPP+ in 'normal' glucose medium (glucose cone. is not indicated, but probably > 10 

mM), but they continued to divide at an almost normal rate. However, a marked 
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reduction in ATP levels was observed and less than 20% of the cells survived the 4 

day exposure to 100 µM MPP+ when they used a low glucose medium (< 1 mM), 

supplemented with 7 mM pyruvate (Denton and Howard, 1987). Similarly, other 

inhibitors of oxidative phosphorylation, including oligomycin, antimycin A and 

rotenone were lethal to PC12 cells in low glucose medium, but not in normal glucose 

medium (Denton and Howard, 1987). Recently, Basma et al. (1992) have also shown 

that reduction of the glucose concentration in the medium increases the susceptibility 

of PC12 cells to 2'Et-MPP+, an MPP+ analogue. This compound (2'Et-MPP+) and 

MPP+ have also been observed to increase LDH release and reduce ATP levels in a 

neuroblastoma x glioma hybrid cell line, NG 108-15, and these effects were attenuated 

by increased high media glucose concentration (Kutty et al., 1991). Reinhard et al. 

( 1990a) reported that MPP+ caused BAMC to utilize glucose in the culture medium at 

a rate that was 4.6-fold greater than those cells not exposed to MPP+. This same 

group (Reinhard et al., 1990a) also observed that the release of LDH from the BAMC 

cells was not observed until the cells had used up approximately 99% of the media 

glucose (48 h). Similarly, Henneberry and co-workers (Henneberry, 1989; Novelli et 

al., 1988) have also reported that the neurotoxic effects of glutamate on cultured rat 

neurons were potentiated when the cells were grown in a low energy medium. 

Another possible reason PC12 cells are much more resistant to the toxic effects 

of MPP+ can be inferred from work by Reinhard et al. (1990b). These authors 

(Reinhard et al., 1990b) have shown that BAMC cells accumulate and sequester 

MPP+ in the cells' catecholamine storage granules. By treating the cells with reserpine 

or tetrabenazine, which inhibit vesicular accumulation, they potentiated the toxic 

effects of MPP+ (Reinhard et al., 1990b). Similar results have been shown with 

reserpine and tetrabenazine in mice, where these compounds potentiated the 

neurotoxic effects of MPTP (Melamed et al., 1985b; Reinhard et al., 1988). Reinhard 
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et al. (1990b) suggest that sequestration of the MPP+ in the granules would reduce 

their cytosolic concentration and consequently reduce their accumulation by 

mitochondria thereby protecting the cells. Since PC12 cells have also been shown to 

possess functional catecholamine storage granules (Rebois et al., 1980), it may be that 

they also sequester MPP+; this combined with their glycolytic nature reduces the 

observed toxicity. 

The ultimate mechanism by which MPP+ elicits its toxic effects appears to be 

through inhibition of mitochondrial respiration at site I (NADH dehydrogenase 

complex) of the electron transport chain (Nicklas et al., 1985; Ramsay et al., 1986; 

Singer et al., 1987), and a similar effect has been reported in PC12 cells (Basma et al., 

1992; Denton and Howard, 1987). Denton and Howard (1987) measured the effects 

of MPP+ on mitochondrial respiration in intact and digitonin permeabilized PC12 

cells, and found that MPP+ does inhibit oxidative phosphorylation in PC12 cells. 

However, a lethal effect of MPP+ was only realized when glycolysis and oxidative 

phosphorylation were blocked at the same time, thus effectively depleting cellular 

ATP (Basma et al., 1992; Denton and Howard, 1987). So, although the PC12 cells are 

not a "perfect" model for the study of the effects of MPTP/MPP+ -like toxins on 

dopaminergic cells, these cells are ultimately affected in the same way as DA neurons 

(inhibition of mitochondrial respiration), and so provide a useful system with which to 

study these compounds provided the proper conditions are employed. They may also 

provide insight into the mechanism of resistance of those cells that are unaffected by 

toxins such as MPP+ (e.g., astrocytes), but that remains to be determined. 
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6-Carholines and 3,4-Dihvdro-6-Carbolines 

wtroduction 

Although MPTP is a good experimental model, it is highly unlikely that a 

contaminating by-product of synthetic heroin plays a role in the development of 

idiopathic PD. As mentioned previously, the idea of an environmental toxin as the 

underlying factor in PD is currently popular (Tanner, 1989). However, it has also 

been noted that, to date, no environmental factors have been implicated in the 

development of the disease (Stem et al., 1991; Vieregge et al., 1988). Consequently, 

the possibility that an endogenously-derived substance may play a role in the 

pathogenesis of PD has been posited by several groups (Collins and Neafsey, 1985; 

Ohkubo et al., 1985; Testa et al., 1985). The hypothesis being explored in Dr. Collins' 

laboratory, and the basis for this dissertation, is that the selective destruction of 

nigrostriatal neurons that is characteristic of idiopathic Parkinson's disease is the result 

of the accumulation of endogenously formed alkaloids that are structural analogues of 

MPP+ and MPDP+: N-methylated J3C+s (N-MeJ3C+s) and/or their potential 3,4-

dihydro- precursors, N-MeDHJ3C+s. 

Nomenclature 

Before discussing the biological effects of J3Cs and DHJ3Cs it is first necessary 

to establish the nomenclature of these compounds. A comparison of the base 

structures of MPTP and its oxidation products to tetrahydro-J3C and its oxidation 

products can be seen in fig. 3. The discussion in the following paragraph refers to that 

figure. For further examples of structures and the abbreviations of the compound 

names, see figure 4. [To avoid excess confusion, the abbreviations of the compounds 

names are used sparingly in the literature review.] 
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Mono-rNJ-methylated compounds are methylated only on the 2-nitrogen 

(piperidine ring nitrogen). Di-rN ,N']-methylated species are methylated on the 9-

nitrogen (indole ring nitrogen) as well as the 2-nitrogen. The suffix "-ium" attache_d to 

the names of the methylated species indicates that they are cationic (i.e., harmaline, 

becomes 2-methylharmalinium). The "nor-" prefix on certain BC and DHBC names 

(i.e., the BC norharman) indicate that they are not methylated at the 1-carbon. Some of 

the compounds are oxygenated at the 6-carbon (e.g., 6Me0-2Me-harmanium) or the 7-

carbon (e.g., harmine, which has a methoxy group). 3,4-dihydro-beta-carbolines 

(DHBCs) are similar to MPDP+ (partially reduced piperidine ring); therefore, these are 

possibly the metabolic precursors of beta-carbolines (BCs). The insertion of "al" into 

the compound name indicates the DHBCs. For example, the BC, harmine, becomes 

harmaline when it is in the dihydro form. 

Biodisposition in Mammals 

As previously mentioned, DHBCs and BCs differ structurally from MPDP+ and 

MPP+, respectively, only by the addition of an indole nitrogen bridge (fig. 3). Many 

DHBCs and BCs are present in environmental sources, including tobacco smoke, 

alcoholic beverages, soy sauce, burned or fried tryptophan-rich foods and industrial 

waste (Airaksinen and Kari, 1981b; Bosin et al., 1988; Reinhart et al., 1987; 

Wakabayashi et al., 1983). It has also been suggested that BCs and DHBCs can be 

formed via spontaneous (Pictet-Spengler) condensation of indoleamines (e.g., 

tryptamine, tryptophan, or serotonin) with formaldehyde to form tetrahydro

norharman (THBC), or with carbonyl compounds (e.g., acetaldehyde, glyoxylic acid, 

pyruvic acid) to form tetrahydro-harman (1-methyl-THBC) (Airaksinen and Kari, 

1981b; Melchior and Collins, 1982; Rommelspacher et al., 1991). It is possible that 

these compounds undergo subsequent oxidation/decarboxylation to form DHBCs or 
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fully oxidized BCs (Melchior and Collins, 1982; Rommelspacher et al., 1991 ). The 6-

and 7-oxygenated species (hydroxylated or methoxylated), such as harmine, harmaline 

and harmol, may be generated by condensation of oxygenated indoleamines (i.e., 

serotonin or 5-methoxy-tryptamine) with carbonyl compounds with subsequent 

dehydrogenation, or via enzymatic oxidative mechanisms (Drucker et al., 1990; 

Greiner and Rommelspacher, 1984; Susilo et al., 1987; Uemura et al., 1988). Another 

possible route to the formation of 7-oxygenated species such as harmine and 

harmaline is by 7-hydroxylation of THBCs, which has been demonstrated in rodents 

(Beck et al., 1986; Tweedie and Burke, 1987). Recent reports by Matsubara et al. 

(1992a & c) have indicated that 8Cs can be enzymatically mono-2-[N]- and di-2,9-

[N,N']-methylated, and THBCs can be mono-2-[N]-methylated, by S

adenosy !methionine-dependent processes in the mammalian brain. Based upon these 

results, Collins et al. (1992) have postulated a brain bioactivation pathway to the 

formation of potentially neurotoxic 2-[N]-MeBC+s and 2,9-di-[N,N']-MefiC+s. 

The presence of non-N-methylated BC+s, such as norharman and harman, has 

been reported in mammalian brain (Bosin et al., 1989; Collins, 1983; Rommelspacher 

and Schmidt, 1985; Schouten and Bruinvels, 1986; Shoemaker et al., 1980). 

However, the presence of their 2-methyl derivatives ( e.g., 2-Me-norharmanium and 2-

Me-harmanium, respectively) has not been reported. 2-[N]-methyl-1,2,3,4-tetrahydro

beta-carbolinium (2Me-TH8C, the THBC most closely resembling MPTP) is a 

tryptamine-derived alkaloid that has been found in trace amounts in rat CNS and 

adrenal gland (Barker et al., 1981). Evidence has also been presented for the presence 

in the rat brain of 6-OH and 6-MeO substituted TH6Cs (Collins, 1983; Johnson et al., 

1985). In humans, harman has been detected in erythrocytes, platelets and urine 

(Bidder et al., 1979; Rommelspacher et al., 1990; Rommelspacher et al., 1985; 

Rommelspacher et al., 1984; Shoemaker et al., 1980). Most recently, the presence of 
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several 2- and 2,9-dimethylated fiC+s (norharman, 2-Me-norharmanium, 2,9-diMe

norharmanium, harman, 2-Me-harmanium and 2,9-diMe-harmanium) have been 

identified in the human brain (Matsubara et al., 1992b). 

Pharmacol rn!Y 

The neuropharmacological actions of THBCs, DH.BCs and 8Cs (harmala 

alkaloids) are many and diverse. The first description of these alkaloids were as 

derivatives of plant seeds and roots that were used by South American natives as 

spices or as a hallucinogen, comparable in effect to LSD and mescaline (Naranjo, 

1967). Other effects have been ascribed to these compounds in rats and humans, 

including tremor and tonic-clonic convulsions (Airaksinen and Kari, 1981a; Gunn, 

1935; May et al., 1991b; Naranjo, 1979; Sigg et al., 1964). The 8Cs, harman and 

norharman, have been described as inverse agonists of the central nervous system 

(CNS) benzodiazepine receptor (Airaksinen and Kari, 1981a; Rommelspacher et al., 

1980; Rommelspacher et al., 1981), and it has been suggested that a one or both of 

these compounds may be endogenous ligands for this receptor (Braestrup et al., 1980; 

Pena et al., 1986). It has also been demonstrated that the DHBC, harmaline, increases 

cerebellar cGMP levels . This effect appears to be mediated via nitric oxide formation 

(Wood et al., 1990). 

The specific binding to and inhibition of MAO-A in the CNS by harmala 

derivatives such as harmaline (Burkard and Kettler, 1977; Neff and Fuentes, 1976; 

Nelson et al., 1979a; Nelson et al., 1979b; Udenfriend et al., 1958) and harman 

(Airaksinen and Kari, 1981a; Buckholtz and Boggan, 1977; Glover et al., 1982; May 

et al., 1991a; May et al., 1991b) has been reported, and it has also been suggested that 

harman may act as an endogenous inhibitor of MAO-A (May et al., 1991b). Tse et al. 
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( 1991) have shown that several desmethylated BCs and DHBCs, including harman, can 

act as anti-oxidative agents, which may relate to their inhibitory effect on MAO. 

DHBCs and BCs have been shown to be potent inhibitors of Na+ -dependent 

processes. Harmine, harmaline and harmalol exhibit inhibition of sodium-dependent 

transport systems by competitive inhibition of membrane bound, Mg2+ -dependent 

(Na++ K+)-ATPase in a number of systems including rat brain, squid retinal axon and 

human erythrocytes (Canessa et al., 1973; Charnock et al., 1976; Dunn and Hunt, 

1975; Sastry and Phillis, 1977; Sepulveda and Robinson, 1974; Simonson and 

Charnock, 1979). The inhibition of the (Na++ K+)-ATPase system occurs at the site 

of sodium activation (Canessa et al., 1973; Dunn and Hunt, 1975) and at the ATP

binding site (Charnock et al., 1976). A number of BCs and DHBCs, including 

harmaline, harmine, 2-Me-harmine, harmol and harman, display reserpine-like activity 

in their inhibition of [3H]NE uptake into isolated catecholamine storage vesicles 

(Seidler et al., 1977; Slotkin, 1974; Slotkin et al., 1978). Several BCs and DH6Cs, 

including harmalol, harmine, 2-Me-harrninium, harmaline and 2-Me-harmalinium 

have been shown to inhibit Na+ -dependent [3H]choline uptake into rat brain 

synaptosomes with Ki values in the range of 3 - 36 µM (Smart, 1981). 

Numerous other biological effects have also been ascribed to desmethylated 

harmala alkaloids. Norharman and harman have been shown to act as comutagens 

with various compounds including N-nitroso compounds (Nagao et al., 1977a; Nagao 

et al., 1977b; Ochiai et al., 1986; Suzuki et al., 1987; Wakabayashi et al., 1981). 

These compounds (norharman and harman) also induce SOS responses and frame shift 

mutations in bacteria (Oda et al., 1988), sister-chromatid exchanges in human 

peripheral lymphocytes (Madle et al., 1981) and inhibition of DNA repair and 

synthesis in human alveolar tumors (Remsen and Cerutti, 1979). Several compounds, 

including harman, harmaline and harmine have been shown to bind to DNA 
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(Duportail and Lami, 1975; Madle et al., 1981; Smythies and Antun, 1969). Harmine 

and several other BCs are also involved in UV-mediated DNA damage (Hudson et al., 

1986a; Hudson et al., 1986b; Larson et al., 1988; McKenna and Towers, 1981; 

Towers and Abramowski, 1983). 

N-methvlated nc+s and DHfiC+s as Parkinsonian A2ents 

As just described, BCs and DHBCs have a number of diverse biological effects. 

However, until the last decade, little was known about the effects of N-methylated 

DHJ3C+s and BC+s. Because of the aforementioned structural similarities between 

these compounds and MPDP+ and MPP+ (fig. 3), investigators have sought to 

demonstrate that N-methylated DHJ3C+s and BC+s are also neurotoxic, and that their 

mechanisms of toxicity are similar to MPDP+ and MPP+ (i.e., selective destruction of 

nigral dopaminergic neurons by accumulation via the DA uptake system and 

consequent inhibition of mitochondrial respiration). 

Neurotoxic effects. It has been shown that repeated peripheral administration 

of 2Me-THJ3C (an uncharged species which crosses the blood-brain barrier, fig. 3) 

results in decreased levels of DA and its metabolites (DOPAC and HVA) in owl 

monkeys (Collins and Neafsey, 1985; Collins et al., 1986) and in C57/Bl mice 

(Collins et al., 1986). Sayre and colleagues (Arora et al., 1990; Sayre et al., 1991) 

have shown that intranigral infusion of 2-Me-harminium into rats caused decreases in 

DA and its metabolites, but these effects were approximately 30-fold less than those of 

MPP+. When administered via intranigral injections, 2Me-norharmanium produced 

obvious lesions at the injection site and significant decreases in striatal DA and 

DOPAC levels (Neafsey et al., 1989). Similarly, intranigral injection of 2-Me

harmalinium in rats caused significant depletion in striatal dopamine levels and gross 

32 



lesioning at the site of injection; although it was substantially less potent than MPP+, 

2-Me-harmalinium was considerably more toxic than 2-Me-harminium, 2-Me

norharmanium or 2-Me-harmanium (Neafsey et al., unpublished results). It has also 

been found that 2Me-norharmanium, when administered using in vivo microdialysis, 

caused irreversible destruction that is selective for the nigrostriatal neurons in the rat 

brain (Rollema et al., 1988). Similarly, Rollema and colleagues have demonstrated 

that 2-Me-harmanium and 2,9-diMe-harmanium elicit significant dopamine release, 

and that the toxic effect of 2,9-diMe-harmanium approached that of MPP+ (Collins et 

al., 1992). 

Cellular accumulation. Drucker et al. (1990) examined the ICso values for 

inhibition of DA uptake into rat striatal synaptosomes for 15 desmethyl/N-methyl 

pairs of BCs, DHBCs and 3-substituted BCs, to determine which compounds were 

eligible substrates for the DA transporter, a key step in MPTP/MPP+ toxicity (Chiba et 

al., 1985; Javitch et al., 1985). The most potent of these compounds, harmaline (IC so 

= 12 µM), was observed to be about 30 times less potent than MPP+ (ICso = 0.4 µM). 

N-methylation did not appear to improve the effectiveness of the compounds for DA 

uptake inhibition, and in the case of 2-Me-harmalinium a decrease in inhibitory 

potency was observed (ICso = 33 µM) (Drucker et al., 1990). In terms of structure

activity relationships, it was reported that the DHBCs were generally more effective 

inhibitors than the BCs, and that the 7-oxygenated species were better than the 6-0-

substituted compounds; in all cases, the ICso values were between 10 and 150 µM 

(Drucker et al., 1990). Based upon kinetic analysis of harmine and 2Me-harminium 

inhibition of [3H]DA uptake, and inhibition of 2-[14C]Me-harminium accumulation by 

nomifensine, Drucker et al. ( 1990) suggested that at least a portion of the BCs in the 

incubation were accumulated by the dopamine uptake system. These data were 
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consistent with those reported by Arora et al. ( 1990) whose data demonstrated that 2-

Me-harminium was a weaker substrate than MPP+ for the DA uptake system. 

Mitochondrial toxicitv. The ability of N-methylated fiC+s and DHfiC+s to 

inhibit mitochondrial respiration has also been examined. 7-Oxygenated N-Me-fiC+s 

and DHBC+s (e.g., 2-Me-harmalinium, 2-Me-harminium and 2-Me-harmolium) 

exhibited potencies approaching that ofMPP+ in inhibiting complex I (NADH-linked) 

respiration in isolated rat liver mitochondria (Albores et al., 1990). Similar results for 

the ICso of 2-Me-harminium were obtained by Sayre and co-workers (Arora et al., 

1990; Hoppel et al., 1987; Sayre et al., 1990; Sayre et al., 1991). It had been 

previously mentioned that the strongly cationic species, MPP+, is concentrated in the 

mitochondria by an energy-dependent process (Ramsay et al., 1989; Ramsay et al., 

1989; Sayre et al., 1989; Singh et al., 1991), and it inhibits complex I of the electron 

transport chain (Ramsay et al., 1986; Singer et al., 1987). Albores et al. (1990) have 

reported, however, that mono-methylated BC+s probably enter the mitochondria by a 

passive process in neutral anhydronium base forms. Furthermore, these compounds 

also inhibit succinate-linked respiration (complex II), to the same extent as complex I, 

where MPP+ was a relatively ineffective inhibitor of complex II (Albores et al., 1990; 

Sayre et al., 1991; Fields et al., 1992). The 2,9-dimethylated compounds are 

permanently cationic species which cannot deprotonate to neutral anhydronium forms. 

They resemble MPP+ in that they were reported to permanently inhibit NADH-linked 

respiration but not succinate (Fields et al., 1992). Similar to the results of the in vivo 

microdialysis work with 2-Me-harmanium and 2,9-diMe-harmanium (Collins et al., 

1992), methylation of the 9-[indole]-nitrogen of 2-Me-norharmanium (a weak 

inhibitor of NADH-linked respiration) to form the dimethylated BC+ (2,9-diMe

norharmanium) resulted in a compound that was a more potent inhibitor than MPP+. 
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Summarv 

This literature review has discussed 1) the various hypotheses for the 

development of idiopathic PD, 2) the neurotoxic mechanism of MPTP and its 

oxidation products (MPDP+ and MPP+), 3) the biochemical properties of PC12 cells 

and the cytotoxic effects of MPTP/MPP+ upon them, and 4) the biodisposition of J3Cs 

and DHJ3Cs and their pharmacological and toxicological effects. The purpose of this 

dissertation is to examine the direct cytotoxic effects of the putative parkinsonian 

neurotoxins, N-methylated J3C+s and DHJ3C+s in comparison to MPP+. To this end, as 

stated previously, the following specific aims are addressed: 

Aim I. Employing the clonal, catecholaminergic cell line (PC12) as a model 

system, the cytotoxic potential of a series of N-methylated J3C+s and DHfiC+s and the 

relative potencies of the toxic species would be determined. In order to assess 

toxicity, three parameters would be measured: 1) The release of the cytosolic enzyme 

lactate dehydrogenase (LDH) into the growth medium by damaged or dead cells, 2) 

the cell protein concentration in the wells as a measure of cell viability, and 3) the 

uptake of radiolabeled DA by viable cells. 

Aim II. To investigate the hypothesis that N-methylated fiC+s and DHJ3C+s 

are accumulated by dopaminergic neurons via the DA uptake system, the specificity of 

the various compounds for PC12 cell catecholamine uptake sites would be determined. 

This was done by assessing the abilities of the N-methylated J3C+s and DHBC+s to 

inhibit the binding or accumulation of radiolabeled ligands specific for the DA and 

norepinephrine (NE) uptake sites in PC12 cells. 
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CHAPTER III 

MATERIALS AND :METHODS 

Cell Culture 

The studies in this dissertation were carried out using PC12 cells, obtained 

from the American Type Culture Collection (Rockville, MD), grown in two different 

cell culture media, N-5 or DMEM. The compositions of these two media can be seen 

in the Appendix (Table 6). For the initial toxicity experiments, cells were grown in N-

5 medium supplemented with 10% equine serum (HS), 5% fetal bovine serum (FBS), 

and 1 % penicillin/streptomycin solution (PS; 5000 U/ml x 5 mg/ml). N-5 medium is a 

modification of Dulbecco's Modified Eagle Media (DMEM) (Kaufman and Barrett, 

1983). Kaufman and Barrett (1983) reported that the benefits of the N-5 medium in 

their primary culture model were the elimination of any putative neurotransmitters 

(i.e., glutamine and glycine were removed), and that the overall nutrient composition 

was a better approximation of cerebrospinal fluid than typical cell culture media. In 

terms of the PC12 cell cultures used in the experiments described in this dissertation, 

the most significant difference in N-5 medium vs. un-modified DMEM is that N-5 

medium contains less than 50% of the available carbon sources found in DMEM. 

Consequently, N-5 medium can be termed a "low-energy" medium in comparison to 

DMEM. 

For all remaining experiments, PC12 cells were grown in DMEM 

supplemented as the N-5 medium with 10% HS, 5% FBS, and 1 % PS. For cells 
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2-Methyl-B-Carbolinium (2-MeBC+) 

Name Abbreviation Rl R2 R3 R4 

2-Methylnorharmanium 2-MeNh+ H H H H 

2,9-Dimethy lnorharmanium 2,9-MeiNh+ H H H CH3 

2-Methylharmanium 2-MeHa+ CH3 H H H 

2,9-Dimethylharmanium 2,9-MeiHa+ CH3 H H CH3 

2-Methylharminium 2-MeHi+ CH3 CH3O H H 

2,9-Dimethy lharminium 2,9-MeiHi+ CH3 CH3O H CH3O 

2-Methy lharmolium 2-MeHo+ CH3 OH H H 

6-Methoxy-2-Methylharmanium 6-Me0-2-MeHa+ CH3 H CH3O H 

H 
2-Methyl-3,4-Dihydro-B-Carbolinium (2-MeDHBC+) 

Name Abbreviation 

2-Meth y lharmalinium 2-MeHli+ CH3 CH3O H 

2-Methylharmalolium 2-MeHlo+ CH3 OH H 

6-Methoxy-2-Methylharmalanium 6-Me0-2-MeHla + CH3 H CH3O 

:FIG. 4. NAMES, ABBREVIATIONS AND STRUCTURES OF THE MONO-2-[Nl
METHYL-B-CARBOLINIUM AND 3,4-DIHYDRO-B-CARBOLINIUM, AND DI-
2,9-[N.N']-METHYL-B-CARBOLINIUM COMPOUNDS. 
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grown in both media, the medium was changed every 3-4 days and the cells were 

subcultured every 7-10 days. Cultures were observed at each passage and before each 

experiment for any indications of variation in gross cell morphology or contamination 

by bright field microscopy. Cultures were maintained at 37 °C in a humidified 

atmosphere containing 5 % CO2. 

The amount of cells required and the procedure for a given experiment dictated 

the size and type of culture vessel used for a given experiment. In general, stock cells 

were grown and maintained in either T-75 cm2 or T-162 cm2 flasks (Costar). The 

type and size of the culture vessel used for the studies are noted in the protocols of the 

particular experiments listed below. For all experiments where cells were treated in 

situ with compounds, the compounds (fig. 4) were diluted in growth medium to the 

desired final concentrations, sterile filtered (0.2 µ filters), and supplemented as above 

with 10% HS, 5% FBS and 1 % PS prior to the addition to cultures. 

LOH Assay 

The release of lactate dehydrogenase (LDH) was quantitated as a measure of 

non-specific cytotoxicity (Koh and Choi, 1987). The concentration of LDH released 

by dead or damaged cells into the growth medium was determined on the indicated 

days (or times) after cells were exposed to various concentrations of either MPP+, or 

methylated-BC+ or -DHfiC+. The assay was performed using the Sigma LD-L LDH 

determination kit, which measures the coupled production of NADH in the oxidation 

of lactate to pyruvate. At the designated times, the medium was removed from 

individual culture wells or flasks and centrifuged (Medifuge table-top centrifuge, 

Baxter Scientific Products, McGaw Park, IL) at 500 x g (2100 rpm) for 5 min. at room 

T. The supernatant, containing the soluble enzyme, was collected, and the assay was 

performed by mixing 25 µl of medium with 500 µ1 of the reconstituted LD-L reagent 
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(50 mM lactate and 50 mM NAD in a pH 8.9 ± 0.1 buffer). The increase in 

absorbance at 340 nm was measured for 1.5 min., at 25 °C, using a Gilson Response 

spectrophotometer. Five samples were measured concurrently, and all samples were 

run in duplicate. Values of LDH released were expressed as percent of control, where 

control consisted of parallel groups of cells treated identically (with the exception of 

drug exposure), and measured at the same time as experimental groups. A significant 

increase in LDH activity was indicative of cell damage or death. 

LDH activity is expressed in units/well (U/well), where a unit of activity is 

defined as the amount of enzyme catalyzing the production of one micromole of 

NADH per minute under the defined conditions of the reaction. Linearity of the assay 

was established periodically using known concentrations of commercial LDH enzyme 

solution (Lintrol). Calculation of units of LDH activity was carried out using the 

following formula (eqn. 1): 

Where: 

LDH activity (U/well) = dA/min. x TV x 1.5 
6.22 x SVx LP 

(1) 

LlA/min. = change in absorbance per minute at 340 nm ( determined in 

experiment) 

TV= total reaction volume (0.525 ml) 

1.5 = converts units per ml to units per well 

SV = sample volume (0.025 ml) 

6.22 = mM absorptivity of NADH at 340 nm 

LP= light path ( 1 cm) 
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Inhibition of Toxicitv with Mazindol 

The DA uptake system appears to be the instrument by which the toxic 

metabolite, MPP+, is accumulated by the dopaminergic neurons, and it has been 

shown that inhibitors of this system prevent neurotoxicity (Javitch et al., 1985; Mayer 

et al., 1986; Sonsalla et al., 1987). Since PC12 cells possess a DA uptake system, the 

catecholamine uptake inhibitor, mazindol, was used in an attempt to block the toxic 

effects of MPP+, 2-MeHli and 2,9-Me2Nh. Cells which had been grown in DMEM 

were plated out the night before the addition of the toxins at a concentration of 

approximately 150,000 cells/1.5 ml/well in seven 6-well plates. The toxin solutions 

were prepared, and sterile filtered, the next day in 0.9 volumes of DMEM at the 

following final concentrations: 500 µM MPP+ and 2,9-dimethylnorharmanium, and 

250 µM 2-methylharmalinium. Mazindol was prepared as lOx concentrated solutions 

of 300, 100 and 30 µM, sterile filtered, and combined with the sterile toxin solutions 

or control medium (DMEM). These solutions were supplemented with 10% HS, 5% 

FBS and 1 % PS, and added to the appropriate culture wells. After 2 day incubation, 

the media was collected and LDH activity was measured as previously described 

(LDH Assay ). 

f3H]Dopamine Uptake Assav 

Accumulation of [3H]DA by PC12 cells was determined by modification of the 

method described by Drucker et al. (1990). These experiments were performed as a 

measure of cytotoxicity, where the a priori hypothesis was that the energy-dependent 

nature of the cells' DA uptake system (Greene and Rein, 1977; Koide et al., 1986; 

Rebois et al., 1980; Schubert and Klier, 1977; Takahashi et al., 1987) would make it a 

marker of cytotoxicity; that is, dying cells would lose the ability to accumulate DA. 
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Prior to the addition of compounds to cultures, cells were plated-out in N-5 

medium on 6-well plates and grown to near con fluency. Cells were then exposed to 

various compounds for two days in N-5 medium. After this time, the medium was 

removed from the wells and placed in corresponding test-tubes. The wells were 

immediately filled with equal volumes of Ca2+ /Mg2+ -free phosphate-buffered saline 

(PBS) and set aside while the medium was centrifuged at 500 x g for 5 min. at 25 °C 

to collect any viable cells detached from the surface of the wells during handling of 

the plates. The supematants were collected in corresponding test-tubes and put aside 

for later LDH analysis (as previously described). The cells were then harvested from 

the individual wells by repeatedly passing the PBS over the surface of the well to 

loosen the cells, and the resulting cell suspension was used to resuspend the pellet 

obtained from the initial centrifugation. This suspension was then centrifuged as 

above. The resulting supernatant was discarded, and the pellet was resuspended in 

Krebs-Ringer Phosphate (KRP) buffer, pH 7.4, containing 1.7 mM ascorbic acid and 

10 µM pargyline. An aliquot was removed for later protein determination (see Protein 

Determination for procedure). 

Test-tubes containing the cell suspensions were placed in a 37 °C water bath 

with shaking. Non-specific uptake was determined by the addition of 10 µM 

nomifensine to three of the six tubes in the group prior to addition of [3H]DA The 

reaction was initiated by the addition of approximately 3.5 nM [3H]DA in KRP buffer 

to each tube. After 15 min. incubation, the reaction was terminated and the cells were 

collected by washing 3 times with ice-cold PBS using a 24 sample Brandel Cell 

Harvester. The filters (Whatman GF-B filter strips) were transferred into scintillation 

vials containing 10 ml of Ecoscint scintillation cocktail, and the samples were counted 

for 10 min. each using a liquid scintillation counter (Beckman LS 7500, Beckman 

Instruments, Fullerton, CA). Results of these experiments were expressed as percent 
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of control, where control groups were those not exposed to compounds in culture. All 

values were adjusted for nonspecific uptake by subtracting the means of the 

nomifensine-treated tubes from the means of the corresponding 'totals' tubes. 'Totals' 

tubes were those tubes containing only [3H]DA, KRP buffer and cells. 

Variation of the Conditions of [3H]Dopamine and [3H]NorepinephrineUptake 

To determine if the accumulation of [3H]DA was indeed actual accumulation 

by the PC12 cells' catecholamine uptake system, and not a binding phenomenon, the 

integrity of the cells (intact, homogenized or boiled), the sodium concentration, and 

the temperature of the incubation were varied. Since PC12 cells accumulate both DA 

(Rebois et al., 1980) and NE (Greene and Rein, 1977) by mechanisms that are both 

sodium and temperature dependent, and both neurotransmitters may be taken up by 

the same system (Denton and Howard, 1984), both [3HJDA and [3H]NE were used in 

this study. 

PC12 cells were grown in DMEM (T-162 cm2 flasks) in the absence of any 

toxic compounds. Cells were harvested by removing the growth medium from each 

flask and replacing it with 10 ml of Hank's Balanced Salts Solution (HBSS) per flask. 

The cells were gently triturated free from the surface of the flask, the suspensions from 

each flask were combined in a single flask, and a 0.5 ml aliquot was removed for 

counting. After counting, the cells were divided among eight 15 ml centrifuge tubes, 

each containing approximately 0. 75 x 106 cells. The cell suspensions were 

centrifuged at 500 x g (Medifuge table-top centrifuge) for 5 min. at room T. After 

centrifugation, the supernatants were discarded and the cell pellets were resuspended 

to a final concentration of 5 x l ()4 cells/ml in one of three KRP buffers ( components of 

the various KRP buffers are listed in Table 7, in the Appendix): 4 tubes (3 x 106 ce1ls) 
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in 'normal' KRP buffer; 2 tubes (1.5 x 106 cells) in 'sodium control' KRP buffer; 2 

tubes (1.5 x 106 cells) in 'zero sodium' KRP buffer. 

One of the tubes of cell suspension (equal to 0.75 x 106 cells) in 'normal' KRP 

buffer was homogenized (Ultra-Turrax tissue homogenizer, Janke and Kunkel) for 15 

seconds at a rheostat setting of '45' (Tissue Mizer High Torque, Tekrnar, Cincinnati, 

OH). The resultant homogenate was then centrifuged (Sorvall RC-5B rotor, SS34 

rotor) at 20,000 rpm (47,800 x g) for 20 min. at 4 °C. After centrifugation, the 

supernatant was discarded and the pellet was resuspended in 10 mls of 'normal' KRP 

buffer, and centrifuged again as above. After the second centrifugation, the pellet was 

resuspended to an equivalent concentration of 5 x 1 ()4 cells/ml in 'normal' KRP buffer. 

A second tube of cells suspended in 'normal' KRP buffer (equal to 0.75 x 106 cells) 

was boiled for 5 min. in a boiling water bath. After these two treatments, an aliquot 

was removed from each of the eight tubes for later protein determination (see Protein 

Determination for procedure). 

For the uptake/binding assay, six different groups were run: 1) control (37 °c, 

'normal' KRP buffer, intact cells); 2) 4 °C, 'normal' KRP buffer, intact cells; 3) 37 °C, 

'normal KRP buffer, homogenized cells; 4) 37 °C, 'normal' KRP buffer, boiled cells; 

5) 37 °C, 'sodium control' KRP buffer, intact cells; 6) 37 °C, 'zero sodium' KRP 

buffer, intact cells. Each group consisted of two sub-groups (6 tubes/sub-group: 4 

totals+ 2 baseline, containing 5 x 104 cells/tube), where one sub-group was incubated 

in the presence of approximately 3.5 nM [3H]DA, and the other was incubated in the 

presence of approximately 3.5 nM [3HJNE. Non-specific uptake/binding was 

determined by the addition of 10 µM nomifensine to the two 'baseline' tubes in each 

sub-group. For the five assay groups incubated at 37 °C, the reaction tubes were 

placed in a 37 °C water bath with shaking. The tubes in the assay group incubated at 4 

°C were placed on ice. In all cases, the total volume of the reaction was 1.5 ml, and 
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the reaction was initiated by the addition of 1 ml of the appropriate cell suspension. 

Samples were then incubated, harvested and counted as previously described 

(I3H]Dopamine Uptake Assay). Results of these experiments were expressed as 

femtomoles of radioligand accumulated/bound per mg protein. All values were 

adjusted for nonspecific uptake/binding by subtracting the 'baseline' value from the 

'total'. 

I3HJGBR 12935 and [3H]Mazindol Competition Bindine Assays 

These binding assays were carried out by modification of the methods 

described by Battaglia et al. (1988). The medium was removed from the culture flasks 

and replaced with 10 mis of ice cold Tris buffer, pH 7.4, containing 50 mM Tris, 120 

mM NaCl and 5 mM KCl. The cells were harvested from the surface of the flask by 

gentle trituration with the Tris buffer. The cell suspensions from the number of flasks 

required for a final equivalent concentration of 1()5 cells/0.1 mls were combined in a 

single flask and a 0.5 ml aliquot was removed for cell counting. The cell suspension 

was homogenized was homogenized as previously described, except that Tris buffer 

was used here instead of KRP buffer. After the second centrifugation, the pellet was 

resuspended in a volume of Tris buffer that gave an equivalent concentration of 1()5 

cells/0.1 mis. 

The [3H]GBR 12935 binding assay was performed using 5 nM of radioligand, 

and the catecholamine uptake antagonist, mazindol, as a competing ligand at log 

concentrations from 10-10 - 10-s (triplicate concentrations of each). Total binding 

(consisting of radioligand, buffer and cell homogenate only) was determined in 

quadruplicate. Nonspecific binding was determined in duplicate tubes by the addition 

of 10 µM GBR 12909, a specific DA uptake antagonist and a selective inhibitor of 

[3H]GBR 12935 binding (Andersen, 1989). The reaction was initiated by the addition 
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of 0.1 ml of cell homogenate to the incubation mixture to give a final reaction volume 

of 1 ml. Samples were incubated for 60 min. at room T. 

Similar to the [3HJGBR 12935 assay, the (3H]mazindol binding assay was 

carried out using mazindol as a competing ligand at log concentrations from 10-10 -

1 Q-4 (triplicate concentrations of each) and 6 nM radioligand. As above, total binding 

was determined in quadruplicate. The NE uptake antagonist desipramine was used (in 

duplicate tubes) at a concentration of 0.3 µM to describe the nonspecific binding 

component (Battaglia et al., 1988). The total volume of the incubation mixture was 

0.5 mls, and the reaction was initiated by the addition of 0.05 ml of cell homogenate 

(equivalent of 5 x 104 cells/tube). The sample tubes were incubated for 60 min. at 4 

oc. 

For both the [3H]GBR 12935 and the [3H]mazindol binding assays, the 

reactions were terminated, the cells were harvested and counted, and the data was 

analyzed as previously described. In this case, however, washes were performed using 

cold Tris buffer and samples were counted for only 2 min. each. 

ICso and Hill coefficient (nH) values were calculated by computer-assisted 

linear regression analysis of the corresponding Hill plot. The Hill equation can be 

written in the following form (eqn. 2): 

B0 · [I]11. 
B=---

K i + [I]n. 

and the equation can be transformed to the linear form (eqn. 3): 

B 
log ( Bo _ B ) = n log [I] - log K i 

(2) 

(3) 

The Hill plot was generated by plotting the log 'fractional saturation' vs. the log 

concentration of inhibitor. 'Fractional saturation' is mathematically defined as: 
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B 

(Bo - B) 

Where Bis the fraction of ligand bound in the presence of inhibitor, and B0 is the total 

ligand bound in the absence of inhibitor. In this plot, nH is equal to the slope of the 

line and the value of log Ki is equal to the intercept. The ICso value is the x-intercept 

of the line, so by setting the ordinate value of equation 3 equal to zero: 

B 
log ( B

0 
- B ) = O 

equation 3 can be rearranged into the following form (eqn. 4): 

logK · 
log [l] = l 

n 
( 4) 

where log [I] is equal to the IC50 value of the inhibitor, which in this case is mazindol. 

For the Hill plots, only those concentrations of competing ligand that inhibited 

between 10 and 90 percent of specific uptake or binding were included because of the 

deviation from linearity that occurs at the extremes (Cornish-Bowden and Koshland, 

1975). 

Once these values were established, it was possible to determine the percent 

fractional occupancy (% f.o.) of the radioligand at the binding site by the following 

equation (eqn. 5): 

1 
% f. o. = l + Ki /[*L] x 100 (5) 

where [*L] is the concentration of radioligand used in the reaction, and where Ki was 

determined from the Cheng and Prusoff correction (eqn. 6), 

(6) 
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where, in the experiments described here, [*L) << Kct*• From the fractional 

occupancies, the total fmoles of available binding sites in the tube were calculated by 

the following equation (eqn. 7): 

fmoles/tube = 100 / % f.o. x ([dpms I 2.21/ S.A.) (7) 

In this equation: dpms = specific disintegrations per minute, 2.2 x 106 = dpms / µCi, 

S.A. = the specific activity of the radio ligand and 106 is a conversion factor. 

f3ff]Dopamine and [3ff]NorepinephrineUptake Inhibition Assays 

These experiments were performed by modification of the method previously 

described for f3H]Dopamine Uptake. For these experiments, cells had been grown in 

DMEM, and were not exposed to toxins. Cells were harvested for the experiment by 

removing the growth medium from the flask(s) and replacing it with 10 mls of KRP 

buffer which was used to gently triturate the cells free from the flask surface. The 

cells were then counted and diluted with the appropriate volume of KRP buffer to a 

final concentration of 5 x 104 cells/ml. A 1 ml aliquot of cells was then removed and 

frozen at -20 °C for later protein determination. 

For the experiment, cells were incubated with 3.5 nM of either [3H]DA or 

[3H]NE. Concentrations of competing ligand were 10-10 - lQ-5 for DA, NE, 

desipramine, mazindol and nomifensine, and 10-9 - 10-4 for MPP+, 2-

methylharmalinium and 2,9-dimethylnorharmanium. For each compound tested, 

groups were divided as follows: 4 'Totals' tubes (no competing ligand added), 2 

'baseline' tubes (containing 10 µM nomifensine to define nonspecific binding), and 3 

tubes for each concentration of the particular competing ligand. In all cases the uptake 

reaction was initiated by the addition of l ml of cell suspension (5 x 104 cells), and 

incubated for 15 min. in a 37 °C water bath. The reaction was terminated, the cells 
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were harvested and counted, and the data was analyzed by the Hill transformation as 

previously described. 

Protein Determination 

Protein concentrations were analyzed by the method of Lowry et al. (1951). 

This method was chosen over other similar methods, because it contains a sodium 

hydroxide digestion step necessary to solubilize the proteins of the intact cells to allow 

accurate quantitation. In brief: Bovine serum albumin was utilized as the protein 

standard in the assay at concentrations from 25 - 200 µg protein. A wide 

concentration range was used due to the variability that was commonly observed 

among the unknown samples. Standards and samples were solubilized in 100 µl of 1.0 

N sodium hydroxide for 30 min. at room T. Then, 1 ml of Lowry reagent (0.1:0.1:10, 

v/v/v, respectively of, 1 % [w/v] cupric sulfate, 2% [w/v] K+-Na+ tartrate, and 2% 

(w/v) sodium carbonate) was added to standards and samples. After 10 min., 100 µl 

of 1.0 N Folin and Ciocalteu's phenol reagent (Sigma) was added and standards and 

samples were incubated for 30 min. The absorbance of samples and standards was 

then measured vs. a water blank at 700 nm. 

As a measure of toxicity, the cells that survived exposure to the compounds 

tested were quantitated by measuring the amount of protein of cells attached to the 

plate. This method had been employed previously for similar experiments (Andersen 

et al., 1990; Denton and Howard, 1987), and was chosen here over cell counts for two 

main reasons: First, PC12 cells grow in loosely attached, grape-like clusters instead of 

a monolayer that are almost impossible to count using a microscope. By washing 

away the loose cells and only passing those cells that are strongly attached, one selects 

for a variant phenotype which is morphologically different (flattened with processes) 

and grows more slowly than wild-type PC 12 cells (personal observation). Second, to 
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accurately count the cells after drug treatment usmg a Coulter counter or 

hemocytometer, one would need to either mechanically or enzymatically (e.g., cell 

scraper or trypsin, respectively) dissociate the cells attached to the surface of the 

culture vessel to achieve an accurate quantitation. This would rupture any cells that 

had been weakened by the toxins (LDH is released because cell membrane integrity is 

compromised), and these fragmented cells would not be counted, thereby effecting the 

accuracy of the quantitation. For these reasons, protein levels were quantitated as a 

measure of cytotoxicity where a significant decrease in protein/well indicated cell 

death. Protein values were expressed as percent of control, where control consisted of 

parallel groups of cells treated identically (with the exception of drug exposure), and 

measured at the same time as experimental groups. 

Cell Countin2 

Based upon the reasons described above, cell counts were used only as a 

method of estimating the number of cells to assure that approximately the same 

number of cells were used for repetition of particular experiments. The cells were 

counted using a Coulter Counter with a Channelyzer 256 (Coulter Electronics, 

Hialeah, FL). A 0.5 ml aliquot of cell suspension was diluted in 20 mls of Isoton III 

solution (Coulter Diagnostics, Hialeah, FL). The settings for the instrument were as 

follows: 

current 100 

scale lOmA 

polarity auto 

low threshold 6 

high threshold 99.9 

attenuation 8 
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gam 

manometer 

Channelyzer low cut-off 

Channelyzer high cut-off 

1 

500 µl 

4.96 µm 

36µm 

The low cut-off of 4.96 µm for the Channelyzer was chosen because the size of a 

PC12 cell has been reported to be 3 - 7 µm (Buskirk et al., 1988). Below 4.96 µm it 

was too difficult to discriminate between cells and debris. Cell counts were performed 

three times for each sample counted. The concentration of cells per ml was 

determined using the following formula ( eqn. 8): 

Where: 

cells/ml = avg. counts x 
vol. counted 

final vol. 
ml in dilution 

average counts = the average of the three readings 

volume counted= 0.5 ml (500 µl manometer) 

final volume= 20.5 ml (20 ml Isoton + 0.5 ml sample) 

ml in dilution= 0.5 ml (0.5 ml sample) 

Statistical Analvsis 

(8) 

Statistical analyses were carried out using the Statview II statistics software 

(Abacus Concepts, Inc., Berkeley, CA) on an Apple Macintosh computer. The 

specific statistical tests used for individual experiments are indicated in the figure and 

table legends in Chapter IV. 

Most of the data were analyzed by performing a one factor analysis of variance 

(ANOVA) to determine if there were any differences among the means of the groups 

compared. This particular test was chosen for two reasons: 1) In most cases the 

groups being compared differed by only one factor (e.g., compound-treated vs. 
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control), and 2) there were more than two population means that had to be compared, 

therefore precluding the use of multiplet-tests (Godfrey, 1986). When the ANOVA 

indicated that at least one of the group means differed from the others (p < 0.05)., a 

post hoc multiple comparison analysis was carried out to determine which group(s) 

differed (Godfrey, 1986). Both Scheffe's and Fisher's PLSD (Protected Least 

Significant Difference) tests were used to do these post hoc comparisons, where a p 

value < 0.05 was considered significant. Since Scheffe's test is a much more 

conservative test than Fisher's test, those groups found significant for both tests were 

reported only as having been significant by Scheffe's test. Likewise, there were 

instances where the less stringent Fisher's test indicated significance where Scheffe's 

test did not, and these data were reported as having been significant by Fisher's test. 

For the time-course LDH release experiment data (fig. 6), a two factor 

ANOV A model was used because there were two independent variables: treatment 

(compound-treated vs. control) and time. For these analyses, the ANOVA F test was 

carried out with respect to both treatment and time, and also for the interaction of 

these two factors. In each case, the F test was considered significant for values of p < 

0.05. Significance with respect to treatment indicated that there was a difference 

between the means of the compound-treated groups relative to the control groups, and 

significance with respect to time indicated that there was a time-dependent change in 

LDH released. As it was used in these studies, demonstration of interaction between 

the two factors (p < 0.05) indicated that one group demonstrated an effect with time 

whereas the other group did not. 

In some cases, the purpose of the experiments was only to determine if the 

means of the individual experimental groups, those treated with compounds, differed 

from the means of the concurrently run controls. In these cases, the groups were 
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compared on a one-to-one basis with controls by using an un-paired Student's t-test. 

For these analyses, a p value < 0.05 was considered significant. 

Acrodisc 0.2 µm Syringe Filter 

Cell Culture Flasks 

25, 75 and 162 cm2 

Desipramine HCl 

DMEM 

Donor Equine Serum 

Dopamine HCl 

[7,8-3H]Dopamine 

(S.A. 40-48 Ci/mmol) 

Ecoscint 

Fetal Bovine Serum 

Filter Units, 0.2 µm, 500 ml 

Folin & Ciocalteu's Phenol 

Reagent (2.0 N) 

GBR 12909 

[propylene-2,3-3H]GBR 12935 

(S.A. 24.4 Ci/mmol) 

LD-L Reagent Kit 

Lintrol LDH Standardization Soln. 

Mazindol 

[ 4'-3H]Mazindo1 

(S.A. 15.8 Ci/mmol) 

Materials 

Gelman Sciences, Ann Arbor, MI 

Costar, Cambridge, MA 

Sigma Chemical Co., St. Louis, MO 

Sigma Chemical Co., St. Louis, MO 

Biocell, Carson, CA 

Sigma Chemical Co., St. Louis, MO 

Amersham, Arlington Heights, IL 

National Diagnostics, Somerville, NJ 

Biocell, Carson, CA 

Costar, Cambridge, MA 

Sigma Chemical Co., St. Louis, MO 

RBI, Natick, MA 

DuPont NEN Research Products, Boston, MA 

Sigma Chemical Co., St. Louis, MO 

Sigma Chemical Co., St. Louis, MO 

RBI, Natick, MA 

DuPont NEN Research Products, Boston, MA 
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t 2-Methylharminium 

(anhydronium base) 

MPP+ (iodide salt) 

Nomifensine maleate 

Norepinephrine HCl 

[7,8-3H]Norepinephrine 

(S.A. 39 Ci/mmol) 

N-5 Cell Culture Medium 

Pargyline HCl 

Sigma Chemical Co., St. Louis, MO 

RBI, Natick, MA 

RBI, Natick, MA 

Regis Chemical Co., Morton Grove, IL 

Amersham, Arlington Heights, IL 

Hazleton, Lenexa, KS - custom preparation 

Sigma Chemical Co., St. Louis, IL 

Penicillin/Streptomycin Soln. Sigma Chemical Co., St. Louis, MO 

Sterile Pipettes (1, 5, 10 and 25 ml) Costar, Cambridge, MA 

6-Well Cell Culture Plates 

Whatman GF-B filter strips 

Costar, Cambridge, MA 

Whatman Labsales, Hillsboro, OR 

t The other methylated-BC+s and -DHBC+s were prepared in Dr. Collins' laboratory 

as previously described (Albores et al., 1990; Collins et al., 1992; Drucker et al., 

1990). 
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CHAPTER IV 

RESULTS 

The results in this chapter are presented in two parts. The first section, Toxicity 

Studies, reports the toxic effects of the various compounds tested on PC12 cell cultures. 

The second portion of this chapter, Accumulation and Binding of [3H]Catecholamine 

Uptake Ligands, summarizes the results from the DA and NE uptake site analyses and 

the affinity of MPP+, 2-MeHli+ and 2,9-Me2Nh+ for those sites. At the end of the 

chapter, there is a brief summary of the results from both sections. 

Toxicity Studies 

Initial Screenine of the Compounds 

The toxic efficacies of eleven methylated BCs and DHBCs (fig. 4) and MPP+ 

were determined by measuring LDH released by PC12 cells into the growth medium 

after 2 and 4 day exposure to 500 µM concentrations in N-5 medium. After 2 day 

exposure (fig. 5, top), seven compounds including MPP+ were observed to have 

caused significant LDH release. Most notable of these was the DHBC, 2-MeHli +, 

which was equipotent with MPP+. The three 2,9-di[N,N']-methylated J3C+s examined 

were also toxic, a finding of particular interest because their mono[N]-methylated 

congeners, with the exception of 2-MeHi+, were significantly less efficacious. In 

particular, 2-MeNh+ was completely ineffective even after 4 days, whereas 2,9-

Me2Nh+ elicited a response similar to MPP+. The remaining compounds tested 
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displayed no effect at 2 days, and only 6-Me0-2-MeHla+ produced a marginal response 

(137% of control) after 4 days. 

The viable cell protein remaining in the well after 2 day exposure to 500 µM 

concentration of compounds was also quantitated (fig. 6). The results were similar to 

those observed for LDH release: 2-MeHii+ and the three di[Nl-methylated species (2,9-

Me2Nh+, 2,9-Me2Hi+ and 2,9-Me2Ha+) were similar to or equipotent with MPP+. In 

contrast, 2-MeHi+, which engendered significant release of LOH, produced no 

significant effect on cell protein. Likewise, the other six compounds tested were 

ineffective. 

From these studies, MPP+, 2-MeHli+, 2-MeHi+ and the three dimethylated 

species (2,9-Me2Nh+, 2,9-Me2Hi+ and 2,9-MeiHa+) were found to be the most toxic 

of the compounds tested. Consequently, the toxic potencies of these six compounds 

were further examined, and their individual structures are shown in figure 7. 
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FIG. 5. LDH RELEASED FROM PC12 CELLS AFTER 2 OR 4 DAY EXPOSURE 
TO 500 µM COMPOUNDS IN N-5 MEDIUM. Results are the means of replicate 
determinations (n values on the bars)± SEM with each determination done on triplicate 
sister wells. Data are expressed as the percent of the corresponding, concurrently run 
controls, where the overall mean control values were 0.1036 ± .012 U/well at 2 days, 
and 0.217 ± .003 U/well at 4 days. For mono- and di-methylated pairs, significance 
was determined relative to the corresponding control and the paired compound by one
factor analysis of variance (ANOVA). ANOVA values were significant for all three 
pairs (p < 0.05), so individual differences within these groups were determined by 
Scheffe F post hoc analysis (* = relative to control, :j: = dimethyl relative to 
monomethyl, p < 0.05). For the remaining compounds tested, significance was 
determined relative to the corresponding control by unpaired Student's t-test (§ p < 
0.05). 
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FIG. 6. EFFECTS OF 2 DAY EXPOSURE OF PC12 CELLS TO 500 µM 
COMPOUNDS IN N-5 MEDIUM ON CELL PROTEIN. Results are the means of 
replicate determinations (n values indicated on the bars)± SEM with each determination 
done on triplicate sister wells. Data are expressed as the percent of the corresponding, 
concurrently run controls, where the overall mean was 443.00 ± 13.46 µg/well. For 
mono- and di-methylated pairs, significance was determined relative to the 
corresponding control and the paired compound by one-factor analysis of variance 
(ANOV A). ANOV A values were significant for all three pairs (p < 0.05), so individual 
differences within these groups were determined by Scheffe F post hoc analysis(*= 
relative to control, t = dimethyl relative to monomethyl, p < 0.05). For the remaining 
compounds tested, significance was determined relative to the corresponding control by 
unpaired Student's t-test (§ p < 0.05). 
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FIG. 7. STRUCTURES OF THE SIX MOST POTENT COMPOUNDS FROM THE 
INITIAL EXPERIMENTS IN N-5 MEDIUM. 
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Effects of Compounds on LDH Release 

Figure 8 shows the time-course (2-48 h) of LDH released upon exposure to 500 

µM compounds in N-5 medium. 2-MeHi+ produced minimal LDH release up through 

48 h. This corresponded with the lack of effect on viable cell protein seen in figure 6. 

Of the other five compounds tested, 2-MeHli+ and MPP+ effected the most robust 

responses (approximately 660% of control), with peak responses occurring by 24 h. 

Likewise, 2,9-Me2Hi+ was most effective by 24 h (434% of control). However, 

neither 2,9-MeiNh+ nor 2,9-Me2Ha+ appeared to be as effective until at least 36 h. For 

the three compounds which produced their greatest responses by 24 h (MPP+, 2-

MeHli + and 2,9-Me2Hi+), the subsequent decreases in LDH were due to the relative 

increases in LDH released in the control wells. 

The concentration-dependence of the six compounds shown in figure 7 was also 

tested in N-5 medium (fig. 9). PC12 cells were exposed to either 50, 100,250 or 500 

µM of compound for 2 days. As with the time-course study, 2-MeHli+ and MPP+ 

were the two most effective agents. Both showed initial effects at 100 µMand were 

highly toxic at 250 µM with 2-MeHli+ being slightly more effective. In contrast, 2-

MeHi + produced only a slight effect at the highest (500 µM) concentration. Of the three 

dimethylated species, 2,9-Me2Nh+ and 2,9-Me2Hi+ effected minimal responses at 250 

µM, and displayed significant toxicity, as previously determined (fig. 5 & 8), at 500 

µM. 2,9-Me2Ha+ displayed no effect on LDH release at concentrations lower than 500 

µM. 

In figure 10, cells were also grown and treated in DMEM for 2 days with the 

same concentrations of the three most potent compounds from figure 9: MPP+, 2-

MeHli+ and 2,9-Me2Nh+. Of the three compounds, only 2-MeHli+ evoked a significant 

release of LDH (325% of control, at 250 µM). In table 1, the results of the LDH release 

experiments in DMEM (fig. 10) were compared to those obtained in N-5 medium (fig. 
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9). With the exception of the lowest concentration tested (50 µM), the effects of MPP+ 

on LDH release were significantly less in DMEM than in N-5 medium. At 

concentrations of 250 and 500 µM, 2-MeHli+ was also more !X)tent in N-5 medium than 

in DMEM. The only difference observed with 2,9-Me2Nh+ was at 500 µM, but this 

was also the only concentration at which 2,9-MeiNh+ produced any significant effect in 

either medium. Overall, MPP+, 2-MeHli+ and 2,9-Me2Nh+ were each less effective in 

causing LDH release in DMEM than in the low energy medium, N-5. 
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F1G. 8. TIME-COURSE OF LOH RELEASED FROM PC12 CELLS EXPOSED TO 
500 µM CONCENTRATIONS OF MPP+ AND SELECTED B-CARBOUNES IN N-5 
MEDIUM. Each time-point is the mean of at least 3 replicate determinations± SEM 
with each determination done on triplicate sister wells. Data are expressed as the percent 
of the corresponding, concurrently run controls, where the mean control values (U/well 
± SEM) at the various time points were as follows: 2 h = 0.067 ± 0.005, 6 h = 0.065 ± 
0.005, 12 h = 0.072 ± 0.006, 24 h = 0.091 ± 0.013, 36 h = 0.163 ± 0.045, 48 h = 
0.104 ± 0.012. Significance was determined by two-factor analysis of variance 
(ANOVA). Values were significant for all compounds at p < 0.05, except for the 
interaction of time and concentration with 2-MeHli+ and 2-MeHi+ which were not 
significant. Significance of individual points relative to the corresponding controls was 
determined by either Scheffe F (* p < 0.05) or Fisher PLSD (t p < 0.05 ) post hoc 
analysis. 
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FIG. 9. LDH RELEASED FROM PC12 CELLS AFTER 2 DAY EXPOSURE TO 
INCREASING CONCENTRATIONS OF MPP+ AND SELECTED 8-CARBOLINES 
IN N-5 MEDIUM. Each point is the mean of at least 3 replicate determinations± SEM 
with each determination done on triplicate sister wells. Data are expressed as the percent 
of the corresponding, concurrently run controls, where the mean overall control value 
was 0.104 ± 0.012 U/well. Significance was determined by one-factor analysis of 
variance (ANOVA). All compounds were significant vs. control at p < 0.05. 
Significance of individual points relative to the corresponding controls was determined 
by Scheffe F (* p < 0.05) post hoc analysis. 
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FIG. 10. LDH RELEASED FROM PC12 CELLS AFTER 2 DAY EXPOSURE TO 
INCREASING CONCENTRATIONS OF MPP+, 2-MeHli+ AND 2,9-Me2Nh+ IN 
DMEM. Each point is the mean of 5 replicate determinations ± SEM Data are expressed 
as the percent of the corresponding, concurrently run controls, where the overall mean 
control value was 0.219 ± 0.43 U/well. Significance was determined by one-factor 
analysis of variance (ANOVA). Of the three compounds, only 2-MeHli was significant 
vs. control at p < 0.05. t Indicates individual points significant relative to the 
corresponding controls (p < 0.05) by Fisher PLSD post hoc analysis. 
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TABLE 1 

COMPARISON OF THE EFFECTS OF MEDIA ENERGY LEVELS (DMEM VS. N-5 
MEDIA) ON LDH RELEASED FROM PC12 CELLS BY MPP+, 2-MeHli+ 

AND 2,9-MeiNh+ 

Concentration MPP+ 2-MeHli+ 2,9-Me2Nh+ 
(µM) 

50 76.05 ± 2.80 89.10 ± 10.59 107.13 ± 11.20 
100 42.88 ± 4.92 t 76.32 ± 9.80 90.40 ± 8.88 
250 40.37 ± 5.28 * 65.67 ± 6.74 + 46.00 ± 9.82 
500 44.91 ± 9.24 * 67.85 ± 16.55 t 40.06 ± 9.40 * 

Data are the DMEM values (% of control, fig. 10) expressed as the mean % of the 
corresponding N-5 values(% of control, fig. 9) ± SEM. [The numerical values from 
figures 9 and 10 are summarized in Table 8 in the Appendix.] Significance was 
determined by one-factor analysis of variance (ANOVA), and all of the groups tested 
were significant (p < 0.05). The symbols,* and t, indicate significance (p < 0.05) of 
individual DMEM values relative to the corresponding N-5 values by Scheffe F and 
Fisher PLSD post hoc analysis, respectively. 
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Effects of Compounds on Cell Protein 

The effects of the compounds in N-5 medium on viable cell protein (fig. 11) 

were consistent with those seen for LDH release (fig. 9). 2-MeHli + was the most 

potent of the six agents tested, effecting a 30% reduction in cell protein at 100 µM, and 

a maximum effect (65% decrease) with 250 µM. MPP+, however, did not approach the 

maximum effectiveness of2-MeHli+ until 500 µM. Similarly, 2,9-Me2Nh+ produced a 

significant protein decrease at 250 µM and was equipotent with MPP+ and 2-MeHli+ at 

500 µM. 2,9-MeiHi+ displayed no significant effect below 500 µM. The other two 

compounds tested, 2-MeHi+ and 2,9-Me2Ha+, were ineffective in the N-5 medium. 

When the three most potent compounds from figure 11 (MPP+, 2-MeHli+ and 

2,9-Me2Nh+) were tested for 2 days at the same concentrations in DMEM (fig. 12), 2-

MeHli was again the most toxic. However, in this case it produced a significant 

decrease of cell protein even at 50 µM. Also, 2,9-MeiNh+ caused a significant 

decrease at 500 µM, whereas in the N-5 medium it was ineffective even at that high 

concentration. The results with MPP+ were virtually identical in both media. 

A comparison of the effects of MPP+, 2-MeHli+ and 2,9-Me2Nh+ on cell 

protein in the two different media is shown in table 2, and the corresponding ECso 

values are listed in table 3. In contrast to the LDH data, 2-MeHli+ was markedly more 

potent in DMEM (ECso = 25 µM) than in N-5 medium (ECso = 210 µM). This was 

because the depletion of cell protein was significantly greater at 50 and 100 µM in 

DMEM compared to N-5 medium. At the higher concentrations of 2-MeHli, and all of 

the concentrations of MPP+ and 2,9-Me2Nh+, there were no significant differences in 

the toxicity's of the compounds in the two culture media (Table 2). This is in contrast 

to the LOH data, where the compounds were observed to be less effective in DMEM 

(table 1). 
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FIG. 11. EFFECTS OF 2 DAY EXPOSURE TO INCREASING 
CONCENTRATIONS OF MPP+ AND SELECTED 8-CARBOLINES IN N-5 
MEDIUM ON PC12 CELL PROTEIN. Each point is the mean of at least 3 replicate 
determinations ± SEM with each determination done on triplicate sister wells. Data are 
expressed as the percent of the corresponding, concurrently run controls, where the 
overall mean control value was 438.67 ± 18.95 µg/well. Significance was determined 
by one-factor analysis of variance (ANOV A). MPP+, 2-MeHli +, 2,9-MeiNh+ and 2,9-
MeiHi+ were significant vs. control at p < 0.05. Significance of individual points 
relative to the corresponding control was determined by Scheffe F post hoc analysis (* 
p < 0.05). 

66 



~ 
0 

~ -
a:; 
~ 

= ·-~ .... 
0 

t 

12(1t------::..=-=-=-=--~=-----;::==============:=:;t IDMEMI 

8 

6 

4 

2 

0 
0 100 

-e- MPP+ 

-a- 2-MeHli+ 

-e-- 2,9-Me 2 Nh+ 

1------..:~_1 * 
* 

-~------i* 

200 300 400 
[Compound] (µ1\1) 

500 
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CELL PROTEIN. Each point is the mean of 4 replicate determinations± SEM Data are 
expressed as the percent of the corresponding, concurrently run controls, where the 
overall mean control value was 143.9 ± 11.56 µg/well. Significance was determined by 
one-factor analysis of variance (ANOVA). All three compounds were significant at p < 
0.05. * Indicates significance of individual points relative to the corresponding controls 
(p < 0.05) by Scheffe F post hoc analysis. 
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TABLE 2 

COMPARISON OF THE EFFECTS OF MEDIA ENERGY LEVELS (DMEM VS. N-5 
MEDIA) ON MPP+, 2-MeHli+ AND 2,9-MeiNh+ -INDUCED DEPLETION OF 

PC12 CELL PROTEIN 

Concentration MPP+ 
(µM) 

50 111.90 ± 12.79 
100 103.98 ± 8.16 
250 151.90 ± 32.58 
500 95.61 ± 31.52 

2-MeHli+ 

51.05 ± 10.39 * 
47.09 ± 11.07 t 
75.45 ± 28.44 

100.80 ± 21.84 

87.92 ± 9.46 
78.44 ± 10.00 
85.46 ± 21.44 

118.31 ± 31.87 

Data are the DMEM values (% of control, fig. 12) expressed as the mean % of the 
corresponding N-5 values(% of control, fig. 11) ± SEM. [The numerical values for 
figures 11 and 12 are summarized in Table 8 in the Appendix.] Significance was 
determined by one-factor analysis of variance (ANOVA), and all of the groups tested 
were significant (p < 0.05). The symbols,* and t, indicate significance (p < 0.05) of 
individual DMEM values relative to the corresponding N-5 values by Scheffe F and 
Fisher PLSD post hoc analysis, respectively. 

68 



TABLE 3 

LIST OF ECso VALVES FOR IBE DEPLETION OF CELL PROTEIN IN DMEM 
AND N-5 CULTURE MEDIA 

ECso (µM) 

Compound N-5 DMEM 

MPP+ 330 490 

2-MeHli+ 210 25 

2,9-Me2Nh+ 410 330 

2-MeHi+ > 1000 NT 

2,9-Me2Ha+ > 1000 NT 

2,9-Me2Hi+ > 1000 NT 

The ECso values for the compounds were determined graphically by replotting the data 
from figures 11 and 12 as the protein/well(% of control) vs. the log concentration of 
compounds. The numerical values for figures 11 and 12 are summarized in Table 8 in 
the Appendix. NT = not tested. 
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Effects of Compounds on [3H]Dopamine Uptake 

The capacity of the PC12 cells to accumulate [3HJDA after exposure to various 

concentrations of compounds was examined as another measure of cytotoxicity (figures 

13 & 14). In the case of the mono-methylated compounds tested in N-5 medium (fig. 

13A), the results were similar to those seen for cell protein (fig. 11): Both MPP+ and 

2-MeHli+ virtually abolished all DA accumulation at 250 µM (approximately 21 and 

13% of control, respectively), and 2-MeHi+ had no significant effect even at 500 µM. 

Similar results were obtained when the cells were exposed to MPP+ and 2-MeHli+ in 

DMEM, where both compounds caused dose-dependent decreases in the accumulation 

of [3H]DA. MPP+ did not decrease uptake to the same extent in DMEM as in N-5 

medium, but 2-MeHli+ was approximately equipotent (table 4). 

The reactions of the cells treated with the dimethylated compounds (fig. 13B) 

were the opposite of those of the monomethylated species. With the exception of 2,9-

Me2Nh +, which produced a decrease to control levels at 500 µM, accumulation of 

[3H]DA increased with dose. At a concentration of 250 µM, each of the compounds 

produced a significant increase in DA uptake relative to its concurrently run control. 

When the experiment was repeated on PC12 cells grown and treated in DMEM (fig. 

14), the dimethylated compound (2,9-Me2Nh+) did not increase the accumulation of 

[ 3H]DA. So, similar to what had been previously observed for the effect of 2,9-

Me2Nh+ on LDH release (table 1), this compound was less effective in producing a 

response in DMEM than in N-5 medium (table 4). 
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}~IG. 13. [3H]DOPAMINE UPTAKE BY PC12 CELLS AFTER 2 DAY 
EXPOSURE TO INCREASING CONCENTRATIONS OF MPP+ AND SELECTED 
8-CARBOLINES IN N-5 MEDIUM. Each point is the mean of at least 3 replicate 
determinations± SEM with each determination done on triplicate sister wells. Data are 
expressed as the percent of the corresponding, concurrently run controls, where the 
overall mean control value was 268.87 ± 34.09 fmoles/mg protein. Significance was 
determined by one-factor analysis of variance (ANOV A). All compounds, except 2-
MeHi+, were significant vs. control at p < 0.05. Significance of individual points 
relative to the corresponding controls was determined by Scheffe F (* p < 0.05) and 
Fisher PLSD (t p < 0.05) post hoc analyses. 
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FIG. 14. [3H]DOPAMINE UPTAKE BY PC12 CELLS AFTER 2 DAY 
EXPOSURE TO INCREASING CONCENTRATIONS OF MPP+, 2-MeHli+ AND 
2,9-Me2Nh+ IN DMEM. F.ach point is the mean of 4 replicate determinations± SEM 
Data are expressed as the percent of the corresponding, concurrently run controls, 
where the overall mean control value was 350.12 ± 44.58 fmoles/mg protein. 
Significance was determined by one-factor analysis of variance (ANOVA). MPP+ and 
2-MeHli+, but not 2,9-Me2Nh+, were significant vs. control at p < 0.05. Significance 
of individual points relative to the corresponding controls was determined by Scheffe F 
(* p < 0.05) and Fisher PLSD (t p < 0.05) post hoc analysis. 
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TABLE 4 

COMPARISON OF THE EFFECTS OF MEDIA ENERGY LEVELS (DMEM VS. N-5 
MEDIA) ON MPP+, 2-MeHli+ AND 2,9-Me2Nh+ -INDUCED CHANGES IN. 

[ 3H]DOPAMINE UPTAKE 

Concentration MPP+ 2-MeHli+ 2,9-Me2Nh+ 
(µM) 

50 146.83 ± 18.07 122.31 ± 35.21 67.27 ± 2.35 
100 166.45 ± 26.34 t 51.36 ± 21.95 57.16 ± 18.65 
250 231.36 ± 75.05 39.59 ± 10.48 24.33 ± 8.12 t 
500 883.91 ± 329.77 155.51 ± 88.44 60.56± 17.41 

Data are the DMEM values (% of control, fig. 14) expressed as the mean % of the 
corresponding N-5 values(% of control, fig. 13) ± SEM. [The numerical values for· 
figures 13 and 14 are summarized in Table 8 in the Appendix.] Significance was 
determined by one-factor analysis of variance (ANOVA), and all of the groups tested 
were significant (p < 0.05). The symbol, t, indicates significance (p < 0.05) of 
individual DMEM values relative to the corresponding N-5 values by Fisher PLSD post 
hoc analysis. 

Effects of Mazindol on Toxicitv 

PC12 cells were exposed for 2 days to MPP+, 2-MeHli+ and 2,9-Me2Nh+ at their 

most effective concentrations (500, 250 and 500 µM, respectively), based upon data 

from previous experiments with these compounds in DMEM (fig. 10). In an attempt to 

inhibit the toxic effects of these compounds, the cells were concurrently incubated in the 

presence or absence (control) of 3, 10 or 30 µM of the catecholamine uptake inhibitor, 

mazindol. LDH released into the extracellular milieu was measured as the indicator of 

cytotoxicity. Figure 15 shows that mazindol was ineffective at inhibiting any of the 

toxic effects even at a concentration of 30 µM; at a concentration of 100 µM, mazindol 

itself was toxic ( data not shown). 
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FIG. 15. EFFECTS OF MAZINDOL ON LDH RELEASE FROM PC12 CELLS 
EXPOSED TO MPP+, 2-MeHii+ AND 2,9-Me2Nh+ IN DMEM. MPP+ and 2,9-
Me2Nh+ were both used at a concentration of 500 µM, and 2-MeHii+ was used at a 
concentration of 250 µM. Each point is the mean of 4 replicate determinations ± SEM. 
Data are expressed as the percent of the corresponding, concurrently run controls, where 
the mean control value was 0.082 ± 0.012 U/well. Significance was determined by 
one-factor analysis of variance (ANOV A). None of the three compounds were 
significant at p < 0.05. 
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Accumulation and Bindine of f3H)CatecholaminelJptake Lie;ands 

Effects of Varyine; Incubation Conditions 

The accumulation of NE by PC12 cells had previously been shown to be Na+.and 

temperature-dependent (Greene and Rein, 1977), but this had not been demonstrated for 

DA. To address this question, the temperature of the incubation, the sodium 

concentration, and the integrity of the cells (intact, homogenized or boiled) were 

modulated ( fig. 16). Reduction of the incubation temperature from 3 7 ° C (control) to 4 

°C abolished both [3H]DA and [3H]NE accumulation by intact PC12 cells in unmodified 

KRP buffer. Likewise, when sodium was removed from the incubation buffer (0 Na+) 

intact cells displayed negligible catecholamine uptake. Similarly, when the cells were 

boiled. uptake was reduced almost to zero. However, homogenization of the cells only 

reduced the accumulation of [3H]DA and [3H]NE to 40% and 50%, respectively, of the 

corresponding control values. In the case of [3H]NE this was not a significant decrease. 

Catecholamine Uptake Site(s) Analysis 

To establish the presence of DA uptake sites in PC 12 cells, the selective probe, 

[3H]GBR 12935, was used. Figure 17 shows the curve for inhibition of [3H]GBR 

12935 binding to PC12 cell homogenates by unlabeled mazindol. The specific binding 

of [3H]GBR 12935 constituted only 35% of total binding, as defined by the presence of 

10 µM unlabeled GBR 12909, a selective inhibitor of DA uptake and [3H]GBR12935 

binding (Andersen, 1989). From the Hill plot (fig. 17B), the ICso for mazindol 

inhibition of specific [3H]GBR 12935 binding was determined to be 10 µM. By 

assuming the ICso was comparable to the Ko for [3H]GBR 12935 at these sites, the 

theoretical Bmax was calculated by the Cheng and Prusoff correction ( eqn. 6) to be 426 

pmol/tube. 
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FIG. 16. EFFECTS OF VARYING INCUBATION CONDITIONS ON 
[3H]DOPAMINE AND (3H]NOREPINEPHRINE UPTAKE INTO PC12 CELLS. 
Each point is the mean of 3 replicate determinations ± SEM with each determination 
done on triplicate sister wells. Data are expressed as fmoles/mg protein. Data were 
analyzed in two groups ([3H]DA and [3H]NE), and significance was determined by 
one-factor analysis of variance (ANOV A); both groups were significant at p < 0.05. 
Significance of individual points relative to the corresponding controls was determined 
by Scheffe F (* p < 0.05) and Fisher PLSD (t p < 0.05) post hoc analysis. Control= 
intact cells, in unmodified KRP buffer incubated at 37 °C; 4 °C = incubation at 4 °C; Q 
Na+= KRP buffer with no sodium; Boiled= boiled cells; Homog = homogenized cells. 

To examine the presence and the characteristics of the NE site, [3HJmazindol was 

used as a probe and an inhibition curve was generated by competition with unlabeled 

mazindol (fig. 18). To define specific binding to NE sites, [3H]mazindol was incubated 

in the presence of 0.3 µM desipramine (Battaglia et al., 1988). However, [3H]mazindol 

binding was virtually unchanged from total in the presence of desipramine (91.68 ± 

1.97 % of total) indicating only 10% of the total [3H]mazindol binding was to classical 

NE sites. Using the GraphPad Inplot program for the IBM PC, the baseline was floated 

at 21 fmoles, and a Hill plot was generated (fig. 18B) from which the IC50 value was 
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determined to be 5 µM. As previously described for [3H]GBR 12935, the IC50 was 

assumed to be equivalent to the KD for [3Hlmazindol binding and the theoretical Bmax 

was calculated ( eqn. 6) to be 60 pmol/tube. 

The data in figure 18 had demonstrated inhibitable binding of [3H]mazindol to 

PC12 cell homogenates. Consequently, the abilities of MPP+, 2-MeHli+ and 2,9-

Me2Nh+ to inhibit the binding of [3H]mazindol were examined to determine if these 

compounds had affinities for the catecholamine uptake site in PC12 cells. Of the three 

compounds, only 2-MeHli+ displayed any effectiveness at inhibiting [3H]mazindol 

binding, reducing it to 61 % of specific binding at 100 µM (fig. 19B). The inhibition 

curve produced by 2-MeHli+ also appears biphasic indicating two or more binding sites 

for which [3H]mazindol and 2-MeHli+ may compete. Neither MPP+ nor 2,9-Me2Nh+ 

reduced [3H]mazindol binding below the level of control (fig. 19A and C). However, 

all three compounds produced slight increases in [3H]mazindol binding at their lowest 

concentrations (fig. 19A, Band C), but there was not enough data to determine if these 

increases were statistically significant. 

To determine the relative potencies of MPP+, 2-MeHli+ and 2,9-Me2Nh+ to 

compete for the catecholamine uptake sites, these compounds and several known 

substrates and inhibitors were tested as inhibitors of [3H]DA and [3H]NE uptake into 

intact PC12 cells. The data for these experiments are presented in figures 20-27. For 

each compound tested (DA, NE, desipramine, mazindol, nomifensine, MPP+, 2-

MeHli+ and 2,9-MeiNh+), IC50 values and Hill coefficients (nH) were determined by 

transforming the data from the inhibition curves and expressing the results on Hill plots. 

The results are summarized in Table 5. 
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FIG. 17. 5 nM [3H]GBR 12935 BINDING TO PC12 CELL HOMOGENATES IN 
THE PRESENCE OF UNLABELED MAZINDOL. In the inhibition curve (A), data are 
expressed as the percent of specific binding, where total binding was 773.19 ± 214.23 
fmoles/tube. Specific binding was defined by the addition of 10 µM GBR 12909, and 
determined to be 35% of total binding. Each point is the mean of 3 replicate 
determinations± SEM. From the corresponding Hill plot (B): ICso = 10 µMand nH = 
0.75, fractional occupancy of the binding site(s) was calculated to be 0.05%, and from 
this the theoretical Bmax = 426 pmol/tube. 
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FIG. 18. 6nM [3H]MAZINDOL BINDING TO PC12 CELL HOMOGENATES IN 
THE PRESENCE OF UNLABELED MAZINDOL. In the inhibition curve (A), data are 
expressed as the percent of specific binding, where total binding was 92.45 ± 14.92 
fmoles/tube. Specific binding was defined by the addition of 0.3 µM desipramine, and 
determined to be < 10% of total binding. Consequently, the baseline was determined by 
computer assisted analysis using the GraphPad Inplot program for the IBM PC to float 
the baseline at 21 fmoles. Each point is the mean of 5 replicate determinations ± SEM. 
From the corresponding Hill plot (B): ICso = 5 µMand nH = 1.0, fractional occupancy 
of the binding site(s) was calculated to be 0.12%, and from this the theoretical Bmax"" 
60 pmol/tube. 
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FIG. 19. 6 nM [3H]MAZINDOL BINDING TO PC12 CELL HOMOGENATES IN 
THE PRESENCE OF UNLABELED MPP+, 2-MeHli+ AND 2,9-Me2Nh+. Cells were 
grown in DMEM. Non-specific uptake was defined by the presence of 100 µM 
unlabeled mazindol. Each point is the mean of 2 replicate determinations (each 
determination in triplicate) ± SEM. Data are expressed as the percent of total specific 
binding, where the mean control values were as follows: (A) 81.09 ± 22.42 
fmoles/tube for MPP+, (B) 66.71 ± 15.47 fmoles/tube for 2-MeHli+, and (C) 66.51 ± 
15.35 fmoles/tube for 2.9-Me2Nh+. 
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The endogenous substrates of the uptake site(s), DA (fig. 20) and NE (fig. 21), 

were tested only in the presence of their radiolabeled homologues and displayed ICso 

values of 774 and 331 nM, respectively. The nH value for NE was less than one (0.28), 

but that for DA (0.85) approached unity. The curve for NE was biphasic, but the DA 

curve was sigmoidal. 

The known inhibitors of catecholamine uptake, desipramine, mazindol and 

nomifensine, displayed the highest affinities of the compounds tested for both the DA 

and NE uptake sites (fig. 22 - 24, respectively). Of these compounds, mazindol was the 

most potent inhibitor of [3H]DA uptake with an ICso of 0.76 nM, and desipramine was 

approximately one sixth as effective (ICso = 4.8 nM). The effectiveness of these two 

compounds in inhibiting [3H]NE uptake were reversed, where the ICso for desipramine 

was 1.25 nM and that of mazindol was 4.5 nM. Nomifensine displayed approximately 

equal potency against both [3H]DA (ICso = 10.8 nM) and 3H]NE (ICso = 10.1 nM) 

binding. The nH values for all three compounds with respect to both [3H]DA and 

[3H]NE were less than unity (Table 5). 

Each of the toxins tested, MPP+, 2-MeHli+ and 2,9-MeiNh+ (fig. 25-27, 

respectively), displayed micromolar potencies in inhibiting [3H]DA with ICso values of 

6.5, 13.1 and 16.6 µM, respectively. Similarly, these three compounds had ICso 

values for [3H]NE uptake by PC12 cells of 1.5 (MPP+), 13.5 (2-MeHli+) and 61.6 µM 

(2,9-MezNh+). In contrast to the other compounds tested (DA, NE, desipramine, 

mazindol and nomifensine), the nH values for inhibition of [3H]DA uptake were either 

greater than one (MPP+ = 1.43 and 2-MeHli+ = 1.42) or approximately equal to one 

(2,9-MezNh+ = 0.92). The nH values for inhibition of [3H]NE uptake were less than 

unity for MPP+, 2-MeHli+ and 2,9-MezNh+ (0.78, 0.72 and 0.71, respectively), but 

were not as low as those of the other compounds tested (table 5). 
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TABLE 5 

SUMMARY OF DATA FOR INHIBillON OF [3H]DOPAMINE AND 
[3H]NOREPINEPHRINE UPTAKE INTO PC12 CELLS BY VARIOUS 

COMPOUNDS 

Competing Ligand [3H]Dopamine [3H]Norepinephrine 

ICso (nM) nH ICso (nM) nH 

Dopamine .............. 774 0.85 NT NT 

Norepinephrine ....... NT NT 331 0.28 

Desipramine ........... 4.8 0.49 1.25 0.28 

Mazindol ............... 0.76 0.69 4.5 0.32 

Nomifensine ........... 10.8 0.47 10.1 0.28 

MPP+ ................... 6504 1.43 1495 0.78 

2-MeHli+ ................ 13,074 1.42 13,491 0.72 

2,9-Me2Nh+ ............ 16,612 0.92 61,625 0.71 

Data for the individual compounds were subjected to Hill transformation 
and plotted as logit-log inhibition plots as previously described. Data were 
derived and summarized from figures 20 - 27. NT= not tested. 
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FIG. 20. 3.5 nM [3H]DOPAMINE UPTAKE INTO PC12 CELLS IN THE 
PRESENCE OF UNLABELED DOPAMINE. (A) is the inhibition curve where specific 
uptake was defined by the presence of 100 µM unlabeled nomifensine, and (B) is the 
corresponding Hill plot. Each point is the mean of 3 replicate determinations ± SEM. 
Data are expressed as the percent of specific uptake, where the mean control value was 
26.47 ± 3.39 fmoles/tube. From the Hill plot (bottom): ICso = 774 nM and IlH = 
0.85. 
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FIG. 21. 3.5 nM [3HlNOREPINEPHRINE UPTAKE INTO PC12 CELLS IN THE 
PRESENCE OF UNLABELED NOREPINEPHRINE. (A) is the inhibition curve 
where specific uptake was defined by the presence of 100 µM unlabeled nomifensine, 
and (B) is the corresponding Hill plot. Each point is the mean of 3 replicate 
determinations ± SEM Data are expressed as the percent of specific uptake, where the 
mean control value was 71.64 ± 13.59 fmoles/mg protein. From the Hill plot (bottom): 
ICso = 331 nM and nH = 0.28. 
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FIG. 22. 3.5 nM [3H]DOPAMINE AND 3.5 nM [3H]NOREPINEPHRINE 
UPTAKE INTO PC12 CELLS IN THE PRESENCE OF UNLABELED 
DESIPRAMINE. (A) is the inhibition curve where specific uptake was defined by the 
presence of 100 µM unlabeled nomifensine, and (B) is the corresponding Hill plot. 
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percent of specific uptake, where the mean control value was 86.16 ± 10.99 fmoles/mg 
protein for DA and 96.5 ± 2.31 for NE. From the Hill plot (bottom): ICso = 4.8 nM 
and nH = 0.49 for DA, and ICso = 1.25 nM and nH = 0.28 for NE. 
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UPTAKE INTO PC12 CELLS IN THE PRESENCE OF UNLABELED MAZINDOL. 
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82.38 ± 19.38 for NE. From the Hill plot (bottom): IC50 = 0.76 nM and DH= 0.69 
for DA, and IC50 = 4.5 nM and nH = 0.32 for NE. 
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UPTAKE INTO PC12 CELLS IN THE PRESENCE OF UNLABELED 
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percent of specific uptake, where the mean control value was 79.83 ± 4.27 fmoles/mg 
protein for DA and 81.11 ± 12.48 for NE. From the Hill plot (bottom): ICso = 10.8 
nM and nH = 0.4 7 for DA, and ICso = 10.1 nM and nH = 0.28 for NE 
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FIG. 25. 3.5 nM [3H]DOPAMINE AND 3.5 nM [3H]NOREPINEPHRINE 
UPTAKE INTO PC12 CELLS IN THE PRESENCE OF UNLABELED MPP+. (A) is 
the inhibition curve where specific uptake was defined by the presence of 100 µM 
unlabeled nomifensine, and (B) is the corresponding Hill plot. Each point is the mean 
of 3 replicate determinations ± SEM Data are expressed as the percent of specific 
uptake, where the mean control value was 191.34 ± 4.27 fmoles/mg protein for DA and 
68.69 ± 12.50 for NE. From the Hill plot (bottom): ICso = 6504 nM and nH = 1.43 
for DA, and ICso = 1495 nM and nH = 0.78 for NE. 
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unlabeled nomifensine, and (B) is the corresponding Hill plot. Each point is the mean 
of 3 replicate determinations ± SEM Data are expressed as the percent of specific 
uptake, where the mean control value was 186.43 ± 23.45 fmoles/mg protein for DA 
and 81.97 ± 0.56 for NE. From the Hill plot (bottom): ICso = 13,074 nM and nH = 
1.42 for DA, and ICso = 13,491 nM and nH = 0.72 for NE. 
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UPTAKE INTO PC12 CELLS IN THE PRESENCE OF UNLABELED 2,9-MezNh+. 
(A) is the inhibition curve where specific uptake was defined by the presence of 100 µM 
unlabeled nomifensine, and (B) is the corresponding Hill plot. Each point is the mean 
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uptake, where the mean control value was 199.96 ± 18.06 fmoles/mg protein for DA 
and 66.20 ± 5.44 for NE. From the Hill plot (bottom): IC50 = 16,612 nM and nH = 
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Summarv 

1) Six of the twelve compounds initially tested were determined to be toxic to PC 12 

cells as assessed by LDH release and cell protein concentration: MPP+, 2-MeHli+. 2-

MeHi+, 2,9-Me2Nh+, 2,9-Me2Ha+ and 2,9-Me2Hi+. 

2) The time-course and dose-response effects of these six compounds were examined, 

and 2-MeHli+ and MPP+ were observed to be the most toxic to PC12 cells in low 

energy, N-5 medium. 

3) Tht;? dose-response effects of the three most potent compounds in low energy 

medium (N-5), MPP+, 2-MeHli+ and 2,9-Me2Nh+, were examined in a culture medium 

containing a higher concentration of glycolytic substrates, DMEM. Overall, all three 

compounds were less toxic in DMEM. 

4) Co-incubation with the catecholamine uptake inhibitor, mazindol, did not inhibit the 

toxic effects of either MPP+, 2-MeHli+ or 2,9-MeiNh+ in DMEM. 

5) The accumulation of [3H]DA and [3H]NE by PC12 cells was temperature- and 

sodium-dependent, and homogenization of the cells reduced uptake by approximately 

half. 

6) The specific binding of [3H]GBR 12935 to PC12 cell homogenates was only 35% 

of the total signal, as defined by 10 µM GBR 12909. The ICso for mazindol inhibition 

of specific [3H]GBR 12935 binding was 10 µM, and the theoretical Bmax was 

determined to be 426 pmol/tube. 

7) Only 10% of total [3H]mazindol binding to PCl 2 cell homogenates was to classical 

NE uptake sites as defined by the presence of 0.3 µM desipramine. An ICso value of 5 

µM and a theoretical Bmax of 60 pmol/tube were determined for total [3H]mazindol 

binding by computer-assisted approximation of a baseline. 
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8) 2-MeHii+ inhibited 40% of [3Hlmazindol binding to PC12 cell homogenates with 

µM potency, and yielded a biphasic curve. MPP+ and 2,9-Me2Nh+ were ineffective at 

inhibiting [3H]mazindol binding, even at 100 µM. 

9) MPP+, 2-MeHii+ and 2,9-Me2Nh+ inhibited [3H]DA uptake with ICsos of 6.5, 

13.1 and 16.6 µM, respectively. Similar ICso values were obtained for inhibition of 

[3H]NE uptake: 1.5 µM (MPP+), 13.5 µM (2-MeHii+) and 61.6 µM (2,9-MeiNh+). 

Hill coefficients (nH) for NE, desipramine, mazindol and nomifensine were 

approximately :5: 0.5. The nH values for DA, MPP+, 2-MeHii+ and 2,9-Me2Nh+ were 

close to unity. 
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CHAPTER V 

DISCUSSION 

Structure-Activitv Relationships 

In all of the cytotoxicity experiments performed, 2-MeHli+ was consistently 

the most potent compound tested. The first series of experiments were designed as a 

selection process. The effects of a high concentration (i.e., 500 µM) of N-methylated 

J3Cs and DHJ3Cs on two non-specific measures of cytotoxicity, LDH release and cell 

protein concentration, were used to determine which compounds were toxic in PC12 

cell cultures. From these experiments, a number of structural characteristics can be 

identified as important for toxicity. 

Methylation of the 9-[indole]-nitrogen produced a dramatic increase in toxicity 

relative to the less effective 2-MeJ3C+ congeners. For example, 2-MeNh+ had no 

effect on either LDH release or cell protein, but the related dimethylated species, 2,9-

Me2Nh+, was equipotent with MPP+ in both measures. Similarly, while 2-MeHi+ and 

2-MeHa+ did have significant effects on LDH release, neither compound was as 

potent as its dimethylated congener at 2 days. The potentiating effect of 9-methylation 

had been seen previously in both in vivo microdialysis studies and mitochondrial 

respiration experiments (Albores et al., 1990; Collins et al., 1992). 

It is also apparent that the methoxyl group on carbon-7 of the cyclohexyl ring 

increases the toxicity of the compounds in PC 12 cell cultures. The two most toxic 

mono-methylated species were 2-MeHli+ and 2-MeHi+, which are also known as 7-

methoxy-2-methylharmalan and 7-methoxy-2-methylharman, respectively. The 
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equivalent 7-hydroxy compounds, 2-MeHo+ (7-hydroxy-2-methylharman) and 2-

MeHlo+ (7-hydroxy-2-methylharmalan). were both non-toxic. Similarly, Slotkin et al. 

(1978) have reported that the 7-methoxyl group is important for BC inhibition of 

sodium-dependent vesicular transport, because a hydroxyl group on carbon-7 made the 

compounds inactive. The importance of the position of the methoxyl group on 

carbon-7 is also seen because neither 6-Me0-2-MeHa+ nor 6-Me0-2-MeHla+ 

produced any observable cytotoxicity. A similar structure-activity preference for the 

7-oxy versus the 6-oxy substituent has been reported by Sayre et al. (1991), where the 

authors used a rat intranigral infusion model. 

The lack of toxicity of both 2-MeHo+ and 2-MeHlo+ (6-hydroxyl compounds) 

in the present study was also of interest because they had previously been shown to 

have "toxic" effects in other model systems. Albores et al.(1990) had shown that 2-

MeHo was equal to or better than 2-MeHli+ as an inhibitor of mitochondrial 

respiration. Similarly, although 2-MeHlo+ was approximately 4-fold less potent than 

2-MeHo+, it was considerably more potent than 2-MeHa+ which did have a small but 

significant effect on LDH release (fig. 5). Drucker et al. (1990) had previously shown 

that 2-MeHo+ was one of the poorest inhibitors of [3H]DA uptake into striatal 

synaptosomes, so it may be that this compound was not accumulated by the PC12 

cells. However, 2-MeHlo+ was a better uptake inhibitor than 2-MeHa+, so the reason 

for these disparate results is uncertain. 

In summary, it appears that there are at least two structural features that 

enhance the toxic actions of N-methylated BC+s/DHBC+s in PC12 cell cultures: 1) 

Methylation of the 9-[indole]-nitrogen, and 2) the presence of a methoxyl group on 

carbon-7. Both 2-MeHli+ and 2-MeHi+ are examples of the latter, differing only in 

the degree of saturation of the pyridyl ring. In PC12 cells, 2-MeHli+ was more toxic. 

However, 2-MeHi+ has been reported to be a more potent inhibitor of mitochondrial 
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respiration (Albares et al., 1990), [3H]DA uptake (Drucker et al., 1990) and 

[3H)choline uptake (Smart, 1981), so it is curious that 2-MeHli+ is much more potent 

in PC12 cells. It is possible that these two compounds differ in their ability to enter 

PC12 cells. 

Mechanism of Toxicitv 

Throughout the studies described in this dissertation the effects of N

methylated BC+s/DHBC+s were compared to those of the known parkinsonian 

derivative MPP+. As just mentioned, several compounds were observed to be equal to 

or greater than MPP+ in their toxic effects in PC12 cell cultures. In the following 

section, the toxic mechanism of these compounds will be discussed in comparison to 

established aspects of MPP+-induced toxicity. In particular, the effects of PC12 cell 

metabolism on toxicity and the potential for the compounds to act as substrates for the 

catecholamine uptake pump are discussed. 

The Role of Glycolysis 

Similar to MPP+, N-methylated BC+s/DHBC+s are potent inhibitors of 

mitochondrial respiration in isolated mitochondrial preparations (Albares et al., 1990; 

Arora et al., 1990; Fields et al., 1992; Hoppel et al., 1987; Sayre et al., 1990; Sayre et 

al., 1991). Although the exact loci of the inhibitory effects of these compounds differs 

from MPP+ (Albares et al., 1990; Fields et al., 1992; Sayre et al., 1991), the end result 

is still inhibition of mitochondrial respiration and subsequent cell death (Sayre et al., 

1991). It has been demonstrated that inhibition of glycolysis is required for inhibitors 

of oxidative phosphorylation (e.g., MPP+) to be lethal to PC12 cells (Basma et al., 

1992; Denton and Howard, 1987; Reynolds et al., 1982). To determine if media 

glucose concentration influenced the effectiveness of the compounds tested, studies 
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were performed on PC12 cells grown and treated in two different culture media: 1) N-

5 medium, a low-energy medium with respect to concentrations of glycolytic 

substrates (Kaufman and Barrett, 1983), and 2) DMEM, which contained 

approximately twice the concentration of metabolic carbohydrates as the N-5 medium 

(Table 6). 

When the time-course of effects was examined in N-5 medium, none of the six 

compounds tested showed a significant effect on LDH release prior to 24 h (fig. 8). It 

is possible that the media glucose concentration in these experiments ( < 1 mM, Table 

6) was depleted in less than 24 h by PC 12 cells in the presence of the toxins. Reinhard 

et al. (1990a) have examined the time-course of LDH release from BAMC cells with 

respect to media glucose concentrations. In their study, no LDH release was observed 

until approximately 99% of the media glucose had been used up by the cells, and the 

BAMC cells utilized glucose at 4.6 times the normal rate in the presence of MPP+ 

(Reinhard et al., 1990a). So, those compounds which displayed a later effect (2-

MeHi+, 2,9-Me2Nh+ and 2,9-Me2Ha+, fig. 8) may have less effect on glucose 

utilization. Since PC12 cells, like BAMC cells, can use glycolysis as its source of 

ATP in the absence of oxidative phosphorylation, this may indicate that those 

compounds that have an earlier onset of toxicity (MPP+, 2-MeHli+ and 2,9-Me2Hi+) 

may be better inhibitors of the electron transport chain. However, it may also mean 

that the earlier acting compounds enter the cell more readily. 

The compounds tested in both media (MPP+, 2-MeHli+ and 2,9-Me2Nh+) all 

had less effect in the higher energy medium (DMEM) on LDH release (Table 1). This 

was particularly true for MPP+ and 2,9-Me2Nh+ which exhibited no significant effects 

in DMEM even at 500 µM (fig. l 0). Reinhard et al. ( 1990a) have demonstrated that 

MPP+ caused an increase in glucose utilization in BAMC cells, and an effect on LDH 

release was not observed until the media glucose was depleted. Similarly, Basma et 
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al. (1992) observed that untreated PC12 cells utilized 0.47 mM glucose in 48 h, and in 

the presence of either 2'Et-MPP+ or rotenone (inhibitor of mitochondrial complex I 

respiration) the glucose was consumed in 24 h. Concurrent with the decrease in 

glucose, the lactate concentration of the medium increased two-fold in 24 h in the 

presence of the toxins indicating inhibition of mitochondrial respiration (Basma et al., 

1992). At higher concentrations of glucose, PC12 cells compensated for ATP lost via 

mitochondrial inhibition by glycolysis, but when the glucose was depleted the cells 

died (Basma et al., 1992). In the studies described in this dissertation, 2-MeHli+ 

appears to be a more efficient inhibitor of mitochondrial respiration than MPP+ or 2,9-

Me2Nh +, thereby causing the PC12 cells to use the glucose faster. This would be 

consistent with the results observed for the time-course study (fig. 8), where 2-MeHli+ 

showed the initiation of effect at 12 h. 

The effects of MPP+ on cell protein concentration were similar to those 

reported by Denton and Howard (1987) for PC12 cells. They observed that cell 

protein was reduced by 50% with 100 µM MPP+ in low glucose medium, and that the 

cells continued to divide at an almost normal rate in normal glucose medium (Denton 

and Howard, 1987). In the work described here, MPP+ had the same effect at 100 µM 

in N-5 medium, but was ineffective at all but the highest concentration (500 µM) in 

DMEM (fig. 12). 2,9-Me2Nh+ was approximately equipotent in both media (Table 

2). 2-MeHli was actually more effective at reducing cell protein at low concentrations 

in DMEM (ECso = 25 µM) than in N-5 medium (ECso = 210 µM), but there was no 

difference in the effects at the higher concentrations (Table 2). The unexplained 

increase in [3H]DA uptake caused by 2,9-Me2Nh+ in N-5 medium was diminished in 

DMEM, as was the effect of MPP+ (fig. 13 and 14). In contrast, 2-MeHli+ had 

approximately equal effects on [3H]DA uptake in both media. Overall, the effects of 

MPP+ and 2,9-Me2Nh+ were diminished in the higher energy medium, whereas those 
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of 2-MeHli+ were approximately the same in both media. These results indicate that 

2-MeHJi+ was a more potent PC12 cell toxin than the other two compounds, and that 

it may elicit its effects via a different mechanism. 

The toxic effects of MPP+ were attenuated by increasing the concentration of 

glycolytic substrate in the media, whereas the effects of 2-MeHli+ were not (fig. 9-

14). This indicates that 2-MeHli+ is clearly a more potent toxin than MPP+ in PC12 

cell cultures. However, it is possible that a further increase in the media glucose 

concentrations would protect PC12 cells against the toxic effects of 2-MeHli+. As 

mentioned, other groups have examined the effects of medium glucose concentration 

on toxicity in PC12 or like cells (i.e., BAMC cells) , and they have used higher 

concentrations of glucose for their 'normal' concentration than the 5.55 mM (DMEM) 

used in this dissertation (Basma et al., 1992; Denton and Howard, 1987; Reinhard et 

al., 1990a). Basma et al. (1992) define a 'normal' glucose concentration in their PC12 

cell cultures to be 13.5 mM. They examined the effects of varying glucose 

concentrations on 2 day exposure to 100 µM 2'Et-MPTP in PC12 cell cultures (Basma 

et al., 1992). Under these conditions it was observed that cell death was 

approximately the same in medium containing 0.5 mM glucose (equivalent to N-5) as 

in medium with 5.5 mM glucose (Basma et al., 1992). A definite attenuation in 

toxicity was not observed until the glucose concentration of the media was increased 

to 8.5 mM or higher (Basma et al., 1992). Furthermore, Reinhard et al. (1990a) have 

reported that by changing the medium every 24 h no toxic effects were observed in 

BAMC cell cultures even at 1 mM MPP+. So, it is possible that if the concentration 

of glucose in the media were increased, or if the medium was changed more 

frequently, that the toxicity of 2-MeHli+ could be inhibited completely. 

In summary, it appears that 2Me-Hli+, a possible endogenous indole, is more 

potent than MPP+ as a cytotoxic agent in PC12 cells. However, selected N-
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methylated BC+s tested here also exhibited marked toxic potency. The overall rank 

order of potency of these compounds in low energy medium was 2-MeHii+ ~ MPP+ 

> 2,9-Me2Nh+ > 2,9-Me2Hi+ > 2,9-Me2Ha+ > 2-MeHi+. In the higher energy 

medium (DMEM), the rank of the first three compounds was 2-MeHii+ > MPP+ "' 

2,9-MeiNh+. 

The Role of Uptake 

It appears that the DA uptake system is the mechanism of MPP+ accumulation 

in dopaminergic neurons (Chiba et al., 1985; Javitch et al., 1985). This system has 

also been reported to be responsible for MPP+ accumulation by PC12 cells (Denton 

and Howard, 1987; Snyder et al., 1986). Since N-methylated fiC+s and DHBC+s may 

also be substrates for the DA uptake mechanism (Arora et al., 1990; Drucker et al., 

1990), the ability of MPP+, 2-MeHli+ and 2,9-Me2Nh+ to inhibit [3H]catecholamine 

uptake into PC12 cells was examined as a measure of the affinity of the compounds 

for these sites. In these experiments, the accumulation of both [3H]DA and [3H]NE 

were examined since the NE and DA systems are both possibly active in the uptake of 

MPP+, with the NE system being predominant (Snyder et al., 1986). All three 

compounds yielded monophasic competition curves and Hill coefficients close to 

unity (Table 5) for both [3H]DA and [3H]NE uptake, suggesting recognition of only 

single sites. The IC50 values (Table 5) and inhibition curves indicated similar 

inhibitory potencies at both the DA and NE sites for the three compounds. It is 

possible that these compounds are substrates for either one or both catecholamine 

uptake site(s) on PC12 cells; however, the inhibitory effects may also occur via a non

competitive mechanism. 

In PC 12 cells, the accumulation of MPP+ via the dopamine uptake system can 

be blocked by uptake inhibitors such as desipramine and mazindol (Denton and 
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Howard, 1987; Snyder et al., 1986). Reinhard and colleagues (Reinhard et al., 1990a; 

Reinhard et al., 1989) have demonstrated in BAMC cells that administration of a high 

concentration of desipramine (50 µM) attenuates the toxic effects of a 3 day exposure 

to 500 µM MPP+ (Reinhard et al., 1990a). However, only a 20% reduction in toxicity 

was observed (Reinhard et al., 1990a), and this indicates that much of the MPP+ was 

still entering the cell despite the presence of the inhibitor. In the present study, 

mazindol was added to PC12 cell cultures concurrently with toxins, but did not 

significantly effect either 2-MeHli+ or MPP+-induced LDH release (fig. 15). The 

slight decrease in 2-MeHli+-induced LDH release observed with 10 µM mazindol may 

indicate that there was an attenuation in toxicity, but the effect may have been masked 

by the large SEM. It is possible that mazindol (30 µM) may have been contributing to 

the toxicity, because mazindol alone was toxic at 100 µM (data not shown). 

As an alternative, MPP+ may enter the cell as a neutral, lipophilic species 

(Reinhard et al., 1990a; Reinhard et al., 1990b). Similarly, 2-MeBC+sfDHBC+s, such 

as 2-MeHli+, have the ability to lose the 9-[indole]-nitrogen proton forming the neutral 

anhydro base. The dimethylated BC+sfDHBC+s, such as 2,9-MeiNh+ (which was not 

toxic) are permanently charged because they cannot be deprotonated (Albores et al., 

1990). Consequently, MPP+ and 2-MeHli+ as neutral species may enter the PC12 

cells via passive diffusion and would be unaffected by the presence of an active uptake 

inhibitor such as mazindol. These toxins may also be accumulated by another uptake 

site in PC12 cells. Two NE uptake sites are present in BAMC cells; only the high 

affinity site is inhibitable by desipramine, but the low affinity site is not (Banerjee et 

al., 1987). Consequently, the MPP+ in Reinhard's model (1990a) may be accumulated 

by the BAMC cells via the low affinity site. This low affinity site would also have a 

role in the lack of toxicity observed in PC 12 cells ( fig. 15) if this site were inhibited by 

mazindol. 
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The site of entry of the toxins appears to be different than the mazindol site, 

since [3H]mazindol binding also was not potently inhibited by these toxins. Mazindol 

has an ICso of > 1000 µM for the inhibition of [3H]MPP+ binding to PC12 cell 

membranes (Marongiu et al., 1988). In the present study, MPP+, at concentrations as 

high as 100 µM, did not inhibit [3H]mazindol binding to PC12 cell homogenates, and 

2,9-Me2Nh+ was equally ineffective. In contrast, 2-MeHli+ produced a biphasic 

curve, although only a 50% inhibition of specific binding was observed at the 

maximum concentration (100 µM). However, this inhibition of specific mazindol 

binding may be mediated non-competitively. Desmethyl-harmaline, a compound 

similar to 2-MeHli+, inhibits Na+-dependent transport processes (Canessa et al., 1973; 

Sastry and Phillis, 1977; Sepulveda and Robinson, 1974; Smart, 1981). Since 

[ 3H]mazindol binding is a sodium-dependent process (Javitch et al., 1983), the 

inhibition of [3H]mazindol binding observed at high concentrations of 2-MeHii+ (fig. 

19B) may have resulted from inhibition of the Na+ -dependent binding process, and not 

direct competition with [3HJmazindol. 

The sodium-dependent nature of catecholamine uptake, and not direct 

competition with the substrates, may be the mechanism of the aforementioned 

inhibition of [3H]DA and [3H]NE uptake (Table 5) by 2-MeHii+. PC12 cells 

accumulate [3H]DA (Denton and Howard, 1984; Rebois et al., 1980; Snyder et al., 

1986), and transport of [3H]DA across the plasma membrane is an energy-dependent 

process, because a toxin-induced decrease in cell viability also decreased uptake (fig. 

13; also, Denton and Howard, 1984). However, temperature and sodium-dependence 

have only been demonstrated for [3H]NE uptake in PC12 cells (Greene and Rein, 

1977), and not for [3H]DA uptake. Figure 16 indicates that both [3H]NE and [3H]DA 

were accumulated by sodium-dependent processes. As mentioned previously, 

harmaline has been shown to inhibit the plasma membrane (Na+ + K+)-ATPase 
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(Canessa et al.. 1973; Sastry and Phillis, 1977; Sepulveda and Robinson, 1974; Smart, 

1981 ), which is the mechanism that drives the catecholamine transporter. 

Consequently, 2-MeHli+ may also inhibit the (Na+ + K+)-A TPase and thereby block 

[3H )DA and [3H]NE uptake in a non-competitive fashion. Thus, blocking the 

accumulation of 2-MeHli+ and 2,9-Me2Nh+ with uptake inhibitors should be preceded 

by a determination of whether these toxins are accumulated by PC12 cells. 

The data thus far have been inconclusive with regard to the interaction of the 

compounds with the uptake sites of PC 12 cells. Therefore, the radio labeled 

catecholamine uptake inhibitors, [3H]mazindol and [3H]GBR 12935, were used to 

further characterize these sites. Mazindol has affinity for both the DA and NE uptake 

sites, but displays a slight preference for the NE site (Andersen, 1987; Andersen, 

1989; Javitch et al., 1983). Desipramine (0.3 µM) can effectively compete for 

[ 3H]mazindol binding in rat frontal cortex (Battaglia et al., 1988). However, this 

concentration of desipramine inhibited less than 10% of the total [3H]mazindol signal 

in PC12 cell homogenates (fig. 18), suggesting that only this fraction of the total 

binding sites corresponded to classical NE uptake sites. Furthermore, an approximate 

IC50 value for cold mazindol was determined to be 5 µM, which was considerably 

higher than the Ki of 22 nM reported for rat striatum (Javitch et al., 1983). Together, 

these results suggest that the [3Hjmazindol binding site(s) in PC12 cells is 

pharmacologically distinct from that in neuronal membranes. 

PC12 cells were also capable of binding the specific DA uptake inhibitor, GBR 

12935. [3H]GBR 12935 binds to two sites in striatal membrane preparations and 

mazindol competes for binding at the high affinity site, which is identified as the 

classic DA uptake site (Andersen, 1987; Niznik et al., 1990). Mazindol has 

previously been reported to inhibit [3H]GBR 12935 binding to the DA uptake site with 

an affinity of 80-93 nM (Andersen, 1987; Niznik et al., 1990). In PC12 cell 
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homogenates, [3HJGBR 12935 was not binding to the DA uptake site, as an ICso of 10 

µM was obtained for mazindol (fig. 17). The second site to which [3H]GBR 12935 

binds, identified as cytochrome P450IID1, displays very low affinity for mazindol and 

is not recognized by DA (Niznik et al., 1990). This site has high affinity for GBR 

12909, and is termed the piperazine acceptor site since both [3H]GBR 12935 and GBR 

12909 are piperazine compounds (Andersen, 1987; Niznik et al., 1990). [3H]GBR 

12935 binds readily to crude PC12 cell homogenates, but only 35% of the total signal 

is inhibited by 10 µM GBR 12909 (fig. 17). It has previously been demonstrated that 

GBR 12909 inhibits [3H]GBR 12935 binding with low nanomolar affinity (Andersen, 

1987; Niznik et al., 1990). This would indicate that [3H]GBR 12935 binding to the 

PC12 cell homogenates was not to the piperazine acceptor site. Although [3H]GBR 

12935 does bind to PC12 cell homogenates, the identity of this site is not clear since 

the pharmacology of this site is distinct from that previously described for neuronal 

membranes. 

The catecholamine uptake site(s) of PC12 cells appears to be pharmacologically 

distinct from the separate and specific DA and NE uptake sites found on neurons in 

the brain. Desipramine and mazindol inhibit [3H]DA uptake into PC12 cells with 

ICso's of 30 nM and 3 nM, respectively (Snyder et al., 1986). In the study (Table 5), 

the ICsos of 4.8 nM (desipramine) and 0.76 nM (mazindol) were obtained in striatal 

preparations. Desipramine inhibited both [3H]DA and [3H]NE uptake with ICsos of 

4.8 and 1.25 nM, respectively (Table 5). Desipramine (ICso = 10 µM) is considered a 

weak inhibitor of [3H]DA uptake (Dubocovich and Zahniser, 1985), whereas mazindol 

and nomifensine are potent inhibitors with ICsos of approximately 30 and 100 nM, 

respectively (Andersen, 1989; Dubocovich and Zahniser, 1985). Nomifensine has 

previously been shown to be a better inhibitor of the NE site (ICso = 11.2 nM) than the 

DA uptake site (ICso = 134 nM) in rat brain synaptosomes (Andersen, 1989). 
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However. like desipramine, nomifensine yielded approximately equivalent IC5os for 

the inhibition of both [3H]DA and the [3HJNE uptake into PC12 cells (Table 5). 

These data suggest that the site through which [3H]DA was accumulated by the PC12 

cells was pharmacologically distinct from that in the brain. 

The uptake of NE by PC12 cells (Greene and Rein, 1977), and the accumulation 

of DA and NE by PC12 cell catecholamine granules (Greene and Rein, 1977; Rebois 

et al., 1980) have been well characterized. Although it has been observed that 

[3H]DA is taken up by PC12 cells (Denton and Howard, 1984; Rebois et al., 1980; 

Snyder et al., 1986). the pharmacology of this process has not been reported beyond 

the demonstration that it is inhibited by MPTP (Denton and Howard, 1984). Both DA 

and NE uptake systems mediate the accumulation of [3H]MPP+ by PC12 cells, and 

the "norepinephrine system appears to predominate" (Snyder et al., 1986). In 

addition, accumulation of NE by PC12 cells appears to be mediated by the same 

transport system that accumulates DA (Denton and Howard, 1984). The data 

presented in this dissertation suggests that NE recognizes more than one uptake site on 

PC12 cells, whereas DA appears to recognize only one site. This is evident from the 

[3H]NE curve (fig. 21) which appears biphasic, and yields a Hill coefficient of less 

than unity. In contrast, the curve for DA vs. [3H]DA (fig. 20) appears monophasic 

and has an nH value of approximately 1. The inhibition curves for desipramine, 

mazindol and nomifensine all appear similar for their individual effects on both 

[3H]DA and [3H]NE uptake (each gives nearly identical curves for both substrates). 

Together these data suggest that both [3H]DA and [3HJNE are accumulated by the 

same site, and that site is more noradrenergic in nature. Also, NE and the inhibitors 

( desipramine, mazindol and nomifensine) appear to recognize a second site that is not 

recognized by DA. 
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In summary, two conclusions can be drawn from the uptake studies. First, the 

ability of compounds to inhibit the binding or accumulation of other compounds at the 

uptake site does not indicate that these compounds are substrates. It also does not 

even distinguish between competitive and non-competitive inhibition of the 

accumulated or bound compound. In the case of the N-methylated BC+s/DHBC+s 

examined, it is entirely possible that these compounds do not compete for the uptake 

site but elicit their effects by inhibiting the driving process for uptake, the (Na++ K+)

ATPase. Second, it appears that PC12 cells do not have a DA uptake site as 

characterized pharmacologically in brain. It has been suggested that there may be a 

general catecholamine uptake system to accumulate both DA and NE in PC12 cells 

(Denton and Howard, 1984), and a similar observation has been made in BAMC cells 

(Banerjee et al., 1987). The present data ( fig. 17) supports the hypothesis of a 

common uptake site that more closely resembles the CNS NE uptake system. 

A Putative Model 

The studies in this dissertation have shown that the N-methylated DHBC+, 2-

MeHli+, was the most toxic compound tested in PC12 cell cultures. Throughout these 

studies, MPP+ served as a model against which the toxic effects of the compounds 

were compared. Thus, the following model for 2-MeHli+-induced PC12 cell death is 

described in comparison to the effects of MPP+ (see also fig. 28). 

Similar to MPP+ (Denton and Howard, 1987; Snyder et al., 1986), 2-MeHii+ 

may enter PC12 cells via the catecholamine uptake carrier. 2-MeHli+ can also 

spontaneously deprotonate to form the neutral anhydro base (Albores et al., 1990), so 

it may also enter the cell by passive diffusion. Once inside BAMC cells, MPP+ is 

sequestered by the cells catecholamine vesicles (Reinhard et al., 1990b). Likewise, a 
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portion of the 2-MeHli+ may be accumulated and sequestered by PC12 cell 

catecholaminergic vesicles thereby reducing the cytosolic concentration. 

From the cytosol, the strongly cationic MPP+ enters the mitochondrial matrix by 

an active, energy-dependent process and inhibits NADH-linked respiration (Ramsay et 

al., 1989; Ramsay et al., 1989; Sayre et al., 1989; Singh et al., 1991). However, 2-

MeHii+ forms the neutral anhydronium base and passively enters the mitochondria 

(Albores et al., 1990). Inside the mitochondria, 2-MeHii+ inhibits both complex I 

(NADH-linked) and complex II (succinate-linked) respiration (Albores et al., 1990; 

Fields et al., 1992; Sayre et al., 1991). This results in a marked reduction of the cells 

capacity to generate ATP, but does not necessarily kill the PC12 cell. PC12 cells store 

a portion of their total ATP in vesicles, and can generate sufficient ATP via glycolysis 

to maintain viability in the presence of a sufficient concentration of extracellular 

glucose. However, if the glucose concentration is depleted, the cells eventually 

consume their ATP stores and succumb to the inhibition of oxidative phosphorylation 

by 2-Meffii+ (or MPP+). 
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Fig. 28. PROPOSED MECHANISM FOR 2-MeHli+-INDUCED PC12 CELL 
DEA TH. In the mitochondria, the Roman numerals (I, II, III and IV) indicate the 
enzyme complexes of the electron transport chain. Only one of many possible 
resonance structures of the anyhdro base of 2-MeHli+ is shown. CA= catecholamine. 
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6-Carbolines and Parkinson's Disease 

The data in this dissertation demonstrate that select N-methylated BCIDHBC 

species approach or surpass the parkinsonian-derivative, MPP+, as cytotoxic agents in 

PC12 cell cultures. In particular, the DHBC, 2-MeHli+, was more potent than MPP+ 

in both a low energy cell culture medium and in media containing higher 

concentrations of glycolytic substrates. This compound is a relatively potent inhibitor 

of mitochondrial respiration (Albores et al., 1990), and also produces significant 

depletion of striatal dopamine and gross lesions when injected directly into the 

substantia nigra of rats (Neafsey et al., unpublished results). Furthermore, this 

compound is worthy of consideration as a putative parkinsonian agent, because the 

potential exists for its endogenous biosynthesis. 7-Hydroxy-1-methyl-1,2,3,4-

tetrahydro-BC may serve as a precursor as it has previously been shown to be a normal 

constituent in human and cat urine (Beck et al., 1986). Enzymatic 7-O-methylation 

and 3,4-dehydrogenation could occur in either the CNS or periphery, resulting in the 

formation of harmaline, which would be subsequently N-methylated to form the 

neurotoxic, cationic species (2-MeHii+) in the CNS (Collins et al., 1992). 

In addition to 2-MeHli+, the potency of the di-2,9-[N,N]-methylated species 

tested is also exciting in light of reports by Matsubara et al. (1992a & c) that such 

compounds may be formed enzymatically in mammalian brain. Recently, this same 

group (Matsubara et al., 1992b) has identified the presence of several 2- and 2,9-

dimethylated BC+s in human brain, including 2,9-Me2Nh+ which was demonstrated in 

this dissertation to be similar in potency to MPP+ in PC12 cell cultures. In PD 

patients, such compounds may either be produced at higher levels or metabolized less 

efficiently than normal. 

A number of deficiencies in hepatic detoxification pathways have been 

described in PD patients (Barbeau et al., 1985; Green et al., 1991; Steventon et al., 
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1989b; Waring et al., 1989). PD patients have also been shown to have decreased 

activity of mitochondrial NADH CoQl reductase (complex I) (Lestienne et al., 1990; 

Schapira et al., 1990). Collins et al. (1992) have suggested that the hepatic enzyme 

deficiencies would diminish the peripheral removal of BCIDHBC protoxins 

accumulated in the body from either endogenous or environmental sources, thus 

leading to accumulation and excess formation of the active N-methylated species in 

the brain and further inhibition of mitochondrial respiration. This lends further 

support to the hypothesis that BC or DHBC derivatives may be toxic agents in the 

pathogenesis of idiopathic Parkinson's disease. 
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APP.E~'DIX 

TABLE6 

COMPONENTS OF TISSUE CULTURE MEDIA 

Component 

Inorganic Salts: 

CaC}i (anhyd.) ....................... . 

Fe(NO3)3.9H2O ..................... . 

KCI ........................................ . 

MgSO4 (anhyd.) .................... . 

NaCl ....................................... . 

NaHCO3 ................................. . 

NaH2PO4.H2O ...................... . 

Other Components: 

Citrate .................................... . 

Fructose ................................. . 

Galactose ............................... . 

D-Glucose t .......................... . 

a,B-Glycerophosphate ........... . 

Mannose ................................ . 

DMEM 
mg/1 mM 

200 

0.10 

400 

97.67 

6400 

3700 

125 

1000 

110 

1.8 

0.0003 

5.4 

0.8 

109.4 

44.05 

0.9 

5.55 

N-5 * 
mg/1 mM 

200 

400 

97.67 

6400 

2200 

125 

20 

100 

200 

40 

100 

50 

1.8 

5.4 

0.8 

109.4 

26.19 

0.9 

0.1 

0.555 

1.11 

0.222 

0.6 

0.3 



Phenol Red ............................. 15 0.04 15 0.04 

Sodium Pyruvate .................... 110 1.0 

Succinate ................................ 10 0.085 

Amino Acids: 

L-Alanine ............................... 150 1.68 

L-Cystine.2HC1 ······················ 62.57 0.2 62.57 0.2 

L-Glutamine ........................... 584 4.0 

Glycine ................................... 30 0.4 

L-Histidine HCLH2O ............. 42 0.2 42 0.2 

L-Isoleucine ............................ 105 0.8 105 0.8 

L-Leucine ............................... 105 0.8 105 0.8 

L-Lysine HCl .......................... 146 0.8 146 0.8 

L-Methionine .......................... 30 0.2 30 0.2 

L-Phenylalanine ...................... 66 0.4 2.0 0.01 

L-Proline ................................. 40 0.35 

L-Serine .................................. 42 0.4 42 0.4 

L-Threonine ............................ 95 0.8 95 0.8 

L-Tryptophan .......................... 16 0.08 2.0 0.001 

L-Tyrosine (disodium salt) ..... 103.79 0.45 103.79 0.45 

L-Valine .................................. 94 0.8 94 0.8 

Vitamins: 

D-Ca pantothenate .................. 4.0 0.02 4.0 0.02 

Carnitine ································· 1.0 0.006 

Choline Chloride .................... 4.0 0.03 4.0 0.03 

Cyanocobalamin (B12) ........... 1.0 0.0007 

Folic acid ............................... 4.0 0.009 4.0 0.009 
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i-Inositol ................................ . 

Nicotinamide ......................... . 

PABA .................................... . 

Pyridoxal HCI ....................... . 

Riboflavin .............................. . 

Thiamine HCI ........................ . 

* (Kaufman and Barrett, 1983) 

7.2 

4.0 

4.0 

0.4 

4.0 

0.04 

0.03 

0.02 

0.001 

0.01 

7.2 0.04 

4.0 0.03 

0.5 0.004 

4.0 0.02 

0.4 0.001 

4.0 0.01 

t The indicated concentration of glucose is based only upon that in 
unsupplemented medium. The addition of 15% serum contributes an additional 0.4 -
0.5 mM glucose to the final concentration (Basma et al., 1992). 
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TABLE7 

CONCENTRATIONS OF COMPONENTS IN UNMODIFIED AND MODIFIED 
KREBS-RINGER PHOSPHATE BUFFERS 

Buffer Components Concentration ( mM) 

'Normal' Krebs-Ringer 'Zero Sodium' 
Phosphate Buffer 

Sodium Chloride ..................... . 

Sodium Phosphate, 
Monobasic .............................. .. 

Sodium Phosphate, 
Di basic ................................... .. 

Potassium Phosphate, 
Monobasic .............................. .. 

Potassium Phosphate, 
Di basic ................................... .. 

Potassium Chloride ................ .. 

Calcium Chloride .................... . 

Magnesium Sulfate ................. . 

Disodium EDTA .................... .. 

D-Glucose ............................... . 

L-Ascorbic acid ..................... .. 

Pargyline HCl .......................... .. 
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16 

16 

16 

4.7 

1.8 

1.2 

1.2 

5.6 

1.7 

0.08 

16 

16 

4.7 

1.8 

1.2 

1.2 

5.6 

1.7 

0.08 



TABLES 

SUMMARY OF THE 2 DAY TOXICITY DATA FOR MPP+, 2-MeHli+ AND 
2,9-Me2Nh+ IN N-5 AND DMEM CULTURE MEDIUM 

Compound [µM] LDH Released Protein/Well [3H]Dopamine 
Uptake 

(% C±SEM) (% C±SEM) (% C± SEM) 

N-5MEDIUM 

MPp+ 50 137.40 ± 28.56 92.47 ± 2.17 63.42 ± 11.13 
100 206.10 ± 53.59 86.98 ± 3.08 51.89 ± 4.72 t 
250 382.20 ± 19.74 * 53.33 ± 3.74 * 20.86± 4.63 t 
500 442.20 ± 29.26 * 40.71 ± 2.55 * 3.05± 0.26 t 

2-MeHli+ 50 114.88 ± 1.78 97.81 ± 8.82 119.60± 32.69 
100 227.67 ± 34.81 70.95 ± 3.65 * 154.10 ± 36.48 
250 496.29 ± 31.40 * 34.30 ± 2.66 * 12.72 ± 1.71 t 
500 417.37 ± 38.32 * 32.80± 4.93 * 12.80 ± 11.30 t 

2,9-MeiNh+ 50 96.05 ± 6.23 92.73 ± 4.74 185.30 ± 94.62 
100 103.56 ± 5.68 94.21 ± 4.25 289.00 ± 71.45 * 
250 266.06 ± 18.97 62.20± 2.64 * 490.80 ± 134.60 * 
500 405.89 ± 57.65 * 41.68 ± 3.30 * 116.50 ± 26.79 

DMEMMEDIUM 

MPp+ 50 104.50 ± 3.84 103.48 ± 11.83 93.12 ± 11.46 
100 88.37 ± 10.15 90.44 ± 7.10 86.37 ± 13.67 
250 154.29 ± 20.19 81.01 ± 17.37 48.26± 15.66 t 
500 198.60 ± 40.87 38.92 ± 12.83 * 26.96± 10.06 * 

2-MeHii+ 50 102.35 ± 12.16 49.93 ± 10.17 * 146.28 ± 42.11 
100 173. 75 ± 22.32 33.41 ± 7.85 * 79.15 ± 33.82 
250 325.91 ± 33.45 t 25.88 ± 9.76 * 5.04± 1.33 t 
500 283.19 ± 69.08 t 33.06 ± 7.16 * 19.91 ± 11.32 t 

2,9-MeiNh+ 50 102.90 ± 10.76 81.53 ± 8.78 124.65 ± 4.35 
100 93.61 ± 9.20 73.90 ± 9.42 165.18 ± 53.89 
250 122.40 ± 26.13 53.16 ± 13.34 * 119.40 ± 39.84 
500 162.58 ± 38.16 43.31 ± 13.28 * 70.55 ± 20.28 

Data presented here were compiled directly from figures 9 - 14. All results are 
expressed as percent of control(% C) ± SEM. The symbols,* and t, indicate that the 
points are significant vs. the corresponding control values (p < 0.05) as determined by 
the Scheffe F and Fisher PLSD post hoc tests, respectively. 
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