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PREFACE 

I shall therefore call it the catalytic power of substances and the decomposition by 

means of this power catalysis, just as we use the word analysis to denote the separation of the 

component pans of bodies by means of ordinary chemical forces. Catalytic power actually 

means that substances are able to awake affinities which are asleep at this temperature by 

their mere presence and not by their own affinity. 

J. J. Berzelius (1836) 

Palladium in the Catalysis of Or2anic Re~ctions. 

Many organic reactions are catalyzed by transition metals. Palladium catalyzes a 

bewildering array of them. Representative classes of reactions are double bond isomerizations, 

molecular rearrangements, substitutions and eliminations at allylic carbons, couplings of aryl, 

alkenyl, ally! and alkyl derivatives, carbonylations and decarbonylations, cyclopropanations, 

hydrogen transfer and related reactions, and most importantly oxidations. Palladium catalyzes 

the oxidations of alkenes, alkynes, benzylic carbons, carbonyl compounds and alcohols. 

The most common oxidation states of palladium encountered in these reactions are 0 

and II. Less easily seen are the I and IV oxidation states. It is the + 2 and O oxidation states 

that enjoy center stage in organometallic chemistry, especially that involved in catalysis. Pd(II) 
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is known both for its <1 and 1r bonded compounds with carbon moieties. 

The Orientations of this Work. 

It is not possible to place sufficient stress on the importance of understanding 

mechanism. The delineation of pathways, the determination of equilibria, the determination 

of kinetic expression and product analysis are all part of this picture. The studies of 

stereochemistry and the detection, either direct or indirect, of intermediates, is essential to the 

basic understanding of the often complicated pathways involved in catalyzed reactions. 

Mechanism helps to understand, extrapolate and apply. On the other hand, a fundamental 

goal of catalysis is practical application. 

This thesis is aimed toward both of the mentioned aspects of catalytic work. It is 

divided into two parts, both of which involve palladium catalysis. The first part, which 

involves kinetic studies towards the determination of a much quoted intermediate, is in the 

study of a catalyzed [3,3] sigmatropic rearr~ngement. The aim is towards the understanding 

of mechanism. The second part of this thesis is application oriented. It aims at the 

development of a catalytic oxidation system for practical applications. 

Each part will be introduced, subsequently, in terms of the reactions themselves, the 

specific aims and the approach that will be taken to achieve those ends. Each part is self 

contained. 
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PART ONE 

KINETICS ON A [3,3] ALLYLIC ESTER REARRANGEMENT 



PART ONE: CHAPTER I 

BACKGROUND, NA TORE AND SCOPE OF TIDS WORK 

1.1. Historical Backuound. 

Woodward and Hoffmann1 defined "a sigmatropic change of order [i,j] the migration 

of a a bond flanked by one or more 1r electron systems, to a new position whose termini are 

i - 1 andj - 1 atoms removed from the original bonded loci, in an uncatalyzed intramolecular 

process." The Cope and Claisen rearrangements are sigmatropic rearrangements of order 

[3,3]. 

2 2 1 c~3 
1' ~ 3' 

... 1 ~J3 
1' ~ 3' 

2' 2' 

Figure I.1. [3J] sigmatropic rearrangement witb beavy line depicting tbe 1.1' 

and apparently migrated 3.3' bond 

Historically, it was Ludwig Claisen who first published his observation of the 

rearrangement in the paper, "Uber Umlagerung von Phenol - allyl - athem in C - allyl -

phenole". 2 But, to quote the words of Frederick Ziegler in a recent comprehensive review3 

on the thermal aliphatic Claisen rearrangement, "Ironically, the majority of the text of the 

paper and all the experimental details dealt with the substance of the title while the first 

2 
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paragraph mentioned in almost parenthetical fashion, the rearrangement of the O - allylation 

product of acetoacetic ester to its C - allylated isomer upon distillation in the presence of 

ammonium chloride." The aliphatic reaction is, perhaps, the one that has been more widely 

studied, both synthetically and mechanistically, than its aromatic counterpart. In keeping with 

the discussion of the above paragraph, the aliphatic reaction is simply a [3,3] sigmatropic 

rearrangement. The prototypical reaction is the transformation of ally! vinyl ether into 4-

pentenal. 

Several excellent reviews tracing the history, developement and scope of the 

rearrangement have appeared. 4 The stereochemistry of the reaction has been also the subject 

of intense scrutiny. 5 

Outside of Claisen's laboratory, the investigation of the rearrangement of ethyl {J­

cinnamyloxycrotonoate 6 was perhaps the first investigation of such a transformation using 

ammonium chloride. Claisen himself had demonstrated the ally! "migration" in the aromatic 

species.7 In 1937, Lauer and Kilbum8 described the rearangement of some {J-allyloxycrotonic 

esters. The paper dealt with the rearrangement of ethyl /3-cinnamyloxycrotonate and the 

rearrangement was carried out in the presence of ammonium chloride. The rearrangement was 

accomplished in four hours at 110 ·c, reaffirming, as the authors stated, the observation of 

Claisen. The only product they obtained was the "transposed" ([3,3]) product. On the other 

hand, Hurd and Pollack9 working with vinyl ally! ethers found that these rearranged smoothly 

on heating at temperatures of 175 ·c - 255 ·c, but gave both the transposed and the "non­

transposed" products, [3,3] and [1,3] respectively. The [3,3] product was obtained in a yield 

of 40% - 50%. Some of the notable rearrangements were using vinyl ally! ether, a-methyl 

vinyl allyl ether and a-phenyl vinyl allyl ether. The authors make mention of the fact that the 
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transposition of ally! vinyl ether is like the aromatic Claisen rearrangement. The use of the 

ammonium chloride in the rearrangement step was discontinued. It had been shown to give 

only a small but significant, increase in the rate. 

Cope and Hardy 10 were synthesizing dialkylvinyl alkylcyanoacetic esters and found that 

they did not have any purification problems except in the case of ethyl (1-methylpropenyl)­

allylcyanoacetate, which changed into a stable higher boiling substance on distillation. They 

speculated that the most probable way in which the rearrangement could occur would involve 

the shift of the ally! group from the alpha to the gamma position, accompanied by a shift of 

the double bond from the fJ;y position to the a,fJ position to give the [3,3] product. The 

rearrangement occured in four hours at 150 ·c - 160 ·c or in 20 minutes at 260 ·c. This 

is the first case in which an an ally/ group had been obsaved to undergo a thermally induced 

a,'Y shift in an all carbon system. Cope drew analogy to the Claisen rearrangement of ally! 

enol, 8' 
11 phenol 11

• 
12 and vinyl ethers9

• 
10

• 
13 u~der similar conditions. Just as in the cases cited, 

the isomerization probably depended on the presence of the allyl group and by analogy, Cope 

commented that a cyclic mechanism was probable. He speculated that if indeed this was the 

case, the isomerization was "intramolecular and the allyl group was turned around in the 

shift." 

1.2. Why Catalyzed Sigmatropics? 

The [3,3] rearrangement is synthetically very useful 14 and the understanding of the 

reaction grew with time. The reaction has strong geometrical constraints that help to provide 

highly stereospecific products demonstrated by mechanistic and theoretical studies. 

Unfortunately the high temperature requirement (generally approximately 200 "C) 15 restricts 
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the reaction to the early part of synthetic sequences. Many studies have been carried out to 

ameliorate this unfortunately high temperature demand. 

Efforts to accelerate the reactions have taken two paths. In the first approach, 

accelerations were accomplished by placing a positive charge, 16 a negative charge17 or a 

zwitter ion18 on the system. The second approach involves the use of catalysts. Catalysis can 

be traced back to the initial use of ammonium chloride by Claisen in his 1912 paper. One 

much later study showed that the apparently heterogeneous process caused a small increase 

in the rearrangement rate of a vinyl ether. 19 The catalyst apparently functions as a proton 

donor under the reaction conditions. 

A very comprehensive review of the catalysis of the rearrangements has been given 

by Lutz. 20 The earliest attempts to homogeneously catalyze these reactions involved the use 

of protic (H2SO4)21 or Lewis acids like BF3 ,
22 BC13 ,

23 alumina,24 and numerous other species 

like zinc(II) chloride, tin(II) chloride and sil~er(I) chloride. 25 Although rate accelerations were 

observed, the yields were poor and side products were a serious problem, apparently because 

carbocationic intermediates were formed, as witnessed by the loss of stereocontrol and the 

diversity of products. 

One of the more impressive rate accelerations resulted from the famous Ireland 

method. 26 Ireland and Mueller found that the enolates of allyl esters were rapidly transformed 

to the corresponding acids at room temperatures. Similar rate enhancements were observed 

in the anionic oxy-Cope rearrangement. 27 The two approaches mentioned above are restricted 

to these specific types of reaction systems and the need for a more general type of catalyst 

for any Cope or Claisen reaction was obvious. The use of transition metal catalysts has 

emerged as another approach to successful catalysis. 
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I.2.1. Transition Metal Catalysis. 

Most of the use of transition metal catalysts was oriented towards obtaining (a) new, 

more effective types of metal catalysts, and (b) application of known catalysts to newer 

substrates. 28 A representative, though not complete list, of metal catalysts, includes Ni(0), 

Pd(0), Ag(I), Ni(II), Pd(II), Pt(II), and Fe(0) compounds. 29 The range of rearrangements has 

been large and covers allyl carboxylate (C-O -+ C-O),30 O-allyl thiocarboxylate (C-O -+ C­

S),31 allyl imidate (C-O-+ C-N),32 O-allyl phosphorothionate (C-O-+ C-S),33 allyl thioimidate 

(C-S -+ C-N),34 and allyl vinyl ether (C-O -+ C-C). 35 

In the all carbon Cope rearrangement, the first report was by Jonassen et. al. 36 He 

described the preparation of the crystalline palladium(II) chloride complexes of 1,2-

divinylcyclohexane and 1,5-cyclo-octadiene using stoichiometric amounts of [PdCl2PhCN:J 

with els, trans-1,5-cyclodecadiene and cis-1,2-divinylcyclobutane respectively. 37 (Figure 1.2.) 

A similar product was obtained from the reaction of Ni complexes with cis-1,2-

divinylcyclobutane. Catalysis of the equilibration of allylic esters was first reported by 

Overman and Campbell in 1976. 38 Overman also has the distinction of being the first to report 

the catalytic Cope rearrangement of certain acyclic dienes under mild conditions. 39 Rate 

accelerations of the order 1010 were observed. 

These metal catalyzed reactions can be classified into two groups according to the 

kinds of products formed. 40 The first group of catalysts gives the same product as the thermal 

product or the [3,3] product (type 1) while the second group gives two products, the [3,3] and 

the [l,3] product or the anti-Claisen product (type 2). The type 2 reactions are catalyzed by 

the zero-valent complexes [Pd(PPh3) 4] and [Pt(PPh3) 4]. 
321

' 
41 The complexes of Hg(II), Pd(II) 

and Pt(II) gave only the [3,3] product. Of these the palladium(II) complexes were found to 
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be the most effective. 

1.2.2. Catalysis by PdaD. 

Our focus naturally shifts to the mechanism of the Pd(II) reaction, both from the point 

of view of the synthetic utility and our own previous interest in this reaction. Heimbach and 

Molin42 noticed that there existed a certain permissible substitution pattern which prevented 

complex formation in the reactions of cyclodecadienes with Pd(II). Thus, if they were 

substituted with mono or dimethyl groups at either positions 1-, 2-, 3-, 4-, or 6- complex 

formation did not occur (see Figure 1.2). This is easily understandable in terms of difficulty 

in forming Pd(II) complexes with tertiary carbon atoms. 43 

1.3. Mechanistic Back2found to the Pd(ID Catalyzed Reaction. 

In studying Pd(II) allylic oxidatiol!s using palladium(II) acetate Winstein et.al. 44 

suggested that allylic isomerization probably occurred in the case of allylic esters via an 

+ x-
X (or) Y - OOCR, Cl, OR, NR

2 
(I.1) 

oxypalladation - deoxypalladation route. Henry, who investigated the mechanism of the 

palladium(II) catalyzed isomerizations, was studying the exchanges of vinylic and allylic 

species in acetic acid at the time. 



1t-allyl intermediate 

M =Pd, Pt 

1,5-divinylcyclohexane(DVCH) 

(Na2MC14) 

(DVCH) MC12 complex 

Figure 1.2. Cis, Trans - 1,5-Cyclodecadiene with Pd(II) and Pt(II). 

00 
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In studying palladium catalytic pathways, Henry was investigating both oxidative and 

non-oxidative reactions. Among the non-oxidative reactions were those of the general type 

shown in equation 1.1. 

The reactions are convenient to study because they are non-oxidative in nature. Thus, 

they do not precipitate palladium metal and their rates are in a convenient range for 

measurement at 25 ·c. 

Henry found that vinylic (equation 1.2) and allylic ester (equations 1.3 and 1.4) 

exchange complemented each other. 

CH2 = CHOOCR + HOAc .=t CH2 = CHOAc + HOOCR (1.2) 

Allylic ester exchange does not give any information on the stereochemistry of the 

OAc Pd 

I I 

(1.3) 

addition unless optically active allylic esters are used. However, exchange of unsymmetrical 

esters readily distinguishes between SN2, 1r-allyl and acetoxypalladation routes. The 

acetoxypalladation route would predict that exchange occurs only with isomerization of one 

allylic isomer into another. For instance, crotyl propionate would exchange to give 2-buten-
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2-yl acetate (see equation 1.3.), while 3-buten-2-yl propionate would give crotyl acetate. (see 

equation 1.4.). The SN2 and 1r-allyl routes would predict different product distributions from 

acetoxypalladation. 
45 

OOCC 2H5 

I 
-PdOAc CH3CHrCH20Ac __., 

-Pd-

1 

The kinetics of the exchange were first studied using allyl propionate as the organic 

substrate. 46 The rate expression for the exchange is analogous to that found for vinyl ester 

exchange. 

Rate = 
[Li2Pdz CIJ [ allyl propionate] 
__________ x (kz' + kz''[LiOAc]) 

[LiCI] 
(1.5) 

The first step would be 1r-complex formation, followed by attack of acetate to give 

the acetoxypalladation adduct as shown in equation 1.6. Reversal of this step, but with 

elimination of OOCCzlf5 instead of OAc would complete the exchange. 

A complication noticed at this stage was the inhibition of the rate by the allyl 
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+ LiOAc ----+ [I.6) 

propionate itself. The analogous phenomenon was not seen in the vinyl ester exchange. In 

addition the product allyl acetate was about as effective an inhibitor as allyl propionate itself. 

The cause for this inhibition was shown be the unreactive monomeric 1r-complex. Since the 

kinetics require a dimeric 1r-complex and none was detected it probably indicated that the 

dimeric catalyst was many times more reactive than the monomeric 1r-complex. The formation 

of the unreactive monomeric 1r-complex is as shown below: 

K 
µ 2 LiPdCliallyl ester) (1.7) 

A value of 0.25 M·1 was obtained for K from the kinetics and this was confirmed 

spectrally. The exchange of the unsymmetrical esters, crotyl propionate and 3-buten-2-yl 

propionate was studied next. 47 Two pathways were found to be present indicating two separate 

reactions. One was the expected exchange reaction with the rate expression analogous to that 

for the exchange with allyl propionate as give in equation 1.5. This reaction is isomerization 

with exchange. It proceeded by the addition of the Pd(II) and acetate across the double bond 

(acetoxypalladation) immediately after 1r-complex formation. This is followed by the 

elimination of Pd(II) and propionate. When crotyl acetate is the starting material the scheme 
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OAc Pd 

HOAc I I 
PdOAc + CH~H=CH CHzOAc --

OAc 

I 
CH2=CH CH CH3 + Pd OAc (LB) 

in equation 1.8. is operative. 

OAc Pd 
I I 

CH3CE = CHCH200CR + -PdOAc ~ CH3CE - CHCH200CR 

OAc l 
I 

CHlB - CH = CH2 + -PdOOCR (1.9) 

This mechanism can be tested by isomerizing esters of other acids in acetic acid with 

excess acetate. If the mechanism shown above is operative then exchange should occur when 

and only when there is isomerization. For example when the starting material is another 

crotyl ester, the scheme in equation 1.9. should occur. 

The second reaction, isomerization without exchange has the following rate expression: 

[Li2P~ CIJ [ ally lie ester] k' 
Rate = _________ x (1.10) 

[LiCI] (1 + k"[LiOAc]) 
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During isomerization it was found that an 180 label was found to transfer from the 

ester oxygen to the carbonyl oxygen. Another very important piece of information was the fact 

that when the same reaction was carried out using trifluoroacetate esters in place of propionate 

esters the rate of isomerization without exchange was decreased by a factor of 500. Based on 

those two pieces of evidence and other details from the work, Henry proposed an internal 

oxypalladation48 as explained in equation 1.11. 

CH3 CH3 CH3 

*010 -- *Oto -- *010 
l\cH, -

TcH3 

- ~ 
(1.11) 

L CH, 
_....Pd_.... ---p ....._ 

\ -Pd- I 
I 

The isomerization without exchange, which had no analogy in Pd(II) catalyzed 

reactions, is formally similar to the 1,3-deuterium shift in Pd(II) catalyzed isomerization of 

olefins. The possibility of 1r-allylic intermediates is ruled out by the 180 experiments. If ester 

180 labelled crotyl propionate is isomerized via a 1r-allyl Pd(II) acatete formed by breaking the 

C-0 ester bond, as shown below, then two limiting possibilities exist for the 180 distribution. 

First, if there is no 180 scrambling in the 1r-allyl intermediate, the principle of microscopic 

reversibility requires all the 180 to remain in the ester oxygen. On the other hand, if there is 

complete scrambling, the 180 will be divided equally between the ester and the carbonyl 



oxygen. (see equations 1.12. and 1.13). 

* 
CBlH=CHCHlCHl 0OCC3H5 

I 
-Pd-

1 

0 
r;:::- * II 

_/I\ o-c- CH 
Pd.....---- a s 

/ \ 

l 0 
II 

* O-C-CB I 2 5 

14 

(1.12) 

Neither limiting case nor degree between the extremes is consistent with the results 

obtained. This is where the reaction displays novelty. The first step is the same as for the 

exchange reaction, 1r complex formation. However, rather than attack by external acetate, the 

* 
0 

r;::- * II 
_JI\ o-C-CH 

Pd.....---- 2 5 

/\ 

* 

* 
0 
II 

0-C-C H I 2 s 

(I.13D 

next step would be internal attack by the carbonyl oxygen. This explains the isomerization to 

give the [3,3] product with complete 180 transfer. The slowing down of the reaction by a CF3 

group occurs because the positively charged intermediate is destabilized by this electron 
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withdrawing species. In this particular reaction the LiOAc inhibition arises because of the 

capture of the proposed 1,3 acetoxonium ion by the LiOAc.49 Henry proposed this mechanism 

based on all the experimental evidence . .so 

Palladium metal activates the olefin for nucleophilic attack. It is an interesting 

historical aside that although reports of analogous hydroxythallations 51 and 

hydroxymercurations 52 existed, oxy-metallations with palladium giving rise to unstable bridged 

intermediates were unknown. 

Among the many cited reports of the catalytic capabilities of the various metal 

complexes in [3,3] isomerizations, Hg(II) and Pd(II) species share the unique distinction of 

catalyzing a wide variety of sigma tropic rearrangements and with extreme specificity. The 

reactions occur under mild conditions and they show a remarkable number of similarities in 

forming C-N, C-S, C-C and C-O bonds. There is ample evidence, of course, to preclude 

mechanisms involving allylic cation or 1r-allylic intermediates. There are no competing [1,3] 

shifts in the Pd(II) catalyzed reactions which occur with clean suprafacial stereochemistry. 

Jacobsen and Overman studied (3R, SE)-2,3-dimethyl-3-phenyl-1,5-heptadiene and 

showed that the rearrangement catalyzed by bis(benzonitrile)dichloropalladium(II) occured 

with complete 1,4 transfer of chirality. The transformation occurs with chair topology similar 

to that established for the thermal rearrangement by the classic experiment of Doering and 

Roth, 53 and the related experiment of Hill and Gilman. 54 

Although most workers cited it as the correct intermediate, there was, however no 

evidence for the cyclic carbocationic intermediate that arose from the internal oxypalladation. 

Subsequently Overman used this cyclic intermediate to explain Hg(II) catalyzed allyl 

carbamate, 38b allyl imidate, 22
b and the palladium induced Cope rearrangements. 32

b 
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In the all carbon Cope rearrangement, Overman and Jacobsen55 did chirality transfer 

experiments and unambiguously ruled out mechanisms involving suprafacial formation and 

then fragmentation of a metallocyclopentane (palladabicyclo[2.2. l]heptane) intermediate. 

They argued against mechanisms involving oxidative addition of the allylic fragments. 

In a very definitive and elegant piece of stereochemical work Bosnich and Schenk56 

catalyzed the rearrangement of allylic imidates to allylic amides. In this [3,3] process, they 

were studying the catalysis by various metal species like Pd(0), Pd(II), Rh(I), and Ir(I). They 

found different mechanisms in operation for different species. The most versatile species was 

the Pd(II) species. The stereochemistry of the Pd(II) catalyzed rearrangement of the allylic 

imidate to the allylic amide was clearly established. 

The thermal reaction gave the optically pure (E) allylic amide. The catalytic reaction 

gave 78:22 ratio of E:Z isomers with corresponding optical purity. An explanation of the 

course of the reaction57 is based on the fact that the chosen olefin has two energetically distinct 

diastereotopic faces to which the metal can bind. A chair six membered ring was postulated 

with palladium in an equitorial position and the stereochemistry of the product is based on the 

discrimation of the two diasterotopic binding faces of the olefin (see Figure 1.3). 

Overman and Renaldo did the only substituent effects work in the Pd(II) catalyzed all 

carbon Cope rearrangement. They used the hexadiene system and found no definite correlation 

in their investigation. 58 

1.4. Purpose of this Work. 

Pd(II) has been established to be the most versatile species in the catalysis of the [3 ,3] 

sigmatropic rearrangements. Researchers have found many uses for Pd(II) catalyzed 
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Figure I.3. (A) Optically Active Allyl Imidate from Bosnich and Schenck.; 
(B) and (B') Show the [Pd] Species Binding to the Two Diastereomeric Faces of the Olefin, 
thus Determining the Chirality of the Product. 
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59 Yet other than the initial studies from Henry and the individual stereochemical 

studies of Bosnich (allylic imidate) and Overman (Cope), many mechanistic questions still 

remain unanswered. This work will attempt to answer some of the unanswered questions. 

I.4.1 Electronic Effects in Palladium(IO Catalyzed Reactions. 

As opposed to Tl(III) and Hg(II), many palladium(II) reactions with organic species 

are relatively non-polar and the rates of reaction are governed largely by steric factors. 

Certain palladium(II) reactions suggest intermediates formed by the electrophilic attack on 

olefins and aromatic species. These include aromatic coupling/ii aromatic substitution, 61 olefin 

cis - trans and allylic isomerization48 and olefin coupling. However in the case of the aromatic 

reaction the amount of meta isomers formed were so high that some workers doubted the 

reactions proceeded through an aryl palladium(II) species formed by an aromatic palladation 

reaction. Stock, in a significant study, showed that the aromatic palladation, although non­

selective, adheres to the selectivity relationship. 62 The ability of palladium(II) to undergo these 

reactions with transition states that are charge starved or carbocationic in nature, depends on 

the Pd(II) species. Thus Li2Pd2Cl6 , the species present in acetic acid containing chloride, will 

cause olefin isomerization but not the other reactions. It would be possible, therefore, to 

prepare several known palladium(II) cationic species like [Pd(CH3CN)4](BF4) 2, 

[Pd(PPh3)i(CH3CN)J(BF4)i, [Pd(PPh3MCH3CN)](BF4) 2 , [Pd(1,5-C5H5)(P~)(R'CN)t. These 

cationic species are certainly more electrophilic than neutral or negatively charged species 

used normally in Pd(II) catalysis. These species do in fact catalyze some reactions more 

effectively than the more common acetate and chloride containing catalysts. This is certainly 

due in large measure to their positive charge but also may result from the fact they have labile 
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ligands in the co-ordination sphere of the Pd(II). The transition states of these species must 

contain considerable carbonium ion character. In fact new reactions related to this carbonium 

ion character, like olefin oligomerization63 and polymerization64 have been observed. 

There has been no systematic effort to quantitatively measure the degree of carbonium 

ion in the transition states for the various Pd(II) species whether anionic, neutral or cationic 

for any of the reactions with polar transition states. Mechanistic studies require (a) the 

equilibria in question be clearly delineated; (b) the rate expression be established for the 

reaction in question, and if possible without the interference of side reactions; (c) the possible 

detection of intermediate(s); and (d) the establishment of stereochemistry under the reaction 

conditions. 

The approach is to prepare esters of an allylic alcohol species to serve as probe 

molecule for a [3,3] rearrangement. In keeping with earlier work, allylic esters would be 

chosen because (a) they would be a logical continuation of the earlier work, and (b) a number 

of substituted benzoic acids are freely available to prepare benzoate esters. The use of an 

aromatic ring is useful in the study of electronic effects, and as long as the ortho position is 

avoided, steric interference is avoided. In addition, the two oxygens could provide stabilization 

for a positively charged intermediate. The predominant task would then be kinetic. 

Quantitative evaluation of the degree of carbocationic nature, if such exists in the intermediate, 

would come about in studying the electronic effects of the reaction. 

1.5. The Approach. 

The evaluation of the electronic effects would form the major part of the kinetic 

studies on the allylic isomerization. Preliminary work on allylic alcohols and allylic esters 
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provided insight which indicated that the problem should be approached in the following 

manner: Choose an organic probe molecule that would meet certain specifications. The 

benzoate ester of 2-methyl-3-buten-2-ol was chosen because: (a) it has the facility to be 

modified to study electronic effects and as long the ortho position is avoided, steric factors 

are minimized; (b) the aromatic ring and the two oxygens could help stabilize any kind of 

charge being formed in the transition state; (c) the substrate and any rearrangement product 

would possess unique NMR signals that could be used to unambiguously study kinetics; (d) 

the increased vinyl substitution would slow down the reaction to such an extent that the 

sampling of the reaction mixture would be a very convenient kinetic procedure; (e) the center 

carbon of the allyl moiety is left unsubstituted to favor the palladium - carbon sigma bond by 

oxypalladation; and (f) since the substituent groups are sufficiently separated from the double 

bond to which the Pd(II) will complex, their effect on the 1r - complex formation constants 

should not be too great. 

Solvents and reaction conditions would be chosen appropriately. The plan is to begin 

mechanistic studies in acetic acid. The catalytic species would be Li2PcliCl6, the predominant 

Pd(II) species in glacial acetic acid in the presence of excess chloride and the sequence of 

work would incorporate the following. 

(a) The complications of the isomerization with exchange can almost certainly be avoided if 

the excess acetate were avoided. Of course, the absence of this complication must be 

demonstrated. 

(b) Establish the occurence of the isomerization under convenient reaction conditions. Here 

convenient is defined as a set of conditions under which kinetic studies are possible, and with 

little or no side reactions. In addition it must be such that the region must be conducive to 
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studying electronic effects with the various substituted benzoate species. 

(c) Determine the rate expression under those conditions, and with the help of this rate 

expression, the product analysis and other pertinent information propose the best possible 

mechanism consistent with this information. 

( d) Finally, extend the kinetic studies to the species with the electron donating and electron 

releasing groups and try to determine if the electronic effects could be quantified. Studies of 

such nature in palladium catalyzed reactions are few. 65 The chances of a Hammett type 

relationship are envisaged as the means for such correlation. In other words, if the reaction 

proceeded through a transition state that was positively charged then the quantification of the 

degree of carbonium ion would be the logical pursuit. 



11.1 General Methods. 

11.1.1. Instruments. 

PART ONE: CHAPTER II 

EXPERIMENTAL 

All 1H NMR spectra were recorded on a 60 MHz Varian EM 360 spectrometer or a 

300 MHz Varian VXR 300 spectrometer. 13C and 31P NMR spectra were obtained on a Varian 

VXR 300 spectrometer at 75.46 MHz and 121.44 MHz respectively. The parameters given 

refer to CDC13 solutions unless specified otherwise. Chemical shifts for 1H and 13C are 

relative to (CH3) 4Si. Where complex signals were obtained, the spectral parameters are given 

as chemical shift (multiplicity A ... , J A> J8 ••• Hz, relative intensity). 31P chemical shifts are 

relative to 85% H3PO4 at 0.0 ppm. IR spectra were obtained on a Perkin Elmer 1310 Infrared 

spectrometer. Melting points were recorded on a Laboratory Devices Mel-Temp apparatus 

using a calibrated thermometer. Sample weighings were performed on a Sartorius Model 

2842 analytical balance and are accurate to ± 0.05 mg. Studies at constant temperature were 

carried out in a water bath maintained at 25° ± 0.2° C using a Messgerate - Werk Lauda 

model B-1 thermostat. 

11.1.2. Chemicals. 

All chemicals were from Aldrich Chemical Company, unless otherwise specified, and 

22 
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were used as received. Solvents were reagent grade. Dichloromethane, petroleum ether and 

acetonitrile (Chempure brand, GC grade, Curtin Matheson Scientific Inc.) were dried over 

calcium hydride (CaHJ and distilled and stored under Argon. Diethyl ether was dried using 

sodium and benzophenone and distilled and stored under Argon. Purified solvents were usually 

stored over 4 A molecular sieves (Davison Chemical). Solvents were deoxygenated only if 

necessary and by standard inert gas purge - vacuum degas techniques. £,6 In case a solvent or 

other chemical was subjected to other more stringent purification procedures, such will be 

mentioned in the text following. 

Il.2. Synthetic Procedures. 

Glassware was usually oven dried overnight at 120° C and cooled under inert gas. 

Il.2.1. 2-(2'-Methyl-3')-butenyl Benzoate. 

This procedure is a modification of the method of Triebs and Hintermeier. 67 The 

apparatus consisted of a three necked 100 mL round bottom flask fitted with a condensor. 

The side arms were used for inert gas inlet and outlet. 4.30 g (0.050 mol) of 2-methyl-3-

buten-2-ol and 35 mL of pyridine (redistilled under nitrogen before use) were stirred at room 

temperature. An equivalent amount of benzoyl chloride was added via an addition funnel over 

a period of 3 - 5 minutes. Reaction solutions were initially predominantly yellow, turning to 

a darker shade over the day long reaction period. The solution was heated between 80° C 

and 100° C and the reaction was run under positive inert gas pressure. 

After the reaction was stoppped, the mixture was cooled, diluted with 30 mL of 

CH2CI2 and 30 mL water. The organic layer was washed repeatedly with 10% hydrochloric 
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acid (HCl) to remove excess pyridine. The washes were carried out until the solution was 

acidic to litmus paper. The organic layer was washed with 2 x 25 mL of saturated sodium 

bicarbonate (NaHCO3) and finally with 25 mL water. The CH2CI2 layer was dried with 

anhydrous magnesium sulfate (MgSO4) and the solvent was air evaporated after gravity 

filtration to remove the MgSO 4 to yield the crude product. Purification was carried out 

chromatographically using a neutral alumina (Aluminum oxide, neutral, activated, Brockmann 

I, standard grade, ~ 150 mesh, 58 A CAMAG 507-C-l, surface area 155 m2g-1
) column. The 

elutant used was petroleum ether. Product is a colourless oil (80 % ) 

1HNMR: 

13C NMR: 

IR(neat): 

11.2.2. 

ol.68 (s, 6H); 5.10 (d, J = 10.7 Hz, lH); 5.25 (d, J = 17.6 Hz, 

lH); 6.22 (dd, J = 17.5, 10.7 Hz, lH); 7.38 - 8.07 (m, 5H). 

026.45; 81.12; 112.69; 128.09; 129.34; 131.48; 132.44; 142.46; 

165.20. 

C-O-C (1278 cm·1
); -C=O (1715 cm-1

) 

2-(2' -Methyl-3')-butenyl P:Nitrobenzoate. 

This compound was made by a procedure analogous to that of 11.2.1. Product obtained 

is a cream colored solid. M.P.: 112 - 114 °C (82%) 

1
H NMR: ol.69 (s, 6H); 5.10 (d, J = 10.7 Hz, lH); 5.23 (d, J = 17.5 Hz, 

lH); 6.19 (dd, J = 17.5, 10.8 Hz, lH), 8.16 (d, J = 7.0 Hz, 

13C NMR: 

2H); 8.28 (d, J = 7.0 Hz, 2H). 

026.14; 82.78; 113.57; 123.38; 130.54; 137.04; 141.77; 145.20; 

163.36. 

C-O-C (1274 cm-1
); -C=O (1703 cm·1

). 
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n.2.3. 2-(2 '-Methyl-3')-butenyl 0:Chlorobenzoate. 

This compound was made by a procedure analogous to 11.2.1. Product is a colorless 

oil. (76.3 %) 

13C NMR: 

IR(neat): 

11.2.4. 

ol.65 (s, 6H); 5.10 (d, J = 10.8 Hz, lH); 5.23 (d, J = 17.5 Hz, 

lH); 6.19 (dd, J = 17.6, 10.8 Hz, lH) 

026.47; 81.79; 112.93; 128.44; 130.06; 130.78; 138.88; 142.28; 

164.33. 

C-O-C (1285 cm-1
); -C=O (1730 cm-1). 

2-(2'-Methyl-3')-butenyl p-Methylbenzoate. 

This compound was made as in 11.2.1. Reaction time was a 1 h longer. 

1H NMR: ol.69 (s, 6H); 2.40 (s, 3H); 5.10 (d, J = 10.8 Hz, lH); 5.23 (d, 

J = 17.5 Hz, lH); 6.21 (dd, J = 17.5, 10.8 Hz, lH); 7.22 (d, 

J = 7.0 Hz, 2H); 7.92 (d, J = 7.0 Hz, 2H). 

13C NMR: 021.49; 26.59; 80.97; 112.58; 128.85; 128.96; 129.06; 142. 74; 

143.07; 165.39. 

IR(neat): C-O-C (1284 cm-1
); -C=O (1728 cm-1

) 

11.2.5. 2-(2'-Methyl-3')-butenyl p-Methoxybenzoate. 

This compound was made as in 11.2.1. The reaction time was 6 h longer and the 

yield is significantly lower. (36.7%). 

1H NMR: ol.68 (s, 6H), 3.86 (s, 3H); 5.10 (d, J = 10.8 Hz, lH); 5.23 (d, 

J = 17.6 Hz, lH); 6.21 (dd, J = 2.1, lH); 6.91 (d, 7.0 Hz); 7.98 



t3 C NMR: 

IR(neat): 

II.2.6. 
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(d, 7.0 Hz, 2H). 

026.69; 55.28; 80.81; 112.52; 113.46; 124.00; 131.80; 142.92; 

163.14; 165.10. 

-O-CH3 (1254 cm·1
); C-0-C (1284 cm·1

); -C=O (1708 cm·1
). 

2-(2'-Methyl-3')-butenyl p-Ethoxybenzoate. 

This compound was made as in 11.2.1. Reaction time was 9 h longer (64 %). 

13C NMR: 

IR(neat): 

ol.41 (t, J = 14.1 Hz, 3H); 1.62 (s, 6H); 4.05 (q, J = 14.2 Hz, 

2H); 5.10 (d, J = 10.8 Hz, lH); 5.23 (d, J = 17.5 Hz, lH); 6.17 

(dd, J = 17.5, 10.8 Hz, lH); 6.86 (d, J = 7.0 Hz, 2H); 7.92 (d, 

J = 7.0 Hz, 2H). 

014.65; 26.64; 63.60; 80. 79; 112.53; 113.86; 123.83; 131.41; 

142.83; 162.47; 165.20. 

-O-CH2CH3 (1248 cm·1
); C-0-C (1280 cm·1

); -C=O (1700 cm·1
). 

11.3. Synthesis of Catalysts. 

11.3.1. Lithium Di-µ-chlorobis[dichloropalladate(ID]. 

This catalyst was made by a procedure from the literature. 68 The glacial acetic acid 

(HOAc) (Fisher, reagent grade) was dried in a nitrogen atmosphere by using freshly prepared 

boron triacetyl. © Distillation was carrried out in an all glass apparatus (Kontes K 547600) and 

the acetic acid was stored under Argon. 

1.700 g (0.0100 mol) of palladium chloride (Aesar) and 0.7598 g (0.0179 mol) of 

lithium chloride (LiCl) were taken in a dry Erlenmeyer flask. About 75 mL of dry glacial 
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acetic acid was added, the flask stoppered and the solution stirred for 10 h at 60 °C. The 

flask was cooled, the solution filtered and the dark red - brown filtrate made up to the mark 

in a 100 mL volumetric flask. The molar content of the palladium in the stock catalyst 

d . db . 10 solution was etermme y grav1metry. 

11.3.2. Tetraacetonitrilepalladium(IO Tetrafluoroborate. 

This compound was made by a modification of the method of Schramm and 

Wayland. 71 1.00 g (9.40 x 10-3 mol) of palladium sponge (Aesar) and 2.20 g (0.0188 mol) 

of nitrosyl tetrafluoroborate were stirred in 50 mL of degassed (to remove oxygen) CH3CN 

under vacuum. The reaction was carried out in a three necked 250 mL round bottom flask that 

had been thoroughly purged with Argon. NO generated in the course of the reaction was 

vented periodically. The reaction gradually became a very pale canary yellow color. After 

stirring for 15 h., the mixture was filtered under an Argon atmosphere to yield a yellow 

filtrate from which an air sensitive pale yellow compound was obtained by the addition of 

anhydrous, degassed diethyl ether by cannulation. Subsequent syntheses revealed that the same 

compound could be precipitated out of solution using hexane or petroleum ether or 

dichloromethane. In later preparations petroleum ether was the preferred solvent after vacuum 

concentrating the reaction solution. The compound was dried under vacuum. (3.28 g - 4.08 

g, 75.8% - 98%). 

1H NMR(CD3NOJ: 

IR(nujol): 

02.65 (s) 
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n.3.3. Diacetonitrilebis(triphenylphosphine)palladium{ID Tetrafluoroborate. 

This compound was prepared by a modification of the method of Sen and Lai. 72 0.25 

g (5. 63 x 10·3 mol) of tetraacetenitrilopalladium(II) tetraflouroborate was carefully weighed 

and taken in a 100 mL single necked round bottom flask under inert conditions in a glove bag. 

To this was added 0.295 g (1.144 x 10·3 mol, two equivalents relative to 11.3.1) of triphenyl 

phosphine (recrystallized from absolute ethanol) and 35 mL of CH2Cl2 • The bright yellow 

solution was stirred for 4.0 h (this reaction time is probably not needed). Following 

concentration of the solution on a vacuum pump, a beautiful, bright, yellow solid was obtained 

on addition of 40 mL of petroleum ether. The compound was washed with diethyl ether and 

dried under vacuum. (0.37 - 0.41 g, 74% - 80%) The compound is mildly air sensitive and 

repeated exposure to the air or light causes a darkening to orange, orange - red and finally 

through to black. The literature does not mention this fact. 

1H NMR: ol.85 (s, 6H); 7.2 - 7.4 (m, 30 H) 

31P NMR {1H}: 032.1 (s) 

IR(nujol): BF4- (1000 - 1100 cm·1
); -CN (2335 cm·1

) 

11.3.4. Monoacetonitriletris(triphenylphosphine)palladium{ID Tetrafluoroborate 

This compound was made in a reaction analogous to 11.3.2. 64
" 0.11 g ( 7. 63 x 10·3 

mol) of 11.3.1 and 0.60 g (2.29 x 10·3 mol) of triphenylphosphine. The reaction was run in 

degassed CH2Cl2 • The solution was concentrated under vacuum after stirring for 6.0 h, and 

the precipitate obtained on cannulation of petroleum ether into the solution was vacuum dried 

after precipitation. The compound tended to decompose after a long period of exposure. The 

compound is a light yellow color. (0.47 g, 96 %) 
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527.6 (d, Jpp = 11.7 Hz, 2P); 34.5 (t, Jpp = 11.7 Hz, lP). 

BF4• (1000 - 1100 cm·1
); -CN (2335 cm·1

) IR(nujol): 

Il.3.5. Bis(benzonitrile)dichloropalladium(IIl. 

This compound was made by the method of Doyle, Slade and Jonassen. 73 It was 

recrystallized from hot benzene by first doing a hot filtration and then by the addition of 

pentane to precipitate the compound. It was washed with pentane and dried in vacuo. The 

compound was stored under Argon. 

Il.4. Studies Usin2 Li2PcbQ,,. 

The primary focus of the mechanistic studies was in terms of kinetics. Kinetic studies 

were carried out at 25 °C in a thermostatically controlled water bath. Evaluation of data was 

via analysis after 1H NMR experiments. Using Li2Pd2Cl6 , the experiments were performed in 

glacial HOAc. 

Il.4.1. Procedures in Anhydrous HOAc. 

Stock solutions of Li2Pd2Cl6 and LiCl were prepared in the dried glacial acetic acid. 

(see 11.3.1). Solutions were thermostated for at least 1 h before runs were begun. 

In a typical kinetic run, calculated amounts of Li2Pd2Cl6 and LiCl were pipetted, using 

glass pipettes into an argon flushed, dry 10 mL volumetric flask. Glacial HOAc was added 

to make the volume almost 10 mL. The allylic ester substrate, 11.2.1., was added by mass, 

the solution quickly made up to the 10 mL mark, the flask stoppered, shaken and placed in 

the water bath. Timing was begun simultaneously. 
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At specific times, 1.0 mL aliquots were withdrawn using a pipette and transferred into 

a waiting 125 mL seperatory funnel containing 2 - 3 mL of CH2Cl2 and 2 - 3 mL of brine in 

order to quench the reaction by extracting the organic species. After shaking, the layers were 

separated. The aqueous layer was re-extracted with 2 - 3 mL of CH2Cl2• The combined 

organic layers were washed with 2 x 5 mL portions of saturated NaHCO3, to remove the 

excess HOAc. A final water wash (10 mL) was followed by drying with MgSO4 (anhydrous). 

The solvent was air evaporated in a fume hood at room temperature. The residue thus 

obtained was saved for analysis. 

The product analysis, evaluation of extent of reaction, yield and subsequent 

determination of k
0

bs were based on the 1H NMR of this residue. The reactions were usually 

monitored for at least three half lives (93.8 %). Kinetic runs were always run in duplicate. 

11.4.2. Rate Expression. 

In order to establish dependencies of the various species involved, two stages of 

experimental work were required. In the first stage, controls were run, in order to determine 

which of the species caused a variation in the rates of reaction. In the second stage the 

concentrations of the species that were established to be in the rate expression in stage one 

were varied to determine kinetic order. [Li2Pd2ClJ was varied between 2.05 x 10-3 M and 

21.3 x 10-3 M (see Table 111.2.) while maintaining [LiCl]<inl and [11.2.1] at 0.0504 M and 

0.100 M respectively. The order in LiCl was determined with [LiClJ<inl varied from 0.030 M 

to 0.202 M. (see Table 111.2.). The [Li2PdiClJ and [11.2.1] were held at 0.004 M and 0.100 

M respectively. Each run obeyed first order kinetics and that established order in [11.2.1]. A 

separate experiment was done in which the concentration of 11.2.1 was halved and a resultant 
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halving of the rate confirmed assumption of first order dependence. The experimental method 

in all these experiments was exactly as described in 11.4.1 above. 

Il.4.3. Ener2)' of Activation. 

Only Il.2.3. was used for these studies. With [Il.2.3.] at 0.100 M, [Li2Pd2ClJ = 12.3 

x 10-3 M and [LiCl] = 0. 050 M, the temperature effect on the rate was evaluated. 

Temperatures were varied from 298.2 K to 323.2 K. The method of study was the evaluation 

of k
0

bs values from the 1H NMR of the various samples isolated at different time intervals as 

described in Il.4.1. 

Il.4.4. Electronic Effects. 

All six ester substrate species (11.2.1. through 11.2.6.) were used for these studies. 

Rate constants were determined by experiments as described in 11.4.1. Usually between eight 

and eleven data points were obtained. Kinetics were always duplicated. 

11.5. Studies Usine Tetraacetonitrilepalladium(Ifl Tetrafluoroborate. 

The additions of this catalyst were made in a glove bag because of the air sensitive 

nature of this species. 

11.5.1. Purification of CH3N02-!-

The purification of nitromethane was performed by a modified procedure. 74 After three 

passes through an alumina column (30 cm in length) the nitromethane was further dried using 

phosphorus pentoxide (PPJ under nitrogen and then 500 mL was fractionally distilled from 
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21.0 g of PPs using a 15 cm glass fractionating column. A middle 250 mL portion was 

collected and redistilled fractionally from P2O5• The nitromethane thus obtained, after 

degassing, was stored over molecular sieves and under Argon. 

n.s.2. In Nitromethane Solvent. 

To a degassed 10 mL volumetric flask was added 0.0218 g (4.91 x 10·5 mol) of 

[Pd(CH3CN)4](BF4) 2, (11.3.2), so that concentration would be 4.9 x 10·3 M in 10 mL. Almost 

10 mL of CH3NO2 was added to the flask and the solution was thermostated for more than 

1 h. To this flask was added 0.1902 g (1.0 x 10·3 mol) of the unsubstituted benzoate ester 

substrate (11.2.1.). The solution was made up to the 10 mL mark, stoppered and shaken. 

Timing was begun simultaneously. 

Il.5.2.1. Isolation of Product Via Column Chromatoi,:aphy. 

A column 5.0 cm in height and 1.0 cm in diameter was made using Florisil (J. T. 

Baker Chemical Company, 100 - 200 mesh, M-3697). The column was packed using 

petroleum ether. At particular time intervals, 1.0 mL aliquots were withdrawn via syringe, 

taken in a 5 mL round bottom flask and the solvent was quickly vacuum evaporated. (less than 

2 minutes) The yellowish residue was loaded on the column after adding 2 mL of petroleum 

ether. The flask was rinsed with 2 x 2 mL of petroleum ether. All the rinses were combined 

and loaded on the column. The solvent collected from the column was evaporated in air and 

the residue analyzed by 1H NMR. 
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n.s.2.2. Isolation of Product by Chelation of Palladium. 

A 1.0 mL aliquot of the reaction mixture described in 11.2.6. was taken in a beaker 

and acidified to ~ pH 1. To this was added 10 mL of dimethyl glyoxime stock solution, made 

as described in 11.3.1. The solution was covered and set aside and over a period of 1.0 h the 

formation of golden yellow fine needle like crystals was observed. The solution is filtered, 

the filtrate neutralized with saturated NaHC03 and finally washed with water and dried with 

MgS04 (anhydrous). The removal of the solvent afforded the product(s) to be analyzed. 

11.5.3. In Acetic Acid Solvent. 

Attempts were made to study the reaction of 11.3.2. with the unsubstituted ester 

substrate 11.2.1. in HOAc. On the addition of 10 mL of dry glacial HOAc at room 

temperature to 0.0218 g (mol) of 11.3.2., a yellowish green solution was obtained. To this 

was added 0.1902 g (1.0 x 10-3 mol) of 11.2.1. The solution was stirred at room temperature 

for 10 h. The reaction was worked up by extracting the ester using hexane and brine. The 

hexane layer was washed with 2 x 20 mL of saturated NaHC03, 10 mL water, dried 

(Mg SO 4) and finally analyzed by 1H NMR after evaporating the solvent. 

11.6. Studies Usini:; [Pd(CH3CN}i(PPhJ2](BF4) 2 • 

This catalyst was weighed out under inert conditions in a glove bag only because it 

was noticed that prolonged exposure decomposed the catalyst. 

11.6.1. In Nitromethane Solvent. 

These experiments were performed as in 11.5.2. The product isolation corresponded 
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to the method in 11.5.2.1., that is, via the florisil column. 

11.6.2. In Acetic Acid Solvent. 

This experiment was done as in 11.5.3. A similar yellow - green color to that in 

II.5.4. was noticed. Isolation was by extraction. 

11.6.3. In Dichloromethane Solvent. 

Initial experiments were carried out in a 25 mL round bottom flask at room 

temperature. 0.3035 g (3.42 x 10-3 mol) of Pd(CH3CN)z(PP~)/+ was taken in the degassed 

round bottom flask. To it was added 10 mL of CH2Cl2 • The catalyst dissolved almost 

immediately to give a light yellow solution. To this solution 0.1902 g (1.0 x 10-3 mol) of the 

unsubstituted ester, 11.2.1. was added and the product isolated by the florisil column 

procedure. The solvent was removed on a vacuum pump. Analysis of product was by 1H 

NMR. 

Subsequently it was found that the isolation could be performed in a simpler manner. 

The reaction was run in a 10 mL volumetric flask with a septum cap, at 25 °C. In a typical 

experiment 0.0444 g (5.00 x 10-5 mol) of catalyst (11.3.3.) and 0.1902 g (1.00 x 10-3 mol) of 

allylic ester (11.2.1) were added and the solution made to the 10 mL mark. Then 1.0 mL 

aliquots were withdrawn at regular intervals either by pipette or syringe. The aliquot was 

added to ca. 10 mL of petroleum ether in a 50 mL beaker. Immediate formation of a 

voluminous yellow precipitate was noticed. The solution was swirled, filtered via standard 

glass funnel and the filtrate collected. Evaporation of the solvent afforded the product(s) that 

were analyzed by 1H NMR. 
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U.6.4. Electronic Effects in Dichloromethane. 

The other five allylic ester substrates (11.2.2. through 11.2.6.) were studied in a similar 

manner in order to obtain kobs values individually. 

II. 7. Studies Usin2 [Pd(CH3CN)(PP1¼]{BF4)µ 

This species was also weighed out under inert atmosphere conditions in a glove bag. 

Studies in nitromethane were performed as in 11.5.2. 0.1108 g (1.00 x 104 mol) of Pd 

(CH3CN)(PPh3)/+ was used with 0.1902 g (1.00 x 10-3 mol) of the allylic ester substrate. Only 

starting materials were recovered at 25° C. 

Experiment were performed in dichloromethane as in 11.6.3. The product was isolated 

after precipitating out the palladium species using hexanes. 

11.8. Studies Usin2 Bis(benzonitrile)dichloropalladium(II). 

The catalyst was usually recrystallized before use. The kinetic studies were carried out 

as usual at 25 ·c. The catalyst was usually added last to prevent the precipitation of the 

palladium species, probably because of dimerization. 

11.8.1 In Acetic Acid Solvent. 

A 0.1902 g (1.0 x 10-3 mol) sample of 11.2.1 was thermostated in a dry 10 mL 

volumetric flask with almost 10 mL of distilled, degassed dichloromethane. To this was added 

0.0192 g (5.0 x 10-3 mol) of 11.3.5. 

In a precisely similar manner, the other esters, with the electron releasing and donating 

substrates were evaluated. Reactions were standardly followed past at least three half lives. 
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n.s.2. In Dichloromethane Solvent. 

Attempts were made to study the electronic effects using the same catalyst, 11.3.S. in 

CH
2
Cl

2
• Using 0.1902 g (1.0 x 10·3 mol) of substrate, 11.2.1. and 0.0192 g (5.0 x 10 -s mol) 

of catalyst but the reaction was complete by the time the first sample was taken. 

11.8.3. In Deuteriated Chloroform Solvent. 

Using the same conditions as above, an attempt was made to monitor this reaction 

directly on the Varian VXR 300 NMR. The reaction was run on a 1.0 mL scale. Into a 1.0 

mL volumetric flask 0.0190 g (1.0 x 104 mol) of substrate 11.2.1. was weighed. The volume 

was made up to the mark using CDC13 • This mixture was taken in a 5 mm NMR tube and the 

1H spectrum obtained at 25" C using the standard Varian 1H pulse sequence using only two 

transients. 75 0.00190 g (5.00 x 10-6mol) of the catalyst was added, the tube shaken and the 

spectrum obtained. The entire process took 3.0 min and it was noticed that in this time the 

reaction was complete. Keeping the same concentration of substrate, attempts to reduce the 

amount of catalyst to 6.3 x 104 g (1.6 x 16·6 mol). This attempt showed that the reaction was 

almost complete in less than 3.0 min. Smaller quantities were not tried because weighing out 

minute amounts of catalyst was inaccurate. 



PART ONE: CHAPTER III 

RESULTS 

111.1. Synthetic Results. 

All the compounds synthesized were characterized by standard spectroscopic methods 

(1H and 13C NMR and IR). The yields on most of the compounds synthesized were usually 

not optimized. 

111.1.1. Synthesis of Allylic Ester Substrates. 

Six allylic ester substrates, 11.2.1. through 11.2.6., were synthesized. The esters were 

stable for long periods of time. They were periodically rechecked just prior to use so as to 

monitor any decomposition that might have occured. Yields obtained in the syntheses are 

collected in Table 111.1. 

111.1.2. Synthesis of Catalysts. 

All the catalysts were synthesized by established literature procedures. In determining 

palladium content, standard gravimetric procedures involving the use of DMG were employed. 

Thus, if stock solutions were made, they were always analyzed for palladium content. 

37 
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Table m.1. Synthesis of Allylic Ester Substrates: 

No Allylic ester Substituent (p) % yield 

1. 11.2.1. -H 80.0 

2. 11.2.2. -N02 81.8 

3. 11.2.3. -Cl 76.3 

4. 11.2.4. -CH3 65.0 

5. 11.2.S. -OCH3 36.7 

6. 11.2.6. -OC2H5 64.0 

"Benzoate esters of 2-methyl-3-buten-2-ol. 
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III.2. Mechanistic Studies Usin2 Li2Pd:zCI~ 

The kinetic studies were carried out at 25 °C in anhydrous acetic acid and involved 

palladium(II) chloride in solutions containing known excess amounts of LiCI. 

111.2.1. Eguilibria To Be Considered. 

To define the kinetics of any system completely, the mode of interaction of the species 

involved must be known. Spectral and molecular weight studies 76 indicated the following 

equilibria must be considered. 

Kl 
Li2PdiCl6 + 2LiCI ~ (111.1) 

K2 
2LiCI ~ Li2Cl2 (111.2) 

For any set of reaction conditions, the concentrations of all the species present could 

be determined only after taking into account these equilibrium constants. 

111.2.2. Catalyzed Product and Controls. 

The major species present in solution were Li2Pd2Cl6 , LiCl, HOAc and the allylic 

ester, 11.2.1. Control runs indicated that the reaction was catalyzed by the Pd(II) species. 

Under all conditions studied, the reaction always proceeded to completion and quantitatively 

gave only the [3,3] isomerized product of 11.2.1. under all the conditions described (Figure 

111.1.). In the absence of the Pd(II) species, a test solution containing all species, afforded no 

measurable thermal reaction at 25 °C. This test run was monitored for a period of two 



[3,3] Product; 100% 

Ar== C6H4-X, where X == -OEt, -OMe, -Me, -H, -Cl, -N02• 

Figure Ill.1. Only Product in the Catalyzed Rearrangement. 
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months. 

In an experiment under one of the described sets of conditions (see Table ill.2.), if 

the product allylic ester was used instead of the starting material no measurable reaction was 

detected. This confirmed the assumption of using 100% product formation for the data 

analysis described below. 77 

11.2.3. Method of Data Collection and Analysis. 

Preliminary studies showed that the allylic ester was isomerized and the reaction 

proceeded to complete conversion to the [3,3] rearrangement product. Thus the relative 

amount of the starting allylic ester could be obtained easily as the ratio of the starting ester 

to the isomerized product by making use of the 1H NMR integrals. All of the resonances from 

the starting allylic ester and the isomerized product did not overlap with any other resonance. 

The methyl protons from 11.2.1., for example, shift downfield from a singlet at 1.68 

ppm to a doublet at 1. 78 ppm in the isomerized product. The signal arises further downfield 

because the methyl protons are now allylic in nature and it is a doublet because the methyl 

groups are now inequivalent (the allylic splitting is usually not resolved under the conditions 

of the NMR experiments) (Figure 111.2). The positions of the protons in the isomerized 

product were confirmed by making the authentic product. 

1H NMR signals of interest appear at 1.78 ppm (d, 6H); 4.82 ppm (d, 2H) and 5.45 

ppm (apparent t, further coupling, obviously due to the allylic methyls is seen, lH: vinylic). 

There is some overlap in the aromatic region, but this is of little consequence for the purposes 

of the data analysis. 
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Figure Ill.2. Sample Spectrum Used in the Data Analysis Showing Allylic Ester (II.2.1.) 

and Isomerized Product. 

I ! 
6 

I l I J 
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m.2.4. Rate Expression. 

In order to obtain the kinetic dependences on the various species, and thus establish 

a rate expression, the following experiments were performed. Each of the species present in 

solution, LiCl, allylic ester and Pd(II), were systematically varied while each of the other 

species was maintained constant. The pseudo first order rate constants in each particular 

species (k0 bs values) thus obtained, were plotted versus concentration of that species to obtain 

order in that particular species. 

111.2.4.a. Order in (Pd(ID). 

By using the equilibria described earlier it can be shown that the predominant species 

in solution is the dimeric Li2Pd2Cl6 • Analysis of the data also shows us that the predominant 

species involved in the catalysis is the dimer. Order in Li2Pd2Cl6 was obtained by maintaining 

[LiCl];n and [11.2.1] constant at 0.0504 Mand 0.1001 M. First order k
0

bs values were obtained 

by plotting the natural logarithm of the relative amount of 11.2.1. remaining versus time of 

sampling. The [Li2Pd2ClJin was varied between 2.05 x 10-3 Mand 21.3 x 10-3 M, and in each 

case a k
0
bs value was obtained as described above (see Table 111.2). [Li2Pd2Cl6L0 rr is the 

corrected concentration of the predominantly dimeric palladium(II) species after correcting 

for the small amount of monomer using the equilibria described in 111.2.1. The first order rate 

constants were plotted against [Li2PtliC1Jcorr as shown in Figure 111.3. A straight line (R2 = 

0.99) passing through the origin showed first order dependence. 

The first two equilibria needed to be considered were given in equations 111.1 and 

111.2. Also, the manner in which we obtained our data depended on the fact that a given run 

had to be strictly first order in allylic ester. The data could only be fitted if this assumption 
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were made. It has to be borne in mind that although a given reaction is strictly first order in 

allylic ester, there could be some inhibition by the allylic ester at higher concentrations due 

to the formation of the unreactive monomeric 1r complex. Formation of unreactive monomeric 

1r complexes is shown in equations 111.3. and 111.4. 

2[LiPdCliallylic ester)] (111.3) 

[LiPdCliallylic ester)] + LiCI (111.4) 

Both equilibria shown here lead to the same monomeric 1r complex. The Li2PdC14 shown in 

equation 111.3. is the species obtained in equation 111.1. It was found in the earlier work that 

assuming simultaneous equilibria for dimer and monomer with the allylic ester, there is at 

least a five fold excess of the monomeric 1r complex under certain conditions. 46 Henry 

attributed the low reactivity of the monomer to electrostatic effects. If the monomer species 

were active kinetically, then the kinetics at low [allylic ester] require that the order in 

111.2.4.b. Order in Allylic Ester. 

All of the described experiments indicated first order dependence in the allylic ester 

substrate 11.2.1., because the kinetic plots were all first order and data could not have 
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been treated in this manner otherwise. In addition, an experiment was run in which one-half 

of standardly used amount of ester was employed. The t112 remained the same confirming 

first order reaction in [allylic ester]. Qualitatively no inhibition from the allylic ester was 

detected as was observed in the earlier work. 56 However this work did not explore the 

possibility of ester inhibition at much higher [allylic ester]. Also, there is no noticeable 

inhibition from the product. 

111.2.4.c. Order in LiCI. 

In a similar manner [LiCl] was varied with [Li2Pd2ClJin and [11.2.l] kept constant at 

0.0040 Mand 0.1001 M respectively. In the range studied i.e., [LiCl]in varied from 0.030 

M to 0.202 M. (Table 111.2.). LiCI dimerizes to a small extent in glacial acetic acid under 

these conditions. [LiCllcorr is the corrected [LiCI] after correcting by using K2 = 2.6 M·1 as 

described in 111.2.1. A first order inhibition in [LiCllc
0
rr was obtained as seen by the straight 

line (R2 = 0.98) in Figure 111.4. Thus in the range studied the rate expression is given by 

equation 111.5, 

Rate= k (111.5) 
[LiCIJcorr 

The k
0
bs values from all the kinetic studies are collated along with the concentrations 

of the various species involved in Table 111.2. In runs 1, 2 and 7 - 9 [Li2Pd2ClJ is varied 

while in runs 2 - 6 [LiCI] is varied. Rate constant, k in s·1, is calculated, assuming equation 

111.5 is operative in the last column. The values fall within a narrow range confirming that 

equation 111.5 is the correct rate expression. The average value of k is 1. 7 x 10·3 s·1
• 
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Table 111.2. Rate Constants for the Isomerization of 11.2.1 by [LbP~• 

No. 

1. 2.02 0.100 22.1 0.67 1.5 

2. 4.04 0.100 22.1 1.9 2.1 

3. 4.04 0.100 35.6 2.7 1.9 

4. 4.04 0.100 15.4 1.0 1.6 

5. 4.04 0.100 8.60 0.52 1.5 

6. 4.04 0.100 6.84 0.41 1.5 

7. 8.20 0.100 22.1 2.6 1.4 

8. 12.3 0.100 22.1 4.1 2.2 

9. 21.3 0.100 22.1 7.5 1.6 

• All data is the average of at least two independent runs. 

• values obtained experimentally. 

• calculated rate constant using equation 111.S; k (average) = J.7 x 10·• s·'. 
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n.2.s. Temperature Studies. 

Temperature studies were carried out using only the p-chloro ester species, 11.2.3. The 

first order rate constants, k0 bs, were obtained between 25.0 °C (298.2 K) and 50.0 °C (323.2 

K). The data was plotted in terms of the standard Arrhenius equation for temperature 

dependence, k = A e-F.a/R\ where k is the rate constant at any particular temperature; A is the 

pre-exponential factor; E. is the energy of activation; R is the gas constant and T is the 

temperature in Kelvin. In terms of the data the k values correspond to the k
0

bs values obtained 

at each of the temperatures studied. From the slope of Figure 111.S., an apparent value of E. 

= 17.3 kcal. mor1 and a pre-exponential factor, A = 1.41 x 108 s-1 (log A = 8.15) were 

obtained. 

In a plot of In (k0 bs/T) versus 1/T ,78 the standard thermodynamic parameters of AH* 

and AS* were determined. Apparent values of AH* = 81.02 kJ mor1 (16.74 kcal mor1
) and 

AS* = -100.2 J mor1 K 1 (-24.10 eu) were obtained. A point to note is that in the limited 

temperature range of 25 · (from 298.2 K - 323.2 K) studied, the rate constants changed by 

about a factor of 81. 

111.2.6. Electronic Effects. 

In order to probe the polar nature of the reaction path, the allylic ester and its 

congeners were subjected to an electronic effects study. 

As described in 11.2.4., these experiments were run under one set of experimental 

conditions with [Li2Pd2CIJcorr = 12.3 X 10-3 M, [LiCILorr = 4.52 X 10-2 M and [allylic ester] 

= 1.00 x 10-1 M. Under these conditions the value k
0
bs = 4.11 x 10-5 s-1 was obtained for 

the rearrangement in the case of the unsubstituted allylic ester. All six allylic ester species, 
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Table 111.3. Temperature Dependence.• 

No. T,K 1/T X 1()3 K 1 In (k)b,c In (k/T) 

1. 298.2 3.354 2.8 -10.48 -16.19 

2. 303.2 3.299 4.7 -9.97 -15.68 

3. 308.2 3.245 7.7 -9.46 -15.21 

4. 308.2 3.245 8.0 -9.43 -15.17 

5. 313.2 3.193 13.9 -8.88 -14.63 

6. 323.2 3.095 27.3 -8.21 -13.99 

7. 323.2 3.095 26.8 -8.22 -14.00 

• Using the p-chloro allylic ester, 11.2.3. 

• k here refers to the standard k.,_ values obtained as described elsewhere in the text. 

• In (k) was plotted versus !ff in a standard fashion to obtain the activation parameters. 
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11.2.1. - 11.2.6. were subjected to a similar kinetic study under analgous conditions. 

The quickest isomerization was obtained with the p-ethoxy species and the slowest with 

electron withdrawing p-nitro species. The data for this electronic effects study can be found 

in Table 111.4. The difference between the quickest and the slowest species is a factor of 

24.4. The data was subjected to the standard linear free energy treatement and better 

correlation was found with Hammett-Brown modified a+ than with the original Hammett a 

values. In the plot with a+, the correlation is R2 = 0.96. The slope of the plot, p = -0.78 

which indicates that the transition state possesses some electron deficiency. A plot of this data 

can be found in Figure 111.6. 

111.3. [Pd(CH3CN)4J(BF1) 2 System. 

This species dissolves primarily in two solvents, acetonitrile and nitromethane. It has 

some limited solubility in acetic acid. In acetic acid it was found that the ester was recovered 

unchanged. The solutions usually turned yellow - green on dissolving the catalyst. This is 

probably due to some aggregation of the Pd(II) species in solution, and with displacement of 

the CH3CN. 

In studies attempted in acetonitrile with the unsubstituted allylic ester, it was found that 

the reaction was very slow, probably because acetonitrile inhibits the reaction as it could co­

ordinate to the palladium. In later studies with nitromethane, rates were improved 

considerably. The electronic effect studies were not pursued for three reasons. First, the rates 

of reaction were not fast enough to be of significant use in catalysis. Second, nitromethane 

is probably not easy to remove because of its relatively high boiling point. Finally, the catalyst 

itself shows limited stability in air. 



Table 111.4. {Li,P~CIJ System: Substituent Effects.• 

No X Group 

1. -N02 0.811 

2. -Cl 2.82 

3. -H 4.11° 

4. -CH3 6.71 

5. -OCH3 10.1 

6. -OC2H5 19.8 

• Using the catalyst Li,Pd,Cl6 in glacial acetic acid at 25° C. 

• Hammett - Brown u+ values." 

• This is the k
0 

value. 
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-0.704 0.79 

-0.162 0.11 

0.000 0.00 

0.213 -0.31 

0.390 -0.78 

0.683 -0.82 
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UI.4. [Pd(CH3CNMPPhJ2J{BF4) 2 System. 

The studies with this catalyst were attempted in HOAc, nitromethane and in CH2Cl2• 

In acetic acid, a similar yellow - green color was obtained on dissolving the catalyst in 

solution. In nitromethane, for reasons similar to those given in 111.3. studies were not 

completed. 

In CH2Cl2 , a complete electronic effects study was carried out. These catalysis runs 

were made with 1. 00 x 10-3 mol of ester. The amount of catalyst used was 5 mol % . This data 

is gathered in Table 111.5. 

The k
0
bs value obtained for the unsubstituted allylic ester is 9.4 x 10-s s-1

• Once again 

the best value was obtained with the electron releasing p-ethoxy species. This species was only 

4.8 times faster than the unsubstituted species but 18.5 times faster than the electron 

withdrawing, p-nitro congener. Correlation was better with u+ (R = 0.98) than with u. 

Similar interpretation is made of the data with the slope, p = - 0. 78, indicating an electron 

deficient transition state. A plot of the data can be found in Figure 111.6. 

111.5. [Pd(CH3CN)(PPlh}3lill£)2 System. 

Studies using this species were not successful. In dichloromethane, the study revealed 

no reaction as only starting materials were recovered under the attempted experimental 

conditions. It is possible that the species is very sterically hindered with the three bulky 

phosphine groups. 80 

111.6. [PdCli{PhCN}2] System. 

Electronic effects were studied using this species in glacial HOAc. The amount of 
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No X Group 

1. -N02 1.91 -0.691 0.79 

2. -Cl 5.43 -0.237 0.11 

3. -H 9.37° 0.000 0.00 

4. -CH3 12.8 0.137 -0.31 

5. -OCH3 23.1 0.392 -0.78 

6. -OCfis 35.4 0.577 -0.82 

• Using the catalyst [Pd(CH,CN),(PPh,)J(BF4) 2 in dichloromethane at 25° C. 

b Brown u• values. 

• This is the k., value. 
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ester used was 1. 00 x 10·3 mol and the catalyst was 5 mol % . Here too the reaction went to 

completion and only one product was obtained under all experiment conditions studied. The 

isomerization in dichloromethane also gave the [3,3] isomerized product under all conditions. 

The data from this study is in Table 111.6. The analysis of the product, the data 

collection and treatment were exactly as described in the studies on Li2PciiCl6_ 

This series gave the best correlation with the a+ values (R2 = 0. 99). A similar trend 

was obtained in the rate constants with electron releasing groups speeding up reaction. The 

difference between the fastest and slowest species is 20.9. The slope of the plot p is -0.81. 

The plot can be found in Figure 111.6. 

All three catalysts showed similar trends in terms of the electronic effects. A point to 

note is that the values for the slopes are almost identical. Even the value of p = -0.80 for 

the Pd(C~5)Cl2 species is not significant enough to be different. Usually a difference of at 

least 25 % is required for the difference to be of some chemical significance. 81 This indicates 

that in the Pd(II) catalyzed isomerization, there is a constancy of mechanism, not only across 

substituents, but across the type of catalytic species employed. 
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Table IIl.6. (Pd(C6HJ2CJ2l System: Substituent Effects.• 

No. X Group 

1. -N02 5.65 -0.951 0.79 

2. -Cl 26.6 -0.278 0.11 

3. -H 50.5° 0.00 0.00 

4. -CH3 87.3 0.237 -0.31 

5. -OCH3 110 0.340 -0.78 

6. -OC2H5 118 0.367 -0.82 

• Using the catalyst [Pd(C.J-1,)Cl2] in glacial acetic acid at 25 · C. 

• Brown u• values. 

• This is the k
0 

value. 
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PART ONE: CHAPTER IV 

DISCUSSION 

IV.l. Mechanism of the Pd(IO Catalyzed (3.31 Allylic Ester Isomerization. 

This discussion will cover aspects of the Pd(II) catalyzed isomerization of allylic ester 

molecules used as mechanistic probes for electronic effects. Serving as probes are the benzoate 

esters of 2-methyl-3-buten-2-ol with para substituted electron releasing and withdrawing 

groups. The study centered around the LiiPcliCl6 system focusing on (a) determination of the 

rate expression under conditions in which quantitative isomerization of the probe molecule into 

its [3,3] rearranged product occurs; (b) determination of the nature of the electronic effects 

on the intermediate in the isomerization; (c) comparison of the electronic effects of the 

negative dimeric chloro complex study to two other Pd(II) catalyst systems, one the neutral, 

[Pd(PhCN)2CLJ, and the other the dipositive [Pd(CH3CN)2(PPh3):J2+ species; and (d) 

determination of activation parameters. 

The Li2Pd2Cl6 system is a continuation of earlier mechanistic work on the exchange 

and isomerization of allylic esters in acetic acid. 48 In prior studies conditions were similar to 

those used in this work except that LiOAc was added in the previous studies. In those studies 

two pathways were seen; isomerization with exchange and isomerization alone. There were 

different dependencies in LiOAc for each pathway. In the exchange path the rate expression 

was two term; one term showed first order dependence in LiOAc while the other showed no 

59 
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dependence. The path leading to isomerization alone, again displayed two term kinetics. In 

this case the dependence on LiOAc was either inverse first order or there was no inhibition. 

To avoid these complications LiOAc was not added to the reaction mixtures. The 

range of concentrations studied in this work are: [Pd(ll)];n = 2.05 x 10·3 M - 21.3 x 10·3 M; 

[LiClL
0 

= 0.0300 M - 0.202 M; [allylic ester] = 0.100 M in dry glacial acetic acid at 25 ·c. 

Under these conditions the probe was isomerized only to its [3,3] rearranged product, the 

benzoate ester of 3-methyl-2-buten-l-ol, in 100% isolated yield. Thus the reaction is very 

clean and facile. 

The first step in our reaction scheme is the formation of the dimeric 1r complex with 

the allylic ester in an equilibrium involving the loss of LiCI. 

LiP~Cls(AE) + LiCI (IV.1) 

where AE is H2C=CHC(CH3)POCC6H5, the benzoate ester of 2-methyl-3-buten-2-ol. 

[LiP~Cls(AE)][LiCI] 

[Li2P~CIJ[AE] 
(IV.2) 

This pre-equilibrium would account for the inhibition by LiCl seen in the kinetics. The lack 

of exchange product must result from the absence of added acetate since HOAc by itself is 

a poor nucleophile. In addition AE is a very sterically hindered molecule because of the 

presence of the bulky aromatic moiety. 

Based on (1) the exclusive transfer of labelled oxygen in the oxygen labelling study 



61 

in the analogous crotyl ester isomerization;47 (2) similar studies with deuterium labels in the 

all carbon Cope rearrangement by Overman/8 (3) clear [3,3] isomerizations in numerous cases 

when the heteroatoms are dissimilar; 82 and (4) the sterochemical studies of Overman and of 

Bosnich, we propose the next step to be intramolecular oxypalladation as suggested by 

Henry. 47 

The suggested cyclized positively charged "intermediate" was cited as the correct 

"intermediate" in Hg(II) carbamate rearrangements by Overman. 38 Many workers invoked the 

same "intermediate" to explain intramolecular isomerization mechanisms 14
'
20 and all the various 

Hg(II) and Pd(II) catalyzed [3,3] rearrangements were then designated as proceeding via 

analogous cyclic positively charged intermediates. 

There is further evidence for cyclization in the clean sterochemistries of products in 

the stereochemical studies of Overman55 and of Bosnich. 32
b It was necessary to postulate chair 

configurational ring formation in these studies, in order to explain the stereochemical outcome 

of the reactions. The *o labelling studies confirm intramolecular oxypalladation and the lack 

of [1,3] products rule out the formation of 1-,3-1r-allylic intermediates. 

Products from intramolecular oxypalladation have been seen in the cyclization of 

alkenyl phenols 83 and unsaturated alcohols. 84 It is standard to propose either a five or six 

membered ring in such cyclizations. In this work we propose a six membered ring because 

formation of a five membered ring is sterically unfavorable since that would require the <1 

bonding of Pd to a fully substituted carbon on oxypalladation. In all of the Pd(II) species that 

we used, only products from apparent six membered ring cyclization are seen. Also, this 

regioselectivity is largely dependent on the nature of the ligands in the Pd(II) salts. Standardly, 

with species like PdCl/", a six membered ring is proposed for intramolecular 



LiCI + 

1 

SLOW 

1 2 

I 

Figure IV.I. Mechanism of the [Pd(II)] Catalyzed Allylic Ester Isomerization 
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oxypalladations. 85 Such dependence on the anionic nature of the ligands is also seen in Hg(II) 

promoted cyclizations of alkenyl phenols. 86 If Pd(II) acetate were used then a five membered 

ring could be produced assuming analogy to work from Hosokawa on the cited intramolecular 

cyclizations. 

If internal oxypalladation occurs and a cyclic intermediate is formed as proposed then 

it would lead to a positive charge at the ester carbon as shown in the scheme in Figure IV.1. 

This is consistent with the results of the electronic effects with this catalyst, and with the other 

two Pd(II) catalysts (Figure 111.6) of this study, and the electronic effects evidence from 

Overman and Renaldo in the all carbon Cope rearrangement. 58 This electronic effects study, 

with a negative slope provides the first87 complete evidence for the formation of the electron 

deficient center. The cyclic "intermediate" is very similar to the 1,3-acetoxonium ion 

intermediates proposed in various solvolysis reactions. 49 In keeping with this theme, we would 

like to term this "intermediate" a 1,3-benzoxonium ion. 

We studied the nature of this transition state by making use of the Hammett - Brown 

equation. 88 The only other study of electronic effects in Pd(II) [3,3] rearrangement catalysis 

was published recently. 58 In that study, Overman and Renaldo found no simple electronic 

effect relationship in the bis(hexanenitrile )dichloropalladium(II) catalyzed isomerization of 2-

ary 1-1,5-hexadienes. They were able to correlate, however, the rates of rearrangement of the 

dienes with electron deficient substituents, with Hammett - Brown <1+ values and obtained a 

slope of 2.0 (R2 = 0.98). They attributed the lack of correlation of the electron releasing 

species with "non-productive binding of the catalyst with the electron rich styrene double bond 

of these particular substrates". 

We successfully correlated the pseudo first order rate constant that we obtained, k0bs, 
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with Hammett - Brown u+ values and obtained a slope p = - 0. 78, with electron releasing 

groups speeding up the reaction. To this we attribute the standard interpretation of a positive 

charge in the "intermediate" and stabilization by the species that can contribute electron 

density. 

It is important to realize that the k
0

bs is a combination of the equilibrium constant 

from the initial 1r complexation and the rate constant for the formation of the cyclic positively 

charged intermediate and corresponds to kJ(5• Hence the interpretation of the meaning of the 

magnitude of p is complicated. In order to interpret p the factors influencing the k0 bs value will 

be considered. 

Partly relevant to this work are the studies of the 1r complexation of olefinic species 

with transition metals, most notably d8 species. A brief look at this work is needed to 

understand the stability of the initial step in Pd(II) reactions with olefins. An excellent review 

of the thermodynamics of olefinic and acetylenic complexes with transition metals is given by 

Hartley. 89 In terms of Pd(II) complexes, the equilibria of species with different charges have 

been studied. The equilibria of monoalkene complexes of Pd(II) are known and two examples 

are cited. The 1r complexation equilibrium for ethylene with PdCl/to give [PdCl/CiH4)L has 

been determined in water9° and methanol91 solvents. The importance of the electronic effects 

on these equilibria has been stressed in several papers, although actual quantitative evaluations 

are few. For example equilibria of the cationic complexes, [Pd(C5H5)(P~)(alkene)t with R 

= Ph, Et, n-Bu, were evaluated for electronic effects by Kurosawa, et. al. ,92 who were 

studying the configurations and relative stabilities of the complexation of olefins. An example 

of equilibrium studies of neutral Pd(II) species with olefins is found in the work of 

Partenheimer and Durham. 93 Their study covered a series of seven olefins, including cyclic 
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olefins, acyclic olefins and styrene. The equilibria for the replacement of the olefins by 

pyridine from [PdCli( olefin)py] were determined. The study found trends relating the enthapic 

data to catalytic phenomena, ionization potentials and the decrease in double bond stretching 

frequency of the olefin on co-ordination. Decreasing 1r contribution in the Dewar-Chatt­

Duncanson sense,94 for the series Pt(II) ~ Rh(I) > Pd(II) > Ag(I), was suggested. 

Probably the first extensive electronic effects investigation was by Shupack and 

Orchin95 who prepared sixty six 1-(4-substituted pyridine N-oxide)-3-olefin-2,3-

dichloroplatinum(II) complexes where one of the olefins was a series of 3- and 4-substituted 

styrenes. The styrene complexes were equilibrated with 1-dodecene and the equilibrium 

constants for the competition were determined by UV spectrophotometry. No simple Hammett 

relationship was found in this work. Their results were interpreted in terms of energy level 

matching of the <1 and 1r orbitals. Later Powell and other workers presented a simpler bonding 

idea involving predominant olefin to metal <1 donation primarily on the basis of regular 

variation in the 13C NMR96 and X-ray structural parameters97 with Hammett - Brown a+ values 

in [PtCl:zl)y(L)] in which Lis CH2 =CHC6H4Y-p (Y = NM~, OEt, OPh, Me, H, Cl, MeCO 

or NOJ. Powell, et. al. , 65<•J also obtained very successful correlation with <1 + in a study 

involving styrenes. The 1r complexation data of their palladium(II) species gave p = - 0.54. 

Their interpretation of the <1 character of the olefin-Pd bond being of greater importance than 

the 1r back donation was supported also by the trends in ..1H0 and ..1G0 values obtained. 

Recently Kurosawa et. al. ,98 correlated substituted styrenes and several other olefins 

with a+ and substantiated Powell's interpretation. In this interesting study, they obtained 

excellent correlation for their log K values with Hammett - Brown <1+ values (R = 0.996), 

with a slope, p = - 0.82. They were studying stabilities of [Pt(PP~)(methylallyl)(L)t, where 
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Lis CH2=CHC6H4Y-p (Y = NMe2 , OMe, Me, H, CI or NOJ. In keeping with the X-ray 

and the 13C NMR data, the more electron releasing species gave a stronger olefin-Pt bond. 

Consistent with this interpretation, the most 1r acidic ligand they used, methyl acrylate, gave 

the least stable complex. In an earlier study92 of the structures, stabilities and reactions of 

cationic palladium(II) complexes containing the r,5-cyclopentadienyl ligand, Kurosawa, et. al. 

found that with substituted styrenes they could correlate the 13C shifts of the olefin carbons 

with CT\ while the stabilities of the complexes correlated better with CT than CT+. A possible 

significance of ion pair formation in determining stability trends was suggested. They 

attributed stronger olefin-to-metal CT donation as playing a more important role in the stability 

of the complexes than the back bonding from the Pd. 

The p values from Kurosawa et. al. are consistent with the p value obtained in the 

complexation of styrenes with Ag+ species in which p = - 0. 77 was obtained. 9!I By analogy 

with the cited equilibrium 1r complexation studies, it appears as though our p value is 

consistent with the p values obtained simply for 1r complexation. But, the major difference is 

that our site for 1r complexation is at least one atom removed from the site at which charge 

deficiency is found. 100 And, as far as the absolute value of p is concerned, one of the most 

important factors is the distance of the reaction center from the substituent. 101 Exner suggests 

that to a first approximation p decreases by a factor of one-half with every interposed atom. 

So it is interesting that similar p values are obtained although the k
0
h• is composite and the 

[Pd(II)] catalyst in this work is at a site slightly more removed from the position of charge 

formation. The p obtained could be expressed as 

P = Peq + P2 = P1 • P.1 + P2 (IV.3) 
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where 1, -1 and 2 are standard notation refering to a forward first step, a reverse first step 

and a second step, respectively. 

The standard arguments can be made about the relative magnitudes of each of the rate 

constants, say k1, k_1 and k2• Thus, if k2 is greatest, the overall magnitude of p is determined 

by the first step, as in the hypothetical A -+ B, as shown in equation IV.4. 

A B C (IV.4) 

This would correspond to the formation of the 1r complex in our scheme. The observed rate 

constant is then k1 and the observed p is p 1 of the first step. A similar argument could be 

made about k_1 being greatest; B -+ C is rate limiting and the observed rate constant is given 

by the product of ~ and the equilibrium constant for the equilibrium A ~ B and the observed 

p is given by equation IV.3. The point is that depending on relative magnitudes of rate 

constants, the rate determining step need not remain the same when the substituent is changed. 

Closer in nature to the equilbria involved in our study are the equilibrium studies of 

palladium(II) acetate with olefins in acetic acid containing sodium acetate, from Henry and 

Pandey. 102 In that work, no substituent effects were studied; the equilibria dealt with the 

formation of two 1r complexes, a more rapid dimeric NaPd(OAc)iol) equilibrium and a 

slower monomeric NaPd(OAcMol), as shown in the equations IV.5 and IV.6. 

N3zP~(OAc)6 + ol ~ NaP~(OAc>s(ol) + NaOAc (IV.5) 



Na2Pd2(OAc)6 
+ARCH=CH2 

PATHB 

Figure IV.2. OxidaLion of SLyrenes with Na2Pd2(OAc)6 from Lee and Henry. 

ARCH=CHAr 

(ArCH=CH-h 
+Pd(0) 

°' 00 



N3zPd,(OAc), + 2ol .=:t 2 NaPd(OAcMol) 
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(IV.6) 

These are similar to the equilibria for the interaction of allylic esters with Pd(II) in our 

system containing excess chloride. 

It must be noted (Figure IV.2) that in the oxidations of styrenes, by Na2Pdi{OAc)6 

in acetic acid in the presence of sodium acetate, two paths are seen. Path B is favored by 

electron releasing groups indicating a polar transition state for this path. In the formation of 

the oxypalladation adduct as shown in path A, there is a relatively nonpolar 1r-u 

rearrangement. 103 Two points of interest are first the equilibria of N~Pdi(OAc)6 with olefins, 

as shown in equations IV.5 and IV.6, are similar to those in our system and second, the steps 

following 1r complexation obviously are affected differently in terms of electronics. 

The two systems differ in three ways: first the oxypalladation in this work is 

intramolecular; second, the proposed site of charge deficiency in this work is directly attached 

to the atom serving as the nucleophile; and finally, path B in Figure IV .2., the one more 

affected by the electronics, that is, the path leading to the coupling products, is a totally 

different reaction from the one we are studying. 

An important aspect of the oxidation of the substituted styrenes is that while the value 

of the equilibrium constant for 1r complexation increased as the electron donating power of 

the aromatic substituent increased, it was almost exactly compensated by a decrease in the rate 

constant of the following step, so the value of the composite k remained practically constant. 104 

A similar argument was made by Henry in the oxidations of olefins by PdCl/" in aqueous 

solution. 43 

One likely interpretation for the magnitude of p with any one Pd(II) species is as 
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follows. Equilibrium 1r complexation is certainly faster than oxypalladation which should be 

the rate determining step. 105 Two limiting cases then present themselves. 

In the first case, the equilibrium constants for 1r complexation should decrease or 

increase based on the nature of the para substituents. Therefore, equilibrium constants 

decrease with electron withdrawing groups. But the 1r complex formed in these cases should 

be more reactive to oxypalladation. Thus, the rate constant for oxypalladation increases. The 

opposite effect occurs with the electron releasing species. Equililibrium 1r complexation 

constants are higher but the more stable 1r complexes formed are then less susceptible to 

nucleophilic attack. The result, is a dampening on the value of the slope p for the composite 

reaction. 

In the second limiting case, the effect of the electron withdrawing and releasing groups 

on the 1r complexation constants is negligible. The reason for this is the distance of the groups 

from the site of 1r complexation. The effect on p is thus very small, as discussed earlier. 

Unfortunately, to the authors knowledge, no equilibrium constant data on allylic species are 

available in Pd(II) chemistry. Representative equilibrium studies have been discussed, and 

the closest cases are the styrenes that are vinylic systems. Experimentally, it is difficult to 

obtain the 1r complexation constants because the first step cannot be isolated without drastically 

changing the conditions of the experiments or modifying the substrate. One possible method 

would be to study equilibrium 1r complexation of substituted benzoate esters of allyl alcohol. 106 

Thus limiting interpretations of the value of p indicate that it is either dampened as discussed 

in the first case, or it represents only the formation of the positively charged intermediate of 

the second case. Actually, the value of p probably arises from a case somewhere in between; 

the dampening effect is present, albeit to a moderate extent. 



71 

The values obtained in this study for the slopes, p = - 0. 78 and p = - 0.81 with the 

other two catalysts, the dipositive and the neutral Pd(II) species, are very similar to the slope 

p = - 0. 78 for the negative chloro catalyst. Apparently, the electronics in the reaction are 

affected very little by the charged nature of the Pd(II) complexes although the variously 

charged Pd(II) catalysts are certainly very different species. [Pd(CH3CN)i(PP~}J2+, for 

example, is a very electrophilic species. This catalyst has been shown to catalyze 

rearrangements and polymerizations that are established to be very carbocationic in nature. 107 

Sen claims that this kind of electrophile promotes the II slippage 11 108 of the olefin thus enhancing 

nucleophilic attack on the co-ordinated olefin. In the hypothetical reaction shown in equation 

IV.4, that would increase k1 and hence the p 1 contribution to the composite p described by 

equation IV.3. We are apparently not witnessing this effect. 

One possible explanation, therefore, is that once again composite effects are being 

witnessed just as in the explanations made earlier for any individual Pd(II) species. More 

stable 1r complexes are obtained with the more electron rich [Pd(II)] catalysts. It follows that 

this stabilization increases the value of K5 but there is a corresponding decrease in the value 

of k6 because the stabilization makes them less reactive to nucleophilic attack. Naturally, the 

dipositive catalyst would have less stable 1r complexes. The lower 1r complexation would be 

made up by a higher value for k6• Thus p values remain practically the same. Thus, just like 

in the oxidations of the styrenes by Na2PdpAc6 and in the oxidations of olefins by PdCl/ 

composite effects result in the similar values for p. It is interesting to observe this kind of 

compensating effect, especially with the dipositive catalyst because such Pd(II) species have 

known chemistry that make them very reactive. 109 
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Table IV.I. Bimolecular Rate Constants for Pd(II) Catalyzed [3,3] Rearrangements. 

No X [Pd(CH3CN)i<PPh3)J2
+a,b [PdCli{PhCN)J"·c [PdCllCJI11N) ]a,d 

1. -NO2 3.82 11.3 

2. -CF3 16.5 

3. -Cl 10.9 53.2 33.8 

4. -H 18.7 101 31.5 

5. -Me 25.6 175 10.1 

6. -OMe 46.2 200 

7. -OMee 31.6 

8. -OEt 70.8 236 

• This is the Pd(II) catalyst used. All groups are in the para position unless mentioned otherwise. The numbers in this column 

are bimolecular rate constants obtained by dividing the pseudo first order rate constants by the amount of Pd(II) in the reaction 

mixture. All bimolecular rate constants are in M"1 s·' and are x Jo', and at 25 ·c. 

b From Table m.s. In CH2Cl2, 

c From Table ID.6. In HOAc. 

• Excerpted from Table ID of Overman and Renaldo."' In CDCI,. 

• In the meta position. 
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JV .2. Comparison of Rate Constants. 

Collected in Table IV .1. are bimolecular rate constants from this work and some 

bimolecular rate constants excerpted from the similar study of Overman and Renaldo using 

bis(hexanenitrile )dichloropalladium(II). 58 

The Pd(II) species with the two chloride ligands and the two nitriles gives the highest 

values for the rates of reaction. This seems to be a feature of the lability of the nitriles in 

Pd(II) species with chloride ligands. The bis(nitrile) species are known to dissociate very 

easily. For example, a problem in obtaining the IR spectra of 

bis(benzonitrile)dichloroplalladium(II) has been that they always show a free nitrile stretch of 

equal intensity to that from the co-ordinated nitrile. In the present work, in the attempted 

study using this catalyst in CDC13, it was noticed that if the catalyst was added before the 

allylic ester, almost immediate precipitation of a red-brown solid occured. This is almost 

certainly some form of aggregation of the palladium which is a common feature in solvents 

of low dielectric constant, while using ligands such as benzonitrile. The values from the 

dipositive catalyst from this work are lower than the values from the neutral species by a 

factor of around four. The same arguments made for the p values apply here too. Perhaps 

there is a slight reduction in the positive charge because the predominant mode of bonding of 

the phosphines is electron donation but in aryl phosphines, there is significant 7r acceptor 

character. 110 

The fact that all the rate constants in the present work increase with electron releasing 

species is very significant to the proposal of positive charge formation in the reaction. This 

is the first time that such a result is being demonstrated. It is reasonable that the rate constants 

from the electron releasing species from the work of Overman decrease because of the 
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formation of more stable non-productive 1r complexes with the styrene unit. It could also 

explain the slight difference (factor of three) between the unsubstituted species in that work 

from this one. The only common electron withdrawing species, the p-chloro species, shows 

all the rate constants very close to each other. Actually, the only slight variation in 

bimolecular rate constants from this work and from Overman supports the fairly invariant 

values obtained for p across different Pd(II) catalyst species. Also, in very different solvents 

all the rate constants fall within half an order of magnitude of each other as seen in Table 

IV.1. 

IV.3. Note on Product Formation. 

Usually, increasing steric bulk on the C = C bond decreases stability as seen in 

representative examples of Pd(II), 111 Pt(II), 112 and Rh(I) 113 complexes. The decomposition of 

the cyclic Pd(II) a intermediate resulting from internal oxypalladation to the 

thermodynamically more stable trisubstituted olefin is thus favored. On account of the lack 

of stability in Pd(II) complexation with such an olefin and the steric hindrance offered to 1r 

complexation to the product no equilibration is seen. Thus, the reaction simply is driven to 

the thermodynamically more favored product. 

IV .4. Activation Parameters. 

By way of comparison with the thermal reaction, Hill, et. al., 114 studied substituent 

effects on allylic esters in the gas phase. They found that the transition state possessed 

carbonium carboxylate character. In addition, they studied activation parameters and obtained 

log A values between 9.2 and 13.7, and E. values ranging from 35.0 through 45.5. They 
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obtained AS* values that were positive and low positive AH* values. 

In contrast the thermodynamics of this isomerization with Li2Pd2Cl6 in glacial HOAc 

was studied with the p-chloro substituted allylic ester and temperature effects were evaluated. 

An E. = 17.3 kcal/mol was obtained. The apparent enthalpy and entropy of activation are 

16.7 kJ/mol and -24.1 eu. These are very comparable to values obtained in similar 

homogeneous Pd(II) chemistry. For example the Wacker oxidation of ethene gave AH* = 19.8 

kcal/mol and AS* = -8. 7 eu. A better comparison is the more recent data from Zaw and 

Henry. They obtained 19.9 kcal/mol and -15.0 eu for the apparent enthaply and entropy of 

activation using a similar k
0

bs corresponding to a kK for the Pd(II) catalyzed oxidation of 

cyclohexenol in water. 115 

IV .5. Conclusions. 

In this part, conditions were found to carry out clean quantitative isomerizations of an 

allylic ester into its [3,3] rearranged isomer under all conditions in which catalysis was 

effected. The catalysis was effected in facile manner at 25 ·c in dry solvents: acetic acid, 

dichloromethane, chloroform, acetonitrile and nitromethane. The reaction is catalyzed by 

various Pd(II) species. 

In terms of kinetics, the rate expression was obtained using Li2Pd2Cl6 in acetic acid. 

Electronic effects were studied with three catalysts to quantitate nature of the intermediate. 

Negative slopes, p values of - 0.78, - 0.78 and - 0.81, with electron releasing groups 

providing stabilization for the positively charged intermediate were obtained. 

An important point is that the p values demonstrate stabilization of a positively charged 

"intermediate" but do not show much variation across different Pd(II) catalysts because of 
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composite effects. More stable 1r complexes are formed with electron rich [Pd(II)] species; 

yet nucleophilic attack on such complexes is slower. Similarly, more positively charged 

[Pd(II)] species form 1r complexes more reactive to nucleophilic attack, yet compensation in 

these cases occurs because of lower equilibrium constants for 1r complexation. 
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PART TWO 

A SUPPORTED CATALYST FOR OXIDATIONS 



PART TWO: CHAPTER I 

BACKGROUND, NATURE AND SCOPE OF TIDS WORK 

I.1. Why Catalyzed Oxidations ? 

In the specialty chemicals industry there is currently much interest in the use of 

catalytic oxidation as an environmentally more acceptable alternative to employing classical 

stoichiometric oxidants such as permanganate and dichromate. 1 Since the majority of fine 

chemicals are complex, multifunctional molecules with high boiling points and limited thermal 

stability, processing is largely limited to the liquid phase and moderate temperatures. Although 

gas phase oxidations are virtually excluded, it does not mean that heterogeneous catalysis is 

ruled out. Chemo-, regio- and stereoselectivity are important requirements too. Processing 

of fine chemicals is multipurpose and batchwise. This means that not only raw material costs, 

but also the simplicity of the installations for these processes are important economically. 2 

Thus, in liquid phase oxidations either homogeneous or heterogeneous catalysts can be 

employed and each have their advantages and disadvantages. 

The ideal catalysts are those that combine the high activity and selectivity usually 

associated with homogeneous catalysts, with the ease of recovery and recycling that is 

characteristic of heterogeneous catalysts. Further heterogeneous catalysts are generally stable 

to deactivation by the oxidative destruction of the ligands surrounding the metal ion and / or 

the formation of unreactive µ-oxo dimers (oligomers) that characterizes many homogeneous 
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oxidation catalysts. Hence, the need for the developement of oxidatively stable, heterogeneous 

catalysts that exhibit high activities and selectivities in liquid phase oxidations is currently an 

active research area. 

I.2. Backeround to Supported Metal Complexes. 

The first approach to a supported metal complex was to place a homogeneous catalyst 

on an insoluble support. This work of a supported metal catalyst was published in 1969,3 and 

it involved the use of cationic metal complexes like [Pt(NH3) 4]
2
+ on sulfonated polystyrene. 

The idea of supporting metal complexes was probably from Merrifield who had supported 

enzymes for polymer synthesis and degradation on polystyrene resins. 4 

Many metallic heterogeneous catalysts on supports appear to have crystallites which 

are very small, containing only a few metal atoms. These atoms interact co-operatively to 

readily carry out reactions which cannot be achieved readily by homogeneous mononuclear 

catalysts. Examples on platinum surfaces include the oxidation of methanol, 5 the four electron 

reduction of dioxygen at fuel cell electrodes6 and the isomerization of alkanes. 7 Fischer 

Tropsch chemistry is another important example of the co-operative action. 8 Such 

heterogeneous catalysts have a furthur advantage in that they are surface species and they 

would have bare co-ordination sites and thus would be more reactive than completely co­

ordinated soluble catalysts. 

Many homogeneous or heterogenized homogeneous catalysts require polymetallic sites. 

Examples include the diplatinum A-frame complex which is one of the more active catalysts 

for the water gas shift reaction,9 hydroformylation by dirhodium species, 10 and the face-to­

face dicobalt porphyrins, electrocatalysts for the four electron reduction of di oxygen. 11 
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1.2.1. Types of Supports. 

Pre-1940 references ususally refer to the support as a carrier. Reference to the 

supports reveals an interesting blend: blood char, bone char, chamotte, cement, kaolin and 

asbestos. Supports are broadly of two types: (1) organic polymers, and (2) inorganic 

12 supports. 

The major advantages of inorganic supports over their organic counterparts are their 

better mechanical and thermal stabilities coupled with reasonable heat transfer properties. 

The major advantages of organic polymers are: (a) They are easily functionalized, especially 

if they contain aromatic groups. 13 (b) They are chemically inert. The surface thus does not 

interfere with the catalytic group. This is sometimes a problem with metal oxide surfaces. (c) 

Based on the type and cross linking in the polymer, a wide range of physical properties are 

possible. For example, porosity, surface area and solubilty are only three of several variable 

properties of commercially available polystyrene. 

1.2.2. Polymer Supported Species. 

After Merrifield, molecules have been attached to polymers for many purposes. These 

include organic and stereospecific synthesis, catalysis, separation and purification and isolation 

of reactive species. In addition, interest in functionalized polymers has been furthered by their 

analogy to multifunctional biological molecules like polypeptides and enzymes. 

1.3. Advant32es of Hetero2enized Systems. 

Obviously, the idea of supported and therefore heterogenized catalysts is not as simple 

as taking a successful homogeneous metal catalyst and immobilizing it on a solid support. The 
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high selectivity of the homogeneous catalyst14 is often difficult to achieve in a supported 

catalyst. Primarily, this is because systematic modification of steric and electronic factors is 

not easy in heterogeneous systems as opposed to similar modification in homogeneous 

catalysts. A major asset arises from the point of workup because of the ease of separation of 

the products from the supported catalyst at the end of the reaction. Some other advantages are: 

(a) The support provides enhanced thermal and mechanical stability (b) Moisture and oxygen 

sensitivity are reduced. An example is the lack of water sensitivity of polystyrene supported 

aluminum(III) chloride. 15 (c) The support may not be simply an inert backbone because it 

could induce a preferred orientation and thus promote selectivity. This is analogous to the 

supposition that the three dimensional structure of the enzyme plays a role in the catalytic 

activity of the enzyme. There is a greater than three fold increase in selectivity for the normal 

to the branched chain aldehyde in the hydroformylation of 1-hexene using polypropylene 

supported [Rh(acac)(P!½P-C6H4CH=CH2-p)CO] 16 (acac is 2,4-pentanedione). (d) Shape 

selective oxidations are achieved by incorporating redox catalytic sites within a zeolite lattice 

framework. The first example of such a II red ox zeolite II is called TS-1 and it catalyzes the 

shape selective oxidation of alkanes with 30 % Hz02• 
17 The pillaring of clays with redox metal 

ions, as in the vanadium - pillared montmorillonite, was found to be an effective 

heterogeneous catalyst for the epoxidation of allylic alcohols with alkyl hydroperoxides. 18 This 

catalyst displays rates comparable with the homogeneous VO(acac)2 catalyst. The difference, 

of course, is the regioselectivity: terminal allylic alcohols are not epoxidized. (e) Their 

chemical reactivity could be different from their homogeneous counterparts. For example, if 

the organic functional groups are bound covalently to the surface, their reactivity could 

change. 
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J.4. Possible Mechanisms of Operation for Polymetallic Catalysis. 

An appealing design for a catalytic site is a polymetallic environment which can allow 

enhanced rate effects. The purpose of having polymetallic sites is for co-operative action. 

There are many reasons for the co-operative action, some of which are given below. 

I.4.1. Substrate Polarization. 

Adsorption of the substrate by one metal center would allow the second metal to 

facilitate the reaction. For instance, there is little doubt that the mechanism of alcohol 

oxidation by group 8 metals follows the sequence shown in the equation below 

RCIIiOH + MX2 ~ HX + RCIIiOMX -+ RCHO + HMX -+ HX + M(0) (1.1) 

The first equilibrium step is alkoxide formation followed by /J-hydride elimination, and finally, 

hydride decomposition. On a bimetallic heterogeneous catalyst the reaction would most likely 

involve adherence to the one metal and hydride extraction by another metal as shown in 

equation 1.2. 

CH2 -O 

I 
H 
M- M 

(1.2) 

Not only is the rate increased by the adsorption of the substrate, but the hydride asbstraction 

should occur more readily. This is because the carbon - hydrogen bond will be more polarized 

resulting in a partial negative charge on the hydrogen. 
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This polarization effect will be very important in the oxidations in which very high 

isotope effects are seen as in the kiko of 50 in the oxidation of benzyl alcohol by the Ru(IV) 

oxo complexes. 19 Such high isotope effects indicate that the hydride transfer is rate limiting. 

Hydride transfer could be greatly enhanced via polarization of the alcohol. Other oxidations 

by Ru(IV) oxo species such as the oxidations of tertiary aromatic hydrocarbons, apparently 

also involve solvent assisted hydride transfer. 20 

I.4.2 . . Co-operative Electron Transfer. 

Oxidations in homogeneous solution by most one electron oxidants occur by two one 

electron steps producing a reactive free radical as an intermediate. 

(1.3) 

Bimetallic species should promote a concerted reaction allowing the oxidation to become more 

facile and thus enhancing the rate of the reaction. The distance between the two metals will 

be crucial to the success of the interaction. 

(1.4) 

1.4.3. New Concerted Reactions. 

The presence of polymetallic sites can promote reactions not possible in homogeneous 
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solution. For example, the oxidation of methanol on platinum electrodes proceeds via a 

strongly adsorbed intermediate which could be HCO.<11, COH.<11, or co.<11. 21 More recent FTIR 

spectroscopic studies have identified this species to be COH.<11 suggesting that the reaction 

proceeds as shown below: 

CH3OH + Pt (surface) Pf:iCOH + 3H+ + 3 e· (1.5) 

1.5. Palladium as an Oxidant 

Many species are oxidized by palladium(II). A significant feature of its oxidation 

chemistry is the ease of reoxidation of Pd(0) to Pd(II). Thus Pd(II) can be regenerated in situ 

and thus an expensive metal has become commercially attractive. 

1.5.1. Oxidation of Alcohols. 

Berzelius first reported22 in 1828 that palladium(II) was reduced upon reflux of a wet 

ethanolic solution of potassium palladium chloride. In 1855 Strecker oxidized cinnamyl alcohol 

to cinnamaldehyde using PtO and dioxygen. 23 This century one of the earliest studies was by 

Moiseev et. al., 24 who performed studies which revealed that such ethanolic oxidations were 

sluggish even at reflux. Harrod and Chalk25 noted the reduction of Pd(II) salts by anhydrous 

alcohols as an undesired side reaction while using the alcohols as solvents. 

The first extensive study of alcohol oxidations by palladium species was by Lloyd26 

who observed that at temperatures of 70 ·c - 120 ·c primary and secondary alcohols were 

readily oxidized, and in good yield. Among the primary alcohols the only relatively stable 

species was methanol which gave methyl formate as the oxidation product. Lloyd 
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Figure 1.1. (a) General Mechanism for the Oxidation of Alcohols by d8 

Metals. (b) Mechanism for the Oxidation of Alcohols by Pd(II). 
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suggested a ligand dehydrogenation involving the alcoholic hydrogen and an alpha hydrogen. 

Such a mechanism had been proposed before and the fact that tertiary alcohols could not be 

oxidized supports this hypothesis. The presence of water decreased yields of oxidized 

products. A general picture of alcohol oxidations is shown in Figure I.I. 

I.5.2. Olefin Oxidations. 27 

One of the best known oxidations in palladium chemistry is the Wacker oxidation of 

ethene to acetaldehyde in aqueous medium. The oxidation can be summarized in the following 

equations 

PdCI/ + C2H4 + H2O 

Pd(0) + 2CuCl2 + Pd(0) 

2CuCI + ½02 + 2HCI 

CH3CHO + Pd(O) + 2HCI + 2cr 

PdCI/ + 2CuCI 

2CuCl2 + H20 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

The basic reaction, the oxidation of olefins by palladium salts in aqueous solution, was 

discovered by Phillips but it was not until Smidt found that CuC12 could re-oxidize the Pd(0) 

in situ did the reaction become commercially important. The cuprous chloride reacts very 

rapidly with 0 2 and hence the resulting net reaction is an air oxidation. The rate expression 

for the oxidation under these conditions is 

[PdCI/] [olefin] 
Rate = k ______ _ (1.10) 

[H+] [Cl]2 
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Most palladium(II) catalyzed reactions of olefins involve addition of palladium(II) and 

nucleophiles to the double bond, followed by decomposition, usually oxidative, and it is 

difficult to interpret the kinetics unambiguously in such complicated systems. 

It is firmly established that the first step in the mechanism is the 7f' complexation 

equilibrium, 

(1.11) 

The next equilibrium combined with that in the equation 1.12 explains the squared 

chloride inhibition term 

(1.12) 

At this point the interpretation becomes controversial. The actual problem in the issue has 

been whether the oxygen nucleophile (H20), attacks from outside the co-ordination sphere 

(trans) or from a co-ordinated position (cis). In the reaction this results in a conversion of the 

7f'-bonded olefin to a palladium(Il)-,S-hydroxy alkyl (hydroxypalladation). 

The experimental arguments in favor of one or the other mechanism are based on (1) 

stereochemical results since cis attack would give different products from trans attack; (2) 

comparison of kinetic and competitive isotope effects; (3) secondary isotope effects; and (4) 

demonstration of the actual rate determining step by the oxidation of deuteriated allyl alcohols 

which would undergo measurable isomerization if hydroxypalladation were reversible. 

Stereochemistry is difficult to obtain in oxidations. Very interesting studies, mostly 

demonstrating trans stereochemistry, resorted to changes in conditions to establish this mode 

of attack. For example, Backvall demonstrated trans stereochemistry under conditions of high 
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chloride concentration, in a reaction which gave chloroethanol as major product. 28 

However, a recent stereochemical and kinetic study under the Wacker conditions from 

Henry using the idea of 1,3 chirality transfer on a chiral allylic alcohol has demonstrated a 

ds mode of attack. 29 

Much useful information on homogeneous palladium oxidations has resulted from 

mechanistic studies on allylic alcohols. 30 On the one end of the spectrum there is information 

on the directing ability of oxygen in terms of initial 1r-complexation of the olefinic species as 

evidenced by the by the distributions and stereochemistries of products that are formed. On 

the other end of this spectrum is the information on products; for example, allylic alcohols 

can give hydroxy aldehydes, hydroxy ketones and allylic ketones. 30 

1.5.3. Mode of Decomposition of Palladium(IO-Hydrocarbon Adducts. 

Now the mode of decomposition of Pd(II) alkyls with hydrogen fJ to the Pd(II) will 

be considered. Earlier mention had been made of the fact that in the oxidation of alcohols, 

the Pd(II) species is eliminated (reductively) via the transfer of a hydride to the palladium. 

Hydride complexes of transition metals have been known for a while.31 Even stable Pd(II) 

alkyls with stabilizing groups such as phosphines have been characterized when fl-hydrogens 

are not present. Thus methylpalladium(II) and phenylpalladium(II) can be prepared but 

ethylpalladium(II) decomposes easily, presumably via a ,8-hydrogen shift, to give ethylene and 

an unstable Pd(II) hydride that decomposes to Pd metal and a proton. 32 

- HCI + Pd(O) + 2L (1.13) 
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In the oxidative decompositons in the Wacker oxidation of ethylene and in the 

analogous oxidations of allylic alcohols Henry suggested a decomposition involving a Pd(II) 

p-hydrogen interaction. 33 These interpretations are consistent with data obtained in these 

reactions and are in keeping with extensive studies done on platinum and other late transition 

I . 34 meta species. 

In a recent review,35 Bryndza and Tam bring together evidence to show that despite 

general perceptions, late metal-oxygen and late metal-nitrogen bonds are not particularly weak 

but are thermodynamically quite robust. They form easily, yet they are reactive enough to 

demonstrate interesting reactivity. In binding to late metal centers oxygen and nitrogen a 

ligands are not hard ligands relative to carbon and hydrogen; however because of increased 

electron affinity of the heteroatoms involved, the bonds heterolyze more easily. This kinetic 

lability is useful in the oxidations of oxygen or nitrogen species. 

1.6. Purpose of this Work. 

Our goal is to make a practical catalyst for oxidations that are of current interest. We 

would like to design catalysts with the following properties: 

1. The catalyst ought to be some kind of heterogenized species and can thus make use of the 

standard attendant advantages of heterogeneous systems like (1) ease of catalyst recovery, (2) 

ease of product isolation, and (3) enhanced thermal and mechanical stability. 

2. The use of a polymeric setting would make coating onto an electrode easy and the system 

could be used for electrochemically driven oxidative degradation reactions. 

3. The actual binding site for placing target metals could be triketone linkages on the polymer, 

although many other groups are likely to be useful for this purpose. The ligand geometry will 
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result in a bimetallic catalyst expected to enhance the oxidations of alcohols, hydrocarbons and 

aromatics like phenols and catechols via adsorption, polarization and co-operative electron 

effects. In particular, metal - metal distance should be close to ideal for the formation of 

activated 0 2 peroxo species when an appropriate metal is complexed. 

Many different metals could be used in such a system. Both one electron and two 

electron oxidants can be employed. The use of two electron oxidants in a bimetallic setting 

could thus give us a simultaneous four electron capability, the consequences of which would 

become significant for fuel cell type reactions. Thus we could choose the metal based on the 

criteria that would involve (a) target molecule(s) to be oxidized, (b) whether the activaton of 

0 2 is required, (c) whether one or two electron capability is needed, (d) value of potentials 

required for the oxidation in question, and (e) mode of reoxidation that would be employed. 

Mixed metal systems could also be employed for achieving unique oxidations. As an 

example, Caselleto, et. al. ,36 made heterobinuclear complexes using analogous bis(triketones), 

similar to the triketone framework we are proposing to synthesize on the polymer backbone. 

The oxidation of substituted catechols to the corresponding quinones was accomplished using 

these systems. 

I. 7. The Approach. 

I. 7 .1. Preparation of the Supported Bimetallic Catalytic System. 

(a) Polymerization: The method involves the formation of new benzene rings by a 

cyclic trimerization reaction involving acetyl groups. If methyl ester groups are incorporated 

onto the phenyl rings, they can be modified later; 

(b) Modification of the methyl ester to get triketone linkages; 



1.7.2. 

1.7.3. 

(c) Coating of the prepolymer onto the heterogeneous support, and curing; and 

( d) Metal ion uptake on the triketone system to get the bimetallic system. 

Testine of the System for Catalytic Activity. 

The process would involve 

(a) choice of suitable substrates; 
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(b) the determination of a suitable reoxidant to perform the oxidations catalytically; 

(c) analysis of the products; 

(d) a simple and convenient means to study kinetics; and 

(e) control reactions: 

(i) to show that the reactions are heterogeneously catalyzed; 

(ii) to show that catalyst leaching did not deactivate the catalyst over a period 

of time; and 

(iii) to demonstrate the efficacy of a bimetallic system in terms of unique 

capabilities attributable only to the multimetallic nature through the products 

obtained and in terms of enhanced rates over a like monometallic system using 

a diketone framework. 

Studies of Catalyses. 

It is our proposal that for a process to avoid radical intermediates, in the degradations 

of polyphenolics to dibasic acids, two electron oxidants are useful. This kind of reaction 

would be important from several points of view, especially if a clean and controlled oxidation 

could be demonstrated. For example, some of the studies on the oxidations of catechols show 
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a variety of products. Clean oxidative degradation of aromatic species would be 

environmentally appealing and of greater practical value. It would be interesting if we could 

demonstrate this with a two electron oxidant and thus using the bimetallic catalyst that we are 

proposing, ring cleave aromatic rings. 

We would like to use catechols as our models and Pd(II) mounted in bimetallic fashion 

in the supported polymer framework as the catalyst system. There are at least three reasons 

for choosing Pd(II) as our metal species for these oxidations. First of all, Pd(II) is a powerful 

electrophile. 37 Second, it is a good oxidant. Finally Pd(O) is easily oxidized back to Pd(II) 

using a variety of co-oxidants. 

There are many other species we would like to try in our oxidations. We could make 

environmentally suitable alternatives to currently used oxidants like permanganate and 

dichromate. Since we do know that interactions of late metal species with heteroatoms are 

thermodynamically quite favorable, we will be attempting to make use of the advantages of 

a bimetallic system. We could, if successful, have a facile supported catalytic system. 



PART TWO: CHAPTER II 

EXPERIMENTAL 

II.1. Synthetic Procedures for the Li2a11d System for the Hetero2eneous Oxidations. 

If special purification procedures were performed, they will be mentioned where the 

name of the chemical first appears. Characterization is limited to 1H and 13C NMR and IR 

spectroscopy, wherever possible. Sample weighings were performed on a Sartorius Model 

2842 analytical balance and are accurate to ± 0.05 mg. Studies at constant temperature were 

carried out in a water bath maintained at 25° ± 0.2 °C using a Messgerate - Werk Lauda 

model B-1 thermostat. 

The heterogeneous oxidations that will be described in this chapter were performed 

on a very specific ligand system. The ligand system is either a /3-diketone or a /3,o-triketone 

on a low molecular weight polyphenyl polymer. The experiments below are descriptions of 

the synthesis of such a system based on analogy to ferrocene38 and mono phenyI39 diketone 

and triketone model systems. 

11.1.1. 4-Acetyl Methylbenzoate. 

To 200 mL of methanol (Aldrich, HPLC grade) saturated with gaseous hydrochloric 

acid (HCl) (Aldrich) by bubbling through for 20 min, was added 5.04 g (3.07 x 10·2 mol) 

of 4-acetyl benzoic acid (Fluka Chemika) in a 500 mL single necked round bottom flask. The 
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4-acetyl benzoic acid dissolved immediately giving a yellow solution. It was refluxed for 2.25 

h and then cooled to room temperature in the air after the heat source was removed. The 

solution was diluted by adding 150 mL CH2Cl2 and 170 mL of brine. The layers were 

separated, the aqueous layer re-extracted with 2 x 25 mL of CH2Cl2 and all the organic layers 

combined. This was washed with 3 x 150 mL of saturated NaHCO3 (blue litmus paper showed 

no change after the second wash) and then with 125 mL of brine. The organic layer was dried 

(anhydrous MgSO.J for 20 min and the solvent removed on a vacuum pump after filtering 

off the drying agent. The crude product was purified via a 125 g silica column (Mallincrodt, 

Silicar Silica gel, 100 - 200 mesh, type 150 A special) using CH2Cl2 as the only elutant. 

M.P.: 94 - 96 ·c; 3.56 g (65%). 

11.1.2. Polymerization of 4-Acetyl Methylbenzoate with P:Diacetylbenzene. 

This preparation was a modification of the method of Teplyakov et. al.4-0 3.64 g (2.04 

x 10·2 mol) of 4-acetyl methylbenzoate and 1.40 g (8.63 x 10·3 mol) of p-diacetylbenzene 

(Fluka Chemika) were put in a dry 250 mL Erlenmeyer flask containing a magnetic stirrer. 

To this was added 100 mL of dry benzene (Aldrich, HPLC) and 11.0 g (7.4 x 10·2 mol) of 

triethyl orthoformate (TEOF) (Aldrich). The ratio of 4-acetyl benzoic acid to p­

diacetylbenzene was 2.4 and that of the TEOF to all the acetyl groups present was 2. 41 The 

flask was fitted with a two holed rubber stopper. One of the holes served as inlet for the HCl 

gas that was bubbled into the solution with a disposable pippette. The other hole had a short 

piece of glass tubing that served as outlet and was connected via Tygon tubing to a drying 

tube and furthur into a trap containing potassium hydroxide (Fisher) solution (3.0 M). The 

HCl gas was bubbled slowly through the solution for 30 - 45 min. The solution was stirred 
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at room temperature and turned an intense red within the first 15 min of passing the HCl gas 

into it. The reaction was stopped before the polymer molecular weight became large enough 

for it to precipitate out of solution. 

The solution was poured into 100 mL of ethanol (Aldrich) to precipitate the polymer. 

The very light yellow brown precipitate was filtered and washed quickly with ethanol, copious 

quantities of saturated sodium carbonate solution, water and finally with ethanol. It was dried 

first in a stream of argon and then on a vacuum pump. This polymeric material was used for 

the subsequent syntheses to the diketone and the triketone by modification of the ester groups. 

These syntheses are described in 11.1.3. 

11.1.3. 

11.1.3.a. 

Modification of Polymers. 

Triketone of 11.1.2. 

A dry three necked 250 mL round bottom flask that had been purged with argon was 

charged with 1.33 g (3.30 x 10·2 mol) of NaH (Aldrich, 60% dispersion in mineral oil). It was 

washed with 3 x 12 mL portions of hexanes. It was then slurried in 5 - 10 mL of THF. To 

this was added 1.20 g (1.20 x 10·2 mol) of 2,4-pentanedione. This resulted in very vigorous 

evolution of hydrogen gas for the first five minutes. The solution was gently refluxed for 2.0 

hand then cooled to room temperature. The solution was stirred for an additional 1.5 h and 

then 0.25 g of 18-crown-6 (Aldrich) was added. The solution looked a dull orange brown. 

To this was added 0.70 g of 11.1.2. in a mixture of CH2Cl2 and THF (total 70 mL). The 

solution was refluxed for 24 h and then cooled to room temperature and allowed to stand for 

12 h. The THF was removed on a vacuum pump. The residue was a dark tan. 
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Fifty mL of CH2Cl2 and 50 g of ice were added to the residue that had been cooled to the 

temperature of ice. A mild effervescence was noticed at this stage. After the evolution of 

hydrogen gas ceased, 100 mL of 1 M HCl was added to the mixture which was then stirred 

for 30 min. There was some precipitate noticed at this stage. After removing the aqueous 

layer, the precipitation was completed by adding petroleum ether. The precipitate was a 

yellowish tan. The product was washed with NaHCO3, brine and finally with water. The 

product was dried overnight on a vacuum pump. Yield = 0. 77 g. This material was purified 

in the standard manner. 

11.1.3.b. Diketone of 11.1.2. 

0.42 g (1.1 x 10-2 mol) of sodium hydride (NaH) (Aldrich, 60% dispersion in mineral 

oil) was washed with hexanes (3 x 5 mL) to remove the mineral oil, and taken in an argon 

purged dry 50 mL round bottom flask fitted with a condensor and argon inlet and outlet 

connections. Using a cannula through a septum covering the third arm of the round bottom 

flask was added 3 mL of THF. To the stirring slurry was added 1.01 g (1.00 x 10-2 mol of 

3,3-dimethyl-2-butanone. The reaction was heated gently for about 0.5 h to form the anion. 

The formation of the anion is indicated by the presence of a yellowish color in the otherwise 

grey slurry. To the anion was added 0.70 g of 11.1.2. in CH2Cl2• The solution was refluxed 

for 12 - 16 h. 

At the end of the reaction the THF was removed on a vacuum pump. To the solid 

dark tan residue was added some CH2Cl2 and 1.0 M HCI. The solution was stirred for 30 min 

and then the layers were separated. The organic layer was washed with brine, saturated 

NaHCO3 and finally with brine. The material was purified in standard manner. Yield 0.81g. 
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II.1.4. Coatin2 of Polymers onto Support. 

10.0 g of celite (Alltech Associates, Inc., Applied Science Labs)(Manville, 

Chromosorb W) (Chromosorb W is screened diatomaceous non acid washed celite of white 

color; moisture content= 0.3%, B.E.T. surface area= 1.0 - 3.5 m2 t', free fall density = 

0.21 - 0.27 g cm·3; true specific gravity = 2.30) was taken in a 250 mL round bottom flask 

containing a stirring bar. To it was added 0.10 g of 11.1.3.a. dissolved in 100 mL of CH2Cl2 

and 30 mL of benzene. The CH2Cl2-benzene solution was heated mildly for 15 min to ensure 

maximal solubility of the polymer triketone material. It was filtered to remove any undissolved 

solids before adding it to the celite as mentioned above. The slurry was stirred for 10 h. The 

solvent was rotovaped off and the polymer triketone coated on the celite support was dried 

on a vacuum pump. 

In a similar manner to that described above, the diketone, 11.1.3.b. was coated onto 

celite. 

11.1.5. Curin2 of the Supported Materials. 

The supported triketone was sprayed with p-toluene sulfonic acid. It was then cured 

by heating in a vacuum oven at 150° C - 200· C for several hours. 

The supported diketone material was cured as described in a similar manner. 

11.1.6. Metal Ion Uptake Usin2 Supported Polymers. 

To a degassed 500 mL two necked round bottom flask containing a stir bar was added 

redistilled acetonitrile (dried over calcium hydride, CaH2). This was carried through three 

vacuum purge - degas cycles in order to deoxygenate the solvent. The flask was then charged 
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with 10.0 g of the cured triketone polymer material on the celite support, 11.1.S.a. To this 

was added 1.0011 g (9.90 x 10-3 mol) of palladium sponge (Aesar). The flask was once again 

purged with argon for ca. 5 min. 2.50 g (2.14 x 10-2 mol) of nitrosyl tetrafluoroborate was 

added to the slurried mixture. The flask was maintained under slightly positive pressure of 

argon. It was periodically vented to release pressure because of the formation of the nitrous 

oxide gas. After 2 h, the supernatant solution began to look yellow and the stirring was 

continued at room temperature for at least 24 h after that. The supernatant solution was 

cannulated out of the flask into another septum stoppered flask. The cured supported material 

that had, at this point, taken up some palladium was washed with 3 x 10 mL of degassed 

CH3CN. Each time the CH3CN was added the support material was stirred very thoroughly 

to wash it. All rinses were combined with the supernatant material cannulated out as described 

above. 

The volume of the supernatant liquid from above was determined and then 1.0 mL of 

it was syringed into a beaker. It was acidified with concentrated HCl and then the palladium 

content was determined using the standard gravimetric method via the dimethyl glyoxime 

reagent. 42 The palladium metal uptake by the triketone system on the support could thus be 

determined by subtracting the amount of palladium in the supernatant liquid from the total 

palladium that had been used. 

In a manner similar to that described above, the metal ion uptake on the supported 

diketone material was performed. 

11.2. Hetero2eneous Oxidations. 

All of the oxidations, that will be described, were performed in methanol or in water. 
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The methanol (Fisher) was of reagent grade and was fractionally distilled. In later experiments 

the methanol was used as received, as it was found that there was no significant difference 

to the rates of the reactions. House distilled water was deionized via a Sybron Nanopure II 

(Brinkman Instruments Limited, Ontario, Canada) deionization system. Degas cycles were 

carried out using a vacuum pump. Purging of solvents was carried out with argon. The argon, 

(Airco Special Gases: Division of the BOC group) of commercial quality, was CGA grade 

E. 

The catalyzed oxidations were all performed at 25 • ± 0. 2 • C in a thermostatically 

controlled water bath. 

11.2.1. Dioxyeen. 

The dioxygen (Airco Special Gases) was grade 5 and of commercial quality (99.5 % 

v/v dioxygen). It was used without further purification. 

11.2.2. Stock Solution of Sodium Methoxide. 

To a dry solution of methanol was added 0.0379 g (1.65 x 10·3 mol) of sodium 

(Aldrich, spheres in odorless mineral spirits, 3 - 8 mm) that had been washed with hexanes. 

After the evolution of hydrogen gas had ceased the mixture was poured into a 100 mL 

volumetric flask and made up to the mark. 

11.2.3. Oxidation of 3,5-ditertbutylcatechol (3,5-DTBC) in Methanol. 

These oxidations were all studied on a 100 mL scale. The amount of any substrate 

(3,5-DTBC, for example) used was always 2.50 x 10·3 mol. The products were characterized 
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by standard 1H and 13C NMR and IR spectroscopies. 

11.2.3.a. Glassware and Setup. 

The reactions were performed in creased two necked 500 mL flasks. The flasks were 

cleaned by soaking in concentrated nitric acid for 20 min, followed by rinsing with copious 

amounts of water, acetone, distilled acetone and finally rinsing at least twenty times with 

distilled deionized water. 

A schematic for the setup for the oxidations is shown in Figure 11.1. 

11.2.3.b. Preparation of the solvent. 

110 - 120 mL of methanol to which 5.50 g (5.18 x 10·2 mol) of TMOF had been 

added was subjected to extensive degassing via three argon purge and two vacuum degas 

cycles in a 250 mL round bottom flask. It was then taken in a 100 mL volumetric flask to 

obtain a precise volume. This solution was then used for the experiment to be described 

below. 

11.2.3.c. Settin~ up the experiment. 

A dry argon purged 500 mL two necked creased flask was charged with 0.50 g of 

11.1.6.a., the bimolecular Pd(II) supported catalyst. About 90 mL of the above solvent was 

taken in the flask. The side arm of the flask was covered with a Subaseal septum (Aldrich) 

while the main arm was attached to a manifold that was facilitated with dual valves connected 

to a vacuum pump on the one side and to a supply of dioxygen on the other. 

The final degassing was then carried out via the vacuum line. After the system has 
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Figure Il.1. Schematic for the Setup for the Oxidations. 
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been evacuated for at least 20 min, 0.5558 g (2.50 x 10-3 mol) of 3,5-DTBC (Fluka Chemika, 

recrystallized from pentane) which was dissolved in the remaining 10 mL of solvent was 

injected directly into the reaction mixture via the septum covered side arm using a syringe 

fitted with a long syringe needle (Aldrich, 18 gauge stainless steel, 12 inches long, with Luer 

hub). 

At this point the vacuum line was closed and the 0 2 line opened. The Hg level was 

adjusted to the zero on the gas buret, stiring was begun and timing started. The time taken 

from the start of the injection to the manipulative procedures described including the start of 

timing is 15 - 25 seconds. Vigorous stirring was done to ensure that there was good mixing 

as the reaction involves more than one phase. 

As dioxygen was consumed, a partial reduction in pressure in the system resulted in 

the rise in the level of the Hg in the gas buret. Readings were periodically taken by levelling 

the Hg in the buret with that in the reservoir to ensure that they were taken at ambient 

pressure in the laboratory. The reaction mixture, which was usually colorless at the start, 

turned to a very intense red and remained thus till about 45 mL of 0 2 was consumed. It then 

began to decrease in intensity and gradually the red color gave way to a yellow. When about 

60 - 65 mL of dioxygen had been consumed, the solution usually appeared a light straw­

yellow. 

11.2.3.d. Workup. 

At the time it was decided to stop the reaction, the flask was removed from the 

manifold and the contents filtered to remove the heterogeneous catalyst. The methanol was 

evaporated in the air and the residue analyzed by NMR to determine the products. 
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D.1.3.e. Control Experiments. 

The control experiments that were performed were done in similar manner to that 

described above in terms of setting up the experiments. In each example of a control 

mentioned below, the species that was not added to the reaction mixture is mentioned below: 

(i) the bimolecular Pd(II) catalyst on the support, 

(ii) 3,5-DTBC substrate, and 

(iii) sodium methoxide base. 

A second set of controls involved the use of the monometallic Pd(II) species made 

from the diketone polymer species on the support. This second type of control experiment was 

to determine relative rates when comparing the monometallic to the bimetallic system. 

Il.2.3.f. Test for Homo2eneous Catalysis. 

A reaction was setup as described in 11.2.3.c. Before attaching the flask to the 

manifold with the vacuum - dioxygen connections, the solution was filtered and the support 

material was removed. The supernatant obtained was then used in an experiment monitored 

for dioxygen uptake. The products were analyzed at the end of the reaction. This was to check 

and see if there was leaching of the metal species into the solution and catalysis because of 

some homogeneous Pd(II) species. 

11.2.3.g. Iniectin2 more 3,5-DTBC. 

After setting up a standard experiment as in 11.2.3.c., the reaction was allowed to run 

until what was determined to be approximately the half way stage, that is, ca. 31 mL of 

dioxygen had been consumed,43 2.50 x 10-3 mol of 3,5-DTBC in 10 mL of solvent was 
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injected into the reaction and the kinetics monitored. 

Il.2.3.h. Reaction with 3,5-Ditenbutylguinone (3,5-DTBQ). 

(i) The experiment was set up as in 11.2.3.c, except that 2.50 x 10·3 mol of 3,5-DTBQ 

was injected instead of 3,5-DTBC when starting the experiment. The reaction was monitored, 

as usual by the uptake of dioxygen. 

(ii) A similar experiment with 3,5-DTBQ, was run with the monometallic Pd(II) 

species. 

11.2.4. Oxidation of 3,5-DTBC Usini= the Supported Monometallic Species 

As described in 11.2.3., the oxidation of 3,5-DTBC was studied using the supported 

monometallic Pd(II) species. The amount used was also always 0.50 g as above. Reactions 

were monitored by the uptake of dioxygen and the analysis of product(s) was as above. 

Similar control experiments were carried out too. 

11.2.S. Oxidation of Catechol in Water. 

Oxidations in water (specifications of the deionization apparatus and degassing 

procedures have been previously mentioned) were all carried out in phosphate buffered 

solutions at constant ionic strength. The most commonly used solution was of pH 8.0 atµ = 

0.20 M. 44 

The reactions were performed in the 500 mL creased flasks as described in 11.2.3. and 

the procedures for setup and experimental monitoring were also similar. The amount of 

11.1.6.a. used was always 0.50 g. 
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n.2.s.a. Oxidation of Catechol at pH 8.0. 

Catechol (Aldrich) was oxidized using Il.1.6.a., the celite supported bimetallic Pd(II) 

species. The reaction was monitored by dioxygen uptake. The amount of catechol injected was 

0.2753 g (2.50 x 10-3 mol). 

Il.2.5.b. pH Variations in the Oxidation of Catechol. 

The oxidation of catechol was monitored at several different pH buffered solutions 

to determine if there was a pH dependence in the oxidation. The amount of catechol injected 

was always the same. 

Il.2.6. Oxidation of Alcohols in Water. 

Alcohols (if liquids, distilled prior to use) were all oxidized in water at pH 8.0 at 

constant ionic strength, µ = 0.20 M. All the reactions were monitored by the uptake of 

dioxygen by procedures previously described in Il.2.3. The products were either isolated by 

derivatization or by extraction. The characterization was by 1H NMR, melting point and 

subsequent comparison with authentic samples using melting point as well as the spectral 

characteristics. All the alcohol oxidations were performed with the bimetallic as well as the 

monometallic Pd(II) species for purposes of comparison of rates of reaction and of products. 

Il.2.6.a. Oxidation of Methanol. 

This experiment was performed using both 12.5 x 10-3 mol or 25.0 x 10-3 mol of 

methanol in separate experiments. The monitoring of the kinetics usually became slightly 

problematic after a short period of time because the product, methanal, being a gas, interfered 
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with the monitoring of gas uptake. The product was identified by the injection of a large 

excess of a solution of 2,4-dinitrophenylhydrazine reagent.45 The product was recrystallized 

twice from CH2CI2 after it was filtered out of the reaction mixture. 

11.2.6.b. Oxidation of Other Simple Mono-ols. 

The other simple mono alcohols oxidized were ethanol (Burdick and Jackson), 2-

propanol (Fisher) and I-phenyl methanol (Fisher). The amounts of these species used was 2.50 

x 10·3 mol. The products were isolated as 2,4-dinitrophenylhydrazone derivatives after filtering 

off the heterogeneous catalyst. In the case of ethanol the flask and the reagent solution were 

cooled in ice as the product, ethanal, is a very low boiling liquid. For the oxidation of I­

phenyl methanol, the derivatization procedure was unnecessary. The product, I-phenyl 

methanal was extracted out of the aqueous layer using CH2Cl2 after filtering off the catalyst. 

The oxidation of I-phenylmethanol- I, I-d2 was also carried out. 

11.2.6.c. Oxidations of 1,2-Diols. 

The diols oxidized were I,2-ethanediol, I,2-propanediol, and 2,3-butanediol The 

amount of diol used was always 2.50 x 10·3 mol. The products were identified as derivatives. 

11.2.6.d. Oxidation of 1,3-Diols. 

The I ,3-diol oxidized was butane-I ,3-diol. The kinetics were monitored in the usual 

manner. Products were identified via 1H NMR. 
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Il.2.6.e. Oxidation of a-D-Glucose. 

2.50 x 10·3 mol of a-D-Glucose (Fisher, used as received) was oxidized as described 

above for the other alcohols. 

Il.2.6.f. Oxidation of Allyl Alcohol. 

The oxidation of allyl alcohol (2.50 x 10·3 mol ) was carried out in like manner to the 

descriptions above. The products were identified as derivatives. 

Il.2.6.g. Oxidation of a Homoallyl Alcohol. 

The species chosen was 4-penten-2-ol (Aldrich) and 2.50 x 10·3 mol of it was oxidized 

as described for the other alcohols. 

11.2.6.g. Oxidation of a Homohomoallyl alcohol. 

The attempt to oxidize a homohomoallyl alcohol was made using 2.50 x 10·3 of 4-

penten-2-ol. The products were extracted out of solution after filtering off the supported 

catalyst. 

11.2.6.h. Oxidation of a Cyclic Allyl Alcohol. 

The only cyclic allylic alcohol oxidized was 2-cyclohepten-1-ol. This alcohol is not 

commercially available and was prepared as described in 11.3. from the cyclic allylic ketone. 

Under the conditions studied the oxidation proceeded so rapidly that the amounts of alcohol 

and Pd(II) catalyst material used were reduced to 1.25 x 10·3 mol (0.5 of the amount used in 

all other alcohols) and 2.5 x 10·2 g (0.05 of the support material used for the other oxidations) 
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respectively. At the end of the reaction the catalyst was filtered off and the products were 

extracted out of the aqueous filtrate using CH2Cl2• The products were identified by 1H NMR. 

Il.2.6.g. Isotope EtTect Studies in Oxidation of 2-Cyclohepten-1-ol-1-d. 

2-Cyclohepten-1-ol-l-d was synthesized as described in 11.3. The alcohol was oxidized 

using conditions as described in 11.2.6.f. 

Il.3. Preparative Procedures for Some Substrates and Re3&ents. 

Il.3.1. I-Phenyl Methanol-1,1-~ 

This alcohol was prepared by a modification of a literature procedure. 19 To a freshly 

prepared solution of 1.18 g (28.1 x 10-3 mol) of lithium aluminum deuteride (Fluka Chemika) 

slurried in diethyl ether (distilled from sodium and benzophenone) in a 250 mL three neck 

round bottom flask was added 4.5 mL (ca. 32 x 10-3 mol) of methyl benzoate at o· C over 

a period of 15 min. The mixture was allowed to warm to room temperature and then heated 

at reflux for 6 h. The reaction was cooled to room temperature, neutralized with 2.0 mL of 

2.0 M KOH (Fisher). The product was extracted with 2 x 50 mL of dichloromethane (CH2ClJ 

and finally dried over anhydrous MgSO4 • It was purified using a 75 g silica gel column by 

eluting with 80% hexane / 20% ethyl acetate. The product was characterized by 1H and 13C 

NMR. 

11.3.2. Synthesis of 2-Cyclohepten-1-ol. 

This alcohol was synthesized by a modification of the method of Luche. 46 A stock 4.0 

M solution of CeCl3.7Hp was made by weighing out 14.90 g of the salt, transferring to a 
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100 mL volumetric flask and making up the solution using absolute methanol (Fisher, reagent 

grade). 3.01 g (2.70 x 10·2 mol) of 2-cyclohepten-1-one was taken in a 250 mL Erlenmeyer 

flask. Seventy mL of the stock 4.0 M cerium(III) solution (>0.027 mol) was added and the 

solution was stirred using a magnetic stirrer at room temperature for 5 minutes. To this was 

added 1. 02 g (2. 70 x 10·2 mol) of sodium borohydride (N aBH4) via spatula directly to the 

stirred solution over a period of 4 min. The solution was mildly exothermic and it was cooled 

using a water bath. The evolution of H2 gas was noticed. The solution was stirred for an 

additional 5-10 min and then 45 mL of a saturated solution of ammonium chloride was added 

to neutralize the excess NaBH4 • At this point the solution became clearer and appeared mildly 

yellow. The organic products were extracted using 3 x 30 mL of ether. The ethereal layers 

were combined and dried over anhydrous MgSO4 • The solvent was distilled off and the 

product was obtained. 1H and 13C NMR were used to characterize the product. Yield was 2.67 

g (88%). 

11.3.3. Synthesis of 2-Cyclohepten-1-ol-1-d. 

The deuteriated species was made by the same method as above. 1.0 g (0.024 mol) 

of sodium borodeuteride (NaBD4) was used for the reduction instead of NaBH4• In order to 

maintain the same mole ratios 2.63 g (0.024 mol) of 2-cyclohepten-1-one and 60 mL of the 

4.0 M cerium(III) solution were used. 1.60 g (62%) of the deuteriated species was obtained. 

It was characterized by 1H, 13C and 2H NMR. The deuterium label was found only at carbon 

1 on the ring. 
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Into a 400 mL beaker, 3.0 g of 2,4-dinitrophenylhydrazine was taken, after being 

weighed out. 15 mL of concentrated sulfuric acid was added and the solution was stirred till 

all the solids dissolved. The color was a light yellow. A 70 mL : 20 mL mixture of 95 % 

ethanol : de-ionized water was added carefully over 10 min. The final color of the solution 

was an orange-red. It was stirred, cooled and stored. 

Il.3.4.b. 0.2 M Li2PdCI, Solution. 

4.301 g (0.102 mol) of lithium chloride (LiCl) and 8.878 g (0.0501 mol) of palladous 

chloride (Aesar) (PdCli) were taken in a 250 mL Erlenmeyer flask. Ca. 175 mL of distilled 

de-ionized water was added and the flask was stoppered. The solution was stirred overnight. 

It was transferred to a 250 mL volumetric flask and made up so that it was 0.200 M in 

Li2PdC14 , the Pd(II) species. 

Il.3.4.c. 4.0 M LiCI Solution. 

16.96 g (0.400 mol) of LiCl was weighed and transferred via a glass funnel to a 100 

mL volumetric flask. Distilled, de-ionized water was used to make up the solution. It was 

noticed that the dissolution was fairly exothermic. The solution was 4.0 M in LiCI. 

11.3.4.d. 2.0 M HCIO, Solution. 

Perchloric acid (Fisher) was standardized using sodium hydroxide which had been 

standardized with potassium hydrogen phthalate. The stock solution was then made by 
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dilution. 

Il.4. Homoeeneous Oxidation Studies of 2-Cyclohepten-1-ol. 

The oxidations were carried out at room temperature. The conditions were such that 

[Pd(II)], [LiCl] and acid [HC1O4] were 0.1 M. Usually the reaction was performed in a 

beaker. The precise amounts of stock solutions were transferred using glass pipettes. Ionic 

strength was maintained at 2.0 M by using lithium perchlorate (LiC1O4). Quinone 

(recrystallized from petroleum ether) was then added to re-oxidize any zerovalent palladium 

formed due to the oxidation. The 2-cyclohepten-1-ol was added last. The reaction was worked 

up after 120 min. Powdered zinc was used to reduce the Pd(II) to Pd(0) which precipitated 

out of solution. After filtration, 2,4-DNP derivatives of the carbonyl products were made by 

adding 10 mL of the stock 2,4-dintrophenylhydrazine solution to the filtrate. The 2,4-DNPs 

were washed with copious amounts of water. 

The products were separated by using an alumina column, made with ca. 12 g of 

neutral alumina (Brockmann, neutral, activated, 150 mesh, 58 A, Camag 507-C-l). The 

initial elutant was petroleum ether; the polarity was increased by adding ethyl acetate. Six 

fractions were collected. The column was washed finally with CH2Cl2• The products were 

analyzed by 1H and 13C NMR. When the oxidations were carried out using the deuteriated 

species, 2H NMR was used too. 

11.5. Homoeeneous Isomerization Studies of 2-Cyclohepten-1-ol. 

11.3.3. was used for the isomerization studies. The purpose of these studies was to 

study the dependencies of the various species in the allylic isomerization. A series of control 
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runs were also done in the absence of the Pd(II) species. The [Cll was maintained at 1.0 M. 

Il.5.1. Acid Catalyzed Isomerization. 

The reaction was performed in a 10 mL volumetric flask. A typical run is described 

here. The H+ and er were pipetted into the volumetric flask from the stock solutions so that 

their final concentrations would be 0.05 M and 1.0 M respectively. LiC1O4 was added to 

make the ionic strength 2.0 M. A sample of the Il.3.3. weighing 0.1147 g (0.101 M) was 

separately dissolved in ca. 5 mL of distilled de-ionized water. After the solutions were 

thermostated for an hour at 25° C, the Il.3.3. was poured into the 10 mL flask, the volume 

made up and the timing started. Aliquots of 1.0 mL were withdrawn at ten different time 

intervals. The work up involved extracting with CH2Cl2 and water to which sodium chloride 

and sodium bicarbonate had been added. The volumes of the extracting solvents were 2-3 mL. 

The aqueous layer was re-extracted with 2 x 2-3 mL of CH2Cl2• All the CH2Cl2 layers were 

combined. The organic layer was washed with ca. 3 mL of water, dried (MgSO4) and filtered. 

The alcohol species in solution were derivatized by adding 0.5 mL of phenyl isocyanate. The 

phenyl urethanes usually crystallized while the solvent evaporated. The species were then 

studied by 2H NMR. 

11.5.2. Isomerization Studies with Added Pd(ID. 

The procedure used was same as above. The additional species were Pd(II) and Q, the 

latter being added to prevent the precipitation of Pd(0). The Pd(II) study paralleled the acid 

catalyzed isomerization in that all the concentrations were the same as before. An additional 

step in the isolation involved the precipitation of Pd(0) using Zn. The filtrate obtained was 
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extracted and the phenyl urethane derivative was made. 

A few additional studies were carried out in which the extractions were performed but 

no derivatives were made. Both 1H and 2H NMR were used to characterize the products. 

11.6. 

11.6.1. 

Heteroa=eneous Oxidation on a Modified Bimetallic Species. 

Modification of Supported Bimetallic Species 

To 50 mL of dry, degassed dichloromethane was added 0.1371 g (2. 75 x 10-4 mol) 

of ( + )-1,4-bis( diphenylphosphino )-1,4-dideoxy-2,3-O-isopropylidene-D-threitol ((+)-DIOP) 

(Aldrich). To this was added 2.50 g (0.5 equivalent of Pd(II) compared to the (+)-DIOP) of 

the supported bimetallic Pd(II) species. In the first 0.50 h, a color change from a grey to an 

off grey-yellow, was noticed in the slurried mixture that was stirred at room temperature 

under a slight positive Argon pressure. After 48 h, the solvent was removed using a vacuum 

pump. The support was then washed with 3 x 30 mL of degassed CH2Cl2 on a filter. It was 

dried initially in a stream of Argon and subsequently on a vacuum pump. 

11.6.2. Oxidation of 4-Hexen-3-ol on Modified Supported Bimetallic Species. 

This reaction was set up in a manner similar to that described in 11.2. The only 

difference was that 0.50 g of the (+)-DIOP modified supported bimetallic species was used. 

The reaction was monitored by the usual gas uptake procedure and data was collected up to 

what was calculated to be only one-half of the total reaction based on a two electron oxidation 

of all the alcohol. 

In a duplicate experiment, the reaction was run with twice the usual amount of alcohol 

substrate, that is, 5.0 x 10-3 mol. This experiment was stopped after it was ca. 35% 
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completed, based on gas uptake. The modified supported catalyst was removed by filtration 

and the filtrate was extracted with 5 x 15 mL of CH2Cl2 • The CH2Cl2 was dried (anhydrous 

MgSO4) and the solvent removed on a vacuum pump. The recovered materials were then 

separated to isolate the unreacted 4-hexen-3-ol. 

Il.6.3. Derivatization of Recovered 4-Hexen-3-ol. 

To 5.0 g (2.135 x 10·2 mol) of (R)( + )-a-methoxy-a-trifluoromethylphenylacetic acid 

((R)( + )-MTPA) was added 20 mL (large excess) of redistilled thionyl chloride (SOClJ 

(Aldrich). It was stirred under gentle heat for 5 h. The SOC12 was distilled off and the acid 

chloride ((S)( + )-MTPA chloride) was fractionally distilled. It was stored under Argon. 

The derivatization was carried out by the standard method from Mosher et. al.41 To 

0.1000 g (1.00 x 10·3 mol) of the alcohol recovered from the latter experiment described 

above, was added 15 mL of pyridine (Aldrich, Sureseal) in a three neck 50 mL round bottom 

flask. To this was added 0.3158 g (1.25 x 10·3 mol) of the (S)( + )-MTPA chloride. The 

mixture was heated very gently for 24 h under Argon. After cooling down the reaction flask, 

the mixture was partitioned between 30 mL of water and 25 mL of CH2Cl2• The layers were 

separated, the aqueous layer rewashed with 10 mL of CH2Cl2 and the organic layers 

combined. This was washed with 10% HCl until acidic to blue litmus paper. The organic 

layer was washed with brine (10 mL), saturated NaHCO3 (20 mL), water (15 mL) and then 

dried (anhydrous MgSO4). The purified ester, after evaporating the solvent, was analyzed by 

1H NMR. 
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NMR Studies of the (R}( + }-MTPA Ester of the Recovered 4-Hexen-3-ol. 

The analysis of the stereochemistry of the ester was carried out by the method of 

Yamaguchi. 48 To 0.2481 g (7.41 x 104 mol) of the R(+)-MTPA ester of 4-hexen-3-ol taken 

in a 2.0 mL volumetric flask was added CDCI3 (MSD isotopes, distilled) to make the volume 

2.0 mL. Using a pipette, 1.0 mL of this solution (3.71 x 10-1 M) was taken in a 5.0 mm 

NMR tube. The 1H spectrum was obtained and the resonances identified. Then the lanthanide 

induced shift (LIS) of the methoxy peaks originally appearing unseparated at 3 .530 ppm, of 

the (R)( +) MTP A diastereomeric esters was studied by progressive additions of tris[3-

(heptafluoropropylhydroxymethylene )-( + )-camphorato] europium(III) (Eu(fod)3) (Aldrich). The 

identification of each of the diastereomers was made by comparison with the diastereomeric 

(R)( + )-MTPA esters of a 50:50 racemic mixture of 4-hexen-3-ol. 49 



PART TWO: CHAPTER III 

RESULTS 

Ill.I. Synthetic Results for the Lii:and System. 

The ligand system is either a P-diketone or a P,o-triketone on a low molecular weight 

polyphenyl polymer. Although each individual step is difficult to characterize while working 

with barely soluble species, model compounds of the P-diketone and P,o-triketone type have 

been well characterized. 50 In addition, an advantage is that purification is easier to effect at 

each intermediate step merely by filtering and washing. 51 All 1H NMR spectra were recorded 

on a 300 MHz Varian VXR 300 spectrometer. 13C NMR spectra were obtained on a Varian 

VXR 300 spectrometer at 75 .46 MHz. The parameters given refer to CDC13 solutions unless 

specified otherwise. Chemical shifts for 1H and 13C are relative to (CH3) 4Si. Melting points 

were determined on a Laboratory Devices Mel-Temp apparatus using a calibrated 

thermometer. 

m.1.1. 4-Acetyl Methylbenzoate. 

This compound was characterized by standard 1H and 13C NMR spectroscopy. 

1H NMR: o 2.63 (s, 3H); 3.93 (s, 3H); 7.99 (d, 2H, J = 8.25 Hz); 8.02 (d, 2H, 

J = 8.20 Hz). 

o 26.88; 52.46; 128.19; 129.82; 133.88; 140.21; 165. 73; 197.51. 
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JU.1.2. Polymer from 4-Acetyl Methylbenzoate and p-Diacetyl Benzene. 

Polymers of this type have been extensively characterized, 52 by Teplyakov, et. al. The 

actual size of the polymer is irrelevant to the work being pursued. Our evidence for the 

formation of the "new" benzene rings in this polymerization (see Figure 111.1) comes from 

the 1H NMR in which a new benzene resonance is seen at around 7.35 ppm as a singlet. In 

addition terminal unreacted acetyl groups are seen at 2.60 ppm and terminal methyl ester 

group resonances at 3.93 ppm. The only other peaks in the spectrum are aromatic peaks that 

appear in the range from 7.5 - 8.3 ppm. 

111.1.3. 

111.1.3.a. 

Modified Polymers. 

Triketone of 11.1.2., 11.1.3.a. 

Triketone of 11.1.2. was prepared by a literature procedure that recommended the use 

of sodium hydride as base. 53 An outline of the synthetic pathway is shown in Figure 111.2. 

The use of an excess54 of base (more than three equivalents) is important since the 

monoanion, initially produced, has an acidic proton which is capable of neutralizing the 

dianion of 2,4-pentanedione. It was found in model experiments that the use of 18-crown-6 

improved yields dramatically. 

Purification was straightforward because the 2,4-pentanedione is a liquid and can be 

removed by washing with copious amounts of solvent and any kind of polyketonization that 

occurs is not adverse to the purposes of this synthesis. The use of 2,4-pentanedione ensures 

triketonization. 1H NMR of the triketone showed disppearence of the methyl ester resonance 

and appearance of new resonances at around 2.05 ppm (-CH3), 2.29 ppm (-CH2-) and 5.30 

and 5.50 ppm (=CH-). All of this is consistent with the formation of the triketone from 
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the model phenyl compound in which the same resonances appear at 2.01, 2.30 and 5.31 and 

5.81 ppm respectively. The other peaks are in the aromatic region and fairly complex, as is 

expected. Close to the mentioned resonances are small resonances that one would expect of 

isomeric forms of the triketone system. 55 

111.1.3.b. Diketone of 11.1.2., 11.1.3.b. 

The diketone was made and characterized in similar fashion to the triketone (see 

Figure 111.2.). In this case an additional advantage was the use of the -C4H9 group that could 

clearly be seen in the spectrum. One of the starting materials is 3,3-dimethyl-2-butanone 

which is a liquid and, once again, could be removed by washing with solvent. In addition the 

appearence of this large species as a singlet is very informative as to chemical modification. 

The product was characterized by 1H NMR in which the methyl ester resonance disappeared 

and new resonances appeared at 1.10 ppm (-C4H9), 2.30 ppm (-CH2-) and 5.80 ppm 

(=CH-). As before, this was compared to the diketone from ferrocene, in which very similar 

resonances were found. 

111.1.4. Coatine of Polymers on Support. 

This experiment is for the purposes of putting polymer on a solid support, in this case 

celite. In order to ensure that this took place, the slurry was stirred for a long period of time. 

The absorption of the material on the material by the inorganic support is then ensured by the 

evaporation of the solvent. 56 

m.1.s. Corine of Supported Polymers. 

The curing by prolonged heating and the use of vacuum is done for several 
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(Degassed CH3CN) 

Figure III.3. Scheme Showing Palladium(II) Incorporation onto Polymer Tri.ketone on Support. 
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reasons. One of the reasons is for drying while another is to fix the adsorbed species onto the 

support. This is a further advantage of the polymeric system. Reagents in reactions effected 

by modified support species must be capable of diffusing through these gels. In the adsorbed 

polymer, the diffusion could occur through the porous support. Hartley claims that in 

supported species, the supported material is only bound on the internal surface of these pores, 

providing easy diffusional access. 57 Both diketone and triketone were cured in this manner. 

111.1.6. Metal Ion Uptake Usin2 Supported Polymers. 

The Pd(II) was introduced in to the triketone sites by a modification of the method 

of Sen58 in analogous preparations of phosphine complexes of Pd(II) and other metal species 

starting from the the tetraacetonitrile complex of Pd(II). The only difference is that in this 

method the [Pd(CH3CN)4](BF4) 2 salt is not isolated, but rather, the [Pd(CH3CN)4]2+ species 

is generated in situ , and then the triketone sites are allowed to serve as the backbone becuase 

of the two co-ordination sites available, as shown in Figure 111.3. The other two (bare) sites 

on the Pd(II) species are occupied by labile solvent molecules. 

The total amount of palladium on the polymer surface was determined by analyzing 

the amount of residual palladium(II) remaining in solution after the absorption. The method 

of analysis of the residual solution was a standard gravimetric procedure using dimethyl 

glyoxime. Since the amount of palladium used at the beginning of the experiment is known 

precisely, the difference between this initial value and the amount of palladium obtained in 

the gravimetric analysis gives the amount taken up by the support material. By this method 

it was determined that 0.50 g59 of the supported triketone took up 1. 10 x 104 mol of 

palladium. 
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By the same method it was determined that an equivalent amount of the monometallic 

system took up 6.25 x 10·5 mol of palladium. This shows that the difference in the amount of 

metal taken up is 1. 76. This is indirect evidence for the fact that the bimetallic system 

incorporates more metal because of two available sites for the metal to be bound. 

111.1.7. 1-Phenyl Methanol-1, 1-(6. 

The deuteriated alcohol was characterized by 1H and 13C NMR spectroscopy. 

1H NMR(CDCl3) 

13C NMR(CDC13) 

:5 1.90 (bs, lH); 7.15 - 7.29 (m, SH). 

:5 64.19 (p, CD2); 126.32; 127.44; 128.37; 140.64. 

111.1.8. 2-Cyclohepten-1-ols. 

The alcohol, 2-cyclohepten-1-ol, was prepared so that allylic alcohol oxidations could 

be performed on a cyclic system. Very few such studies have been done in Pd(II) chemistry 

in homogeneous solution. This would provide an opportunity to do studies of a homogeneous 

Wacker type oxidation and compare it with oxidation using the bimetallic supported Pd(II) 

species. 

The Luche reduction proceeds extremely well if a slight excess of the Ce(III) solution 

is used. The literature recommends a 1: 1: 1 ratio of the allylic ketone to the sodium 

borohydride to the Ce(III) solution. Isolation of the product requires no special purification 

technique. 1H NMR(CDC13) shows the ring saturated ring protons between 1.40 and 2.20 

ppm, the CHOH at 4.30 ppm and the olefin multiplet at 5.70 ppm. The 13C spectrum has 

olefinic carbons at 140.04 and 132.18 ppm. The alcoholic carbon appears at 74.20 ppm while 

the nonolefinic ring carbons are at 38.87 ppm, 30.79 ppm and 28.91 ppm. 
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The deuterium labelled analog was made in a similar manner to the non-deuteriated 

species. The 1H NMR showed no peak at 4.30 ppm. The 13C NMR showed a splitting of the 

alcoholic carbon due to the presence of the deuterium label. 2H NMR (CHC½) showed one 

deuterium peak at 4.30 ppm,ro confirming the presence of the deuterium label. 

Ill.2. Heteroeeneous Oxidations. 

All the reactions studied were oxidations. They were studied in only two different 

solvent systems; the predominant solvent was water, which is of practical importance. The 

only experiments that were performed in methanol were the oxidations with 3,5-

ditertbutylcatechol (3,5-DTBC) as the substrate. All other oxidations, that is, of catechol and 

that of other alcohols were carried out in water. 

ID.2.1. Method of Analysis of Kinetic Data. 

The reactions, as described in the experimental section, were performed on a manifold 

system that provided a means for measuring gas uptake. Control experiments showed that the 

reactions only proceeded in the presence of the catalytic Pd(Il) species. 61 

In terms of collecting data, readings were taken at regular time intervals (t). Readings 

consisted in measuring the volume of dioxygen consumed (VJ, at time t, by the reaction. 

The reactions were analyzed in terms of two electron oxidations. The rationalization 

and assumptions involved are the following. First, the oxidation of an alcohol to a ketone or 

aldehyde is a two electron oxidation. The oxidation of a catechol to a quinone is also two 

electron in nature. Second, the common palladium couple in oxidations is Pd(II)/Pd(O), a two 

electron process. Using this information, an infinity reading is calculated for the two electron 
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oxidation (V 00 ) based on the amount of substrate to be oxidized. The oxygen reoxidized the 

reduced form of the palladium, which was the oxidant for the organic substrate. 

The amount of dioxygen taken up by the solvent62 is between 5.0 and 5.5 mL for 

methanol and 1.0 - 1.5 mL for the aqueous solutions under the conditions used. The amount 

of 0 2 taken up by the solvent was accounted for by subtracting this from the Vt readings, and 

the corrected readings are called Vt <corr>· Thus V 00 - V u..corr> corresponds to the amount of 

starting catechol left behind. 

A pseudo first order treatment in terms of the substrate that was oxidized was then 

made using the readings obtained and plotting the natural logarithm of (V 00 - V <corr~ versus the 

corresponding time (t).63 Pseudo first order rate constants (k0iJ were then obtained from the 

slope. The total amount of Pd(II) on the monometallic or bimetallic Pd(II) systems was used 

and the k0bs values were divided by these concentrations to give bimolecular rate constants (in 

M·1 s"1
) as seen in Table 111.1. - Table 111.7. In this manner the differences in the amounts 

of palladium between the mono metallic and bimetallic systems is accounted for, and valid 

comparison of the numbers can be attempted. 

111.2.2. Oxidations of Catechols in Methanol. 

All catechol oxidations were performed at 25 • C as described in the experimental 

section. Experiments were usually duplicated. The kinetic reaction mixtures were analyzed to 

determine products. At the end of the experiment the apparatus was disconnected from the 

manifold and the heterogeneous solution was filtered to remove the solid supported catalyst. 

The filtrate was taken in a beaker and the solvent was air evaporated to obtain product(s). The 

product(s) were dissolved in CDC13 and the 1H NMR, 13C NMR and IR spectra were taken 
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for purposes of identification. 

m.2.2.1. Products from the Oxidations in Methanol. 

The oxidation of 3,5-ditenbutyl catechol with the bimetallic system was very clean, 

giving only one major product, that is, dimethyl 2,4-ditenbutylmuconate. The product was not 

subjected to any purification procedures for two reasons. First, the spectra were very clean 

and showed predominantly the diester product. The only other materials were 3,5-ditenbutyl-

1,2-benzoquinone and some traces of starting catechol. The second reason was that attempted 

purification procedures inevitably resulted in some possible lactonization to give other 

products. No attempt was made to try and identify these species.64 

3 ,5-ditenbutyl-1,2-benzoguinone: 

1H NMR(CDC13) : o 1.19 (s, 9H); 1.23 (s, 9H); 6.18 (d, J = 2.4 Hz, lH); 6.90 

(d, J = 2.4 Hz, lH). 

: o 27.85; 29.13; 35.44; 35.99; 122.05; 133.44; 149.90; 

163.26; 180.04; 181.09. 

: 1650 cm·1 (C=O). 65 

Dimethyl 2,4-ditenbutyl muconate : 

1H NMR(CDC13) : o 1. 10 (s, 9H); 1.20 (s, 9H); 3.60 (s, 3H); 3.65 (s, 3H); 5.75 

(d, J = 1.9 Hz, lH); 6.25 (d, J = 2.0 Hz, 1H).li6 

: o 25.88; 29.37; 35.13; 39.93; 52.28; 55.16; 113.13; 132.01; 

144.74; 148.79; 162.10; 163.80. 

: 1680 cm·1
• 
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Isolation of the reaction products was made at various time intervals to see if the 

reaction was proceeding in two 2 electron steps through the formation of the intermediate 3 ,5-

di-ten-butyl-1,2-benzoquinone (3 ,5-DTBQ) or if a direct four electron oxidation was 

occurring. Based on the following reasons, it was concluded that the reaction was proceeding 

in two 2 electron steps. The first reason is that analysis of the products at various reaction 

times showed initial formation of the 1,2-benzoquinone until a point. Second, after a fairly 

substantial amount of this had formed, only then was further reaction noticed. Observation 

shows that the reaction occurs in two steps. Entries 2 and 4 in Table 111.1. indicate that the 

formation of the quinone in the first step is more than 12 times faster than the second, ring 

cleavage, step. 

The corresponding monometallic system, 11.2.6.b., was analyzed in a similar fashion. 

It was observed that the only product obtained was the 3,5-di-ten-butyl-1,2-benzoquinone. 

111.2.2.2. Kinetics for the Oxidations of Catechols in Methanol. 

Kinetics for the oxidations of the 3,5-ditenbutyl catechol were studied as described 

in the experimental section. The method of analysis of data is described in 111.2.1. The 

conditions of the catechol ring cleavage oxidations in methanol are optimized. The reactions 

were carried out with 1.65 x 10·6 mol of added sodium methoxide to make the 

solution alkaline as it was found that this was necessary for us to effect ring cleavage. If more 

basic solution was used there is the complication of an interfering reaction that leads to faster 

but nonselective oxidation of the catechol. Under more basic conditions, it was found that 

molecular oxygen reacted direcly with the catechols, as reported by Grinstead. 67 Even under 
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the conditions of our experiments there is a small amount of direct air oxidation of the 

catechol. In the case of 3,5-ditenbutyl catechol in methanol, this air oxidation occurred to the 

extent of giving 28 % conversion to 3 ,5-DTBQ in a period that is three times longer than that 

in which the bimetallic catalyst was able to effect ring cleavage. In terms of treating the data 

the reaction was attributed to a direct molecular oxygen reaction and could be treated as a 

parallel reaction. 68 

The rate constant for the catalytic oxidation was separated from the direct oxidation 

and the rate constants given in Table 111.1. are for the catalyzed reaction alone. Entries 1 and 

3 are for two separate stages in the oxidation of 3,5-DTBC with the monometallic system 

while entries 2 and 4 are for the bimetallic system. In the first step, that is the formation of 

3,5-DTBQ, the bimetallic catalyst is more than 45 times quicker than the monometallic 

system. 

111.2.3. Oxidations of Catechol in Water. 

Catechol was oxidized in water under the conditions described in the experimental 

section. The pH was maintained using phosphate buffers. A complete analysis of the reaction 

was made at pH 8.0. The reason for using 3,5-di-tert-butyl catechol in methanol was because 

(a) 3,5-DTBC is insoluble in water, (b) catechol oxidation tends to give polymeric products 

in addition to muconic acid. 61
'
61 A comparison of the rate constants obtained for catechol in 

..,~_ 

water (0.155 M 1 s-1
) and 3,5-DTBC in methanol (0.29 M-1 f 1 

) can also be seen in Table 

111.1., a difference of 1.9 in favor of the 3,5-DTBC in methanol is seen. Interestingly, the 

second stages have the same rate constants, within experimental error. 
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Table m.1. Rate Constants for the Oxidation of Catechols.• 

No Substrateb Catalyst typec 

1. 3,5-Ditenbutyl catechor Mono metallic 0.0064( 

2. 3,5-Ditenbutyl catechole Bimetallic 0.29( 

3. 3 ,5-Ditenbutyl-1,2-benzoquinone e Mono metallic 
____ g 

4. 3 ,5-Ditenbutyl-1,2-benzoquinone e Bimetallic 0.Q23h 

5. Catecholi Bimetallic 0.155( 

6. Quinonei,i Bimetallic 0.031h 

• Using a palladium catalyst supported on celite as described in text. 

• Usually 2.5 x 10·2 M. 

0 This refers to the facility on the ligand system for either co-ordinating Pd(II) in a monometallic or bimetallic fashion at each 

available site. 

• Bimolecular rate constants were calulated by assuming a homogeneous system and dividing the k.._ values, obtained by pseudo 

first order treatement, by the total [Pd(II)] in the mono- or bi- metallic case as relevant. 

• In methanol, with a catalytic amount of base, at 25 ·c, in creased 500 mL flasks in an atmosphere of dioxygen. 

'These rate constants are based on the first step of the oxidation, that is, the formation of the quinone. 

' Barely any oxygen uptake was observed in several days of reaction. 

l This is for the second step of the oxidation, that is ring cleavage. Experimentally, it is a continuation of the reaction started 

with the corresponding catechol. Data is treated as a separate 2e- oxidation because of the manner in which we observe the 

oxidation to occur. 

'In water, in phosphate buffered solution (pH 8.0, µ = 0.20 M ). 

; Assumed based on analogy to the methanol system - no attempt has been made to isolate the quinone. 
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m.2.3.t. pH Study for the Oxidations of Catechol. 

A short study of the pH dependence in the oxidation of catechol in water was made. 

The data from this study is collected in Table 111.2. There are four points to note from this 

table. The first is that at pH 5.0, the reaction did not proceed past a 2 electron oxidation. The 

second is that the rate constants are for the first step of the oxidation, the formation of 

quinone. Third the reactions become faster as the solutions become more basic. The increase 

in rates in going from pH 5.0 to pH 8.0 or to pH 9.1 is not very large (1.6 and 2.2 times 

respectively). Finally, it is a little difficult to make a comparison beyond this point because 

the interfering reaction due to the molecular 0 2 reacting directly is very serious beyond pH 

9.1. Hence, although the last number is very large, it was not possible to determine the 

amount of interference to any degree of accuracy. 

111.2.3.2. Kinetics for the Oxidations of Catechol in Water. 

A complete analysis of the oxidation of catechol in water was made at pH 8.0. The 

reaction proceeded in two stages as described in the oxidations in methanol. In water the 

difference between the first and second stages was less dramatic, with a slowing down by a 

factor of 5.2. Data for the oxidation of catechol in water are found in Table 111.1. and Table 

III.2. An interesting point to note is the fact that at acidic pH, there is no measurable oxygen 

uptake beyond the 2 electron stage, quinone formation. 

111.2.4. Oxidations of Alcohols in Water. 

All the oxidations of the alcohols were performed at 25 ·c in water at pH 8.0 

(phosphate buffered) with µ = 0.20 M. The reactions were all run at 100 mL volume. 



Table IIl.2. Rate Constants for Catechol Oxidations as a Function of pH: 

No 

1. 

2. 

3. 

4. 

5.00 

8.00 

9.10 

12.0 

0.010 

0.16 

0.22 

0.55 
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• All oxidations were in water at 25 • C in phosphate buffered solutions. The pH study was done using the bimetallic Pd(Il) system 

(see text for description of system). The substrate was always 2.50 x 10-2 M Catechol. The bimolecular rate constants are from 

the first 2e- oxidation, presumably to the Quinone. 

• The pH values are obtained by using recipies for phosphate buffers (µ. =0.20 M) 

• Bimolecular rate constants were calulated by assuming a homogeneous system and dividing the k.., values, obtained by pseudo 

first order treatement, by the total [Pd(Il)]. 
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The amount of substrate (alcohol) used was always 2.50 x 10·3 M unless otherwise mentioned. 

All oxidations were carried out with both the monometallic and the bimetallic systems. The 

amount of catalyst used was always 0.50 g, which made it 1.10 x 10·3 M in [Pd(II)] for the 

bimetallic system and 6.25 x 10-4 M for the monometallic system. The method of data 

collection and analysis was exactly as described in 111.2.1. The data are treated as two 

electron oxidations. Data from the alcohol oxidations is found in Table m.3. - Table 111.7. 

Additional studies, like isotope effect studies, comparison of products with those 

obtained in a homogeneous oxidation ( one case) and changes in concentrations of substrate and 

catalyst were done for mechanistic purposes. Usually yields, if reported, are not isolated 

yields, but indirectly from volume of oxygen uptake and the analysis of the NMR spectra. 

Usually in all of the cases analyzed carefully, the reactions went to completion, if allowed 

sufficient time. Sometimes because infinity time took so long to reach, the reactions were 

stopped short of completion. 

111.2.4.1. Oxidation of Methanol. 

The first alcohol that was oxidized was methanol. The oxidation of methanol was 

carried out at both pH 8.0 and pH 9.1. Product analysis was done only for the oxidation at 

the former pH. The amounts of methanol used in the oxidations were 2.50 x 10·3 mol, 12.5 

x 10·3 mol and 25. 0 x 10·3 mol. 

The product, methanal, was isolated as the 2,4-dinitrophenylhydrazone (2,4-DNP) 

derivative (M. P.: 164 ·c - 166 ·qw and characterized in addition by 1H NMR. 

Kinetic data was a little difficult to collect by the gas uptake procedure because 

formaldehyde is a gas at room temperature and interfered with the 0 2 volume readings. Thus 
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higher concentrations of methanol were used and data collected in the initial part of the 

reaction analyzed. Good pseudo first order data was obtained. The data can be found in Table 

m.3. A comparison between the monometallic and the bimetallic system shows little 

difference, with a rate enhancement of 1.4 for the bimetallic system. A slight enhancement 

of rate, from k = 0.0018 M 1 s·1 to k = 0.0023 M·1 s·1 was noticed on going to a more basic 

solution (pH 9.10). The data also revealed the first order dependence in the alcohol because 

of the constancy of the bimolecular rate constant under conditions of different initial 

concentrations. It indicates too that our assumption of approximating a first order in total 

[Pd(II)] is justified. 

111.2.4.2. Oxidations of Ethanol. 

The data for the oxidation of ethanol is found in Table 111.3. Interference, similar in 

nature to that in the oxidation of methanol, was found in these oxidations. Difficulty in gas 

uptake readings, usually after about one-half of the ethanol was oxidized, was attributed to 

the presence of ethanal, a gas under the experimental conditions. 

The only product obtained under these conditions was ethanal that was isolated as the 

2,4-DNP and characterized by 1H NMR. Derivative M.P.: 163 ·c - 165 ·c. 

The difference in rates between the bimetallic and monometallic case is more striking 

here. The bimetallic system is 5.2 times faster in the oxidation of ethanol. Perhaps what is 

more remarkable is that ethanol is much faster than methanol in the bimetallic case, with 

ethanol oxidation being almost 11 times faster. In the monometallic system, on the other 

hand, the difference is only 3. 7. 



Table ID.3. Rate Constants for the Oxidation of Primary Alcohols . ., b 

No 

1. 

2. 

3. 

4. 

5. 

Substratec 

Methanol 

Methanolr 

Methanol' 

Ethanol 

Ethanol 

Catalyst typed 

Mono metallic 

Bimetallic 

Bimetallic 

Monometallic 

Bimetallic 

• Using a palladium catalyst supported on celite as described in text. 

0.0013 

0.0018 

0.0023 

0.0048 

0.025 
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• All reactions are oxidations in aqueous, phosphate buffered (pH 8.0, µ = 0.10 M) solutions at 25 ·c in stirred 500 mL creased 

flasks in an atmosphere of dioxygen. Reactions were monitored by the uptake of dioxygen. 

• Usually 2.5 x 10·2 M. 

• This refers to the facility on the ligand system for either co-ordinating Pd(II) in a monometallic or bimetallic fashion at each 

available site. 

• Bimolecular rate constants were calulated by assuming a homogeneous system and dividing the k ... values, obtained by pseudo 

first order treatement, by the total [Pd(II)] in the mono- or bi- metallic case as relevant. 

1 Methanol experiments were also run at 12.5 x10·2 Mand 25.0 x 10-2 M. 

• At pH 9.1, all other conditions are the same. 
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ID.2.4.2.c. Product Inhibition. 

An attempted study of product inhibition was made in the oxidation of ethanol. The 

reaction was performed as described in the experimental section. 2.50 x 10·2 M of 

acetaldehyde was injected with an equal molar amount of ethanol at the start of the reaction. 

Analysis of the initial part of the kinetic data revealed no difference in rate constant, thus 

showing no product inhibition. It was concluded, therefore, that the acetaldehyde was 

interfering with the kinetic analysis simply because of high vapor pressure. This was partially 

confirmed because the higher the amount of acetaldehyde injected at the start, the sooner the 

dip in the plot in terms of the volume of dioxygen taken up with time. However initial rates 

remained the same, within experimental error. In addition, at very long times in the oxidation 

of methanol and ethanol, when higher concentrations were used, the Hg level in the buret 

usually indicated a gas volume increase. 

111.2.4.3. Oxidations of 2-Propanol and 1-Phenylmethanol. 

Both of these species were studied under the conditions of all the other oxidations. l­

Phenylmethanol-1, l-d2 was synthesized to study the isotope efect in these oxidations. 

111.2.4.3.a. Product analysis. 

The product in the oxidation of 2-propanol was 2-propanone which was isolated as the 

2,4-DNP. (M. P.: 124 ·c - 126 ·q. The product in the oxidation of benzyl alcohol was 

benzaldehyde, isolated directly from the reaction. In both cases 'H NMR was used to 

characterize the product. The benzaldehyde was identified by its characteristic aldehydic peak 

at 9.95 ppm70 in the 'H NMR. 
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Table III.4. Rate Constants for the Oxidations of 2-Propanol and l-Phenylmethanol.a.1> 

No Substratec Catalyst typed 

6. 2-Propanol Mono metallic 0.0083 

7. 2-Propanol Bimetallic 0.035 

8. 1-Phenylmethanol Mono metallic 0.067 

9. 1-Phenylmethanol Bimetallic 0.14 

10. l-Phenylmethanol-1, 1-d2 Bimetallic 0.056 

• Using a palladium catalyst supported on celite as described in text. 

• All reactions are oxidations in aqueous, phosphate buffered (pH 8.0, µ = 0.20 M) solutions at 25 ·c in stirred 500 mL creased 

flasks in an atmosphere of dioxygen. Reactions were monitored by the uptake of dioxygen. 

0 Usually 2.5 x 10·2 M. 

• This refers to the facility on the ligand system for either co-ordinating Pd(II) in a monometallic or bimetallic fashion at each 

available site. 

• Bimolecular rate constants were calulated by assuming a homogeneous system and dividing the k.._ values, obtained by pseudo 

first order treatement, by the total [Pd(II)] in the mono- or bi- metallic case as relevant. 
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m.2.4.3.b. Kinetics. 

Data from the kinetics of the oxidations of these two species are to be found in Table 

m.4. The bimetallic system shows an oxidation which is 4.2 times faster than the comparative 

monometallic case. The secondary alcohol is faster than both the primary alcohols methanol 

and ethanol. Benzyl alcohol is faster than all three species. The bimetallic system is only 2.1 

times faster than the monometallic system. Benzyl alcohol is 4 times faster than 2-propanol. 

Ill.2.4.3.c. Isotope Effect usine l-Phenylmethanol-l,l-d2 

In a similar manner the oxidation of the deuteriated species was studied. The product 

was 1-phenylmethanal-1-d. The rate constant obtained, k = 0.056 M-1 s-1
, gives an isotope 

effect, kik0 = 2.5. This is slightly higher than isotope effects obtained in comparable Pd(II) 

oxidations in homogeneous solution. 

IIl.2.4.4. Oxidations of 1,2-Diols. 

The 1,2-diols oxidized were ethane-I ,2-diol, propane-1,2-diol and butan-2,3-diol. The 

alcohols having more than one hydroxy group have more than one oxidizable center and thus 

all of the oxidations were stopped at the two electron stage. The rate data is gathered in Table 

111.5. 

The products of these oxidations were identified as the 2,4-DNP derivatives. The 

product of the oxidation of ethane-1,2-diol was 2-hydroxyethanal. The product of the oxidation 

of propane-1,2-diol was predominantly 1-hydroxy-2-propanone. The product of the oxidation 

of the butane-2,3-diol was 3-hydroxy-2-butanone. 71 The rate enhancements for bimetallic over 

monometallic were 30.2, 9.5 and 6.6 for ethane-1,2-diol, propane-1,2-diol and butane-2,3-

diol. The most dramatic difference 
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Table m.s. Rate Constants for the Oxidations of polyols . ., b 

No Substrate• Catalyst typed 

11. Ethane-1,2-diol Mono metallic 0.00053 

12 Ethane-1,2-diol Bimetallic 0.016 

13. Propane-1,2-diol Mono metallic 0.0021 

14. Propane-1,2-diol Bimetallic 0.020 

15. Butane-2,3-diol Monometallic 0.0062 

16. Butane-2,3-diol Bimetallic 0.041 

17. Butan-1,3-diol Monometallic 0.0032 

18. Butan-1,3-diol Bimetallic 0.0078 

19. a-D-Glucose Mono metallic 0.0072 

20. a-D-Glucose Bimetallic 0.077 

• Using a palladium catalyst supported on celite as described in text. 

• All reactions are oxidations in aqueous, phosphate buffered (pH 8.0, µ = 0.20 M) solutions at 25 ·c in stirred 500 mL creased 

flasks in an atmosphere of dioxygen. Reactions were monitored by the uptake of dioxygen. 

• Usually 2.5 x 10·2 M. 

• This refers to the facility on the ligand system for either co-ordinating Pd(II) in a monometallic or bimetallic fashion at each 

available site. 

• Bimolecular rate constants were calulated by assuming a homogeneous system and dividing the k.,,. values, obtained by pseudo 

first order treatement, by the total [Pd(II)] in the mono- or bi- metallic case as relevant. 
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was mentioned with the ethane-1,2-diol. The bimetallic systems gave consistently better rates 

than their monometallic counterparts. 

m.2.4.5. Oxidations of a 1,3-Diol. 

The only 1,3-diol oxidized was butane-1,3-diol. The data for this oxidation is also in 

Table 111.5. There is an increase in rate in going from the monometallic to the bimetallic 

system of only 2.4. The 1,3-diol is also slower than all the 1,2-diols studied. The product 

in this oxidation was predominantly 4-hydroxy-2-butanone. 

111.2.4.6. Oxidation of a-D-Glucose. 

The only polyhydroxy compound oxidized was a sugar, a-D-glucose. The data are in 

Table 111.5. along with the diols. The bimolecular rate constant from initial rate data is k = 

0.077 M-1 s-1
• The reason for this high number is possibly that more reaction sites are 

available for the oxidation. The rate enhancement in going from the monometallic to the 

bimetallic system is 10. 7. 

111.2.4.7. Oxidations of Allyl Alcohol. 

The oxidation of 2-propen-1-ol was especially important in terms of palladium 

chemistry because of the very detailed mechanistic work that has been done with this species 

in homogeneous solution with PdCl/. 30
'
72 The method of study was as described for all the 

other oxidations in water. The data for the rate constants is in Table 111.6. 
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m.2.4. 7.a. Product Analysis. 

In the oxidation with the bimetallic catalyst two products were obtained for the 

oxidations of 2-propen-1-ol in water. The major product arising from direct hydride 

abstraction from the alcohol carbon was 2-propen-1-al (80 % ) and the minor product was 3-

hydroxy-1-propanal arising from double bond oxidation via hydroxypalladation (20 % ) . 

Derivative M.P: for 2-propen-1-al: 163 ·c - 165 ·c and 2-hydroxy-1-propanal: M.P.: 126 

·c - 129 1,14. 1H NMR data was compared with the literature. 62<•> 

With the monometallic system on the other hand, the same two products were obtained 

but this time 3-hydroxy-1-propanal was 75 % while the 2-propen-1-al was only 25 % . The 

difference is attributable to the idea that one metal of the bimetallic system probably forms 

a 1r-complex with the double bond while the other Pd(II) abstracts the hydride to give the 

alcohol oxidation. In the monometallic system this is unlikely and the only major product 

would then arise from hydroxypalladation. 

Ill.2.4. 7.b Kinetics. 

The difference in rates is also striking. The bimetallic system is faster by a factor of 

10. Both rate constants reveal far faster oxidations for the allyl alcohol over all other alcohols. 

The 1r complexation probably also increases the rates so much that there is more than an order 

of magnitude difference between ally! alcohol and benzyl alcohol and almost three orders of 

magnitude between ally! alcohol and methanol. 

Ill.2.4.8. Oxidations of a Homoallylic alcohol. 

The bimolecular rate constant obtained for oxidation of the homoallylic alcohol, 
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Table Ill.6. Rate Constants for the Oxidations of Allyl Alcohol and Congeners•· b 

No Substrate0 Catalyst typed 

21. 2-Propen-1-ol Monometallic 0.15 

22. 2-Propen-1-ol Bimetallic 1.5 

26. 4-Penten-2-ol Mono metallic 

27. 4-Penten-2-ol Bimetallic 0.0038 

28. 4-Penten-1-ol Monometallicr 

29. 4-Penten-1-ol Bimetallicr 

• Using a palladium catalyst supported on celite as described in text. 

• All reactions are oxidations in aqueous, phosphate buffered (pH 8.0, µ = 0.20 M) solutions at 25 ·c in stirred 500 mL creased 

flasks in an atmosphere of dioxygen. Reactions were monitored by the uptake of dioxygen. 

• Usually 2.5 x 10·2 M. 

• This refers to the facility on the ligand system for either co-ordinating Pd(II) in a monometallic or bimetallic fashion at each 

available site. 

• Bimolecular rate constants were calulated by assuming a homogeneous system and dividing the k..,, values, obtained by pseudo 

first order treatement, by the total [Pd(II)] in the mono- or bi- metallic case as relevant. 

' Insufficient data because of barely any oxygen uptake in several days of reaction. 
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4-penten-2-ol, with the bimetallic system was 0.0038 M·1 s·1, almost the same as that obtained 

for methanol and 390 times slower than allyl alcohol itself. 

111.2.4.9. Oxidations of a Homohomoallyl alcohol. 

Oxidations of a homohomallylic alcohol, 4-penten-1-ol were attempted. The oxidation 

does not occur to any measurable extent. Data for these reactions can be seen in Table 111.6. 

After leaving the reaction for several days and extracting the products out of solution with 

CH2Cl2 , 
1H NMR revealed a complicated mixture, partial analysis of which revealed that bond 

isomerization had occured. A small amount of oxidation product was seen also. No attempt 

was made to separate and determine the products in quantitative fashion, as this was not the 

objective of the experiment. The bond isomerization is not surprising, in light of known 

palladium homogeneous chemistry. 73 

111.2.4.10. Oxidations of 2-Cyclohepten-1-ol. 

Cyclic allylic alcohols have lower 1r complex stabilities than acyclic species. This 

could lead to, quicker rates of oxidation than with acyclic species in the case of species with 

1r bonds becuse decomposition of the 1r complexed intermediate could occur quickly. The 

oxidations were as performed earlier except that they occurred with such rapidity, that the 

amounts of starting alcohol and catalyst had to be drastically reduced to be able to monitor 

the kinetics. The amount of alcohol used was 1.25 x 10·3 mol, while the amount of bimetallic 

catalyst used was 20 times less. The isotope effect was studied too. A kH/k0 = 3.6 was 

obtained. 
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Table ID.7. Rate Constants for the Oxidations of Allylic Alcohols ... b 

No Substrate• Catalyst typed 

21. 2-Propen-1-ol Monometallic 0.15 

22. 2-Propen-1-ol Bimetallic 1.5 

23. 2-Cyclohepten-1-ol Bimetallic 6.5 

24. 2-Cyclohepten-1-ol-l-d Bimetallic 1.7 

25. 2-Cyclohepten-1-ol Bimetallic 35r 

• Using a palladium catalyst supported on celite as described elsewhere in text. 

• All reactions are oxidations in aqueous, phosphate buffered (pH 8.0, µ = 0.20 M) solutions at 25 ·c in stirred 500 mL creased 

flasks in an atmosphere of dioxygen. Reactions were monitored by the uptake of dioxygen. 

• Usually 2.5 x 10-2 M. 

• This refers to the facility on the ligand system for either co-ordinating Pd(II) in a monometallic or bimetallic fashion at each 

available site. 

• Bimolecular rate constants were calulated by assuming a homogeneous system and dividing the k.._ values, obtained by pseudo 

first order treatement, by the total [Pd(II)] in the mono- or bi- metallic case as relevant. 

' mixed solvent system - the allylic species was injected in dichloromethane because of solubility problems in above two 

experiments. 
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Ill.2.4.10.a. Product Analysis. 

The alcohol used in the oxidations was prepared by a Luche reduction of the 

corresponding allylic ketone. The two products obtained in the oxidation were 3-

hydroxycyclohepten-1-ol (20 % ) and 2-cyclohepten-1-one (80 % ) . As expected from the earlier 

oxidation of the 2-propen-1-ol, the predominant product arises from the alcohol bond oxidation 

rather than olefin oxidation. 

111.2.4.10.b. Kinetics. 

The kinetics of the reaction were monitored in similar manner to all the other 

oxidations. The data are given in Table 111.7. The reaction was 5.3 times faster than the 

equivalent reaction with 2-propen-1-ol. Since it was noticed that 2-cyclohepten-1-ol is not 

water soluble, a mixed solvent was used in that the alcohol was dissolved in CH2Cl2 and this 

allowed the alcohol better contact with the solid catalyst. It was found that the alcohol floated 

on the surface of the water and this did not allow it to mix freely with the supported catalyst. 

There was a rate enhancement noticed under mixed solvent conditions, with k = 35 M-1 s·1
• 

This is more than 20 times faster than the rate constant obtained for the oxidation of allyl 

alcohol itself. 

111.2.14.10.c. Isotope Effect. 

The isotope effect for this oxidation was investigated using 2-cyclohepten-1-ol-1-d. 

The substrate was prepared as described in the section on the homogeneous oxidation of this 

species. The rate constant obtained was k = 1.7 M-1 s"1
• This gives a k8'k0 = 3.6. Now, 

since only 80% of the product is obtained by a direct abstraction of a hydride or a deuteride, 
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the number could be only 2. 9 if one assumed that there was no contibution to the isotope 

effect from the double bond oxidation reaction. 

m.3. Homo2eneous Oxidations. 

Four products were obtained from the oxidation of 2-cyclohepten-1-ol in water in 

homogeneous solution using PdCl/. The products were 2-cycloheptenone (6%), 

cycloheptanone (38%), 2-hydroxycycloheptanone (25%) and 3-hydroxycycloheptanone (31 %). 

The first and second products were identified as their 2,4-DNPs using standard 1H and 13C 

NMR, and by the subsequent comparison with authentic commercial samples. The hydroxy 

ketones were isolated via column chromatography and identified by homonuclear decoupling 

and COSY74 on both the deuteriated and non-deuteriated species, in addition to the standard 

spectra. 

The conditions for these oxidations in homogeneous solution are usually [H+] = 0.040 

M - 1.0 M, [Cll = 0.10 M - 1.0 M and [Pd(II)] = 0.0040 M - 0.10 M. Under these 

conditions usually scrambling of the deuterium giving an equilibrium distribution between the 

allyl and the vinyl position is the predominant reaction. This reaction could be acid or Pd(II) 

catalyzed, if not both. Due to the fact that we were using a 2H label at position 1 on the ring 

to help determine the oxidation products, it would be necessary for us to know if we did get 

scrambling of the label, and if we did get scrambling, to quantitate it in some manner. This 

information would be useful in product analysis. Under the conditions described only acid 

catalyzed isomerization of the deuterium label occurred. 

Aliquots of the reaction mixture were quenched with bicarbonate, extracted and 

derivatized as isocyanates. The 2H resonance of the derivative from 2-cyclohepten-1-ol-1-d 
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appears at 5.3 ppm while that of the allylic isomer, 2-cyclohepten-l-ol-3-d appears at 5.8 

ppm. The relative ratio of the starting isomer is obtained as a percentage of the total of the 

integrals of the two resonances. The natural logarithm of this value, after accounting for the 

equilibrium, is plotted versus time. The data is treated as that from a reaction approaching 

equilibrium, 75 where the equilibrium is a 50:50 mixture of the two isomers. The kisom is 

obtained from the slope. Under the conditions of [H+] = 0.10 M and [Cll = 1.0 M we 

obtained a pseudo first order kisom = 7.6 x 10-4 s·1 for acid catalyzed deuterium scrambling. 

No rate data was obtained for these oxidations because of solubility problems under 

the chosen experimental conditions. 

111.4. Heterogeneous Oxidations on the Modified Bimetallic Species. 

111.4.1. 4-Hexen-3-ol Oxidation. 

The data was treated by the usual method described earlier. The only difference was 

that V 00 was calculated based on one-half of the total amount of alcohol. Thus it was assumed 

that only one of the enantiomers of the racemate reacted. The pseudo first order rate constant, 

k = 6.8 x 10-6 s·1 (R = 0.99), showed that the assumption is justified. 

The recovered alcohol was subjected to the LIS study as described. A plot of the 

increasing differences in the positions of the diastereomeric methoxy signals subtracted from 

the original unseparated methoxy signal versus the molar ratio of the (Eu(fod)3) to the (R)­

MTPA ester was made. This showed that the (R, R) diastereomer was shifted more than the 

(R, S) diastereomer. From analysis of the integrals of the second experiment mentioned in the 

experimental section in these modified bimetallic oxidations, it was determined that more (S) 

4-hexen-3-ol was present (30 % ee). This indicates that one species was oxidized selectively, 
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the (R) isomer of 4-hexen-3-ol. In the earlier experiment in which data was collected up to 

just past the oxidation of one-half of the total alcohol, the ee for the one isomer obtained was 

almost quantitative within experimental error. 



IV.1. Preparative Aspects. 

PART TWO: CHAPTER IV 

DISCUSSION 

This work had as its focus the design of a supported polymetallic catalyst. The plan 

for the supported catalyst required the placement of binucleating ligands on a polymeric 

surface. One factor to play a crucial role would be the geometry of the binucleating ligands 

with the complexed metals. In addition, the type of metal species, the substrates and the 

potentials required, would play important roles. The applications of such a catalyst will be 

discussed in terms of the oxidations studied. 

IV.1.1. Polymerization. 

The polymerization which used the method of Teplyakov and co-workers, is a facile 

process. As the polymerization involves cyclic trimerization across two monomers, there is 

built in cross linking which rapidly increases the molecular weight and causes the polymer to 

be very insoluble in all solvents after crosslinking. Thus, no polymer characterization in terms 

of molar mass or molar mass distribution studies by viscocity, light scattering or 

ultracentrifugation was attempted. The process could be followed by the appearence of the 

new aromatic singlet as acetyl methyl groups formed the benzene rings (Figure 111.1). 

155 



Figure IV.l. Model Reaction Showing Cyclic Trimerization of p-Acetyl 
Methylbenzoate. 
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IV.1.2. Inclusion of Methyl Ester Groups. 

The methyl ester is incorporated for later modification to give the triketone or 

diketone. One of the major reasons for incorporating the acetylated aromatic ring monomer 

is because we found that the ester group is retained in the polymerization. To verify this, a 

model reaction was performed. In this reaction p-acetyl methylbenzoate was trimerized to 

obtain the trimerized product. 76 

The trimer, Figure IV.1, was characterized by its 1H NMR and by its mass spectrum. 

In the 1H NMR, the identification of the appropriate peaks and the ratio of 9: 15 for the methyl 

ester : aromatic resonances and the mass spectrum parent peak at 481 confirmed this species. 

IV.1.3. Di- and Tri- Ketonization. 

In the related model studies involving preparations of the phenyl and ferrocenyl 

diketone and triketone, 77 the following were found to be of importance: (1) the use of excess 

base is necessary for the formation of the dianion and (2) the use of 18-crown-6 to sequester 

the countercation leads to dramatic increases in yield. Both procedures were incorporated into 

the polymer modification reaction. 

IV.1.4. Coatin~ onto the Support. 

Diatomaceous earth (celite) is a naturally occurring inexpensive silicious material. 78 

For example, nickel on kieselguhr is a frequently used liquid phase hydrogenation catalyst. 

Diatomaceous earth is also used as a filter aid, so as a support, it imparts improved 

filterability and ease of suspension to a heterogeneous liquid phase system. The ease of 

suspension usually is exploited to the extent that the liquid can be sufficiently agitated and 
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the catalyst suspended by the oxygen, hydrogen or other gas mixture bubbling up through the 

slurry without supplementary mechanical agitation. 79 

Since we are using dioxygen as re-oxidant, it is important that the support possess gas 

diffusion capabilities; celite is best suited for this purpose. 

IV.1.5. Metal Ion Incorporation. 

The original synthesis of Pd(CH3CN)4 
2
+ is from Schramm and Wayland. i.i Excess 

NO +BF 4• was used so that all the Pd(0) would be oxidized to Pd(II). It has been shown 

(Schramm and Wayland) that even the use of excess oxidizing agent does not lead to the 

formation of Pd(IV). The ligands are very labile and hence very reactive from a substitution 

point of view. The use of this species was exploited very highly by Sen who studied among 

other aspects olefin dimerization, oligomerization and polymerization using palladium and 

other metal species. 81 

The procedure employed, in situ formation of the Pd(II) species and co-ordination to 

the diketone and triketone backbone, is a modification of the methodology from Sen, who 

predominantly used monophosphine ligands to give stability to the unstable Pd(CH3CN)4
2

+ 

species. 82 In addition to the stabilization from the oxygens of the di- or tri- ketone framework, 

precedence for a solid support giving stability to a relatively unstable homogeneous 

counterpart exists. Supporting aluminum(III) chloride on polystyrene results in insensitivity 

to moisture during manipulation in air. 8 The instability of rhodium(I) phosphine complexes 

in the presence of 0 2 is well known. Analagous supported rhodium(!) complexes are resistant 

to oxygen degradation and can be filtered and recycled in air without the need to take special 

precautions. 83 Similarly, reduced oxygen sensitivity has been found with supported Pd(0) 
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phosphine complexes. 84 So it is not surprising that the supported complex we have prepared 

is indefinitely stable in air, based on our qualitative observations. 

Our ligand system, where the metal is co-ordinated, is of the 2,4-pentanedione type. 85 

Acac complexes of many metals including palladium are well known; but these are usually 

bis(acac) complexes. 86 Mono(acac) type complexes of palladium are known, but these are 

usually found with other strongly co-ordinating species like olefins. ~ It may be argued that 

a mono(acac) complex with labile ligands may be unstable in homogeneous solution. This may 

well be the case. However, it has been emphasized88 that a ligand selected for a homogeneous 

catalyst ought to co-ordinate fairly strongly to the metal in order to prevent ligand loss and 

subsequent reduction of the metal ions to the free metal. On a support, ligand dissociation is 

more spatially restricted so that weaker bonding ligands may be used. Thus advantages not 

realizable in homogeneous solution are now available. 

IV.1.6. Determination of Metal Content. 

The use of DMG to determine palladium metal content is a well established analytical 

technique. Perhaps the weak point of the method is that the final amount of Pd is determined 

by subtracting the amount determined as left in solution from the amount that was used at the 

start. The final number is very small and hence small errors in analysis can lead to significant 

errors in the amount of metal calculated to be on the support. Perhaps the direct determination 

of metal content would have been more accurate. One must bear in mind that analysis of 

metal content in polymeric systems is usually achieved by destruction of the substrate. 89 In 

order to do this, the polymeric substrate would need to be oxidized with a combination of 

concentrated sulfuric acid and 30% aqueous hydrogen peroxide. This would be difficult in the 
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present case because of interference from the support . The determination of metal content 

becomes a similar gravimetric procedure after destruction of the polymer. 

There are, however, methods available for the direct determination of metal content. 

Examples are X-ray florescence spectroscopy, thermal neutron activation analysis and charged 

particle activation analysis. All of these are non-destructive. However all suffer the major 

drawback of many interferences, necessitating the difficult task of preparing standards in the 

same matrix as the materials under test. 90 

IV.1.7. Su22estions for Characterization Methods. 

Mono and bimetallic Pd(II) systems have been prepared using diketone and triketone 

systems on a small polymer framework, supported on celite. All the chemistry behind these 

preparative procedures is known, yet characterization of the resultant bimetallic and 

monometallic systems is limited because of the complexity of such characterization. 

Some suggestions for characterization include the following. Evidence could be 

obtained by the use of reflectance IR. 91 It may be possible to demonstrate a bimetallic system 

using solid state NMR.92 However this characterization is not a simple process. Many 

sophisticated methods for the characterization of surfaces are available like X-ray 

photoelectron spectroscopy and transmission electron microscopy. 93 

IV .2. Oxidations. 

The most famous homogeneous counterpart in Pd(II) oxidations is the Wacker process 

for the oxidation of ethene to ethanal. The re-oxidant for Pd(0) is CuC12 which is in turn 

regenerated by dioxygen. Other reoxidants like benzoquinone and Fe(III) salts have been 
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used for the re-oxidation of Pd(0). The direct use of 0 2 is rarer. At higher 0 2 pressures and 

temperatures above 80 ·c, Pd(0) is reported to be directly regenerated. 94 In all of the 

oxidations performed at 25 ·c, dioxygen (ambient pressure) was used as reoxidant. A 

schematic for the catalytic process is shown in Figure IV.2. Schwarz and Blackbum95 used 

0 2 , but their work was carried out at 38 ·c and they commented on precipitation of Pd(0) if 

they did not increase oxygen pressures. 

It is probable that the ease of re-oxidation under the mild conditions employed was 

actually because of the reoxidation of Pd(I) dimers. Some indirect evidence for this is 

available in the observation that the related monometallic system tended to show greater 

precipitation of Pd(0) over longer periods of reaction time. Also, the reactions on the 

monometallic system became exceedingly slow at long reaction times and deviated from first 

order behavior. 

The reoxidation of Pd(I) by molecular oxygen under ambient conditions is not a new 

suggestion. Coe and Rispoli96 showed kinetic evidence for a Pd(I) intermediate that was 

oxidized to Pd(II) with 0 2• They were studying the kinetics and mechanism of the oxidation 

of Fe(II) by aquapalladium(II) and initially noticed that the precipitation of Pd(0) was delayed 

if dissolved 0 2 was present in their reaction mixtures. The investigation revealed that the 

reoxidation occurred more easily in chloride free media and that even 0 2 from the air could 

perform the reoxidation being examined. Coe and Rispoli interpreted the kinetics in terms of 

reoxidation of a steady state Pd(I)-O2 intermediate. By calculations they were able to show that 

this was the only means to explain their data. In addition they showed that the reoxidation was 

not occurring because of the iron species. In our case we are also working in chloride free 

media. We have the additional advantage in that our solutions are blanketed in oxygen. 



Alcohol or Catechol Oxidized Product 

Pd(Il) Pd(O) 

Figure IV.I. Scheme Depicting the Catalytic Process for the 
Oxidations Using the Pd(II) Catalysts. 
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IV.2.1. Oxidations of Catechols. 

The supported catalyst oxidations of catechols are facile reactions occuring at 25 • C 

and at ambient pressure. Stringent procedures were employed in studying the oxidations of 

catechols in water and methanol so that unambiguous data could be obtained. 

IV.2.1.1. A Note on Rate Constants. 

The catechol oxidations using the bimetallic system occur in two distinct steps, each 

step being a two electron oxidation. Evidence for this is from monitoring the products during 

the course of the reaction and from the two distinct steps in the kinetic data. The product 

distributions determined during the course of the reaction indicated 3,5-DTBQ was the initial 

product and the muconic acid derivative was the final product. This result was in keeping with 

the color of the reaction mixture which was an intense red in the early stages when 3,5-BTBQ 

predominates and later appears yellow in the presence of the ring cleaved product. Also, the 

first step in the kinetics is much quicker than the second step (12.6 times) and has a pseudo 

first order rate constant k
0

bs = 3.2 x l0-4(s·1
) under the conditions of our experiments. This 

corresponds to a t1n = 36 min. The corresponding first step in the monometallic system is 45 

times slower. As previously mentioned, the second step does not take place to any appreciable 

extent in the monometallic system. 

IV.2.1.2. The Effect of pH. 

In this study the pH was maintained at 8.0 for the aqueous studies. In methanol 1.65 

x 10-4 M [OMe·] was employed. If there was any water present in solution, one would expect 

an equilibrium of the form, 



OMe· + HiO ~ MeOH + OH" 

164 

(IV.1) 

to come into play. This would affect the mechanism of the reaction. This is highly unlikely 

because of the high concentration of drying agent (TMOF) that was used in these reactions 

when carried out in methanol. 

Under the conditions of our experiments in methanol, there was a maximum of 16.4 

mL of 0 2 taken up in a control reaction run in the absence of the catalyst in a period that is 

three times longer than it takes for the bimetallic catalyst to effect ring cleavage. Observation 

of the solution from this blank run shows no detectable oxygen uptake for several days after 

this. This volume corresponds to approximately 6. 7 x 10-4 mol of 0 2• Subtracting out the 

amount of 0 2 taken up standardly by the solvent, the process could be treated as a parallel 

reaction and the corresponding rate constant determined. The only product we detected was 

the corresponding quinone, 3,5-DTBQ. This reaction is attributed to a direct oxidation by 

di oxygen. 

One of the few studies in the literature that discussed the direct oxidation with 0 2 was 

from Grinstead. 64 His conditions were more extreme. He varied [OHl from 0.06 M to 2.5 

M. In addition, most of his studies employed heating of the solutions. Like the few other 

workers who mention the direct reaction with 0 2, he remarks about the indiscriminate 

decompositions he obtained, his highest yield of quinone being only 40% under the mildest 

of his conditions (no NaOH and in bicarbonate buffered solution). He also performed 

experiments with hydrogen peroxide in basic media, and claimed optimal pH ranges of 11-

12. It is our qualitative observation that the more alkaline the solution, the quicker the direct 

consumption of 0 2, but the greater the number and nature of products. We did not investigate 
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the direct reaction any further. 

We had also observed that in aqueous acidic solution (pH 5.0) our catalyzed reactions 

did not consume enough 0 2 to be going past the first two electron stage which involves 

quinone formation. For reasons discussed above, very basic conditions were avoided. The 

conditions chosen were a balance between having a clean, facile, catalyzed ring cleavage 

reaction with the least interference from the direct reaction observed with 0 2 and suitable for 

study by gas uptake techniques. 

IV.2.1.3. A Note on Workup. 

Many workers report lactonization of the ring cleaved product. 15 We found that as long 

as work up is restricted to simple filtration to remove the heterogeneous catalyst, followed by 

solvent evaporation, lactonization did not occur. 

IV.2.1.2. Bimetallic Interaction in the Mechanism. 

A scheme for the process is shown in Figure IV.3. A few important aspects revealed 

in this work are incorporated into the picture. As mentioned earlier we view the reaction as 

occuring in two 2 electron stages. Based on the control experiments and on known palladium 

chemistry, the dioxygen serves as reoxidant for some reduced form of the metal. The 

bimetallic interaction is proposed as necessary for the ring cleavage reaction under the 

conditions we employ. This is depicted in the interaction with the two adjacent oxygens in the 

catechol. Such bimetallic interaction has been postulated as essential in other metal oxidations 

of catechols too. 97 

Note that the interaction of palladium itself with catechols is known. For example, 



+CATECHOL 

hR 
K 

0 0 

R' = H (or) CH3 

h-R 
R'OOC COOR' 

Figure IV.2. Proposed Scheme for the Oxidation of Catechols on the Pd(II) Bimetallic Catalyst. 
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Razuvaev, et. al., could generate stable semiquinone species from 3,5-DTBC and palladium 

to obtain ESR spectra on these semiquinone species.98 Under acidic conditions, it_ has been 

shown that 1,2-benzene diols are oxidized to 1,2-benzoquinones by Pd(II) with ease. Coe and 

Mentasti99 found that acid usually reversed this reaction. They discussed their spectra in terms 

of the formation of a palladium(0)-quinone adduct. Quinone adducts of many metal species 

including palladium are known. Balch et. al. prepared tetrachloro-1,2-benzoquinone and 1, 10-

phenanthrenequinone adducts of ruthenium, iridium, palladium, platinum and rhodium. These 

were used for electrochemical studies in which they were able to demonstrate reversible one 

electron oxidation behavior. 100 

It is possible that nucleophilic type attack occurs on the co-ordinated carbonyl. The 

carbonyl carbon is a known electron deficient center. In the Pd(II) complex the carbonyls 

should be even more susceptible to such attack. The Pd(II) species would serve as a Lewis 

acid. The basic solution probably helps this reaction because of the presence of methoxide 

which is a better nucleophile than methanol. Thus esterification is a facile reaction and the 

high amount of drying agent probably drives the equilibrium toward ester formation. 

IV.1.2.4. Role of base. 

Finally, in addition to the earlier discussion on pH the slightly alkaline conditions that 

we employ must serve at least a dual purpose in our Pd catalyzed reaction: (a) deprotonation 

of the -OH of the catechols. This would make interaction with the Pd(II) system stronger; and 

(b) The basic conditions would also drive the reaction towards formation of the quinone as 

evidenced by the work of Coe and Mentasti. 



168 

IV.2.1.5. A Note on Potentials. 

Grinstead used several metal ions (Co2+, Mn3+, Fe3+ and Cu2+) in his study of the 

effect of metals on catechol oxidations. 

Grinstead viewed the metal as involved in some kind of stabilization of aryl radicals, 

Table IV.I. Standard Redox Potentials of Some Metal Ions: 

Couple 

Co2+/Co3+ 
Mn2+/Mn3+ 
Pd0/Pd2

+ 

Fe2+/Fe3+ 
Cu+/Cuz+ 

• From Grinstead, R.R.; Biochemistry, 3 1308 (1964). 

Eo (V) 

+1.82 
+1.51 
+0.915 101 

+0.771 
+0.153 

because he was using one electron oxidants. He had the best results with the metals possessing 

the highest potentials, namely manganese and cobalt. The view that he adopted with regard 

to the potentials was that complexation drastically changed potentials but that a definite trend 

was evident. He suggested some manner of oxygen activation as a primary role for the metal 

ions in keeping with earlier biochemical studies 102 that aimed at mimicing the action of certain 

enzymes that were believed to contain metals that played such a role. The idea was later taken 

up by Tsuji who studied the catechol ring cleavage with copper(II). 103 Later Rogic upset this 
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interpretation when he showed that similar copper reactions also proceeded under anaerobic 

conditions. 

Lintvedt, et. al. prepared binuclear Cu(II) complexes of the bis(triketone) systems of 

the type we are using as our metal framework. They found, based on crystal structure, that 

the two Cu(II) atoms are 3.05 A apart. They claimed that simply based on distance, the Cu(II) 

atoms were too far apart and that any direct structural metal-to-metal interaction would be 

very small and could be neglected. 104 

Based on electrochemical studies 105 on these Cu(II) binuclear and related mononuclear 

systems, Lintvedt, et. al. , observed information that could be of significance to this work. 

First, they noticed that the reduced copper species in their mononuclear system exhibited 

nonreversible electrochemical behaviour due to its tendancy to decompose. Second, there is 

an amazing stabilization of the Cu(I)-Cu(I) reduction product. They interpreted the stabilization 

to be due to the presence of interacting copper centers, although earlier structural 

characterization had not shown any evidence for this interaction. Part of the evidence for this 

interaction included strong antiferromagnetic coupling between the metal centers. Third, all 

the triketonate systems they studied showed reversible electrochemical behavior in terms of 

scan rates, peak current ratios and symmetries. Fourth, and perhaps most importantly, by 

applying the theory for multi-electron transfer cyclic voltammetry developed by Shain and co­

workers, 106 they deduced that two sequential one electron transfers were occurring at the same 

potential. 

The potential for the oxidation of catechol itself to benzoquinone, +0.699 V, is 

significantly higher than that possible for standard Cu(II)/Cu(I) couples. 107 Hence Rogic 

suggested that it is a thermodynamically uphill process for the copper system. Now this may 
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or may not be the case in the bimetallic palladium system. Balch, et. al. , have shown that 

reversible one electron oxidation is possible in the palladium-quinone adducts that they 

prepared. The potential for the oxidation of Pd(l ,2-O2C6Cl4)(PP~)2 is +0. 72 V. Also, by 

analogy with the Cu(II) systems, one might expect that the electron transfer occurs in some 

sequential manner from both metal centers. 

Rogic108 proposed in addition a "steric match" hypothesis that essentially suggested that 

the distance related geometry is important in the catechol oxidations. As mentioned earlier, 

in the related copper binuclear system, the Cu(II) atoms are 3.05 A apart. Chemical and 

spectroscopic studies t@ on the Neurospora tyrosinase suggested that the "type 3" site is 

geometrically correct for the co-ordination of catechol axial to both coppers. This rearranges 

to a more side-on or equitorial position before oxidation can occur. 

In this work, the absolute need for the bimetallic interaction has been demonstrated. 

Oxidation of the catechol to the quinone is achieved easily on the bimetallic framework. The 

large enhancement in rate for the bimetallic over the monometallic system in the first step, 

quinione formation, is proof that the bimetallic interaction is crucial to this Pd(II) oxidation. 

The second stage, ring cleavage, speaks for itself. Under the conditions of this work, no ring 

cleavage was effected with the monometallic system. The facility of the complete process and 

the cleaness of the ring cleavage are features of the bimetallic catalytic system. It is especially 

appealing to ring cleave aromatic rings of this nature because of the potential utility of such 

a process for degrading biomass. 

IV.2.1.6. Final notes. 

(1) This is the first time ring cleavage of catechols has been accomplished with a Pd(II) 
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system. The reaction is made catalytic by using dioxygen as a co-oxidant as in the Wacker 

process. 

(2) This process is clean and uncomplicated both in terms of experimental procedures and 

products. Most, if not all of the earlier work in the literature concerning transition metal 

oxidations of catechols is in terms of mimicing the action of various enzyme species. Usually 

such work focusses on dioxygen activation. 110 This study is oriented differently. The goal was 

to achieve a clean uncomplicated ring cleavage process with facility. 

(3) Finally, this process stresses that bimetallic catalysis is both necessary and required. 

IV.2.2. Oxidations of Alcohols. 

The facile oxidation of the alcohols probably involves a transfer of hydrogen from the 

carbon of the alcohol to the palladium. The transfer is a two electron process as is usual in 

palladium oxidations and this is confirmed, in part, by the kinetics which were treated as two 

electron processes. Very satisfactory results, in terms of the correlations, were obtained in 

the psuedo first order treatment. 

IV.2.2.1. General. 

The oxidations of primary alcohols by Pd(II) species have been known for some 

time. 111 Nikiforova, et.al., observed that these reactions were much slower than the oxidations 

of olefins. 112 Several other workers have investigated these homogeneous oxidations. 113 An 

example is the kinetics of the oxidation of 2-propanol which was studied in the temperature 

range of 66 ·c - 96 ·c. 114 

The greater ease in oxidation under the present conditions is due probably to a chloride 
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free media. Normally chloride shows some kind of inhibition in analogous Pd(II) catalyzed 

oxidations in homogeneous solution. 115 In addition palladium(II) has a higher redox potential 

under these conditions. 116 

IV.2.2.2. 

IV .2.2.2.a. 

Role of the Bimetallic System. 

Mono alcohols. 

The interaction from the second metal in the bimetallic system is of considerable 

importance to the oxidation. The fact that the bimolecular rate constants are all higher for the 

bimetallic system over the mono metallic system, as seen in Table 111.3 - Table III. 7. 

substantiates this proposal. Even in the case of the smallest difference, that of the oxidation 

of methanol (1.3 times faster for the bimetallic), there is a consistently faster reaction with 

the bimetallic system. 117 The reason for the only slight increase is probably because of the 

small size of methanol, estimated to be ca. 2.0 A from the O to a H on the carbon. On the 

other hand slightly better rate differences were obtained for ethanol in which a factor of 5.2 

was obtained. In the case of 2-propanol and 1-phenyl methanol factors of around 4 were 

obtained in each case. 

IV.2.2.2.b. Diols. 

An argument for the bimetallic interaction can be made by using the diols in which 

the rate enhancements were far higher. While most of the diols give more noticable 

differences in rates than the standard mono alcohol, the outstanding case was that of ethane-

1,2-diol in which a factor of 32 was observed. The interaction of the two alcohol groups, as 

in the case of the catechols provides interaction at both metal centers thus enhancing the 
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oxidation in the bimetallic system. The availability of two oxidizable sites probably also 

contibutes. One cannot discount, of course, the fact that both oxygens could well interact 

with one metal site in the monometallic system too. Recently, for example, crystal structure 

has been obtained for a glyerolato-1 0 ,2 0 complex of platinum(II) by Wild et. al. 118 This 

only serves to show that the rate inreases in going to the bimetallic system arise from factors 

that are in some manner unique to having the two metals next to each other in that particular 

manner in the system. 

The oxidation of propane-1,2-diol has a rate constant similar to that of ethane-1,2-

diol (20 x 10·3 M·1 s·1 as opposed to 16 x 10·3 M·1 s"1
). The related monometallic rate constant 

is not so drastically different as in the case of ethane-1,2-diol. This is slightly surprising. On 

the other hand, it could be just that the extra methyl group contributes a steric bias against 

the fit of the propane-1,2-diol. This restriction toward interaction in certain conformations 

probably hinders interaction with the bimetallic system and actually lowers the rates. Of note 

is the fact that one of the hydroxy groups is secondary in nature, yet 2-propanol is oxidized 

faster than propane-1,2-diol. The slight lowering in rate constant is probably due to a spatial 

restriction of the supported catalyst, 119 or simply an electronic factor because of the 

withdrawing nature of the hydroxy group. To contribute to this argument butane-2,3-diol has 

two secondary hydroxy groups and is oxidized faster than propane-1,2-diol (factor of 2), yet 

it is only 1.1 times faster than 2-propanol. Similar rationalization in terms of conformational 

restriction can be made in this case too. 

Another point in favor of the steric argument is that the rate differences between the 

monometallic and the bimetallic systems progressively decrease as we introduce more steric 

interference on the substrate. The differences decrease from 30.2 to 9.5 to 6.6 from ethane-
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1,2-diol to propane-1,2-diol to butane-2,3-diol. 

In the oxidation of the only poly hydroxy compound (a-D-glucose) a greater increase 

is noticed in the rate constant (k = 77 x 10·3 M·1 s·1
). This can be explained on the basis of 

more possible oxidizable positions and that the sugar is conformationally more restricted. 

A brief mention must be made of butane-1,3-diol in which the rate constant is lower 

than in the 1,2-diols. This could be attributed to the distance effect. The bimetallic system, 

assuming both alcohol oxygens interact in the 1,2-diols, leading to enhanced rates, is not 

compatible with the 1,3 alcohol (4.2 A) in terms of distance. There is only a small difference 

in going from monometallic to bimetallic in the 1,3-diol. The 1,2-diols show much larger rate 

differences. 

The interaction from the diols is probably from both oxygens to the palladium atoms. 

The best known studies of interactions of species with two palladiums adjacent to each other 

is in the case of the "A-frame" complexes, in which stable dipalladated adducts are well 

characterized. 120 A look at the allylic species oxidized on our system is perhaps the most 

meaningful in terms of nature and evidence for the bimetallic interaction, because of the 

known propensity for palladium to form 1r bonds with olefinic species. 

IV .2.2.2.c. Allyl Alcohol and Con1:eners. 

The most noticable facet of the allylic alcohol oxidations is that the reactions are so 

rapid. Both allylic species used had rate constants almost three orders of magnitude faster than 

methanol. There is a ten fold difference between the monometallic and the bimetallic systems 

in the oxidation of allyl alcohol itself. In the bimetallic cases, one of the metals of the 

bimetallic system probably 1r complexes with the C=C of the allylic moiety. The other 
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palladium could abstract the hydride very conveniently from the alcohol carbon. The fact that 

the major product in the bimetallic case arises from the oxidation of the alcohol as_ opposed 

to double bond oxidation, while in the monometallic case it is a minor product, as in the 

homogeneous oxidation, provides evidence that the bimetallic species reacts differently from 

the monometallic. 72<•> In explaining the formation of acrolein in the oxidation of 2-propen-1-

ol in homogeneous solution, Henry suggested the uncomplexing of the olefin to provide a 

vacant site necessary for the hydride abstraction from the alcohol carbon. 121 In this case there 

is no need for the uncomplexing of the olefin to provide a vacant site, if it is the other 

palladium that is responsible for abstracting the hydride in the bimetallic case. 

Thus evidence for the differences due to the bimetallic system are evident. The nature 

of the interaction is dependent on the particular species being oxidized. The evidence, both 

from kinetics and from products, is especially strong in the allylic case. 

IV.2.2.3. Isotope Effects. 

The values obtained for the isotope effect, kik0 in these oxidations are 2.5 in the case 

of benzyl alcohol and 3. 6 in the case of 2-cyclohepten-1-ol. The isotope effect for the benzyl 

alcohol is itself slightly higher than that obtained for analogous Pd(II) catalyzed oxidations in 

homogeneous solution. As an example, Kozhevnikov, et. al., 114 obtained an isotope effect of 

1. 8 in the oxidation of 2-propanol with PdC14 
2
• in water. Other values obtained for olefin 

species in water are between 1. 7 and 1.9 for ethene and 2-propen-1-ol. 122 Closest to the value 

of 2.5 is the value of 2.2 obtained by Henry and Zaw in the oxidation of 2-buten-1-ol. 

In this study, the oxidation of benzyl alcohol almost certainly involves some manner 

of hydride shift as in the case of the simple non olefinic alcohols. 123 In the allylic case, the 
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predominant product arises from oxidation of the alcohol moiety, that is, via hydride (or, 

deuteride) shift. Since detailed mechanistic investigations of the oxidation of 2-cyclohepten-

1-ol had been performed in homogeneous solution, it was decided to oxidize this species on 

the supported heterogeneous system. The higher isotope effect with the allylic species is 

interesting and slightly unusual. The reason for the higher number, compared with the 

deuteriated benzylic species, probably results from the more pronounced interaction of the 

Pd(II) with the C=C bond, providing greater ease for hydride abstraction especially in such 

a bimetallic system. 

In comparison, the most dramatic isotope effects for alcohol oxidations in the literature 

is from Roecker and Meyer19 who obtained an isotope effect of 50 for the oxidation of benzyl 

alcohol by [(bpy)i(py)Ru(O)J2+. Even the much lower number he obtained for methanol (kik0 

= 9) is still larger than those obtained in this work. Meyer suggests that the dominant 

pathway for the oxidation of alcohols by polypyridyl monooxo complexes of Ru(IV) is very 

polar and involves the C-H bond in an intimate way. 

Other literature reports on isotope effects in alcohol oxidations are not so dramatic. 

In the oxidation of 2-propanol by Ru04 in aqueous acidic solution Lee and Engh 124 found 

isotope effects, kik0 , ranging from 1.3 (high acid) to 4.6 (low acid). The differences were 

attributed to a change in the mechanism. In oxidations of alcohols by Ce(IV), V{V), Mn(III) 

and Cr(VI) a range of isotope effects from kik0 = 1. 9 for the oxidation of cyclohexanol by 

Ce(IV), to kH/k0 = 3.6 for the oxidation of cyclohexanol by V(V), to kH/k0 = 7 for the 

oxidation of 2-propanol by Cr(VI), are seen. In all these oxidations direct or kinetic evidence 

is available to suggest the formation of discrete, inner sphere metal-alcoholate complexes 

which decompose by homolytic or heterolytic pathways. 125 The kinetics of these pathways are 
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usually described by relatively complex proton dependent rate laws. 

In palladium chemistry, high isotope effects (kufk0 = 5.0) were seen in the aromatic 

metallation reaction. This was interpreted in terms of a rate determining step involving C-H 

bond breaking rather than a simple 1r-co-ordination of the arene or formation of the Wheland 

intermediate. The formation of the Wheland intermediate was proposed as the slow step in the 

aromatic metallation of arenes by Pt(IV).126 The electrophilic mercuration of arenes is usually 

accompanied by similar large isotope effects. 127 

In general though, the low numbers obtained in this work reflect that the hydride shift 

transition state has little or no carbonium ion character. It has also been suggested by Henry 

that discrete Pd(II)-H species are present as intermediates in the hydride transfer. 128 It is 

possible that other mechanisms also come into play. For example, the homogeneous Pd(II) 

oxidations used to compare isotope effects were all performed in acidic solution and proton 

dependences were present in those rate expressions. 

IV.2.2.4. Rate Constants. 

Bimolecular rate constants using the supported catalyst range from 1.8 x 10·3 M·1 s·1 

for methanol to 35 M·1 s ·1 for 2-cyclohepten-1-ol. In general, the following trend is seen for 

the alcohols: primary < secondary < benzyl < < < allyl. Diols are scattered depending on 

the diol in question. All of this is consistent with other known palladium chemistry. 129 

Rigorous rate expression studies have not been performed. The oxidations are first order in 

[alcohol] and first order in total [Pd(II)]. Dioxygen is used as reoxidant for the palladium. 

Arguments have been made earlier as to why this may be more easily possible in this system 

under the milder conditions employed. 
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It is difficult to compare the rate constants of our reactions with those obtained from 

other palladium oxidations because of different rate expressions. In the case of the 2-:- propanol 

though, the bimolecular rate constants from Kozhkevnikov, et. al. , are smaller, at least by an 

order of magnitude. In other saturated alcohol oxidations, Roecker and Meyer oxidized 

methanol with a bimolecular rate constant of 3.5 x 104 M-1 s·1
, a factor of 5 times slower than 

that obtained in this work. In the same work, his rate constants for 2-propanol and ethanol 

were comparable with those obtained in this work, while all of his benzylic species were 

faster by an order of magnitude. Many other oxidations of alcohols are available in the 

literature, but few report rate constants that can be used for meaningful comparison. 130 

Major olefinic type oxidations using Pd(II) species have been carried out by several 

workers. The rate expression for these mainly Wacker oxidations is different, and comparison 

is difficult because of different rate expressions. 

One final comment with regard to the rate constants. In the case of 2-cyclohepten-1-

ol, under the mixed solvent system there is an increase in rate constant by a factor of 5. This 

is not that unusual. For example in a recent ruthenium catalyzed oxidation of primary 

alcohols, Backvall, et. al., obtained a rate increase of 10 in changing solvent to 

dichloromethane. 131 

IV.2.2.S. Products. 

All of the saturated alcohol oxidations gave only one product. The primary alcohols 

gave aldehydes and the secondary alcohols ketones. Secondary alcohols were preferentially 

oxidized over primary. In the allylic cases, the bimetallic system gave preferential alcohol 

oxidation (ca. 80%) over double bond oxidation. The minor product 3-hydroxy propanal, in 
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the case of oxidation of 2-propen-1-ol, could be explained by a hydroxypalladation type 

mechanism 132 followed by hydride transfer. Interestingly, the monometallic system gave 

predominantly double bond oxidation similar to homogeneous Pd(II) oxidation chemistry. This 

is true for the cyclic allylic alcohol as well. 

In the homogeneous oxidations allyl alcohol gave 2-hydroxypropanal, I-hydroxy 2-

propanone, 2-propenal, propanal and propene as products. One study in basic solution133 

reported only 3-hydroxy propanal as the product. Earlier a study in acidic solution had 

reported acrolein as major product (75%), along with the formation of some 11"-allyl palladium 

chloride. 134 In the oxidation of 2-cyclohepten-1-ol four products were obtained: two hydroxy 

ketones along with the saturated and unsaturated ketones. 

IV.2.2.6. Comment on Distances. 

Apparently the geometry of the bimetallic system is vital to the oxidations. We do not 

have precise distance characterization in this system. But careful structural characterization 

is available in the related homogeneous triketone systems. 135 Such systems are bis(triketone) 

complexes. With Cu(II) the metal-metal distance is about 3.05 A, for Ni(II) it is 3.17 A and 

for Co(II) it is 3.27 A. Estimates made for Co(III) peroxy complexes 136 make the two cobalts 

about 3 .1 A apart. It is highly likely that the two palladiums in the bimetallic settling are 

somewhere between 3.0 A and 3.3 A apart. 

Some indications of the optimal distance are evident from the geometry of the species 

oxidized. The catechol oxygens are approximately 2.8 A apart. We have made ALCHEMY 

II minimized estimates of distances in the alcohols oxidized. 137 These distances are shown in 

the Appendix. The best rates in the oxidations of the diols are obtained when the distance 
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between the two oxygens is between 2.6 A and 3.0 A. 1,3-butandiol has the two oxygens 4.42 

A apart and this could account for the decrease in rate. The sugar (a-D glucose) apparently 

has three sets of oxygens that are at the optimal distances. This could explain the enhanced 

rate with this polyhydroxy compound which is more than three times faster than all the diols. 

The role of catalyst geometry and bimetallic rate enhancement are brought out in these 

studies. In addition, indirect evidence about the distance between the two metals in the 

bimetallic system is revealed. 

The allyl cases are very interesting. In some manner the distance for 2-propen-1-ol is 

close to optimal for the bimetallic system. The distance from the outer carbon of the C =C 

bond to the alcohol oxygen is 2.825 A, while that from the inner carbon of the C=C to the 

alcohol oxygen is 2.445 A. The calculated distance for a 1r-complex is therefore 2.630 A. 

Distances from the inner carbon of the 1r bond to the hydrogen on the alcohol carbon is 

2. 130 A and from the outer carbon it is 3.321 A. 

The oxidation of the homoallylic alcohol, 4-penten-2-ol, was carried out to investigate 

the distance effect. It has been a quantitative observation thus far that the bimetallic system 

provides enhanced rates over the monometallic counterpart. It has been a qualitative 

observation that the distance between the two metals in the bimetallic system makes a 

difference in the rates. Incompatible distances ought to slow the reaction. Thus in going to 

the homoallylic and the homohomoallylic species, this is apparently the case. With a closest 

distance of 4.92 A in the homohomoallylic alcohol, that would be too far for any significant 

interaction of the oxygen with the other metal. The fact that we barely had any oxygen uptake 

is possible indirect confirmation of this idea. 

The homoallylic alcohol is an interesting case. The measured distances (see Appendix) 
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do not seem too far for the bimetallic catalyst, although they are certainly higher than in the 

case of allyl alcohol. It is therefore likely that there may be more than one factor involved. 

One possibility is a conformational problem as discussed in the case of the diols. 

IV.3. Note on the Observed Kinetic Resolution. 

In the oxidations using the (+)DIOP modified bimetallic catalyst, in effect, the 

observed oxidation corresponds to a fractional resolution in which one enantiomer of a 

racemate is selectively oxidized. The experiments are at a very preliminary stage. Thus it is 

difficult to make quantitative predictions on the relationships between rate constant, ee and the 

amount of conversion because of insufficient data. 138 It is not known if the phenomenon seen 

in this work is general. The cause of the enantioselectivity and the stage at which it occurs 

are not known. Fractional resolution to obtain one enantiomer of a racemate is not a very 

common phenomenon outside of resolutions by enzymes and micro-organisms. 139 There are 

very few processes that are known; the most famous and, probably the only effective method 

to date, is the Sharpless epoxidation. 140 

IV .4. Implications for Catalysis, Conclusions and Directions. 

(1) This work shows evidence that a supported bimetallic catalyst can catalyze facile 

oxidations under mild conditions, namely 25 ·c and ambient pressure. The bimetallic catalyst 

is superior to the monometallic catalyst. Reoxidation of the catalyst is easily accomplished 

with dioxygen. 

(2) Perhaps the most notable oxidation accomplished is the clean ring cleavage of catechols 

with this bimetallic system. A variety of alcohols were oxidized too. On the bimetallic system, 



182 

species that are bifunctional enjoy greater interaction with both metal sites especially if 

distances are optimum. The interactions of the bifunctional species lead to enhan~ed rates. 

There is evidence from the types of products that the bimetallic interactions are important and 

in one case, that of catechol, necessary. 

(3) There remain many studies yet to be performed to establish the nature of this catalyst and 

its mode of interaction. The major tasks are: (a) structural characterization of the catalyst via 

surface studies as mentioned earlier in this discussion; (b) increase in metal loadings by 

incorporating more sites for metal ions by using monomers that have more ester groups; and 

(c) detailed mechanistic work, both kinetic and stereochemical. 

(4) In addition, many new reactions could be attempted on this system; (a) reactions from 

known homogeneous palladium catalytic chemistry; (b) reactions with other good oxidants like 

ruthenium or cobalt, via oxygen activation or otherwise; (c) reactions using frameworks other 

than the fJ,'Y-triketone framework, so that different potentials are possible; and (d) asymmetric 

catalytic reactions, especially if the initial results from the fractional resolution can be shown 

to be consistently successful with other secondary allylic alcohols. The origins of the 

selectivity and the efficiency of the process will require to be evaluated over a large range of 

substrates to determine these aspects. 
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