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CHAPTER I 

STATEMENT OF PROBLEMS 

I.1 Use of 33s NMR For the Determination of pKa's of Arenesulfonic Acids 

Substituent effects on the 33g NMR spectra of an extended series of 

arenesulfonates were studied. Arenesulfonic acids are almost completely ionized in 

aqueous solution below 1 M concentration at 20° C. The 33s NMR chemical shift 

must be related to the electron density on sulfur. The application of 33s NMR to the 

determination of pKa's of arenesulfonic acids, which largely depend on electron 

density at the sulfonate group, was investigated. 

1.2 Concentration, Counterion, And Solvent Dependence of 33s Quadrupolar Relaxation 

In Benzenesulfonates 

The purpose of this investigation was to study the ion-ion and ion-solvent 

contributions to 33s quadrupolar relaxation rates in benzenesulfonates. Specific 

counterion effects were examined by studying the 33s quadrupolar relaxation rates of 

lithium, sodium, potassium, and magnesium benzenesulfonates and benzenesulfonic acid 

dissolved in water as a function of concentration at 20° C. The 33s NMR relaxation 

rates were extrapolated to zero solute concentration in order to determine the extent 

to which ion-ion and ion-solvent interactions contribute to the quadrupolar relaxation 

of 33s. The 335 relaxation rates of lithium, sodium, and potassium benzenesulfonates 
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dissolved in the solvents formamide, N-methylformamide, and a binary mixture of 

formamide plus 18 mole% water were also studied to determine if the specific ion-ion 

contribution to 33s relaxation follows the same trend as in the aqueous systems. 

These data were extrapolated to zero concentration in order to compare the ion­

solvent contribution to 33s quadrupol~r relaxation rates in the solvents studied. 



CHAPTER II 

REVIEW OF THE RELATED LITERATURE 

JI.1 335 NMR Spectroscopy of Sulf onic Acids And Sulfonate Salts 

The only naturally occurring isotope of sulfur with a non-zero nuclear spin 

quantum number is 33s (I = 3/2). The field of 33s NMR has grown rapidly, and a 

review of the subject has appeared. I The NMR properties of 33s are listed in Table 

I, along with those of the other more frequently studied nuclei which were used in 

this investigation. 2a 

Due to several of the properties of 33s, it is an intrinsically insensitive 

nucleus for NMR investigation. For instance, its low natural abundance and low 

magnetogyric ratio give 33s an NMR receptivity of 9.78 x io-2 relative to 13c.2 

Additionally, the moderate nuclear electric quadrupole moment of 33s gives rise to 

NMR signals which, in many cases, may be very broad (i. e. hundreds to thousands of 

hertz).2b 

3 
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Table 1. NMR Properties of Nuclei Used In This Investigation.a 

Property Nucleus 

33s 23Na 7u 13c 

I 3/2 3/2 3/2 1/2 

N.A. 0.76 100 92.58 1.1 

(%) 

"( 2.0557 7.0704 10.3976 6.7283 

(107 rad s- 1 T- 1) 

Q -6.4 IO -3.7 ------
(lo-30 m2) 

8 23.01 79.29 116.60 75.44 

(MHz@ 7.05 T) 

RC 9.78xl0-2 5.24xl02 l.54xl03 1.00 

WF 5.5 13 1.8 ------

oo-59 m4) 

a values taken from reference 2a. 
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The linewidth at half-height, b.vt, of an NMR signal with a Lorentzian line 

shape is related to the transverse, or spin-spin, relaxation time, T2, by the 

expression:3 

[ l] 

In the limit of extreme motional narrowing, when isotropic molecular tumbling is rapid 

on the NMR time scale (i. e. when wr c << l ), the relaxation rate for a covalently 

bound quadrupolar nucleus is given by the expression:4 

1 1 3 [2] 

Here, T 1 is the longitudinal, or spin-lattice, relaxation time, I is the spin of the 

relaxing nucleus, e is the charge of the proton, Q is the nuclear electric quadrupole 

moment, and n is the modified Planck constant. The term eqzz is the maximum 

component of the electric field gradient tensor, and the correlation time r c is the 

time constant which describes the motional modulation of the quadrupole interaction 

inducing nuclear relaxation. The term T/ is the asymmetry parameter where: 

T/ = qyy - qxx [3] 

qzz 

The conventional choice of axes is such that 0 ~ T/ ~ l with: 

[ 4] 
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By combining Eqns. [ l] and [2], a nuclear linewidth function may be defined 

by: 

WF = Q2(21+3) 

12(21-1) 
[ 5] 

This expression affords an estimate of the susceptibility of a nucleus to line­

broadening due to rapid quadrupolar relaxation. 2a The linewidth functions for the 

quadrupolar nuclei used in this study are listed in Table I. 

Faure et al. 5 reported the 33g NMR spectra of several sulfonic acids, but little 

else had appeared on the subject until Crumrine and Gillece-Castro6 investigated the 

33g NMR spectra of a series of sulfonic acids and sulfonate salts dissolved in water 

at 6.104 MHz (1.879 T). The 33g resonances of aromatic sulfonates were found upfield 

from those of aliphatic sulfonates. Similar results were observed for the 33g NMR 

spectra of sulfones.7 The l3c NMR of the carboxylic carbon of carboxylic acids and 

carboxylic acid derivatives, 8 and the 14N NMR of aromatic and aliphatic nitro 

compounds9 both follow a similar trend. 

The linewidth at half-height of the 33g resonance for a given sulfonate was 

found to respond, in some cases dramatically, to changes m temperature, 

concentration, and solution pH.6 However, 335 chemical shifts were found to change 

very little with respect to changes in concentration and pH. Linewidths were also 

found to be sensitive to changes in solvent. The 335 NMR linewidth of 

benzenesulfonic acid was 24 Hz in water, 59 Hz in formamide, and 200 Hz in 

methanol. However, no signal was observed in dimethyl sulfoxide (DMSO), 

dimethylformamide (DMF), acetonitrile, ethylene glycol, or formic acid.6 
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Sulfonic acids are known to be almost completely ionized at 1 to 3 M 

. . 10 concentration m water. Therefore, the narrow linewidths observed for sulfonic 

acids and sulfonate salts result from a high degree of symmetry in the electric field 

at the sulfur nucleus of the sulfonate anion. Increased ion-ion interaction at higher 

concentrations, formation of solvated ion aggregates, as well as changes in proton 

transfer rate are expected to broaden the 335 NMR resonance due to a concomitant 

decrease in the symmetry of the electric field at the sulfur nucleus. Indeed, the 335 

linewidth for benzenesulfonic acid changed from 24 Hz at a concentration of 2.7 M in 

water and pH I to 410 ± 30 Hz when dissolved in 12 M hydrochloric acid at a solute 

concentration of 3.3 M.6 

11.2 Use of 335 NMR For the Determination of pKa's of Arenesulfonic Acids 

Previous studies of substituent effects on the acidities of arenesulfonic acids, 

including 1, 2, 8-10, and the first pKa's of 3 and 13 (Figure l, page 18), have been 

conducted by measuring their degree of ionization in solutions of varying Hammett 

acidity (H0 ) using UV or 1 H NMR methods. I I It has been necessary to carry out 

these pKa determinations in concentrated sulfuric acid solution, where significant 

amounts of the free sulfonic acid and its conjugate base are both present. 

Experimental difficulties limited these methods to sulfonic acids showing an isolated B 

band in the UV spectrum, and to the determination of first ionizations of disulfonic 

acids only. Therefore, the pKa's of 4, 5, 15, and 3,5-bis(trifluoro)methyl-

benzenesulfonic acid have previously been calculated from a Hammett plot of pKa vs 

a, using the experimentally determined pKa's of 1, 2, 8, 10, and the first ionization of 

3.12 

Cassidei and Sciacovelli I 3 correlated the 335 chemical sh if ts of a series of 

sodium sulfonates with the I 3c chemical shifts of the carboxylic carbon in related 
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sodium carboxylates. Hinton and Buster14 found a linear relationship between the 33s 

chemical shifts of arenesulfonic acids 1, 8, 11, 15 and Hammett a constants. For the 

cases of meta- and para-ZC6H4Y, the Hammett equation is:l5a 

log k = ap 
ko 

[6] 

Here, ko is the rate constant or equilibrium constant for Z = H, k is the respective 

constant for the group Z, p is a constant for a given reaction under a given set of 

conditions, and a is a constant characteristic of the group Z. 

The a values account for the total electrical effects (i. e. resonance plus field) 

of a group Z attached to a benzene ring. A positive a corresponds to an "electron-

withdrawing" group and a negative a corresponds to an "electron-donating" group. 

The slope p measures the susceptibility of the given reaction (eg. ionization, 

electrophilic substitution, nucleophilic substitution) to electronic effects. Reactions 

with a positive p are promoted by electron-withdrawing groups (eg. ionization of 

acids); reactions with a negative p are promoted by electron-donating groups (eg. 

electrophilic substitution). 

Crumrine et az.16 reported a linear correlation between the 33s NMR chemical 

shifts of sulfonic acids 1, 2, 4, 5, 8, 10, 15 and their pKa's. A Hammett plot of 

5(33s) vs a followed the relationship of Eqn. [7]. The fit was found to be greatly 

improved by using a dual-substituent parameter fit to a1 and <JR (Eqns. [8] and [9]). 17 

s(33s) = -8.75a - 11.89 

5(33sm) = -6.39a1 - 10.08<JR - 11.98 

s(33sp) = -7.37a1 - 11.6aR - 112.43 

(r = 0.986) 

(r = 0.997) 

(r = 0.994) 

[7] 

[8] 

[9] 
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Here, OJ accounts for the field, or inductive, contribution to a and C7R. accounts for 

the resonance contribution. I Sb 

Chemical shifts were calculated from Eqns. [8] and [9] and plotted against the 

experimental values. Excellent agreement was obtained between calculated and 

experimental values (r = 0.997), and ~he slope of the plot obtained (0.978) was within 

experimental error of the theoretical value of 1.00. 

Changes in the 33s chemical shifts of the arenesulfonates were found to be 

related to the pKa's of the arenesulfonic acids. A linear relationship was obtained 

using: 

pKa = 0.07255(33s) - 5.787 (r = 0.996) [IO] 

However, this method was found to be applicable only to arenesulfonic acids. 

11.3 Quadrupolar Relaxation of Ionic Nuclei In Electrolyte Solutions 

11.3.1 Introduction 

Various models have been proposed to explain the origin of the electric field 

gradient which induces quadrupolar relaxation of ions possessing spherical electronic 

symmetry in electrolyte solutions. 18 According to the collision model, in dilute 

solutions of strong electrolytes where ion-ion contributions to the electric field 

gradient may be neglected, the field gradient arises upon each ion-solvent molecule 

collision, with concomitant loss of electronic symmetry for the ion.19 Since a 

contribution to the paramagnetic part of the chemical shift, ap, is also caused by loss 

of electronic symmetry, Deverell reported a relationship between (I /T 1) I /2 and ap_ I 9b 

The theory of Deverell assumes that modulation of the field gradient arising from ion­

solvent molecule collision is solely responsible for nuclear relaxation. However, the 
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correlation time for this "electronic contribution" should be on the order of a 

collision time and such extremely short correlation times would reduce the efficiency 

of this mechanism. 18 Therefore, this contribution to nuclear relaxation is neglected 

in other models for simple electrolyte solutions at normal temperatures and densities. 

In the electrostatic model of Hertz,20 the electric field gradient arises from 

the electric point dipoles of the surrounding solvent molecules and the point charges 

of other ions in solution. Hertz developed expressions for relaxation rates of 

quadrupolar nuclei in electrolyte solutions, at finite concentration as well as at 

infinite dilution, which account for the ion-ion and ion-solvent contributions to the 

electric field gradient at the relaxing nucleus. The electrostatic model accounts 

successfully for a wide variety of experimentally observed relaxation rates of 

quadrupolar nuclei centered in ions of spherical electronic symmetry in both aqueous 

and nonaq ueous electrolyte solutions. 20a,2 I ,22 

In the limit of extreme motional narrowing the quadrupolar relaxation rate RQ 

( = l/TQ,l = l/TQ,2 ) is given by:4 

8 
[•~r J(O) [ 11] =-

Here, J(O) is the spectral density function at zero frequency given in Eqn. [12) with 

m = 0, ±I, or ±2, and the other symbols have their usual meaning. 

00 

J(O) = 2 f < V m(2)(0) [V m(2)(t)]* > dt 
0 

[ 12] 

The V m (2)(t) are defined as the laboratory frame components of the electric field 

gradient tensor at the relaxing nucleus, * denotes the complex conjugate, and < > 

denotes the average value. The field gradient at the nucleus is ref erred to as the 
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local field gradient, and the integrand is the time correlation function of the gradient. 

The electrostatic theory assumes that in a strong electrolyte solution the 

relaxation mechanism arises from purely electrostatic interactions consisting of a 

contribution from solvent dipoles, d, and a contribution from the point charges of the 

surrounding ions, A. 20b,2 la Neglecti!lg cross-correlations, the observed relaxation rate 

is given by:23 

[13] 

Here, FQ is a constant comprised of the nuclear properties of interest; d and A are 

the so-called ion-solvent and ion-ion contributions to the local field gradient, 

respectively. The constant FQ is: 

27 21+3 ~Q(l+100~ 2 
Fo==-

10 12(21-1) n 
[14] 

The term (1+100) is the Sternheimer antishielding factor24 which accounts for the 

amplification of external field gradients due to distortion from spherical symmetry of 

closed shell electrons close to the nucleus produced by a charge, e, external to the 

ion.25,26 

11.3.2 The Ion-Solvent Contribution to Quadrupolar Relaxation of Monoatomic 

Ions In Electrolyte Solution 

In the limit of infinite dilution, the ion-ion contribution to the local field 

gradient, A, becomes negligibly small since it is proportional to the electrolyte 

concentration. Thus, the fluctuating field gradient at the nucleus of a solvated ion in 

the limit of zero concentration is caused by the electric dipoles of the solvent 
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molecules. In order to evaluate the integral in Eqn. [12], models for the solvation 

sphere of the ion must be introduced. Therefore~ a general expression for the 

relaxation rate can be written:22 

[ 15] 

Hertz et a/.2la,22 have discussed three models for the state of salvation of the 

relaxing ion which determines the ion-solvent contribution to the local field gradient. 

The first is the "Fully Random Distribution" (FRD) Model: 

4?r 2 p2 d = d 
1 

= _ µ Csolv r c 
9 ro5 

[16] 

where µ is the dipole moment of the solvent molecule, Csolv is the dipole 

concentration in particles per cm3, r0 is the closest distance of approach between the 

center of the ion and the point dipole, taken as the sum of the ionic and solvent 

molecular radii, and Tc is the reorientational correlation time of the solvent molecules. 

The term P is a polarization factor defined as:20a 

[ 17] 

Here, e is the static dielectric constant of the solvent, and PcR is introduced to 

account for the many- body cross-correlation contributions to the spectral density 

J(0).20a,2la The FRD model assumes uniform distribution of the centers of mass and 

random orientation of the solvent dipoles over the whole of space up to the surface 

of the ion. Therefore, a solvation sphere in the usual sense is absent. 
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The factor 47r/9 is split into two parts for convenience: 

Here, the first term corresponds to radially uniform distribution and the second term 

corresponds to fully random dipole orientation. Therefore, Eqn. [16] may be written 

as: 

47r -2 p2 d 
1 

= _ µ Csolv Tc 
5 r 5 0 

[16a] 

Here, µ2 = 5µ2 / 9 is the fully random mean square of the electric dipole moment. 

The "Non-Oriented Solvation" (NOS) Model gives: 

[18] 

In this model a first solvation sphere is defined with ns molecules at constant 

* distance of approach r0 and the dipoles randomly oriented. The term d (b) allows for 

the effect of solvent dipoles beyond the first solvation sphere. Since there is an 

essentially random distribution of solvent molecules outside the first solvation sphere, 

d*(b) is given by Eqn. [16] if r0 is replaced by b, which is the radius of the second 

solvation sphere. 
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The "Fully Oriented Solvation" (FOS) Model gives: 

µ.2 n r * 
d = d 3 = s c A + d (b) 

r 8 
0 

[19] 

In this model. a well defined first solvation sphere with radial orientation of solvent 

dipoles exists. The factor A = (I - e-6..\) describes a varying degree of quenching of 

the field gradient caused by cubic symmetry of the solvation sphere. A lateral 

Gaussian distribution of solvent dipoles around positions corresponding to cubic 

symmetry is assumed which is characterized by a distribution width parameter ..\. For 

a random lateral distribution ..\-oo and no quenching occurs, whereas for strictly cubic 

symmetry ..\-0 and the field gradient at the central nucleus due to the first 

coordination sphere vanishes. 

II.3.3 The Ion-Ion Contribution to Quadrupolar Relaxation of Monoatomic 

Ions In Electrolyte Solution 

According to the electrostatic theory, point charges arising from all of the 

ions in strong electrolyte solutions may contribute to the local field gradient. 

However, to a first approximation it is assumed that the relaxing nucleus is located in 

an ion of type i, and that the ion-ion contribution, 6, arises from oppositely charged 

ions of type j. Struis et al. reported the following expression for the ion-ion 

contribution developed by Hertz:23 

6= 
4w j(P)2(z je )2c' r c 

27a3 

[20] 

Here, c' = 10-3cN A is the concentration of the j ions in particles per cubic 

centimeter, c is the molar concentration of the electrolyte in F.W./dm3 of solution, 
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and NA is Avogadro's number. The term z je is the charge on ion j, llj is its 

stoichiometric number, a is the distance of closest approach between the relaxing 

nucleus in ion i and the center of ion j, and re is the correlation time describing the 

relative translational diffusion between the ions. The P denotes a polarization factor 

which should not be confused with t?e polarization factor PcR previously introduced 

in Eqn. [16] and defined in Eqn. [17]. This P accounts for the many-body ion-ion 

cross-correlations in the same way that PCR accounts for the solvent-solvent cross­

correlations in Eqn. [16).23 

However, it was found by Hertz et a1.20b that Eqn. [20] largely overestimates 

the ion-ion contribution when compared with experimental results. Therefore, a 

correction to Eqn. [20] was introduced based on the concept that the local field 

gradient contribution of an ion j may have already vanished due to the shielding 

effects of the surrounding ion cloud when the ions have diffused from a distance a to 

(a + a), with a < a. In order to account for this effect, Eqn. [20] was modified to 

the following:20b,23 

t::. = 
4w j(P)2(z je)2c' rcf(a/a) 

27a3 

[21 J 

Here, f(a/a) is a function of the ratio (a/a), and for the range x = (a/a) ~ l, f(x) may 

be approximated by the analytic f unction:20b 

- + f(x) = 1 x 

2 
x2 [ - l -
2 

x2 + 2.335x + o.2s 1J 

x2 + 3.33lx + l.682J 

[22] 
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Now, Tc in Eqn. [21] is the effective correlation time resulting from the translational 

diffusion between the two ions and the rotational diffusion of ion j around the 

. . . 23 
relaxing nucleus m 10n z. 

A recent experimental finding concerns the functional concentration 

dependence for quadrupolar relaxa:ion behavior of ionic nuclei in very dilute 

electrolyte solutions.27 It was reported that at concentrations ~10-2 molal the 

concentration dependence of l/T1 for 23Na+, 7u+, and 87Rb+ in aqueous solution, and 

23Na+ in HMPT, followed a cl/2 dependence. The new results have the consequence 

that, in the extrapolation of l/T 1 to zero concentration for the determination of the 

ion-solvent contribution, a c1/2 dependence might be followed. Therefore, many of 

the previously reported relaxation rates at infinite dilution may be as much as I 0% 

too high. 18 

11.3.4 33s Relaxation of Inorganic Ions In Aqueous Solution 

The relaxation of quadrupolar nuclei in polyatomic ions has been briefly 

reviewed.18 However, only a short presentation of the few studies of 33s relaxation 

in inorganic ions is given here. The effects of cation, concentration, and temperature 

on the 33s spin-lattice relaxation time, Ti. of S042- in aqueous and D20 solutions 

have been studied using the inversion-recovery technique.28,29,30 The model 

developed by Hertz20b for quadrupolar relaxation of ionic nuclei in electrolyte 

solutions at finite ion concentrations predicts that TI should decrease with increasing 

concentration. The probability of increasing ion-ion interactions which produce the 

electric field gradient at the 33s nucleus increases with increasing salt concentration; 

hence, T 1 should be sensitive to concentration changes. The faster 33s relaxation in 

the presence of cs+ ions relative to that in the presence of an equal concentration of 

NH4+ was reported to result from greater ion pairing of cs+ with S042-.29 
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Belton et al. 3 l studied the effects of counterion and pH on the linewidth, 

chemical shift, and relaxation times for 33s in aqueous sulfate ion. Even weak ion 

pairing interactions with the sulfate anion were reported to have significant effects 

upon the 33s chemical shift and linewidth. Interactions with Al3+ and Mg2+ were 

found to produce the largest effects. Since the 33s chemical shift and line width of 

aqueous (NH4)2S04 appear to be the least sensitive to changes in pH and 

concentration, aqueous ammonium sulfate has gained wide acceptance as the 33s 

chemical-shift reference of choice. I 

Hinton and Shungu29 state that the change in the 33s T 1 of aqueous sulfate 

with changing electrolyte concentration is determined primarily in three ways: (I) a 

change in the correlation time describing the modulation of the electric field gradient 

about the 33s nucleus due to the water molecules; (2) ions affecting the relative 

orientation of water molecules around the relaxing ion and therefore the water-water 

correlation; and (3) the production of an electric field gradient due to ion-ion 

interactions. 

Hinton and Buster32 investigated the effects of temperature and concentration 

on the Tl of 33s in solutions of S042- and S2032- in D20. The counterion was Na+ 

in both cases. In a 33s enrichment experiment, it was shown conclusively that the 

single resonance observed for S2032- was from the internal sulfur atom. The 33s 

T 1 's for both species showed temperature and concentration dependence. At a given 

concentration and temperature, the relaxation time was less for S2032- than for 

S042- because of the decreased charge symmetry about the internal sulfur atom in 

S2032-. 



CHAPTER III 

RESULTS AND DISCUSSION 

III.I Use of 335 NMR For the Determination of pKa's of Arenesulfonic Acids 

Figure I. 

1, Z = H 6, Z = p-N(CH3)2 11, Z = p-Cl 

2, Z = m-CH3 7, Z = p-NH2 12, Z = p-COCH3 

3, z = m-So3- 8, Z = p-CH3 13, Z = p-S03-

4, Z = m-CF3 9, Z = p-NH3+ 14, Z = p-NH(CH3)2+ 

5, Z = m-N02 10, Z = p-Br 15, Z = p-N02 

The 33s NMR spectra of arenesulfonates (ZC6H4S03- Cat+) 1-15 were recorded 

using 0.046 M to 0.13 M aqueous solutions, where the sulfonates are almost 

completely ionized.JO Consequently, the 33s chemical shifts were not affected by the 

18 
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counterion.13 Table 2 shows the 33s chemical shifts and linewidths of the 

arenesulfonates (ZC6H4S03- Cat+) at 20° C and 39° C. Errors in the chemical-shift 

values are ca. ±0.3 ppm for narrow lines and ±0.5 ppm for broad lines. The 

temperature effect on the 33s chemical shifts of these compounds is negligible. The 

33s chemical shifts for m-nitrobenzenesulfonic acid (5) and sodium p­

nitrobenzenesulfonate (15) are substantially different from those previously recorded at 

6.104 MHz (1.879 T) and 39° C in ca. 2 M aqueous solution.16 Since the respective 

linewidths for acids 5 and 15 were 91 Hz and 125 Hz there was considerable error in 

the earlier chemical-shift measurements. 

A substantial change in the 335 chemical shift was observed for both potassium 

p-aminobenzenesulfonate (7) and sodium p-dimethylaminobenzenesulfonate (6) upon HCJ 

titration to the pH values in Table 2, thereby furnishing 33g chemical shifts for the 

corresponding zwitterions (9 and 14).33 The 33s chemical shifts of these compounds 

fit the previously observed trend that 335 resonances of benzenesulfonates with 

electron-withdrawing substituents are found upfield from those of benzenesulfonates 

with electron-donating substituents. 16 
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Table 2. 33s Chemical Shifts And Linewidths of Arenesulfonates (ZC6H4S03- Cat+) 

z Cat+ Temp. pH s Llllt 
"C (20" C) (ppm) (Hz) 

H H+ 20 2 -11.3 8.8 
m-CH3 H+ 20 2 -10.9 18.8 
m-S03- 2 Na+ 20 4 -13.9 21.5 
m-CF3 H+ 20 2 -14.2 19.5 
m-N02 H+ 20 2 -15.9 49.0 
p-N(CH3)i Na+ 20 8 -9.6 75.6 
p-NH2 K+ 20 11 -9.8 51.5 
p-CH3 H+ 20 2 -10.6 21.2 
p-NH3+ K+ 20 1 -14.2 18.l 
p-Br H+ 20 2 -12.8 9.0 
p-Cl H+ 20 2 -13.0 9.0 
p-COCH3 Na+ 20 4 -13.6 13.8 
p-S03- 2 K+ 20 8 -13.8 18.8 
p-NH(CH3)2+ Na+ 20 2 -15.3 55.0 
p-N02 Na+ 20 5 -15.7 58.8 

H H+ 39 2 -11.7 6.5 
m-CH3 H+ 39 2 -11.2 8.8 
m-S03- 2 Na+ 39 4 -14.2 16.0 
m-CF3 H+ 39 2 -14.4 18.2 
m-N02 Na+ 39 2 -16.2 42.5 
p-N(CH3)i Na+ 39 8 -9.6 45.0 
p-NH2 K+ 39 11 -10.0 23.8 
p-CH3 H+ 39 2 -11.1 11.5 
p-NH3+ K+ 39 1 -14.4 15.6 
p-Br H+ 39 2 -13.2 7.5 
p-Cl H+ 39 2 -13.3 6.2 
p-COCH3 Na+ 39 4 -13.9 12.5 
p-S03- 2 K+ 39 8 -14.1 14.2 
p-NH(CH3)2+ Na+ 39 2 -15.2 34.5 
p-N02 Na+ 39 5 -15.7 47.5 
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The data yielded Taft dual substituent plots of 8( 33s) vs OJ and O'R following 

the relationships in Eqns. [23]-(26]; the substituent constants used, and calculated 335 

chemical shifts appear in Table 3.34 The correlation coefficients for experiments 

carried out at both temperatures are good ( r = 0.993 meta, r = 0.994 para at 20° C; r 

= 0.994 meta, r = 0.990 para at 39° C ), and all calculated 335 chemical shifts are 

within experimental error of the measured values (Table 3). When experimental versus 

calculated chemical shifts are plotted, all slopes obtained are within experimental 

error of the theoretical value of l .00. 

8( 33s) = -6.380J - 6.69aR - 11.69 meta at 20° C [23] 

5(33s> = -6.570J - 5.320':R - 11.42 para at 20° C [24] 

5(33s) = -6.3Ioi - 6AOO'R - 11.99 meta at 39° C [25] 

8(33s) = -6.IOOJ - 5.470':R - 11.81 para at 39° C [26] 

The pKa's of arenesulfonic acids 1, 2, 8-10 previously determined by UV 

techniques 11 (Table 4) were employed to calculate pKa's of arenesulfonic acids 1-15. 

Linear regression analysis of pKa vs 8(33s) yielded the relationships in Eqns. [27] and 

[28], and results appear in Table 4. 

pKa = 0.1305(33s) - 5.19 r = 0.982 at 20° C [27] 

pKa = O.l398(33s) - 5.03 r = 0.988 at 39° C [28] 
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Table 3. Taft Substituent Constants Used And Calculated 33s Chemical Shifts of 

Arenesulfonates (ZC6H4S03-) In Aqueous Solution At 20° And 39° C. 

z 

H 0.00 

m-CH3 -0.01 

m-S03- 0.23 

m-CF3 0.40 

m-N02 0.67 

H 0.00 

p-N(CH3)2 0.17 

p-NH2 0.17 

p-CH3 -0.01 

p-NH3+ 0.60 

p-Br 0.47 

p-Cl 0.47 

p-COCH3 0.30 

p-So3- 0.23 

p-NH(CH3)2+ 0.70 

p-N02 0.67 

0.00 

-0.13 

0.07 

0.00 

0.00 

0.00 

-0.53 

-0.51 

-0.13 

-0.18 

-0.33 

-0.35 

0.09 

0.07 

-0.14 

0.00 

s(33s) Calcd 

(20° C) 

-11.7 

-10.8 

-13.6 

-14.2 

-16.0 

-11.4 

-9.7 

-9.8 

-10.7 

-14.4 

-12.8 

-12.6 

-13.9 

-13.3 

-15.3 

-15.8 

S( 33s) Calcd 

(39° C) 

-12.0 

-11.1 

-13.9 

-14.5 

-16.2 

-11.8 

-10.0 

-10.1 

-11.0 

-14.5 

-12.9 

-12.8 

-14.l 

-13.6 

-15.3 

-15.9 
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Table 4. pKa's of Arenesulfonic Acids (ZC6H4S03H) Determined By Three Methods. 

Method: 

z 

H 

m-CH3 

m-S03-

m-CF3 

m-N02 

p-N(CH3)2 

p-NH2 

p-CH3 

p-NH3+ 

p-Br 

p-Cl 

p-COCH3 

p-S03-

p-NH(CH3)i+ 

p-N02 

UV Spectroscopya 

-6.65 ± 0.05 

-6.56 ± 0.05 

-5.l > x > -7 

-6.62 ± 0.05 

-7.04 ± 0.05 

-6.86 ± 0.05 

a Values taken from reference 11. 

Hammett Plotb 

Cl 

0.0 -6.66 

-0.06 -6.62 

0.05 -6.69 

0.46 -6.96 

0.71 -7.12 

-0.32 -6.45 

-0.30 -6.47 

-0.14 -6.57 

0.60 -7.05 

0.26 -6.83 

0.24 -6.82 

0.47 -6.96 

0.09 -6.72 

0.81 -7.18 

b Cl values tak;n from reference 34. All pKa values are ±0.05. 

c All pKa values are ±0.04. 

33s NMRc 

pKa 

(20°) (39°) 

-6.66 -6.66 

-6.61 -6.60 

-7.00 -7.01 

-7.04 -7.04 

-7.25 -7.28 

-6.43 -6.37 

-6.47 -6.42 

-6.57 -6.57 

-7.03 -7.03 

-6.86 -6.87 

-6.88 -6.88 

-6.96 -6.97 

-6.99 -6.99 

-7.18 - 7.14 

-7.23 -7.21 
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The pKa for the second ionization of m-benzenedisulfonic acid {3) was 

previously estimated to lie between -5.1 and -7 by UV spectroscopy. I la When the 

pKa's of m-benzenedisulfonic acid (3) and p-benzenedisulfonic acid (13) were 

previously determined by 1 H NMR, only pKa's for the first ionization could be 

obtained because the solvent was sulf~ric acid. 1 le The 33g NMR method produced a 

pKa of -7.00 ± 0.04 for m-benzenedisulfonic acid (Table 4). Thus, 33g NMR provides a 

method of determining the second ionizations of 3 and 13. Further, 33g NMR 

furnishes pKa's for m-nitrobenzenesulfonic acid (5) and p-nitrobenzenesulfonic acid 

(15) which cannot be determined by UV techniques due to unresolved B bands, and 

which were not determined by 1 H NMR in sulfuric acid. I I 

A Hammett plot of pKa vs a using UV determined pKa's of arenesulfonic acids 

1, 2, 8-10 gave p = -0.646 (r = 0.976).35 Linear regression analysis produced the 

calculated pKa's shown in Table 4 for comparison with experimental values. The pKa 

for 14 could not be calculated from the Hammett plot because a for this compound 

was unavailable. Good agreement is demonstrated between the pKa's determined by 

UV and 33g NMR. The pKa's determined by 33g NMR are plotted in Figures 2 and 3, 

as well as those determined by UV and calculated values from the Hammett plot 

shown for comparison. Therefore, we conclude that 33g NMR is an accurate and 

facile method for determining pKa's of arenesulfonic acids, which is free of the 

experimental difficulties of previous methods. 
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III.2 Concentration And Couoterion Dependence of 33s Quadrupolar Relaxation In 

Aqueous Benzenesulfonates 

The 33s NMR data obtained for benzenesulfonates in aqueous solution as a 

function of cation concentration, and counterion at 20° C appear in Tables 5-9. The 

counterions were Li+, Na+, K+, Mg2~, and H+. It was found that 33s chemical shifts 

of the benzenesulfonates in water were, within experimental error, independent of 

concentration and counterion. The 33s chemical shifts were 5 = -11.3 ± 0.2 ppm. 

Values for the quadrupolar relaxation rate, RQ = l/TQ,2• were obtained from 

33s linewidths using Eqn. [l] for benzenesulfonates dissolved in water and are also 

listed in Tables 5-9. These data are plotted as a function of concentration at 20° C 

in Figures 4-9. The straight lines in Figures 4-8 were obtained from linear regression 

analysis of the data ~I molar concentration.36 Extrapolation to zero solute 

concentration yielded estimates of the quadrupolar relaxation rates at infinite dilution, 

RQ0 , which appear in Table 10. The resulting values of RQ0 are all within 6% of the 

mean value (33.9 s- 1 ), which is close to the estimated 5% experimental error in the 

linewidth measurements. When only values for metal counterions are considered, for 

which there are a greater number of data points and particularly at low 

concentrations, the resulting RQ0 's are within experimental error of the mean value 

(33.4 s-1 ). 

The electrostatic model assumes implicitly that Eqn. [21 ], for the ion-ion 

contribution, and hence Eqn. [ 13] for the observed relaxation rate are only applicable 

when exchange of ions from the free state to the bound state is very slow compared 

to the relaxation rate of the nucleus studied.20a Since proton exchange is rapid in 

aqueous benzenesulfonate at all concentrations studied here, the high value of the 33s 

relaxation rate at infinite dilution, RQ0 , obtained for benzenesulfonic acid results from 

the equilibrium between the protonated and ionized acid. Therefore, the 33s 
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relaxation behavior when H+ is the counterion should be considered separately from 

the relaxation behavior observed for the metal counterions. 



Table 5. 33s NMR Data For Lithium Benzenesulfonate In Aqueous Solution. 

Concentration 

(mol I L) 

2.000 

1.800 

1.600 

1.440 

1.280 

1.152 

1.000 

0.8998 

0.8000 

0.6400 

0.5000 

0.4000 

0.3200 

0.2500 

0.2000 

0.1600 

0.1000 

0.0500 

0.0250 

0 

(ppm) 

-11.4 

-11.4 

-11.4 

-11.4 

-11.3 

-11.3 

-11.4 

-11.3 

-11.3 

-11.3 

-11.3 

-11.3 

-11.3 

-11.4 

-11.3 

-11.3 

-11.3 

-11.3 

-11.3 

26.0 81.7 

23.1 72.6 

20.2 63.6 

17.9 56.2 

17.8 55.8 

16.l 50.6 

14.8 46.3 

14.4 45.2 

14.4 45.2 

13.6 42.8 

12.6 39.6 

12.0 37.7 

11.9 37.3 

12.0 37.7 

11.6 36.5 

11.2 35.3 

10.9 34.2 

11.5 36.l 

10.2 32.2 
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Table 6. 33s NMR Data For Sodium Benzenesulfonate In Aqueous Solution. 

Concentration 

(mol / L) 

1.796 

1.436 

1.149 

0.8984 

0. 7187 

0.4492 

0.2246 

0.1123 

0.0562 

0.0281 

5 

(ppm) 

-11.4 

-11.4 

-11.4 

-11.5 

-11.5 

-11.4 

-11.4 

-11.3 

-11.5 

-11.4 

17.5 55.0 

16.9 53.0 

14.0 44.0 

13.8 43.2 

13.l 41.2 

11.9 37.3 

I 1.4 35.8 

10.8 33.8 

10.6 33.4 

10.2 32.2 
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Table 7. 33s NMR Data For Potassium Benzenesulfonate In Aqueous Solution. 

concentration 

(mol / L) (ppm) (Hz) 

2.009 -11.4 15.0 47.1 

I.607 -11.4 13.6 45.6 

1.286 -11.4 13.2 42.4 

1.005 -11.4 12.7 41.2 

0.8037 -11.3 12.4 37.3 

-
0.6430 -11.2 12.2 37.3 

0.4018 -11.4 11.8 38.5 

0.2010 -11.3 11.5 36.l 

0.1005 -11.3 11.3 35.3 

0.0402 -11.4 11.2 36.l 

0.0201 -11.4 11.2 34.2 



Table 8. 335 NMR Data For Benzenesulfonic Acid In Aqueous Solution. 

Concentration 

(mol I L) 

1.780 

0.892 

0.446 

0.223 

0.112 

(ppm) 

-11.2 

-11.3 

-11.4 

-11.3 

-11.2 

21.2 

14.0 

12.5 

12.5 

11.5 

66.6 

44.0 

39.3 

39.3 

36.1 

Table 9. 335 NMR Data For Magnesium Benzenesulfonate In Aqueous Solution. 

Mg2+ Concentration 

(mol / L) 

0.2014 

0.1611 

0.1290 

0.1007 

0.0644 

0.0504 

0.0201 

0.0101 

6 

(ppm) 

-11.3 

-11.3 

-11.3 

-11.3 

-11.3 

-11.3 

-11.3 

-11.4 

13.5 42.4 

13.2 41.6 

12.5 39.3 

12.5 39.3 

11.9 37.3 

11.0 34.6 

10.9 34.2 

10.l 31.8 

32 
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Table 10. Linear Regression Results For 33s Ro vs Counterion Concentration: 

Five Benzenesulfonates In Aqueous Solution At 20°C. 

Counter-Ion Std. Err. of 

Ro Estimate 

u+ 33.4 1.0 

Na+ 32.4 0.5 

K+ 35.1 1.2 

Mg2+ 32.6 1.1 

tt+ 35.9 1.2 

Slope 

13.4 

12.0 

4.9 

53.4 

9.0 

Std. Err. 

of Slope 

0.9 

0.6 

1.2 

6.0 

2.0 

r 

0.97648 

0.99492 

0.84979 

0.96418 

0.95309 



Figure 4. 

33 s RO vs Cone. For PhS03U 
In H20 At 10 C 
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Figure S. 

33 s RO vs Cone. For PhS03Na 
In H20 Al 20 c 
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Figure 6. 

33 s RQ vs Cone. For PhS03K 
In H20 At 20 c 
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Figure 7. 

33 s RO vs Cone. For PhS03H 
In H20 Al 20 c 
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Figure 8. 

33 s RQ vs Cone. For PhS03Mg 
In H20 At 2.0 c 
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Figure 9. 

33 s RO vs Cone. For ( PhS03 ) n M 
In H20 Al 20 c 

90 

+ 
80 -

+ 
,..., 70 -
.... 

0 I .. + ...., 
60 -

0 
0:: + + 
VI 0 
Ii) 
Ii) :so - + 

+ A + ~ <> 
XX + A 

0 !::. 
40 - xx 0 $~ + 

J< € +ilo+ 
+ A A 

'lf.X 
~<> 

30 I I I ' I ' ' ' I I I I I I 

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

Mn+ Cone.. ( mol / l ) 
Cl H+ + LI+ 0 No+ A K+ >< Mg2+ 



Figure 10. 

33 s RQ ( rel ) vs Cone. For 
( Ph503 ) n I.A In H20 At 20 C 
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The data in Figure 9 show that there is a definite specific counterion effect 

on the rate of 335 relaxation in aqueous benzenesulfonates, especially at 

concentrations above 1 M. When H+ is the counterion, 335 relaxation is rapid because 

of the equilibrium between the protonated and ionized benzenesulfonic acid. For the 

metal ions, the order of counterion i~duced relaxation is Mg2+ > u+ > Na+ > K+; in 

the presence of Mg2+, 33s relaxation is especially rapid even at low concentrations. 

A good way to compare the relative effects of counterions on the 33s relaxation rate 

is to consider values of RQ,rel which are obtained by dividing the observed relaxation 

rates by the corresponding relaxation rates at infinite dilution. Hence, RQ,rel = 

RQobsd / RQ0 , and these values are plotted in Figure 10 as a function of 

concentration (:!>.1 M) at 20° C. 

The relative magnitudes of counterion effects can be explained in terms of a 

few of the physical constants of these ions in aqueous solution. A list of the 

relevant physical constants of the counterions used appears in Table 11. The 

effective ionic radii, rfon, and correlation times of water molecules in the first 

hydration sphere, rc(H20), are given for the hydrated ions of coordination number 4 

and 6. 

The counterion contribution to 33s relaxation is given by Eqn. [21 ]. Recently, 

it has been shown by 25Mg2+ and 35c1- relaxation measurements in aqueous MgCI2 

that the polarization factor P is constant over a wide concentration range.23 

Therefore, P is assumed constant here for the aqueous benzenesulfonates. Then, the 

counterion contribution to the 33s relaxation rate is proportional to the following 

counterion properties: 

i. square of the charge 

ii. concentration 

iii. correlation time 



42 

iv. inverse cube of the distance of closest approach between the counterion 

and the relaxing nucleus 

v. shielding effects of the surrounding ion cloud 

Thus, if the correlation time of water molecules in the first hydration sphere of the 

counterion, rc(H20), is assumed ci;mstant and water-water cross-correlations are 

neglected, then the slopes in Table 10 are proportional to the coefficients of 

concentration in Eqn. [21 ]. 

Table 11. Physical Constants of the Metal Counterions Used. 

Counterion (1+100) 

Na+ 

a reference 20a. 

b reference 37. 

c reference 38. 

d reference 20a. 

e reference 23. 

Coordi-

nation No. 

4 

6 

6 

6 

r . c 
ion 

A 

0.73 

l.16 

1.52 

0.86 

ps at 25" C 
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The exact distance of closest approach between the center of the counterion 

and 33s in the benzenesulfonate ion, and the rates of diffusion of the counterions in 

the solutions studied here, are not known. However, differences in the degree of 

counterion effect on the 33s relax~tion rate may be discussed in terms of the 

diffusion rate of the counterion, here compared on the basis of r c(H20), rion• and the 

charge of the counterion. The slopes (Table 10) obtained when Li+ and Na+ are the 

counterions are not significantly different, so that a difference in the influence of 

these two counterions on 33s relaxation at concentrations below 1 M is negligible; 

although, at higher concentrations the observed 33s relaxation rates are distinctly 

higher in the presence of Li+. Higher relaxation rates in the presence of Li+ were 

expected even at moderate concentrations due to the large rc(H20) and small fion for 

this species. Perhaps the smaller than expected slope was a result of more effective 

screening of the counterion contribution to the local field gradient at 33s by the Li+ 

ion cloud (Eqns. [21] and [22]). 

The 33s relaxation rates for potassium benzenesulfonate are the lowest, even 

at high concentrations, and the slope of 33s RQ vs concentration below 1 M is also 

the smallest. Also, K+ has the smallest rc(H20) and largest rion of the monovalent 

metal ions. Thus, K + makes the smallest ion-ion contribution to the local field 

gradient inducing 33s relaxation in aqueous benzenesulfonate. 

The effective ionic radius and rc(H20) of Mg2+ are comparable to those of Li+, 

and the ratio of the 33s relaxation slopes is roughly 4:1, which is the ratio of the 

square of the charges on the respective ions. Given this, it might be concluded that 

strongly hydrated, divalent Mg2+ also produces more effective screening of the 

counterion contribution to the local field gradient at 33s by ion clouci formation. 

Also, the highest level of magnesium benzenesulfonate concentration used in this study 
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was very near the point of saturation in water at 20° C. Therefore, the data 

strongly suggest that faster 33s relaxation in the presence of Mg2+ at low 

concentrations is largely a result of the larger charge to size ratio of this ion, and 

rapid 33s relaxation induced by ion-pairing is not indicated. 

III.2.1 Concentration Dependence of 23Na Quadrupolar Relaxation In 

Dilute Aqueous Sodium Benzenesulfonate 

Due to the low natural abundance of 33s, its relaxation behavior in aqueous 

benzenesulfonate could not be studied below 20 mM concentration. Therefore, the 

quadrupolar relaxation of 23Na+ was investigated in aqueous sodium benzenesulfonate. 

Due to the I 00% natural abundance of 23Na +, the spin-lattice relaxation time, Tl• 

could be measured by the inversion-recovery technique down to millimolar levels. 

Also, the substantial anti-shielding factor, (1+100), (Table 11) and large quadrupole 

moment cause 23Na+ relaxation to be quite sensitive to the ion-ion contribution to 

quadrupolar relaxation. The resulting 23Na+ relaxation data are shown in Table 12 as 

a function of concentration at 20° C. The estimated experimental error in the data is 

5%. 

Since it has been reported that the relaxation behavior of 23Na+ shows a 

square-root-concentration dependence in some systems at low concentrations,27 

extrapolation to zero solute concentration to obtain estimates of the spin-lattice 

relaxation rate at infinite dilution, l/T1°, was done in three ways to test this 

behavior in aqueous sodium benzenesulfonate. First, the relaxation data were 

extrapolated using rates obtained at concentrations below l M and a first order 

dependence. Second, extrapolation was performed using data below 0.2 M and a first 

order dependence. Third, extrapolation was performed using data below 0,2 M and a 

cl/2 dependence. The results obtained by the three data treatments are shown in 
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Table 13 and are labeled Methods 1-3, respectively. The data are also plotted in 

Figures 11-13, and the lines were generated either from l/T1 vs concentration, c, for 

Figures 11 and 12, or from I/TI vs the square root of concentration, c I /2, for Figure 

13. 



Table 12. 23Na Relaxation Data For Sodium Benzenesulfonate In Aqueous 

Solution. 

Concentration 

(mol / L) 

1.796 

1.436 

1.149 

0.898 

0.7187 

0.4492 

0.2246 

0.1123 

0.0562 

0.0281 

0.0140 

0.0070 

0.0035 

0.0018 

0.0009 

T1 

(ms) 

26.9 

31.3 

36.3 

37.5 

40.7 

45.6 

48.0 

50.8 

52.8 

53.7 

53.6 

53.2 

54.3 

54.2 

55.0 

37.2 

31.9 

27.5 

26.7 

24.6 

21.9 

20.8 

19.7 

18.9 

18.6 

18.7 

18.8 

18.4 

18.4 

18.2 

46 



Figure 11. 

23Na 1 /T1 vs Cone. For PhS03Na In H20 
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Figure 12. 

23Na 1 /T1 VS Cone. For PhS03Na In H20 
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Figure 13. 

23Na 1 / T1 vs SQRT Cone. 
For PhS03Ha In H20 Al 20 c 
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Table 13. Linear Regression Results For 23Na l/T1 vs Concentration of 

Sodium Benzenesulfonate In Aqueous Solution At 20°C. 

Method 

2 

3 

l/T10 

(s-1) 

18.47 

18.41 

18.19 

Std. Err. of 

1 /TI Estimate 

0.28 

0.17 

0.19 

Slope 

8.79 

10.98 

3.93 

Std. Err. 

of Slope 

0.27 

1.69 

0.67 

50 

r 

0.99543 

0.93557 

0.92200 

The relaxation rates at infinite dilution, I/TI 0, obtained by the three methods 

all agree well within the limit of the estimated experimental error (i. e. 5%). In light 

of the better fit with Methods I and 2, the c1/2 dependence expected from the 

results of Sacco et al.27 was not detected here. This may be due to the error in T1 

measurements, and the high degree of scatter in the data at low concentrations. 

Similarly, Struis et al.23 could not detect a cl/2 dependence of 25Mg2+ relaxation in 

dilute aqueous MgCl2 solutions down to 0.024 M. It could be argued on the basis of 

the difference in the slopes obtained by Methods I and 2 that there is a substantial 

change in 23Na+ quadrupolar relaxation behavior at low concentration. However, the 

slopes obtained from the two linear regressions are not significantly different, and the 

data are less reliable at very low concentrations. Therefore, the linear extrapolation 

approach obtained with moderately concentrated solutions (i. e. !:.l M) seems valid for 

both 23Na+ and 33s relaxation rates in benzenesulfonate. 
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JJl.2.3 Concentration And Counterion Dependence of 33s Relaxation In 

Concentrated Aqueous Benzenesulfonates 

The limit of solubility of sodium benzenesulfonate in water is approximately 2.4 

M at 25° C. Therefore, aqueous solutions of benzenesulfonates above 1 M discussed 

here will be referred to as concentrated. The 33s relaxation data in Figure 9 for 

benzenesulfonates with monovalent counterions all show definite curvature above 

approximately 1 .2 M. 

Clearly, u+ induces the fastest 33s relaxation in benzenesulfonate at a given 

level in concentrated solution. The order of counterion contribution of monovalent 

metal ions to the rate of 33s relaxation was found to be u+ > Na+ > K+. The 

relative magnitude of this effect below 1 M has already been discussed in terms of 

rc(H20). fion• and screening effects for these counterions in aqueous solution. 

However, it was assumed that rc(H20) for a given counterion was fairly constant at 

concentrations below 1 M so that water-water cross-correlations were neglected. 

The Debye-Stokes-Einstein model predicts that the reorientational correlation 

time 

[23] 

for solute or solvent molecules will increase linearly with the ratio of the shear 

viscosity TJ to temperature T; fr is the microviscosity factor, V is the molecular 

volume, and k is the Boltzmann constant. 39 Therefore, in early investigations ·the 

concentration dependence of quadrupolar relaxation of ions in solution was tentatively 

related to the concentration dependence of the viscosity of electrolyte solutions.40 

However, it has recently been shown that the variations of 25Mg+ and 35c1+ 

relaxation rates in aqueous MgCl2 cannot be accounted for simply on the basis of 

changing viscosity.23 
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Since the 33s relaxation data for lithium benzenesulf onate showed the most 

curvature at high concentrations, the 7Li+ spin-lattice relaxation time, Ti. in this 

system was studied as a function of concentration at 20° C. The results are 

presented in Table 14, and plotted in Figure 14. The straight line in Figure 14 was 

obtained from linear regression using .relaxation data recorded below I M. The results 

of the linear extrapolation are presented in Table 15. 

Table 14. 7Li+ Relaxation Data For Lithium Benzenesulfonate In Aqueous Solution. 

Concentration 

(mol I L) 

1.800 

1.600 

1.440 

1.152 

0.900 

0.640 

0.400 

0.200 

0.100 

0.050 

Tt 

(s) 

6.2 

6.5 

7.3 

9.4 

10.3 

l l.9 

14.6 

14.3 

16.9 

17.0 

16. l 

15.3 

13.7 

10.7 

9.7 

8.4 

6.8 

7.0 

5.9 

5.9 



Figure 14. 

7Li 1 /T1 vs Cone. For PhS03Li In H20 
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Table 15. Linear Regression Results For 7Li+ l/Tt vs Concentration For 

Aqueous Lithium Benzenesulfonate At 20° C. 

l/Tto 

Std. Err. of l/Tt 

Estimate (I0-2) 

Slope 

Std. Err. of 

Slope (10-2) 

5.6 

0.4 

43.5 

0.5 

54 

Hertz20b,22 has shown that the ion-solvent and ion-ion contributions to the 

quadrupolar relaxation rate of 7Li+ and 23Na+ in aqueous solution are given by Eqns. 

[19} and [21 }, respectively. Substantial curvature is observed in the relaxation rate of 

7Li+ with increasing lithium benzenesulfonate concentration above 1 M (Figure 14). 

The same relaxation behavior is observed for 23Na+ relaxation (Figure 11 ), as well as 

for 33s relaxation in the benzenesulfonates (Figure 9). This suggests that the 

correlation time of water molecules in the first hydration sphere of the cation, 

rc(H20), may be changing with increasing concentration; the correlation time, re, of 

the benzenesulfonate ion may also be changing with increasing concentration. 

In order to separate the two possible effects, 13c spin-lattice relaxation times, 

T 1, were measured as a function of lithium benzenesulfonate concentration at 20° C. 
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The data presented in Table 16 and plotted in Figure 15 show that the relaxation 

rates, I/Ti. of protonated carbons on the phenyl ring are constant, within the 

experimental error of 5%, below 1 M. However, above 1 M 1/T1 increases with 

increasing concentration. 

Table 16. Be Relaxation Data For Lithium Benzenesulfonate In Aqueous Solution. 

Concentration 

(mol / L) 

c 2,6 

1.800 3.7 

1.440 4.0 

1.152 5.1 

0.900 4.9 

0.640 5.4 

0.400 5.2 

0.200 5.0 

Ti 

(s) 

c 3,5 

3.1 

4.0 

4.9 

4.6 

5.4 

5.1 

4.9 

C4 

1.5 

2.0 

2.3 

2.7 

2.9 

2.8 

3.0 



Figure 15. 

13C 1 /T1 vs Cone. For PhS03Li In H20 
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The l 3c relaxation rates of protonated carbons on the phenyl ring are related 

to the correlation time through:4 l 

[24] 

Here "IC and "IH are the respective magnetogyric ratios of I 3c and 1 H, N is the 

number of directly bonded hydrogens, rcH is the CH distance, and Teff is the 

effective reorientational correlation time. In order for Eqn. [24] to be applicable, the 

extreme narrowing limit must obtain and scalar coupling must be eliminated by proton 

decoupling. The data in Table 16 clearly show that the phenyl ring is reorienting 

anisotropically. As expected, the correlation time for reorientation parallel to the 

principle symmetry axis, -r; 1 , is shorter than the reorientation time perpendicular to 

this axis, 1i . 

The l 3c data suggest that the rate of rotational diffusion of the 

benzenesulfonate ion decreases with increasing concentration. Also, a marked increase 

in rc(H20) of the cation is indicated from the Li+ relaxation data. The conclusion, 

then, is that the 335 relaxation rate in concentrated aqueous benzenesulfonates (i. e. 

>I M) increases non-linearly with concentration due to an additional sulfonate-cation 

hydration water contribution. This water-water cross-correlation effect appears not 

to make a substantial contribution to quadrupolar relaxation of the nuclei studied in 

aqueous benzenesulfonates at concentrations ~l M. Struis et al. 23 observed the same 

behavior for 35c1- relaxation in aqueous MgCl2, and concluded that at 5.49 molal the 

magnesium hydration water molecule contribution was responsible for ca. 75% of the 

total chloride-water contribution to 35c1- relaxation. 
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111.3 Concentration, Counterion, And Solvent Dependence of 335 Quadrupolar 

Relaxation In Benzenesulf on ates 

The 33s NMR data obtained for benzenesulfonates solution as a function of 

concentration, counterion, and solvent at 20° C appear in Tables 17-19. The 

counterions were Li+, Na+, K+, and. H+. The solvents used were formamide (FA), 

formamide plus 18 mole% water (FA/H20), and N-methylformamide (NMF). It was 

found that the 335 chemical shifts of the benzenesulfonates in a given solvent were, 

within experimental error, independent of concentration and counterion. Aqueous 

ammonium sulfate was the chemical-shift reference. The 33s chemical shifts were 5 = 

-12.2 ± 0.2 ppm in formamide, 5 = -12.I ± 0.4 ppm in formamide plus 18 mole% water, 

and 5 = -12.9 ± 0.7 ppm in N-methylformamide. Uncertainties in the 33s chemical­

shift measurements were a consequence of the wide spectral lines observed. The 

chemical shifts were not corrected for bulk magnetic susceptibility. 

However, a concentration, counterion, and solvent dependence of 33s 

linewidths was observed. Values of 335 relaxation rates, RQ, were obtained from 

linewidth measurements and appear in Tables 17-19. The relaxation rates are also 

plotted as a function of concentration at 20° C in Figures 16-18. The straight lines 

in Figures 16-18 were obtained from linear regression analysis of the data ~l molar 

concentration. Extrapolation to zero solute concentration yielded estimates of the 

quadrupolar relaxation rate at infinite dilution, RQ0 , which appear in Table 20. The 

resulting values of RQ0 in a given solvent all agree within 12%, which is close to the 

estimated 10% experimental error in the linewidth measurements. Once again, when 

only values for metal counterions are considered, the resulting RQ0 •s in a given 

solvent agree within experimental error. 



Table 17. 33s NMR Data For Benzenesulfonates In Formamide Solution. 

Counterion Concentration 

(mol IL} 

H+ 1.816 

H+ 0.908 

H+ 0.454 

H+ 0.227 

H+ 0.114 

u+ 0.922 

u+ 0.461 

Li+ 0.230 

Li+ 0.115 

Na+ 0.811 

Na+ 0.406 

Na+ 0.203 

Na+ 0.101 

K+ 0.997 

K+ 0.499 

K+ 0.249 

K+ 0.125 

0 

(ppm} 

-12.1 

-12.1 

-12.1 

-12.0 

-12.0 

-12.2 

-12.1 

-12.l 

-12.1 

-12.4 

-12.1 

-12.2 

-12.2 

-12.2 

-12.l 

-12.2 

-12.1 

135.0 

70.0 

56.2 

55.8 

51.2 

68.8 

60.2 

43.1 

43.6 

73.2 

55.6 

48.8 

42.0 

83.0 

57.5 

51.2 

44.9 

59 

424 

220 

177 

175 

161 

216 

189 

135 

137 

230 

175 

153 

132 

261 

181 

161 

141 
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Table 18. 33s NMR Data For Benzenesulfonates In Formamide Plus 18 Mole% 

Water Solution. 

Counterion Concentration 

(mol I L) (ppm) 

tt+ 2.020 -12.5 89.7 282 

tt+ 1.010 -12.2 64.5 203 

tt+ 0.505 -12.0 53.5 168 

tt+ 0.252 -12.3 51.5 162 

tt+ 0.126 -12.3 44.0 138 

u+ 0.893 -12.3 49.6 156 

u+ 0.447 -12.2 40.6 128 

u+ 0.223 -12.2 36.2 114 

u+ 0.112 -11.7 33.8 106 

Na+ 0.721 -11.9 49.4 155 

Na+ 0.360 -12.0 43.8 138 

Na+ 0.180 -12.0 39.4 124 

Na+ 0.090 -12.0 35.6 112 

K+ 2.030 -12.3 98.5 309 

K+ 1.015 -12.4 58.5 184 

K+ 0.508 -12.2 45.0 141 

K+ 0.254 -12.2 43.8 138 

K+ 0.127 -12.l 42.5 134 



Table 19. 335 NMR Data For Benzenesulfonates In N-Methylformamide Solution. 

Counterion Concentration 

(mol IL) 

H+ 2.250 

H+ 1.125 

H+ 0.562 

H+ 0.281 

H+ 0.141 

Lj+ 0.897 

Li+ 0.488 

Li+ 0.244 

Li+ 0.122 

Na+ 0.719 

Na+ 0.359 

Na+ 0.180 

Na+ 0.090 

K+ 2.020 

K+ 1.010 

K+ 0.505 

K+ 0.252 

K+ 0.126 

6 

(ppm) 

-13.2 

-12.4 

-13.5 

-13.6 

-13.5 

-13.2 

-13.l 

-13.2 

-13.0 

-12.7 

-12.7 

-13.0 

-13.3 

-13.2 

-12.2 

-13.0 

-13.2 

Llvt 

(Hz) 

223 

132 

121 

119 

110 

139 

112 

101 

104 

131 

114 

109 

104 

430 

I 91 

142 

124 

115 

701 

416 

381 

373 

346 

437 

352 

317 

327 

412 

358 

342 

327 

1351 

600 

446 

390 

361 

61 



Figure 16. 

S33 RQ vs Cone. For Ph S03M 
In formamlde Al 20 c 
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Figure 17. 

S33 RO vs Cone. For PhS03M 
In formomlde / H20 At 20 C 
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Figure 18. 

S33 RO vs Cone. for PhS03M 
In NI.If At 20 c 

600 

580 

560 

540 

520 

500 

480 
....... ... 460 
I .. 

440 ,_, + 

0 420 
er. 

400 

380 

360 

340 

320 

300 

280 

0 0.2 0.4 o.i 0.8 1.2 

Concenlrallon ( mol / L) 
D H+ + LI+ 0 Na+ l!i. K+ 



Table 20. Linear Regression Results For 33s RQ vs Concentration: Four 

Benzenesulfonates In Formamide, Formamide Plus 18 Mole % Water, 

And N-Methylformamide At 20° C. 

u+ 

u+ 

HCONHCH3 

153 

124 

122 

123 

136 

99.3 

110 

122 

345 

291 

315 

321 

Std. Err. of 

RQ Estimate 

8 

15 

4 

8 

8 

0.3 

8 

8 

9 

18 

4 

10 

Slope 

70.4 

106 

134 

135 

66.l 

63.3 

65.6 

57.2 

64.6 

153 

132 

272 

Std. Err. 

of Slope 

13 

25 

7 

12 

12 

0.4 

9 

12 

12 

31 

9 

15 

r 

0.96919 

0.95019 

0.99695 

0.99256 

0.97080 

0.99996 

0.98012 

0.96071 

0.96489 

0.96132 

0.99581 

0.99700 
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Figures 16-18 clearly show that 33s relaxation in benzenesulfonates is faster in 

the amides than in water (Figure 9) across the entire concentration range studied. 

These organic solvents were chosen because the high dipole moments and dielectric 

constants led to favorable solubility of all of the benzenesulfonates used. Some of 

the physical properties of the solvents. used are shown in Table 21. 

Table 21. Some Physical Properties of the Pure Solvents Used (at 25" C).a 

Solvent Mol. Wt. Density Viscosity 

Water 

FA 

NMF 

18.02 

45.04 

59.07 

0.99 

1.13 

0.99 

a Reference 22. b Reference 42. 

(cP) 

0.89 

3.30 

1.65 

Dipole Dielectr. 

Moment Constant 

(De bye) 

l.84 

3.73 

3.83 

78.3 

109.5 

182.4 

Reorient. 

Correlation 

Time 

(ps) 

The lack of 33s chemical-shift dependence on benzenesulfonic acid 

concentration indicates that proton exchange is rapid at all concentrations and in all 

solvents studied here. Therefore, the high value of the 33s relaxation rate at infinite 

dilution, RQ0 , obtained for benzenesulfonic acid in the amide solutions results from 

the equilibrium between the protonated and ionized acid. Thus, the 33s r.elaxation 

behavior when ff+ is the counterion should be considered separately from the 
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relaxation behavior observed for the metal counterions. 

Examination of the linear regression results in Table 20 shows that the slopes 

obtained for the metal counterions were not significantly different, for a given 

solvent, in either formamide or the formamide plus 18 mole% water solutions. 

Therefore, a specific counterion eff t;ct on 33s relaxation rates was not observed in 

these solvents. However, the 33s relaxation rates of benzenesulfonate in formamide 

are slightly higher than in formamide-water (Figures 16 and 17). Holz et a1.42 found 

from 23Na+ spin-lattice relaxation measurements, that Na+ is not preferentially 

solvated in formamide-water mixtures. That is, the local mole fractions of the two 

solvents in the solvation sphere of Na+ do not differ from the macroscopic mole 

fractions in the mixture. It was also found from 2H and 14N nuclear magnetic 

relaxation measurements, that the reorientational correlation times of water and 

formamide molecules in a 20 mole% water mixture are both 4 picoseconds.42 

Therefore, assuming that all of the metal cations in the benzenesulfonate solutions are 

not preferentially solvated in the formamide-water mixture, the slightly lower 33s 

relaxation rates observed are a consequence of the shorter correlation times of the 

solvent molecules when compared to l 00% formamide. 

No significant difference in the slopes was observed for the 33s relaxation 

rates of lithium and sodium benzenesulfonates dissolved in N-methylformamide (Table 

20). However, a much larger ion-ion contribution to the 33s relaxation rate was 

observed for potassium benzenesulfonate dissolved in NMF. Faster 33s relaxation for 

potassium benzenesulfonate dissolved in NMF due to ion pairing was not indicated 

because the RQ0 was within experimental error of the values obtained for lithium and 

sodium benzenesulfonates in spite of the larger slope observed for the potassium salt. 

Also, 33s chemical shifts are within experimental error of those observed in the 

presence of the other counterions. A slope lower than that of the sodium salt was 
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expected on the basis of the fion dependence of the ion-ion contribution Eqn. [21 ]. 

Perhaps, screening of the counterion contribution to the local field gradient at 33s by 

the K+ ion cloud is less effective than that of u+ and Na+ in NMF. 

At zero solute concentration, the ion-ion contribution to the 33g relaxation 

rate may be neglected, and the ion-s<?lvent contribution (Eqns. [16]-[19]) is due to the 

quadrupolar interaction with the local field gradient produced by the solvent dipoles. 

The field gradient is modulated in time by the reorientation of the solvent molecules. 

The observed trend in solvent induced 33g relaxation rates in benzenesulfonates at 

infinite dilution is water < formamide-water < formamide < NMF. 

Hertz22 observed the same trend in relaxation rates for the quadrupolar halides 

in water, formamide, and N-methylformamide, and offered only a qualitative discussion 

of the observed differences in the relaxation behavior of anions in the amides. 

According to the electrostatic interpretation, the observed trend in 33g RQ0 •s (Table 

20) for the benzenesulfonates in water, formamide, and the formamide-water mixture 

is a consequence of the high dipole moment and the long reorientational correlation 

time of the f ormamide molecule (Table 21 ). In the formamide-water mixture, the 

reorientational correlation times of both water and formamide molecules are somewhat 

shorter than the correlation time of 100% formamide but longer than that of water.42 

However, formamide contributes 82% of the solvent electric dipole moment producing 

the local field gradient at 33g in the mixture. Despite the rapid 33g relaxation 

observed in the formamide and formamide-water mixture when compared to that 

observed in water, the electrostatic model suggests that large, polarizable anions such 

as benzenesulfonate in water and the formamide solutions are weakly solvated by a 

fully random distribution of solvent dipoles over the entire space of the solution up 

to the surface of the ion. In this case a primary solvation sphere in the usual sense 

is absent and the ion-solvent contribution to the 33g relaxation rate in 
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benzenesulfonate is best described by the "fully random distribution," FRD, model of 

Eqn. [16a]. The FRD model was used to calculate the relaxation rates at infinite 

dilution of 35c1-, 81 Br-, and 1271- dissolved in water or formamide which agreed 

within an order of magnitude with experimental results.22 

The ratio of the dipole mom~nts of formamide and NMF is not sufficient to 

produce the difference in 335 relaxation behavior observed for benzenesulfonate 

dissolved in these solvents. In fact, the reorientational correlation time of the NMF 

molecule implied an expected 335 RQ0 for benzenesulfonate in NMF similar to the 

formamide solution. The electrostatic model suggests that the change in expected 

relaxation behavior is a consequence of stronger solvation in NMF. Thus, a larger 

local field gradient experienced by relaxing 335 is produced by solvent dipoles which 

are more tightly packed about the benzenesulf onate ion, but randomly oriented in the 

first solvation sphere, and perhaps to a lesser extent by solvent dipoles beyond this 

sphere with a fully random distribution. Therein, the ion-solvent contribution to 33s 

relaxation behavior in benzenesulfonate dissolved in NMF is best described by the 

"Non-Oriented Solvation," NOS, model of Eqn. [17]. 

The trend in extrapolated 33s relaxation rates at infinite dilution follows the 

same trend as values of absolute ion standard entropies, s 0 ion• obtained for the larger 

halides in water, formamide, and NMF.43 Absolute ion standard entropies can be 

regarded as a measure of order around the ion in solution, and the values of s 0 ion 

for the larger halides decrease in the order H20 > HCONH2 > HCONHCH3. These 

thermodynamic data imply that solvent packing about these anions increases in this 

order. Absolute standard entropies for benzenesulfonate are unavailable. However, 

the 335 NMR data indicate that the rapid 33s relaxation for benzenesulfonate in NMF 

over the entire concentration range studied is predominantly due to stronger solvation 

of benzenesulfonate in this solvent compared to salvation in water or formamide. 



CHAPTER IV 

CONCLUSIONS 

IV.1 Use of 33s NMR For the Determination of pK8 's of Arenesulfonic Acids 

An improved linear correlation was found between 33g chemical shifts and the 

pKa's of benzenesulfonic, m-methylbenzenesulfonic, p-methylbenzenesulfonic, p­

ammoniobenzenesulfonic, and p-bromobenzenesulfonic acids, previously determined by 

UV spectroscopy. That linear correlation was used to determine the previously 

unreported pKa's (±0.04) from 33g chemical shifts of the following: p­

aminobenzenesulfonic (-6.47), p-dimethylaminobenzenesulfonic (-6.43 ), p-dimethyl-

ammoniobenzenesulfonic (-7 .18), p-chlorobenzenesulfonic (-6.88), p-acetyl-

benzenesulfonic (-6.96), p-nitrobenzenesulfonic (-7.23 ), m-(trifluoromethyl)-

benzenesulfonic (-7.04), and m-nitrobenzenesulfonic (-7.25) acids. Also, 33g chemical 

shifts provided an improved value for the second pKa of m-benzenedisulfonic acid 

(-7 .00), and the previously unreported second pKa of p-benzenedisulfonic acid (-6.99). 

Earlier, the pKa's of m-nitrobenzenesulfonic and p-nitrobenzenesulfonic acids 

could not be determined by UV techniques because of unresolved B bands in the 

spectra. Also, pKa's for the second ionizations of m-benzenedisulfonic and p­

benzenedisulfonic acids could not be determined by 1 H NMR because it is necessary to 

record spectra using sulfuric acid as the solvent. Therefore, 33g NMR was found to 
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be an accurate and facile method for determining pKa's of arenesulfonic acids, which 

is free from the experimental difficulties of previous methods. 

IV.2 Concentration, Counterion, And Solvent Dependence of 

335 Quadrupolar Relaxation In Benzenesulfonates 

A definite specific counterion effect on the rate of 33s quadrupolar relaxation 

in aqueous benzenesulf onates was observed, especially at concentrations above 1 M. 

When H+ was the counterion, 33s relaxation is rapid because of the equilibrium 

between the protonated and ionized benzenesulfonic acid. For the metal ions, the 

order of counterion induced 33s quadrupolar relaxation in aqueous benzenesulfonates is 

Mg2+ > Li+ > Na+ > K+. In the presence of Mg2+, 33s relaxation is especially rapid 

even at low concentrations. 

The solvent dependent rate of 33s quadrupolar relaxation in all 

benzenesulfonates studied was found to increase in the order H20 < HCONH2-H20 < 

HCONH2 < HCONHCH3 across the entire concentration range studied. A specific 

counterion effect on 33s quadrupolar relaxation rates in the alkali metal 

benzenesulfonates dissolved in formamide or formamide plus 18 mole% water was not 

evident. However, rapid 33s relaxation in the presence of H+ was observed for 

benzenesulfonic acid dissolved in these solvents due to proton exchange. A much 

larger ion-ion contribution to the 33s quadrupolar relaxation rate was observed for 

potassium benzenesulfonate dissolved in N-methylformamide than when H+, Li+, or Na+ 

were the counterion. 

Extrapolation of concentration dependent 33s relaxation rates to the limit of 

infinite dilution furnished estimates of the ion-solvent contribution to 33s quadrupolar 

relaxation. The solvent dependent 33s relaxation rates at infinite dilution were found 

to increase in the order H20 < HCONH2-H20 < HCONH2 < HCONHCH3. The data 
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indicate that salvation of benzenesulfonate in water and formamide is similar, while 

solvation in N-methylformamide is different. 



CHAPTER V 

EXPERIMENTAL SECTION 

V.l. Use of 33s NMR For the Determination of pK3 's of Arenesulfonic Acids 

Sulfonic acids 1, 2, 8, 11 and sodium sulfonates 3, 12, 6 were obtained from 

commercial sources and were used without further purification. Sulfonic acids 4, 5, 

10, were prepared previously and completely identified.16 Dipotassium p-benzene­

disulfonate (13) was prepared and identified by literature methods.44 Sodium p-nitro­

benzenesulfonate (15) was prepared by dissolving p-nitrobenzenesulfonic acidl6 in 

deionized water and adding one equivalent of NaOH. 

Potassium p-aminobenzenesulfonate (7) was prepared by stirring a suspension of 

p-aminobenzenesulfonic acid (Fisher) in deionized water and adding one molar 

equivalent of solid KOH. Complete dissolution of the potassium salt was achieved by 

continued stirring and gentle heating. The resulting solution was frozen and the 

water removed in vacuo. 

Potassium p-ammoniobenzenesulfonate (9) and sodium p-dimethylammonio­

benzenesulfonate (14) were prepared by incremental acidification of aqueous solutions 

of 7 and 6 with a minimum amount of 12 M HCI, with subsequent 33s chemical shift 

determinations. No further changes in the 33s spectra were observed when the pH 

values given in Table 2 were reached. 
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The natural abundance 335 spectra were recorded unlocked at 23.008 MHz 

(7.047 T) on a Varian VXR-300 NMR spectrometer, operating in the Fourier transform 

mode, using a high-resolution, broadband probe and IO mm o. d. sample tubes. The 

concentrations of the aqueous arenesulfonates were 0.046 to 0.13 M. In all cases, 335 

chemical shifts were referenced to 0.12 M aqueous ammonium sulfate contained in a 

coaxial 5 mm o. d. NMR sample tube. Broadband (square wave modulated) proton 

decoupling was employed throughout. 

The 335 spectral width was 10,000 Hz, acquisition times were 0.147 s (2944 

data points) for spectra recorded at 20 ± 1° C, 0.198 s (3968 data points) for those 

recorded at 39 ± 1° C, and FID's were transformed in 32 K data points. In most 

cases, acquisition of transients was continued until a signal to noise ratio of at least 

20 was attained. In order to minimize "baseline roll" resulting from acquisition of 

ultrasonic acoustic ringing in the probe, a receiver dead time (Varian VXR parameter 

ROF2) of 50 µs was employed.45 

For spectra recorded at 39 ± l ° C, the probe temperature was calibrated by 

recording the 1 H NMR of degassed ethylene glycol (Aldrich, 99+% spectrophotometric 

grade) contained in a sealed 10 mm o. d. NMR sample tube.46 The 1 H NMR spectra 

were recorded without field-frequency lock, and the magnetic field was shimmed on 

the FID. All samples for spectra recorded at 39 ± 1° C were thermostated for at 

least 30 minutes prior to insertion into the probe, and the sample temperature was 

allowed to equilibrate with the probe for approximately 30 minutes prior to acquisition 

of transients. 
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V.2 Concentration, Counterion, And Solvent Dependence of 33g Quadrupolar 

Relaxation In Benzenesulfonates 

The 33s NMR measurements for benzenesulfonates were determined as a 

function of concentration at 20 ± 1° C in the pure solvents water, formamide, N­

methylformamide, and a binary mixtu,re of formamide plus 18 mole% water. Benzene­

sulfonic acid and sodium benzenesulfonate were commercially available, and the other 

benzenesulfonates were prepared by neutralization of benzenesulfonic acid with one 

equivalent of the corresponding hydroxide in water. Lithium and potassium 

benzenesulfonates used in the amide solutions were obtained by freezing the respective 

aqueous sulfonate solution and removing the water in vacuo. Lithium hydroxide, 

potassium hydroxide, formamide, and N-methylformamide were of the highest purity 

commercially available, and were used without further purification. 

The natural abundance spectra were recorded unlocked at 20 ± 1° C and 23.008 

MHz (7.047 T) on a Varian VXR-300 spectrometer, operating in the Fourier transform 

mode, using a high-resolution, solution-state, broadband probe and IO mm o. d. sample 

tubes. The typical spectral width was 10,000 Hz, and acquisition times were 147 ms 

(2944 data points) for the solvents water and formamide, and 48 ms (960 data points) 

for the formamide-water mixture and N-methylformamide. Spectra were typically 

transformed in 32 K data points. 

A 50 µs pulse width was used. For all amide solutions, the pulse was followed 

by a 50 µs receiver dead time (Varian VXR parameter ROF2) prior to acquisition of 

the FID. The use of this receiver delay time was sufficient to eliminate spectral 

artifacts47 such as "baseline roll" caused by acoustic ringing in the probe. The 

ACOUSTIC pulse sequence47b was used for the aqueous benzenesulfonates with a 

receiver dead time of IO µs. 

In all cases, chemical shifts were referenced to aqueous ammonium sulfate. 
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The reference was contained in a 5 mm o. d. sample tube coaxial with the IO mm o. 

d. tube for the amide solutions and the aqueous benzenesulfonic acid solutions. The 

chemical shift of aqueous ammonium sulfate at pH 5.5 ± 0.5 was found to be 

independent of concentration from 0.1 to 4 M; therefore the concentration of the 

reference solution was chosen such that it would approximately match the 

concentration of the sample solution. For the aqueous sulfonate salts, the reference 

was 4 M aqueous ammonium sulfate contained in a 10 mm o. d. sample tube, and the 

"sample replacement" technique was used. Spectra of benzenesulfonates dissolved in 

the amides and benzenesulfonic acid in water were recorded in duplicate; reported 33s 

chemical shifts and linewidths are averages of the two measurements. 

The 23Na+ spin-lattice relaxation measurements for aqueous sodium 

benzenesulfonate were determined as a function of concentration at 20 ± I° C by the 

inversion recovery technique (i.e. 180° pulse - tau - 90° pulse - observe - long delay). 

The spectra were recorded unlocked at 79.348 MHz (7.047 T) on a Varian VXR-300 

spectrometer, operating in the Fourier transform mode, using a high-resolution, 

solution-state, broadband probe and 10 mm o. d. sample tubes. The spectral width 

was 10,000 Hz, the acquisition time was 0.499 s (9984 data points), and spectra were 

transformed in 16 K data points. The 90° pulse width was 28 µs, and the 180° pulse 

width was 56 µs. Seven to eight tau values were used, and the long relaxation delay 

was equal to four times T 1 · 

The 7Li+ spin-lattice relaxation measurements for aqueous lithium 

benzenesulfonate were determined as a function of concentration at 20 ± l ° C by the 

inversion recovery technique. 'All samples were deoxygenated by "ultrasonication" and 

purging with argon. The spectra were recorded unlocked at 116.589 MHz (7.047 T) on 

a Varian VXR-300 spectrometer, operating in the Fourier transform mode, using a 

high-resolution, solution-state, broadband probe and 10 mm o. d. sample tubes. The 
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spectral width was 10,000 Hz, the acquisition time was 3.002 s (60,032 data points), 

and spectra were transformed in 64 K data points. The 90° pulse width was 42 µs, 

and the 180° pulse width was 84 µs. Seven to eight tau values were used, and the 

long relaxation delay was equal to four times Tl· 

The I3c spin-lattice relaxation measurements for aqueous lithium 

benzenesulfonate were determined as a function of concentration at 20 ± I ° C by the 

inversion recovery technique. All samples were deoxygenated by "ultrasonication" and 

purging with argon. The natural abundance spectra were recorded unlocked at 75.431 

MHz (7 .047 T) on a Varian VXR-300 spectrometer, operating in the Fourier transform 

mode, using a high-resolution, solution-state, broadband probe and IO mm o. d. sample 

tubes. The spectral width was 5,000 Hz, the acquisition time was 1.638 s (16,384 data 

points), and spectra were transformed in 64 K data points. The 90° pulse width was 

45 µs, and the 180° pulse width was 90 µs. Seven to eight tau values were used, and 

the long relaxation delay was equal to four times T 1 · 
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IR Spectrum of para-Benzenedisulfonic Acid Dipotassium Salt 
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JH NMR Spectrum of para-Benzenedisulfonic Acid Dipotassium Salt 
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33s NHR Spectrum of 1 .78 M Aqueous Benzenesulfonic Acid And Aqueous 

Ammonium Sulfate Reference At 20° C 
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33s NHR Spectrum of 2.01 H Aqueous Potassium Benzenesulfonate And Aqueous 
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33s NMR Spectrum of 0.201 M Aqueous Magnesium Benzenesulfonate And Aqueous 

Ammonium Sulfate Reference At 20° C 
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33s NMR spectrum of 0.010 H Aqueous Magnesium Benzenesulfonate And Aqueous 

Ammonium Sulfate Reference At 20° C 

.. • ·-r-·--.. - .,. - r- -•--•·:- ··-:--,,_ •--·--i-·--· ""T'"' r-:---r·-r·-j' _i.....,..... 1 --r-:-Hl• --r-~-:·--r·--;·~ -1-..-i--,-·-r-y-i·-.. -r .. ·-r-,--.-T-· 1· --:· -. ·•-·t -, ·--: -,-... : -· 1·-·-, 

· ' tdo · · · 5il • ' · -!lo -:oo -t!io -200 ··250 ··3ho -3bo 1 · 

""T"'! .... t"TTTrf'"'TITfTTrTT r1'TTfTTn-y-rrrrrtTT"'TTrrTTfTTl 
;! 0 -2 -4 

•Tmrrrrrrrrrrn-rrr-rrTn,1-n1rriTrrfTTlTJTrrr 
-B -fo -fa -t ~ PP'l 



33s NHR Spectrum of O.OZ5 H Aqueous Lfthfum Benzenesulfonate And Aqueous 

Ammonium Sulfate Reference At zo• C 
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33s NHR Spectrum of 1 .82 H Benzenesulfonic Acid In Formamide And Aqueous 

Ammonium Sulfate Reference At 20° C 
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33s NMR Spectrum of O.B1 M Sodium aenzenesulfonate In Formamtde And Aqueous 

Ammonium Sulfate Reference At 20° C 
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33 s NHR Spectrum of 0.11 K Benzenesulfonic Acid In Formamide And Aqueous 

Ammonium Sulfate Reference At 20° C 
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33s NMR Spectrum of 0.10 M Sodium Benzenesulfonate In Formamlde And Aqueous 
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3 3s NMR Spectrum of 2.02 M Benzenesulfonic Acid In Formamlde·H20 And Aqueous 
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33s NHR Spectrum of 0.13 M Benzenesulfonlc Acid In Formamlde-HzO And 
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33 s NMR Spectrum of 0.090 M Sodium Benzenesulfonate In Formamlde·H20 And 

Aqueous Ammonium Sulfate Reference At 20° C 
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33 s NMR Spectrum of 2.25 M Benzenesulfonic Acid In N-Methylformamide And 

Aqueous Ammonium Sulf~te Reference At 20° C 
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33 5 NHR Spectrum of 0.90 M Lithium Benzenesulfonate In N-Hethylformamlde And 

Aqueous Ammonium Sulfate Reference At 20° C 

,~ ·:·1-r1-ri--:---:-.·.,;-1·--:-111 ·:~~ : :-r·~11......,.,:-rrr.-rrr~:r-rt-rrrr:-rrrr,.TrrT':'""Tlrrr-rm··t-;-r11·rrrr:;· rrn':f1T"1-r7m-r;·r··-: ... r-i1;-:-
100 0 ·!00 -aoo -3 --400 -5bO -600 ··;00 ·BOO Ii~ 

· ;-:-,--·;--r·-,- -1 ·--. ···r- i--r··-T-.--,---;----,-1-T-.-.--r-·:---i·-r·--1--i· .. -,-
. o · -ii -!o -15 -i!o 

n.o•o •• t IM:IH\ 



33 s NHR Spectrum of 0.14 H Benzenesulfonic Acid In N·Hethylformamlde And 

Aqueous Ammonium Sulfate Reference At 20" C 
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33s NMR Spectrum of 0.12 H Lithium Benzenesulfonate In N·Methylformamide And 

i!OO 01) 

Aqueous Ammonium Sulfate Reference At 20" C 
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33 s NMR Spectrum of Aqueous meta-Methylbenzenesutfonlc Acid And 

Aqueous Ammonium Sulfate Reference At 20• C 
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33s NHR spectrum of Aqueous meta-Benzenedisulfonic Acid Dlsodlum Salt And 

Aqueous Ammonium Sulfate Reference At 20° C 
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335 NHR Spectrum of Aqueous para·Bromobenzenesulfonfc Acid And 

100 
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33s NMR Spectrum of Aqueous para-Aminobenzenesulfonic Acid Potassium Salt And 

Aqueous Ammonium Sulfate Reference At 20° C 

Jdo 
• • • • • • • t ••• I . • . • . . • • . ........ ' I.. • ' • • ·: I. ··. "'?. T .• l ! l ·r·:,·1-.~-,, r, ·-r"';' f. ~ ........ :~·-,.- ... :· .··.--; 

200 100 · 100 -200 .. 300 "•100 ·500 GOO ;i; 
·-· ·--·-·,,----·-r· -----.--·-~-- -1~---·- ·' ,--,--~1-r•~-1·r·1- ·r·· r· •'tTT'J - - ~~~- • 

. -~ ! 

-1· ·r· r "'' -1 

lb 

-0 
N 



33 s NHR Spectrum of Aqueous para-Ammonfobenzenesulfonfc Acid Potassium Salt And 

Aqueous Ammonium Sulfate Reference At 20• C 
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The 33s NMR spectra of two synthetic mixtures of sulfonic acids and a 

sulfonate salt dissolved in water appear here. Mixture l contained ammonium sulfate 

as the internal reference (o 0.00 ppm), methanesulfonic acid (o -5.47 ppm), 

berizenesulfonic acid (o -11.41 ppm), and dipotassium p-benzenedisulfonate (o -13.98 

ppm). The sum total concentration o~ all compounds was approximately 280 mmol/L. 

The sample solution was adjusted to pH 8 with one drop of 50% aqueous potassium 

hydroxide. The sample was contained in a 10 mm o. d. NMR sample tube, and 

broadband proton decoupling (square wave modulated) was used. 

Mixture 2 contained methanesulfonic acid (o -5.35 ppm), p-methylbenzene­

sulfonic acid (o -10.64 ppm), and p-bromobenzenesulfonic acid (o -12.84 ppm). The 

solution pH was 2, and each compound was present at the 70 millimolar level. The 

sample was contained in a IO mm o. d. NMR sample tube, and the chemical-shift 

reference was 0.1 M ammonium sulfate (o 0.00 ppm) contained in a coaxial 5 mm o. d. 

NMR sample tube. Broadband proton decoupling (square wave modulated) was used. 

The integration of 33s resonances of arenesulfonic acids in Mixture 2 was 1:1. 

The ratio of integrated intensities of 33s resonances of methanesulfonic acid to 

arenesulfonic acids was 7: 1, although the molar ratio of 33s in all acids was l: I. 

Since the total sulfonic acid concentration was 210 millimolar, these acids were 

completely ionized in water. Therefore, there was no detectable contribution to 33s 

relaxation from the protonated acid due to the low concentration and short lifetime of 

this species. Hence, the nonanalytic integration of alkyl- to arylsulfonic acids was 

not due to multiexponential decay of the 33s magnetization.48 Rather, the disparate 

integration of the 33s resonance of methanesulfonic acid was most likely a result of 

greater nuclear Overhauser enhancement of this signal.49 
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