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SYNTHESIS OF MALATHION, MALAOXON, AND 
ISOMALATHION ENANTIOMERS AND EXAMINATION OF THEIR 

INTERACTIONS WITH ACETYLCHOLINESTERASE 

The first synthesis of the individual stereoisomers of malathion [S-(1,2-

dicarboethoxyethyl) 0,0-dimethyl phosphorodithioate], malaoxon [S-(1,2-

dicarboethoxyethyl) 0,0-dimethyl phosphorothiolate ], and isomalathion [S-( 1,2-

dicarboethoxyethyl) O,S-dimethyl phosphorodithiolate] has been accomplished. 

Malathion enantiomers were prepared from malic acid enantiomers in three steps. 

Malaoxon enantiomers were prepared from the corresponding malathion 

enantiomers via oxidative desulfuration with MMPP. Isomalathion stereoisomers 

were prepared by two separate paths employing fractional crystallization of alkaloid 

phosphorothioic acid salts. 

No in vitro AChE inhibition data could be obtained for the malathion 

enantiomers owing to limited solubility. (R)-malathion was shown to be a more 

potent insecticide against Drosophila Melanogaster. The bimolecular reaction 

constant (ki), dissociation constant (K0 ), and phosphorylation constant (kp) for the 

inhibition of rat brain acetylcholinesterase by malaoxon enantiomers and for the 



inhibition of rat brain acetylcholinesterase and electric eel acetylcholinesterase by 

isomalathion enantiomers were determined. (R)-Malaoxon was an 8-fold stronger 

inhibitor than (S)-malaoxon. Isomalathion stereoisomers with the R configuration 

at phosphorus were 4.3 to 8.8-fold stronger inhibitors of rat brain 

acetylcholinesterase but 3.4 to 5.8-fold weaker inhibitors of electric eel 

acetylcholinesterase than the stereoisomers with the S configuration at phosphorus. 

Spontaneous (k0) and oxime-mediated (k0 xime) reactivation rate constants Wt(re 

obtained for rat brain acetylcholinesterase inhibited by the isomalathion 

stereoisomers. Reactivation rate constants for acetylcholinesterase inhibited by the 

R at phosphorus isomalathion stereoisomers were comparable to those of 

acetylcholinesterase inhibited by (S)-isoparathion methyl, which supports a common 

phosphorylation mechanism, namely, formation of identical O,S-dimethyl 

phosphorylated enzymes. Rat brain acetylcholinesterase inhibited by the S at 

phosphorus isomalathion stereoisomers was refractory to reactivation suggesting an 

alternate mechanism of inhibition, i.e., the loss of the thiomethyl ligand. Several 

mechanisms are proposed to account for this nonreactivation observed with the S 

at phosphorus isomalathion stereoisomers. Rate constants for non-reactivatability 

(kNR) were determined for rat brain acetylcholinesterase inhibited by isoparathion 

methyl enantiomers as a model for acetylcholinesterase inhibitors resulting in an 

asymmetric O,S-dimethyl phosphorothiolated enzyme. Rat brain 

acetylcholinesterase inhibited by (R)-isoparathion methyl underwent a time­

dependent decrease of reactivatability twice that of (S)-isoparathion. 
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CHAPTER 1 

INTRODUCTION 

"The implications of pesticide use can not be understood without a 
basic understanding of pesticide chemicals and an appreciation of 
their benefits and risks. Ultimately, it will be up to the public - the 
consumers - to determine the limits of pesticide use. A better 
understanding of the science behind such an issue gives us a 
perspective that aids us in participating responsibly and fully in 
public policy decision-making (Parr, 1987)." 

Pesticide Utility and Societal Impact 

One of the primary responsibilities of any society is to support its 

population with an adequate supply of food. In that effort, it is estimated that 

nearly half of all agricultural produce is destroyed by pests, mostly during storage 

(Perutz, 1991). Thirty percent of the potential crop, livestock, and timber yield 

is believed to be lost annually to insects or other pests (Furtick, 1976; Cagliotti, 

1983). Grain losses prior to harvest in developing countries of the Near East are 

approximately 23% with the largest losses in the production of cereal crops, 

especially rice (Hayes, 1991). 

Advances in pesticide design over the past fifty years have significantly 

contributed toward increased crop yield by diminishing the population of 
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threatening organisms. In addition, some insecticides have been instrumental in 

the reduction of malaria and other insect-borne diseases in humans (Cagliotti, 

1983). In addition to influencing crop yields, insecticide usage also impacts on 

the economy. It is estimated that without the use of pesticides, prices for fruits 

and vegetables would increase 50 to 100% in first world countries (Schuhman, 

1976). Pesticide application for food consumption necessitates significant 

production; approximately 3 billion pounds of pesticides are produced in the U.S. 

annually, one third of which are insecticides. In addition, U.S. consumers 

purchase roughly 25% of all insecticides resulting in annual sales of nearly 900 

million dollars (Welling, 1988). 

Hazards of Pesticide Use 

According to the World Health Organization (WHO), it is estimated that 

3 million acute pesticide poisonings occur annually leading to 250,000 fatalities, 

of which 99% occur in developing countries (Stephens, 1991; Rosenstock, 1991 ). 

In Sri Lanka, nearly 13,000 people are admitted annually to hospitals for pesticide 

poisoning that result in approximately 1000 fatalities. It is estimated that 40,000 

farmworkers of third world countries die each year as a result of pesticide 

intoxication. Generally, these agricultural workers are poisoned because either 

they cannot read, understand, or implement safety instructions, or the instructions 

themselves are inadequate (Perutz, 1991). Approximately 300,000 pesticide 
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poisonings are reported in the United States annually (Rosenstock, 1991). It is 

also believed that many deaths due to pesticides are unreported (Forget, 1991). 

Over-exposure to insecticides is greatest for those who are directly involved 

in their application, including mixing concentrates and loading aircraft for aerial 

pesticide application (Barnes, 1976). Protective clothing for U.S. agricultural 

workers has been assumed to be adequate defense against exposure. In 197 4, 

protective clothing was documented as "at least a hat or other suitable head 

covering, a long-sleeved shirt and long-legged trousers, or a coverall type 

garment, shoes and socks." Recent revisions to these recommendations by the 

EPA and USDA include: a liquid-proof raincoat or apron, trousers outside of 

boots, unlined neoprene gloves, wide-brimmed waterproof hats, unlined neoprene 

boots, and goggles or face shields (Stone, 1988). Other steps have been taken to 

prevent the occurrence of acute poisonings such as medical monitoring of 

agricultural workers. One such attempt has been made by California's 

Department of Health Services in which periodic monitoring for exposure to 

agrichemicals is conducted (Ames, 1989). 

Despite increased protective measures for U.S. agrichemical workers, 

pesticide poisonings remain a continuing concern in developing countries. A 

significant number of poisonings seem to result from "lack of knowledge, unsafe 

attitudes, and dangerous practices (Forget, 1991)." A further problem relates to 

the state of the technology available to small farmers such as "faulty sprayers, 
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lack of protective equipment adapted to tropical conditions, and non-existent first-

aid provisions (Forget, 1991)." It has been suggested that one of the most 

important factors contributing to pesticide poisonings in developing countries is 

a lack of information (Forget, 1991). 

Because pesticides are toxic and yet help support growing populations 

through crop protection, several conflicts in usage have arisen. Thus, in order to 

justify the production and implementation of such compounds, a number of issues 

must be considered including: the human health risks from direct exposure and 

food residues, worker occupational hazards, and possible contamination of 

drinking water (Zilberman, 1991). 

Organophosphorus COP) Insecticides 

Organophosphorus (OP) compounds are members of the insecticide arsenal 

that includes carbamates, chlorinated hydrocarbons, and pyrethroids. To date, 

more than 50,000 organophosphorus (OP) compounds have been synthesized and 

evaluated for their insecticidal potential (Gutmann, 1990). Among these, several 

OP' s have been specifically stockpiled for military use as genocide-based 

neurotoxic agents (nerve gas) including sarin 1, soman 2, and tabun 3 (Figure 1; 

Caglioti, 1983). 

The synthesis of TEPP (tetraethyl pyrophosphate 4, Figure 1) in 1854 most 

likely spawned investigations of toxic OP compounds (Eto, 1974). Their 
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1:sarin 2: soman 3: tabun 

4: TEPP 5:DFP 

Figure 1. Neurotoxic Organophosphorus Compounds. 

development was furthered by both Schrader (Germany) and Saunders (England) 

during WWII while searching for chemical warfare agents such as diisopropyl 

phosphonofluoridate (DPF 5; Figure 1) (Eto, 1974). As an outgrowth of these 

studies, Schrader and coworkers identified several OP compounds that exhibited 

contact insecticidal activity. The first practical insecticide, Bladen, which 

contained the highly toxic compound TEPP, was developed by Schrader and 

coworkers in 1941 and was subsequently marketed in 1944 (Eto, 1974). Since 

the 1940's, thousands of new OP insecticides have been developed. 

Because of their relatively short-lived environmental lifetime, OP's have 

replaced the environmentally persistent, chlorinated hydrocarbons such as DDT; 
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C02C2H5 

6: malathion R=CH3, X= s~C02C2H5 

7: parathion methyl R=CH3, X= o-Q-No2 

8: parathion R=CH3CH2, X= o-O-N02 

9: chlorpyrifos R=CH3CH2, X= O~Nj(CI 

Cl~CI 

Figure 2. Common OP Insecticides. 

its use was banned in the United States during the 1970's due to notable retention 

in body tissue and biomagnification (Matolcsy, 1988; Mahieu, 1990; Stephens, 

1991). It is estimated that 31 to 48 billion pounds of the four most popular 

organophosphate insecticides, malathion 6, parathion methyl 7, parathion 8, and 

chlorpyrifos 9 (Figure 2) are used each year in the United States (Stephens, 1991). 

Structure and Reactivity of OP Insecticides 

In order to discuss organophosphorus (OP) insecticides in detail, a brief 

review of nomenclature, structure, and chemical reactivity is necessary. Some 

general structures of OP compounds that will be discussed in this dissertation are 

shown in Figure 3. For insecticidal activity, one of the ligands attached to the 

phosphorus atom is generally required to be a good leaving group. This aspect 
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Figure 3. General Structure of OP Compounds. 

of OP reactivity and its relationship to biological activity will be discussed in 

Section 1.8. 

Most OP insecticides belong to the phosphorothionate class (P=S). Two 

main features of OP's that influence their chemical reactivity are: the 7t-atom 

linkage, and the a-ligand connectivity. Two examples will serve to illustrate 

these points. As opposed to the sulfur of the P=S linkage, the more 

electronegative oxygen atom of the P=O bond imparts a greater electrophilicity 

at the phosphorus atom making it more susceptible to nucleophilic attack and 

hydrolysis (Matolcsy, 1988; Fest, 1973; Van Wazer, 1958). This feature is 
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8: parathion 10: paraoxon 11: isoparathion 

Figure 4. Parathion, Paraoxon, and Isoparathion. 

exemplified by the 9-fold difference in the hydrolytic t 1n (pH = 8) values for 

parathion 8 (203,000 h) and paraoxon 10 (22,200 h) (Figure 4, O'Brien, 1967). 

The thiolate (P-S-R) linkage also affects the reactivity of OP's. Phosphorothiolate 

esters are more chemically reactive than their phosphate analogues because the 

sulfur atom imparts greater polarizability and decreased p7t-d7t contribution to the 

P-S bond due to the less efficient orbital overlap (Eto, 1974). The more rapid 

hydrolysis (470-fold) of isoparathion 11 compared to that of paraoxon 10 

illustrates the importance of the thiolate sigma-bond contribution toward the 

reactivity of OP's (Heath, 1961). 

Thiono-Thiolo Rearrangement 

Dialky 1 phosphorothionates are prone to chemical, thermal, and to a lesser 
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phosphorothionate phosphorothiolate 

Figure 5. Thiono-Thiolo Rearrangement. 

extent, photochemical induced isomerization to the corresponding S-alkyl 

phosphorothiolates (Figure 5). This transformation is known as the thiono-thiolo 

rearrangement. The rearrangement may be promoted by reaction of a 

phosphorothionate with an alkyl iodide to form the S-alkyl isomeride by first 

alkylation of the thionate followed by dealkylation (Figure 6) (Eto, 1974). 

Self-isomerization, or bimolecular isomerization, occurs at elevated 

temperatures (80-180 °C) where one phosphorothionate is dealkylated by another 

RI 

SR 

RO_-!+.) yr 
I OR 

RO 

SR 

I 
p 

Ro-j'o 
RO 

Figure 6. Alkyl Iodide Catalysis of the Thiono-Thiolo Rearrangement. 
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Figure 7. Self-Isomerization of Dialkyl Phosphorothionates. 
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to form an ambident ion pair that realkylates at the more nucleophilic sulfur atom 

(Figure 7) (Fest, 1973; Eto, 1974). This isomerization occurs fastest when the 

alkyl group transferred is methyl (Eto, 1974). Isomerization also may occur at 

room temperature over a long period of time when phosphorothionates are stored 

in polar aprotic solvents (Eto, 1974, Matolcsy, 1988). 

Unfortunately, thiono-thiolo transformation may transpire during the 

manufacture or storage of phosphorothionate insecticides. Indeed, malathion (6) 

formulations have been found to contain as much as a 10% contamination of the 

thiolo isomeride, isomalathion 12 (Figure 5; R1 = CH3, R2 = 

SCH(C02Et)CH2C02Et), and it has been shown that approximately 90% of 

malathion 6 was isomerized to isomalathion 12 at 150 °C (Metcalf, 1953). In the 
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same study, parathion (Figure 5, R1 =Et, R2 = 0-p-Ph-N02) was isomerized (150 

0c, 24 h) to the S-ethyl thiolate in 80% yield while 90% of parathion methyl 

(Figure 5, R1 = CH3, R2 = O-Ph-N02) was isomerized under the same conditions. 

Mode of Action of OP' s - General Aspects 

Regardless of the effectiveness of OP's in insect control, numerous 

accidental OP poisonings of humans occur every year. The toxicity of 

organophosphates to mammals and insects is primarily due to their ability to 

inactivate the enzyme acetylcholinesterase (AChE). AChE is found in both the 

central and peripheral nervous system, the primary role of which is to catalyze the 

hydrolysis of the neurotransmitter acetylcholine (ACh, 13; Figure 8) (Quinn, 

1987). The rate at which AChE facilitates the hydrolysis of AChE 13 is on the 

order of 105 molecules per minute. 

During the transmission of a nerve signal, ACh is released from 

presynaptic vesicles and diffuses across the synapse to bind at ACh receptors of 

the post-synaptic membrane, thus, completing the signal. AChE rapidly removes 

surplus ACh from the synapse to either terminate the neural transmission at 

cholinergic synapses or maintain the correct titer of ACh during enervation 

(Figure 9). 

When an OP inactivates AChE, the result is an accumulation of ACh in the 

neural synapses and neuromuscular junctions promoting continued and 
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Figure 8. AChE Mediated Hydrolysis of ACh. 
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uncontrolled neural transmission. Inactivation of AChE is manifested in 

stimulation of the nicotinic and muscarinic receptors of autonomic organs and 

nerwsignal 

ACh , ---,()-+---: ACh receptors 

ACh I JI 
A~......-- / netvesignal 

~ "~---
0 

Figure 9. The Role of AChE in Neural Transmission. 
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skeletal muscles as well as stimulation of cholinergic receptors (predominantly 

muscarinic) of the CNS. General effects following OP intoxication include those 

outlined in Table 1(Goodman,1985). In severe acute poisonings, paralysis of the 

respiratory muscles may occur and result in death (Mahieu, 1990). 

Table 1. Effects of Severe OP Intoxication on Mammals. 

Muscarinic Effects 
extreme salivation 
involuntary defecation 

and urination 
sweating 
lacrimation 
bradycardia 
hypotension 

Nicotinic Effects 
generalized weakness 
involuntary twitching 
fasciculations 
paralysis 

The AChE Active Site 

CNS Effects 
confusion 
ataxia 
slurred speech 
loss of reflexes 
convulsions 
coma 
respiratory 

paralysis 

There are three important features of the active site of AChE: (1) the ester 

binding locus that contains a nucleophilic serine residue involved in the hydrolytic 

mechanism of AChE, (2) the anionic domain situated approximately 4.7 A from 

the serine, which is responsible for binding the ACh quaternary ammonium group, 

and (3) a hydrophobic region that binds aryl-containing substrates (Figure 10; 

Quinn 1987). 

A recent X-ray crystal structure of AChE from Torpedo californica 
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Figure 10. Salient Features of the AChE Active Site. 

revealed that the active site was positioned at the bottom of a deep (approximately 

20 A) and narrow gorge penetrating halfway into the enzyme (Sussman, 1991; 

Maelicke, 1991). In addition, structural homology to other hydrolases such as 



15 

wheat serine carboxypeptidase-II were identified. 

Mechanism and Kinetics of AChE Inactivation by OP' s 

OP' s inactivate AChE by phosphorylation of the active site serine hydroxyl 

where one ligand (X) about phosphorus is displaced (Eqn. 1). The result is a 

covalently modified enzyme absent of any hydrolytic activity. The first step in 

this AChE inactivation involves the reversible formation of an enzyme-inhibitor 

complex and is represented by the dissociation constant, K0 (Main, 1964). K0 is 

generally considered a measure of the OP-inhibitor's affinity for the enzyme's 

active site (Fukuto, 1990). The second step of inhibition results in the irreversible 

0 
0 II OH II (1) 

~ 
inhibition ,.. /p..__z 

+ x--P, 0 \ I z ~y AChE y 

k· I 

t 
ENZ+ OP-X ).. 

[ENZ·OP-X] ~ ENZ-OP + x-
Ko kp 
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phosphorylation of AChE by an OP inhibitor. Covalent modification of the 

serinehydroxyl of the enzyme is responsible for the ultimate loss in the enzyme's 

activity (i.e. the inability to hydrolyze ACh). The phosphorylation rate constant, 

~' is considered a quantification of the reactivity of the OP inhibitor or the 

enzyme-inhibitor complex (Main, 1964, Fukuto, 1990). 

A more useful parameter that describes the overall rate of inhibition is the 

bimolecular reaction (or rate) constant, ~ (Debord, 1986). This parameter is a 

function of both K0 and ~ (~ = ~0) and a measure of the potency of an OP 

inhibitor. Bimolecular reaction constants (as well as K0 and ~) for OP's are 

determined experimentally by the following equation: 

ll[i] = (~t I ~lnv)ki - l!Kv (2) 

where [i] is concentration of the OP inhibitor, llt is the time that the AChE is 

reacted with the inhibitor, vis the activity of AChE, and k; = k/Kv (Main, 1964). 

Although the method described in Eqn. 2 provides useful data, most 

inhibitory potencies (ki) are reported using the following equation: 

Afnv = [i]ki~t (3) 
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where the time dependent loss of enzyme activity is monitored in the presence of 

a single concentration of the OP (Aldridge, 1950). Experimentally, it is more 

convenient to utilize Eqn. 3 than Eqn. 2 as there is one less variable. However, 

Eqn. 3 ignores the reversible step of the inhibition and is most valid when the K0 

is several-fold greater than the inhibitor concentration (Main, 1964). In addition, 

the resultant ~ values obtained using this latter approach have been shown to vary 

inversely with inhibitor concentration, [i] (Main, 1964). Therefore, this 

determination may not be reliable for comparing the inhibitory potency of 

inhibitors if the concentrations used for the evaluation differ significantly. 

The rate and extent of the AChE inhibition depends upon the nature of the 

OP-inhibitor's structure, which influences phosphorylation through the electronic 

environment about the phosphorus. For example, phosphates are better inhibitors 

than thionates. For a series of diethylaryl-substituted phenylphosphates (Figure 

11), those containing more electron-withdrawing substituents were found to be 

more potent inhibitors of AChE. For example, the concentration of diethyl-p­

nitrophenylphosphate (Figure 11, X = NOi) needed to affect 50% inhibition of 

AChE was 10,000-fold less than diethyl-p-methylphenylphosphate (Figure 11, X 

= CH3) (Eto, 1974). 

When steric factors are considered, the rate of inhibition decreased with 

increasing bulkiness of the ligands that remained attached following inhibition of 

AChE; methoxy containing inhibitors reacted most rapidly followed by those 
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Figure 11. Diethyl Phenyl Phosphates. 

bearing ethoxy, n-propoxy, and isopropoxy ligands (Gallo, 1991). Further, 

a rapid decrease in inhibitory activity was observed when the alkyl chain length 

of ethyl p-nitrophenyl alkylphosphonates was increased from 3 to 6 carbon atoms 

(Fukuto, 1990; Wallace and Herzberg, 1988). 

Spontaneous Reactivation of AChE Inhibited by OP' s 

Following phosphorylation of AChE, the enzyme may spontaneously 

recover its activity as water (H20/0H-) facilitates the hydrolysis of the phospho-

serine linkage (Equation 4). Reactivation of AChE is analogous to the second 

step of the AChE-catalyzed hydrolysis of ACh (i.e., the hydrolysis of the acetoxy 

moiety). However, the rate of spontaneous reactivation (ko) of AChE inhibited 

by an OP is far less (>107-fold than the turnover rate for the natural substrate, 

ACh) (Eto, 1974). 
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(4) 

Spontaneous reactivation is dependent upon not only the source of the 

enzyme, but upon pH, ionic strength, and temperature (Lieske, 1980; Lanks and 

Seleznizk, 1981; Lieske, 1990). The rate at which AChE recovers from inhibition 

also depends upon the nature of the appended phosphoryl group (Lieske, 1980; 

Clothier, 1981; Langenberg, 1988; Wallace and Herzberg, 1988, Lotti, 1991). 

AChE reactivates most rapidly when phosphorylated by an inhibitor with less 

bulky ligands (R1 and R2, Eqn. 4). For example, dimethoxy phosphorylated 

AChE (R1 = R2 = -OCH3) reactivates at rates 15 and 30-fold faster than diethoxy 

and di-n-propoxy phosphorylated AChE, respectively (Gallo, 1991). AChE 

possessing a di-isopropoxy phosphate moiety is essentially recalcitrant toward 

reactivation (Eto, 1974). 

Oxime-Induced Reactivation of AChE Inhibited by OP's 

Therapeutic treatment following an OP poisoning episode usually involves 
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the administration of atropine (a cholinergic antagonist) in order to antagonize the 

effect of accumulated ACh (Goodman, 1985; Lotti, 1991). Additionally, it is also 

desirable to expedite the recovery process by regenerating AChE activity via 

facilitated displacement of the phosphoryl moiety. To this end, many therapeutic 

agents have been designed. 

Several investigations into the design of reactivating mediators show that 

the nucleophilic oxime moiety is an essential feature (Miller, 1984; Bedford, 

1986). Further, most potent reactivators possess a positively charged quaternary 

nitrogen atom that directs the reactivating species to the anionic locus of AChE 

in a favorable position to facilitate nucleophilic displacement of the phosphate 

from the enzyme (Gallo, 1991). The most commonly employed oxime used 

therapeutically for OP-poisoning in humans is 2-pyridine aldoxime (2-P AM, 16) 

shown reacting with phosphorylated AChE in Eqn. 5 (Lotti, 1991). 

OH 

2-PAM + (5) 

koxime 
OH 

~ 
AChE 
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As with spontaneous reactivation, oxime-mediated displacement also is 

dependent upon the enzyme source (Lotti, 1991) in addition to the ligands 

attached to phosphorus. Phosphorylated AChE possessing less bulky ligands 

(such as dimethoxy) readily reactivate in the presence of oximes. For example, 

the reactivation rate constant, koxime• for dimethylphosphorylated (R1 = R2 = OMe) 

AChE is 60-fold greater than the diethyl analog (Clothier, 1981). Diethyl 

phosphorylated AChE undergoes oxime-promoted reactivation considerably faster 

than diisopropyl phosphorylated AChE (Eto, 1974). 

Aging and Non-Reactivation of AChE Inhibited by OP's 

AChE inhibited by an OP ester may become increasingly reluctant to 

reactivate as the interval of time prior to oxime administration increases. One 

process which explains this phenomena has been described as "aging." Aging 

(kA0 ) of OP-inhibited AChE is attributed to either the dealkylation or hydrolysis 

of one of the two remaining phosphate ester moieties (Eqn. 6) (Eto, 1974). As 

a result, the charged species formed is then unsuited for the approach of 

(6) 



22 

nucleophiles such as water or oximes (Gallo, 1991). An alternative explanation 

for time-dependent reluctance toward reactivation relies on denaturation or 

conformational alterations of the enzyme that make the recovery process less 

favorable (Thompson, 1992). AChE post-inhibitory processes may be broadly 

classified as those involving "non-reactivation" (kNR) and accounts for the time­

dependent loss of ability to reactivate regardless of process. 

Non-Anticholinesterase Effects Associated with OP Exposure 

Another neurotoxic effect induced by OP poisoning has been observed that 

is not necessarily related to anticholinesterase potency. The malady has been 

described as delayed neurotoxicity, and the effects are not seen until 8-14 days 

following ingestion of or exposure to certain OP' s. The toxicity is manifested in 

weakness in the lower limbs, progressing to paralysis. In severe cases, the upper 

limbs may be affected with recovery slow and seldom complete (Johnson, 1980). 

Delayed neurotoxicity has been attributed to inhibition and aging of neuropathy 

target esterase (i.e., neurotoxic esterase, NTE) by a mechanism similar to that of 

AChE (Johnson, 1987). 

Delayed toxicity following exposure to trialkylphosphorothiolates has been 

observed for animals where a steady decline in health was followed by death. 

This delayed toxicity was determined not to be the result of a neurotoxic event 

as discussed above, but probably due to morphological changes in the lung 
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(Imamura, 1983). 

Stereochemical Aspects of OP Compounds 

An important structural feature common to many OP inhibitors warranting 

discussion is stereochemistry. There are two locations where stereocenters may 

appear, one of which is at the carbon atom of a ligand attached to the phosphorus 

atom, and the other site for potential asymmetry is at the sp3 -tetracoordinated 

phosphorus atom when the four ligands attached are non-identical. An OP 

compound may contain one or both of these features, thus allowing three basic 

types of chiral OP compounds: phosphorus stereogenicity, carbon stereogenicity, 

and dual stereogenicity. Examples of OP compounds indicating the asymmetric 

sites* are given in Figure 12. 

17: malaoxon 

0 

t 
F __ p, /CH(CH3)2 

CH/ O 

18: isopropyl 
methylphosphonoftuoridate 

2: soman 

Figure 12. Three Basic Types of OP Stereogenicity. 
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Phosphorus Stereochemistry: Inhibition of AChE 

The asymmetric phosphorus center probably most effects the inhibitory and 

post-inhibitory processes of AChE, the rationale being that this is the site of the 

molecule that is immediately involved in the covalent modification of the serine 

residue in the active site. This expectation is supported by a 4200-fold difference 

m inhibitory potency observed for the enantiomers of isopropyl 

methylphosphonofluoridate 18 (Figure 12) (Jarv, 1984). Several other examples 

exist, however, where the stereoselective inhibition is not as great (Ooms, 1965; 

Berman, 1989b; Hirashima, 1984; Armstrong, 1987; Eya, 1985; Lee, 1978). 

Noteworthy, is the observation that among the stereoisomers examined (in the 

preceding references), those with the S-configuration at phosphorus were generally 

more potent inhibitors of AChE. 

Jarv (1984) has suggested that the stereoselective inhibition of AChE by 

OP-inhibitors may be due to steric limitations within binding domains of the 

active site. In this model, an acidic residue in the active site hydrogen bonds to 

the carbonyl of acetylcholine during normal ACh hydrolysis and presumably 

facilitates the favorable positioning of the substrate for acylation of the serine 

hydroxyl. It is hypothesized that this same acidic residue plays an analogous role 

in the inhibition of ACh by an OP (Figure 13) (Jarv, 1984). 

Examination and correlation of a list of asymmetric OP' s have permitted further 

refinements to the active site topology and suggest that there exists three binding 
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Figure 13. Proposed Binding Domains of AChE for OP Inhibitors. 

domains that precisely complement the ligands about phosphorus. Structural 

studies suggest that domain D3 probably accommodates the leaving group (X) of 

an OP inhibitor, while the binding sites D1 and D2 are responsible for recognizing 

the ligands that remain attached to phosphorus after phosphorylation (Jarv, 1984; 

Benschop, 1988). If the positioning of the leaving group and the phosphoryl 

oxygen are collectively maintained by domain D3 and the acidic residue, and the 

structural match between D1 and D2 domains and ligands R, and R2 differ 

sufficiently during inhibition, then binding of the inhibitor will be more favorable 

for one phosphorus configuration accounting for differences in inhibition rates for 

enantiomeric OP's (Jarv, 1984). 
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Phosphorus Stereochemistry: Reactivation and Aging of AChE 

When an OP containing an asymmetric phosphorus atom inhibits AChE, 

two stereoisomeric forms of the phosphorylated enzyme are capable of forming 

(Figure 14) (Berman, 1989a). Therefore, any reactivation rate differences 

observed for AChE inhibited by enantiomeric OP' s must be due solely to the 

phosphorus configuration as it is the only structural difference present. It has 

been suggested that the binding domains D1 and D2 described previously for 

stereoselective inhibition may also be involved in the stereoselective reactivation 

process (Jarv, 1984). The most dramatic display of stereoselective reactivation 

cases would occur when AChE inhibited by one OP enantiomer reactivates while 

the no reactivation is observed for the antipode. More commonly, OP inhibitor 

enantiomers show negligible to modest (2-10 fold) differences in reactivation rate 

(Berman, 1989a; Glickman, 1984). 

Aging represents another post-inhibitory process that is influenced by the 

phosphorus stereochemistry. Aging differences for AChE inhibited by OP 

stereoisomers have indeed been observed (Berman, 1989a; Glickman, 1984); a 

notable case described aging of AChE inhibited by one OP stereoisomer while 

AChE inhibited by the other stereoisomer did not undergo this process (Berman, 

1989a). The basis for this difference is assumed to be steric hinderance making 

the aging process less favorable for one configuration. 
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Figure 14. Stereoisomeric Forms of AChE Inhibited by an OP Possessing an 
Asymmetric Phosphorus Atom. 

Ligand Stereochemistry: Inhibition of AChE 

The stereochemistry of an OP ligand carbon atom may have its greatest 

effect upon inhibition of AChE in contrast to reactivation or aging (or non-

reactivation) reactions because the ligand bearing the asymmetric center may be 
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displaced during the inhibition leaving an achiral phosphorylated enzyme. The 

effect of carbon chirality on the kinetic constants, ~. K0 and ~. will be 

considered. 

Because enzymes are chiral molecules, it is anticipated that the 

association/dissociation process as defined by K0 should differ for enantiomeric 

inhibitors. Once the enzyme-inhibitor complex has been formed, the ligand 

stereochemistry may affect the subsequent phosphorylation, ~· For example, if 

binding domain D3 demands or favors a particular orientation of two moieties (R3 

and R4) about a ligand stereocenter for enantiomeric inhibitors due to electronic 

or steric factors, the relative position of the reactive phosphorus center to the 

nucleophilic serine hydroxyl may differ due to conformational limitations (Figure 

-{1 
HO 

~ 
II Ill 

Figure 15. Influence of OP Ligand Stereochemistry upon AChE Inhibition. 
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15; Examples I and II). Consequently, the ~values for enantiomeric inhibitors 

may differ when the phosphorus atom is not favorably situated for 

phosphorylation. However, if the phosphorus atom is the major positioning 

determinant for the OP-inhibitor and the binding domain D3 in the active site 

necessitates a favorable positioning of only one moiety (R3) about the ligand 

stereocenter (Figure 15, I and Ill), little difference in the~ would be expected. 

In this case, a difference in K0 may still be observed if there is a preference to 

accommodate the R4 or R5 moiety. 

Because ~. K0 , and ~ are interrelated processes (~ = k/I(0 ), the effect of 

ligand stereochemistry upon the overall inhibition of AChE (k) is dependent upon 

the individual effects of the kinetic parameters (previously discussed). As a 

consequence, enantiomeric OP inhibitors may differ in their inhibitory potency 

depending on the contributive differences for kP and K 0 • However, few studies 

have examined the effect of ligand stereochemistry upon the inhibition of AChE 

(Hassan, 1968; Ohkawa, 1976; Wustner, 1973; Benschop, 1988), and the specific 

relationship between stereochemistry upon both K0 and ~ has not been 

thoroughly investigated. Furthermore, the differences observed in anti-AChE 

potency due to ligand asymmetry (up to 5-fold) is generally less dramatic than 

that of enantiomeric phosphorus center OP' s (2-fold to 56000-fold). 
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Ligand Stereochemistry: Reactivation and Aging of AChE 

Ligand stereochemistry also has been shown to affect the rates of both 

reactivation and aging of AChE (Bucht, 1984; de Jong and Wolring, 1985; de 

Jong and Kossen, 1985; de Jong, 1984). AChE inhibited by soman 2 (P-

displaced upon inhibition) showed that the orientation of the pinacolyl ligand in 

the active site of the inhibited enzyme [sterically] governed the accessibility of 

the phosphorus atom by an approaching oxime. The extent of reactivation 

(percent recovered enzyme activity) differed between the reactivating species with 

the most notable difference (approximately IO-fold) in favor of the (+c)-

configuration (de Jong and Kossen, 1985). However, the differences observed for 

the rate of aging was less dependent upon the carbon configuration showing an 

approximate 3-fold difference (Bucht, 1984). 

OP' s Containing Dual Stereocenters: Inhibition of AChE 

An OP with stereocenters at both carbon and phosphorus atoms may 

further complicate the stereoselective inhibition of AChE. To simplify this 

discussion, a hypothetical OP inhibitor possessing dual stereocenters (existing as 

four stereoisomers; RpR.0 RpSc, SpR.c, SpSc1
) will be considered in which the RiRc 

stereoisomer is the strongest inhibitor (k) and the SrSc stereoisomers is the 

1Configurational designations for an OP with stereocenters at both phosphorus and carbon 
are defined by the following example: RrSc = R configuration at the phosphorus atom, S 
configuration at the carbon atom. 
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weakest inhibitor of AChE. The inhibitory potency of the two remaining 

stereoisomers will depend upon the relative contributions of the phosphorus and 

carbon stereochemistry to the overall inhibition of AChE. For example, if the 

phosphorus configuration contributes more to the inhibitory strength, then it would 

be anticipated that the RrSc stereoisomer would be a stronger inhibitor than its 

enantiomer. Alternatively, if the carbon configuration contributes more 

significantly to the inhibitory profile then the SpRc stereoisomer is expected to 

show greater inhibitory potency than that of the RrSc stereoisomer. The specific 

roles of the phosphorus and carbon stereochemistries upon the inhibition of AChE 

may be further inferred by examining their possible effect upon K0 and kP. 

OP inhibitors that contain both carbon and phosphorus stereocenters show 

that phosphorus stereochemistry had a significant influence upon the 

stereoselective inhibitory profile with the effect of carbon atom stereochemistry, 

although observable, being of considerably less significance (Benschop, 1988; 

Figure 16. 0-2-Butyl S-(Ethylthio)ethyl Ethylphosphonothiolate. 
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Wustner, 1973). This phenomenon is illustrated by the inhibitor, (0-2-butyl S-2-

(ethylthio)ethyl ethylphosphonothioate (Figure 16) and the data is shown in Table 

2 (Wustner, 1973). 

Table 2. Inhibition of BEAChEa by S-2-(Ethylthio)ethyl 
Ethylphosphonothioate Stereoisomers. 

configuration BEAChE 

P C ki (M-1min-1x10-3
) 

+ 65.3 

+ 
+ 

+ 

aBovine Erythrocyte AChE. 

54.5 

0.63 

1.45 

OP's Containing Dual Stereocenters: Reactivation and Aging of AChE 

When dual stereocenters are operative during the reactivation and aging of 

AChE, two cases must be considered. First, the displacement of the chiral ligand 

results in a phosphorylated enzyme that contains an asymmetric phosphorus 

moiety, the effects of which have already been discussed (Section 1.15). The 

second case involves an inhibitory pathway whereby the chiral ligand remains 

attached. The kinetic implications are more complicated and are discussed below. 

The individual effect of ligand stereochemistry on post-inhibitory pathways 

has been discussed previously (Section 1.17), particularly the role of steric 



33 

hinderance on the reactivating nucleophile in the displacement of the phosphoryl 

moiety from the serine residue. In that instance, reactivation and aging, occurring 

at either phosphorus configuration, may be influenced by the ligand carbon atom 

stereochemistry. Further, the degree of steric hindrance imposed by one particular 

carbon configuration of the ligand may differ from the antipode depending upon 

the phosphorus configuration. These differences assume that the phosphorus 

configuration could sufficiently alter the orientation of the ligand in the active 

site. Thus, an interdependence between the phosphorus and carbon configurations 

in such cases may be observed or anticipated during reactivation processes. 

Few reports have explored the effects of stereochemistry upon the post­

inhibitory pathways of AChE inhibited by an OP possessing both carbon and 

phosphorus stereocenters. The effects of carbon stereochemistry alone upon post­

inhibitory processes of such OP' s have been examined resulting in significant 

differences (although considerably less than those observed for the inhibition 

process) and were described previously in the Section 1.17. 

Summary 

The phosphorylation of AChE by an OP inhibitor and the subsequent 

recovery of enzyme activity are intimately linked to the nature of the OP. In 

particular, reactivity, steric effects, and stereochemistry have all been observed to 

have effects upon such events. As a result, certain attributes of the AChE active 
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site that complement of OP characteristics can be hypothesized and probed with 

novel inhibitors. 



CHAPTER 2 

STATEMENT OF GOALS 

Malathion: General 

Malathion 6 [O,O-dimethyl-S-1,2-bis(ethoxycarbonyl)ethyl 

phosphorodithioate] is one of the world's most widely used organophosphate 

insecticides. Along with parathion methyl 7, parathion 8, chlorpyrifos 9 (Figure 

2) (Eto, 1974), approximately 40,000,000,000 pounds of these four compounds 

are sprayed in the U.S. annually (Stephens, 1991). Malathion's broad spectrum 

of usage ranges from household to acreage application to control insects foraging 

on grains, cotton, tobacco, and fruits. Recently, it has been employed to manage 

the medfly problem in California (Barinaga, 1991). Malathion also has been 

established in veterinary medicine (Osweiler, 1984), and in public health practices 

as an anti-infective agent (Wester, 1989) to control insect vector-borne diseases 

such as malaria (anopheles mosquito), dengue (aedes aegypti), and yellow fever 

(aedes) (Caglioti, 1983). 

Food safety concerns have encouraged limitations on the amount of 

residues for crops treated with malathion. For fruits and vegetables, the 

35 
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maximum residue limit is less than 10 mg/kg while that for wheat and rye bran 

is 20 mg/kg (Cheminova, 1987). As with most OP insecticides, environmental 

persistence of malathion is low. For most fruits, vegetables and grains, the t 112 

period is approximately two days while in soil samples and field applications the 

t112 is 8.2 h and 2 h, respectively (Cheminova, 1987; Miles, 1991). 

(A) 13-elimination 

(B) Phosphorothiolate Hydrolysis 

organic 

solwnt 

water 

+ 

s 
II __ P, 

CH30 I "OH 

CH30 

+ 

Figure 17. Hydrolysis of Malathion. 
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Although relatively stable to acidic aqueous conditions (t112 = 6.5 days, 

pH2.6, 27 °C), the decomposition of malathion is catalyzed by hydroxide (t112 = 

2.4 h, pH 10.8, 0 °C) and depending on the type of solvent, one of two 

mechanisms is possible (Figure 17). While B-elimination is favored in organic 

solvent (Figure 17, A), SN2-type displacement of diethyl mercaptosuccinate 

predominates in aqueous conditions (above pH 9). With regard to thermostability, 

the malathion content after dark storage for 2 years at 40 °C decreased from 

96.2% to 89.6% while the t112 of malathion stored at 55 °C was 17 weeks 

(Cheminova, 1987). 

Malathion: Mode of Action 

The popularity of malathion' s usage has been promoted by its relatively 

low mammalian toxicity (Table 3). This is primarily due to endogenous 

carboxylesterases that rapidly degrade malathion to the monoacids (Figure 18), 

which are found as urinary metabolites (O'Brien, 1967). Both the a-monoacid 

20, which is generally found in greater quantity, and the B-monoacid 21 are 

virtually non-toxic to mammals (Chen, 1969; De Matteis, 1989; Ryan, 1985). 

Two malathion carboxylesterases responsible for this detoxication (in rats) have 

been identified and designated as Fraction A and B. Fraction A preferentially 

converts malathion to the a-monoacid 20 while the B-monoacid 21 is the 

preferred product formed from hydrolysis by Fraction B (Mallipudi, 1980). 



Table 3. Relative Toxicity of Biologically 
Active Compounds 

Compound 

glucose 
malathion 
ethanol 
asp1nn 
valium 
caffeine 
cocaine 
strychnine 

LD50 mg/kg (oral, rats) 

35,000 
12,500 
10,000 
3,750 
710 
300 
17 
5 
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Although malathion maintains a low mammalian neurotoxicity, some 

experimental results suggest that it may be carcinogenic (Zimmerman, 1990). In 

addition, there exists uncertainties as to whether malathion is teratogenic since 

Figure 18. Hydrolysis of Malathion by Carboxylesterase. 
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studies have given both positive and negative results (Zimmerman, 1990). Daily 

doses of 1/50th the LD50 fed to rats resulted in reduced survival of the progeny 

as well as apparent growth retardation (Cheminova, 1987). 

The species selectivity of malathion toward insects (and fish) is largely a result 

of a deficiency in detoxifying carboxylesterases by these organisms, which then 

permits malathion to undergo oxidation to the oxon (P=O) metabolite, malaoxon 

22 [O,O-dimethyl-S-1,2-bis(ethoxycarbonyl)ethyl phosphorothionate] (Figure 19) 

(Cohen, 1984; Matolczy, 1988). This thionate-oxon conversion is common to the 

class of phosphorothionate insecticides and while phosphorothionates (P=S) are 

generally not effective inhibitors of AChE, bioactivation to the oxon analogues 

(P=O) by mixed function monooxygenases in insects (Cohen, 1984) creates more 

potent inhibitors of AChE (De Matteis, 1989). For example, malaoxon is a 1,000-

fold stronger AChE inhibitor than malathion and nearly 80-fold more toxic in vivo 

to the rat (malathion, LD50 = 12,500 mg/kg; malaoxon, LD50 = 158 mg/kg) 

6: malathion 22: malaoxon 

Figure 19. Bioactivation of Malathion. 
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(Cheminova, 1987; Ryan, 1985; Umetsu, 1977). 

The increased inhibitory potency of oxon analogues of phosphorothionates 

is primarily due to the more reactive nature of the P=O bond as discussed 

previously (Matolczy, 1988). It also has been hypothesized that the less 

electronegative sulfur atom of the P=S bond (compared to the P=O oxygen atom) 

may compete with small alkoxy ligands for hydrophobic binding domains of the 

AChE active site. In this instance, the serine hydroxyl is not positioned correctly 

for attack at the phosphorus atom. Thus, the absence of the P=S functionality in 

the oxon analogues of phosphorothionates may enhance their affinity for the 

active site, thereby increasing their anti-AChE potency through both reactivity and 

orientation. (Maxwell, 1992). 

Malathion: Impurities 

Whereas purified malathion is relatively innocuous to mammals, several 

more toxic impurities (Figure 20) result from the manufacture or storage and have 

been shown to potentiate or enhance the toxicity of malathion formulations 

(Aldridge, 1979; Lin, 1984; Toia, 1980; Mallipudi, 1980). The strongest 

potentiator of these impurities is isomalathion 12. A 0.5% isomalathion 

contamination of malathion formulations reduced the LD50 from 12,500 to 4400 

mg/kg (Toia, 1980, Umetsu, 1977). Isomalathion has been shown to be not only 

an inhibitor of AChE but also an inhibitor of the mammalian detoxifying enzyme, 
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23: 0, 0, S-trimethylphosphorodithioate 24: 0, O,S-trimethylphosphorothiolate 

25: O,S, S-trimethylphosphorodithiolate 12: isomalathion 

Figure 20. Impurities Found in Commercial Malathion Formulations. 

carboxylesterase (Talcott, 1979; Toia, 1980; Lin, 1984; Ryan and Fukuto, 1985). 

When carboxylesterase is inactivated, the normal detoxication pathway is removed 

(Section 2.2.), and metabolic activation from malathion to malaoxon dominates 

the metabolism causing the latent toxicity (anti-AChE potency) to be realized in 

mammals (De Matteis, 1989; Cohen, 1984). 

Malathion: Stereochemistry 

A structurally interesting feature of malathion is the presence of an 

asymmetric carbon at the succinyl ligand resulting in two enantiomers (Figure 21). 
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It is expected that the enantiomers of malathion would interact stereoselectively 

with the varying enzymes encountered in vivo such as cholinesterases, 

carboxylesterases, and oxidizing enzymes. Enantiomers of the closely related 

0,0-diethyl malathion 26 enantiomers (not used in agriculture) were prepared and 

the S-stereoisomer 26b was found to be a 1.9-fold better substrate for rat liver 

carboxylesterase than the R-stereoisomer 26a (Hassan, 1968). However, since its 

introduction over 40 years ago the synthesis of the malathion (0,0-dimethyl) 

6a: (R)-malathion 26a: (R)-0,0-diethyl malathion 

S 902C2H5 
II = 

~H50_.-~ .......... S~C02C2H5 
C2H50 

6b: (S)-malathion 26b: (S)-0,0-diethyl malathion 

Figure 21. Enantiomers of Malathion and 0,0-Diethyl Malathion. 
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enantiomers has not been achieved. 

Malaoxon 

As discussed previously, malaoxon is the bioactivated form of malathion, 

responsible for its insecticidal (anti-AChE) activity. Although it has been found 

as a minor impurity in commercial malathion formulations, it was determined that 

malaoxon is not responsible for the potentiation of malathion toxicity that was 

22a: (R)-malaoxon 27a: (R)-0,0-diethyl malaoxon 

22b: (S)-malaoxon 27b: (S)-0,0-diethyl malaoxon 

Figure 22. Enantiomers of Malaoxon and 0,0-Diethyl Malaoxon. 



44 

observed for other impurities (Aldridge, 1979). Although malaoxon is both an 

inhibitor and a substrate for mammalian carboxylesterase, hydrolysis of the 

carboxylic esters is the preferred metabolic pathway. (Ryan and Fukuto, 1985, 

Aldridge, 1979). 

Like malathion, an asymmetric carbon center exists on the succiny 1 ligand 

of malaoxon allowing two enantiomers (Figure 22). Consequently, it is expected 

that these stereoisomers will interact stereoselectively with AChE and 

carboxylesterases. The 0,0-diethyl analogues of the malaoxon enantiomers 27 

(Figure 22) were prepared and examined for their anti-AChE and anti­

carboxylesterase potency (Hassan, 1968). (R)-0,0-Diethyl malaoxon 27a was a 

4.4-fold stronger inhibitor of bovine erythrocyte AChE, and an 8.3-fold stronger 

inhibitor of rat liver carboxylesterase than its antipode 27b (Hassan, 1968). 

However, 0,0-dimethyl malaoxon enantiomers have not yet been prepared nor 

have their differential phosphorylating capabilities been examined. 

Isomalathion 

Isomalathion (Figure 20) is the S-methyl isomeride of malathion found in 

commercial formulations of the insecticide, and is formed as a result of the 

thiono-thiolo rearrangement (Section 1.5.). Like most S-alkyl isomerides of 

phosphorothionate insecticides, isomalathion shows dramatically enhanced anti­

AChE potency relative to malathion for the reasons previously mentioned, i.e. 
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chemical reactivity of the P=O bond, and the decreased p1t-d1t contribution of the 

S-alkyl ligands (Fest, 1973; Thompson, 1989). Consequently, isomalathion is a 

3000-fold more potent anti-AChE agent than malathion (Thompson, 1989). 

Like malaoxon, isomalathion inhibits the detoxifying decarboxylesterases, 

but unlike malaoxon, potentiates the toxicity of malathion (Lin, 1984). Of all the 

impurities found in malathion formulations, isomalathion is the strongest 

potentiator. The isomalathion content in malathion formulations, therefore, has 

been a matter of considerable concern, especially since the 1976 epidemic 

malathion poisoning in Pakistan in which 2800 Pakistani spraymen were acutely 

poisoned while 5 died during a malaria control program (Baker, 1978; Iyer, 

1984). The poisonings were attributed to the unusually high isomalathion content 

of the formulation employed (Aldridge, 1979; Iyer, 1984). 

Besides the enhanced anti-AChE potency of isomalathion, another 

important consequence result from the isomerization of malathion to isomalathion, 

is the generation of a new asymmetric center at phosphorus. During the 

isomerization, the asymmetric carbon center of malathion on the succinyl ligand 

is maintained, therefore, four stereoisomers of isomalathion are produced (Figure 

23). The configurational designations for the isomalathion stereoisomers is 

described by the following example: (JR,3S) = R configuration at the phosphorus 

atom, S configuration at the carbon stereocenter. As discussed previously for 

OP' s possessing dual stereocenters, it is anticipated that the dual stereocenters 
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12a: (1R,3~-isomalathion 12b: (1R,3S)-isomalathion 

12c: ( 1S,3~-isomalathion 12d: ( 1S,3S)-isomalathion 

Figure 23. Stereoisomers of Isomalathion. 

present in isomalathion will contribute collectively toward the inhibition of AChE 

and possibly, reactivation and aging. 

Summary 

Because of the continued global application of malathion formulations, 

which contain various levels of the impurities malaoxon and isomalathion, it is 

important to fully understand the role of stereochemistry upon their modes of 

action. To date, however, there exists no definitive report that details the effect 
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of the stereochemistry of these compounds upon their interactions with varying 

enzymes encountered in vivo; i.e. carboxylesterases, oxidizing enzymes, and 

AChE. 

The goal of this dissertation is to identify the anti-AChE profiles of the 

individual stereoisomers of malathion 6, malaoxon 22, and isomalathion 12, and 

to correlate these profiles with the specific stereochemistry of these compounds. 

Furthermore, the effect of phosphorus and carbon stereochemistry upon the post­

inhibitory fate of AChE inhibited by the individual isomalathion stereoisomers 

will be examined. In order to achieve the aforementioned goals, procurement of 

the individual stereoisomers of malathion, malaoxon, and isomalathion is 

necessary. However, because these enantioenriched materials were previously 

unavailable, a preliminary goal of this dissertation will be the first successful 

syntheses of these individual stereoisomers. 



CHAPTER 3 

SYNTHESIS OF MALATHION, MALAOXON, AND 
ISOMALATHION STEREOISOMERS 

Synthesis of Racemic Malathion 

Racemic malathion 6 was readily prepared by literature methods from the 

reaction of 0,0-dimethyl phosphorodithioic acid and diethyl maleate 27 (Eqn. 7) 

(March, 1956). 1H NMR analysis of the product revealed the characteristic 

phosphorus-proton vicinal coupling observed for 0-methyl phosphorothionates, 

which resulted in a doublet at 3.8 ppm (Thompson, 1989; Thompson, 1992). 31P 

NMR showed a single resonance at 96.2 ppm consistent with chemical shifts of 

related phosphorothionates (P=S). 

(CH30hP(S)SH 
~ 

TEA (7) 

27 6 

48 
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Attempted Synthesis of Malathion Enantiomers from Diethyl Bromosuccinate 

The report by Hassan and Dauterman (1968) described the preparation of 

the enantiomers of the 0,0-diethyl analogues of malathion 26 (Scheme 1). 

Diazotization of (S)-aspartic acid 28a in the presence of sodium bromide yielded 

(S)-bromo succinic acid 31a (Holmberg, 1928), which occurred with overall 

retention of configuration. Formation of the B-lactone 30a was hypothesized to 

occur first with inversion, followed by ring opening of the lactone with bromide 

resulting in a second inversion and overall retention (Holmberg, 1928). 

Displacement of the bromide by potassium 0,0-diethyl phosphorodithioate 33 

(Scheme 1) occurred with inversion of configuration yielding (R)-0,0-diethyl 

malathion 26a (Hassan, 1968). 

Although the preparation of the malathion 6 (0,0-dimethyl) enantiomers 

seemed a simple extension of the above method, displacement of the bromide 

with 0,0-dimethyl phosphorodithioate 34 under the same conditions failed. 

Variations in reaction conditions such as temperature, solvent, and time also were 

unsuccessful. Our results may, in part, explain the previous focus upon the 0,0-

diethyl analogues by Hassan and Dauterman (1968). 

The failure of 0,0-dimethyl phosphorodithioate to displace the bromide 

may be due to a field effect where the electron donating effect of the methoxy 

ligand compared to that of the ethoxy is less, thus, decreasing the nucleophilicity 

of the dithioate. Such field effects have been observed for phosphoric ester acids 
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where the acidity decreased with increasing size of the alkyl groups (Fest and 

Schmidt, 1973) as larger groups were less able to stabilize the conjugate base by 

releasing electron density into the dithioate. 

Further pursuit of the approach of Scheme 1 was abandoned for two 

reasons: first, three opportunities for racemization at the carbon stereocenter were 

28a 

33 R =Et 

34 R = CH3 

31a 

29a 

26a R =Et 

6a R=CH3 

~ 
30a 0 

32a 

Scheme 1. Synthesis of (R)-0,0-Diethyl Malathion from (S)-Aspartic Acid. 
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possible and second, the simultaneous success of another method gained our 

attention. 

Synthesis of Malathion Enantiomers from Diethyl Malate 

This new strategy was designed using the same nucleophile (0,0-dimethyl 

phosphorodithioate potassium salt 34) but sought to displace a better leaving 

group. It was believed that if the hydroxyl moiety of diethyl malate 36 could be 

converted to a better leaving group than bromine, it could be more easily 

displaced (Scheme 2). In addition, only one inversion would occur at the carbon 

stereocenter (Scheme 2) compared to the three reactions at the carbon stereocenter 

(Scheme 1). 

(S)-Malic acid 35a was converted to the diethyl ester 36a (Cohen, 1984), 

afterwhich the hydroxyl was converted into a series of leaving groups including 

the tosylate, mesylate, and triflate. The (S)-tosylate 37a and (S)-mesylate 38a 

were prepared by reaction of (S)-diethyl malate with p-toluenesulfonyl chloride 

(tosyl chloride) or methanesulfonyl chloride (mesyl chloride), respectively. The 

(S)-triflate 39a was prepared by reaction of trifluoromethanesulfonic anhydride 

(triflic anhydride) with 36a. Identification of the tosylate, mesylate, and triflate 

was determined by 1 H and 13C NMR. The 1 H NMR of the tosy late 37 a showed 



35a 

37a X=p-CH3C5H4S020-

38a X=CH3S020-

39a X=CF3S020-

36a 

a. p-CH3C5H4S02CI 

b. CH3S02CI 

c. (CF3S02)0 

6a 

Scheme 2. Synthesis of (R)-Malathion from (S)-Malic Acid. 
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the p-substituent patterns for the aromatic resonances as well as the p-methyl 

singlet. 1H NMR of the mesylate 38a revealed an additional 1H methyl singlet 

(3H) of the methanesulfonyl moiety to the spectrum of diethyl malate. The 13C 

spectrum of the triflate 39a showed the addition of a quartet corresponding to C-F 

coupling by the trifluoromethyl substituted carbon. 

Nucleophilic substitution reactions with 0,0-dimethylphosphorodithioate 

34 and the hydroxyl activated compounds described above were attempted varying 

the time, temperature, and solvent. However, only the (S)-triflate 39a entered into 
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the reaction with 34 (THF, 0°C) to give (R)-malathion 6a in 95% yield from 

diethyl malate. (SJ-Malathion 6b was prepared analogously starting with (R)­

malic acid 35b. 1H, BC, and 31 P NMR spectra of the malathion enantiomers were 

identical to that of racemic material. Specific rotations of these enantiomers 

supported the success of this method ((R)-malathion 6a, [a]24 
0 = +79.7°; (S)­

malathion 6b, [a]27 
0 = -80.0°). In an attempt to quantify enantiomeric excess, 1H 

and 31P NMR analyses of the enantiomers were conducted with a chiral shift 

reagent (tris-{ 3-[heptafluoro(hydroxy)butylidene ]-( + )-camphorato }europium(Ill) ), 

however, no chemical shift separation of resonances from a racemic mixture was 

observed. 

Synthesis of Racemic and Enantioenriched Malaoxon with m-CPBA 

The preparation of racemic malaoxon 22 from racemic malathion 6 had 

been reported previously using m-chloroperbenzoic acid (m-CPBA) as the oxidant 

(Bellet, 1974). This peracid promoted transformation is proposed to proceed via 

a three-membered ring intermediate (Scheme 3) (Bellet, 1974). Although the 1H 

and BC NMR spectra of malathion and malaoxon were expectedly similar, the 31P 

NMR phosphorus resonance of malaoxon was shifted significantly upfield (28.3 

ppm) from that of malathion (96.2). 

Both (R)- and (S)-malathion (6a and 6b) were converted to (R)- and (S)­

malaoxon (22a and 22b), respectively, with m-CPBA in 25% yield (Scheme 3). 
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Specific rotations of the malaoxon enantiomers gave evidence of the success of 

this method ((R)-malaoxon, [a]25 
0 = +46.7°; (S)-malaoxon, [a]27 

0 = -43.5°). 

Synthesis of Malaoxon Enantiomers by Oxidation of Malathion 
Enantiomers with MMPP 

In order to increase the efficiency of this oxidation step, a better reagent 

for this transformation was sought. Hydrogen peroxide, t-butyl hydroperoxide, 

trifluoroacetic anhydride, potassium periodate all were reacted with malathion in 

attempts to increase the yield of malaoxon. Some of these reagents had been used 

successfully to effect oxidative desulfuration of phosphorothionates (Helinski, 

1990; Stec, 1976). However, both peroxides resulted in extensive decomposition 

of the starting material while no reaction was observed with the latter two 

reagents. Since MMPP 46 (magnesium monoperoxyphthalate) has recently gained 

acceptance as a substitute for m-CPBA in other oxidation reactions (Brougham, 

1987), it was thought that it may effect the desired transformation. Refluxing 

malathion overnight with MMPP in CH2Cl2 gave a 52% yield of the malaoxon 

enantiomers doubling the conversion using m-CPBA. 

The success of this transformation prompted an investigation into the utility 

of MMPP for similar conversions of several other thionates (Scheme 3) to the 

corresponding oxons (Jackson, Berkman, and Thompson, 1992). In all cases, 

acceptable yields were obtained (51-72%). It also was found that the 



m-CPBA s 
II 

or 
MMPP 

p 
CH30--/ 'x 

CH30 

6 X= -SCH(C02Et)CH2C02Et 

7 X = -O-Ph-p-N02 

9 X = -0-(3,5,6-03-2-pyridinyl) 

40 X = -0-2,3,5-03-2-Ph 

23 X= -SCH3 

44 

0 

II 
p 

CH30--/'x 

CH30 

22 X= -SCH(C02Et)CH2C02Et 

41 X= -O-Ph-p-N02 

42 X = -0-(3,5,6-Cl3-2-pyridinyl) 

43 X= -0-2,3,5-C13-2-Ph 

24 X= -SCH3 
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or 

MMPP 

-

46 MMPP 

45a 

Scheme 3. Conversion of Thionates to Oxons. 
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stereochemical outcomes using MMPP were superior to that of m-CPBA. The 

conversion of thion 44 to axon 4Sa occurred with complete retention of 

phosphorus configuration while reaction with m-CPBA resulted in a 3.85: 1 

diastereomeric ratio of axons 4Sa and 4Sb. The superior results obtained with 

MMPP was attributed to its lower reactivity than m-CPBA. 

Synthesis of Racemic Isomalathion 

The isomerization of racemic malathion 6 was conducted as previously 

reported (Thompson, 1989) by dealkylation with potassium ethyl xanthate 

(EtOCS(S)K) followed by realkylation with dimethyl sulfate (Eqn. 8). Positive 

identification of racemic isomalathion 12 was accomplished by comparison to 

known material. 1H NMR revealed the presence of a new phosphorus-coupled 

doublet (2.4 ppm) corresponding to the S-methyl protons as a result of the 

isomerization. A new resonance also was observed in the 13C NMR spectrum 

(8) 

6 12 

a. EtOC(S)SK b. (CH30)S02 
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(centered at 13 ppm), corresponding to the -SCH3 moiety. Only the 31 P NMR 

spectrum identified the two diastereomers showing two resonances separated by 

1.5 ppm and centered at 5 8 ppm. 

Synthesis of 13C-S-methyl Isomalathion 

In an effort to aid the mechanistic evaluation of the interaction of 

isomalathion with AChE, 13C-enriched (13CH3S)-isomalathion (12') was desired. 

Using the preparative method for racemic isomalathion, 13C-labeled isomalathion 

was obtained by substituting (13CH30)2S02 in the second step. 1H NMR of the 

product showed considerable carbon-proton coupling of the S-methyl doublet (J 

= 144 Hz) while 13C NMR showed the expected enhancement of the labeled S­

methyl carbon. 

Attempted Chromatographic Separation of lsomalathion Diastereomers 

Since control over the chiral carbon center had been established using 

enantioenriched malic acid starting materials in the synthesis of the malathion 

enantiomers, the thionate-thiolate isomerization reaction would give the putative 

diastereomeric mixture of isomalathion (Scheme 4), which could be separated 

chromatographically. The dealkylation-realkylation sequence described in 

Equation 8 was conducted with (R)- and (S)-malathion (6a and 6b) to afford 

either (JRS,3R)- or (JRS,3S)-isomalathion in 72% yield (Scheme 4) as a mixture 
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Scheme 4. Synthesis of Isomalathion Diastereomers. 

of diastereomeric pairs (12ac and 12bd), respectively. 
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As indicated in Synthesis of Racemic Malathion, isomalathion 

diastereomers were most readily detected by 31P NMR, which provided an 

analytical tool to study the degree of resolution or separation of a single 
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stereoisomer from a diastereomeric pair. Traditional attempts at gravity silica gel 

chromatography were unsuccessful (numerous solvent mixtures were examined). 

For example gravity silica gel chromatography (petroleum ether:ethyl ether, 1: 1) 

produced fractions enriched in the front flowing diastereomer (35% diastereomeric 

excess) followed first by 50/50 mixtures and later by slightly enriched mixtures 

of the slow band (10% diastereomeric excess). Reapplication of the front flowing 

enriched fractions to the column gave only 1 % of the single diastereomer 

followed again by the elution of varying degrees of the diastereomer mixture. 

Reverse phase TLC also was tried, however, only one elution band was 

detected. Analytical chiral HPLC (d-phenylglycine and 1-leucine) could partially 

resolve a diastereomeric mixture but not to baseline resolution (Figure 24). Thus 

all chromatographic approaches failed, possibly explaining the 30 year dearth of 

reports on isomalathion stereoisomerism. 

I I I I 
8 12 16 20 

time (min) 

Figure 24. Partial Resolution of Isomalathion Diastereomers via Chiral 
HPLC. 
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Attempted Synthesis of lsomalathion Stereoisomers Using a Chiral Auxiliary 

With the failure of the previous approach that would have allowed control 

over the asymmetric carbon center followed by resolution of the asymmetric 

phosphorus center, a convergent synthesis was planned where control of both 

stereocenters was achieved in separate steps, followed by the appropriate coupling 

of the 2 asymmetric "pieces." Previous reports indicated that resolution of certain 

organophosphorus compounds could be achieved by the use of chiral auxiliaries 

(Valentine, 1984; Koizumi, 1978). Because it had proved useful for the 

preparation of isoparathion methyl enantiomers 49a/49b (Scheme 5; Ryu, 1991a), 

/-proline ethyl ester was selected as the chiral auxiliary for the resolution of 

isomalathion stereoisomers (Scheme 6) with anticipated success. 

Thiomethyl phosphoric dichloride 47 was prepared from thiophosphoryl 

chloride via methanolysis followed by thermal isomerization at 100 °C. Reaction 

of 47 with /-praline ethyl ester in the presence of TEA yielded the desired 

chlorophosphoramidothiolate diastereomers 50, which were resolved by column 

chromatography. The 1H NMR spectrum showed the characteristic 

phosphorothiolate methyl doublet at 2.5 and 2.4 ppm for the fast and slow bands, 

respectively. The ethyl ester protons were also present for both diastereomers in 

addition to the pyrrolidine ring protons. 13C NMR spectra of the diastereomers 

were similar but again the 31P NMR spectra for the diastereomers were resolved, 

differing by 0.4 ppm. Specific rotations for the two stereoisomers also were 
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obtained (fast band, [a] 0 
24 = -52.6° (c = 1.04, CHC13); slow band, [a.] 0 

24 = -48.2° 

(c = 1.15, CHC13). Thus, control over the phosphorus stereochemistry was 

managed. 

(S)-diethyl mercaptosuccinate 51a was prepared via reaction of sodium 

hydrogen sulfide with enantioenriched (R)-diethyl bromosuccinate 32b, which 

had been prepared earlier (Scheme 1). Thus, with the two chiral "pieces" in hand, 

the stage was set for their coupling. Racemic diethyl mercaptosuccinate prepared 

from esterification of mercaptosuccinic acid (Ailman, 1965) was used first to 

study the coupling reaction to avoid unnecessary consumption of chiral materials, 

and was reacted with the fast-band diastereomer of the phosphoramidothiolate 50 

to afford the phosphoramidodithiolate 52. 1H NMR showed the S-methyl doublet 

and the pyrolidine protons observed for 50. The resonances for the ethyl ester 

methyl protons of both the prolinate and succinate moieties were superimposed 

and appeared as multiplets. This was also the case for the methylene protons of 

the ethyl esters. Two resonances at 47.52 and 48.12 ppm were observed in the 

31P NMR spectrum for each of the diastereomers, 52b and 52d, due to the use of 

racemic 51. 

The final stage of this method, exchange of the chiral auxiliary for a 

CH30- moiety, is normally straightforward (Ryu, 1991a). Unfortunately, both 

mineral acid (H+) or Lewis acid (BF3) promoted methanolysis were unsuccessful 
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Scheme 5. Synthesis of Isoparathion Methyl Enantiomers Using a Chiral 
Auxiliary. 
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Scheme 6. Attempted Synthesis oflsomalathion Stereoisomers Using a Chiral 
Auxiliary. 
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in yielding isomalathion as indicated by TLC. One possible explanation of these 

results may be attributed to the presence of three electron donors connected to the 

phosphorus atom, which compete for the primary acid coordination site. 

Attempted Synthesis of Isomalathion Stereoisomers from Isoparathion Methyl 

While the stereoisomers of isoparathion methyl 49 were available through 

a prior study (Ryu, 1991b), an alternative to the coupling strategy was envisioned. 

Because p-nitrophenoxy is the primary leaving group of isoparathion methyl, it 

was thought that an SN2-type reaction could be conducted at the asymmetric 

phosphorus of isoparathion methyl with optically pure diethyl mercaptosuccinate 

Slb as the incoming nucleophile (Eqn 9). Again, racemic diethyl 

mercaptosuccinate was utilized to avoid unnecessary consumption of the chiral 

pool. Unfortunately, multiple variations within this strategy (varied solvents: 

(9) 
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ethyl ether, THF, and DMF) with up to 5 equivalents of 51 were unsuccessful. 

In this instance, 51 probably acts to dealkylate the phosphorus ester rather than 

serve as a nucleophile. 

Synthesis of Isomalathion Stereoisomers via Alkaloid Resolution 

Several prior studies showed that alkaloid resolution was an effective 

procedure for the preparation of enantioenriched phosphorothiolates (Valentine, 

1984; Aaron, 1958; Aaron, 1960; Hilgetag, 1969; Hilgetag, 1959). However, 

there are very few examples of phosphorodithioate resolution with alkaloids. The 

general method for this type of resolution involves either conducting an acid-base 

reaction with a phosphorothioic acid and the alkaloid, or dealkylating a 

phosphorothionate ester with the alkaloid to form the alkylated 

alkaloid/phosphorothioic acid salt. 

Dealkylation of (S)-malathion 6b with strychnine, brucine, and quinine was 

performed followed by attempts at fractional crystallization of the resulting 

alkaloid salts (Scheme 7). Fractional crystallization of phosphorothioate-alkaloid 

salts is commonly performed in methanol or ethanol, however, the alkaloid salts 

of (S)-malathion (53b and 53d) were readily soluble in these solvents. Initial 

attempts dissolved the salts in methanol followed by the addition of ethyl ether 

to affect cloudiness. Heat was applied to affect solution, which subsequently was 

stored at -20°C overnight. As a result, a first crop of crystals was obtained for 



6b 1. strychnine 
2. fractional crystallization 

12b 12d 

Scheme 7. Synthesis of Isomalathion Diastereomers via 
Alkaloid Resolution: Method I. 
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strychnine and brucine salts while quinine failed to produce any crystals under 

these conditions. These first crops were analyzed by 1H, 13C, and 31P NMR and 

enrichment of one diastereomer of the (S)-malathion-alkaloid salt mixture was 

most notably and easily observed in the 31P NMR spectrum as revealed by two 
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resonances differing by approximately 1 ppm. The most significant enrichment 

of the alkaloid salts was observed for the strychnine derivatives in which 31P 

NMR revealed approximately 70% enrichment of the downfield diastereomer 53b. 

Thus, preparative resolution of the isomalathion 

stereoisomers via strychnine salts was pursued using 31P NMR as the definitive 

analytical tool used to determine diastereomeric purity. 

Further fractional crystallization of the first strychnine salt crop (downfield 

diastereomer) 53b was achieved stepwise, through repeated recrystallization in 

methanol-ethyl ether solutions (Figure 25). However, the [unexpected] limit of 

diastereomeric purity was 95%. To achieve higher resolution of the downfield 

(S)-malathion-strychnine salt 53b, several solvent mixtures for recrystallization 

were examined. A mixture of ethylene glycol, absolute ethanol, and ethyl ether 

eventually provided the downfield alkaloid salt in 100% diastereomeric purity by 

3Ip NMR. 

The mother liquor from the first crystallization of the (S)-malathion­

strychnine salt provided no precipitated salts upon cooling (-20 °C, 5 days). The 

solution was concentrated to an glassy solid that showed approximately 60% 

enrichment of the upfield diastereomer 53d by 31P NMR. Further enrichment was 

first attempted by crystallization with a methanol-ethyl ether mixture as described 

for the downfield diastereomer. However, no further enrichment of the resulting 

crystals resulted. Several solvent mixtures were examined to further enhance the 
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Figure 25. 31P NMR Analysis of the Sequential Enrichment of Desmethyl 
Malathion-Strychnine Following Fractional Crystallization. 

diastereomeric purity of this diastereomer (53d) and as a result, a mixture of 

methanol, ethyl acetate, and ethyl ether produced the completely resolved 

diastereomer after repeated recyrstallization. It was later found that if the initial 

crystallization was performed with this solvent mixture, the first crop of crystals 

produced was the downfield diastereomer 53b in approximately 70% enrichment 
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while the mother liquor, upon standing at room temperature, conveniently 

deposited the upfield diastereomer 53d in 100% diastereomeric purity. As a 

result of the above mentioned success, resolution of the diastereomeric strychnine 

salts of (R)-malathion (53a and 53c) was undertaken. Initially, a methanol-ethyl 

ether mixture was employed for the fractional crystallization and produced a first 

crop with an approximate 70% enrichment of the downfield diastereomer 53c as 

identified by 31P NMR. Repeated recrystallization with methanol-ethyl ether 

ultimately produced 53c in 100% purity. In results similar to the desmethyl-(S)­

malathion-strychnine resolution, no crystals could be obtained using methanol­

ethyl ether from the mother liquor of the first crop. Experimentation with various 

solvent mixtures showed that repeated recrystallization of the mother liquor with 

chloroform-ethyl acetate produced the completely resolved upfield diastereomer 

53a. Again, it was found that if the first crystallization was performed with this 

solvent mixture, the first crop that was deposited was enriched approximately 70% 

with 53c while the mother liquor produced 53a in 100% purity upon standing at 

room temperature. 

In addition to NMR analysis of the malathion-strychnine salts 53, specific 

rotations and melting points also were obtained (Table 4). The individual salts 

of each diastereomeric pair were identified as the levorotatory or dextrorotatory 

stereoisomer with respect to the phosphorus stereochemistry because the carbon 

configuration was known from malic acid. Similarities observed for melting 



Table 4. Physical Data of the Malathion-Strychnine Salts. a 

compound [a]D22 31P NMR (o) mp {6C) 

53a (JR,3R) +32.2 (0.25) 67.20 159-160 

53b (JR,3S) -45.1 (0.26) 68.12 189 

53c (JS,3R) +16.1 (0.31) 68.10 181-182 

53d (JS,3S) -61.7 (0.31) 67.18 158-159 

irotations performed in CHC13; concentrations in parenthesis, 
g/100 ml. 
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points and 31P NMR data supported correlation of the phosphorus and carbon 

configurations (excluding that of strychnine) for the salts that were later 

confirmed through comparison to a salt analyzed by x-ray crystallography. 

Assignment of Absolute Configurations of the Isomalathion Stereoisomers 

In an effort to assign the absolute configuration of the carbon and 

phosphorus stereocenters of the resolved desmethyl malathion-strychnine salts, x-

ray crystallographic analysis was desired. In order to prepare crystals for x-ray 

crystallography, recrystallization of the resolved salts was performed in their 

respective solvent mixtures at twice the dilution normally used. Recrystallization 

of 53c in methanol:ether (1 :5) ultimately provided crystals that were suitable for 

x-ray crystallographic analysis. 
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The crystal structure of the submitted crystal was solved and revealed a 

monoclinic unit cell with dimensions of 8 x 8 x 14 A (Table 5; Berkman, 1993). 

Methylstrychninium cations were found in bilayer sheets that alternated with 

bilayer sheets of desmethyl malathion anions (Figure 26). This bilayer packing 

of strychnine salts had been noted previously (Gould, 1984; 1987). Ultimate 

determination of the structure was aided by prior knowledge of the structure and 

absolute configuration of strychnine (Peerdeman, 1956). As a result of this 

analysis, the configuration of the phosphorus stereocenter was identified as S 

(Figure 27). The carbon stereocenter configuration of 53c was identified as R and 

was expected because this salt was initially prepared from the reaction of (R)­

malathion strychnine. Thus, with the absolute configuration of one salt known, 

the configuration of the other three were assigned. 

With the four alkaloid salts resolved, realkylation with dimethyl sulfate to 

form the respective stereoisomers of isomalathion was conducted. This step 

afforded the desired isomalathion stereoisomers in approximately 70% yield, 

which were characterized by specific rotations and 1H, 13C, and 31P NMR. A 

limitation of 31P NMR analysis of the isomalathion stereoismers was the inability 

to detect enantiomer impurities. To address this problem, a HPLC technique was 

developed that resolved the four individual stereoisomers (Figure 28). Compared 

to known racemic material, a most striking difference was the presence of a single 

resonance in the 31P NMR spectra for each stereoisomer instead of the two 
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Table 5. Crystal Data for Strychnine Salt 53c. a 

molecular formula C31H41 N20 8PS2 

molecular wt (amu) 664.77 

dcaJcd• g/cm3 1.37 

crystal system monoclinic 

space group P2 1 

z 2 

a, A 8.3925 

b, A 8.0054 

c, A 24.3050 

V, A3 1614.9 

crystal size (mm) 0.4 x 0.24 x 0.20 

total reflections 5806 

unique reflections 3063 

observed (I > 2.5cr(/)) 2417 

final R 0.0491 

final Rw 0.0463 

goodness of fit 0.978 

llfrom Berkman et al. Acta Cryst. 1993, C49, 554. 

observed for the diastereomeric mixtures. HPLC analysis further confirmed the 

successful preparation of the isomalathion stereoisomers. Both specific rotations 

and 31P NMR data of the individual isomalathion stereoisomers confirmed the 

enantiomeric and diastereomeric relationships for their assigned phosphorus and 

carbon configurations (Table 6). 
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Figure 26. The Unit Cell of the Malathion-Strychnine Salt 53c. 
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Figure 27. The structure of the 53c Anion of the Malathion-Strychnine Salt 
as Determined by X-ray Crystallographic Analysis. 
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Figure 28. Chiral HPLC Resolution of Isomalathion Stereoisomers. 

Competing 0-alkylation to form malathion was detected by TLC in the 

final alkylation step (approximately 10%). This 0-methylation also was observed 

in the dealkylation/realkylation preparation of isomalathion using KSC(S)OEt and 

dimethyl sulfate (Scheme 4). 



Table 6. Physical Data of the Isomalathion 
Stereoisomers.a 

compound (a]D22 31P NMR (8) 

12a (JR,3R) +42.3 (0.64) 58.38 

12b (JR,3S) -57.6 (0.50) 56.92 

12c (JS,3R) +58.6 (0.64) 56.92 

12d (JS,3S) -44.8 (0.58) 58.38 

arotations performed in CHC13; concentrations 
in parenthesis, g/100 ml. 
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It was assumed that the S-methylation did not disturb the phosphorus 

configuration, thus, allowing the absolute configurations of the resulting 

isomalathion stereoisomers to be known from the preceding alkaloid salts. While 

this method provided the four stereoisomers of isomalathion and allowed 

configurational assignment, there were two major disadvantages: (1) the yield of 

the fractional crystallization was low (20% ), and (2) the process of fractional 

crystallization was tedious and time consuming. Consequently, an alternate 

method was designed. 

A Simplified Synthesis of Isomalathion Stereoisomers via Alkaloid Resolution 

Since the diastereomeric strychnine salts of 0,0,S-trimethyl 

phosphorodithiolate (54) had been previously resolved (Hilgetag, 1969), it was 
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believed that these salts could be used in a reaction with the triflate of diethyl 

malate 39 (used in the chiral malathion synthesis) to provide the isomalathion 

stereoisomers 12 (Scheme 8). Using this approach, several steps could be 

eliminated. Again, the design was convergent attempting to couple two resolved 

chiral "pieces." 

Resolution of the alkaloid salts 54a and 54b via fractional crystallization 

(Hilgetag, 1969) was achieved readily and in a much greater yield than that of the 

malathion alkaloid salts 53a, 53b, 53c, and 53d. The displacement of the triflate 

that followed was also successful providing the isomalathion stereoisomers 12 in 

an overall yield of 27 % from triflate 39, which exceeded the yield of the previous 

method (11 % from triflate 39). 

was monitored by melting point and specific rotation. However, definitive 

analysis as to the stereoisomeric purity of the salts could not be conveniently 

determined by 31P NMR as with the malathion-strychnine salts because of 

overlapping 31P NMR resonances. Therefore, the progress of the fractional 

The progress of enrichment during fractional crystallization of the two 

diastereomeric salts (54a and 54b) crystallization steps was monitored by specific 

rotations and by reaction with a single enantiomer of the triflate (39a) followed 

by 31P NMR analysis of the product (isomalathion, 12a or 12c). It was found that 

after three recrystallizations, a single stereoisomer of isomalathion could be 
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Scheme 8. Synthesis of Isomalathion Diastereomers via 
Alkaloid Resolution: Method II. 
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obtained by reaction with 39a. The procedure was conducted with 39b to afford 

the other two isomalathion stereoisomers (12b and 12d). 
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Summary 

The individual stereoisomers of malathion 6a/6b, malaoxon 22a/22b, and 

isomalathion 12a/12b/12c/12d have been successfully prepared (>95% 

stereoisomeric purity by HPLC analysis) and represent the first total synthesis of 

these stereoisomers. The entries in Table 7 summarize salient physical data of the 

individual stereoisomers as well as that for critical synthetic intermediates. 

With the acquisition of the individual stereoisomers of malathion, 

malaoxon, and isomalathion, the role of stereochemistry upon their interactions 

with AChE is now permitted. 



Table 7. Physical Data for Malathion, Malaoxon, lsomalathion 
Stereoisomers, and Chiral Intermediates. 

compound 

36a (S)-diethyl malate 

36b (R)-diethyl malate 

39a (S)-triflate 

39a (R)-triflate 

6a (R)-malathion 

6b (S)-malathion 

22a (R)-malaoxon 

22b (S)-malaoxon 

53a (JR,3R)-sa1t 

53b (JR,3S)-salt 

53c (1 S,3R)-salt 

53d (JS,3S)-salt 

54a (R)-salt 

54b (S)-salt 

- 5.45 (l.21) 

+ 5.23 (l.05) 

+ 32.6 (1.39) 

- 30.1 (l.71) 

+ 79.7 (12.5) 

- 80.0 (l.25) 

+ 46.7 (0.55) 

- 43.5 (0.75) 

+ 32.2 (0.25) 

- 45.1 (0.26) 

+ 16.1 (0.31) 

- 61.7 (0.31) 

+ 15.8 (0.54) 

- 13.5 (0.63) 

31P NMR (o) 

96.15 

96.15 

28.30 

28.30 

67.20 

68.12 

68.10 

67.18 

78.87 

78.79 

12a (JR,3R)-isomalathion + 42.3 (0.64) 58.38 

12b (JR,3S)-isomalathion - 57.6 (0.50) 56.92 

12c (JS,3R)-isomalathion + 58.6 (0.64) 56.92 

12d (1 S,3S)-isomalathion - 44.8 (0.58) 58.38 

mp (°C) 

159-160 

189 

181-182 

158-159 

202-203 

253 

arotations in CHC13 except 54 in MeOH; concentrations (g/lOOmL) in 
parenthesis. 
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CHAPTER 4 

RESULTS AND DISCUSSION: The Interactions of Malathion, Malaoxon, 
and Isomalathion Stereoisomers with Acetylcholinesterase. 

Biological Evaluation of Malathion Enantiomers 

Two preparations of rat brain AChE (RBAChE; homogenized and 

solubilized) were selected for stereoselective inhibition studies with the malathion 

enantiomers (6a and 6b). The rationale behind this selection was that they were 

observed to exhibit the greatest stereoselectivity during inhibition by isoparathion 

methyl enantiomers (Ryu, 1991b). Unfortunately, malathion was such a weak 

inhibitor of RBAChE that attempts to accurately determine the ki of the malathion 

enantiomers were impeded due to the poor solubility of the compounds at the 

concentrations needed to affect inhibition. As a result, no reliable data was 

collected. 

The differential toxicities of the malathion enantiomers, however, was 

studied in collaboration with Cheminova (Lemvig, Denmark) using several insect 

species. The most notable difference observed was with Drosophila Melanogaster 

where the concentration of the R-enantiomer 6a needed to cause 50% mortality 

(LD50) was 4-fold less than that of the S-enantiomer 6b (Figure 29) indicating that 

the R-enantiomer 6a is more toxic to Drosophila Melanogaster. 
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Figure 29. Media-Test of Malathion Enantiomers with Drosophila 
Melanogaster. 

Inhibition of AChE by Malaoxon Enantiomers 

Since the 0,0-diethyl malaoxon stereoisomers 27a/27b showed a 4.4-fold 

difference in anticholinesterase activity (Hassan, 1968), it was presumed that 

similar stereoselectivity would be displayed by the 0,0-dimethyl stereoisomers 

22a/22b. Results from previous investigations showed that among several sources 

of AChE tested against isoparathion-methyl enantiomers 49a/49b RBAChE was 

82 
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the most stereoselective while human erythrocyte AChE (HEAChE) was the least 

(Ryu, 1991). Thus, it was desired to examine the stereoselective inhibition 

profiles of these two cholinesterases against chiral malaoxon 22 to obtain an 

understanding of the influence of a chiral carbon ligand. In order to evaluate the 

inhibitory potency of the malaoxon stereoisomers and to compare them to the 

differences observed for the 0,0-diethyl analogues (Hassan, 1968), the 

bimolecular rate constants, ki, were first determined according to Eqn. 3 (Section 

2 ·············································· ················· 

..--:, 1.5 Malaoxon 
~ 
~ -c: 

1 

---(A) 

*(S) 

0.5 .......... ····················································· 

0 5 10 15 

time (min) 

Figure 30. Inhibition of RBAChE (Homogenized) by Malaoxon Enantiomers. 
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1.8). Plots of ln(AJA1) versus time provided curves with slopes proportional to 

ki (Figure 30). 

Table 8. Bimolecular Inhibition Rate Constants for 
Malaoxon Enantiomers. 

compound 

malaoxon 

22a (R) 

22 (RS) 

22b (S) 

RBAChEa 
kj 

M·1min·1 (x 103
) 

152 

101 

30 

0, 0-diethyl malaoxon 

27a (R) 

27 (RS) 

27b (S) 

HEAChEb 
kj 

M·1min·1 (xl03
) 

201 

97 

48 

BEAChEc 
kj 

M·1min·1 (xl03
) 

28.0 

14.9 

6.3 

ahomogenized, 25°C. b37°C. cbovine erythrocyte AChE (Hassan, 
1968) 

The ki values showed that (R)-malaoxon 22a was a 5.0-fold and a 4.2-fold 

stronger inhibitor than (S)-malaoxon 22b of RBAChE and HEAChE, respectively 

(Table 8). In both cases, racemic material was found to be intermediate in 

inhibitory strength. The stereoisomer preference and the 4-5-fold 



85 

difference in potency is in good agreement with that reported by Hassan and 

Dautermann (1968) and indicates that the change from diethoxy to dimethoxy did 

not alter the interaction significantly. 

To further understand the process of stereoselective inhibition by the 

malaoxon stereoisomers, the partial kinetic parameters, i.e. the dissociation 

constant (K0 ), and the phosphorylation constant (kp), were evaluated (Table 9) 

according to Eqn. 2 (Section 1.8). In order to make useful comparisons to the 

data obtained with chiral isoparathion methyl enantiomers (Ryu, 1991b), 

solubilized RBAChE was examined. Plots of 1/[i] versus Lilnv/Lit provided Kv 

as the inverse of the y-intercept while the slope of the curve is defined as k/Kv 

or k; (Figure 31). 

The data in Table 9 reveal that (R)-malaoxon 22a was an 8.6-fold more 

potent anti-RBAChE agent (k;, reaction constant) than (S)-malaoxon 22b, which 

represents a more significant difference than noted previously for homogenized 

RBAChE. These results suggest that the stereochemistry of the succinyl carbon 

was indeed important in the inhibition process and comparable with the 8.3-fold 

inhibitory potency difference between the isoparathion methyl enantiomers 

49a/49b. The difference in inhibitory potency between the two malaoxon 

enantiomers is further revealed by the dissociation constant K0 where the 

formation of the Michaelis enzyme-inhibitor complex occurs 10-fold faster for 

(R)-malaoxon 22a. Because enzymes provide an asymmetric environment, it 
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Figure 31. Inhibition of RBAChE (Solubilized) by Malaoxon Enantiomers. 

is not surpnsmg that stereoselective interactions occur with enantiomeric 

inhibitors. Such stereoselectivity is further anticipated since certain conformations 

attained by one stereoisomeric inhibitor that enhance the affinity for the active site 

may not be attained by an inhibitor with the opposite configuration. 

The difference in the phosphorylation constants, ~. for the malaoxon 

enantiomers was relatively small (1.4-fold) suggesting that the carbon stereocenter 

was relatively less important in the phosphorylation step as compared to the 
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Table 9. Kinetic Data for the Inhibition of RBAChE by Malaoxon 
and lsoparathion Methyl Enantiomers. a 

kb Kv kp I 

compound M-1min-1 (xl03
) mM (xl0-5) min-1 

malaoxon 

22a (R) 731 (0.07) 44 0.316 

22 (RS) 141 (0.09) 235 0.313 

22b (S) 85 (0.09) 387 0.327 

isoparathion methylc 

49a (S) 630 (0.08) 27 0.17 

49 (RS) 410 (0.10) 45 0.19 

49b (R) 78 (0.06) 273 0.21 

acoefficient of variation in parentheses. bsolubilized, 37 °C. c(Ryu, 1991) 

affinity for the active site (Table 9). If inhibition of AChE by malaoxon proceeds 

through the loss of the thiosuccinyl ligand (Scheme 9), this small difference in the 

~ is not surprising. 
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Inhibition of AChE by Isomalathion Stereoisomers 

Our studies with the malaoxon enantiomers showed that the ligand 

stereocenter affects the inhibitor potency, and therefore prompted an inhibition 

study of the isomalathion stereoisomers, which also bear a phosphorus asymmetric 

center. Values for ki, K0 , and kP for the individual stereoisomers were determined 

against two sources of the enzyme: solubilized RBAChE and electric eel AChE 

(EEAChE). Solubilized RBAChE was selected in order to compare data from the 

malaoxon enantiomer experiments. EEAChE was examined in order to observe 

a possible species-dependent stereoselectivity for the isomalathion stereoisomers. 
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Inhibition of RBAChE by Isomalathion Stereoisomers 

Initially, inhibition of RBAChE by diastereomeric mixtures of isomalathion 

with fixed carbon configurations (12ac 1RS,3R and 12bd JRS,3S; also known as 

semi-racemates) was conducted in order to establish the contribution of the 

asymmetric phosphorus toward inhibition. The kinetic parameters of inhibition 

(ki, K0 , and kP) for RBAChE were determined as described for malaoxon using 

Eqn 2 (Section 1.8). We found that (JRS,3R)-isomalathion 12ac was only a 3.0-

fold more potent inhibitor of RBAChE than (JRS,3S)-isomalathion 12bd (Table 

10) suggesting that either RBAChE could not distinguish the carbon 

configurational stereoisomers of isomalathion as well as it could with malaoxon, 

or that the inhibition process may be complicated due to the presence of the 

asymmetric phosphorus center. To more precisely address the stereoselective 

inhibition of RBAChE, the inhibitory profiles for the individual stereoisomers of 

isomalathion were determined as well (Figure 32, Table 10). In addition, an 

86:14 mixture of (JS,3S)- and (JR,3R)-isomalathion obtained during the synthesis 

of the stereoisomers was examined to evaluate the effect a weighted mixture of 

inhibitors with differing potency had upon the overall inhibition profile of the 

mixture (Table 10). 

A 29-fold difference m anti-AChE potency was found between the 

strongest (12a JR,3R) and weakest (12d JS,3S) inhibitor. The inhibitory potencies 

(k) of the diastereomeric mixtures (JRS,3R- and JRS,3S-isomalathion) were found 
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Figure 32. Inhibition of RBAChE by Isomalathion Stereoisomers. 

90 

to be midway between the respective antipodes, and the fully racemic material 

gave an average ki value relative to the four stereoisomers. The 86: 14 mixture of 

(12d:12a)-isomalathion reacted with RBAChE to give a ki value that closely 

reflected the molar ratio of the individual stereoisomers according to the following 

equation: [(% stereoisomer A) x (ki of stereoisomer A)] + [(% stereoisomer B) x 

(ki of stereoisomer B)] = ki of the AB mixture (calculated= 59 x 103
; found= 56 
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Table 10. Inhibitory Kinetic Data for RBAChE 
Inhibited by Isomalathion Stereoisomers. a 

kb Kn kp I 

stereo isomer M·1min"1(xl03) mM(xl0"5
) min"1 

12a (JR,3R) 347 (0.12) 55 0.192 

12ac (JRS,3R) 260 (0.07) 66 0.170 

12c (JS,3R) 81 (0.08) 670 0.533 

12 (JRS,3RS) 132 (0.10) 298 0.380 

12b (JR,3S) 105 (0.12) 188 0.189 

12bd (JRS,3S) 86 (0.05) 414 0.353 

12d (JS,3S) 12 (0.06) 20000 2.510 

12d:12a (86:14) 56 (0.21) 440 0.233 

asolubilized, 37 °c. bcoefficient of variation in 
parentheses. 

Both (JR,3R)- and (JR,3S)-isomalathion (12a and 12b) were more potent 

inhibitors of RBAChE than the corresponding 1 S-stereoisomers; a preference for 

the (R)-configuration of the phosphorus atom was also noted for nerve gas agents 

and methyl phosphonates, and was ascribed to specific complementary active site 

features (Jarv, 1984; Benschop, 1988; Berman and Decker, 1989; Berman and 

Leonard, 1989). In addition, isomalathion stereoisomers with the (3R)-carbon 

configuration displayed greater inhibitory potency against RBAChE than those 
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with the (JS)-configuration at carbon. Yet, the impact on the inhibition reaction 

by the carbon stereocenter was further attenuated by the configuration at 

phosphorus. For example, the difference in inhibitory strength associated with a 

change in the carbon configuration from R to S was 6.8-fold when the phosphorus 

configuration was S, while the difference was only 3.3-fold when the phosphorus 

configuration was R. Likewise, the effect of the phosphorus stereocenter was 

leveraged by the carbon stereocenter. This effect is evidenced by a comparison 

of the 1 S and 1 R stereoisomers, which gave a 4.3-fold ki difference when the 

carbon configuration was R, while the difference was 8.8-fold when the carbon 

configuration was S. Therefore, the carbon and phosphorus asymmetric centers 

of isomalathion act interdependently during inhibition of RBAChE. 

Values for K0 and kP were determined for the isomalathion stereoisomers 

(Table 10). As with the malaoxon stereoisomers, the ki values paralleled the 

dissociation constants, K0 , where the isomer with the greater affinity for the active 

site was the stronger inhibitor. For example, (JR,JR)-isomalathion 12a displayed 

a 3.4-fold stronger affinity for the active site than (JR,JS)-isomalathion 12b (or 

weaker dissociation from the active site) and was a 3.3-fold stronger inhibitor. 

However, based solely upon the K0 values, (JR,3S)-isomalathion 12b was 

expected to be a 100-fold stronger inhibitor than (1 S,JS)-isomalathion 12d rather 

than the observed 8.8-fold difference. The unusual magnitude of kP (2.510) for 

the 1 S,3S isomer partially compensated for the poor affinity (K0 = 20,000) toward 
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the active site. 

The kP values obtained for inhibition of RBAChE by 12a and 12b were 

virtually identical, consistent with the results obtained with malaoxon. However, 

kP values for 12c and 12d differed by 4.7-fold, and were significantly higher than 

those for 12a and 12b. Thus, the carbon stereochemistry significantly influenced 

the phosphorylation only when (JS,3R)- or (JS,3S)-isomalathion were the 

inhibitors, and suggested that the thiosuccinyl ligand remains attached (Scheme 

10, Path B). Conversely, since there was no difference in the kP for (JR,3R)- and 
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(JR,3S)-isomalathion, it is likely that the thiosuccinyl ligand is displaced and has 

little stereochemical influence over this step (Scheme 10, Path A). Alternatively, 

if RBAChE inhibition by the four isomalathion stereoisomers occurs via a 

common mechanism (i.e. displacement of the thiosuccinyl ligand with inversion 

of the phosphorus configuration (Berman and Decker, 1989) then the putative (S)­

or (R)-0,S-dimethylphosphorothiolated AChE would result. Thus, the two 

phosphorylated enzymes resulting from inhibition by the isomalathion 

stereoisomers should be identical to RBAChE inhibited by (S)- or (R)-isoparathion 

methyl (loss of p-nitrophenoxy; Scheme 11). 

Inhibition of EEAChE by Isomalathion Stereoisomers 

In order to identify any possible species-dependent variation in the 

stereoselectivity (Lee, 1978; Wallace, 1991) inhibition of EEAChE by the 

isomalathion stereoisomers also was investigated. Further, the X-ray structure of 

EEAChE was recently published (Sussman, 1991), which may permit more 

precise calculations of active site complementarity to be conducted. 

The kinetic parameters (ki, K0 , and kP) for the inhibition of EEAChE by 

isomalathion stereoisomers were determined experimentally using Eqn. 2 (Section 

1.8) (Figure 33, Table 11). The results of these experiments show that differences 

between the weakest ((JR,3S)-isomalathion 12b) and strongest ((JS,3R)­

isomalathion 12c) inhibitor was only 13-fold compared to the 29-fold difference 
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found for RBAChE. That EEAChE discriminates less between the isomalathion 

stereoisomers was not unexpected since species-dependent, stereoselective 

inhibition against varying sources of AChE was observed for the enantiomers of 

fonofos oxon (Lee, 1978). For example, the fonofos oxon enantiomers are 

discriminated 5-fold better by mouse brain cholinesterase than EEAChE. 

Isomalathion stereoisomers with the R-carbon configuration were stronger 

inhibitors of EEAChE than the isomalathion stereoisomers with the S 
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configuration, and the inhibitory strength due to the carbon configuration was 

again attenuated by the configuration at phosphorus but to a lesser degree than 

with RBAChE. For example, (JS,3R)-isomalathion 12c was a 3.9-fold stronger 

inhibitor than (1 S,3S)-isomalathion 12d as compared to the 6.8-fold difference 

found against RBAChE. The difference in ki between (JR,3R)- and (JR,3S)-

isomalathion was only 2.3-fold compared to the 3.3-fold for 

RBAChE. The most striking result found for the inhibition of EEAChE was that 

Table 11. Kinetic Dataa for the Inhibition of EEAChE 
by Isomalathion Stereoisomers. 

ki Kn kp 
isomalathion M"1min"1(xl03

) mM(x10"5
) min·1 

12a (JR,3R) 57 (0.04) 70 0.040 

12b (JR,3S) 25 (0.09) 138 0.034 

12c (1S,3R) 333 (0.07) 1330 4.590 

12d (JS,3S) 85 (0.04) 3670 3.070 

3Coefficient of variation in parenthesis 

the (1 S)-isomalathion stereoisomers were stronger inhibitors than the (1 R)-

isomalathion stereoisomers; the inverse of the RBAChE inhibitor stereoselectivity. 

Thus, a species-dependent, stereoselective inhibition by isomalathion was 

observed for RBAChE and EEAChE not only in the extent that the enzymes 
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could discriminate between configurations, but also in the inhibitory strength of 

one configuration versus another. 

Although (1 R)-isomalathion stereoisomers had a significantly greater 

affinity (K0 ) for the EEAChE active site by approximately 20-fold, the (1 S)­

isomalathion stereoisomers were more potent inhibitors. However, the difference 

in the affinity was compensated for and further dominated by the magnitude of 

kP for (1 S,3R)- and (1 S,JS)-isomalathion, revealing another facet of the "inteiplay 

between occupation of the active center and productivity of that occupation 

(Berman and Leonard, 1989b ). " Unlike the stereoisomers which differ only by 

their phosphorus configuration, those with the same phosphorus configuration 

show a correlation between the relative inhibitory potency (ki) and the K0 . For 

example, the difference in ki between (1 S,3R)- and (1 S,JS)-isomalathion was 3.9-

fold while the difference in K0 was 2.8-fold. In addition, the difference in ki 

between the (JR,3R)- and (JR,JS)-isomalathion was 2.3-fold while the difference 

in K0 was 2.0-fold. 

As with RBAChE, the kP values were identical for the JR,3R and JR,3S 

stereoisomers, consistent with a mechanism where the asymmetric carbon center 

contributes little to the phosphorylation step (Scheme 10, Path A). The EEAChE 

kP values for (JS,3R)- and (JS,JS)-isomalathion differ by 1.5-fold. Since we 

observed that EEAChE shows less discrimination than RBAChE during inhibition 

by isomalathion stereoisomers, the 1.5-fold difference compared to the 4.7-fold 
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difference in kP for RBAChE was not surprising. That the thiosuccinyl ligand 

stereochemistry is significant at all in the phosphorylation step suggests that a 

similar mechanistic switch to that proposed for RBAChE (Scheme 10, Path B) 

may also occur with EEAChE. 

Reactivation of RBAChE Inhibited by Isomalathion Stereoisomers 

If, indeed, the mechanisms of inhibition of RBAChE by isomalathion and 

isoparathion methyl are convergent as suggested in the conclusion of Section 4.4., 

then the reactivation profiles of RBAChE inhibited by these two compounds 

should be comparable. In an effort to clarify any mechanistic ambiguity and to 

distinguish the influence of stereochemistry upon the recovery processes, the rate 

constants of spontaneous and oxime-mediated reactivation (k0 and koxime; Eqns. 4 

and 5, Section 1.9 and 1.10) were determined. 

RBAChE was inhibited by each isomalathion stereoisomer (and the 86:14 

(JS,3S/JR,3R mixture), followed by a 40-fold dilution to halt further inhibition. 

The spontaneous reactivation rate constants, k0 (Eqn. 4, Section 1.9.) were 

calculated from the slope of the initial portion (0-30 min.) of the graphs plotted 

by In( JOO/%inhibition) vs. time (Figure 34, Table 12). 

Rate constants for oxime-mediated reactivation (koxime) were determined 

similarly. Following inhibition of RBAChE by each of the isomalathion 

stereoisomers and the 40-fold dilution, the enzyme was reacted with 2-pyridine 
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Figure 34. Spontaneous Reactivation of RBAChE Inhibited by Isomalathion 
Stereoisomers. 

aldoxime methiodide (2-PAM). The oxime-mediated rate constants, koxime (Eqn. 

5, Section 1.10.) were calculated from the initial slope of the graphs plotted by 

ln( JOO/%inhibition) vs. time (Figure 35, Table 12). 

By 60 minutes, the reactivation (spontaneous and oxime-mediated) reached 

a plateau and was assigned the total percent reactivation relative to uninhibited 
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Table 12. Reactivation Dataa for RBAChE Inhibited by Isomalathion 
and Isoparathion Methyl Enantiomers. 

isomer 

isomalathion 

12a (JR,3R) 

12b (JR,3S) 

12c (JS,3R) 

12d (JS,3S) 

12d:12a (86:14) 

isoparathion 

49a (S) 

49 (RS) 

49b (R) 

ko b % spontaneous koxime e % oxime 
min-1(xl0"3

) reactivationc min"1(x10"3)reactivationd 

13.7 (0.03) 42 (0.13) 51.0 (0.05) 81 (0.09) 

12.5 (0.03) 38 (0.05) 50.8 (0.05) 81 (0.10) 

0 

0 

8.6 (0.01) 

11.3 (O.lOY 

10.2 (O.lOY 

3.5 {0.04)e 

< 1 1.9 (0.04) 9 (0.14) 

< 1 0 2 (0.01) 

29 (0.04) 39.3 (0.12) 66 (0.12) 

50.2 (0.02) 

13.8 (0.17) 

acoefficient of variation in parentheses bcorrelation coefficient (c.c.) > 
0.99 where applicable. cafter 60 min. dc.c. > 0.99 except 12c where c.c. 
= 0.49. e (Thompson, 1993). 

enzyme (Table 12). In all instances, no additional enzyme activity returned after 

120 min. 

The koxime values for RBAChE inhibited by (JR,3R)- or (JR,3S)-

isomalathion were 4-fold greater than the spontaneous reactivation (k0) values. 

The total percent returned enzyme activity was twice that of the spontaneous 
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Figure 35. Oxime-Mediated Reactivation of RBAChE Inhibited by 
Isomalathion Stereoisomers. 

process. Both the spontaneous (approximately 13 x 10-3 min-1
) and oxime-

mediated reactivation (approximately 51 x 10-3 min-1
) rates for these two 

diastereomers were nearly identical suggesting that the resultant phosphorylated 

enzymes were chemically and stereochemically equivalent. 

In contrast, RBAChE inhibited by (1 S,3R)- or (1 S,3S)-isomalathion were 

refractory to either spontaneous or oxime-mediated reactivation and showed only 
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a modest amount of total returned activity (<10%) following treatment with 

oxime. The minor rate of reactivation detected was probably due to background 

oxime based hydrolysis of acetylthiocholine (control shows 6% hydrolysis) or a 

1-3% contamination by the enantiomer, which is a far superior inhibitor that can 

undergo reactivation. 

The results of spontaneous and oxime-mediated reactivation from RBAChE 

by the 86: 14 (12d:12a) enantiomer mixture strongly correlated with (JR)­

isomalathion stereoisomer kinetics (Figure 33 and 34). From this mixture, the 

mole fraction of the inhibited species was calculated to be 18% inhibited by 12d 

and 82% inhibited by 12a. All reactivation observed for the mixture was 

attributed to RBAChE inhibited by 12a since inhibition of RBAChE by 12d was 

refractory to reactivation. The reactivation rate values were calculated from the 

corresponding mole fractions as 10.7 x 10-3min-1 for k0 and 41.6 x 10-3 min-1 for 

k0 xime• which are in excellent agreement with the observed values of 8.6 x 10-3 

min-1 and 39.3 x 10-3 min-1
• Although 12a composed only 14% of the doped 

mixture, it dominated the molar fraction of the inhibited enzyme owing to its 

greater inhibitory potency (ki value). These results signify and augment the 

importance of stereoisomer purity in an evaluation of biological activity. 

Some intriguing mechanistic implications can be surmised when the 

spontaneous and oxime-mediated reactivation rates are compared for RBAChE 

inhibited by isomalathion and isoparathion methyl stereoisomers (Thompson, 
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1993). The reactivation rates from (JR,3R)- and (JR,3S)-isomalathion 

(spontaneous, approximately 13 x 10-3 min-1
; oxime-mediated, approximately 51 

X 10-3 min-I), and (S)-isoparathion methyl (SpOntaneOUS, 11.3 X 10-3 min-I; OXime­

mediated, 50.2 x 10-3 min-1
) were comparable supporting a common mechanism 

of inhibition, namely, ejection of the thiosuccinyl or p-nitrophenoxy leaving 

groups, respectively, to give (R)-0,S-dimethyl phosphorothiolated RBAChE 

(Scheme 11 ). Although the process of phosphorylation described in Scheme 11 

occurs with inversion, the phosphorus configuration remains R for the (JR)­

isomalathion diastereomers. 

Conversely, RBAChE inhibited by (1 S,3R)- and (1 S,3S)-isomalathion 

showed negligible reactivation compared to the slow but observable rates from 

(R)-isoparathion methyl 49b inhibited RBAChE (spontaneous, 3.5 x 10-3
; oxime­

mediated, 13.8 x 10-3 min-1
). One explanation for this anomaly is that inhibition 

of RBAChE by (1 S,3R)- or (1 S,3S)-isomalathion results in an inhibited enzyme 

that is different than the O,S-dimethylphosphorothiolated species, namely, the loss 

of the thiomethyl group (Scheme 10, Path B). Diminished attention was given 

to the possibility that the methoxide ligand was displaced during phosphorylation 

since the thiomethyl group was shown to be the preferred leaving group during 

AChE inhibition by methamidophos (Scheme 12; Thompson, 1982). It is 

noteworthy that this mechanistic switch is linked to the configuration at 

phosphorus. The hypothesis that the mechanisms of RBAChE inhibition differ 
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for (JS,3R)- and (JS,3S)-isomalathion from (JR,3R)- and (JR,3S)-isomalathion is 

unexpected since the displacement of the thiosuccinyl ligand has long been 

accepted as the conventional phosphorylation mechanism (Clothier, 1981). 

Following inhibition of RBAChE by (1 S,3R)- or (1 S,3S)-isomalathion, a chiral 

thiosuccinyl ligand was still attached to the enzyme and differences in reactivation 

rates (spontaneous or oxime mediated) due to the configuration of carbon were 

expected. Although rate differences have been observed for oxime mediated 

reactivation of AChE inhibited with a phosphoryl group bearing a second 

asymmetric center (soman) (DeJong, 1985a,b), essentially no reactivation 

following inhibition by either of the two (1 S)-isomalathion diastereomers was 

observed, and an explanation of this phenomenon was warranted. 

Several postinhibitory processes are possible following RBAChE inhibition 

by either of the two (JS)-isomalathion stereoisomers including: (a) displacement 
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of the thiosuccinyl ligand via a general base catalyzed mechanism (Scheme 13, 

Path A), (b) intramolecular phosphorylation by a second enzyme nucleophile 

(Scheme 13, Path B), (c) B-elimination of diethyl fumarate or diethyl maleate 

(Scheme 13, Path C), or (d) reduced approach of incoming nucleophiles (H20, 

oxime) owing to steric crowding enforced by the thiosuccinyl ligand (not shown). 

If the succinyl thiolester-phosphorus bond is cleaved by the action of water or 

oxime, the remaining phosphoryl group would become charged and therefore 

unsuitable for reactivation by nucleophiles (Scheme 13, Path A). Diminished 

reactivation rates due to steric crowding has been documented in a study that 

Scheme 13. Proposed Non-Reactivatable Pathway for {JS)-Isomalathion. 
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showed that the reactivation of dimethyl phosphorylated AChE was faster than 

diethyl phosphorylated, while diisopropyl phosphorylated AChE did not reactivate 

(Cassida, 1956). The B-elimination (Scheme 13, Path C) process may occur via 

a general base type mechanism, which has its foundation in the methoxide-

promoted B-elimination of malathion (Bhagwat, 1974; Figure 16, Section 2.1.). 

Moreover, the ejection of acrolein from hydroxylated cyclophosphamide follows 

a similar ~-elimination mechanism (Connors, 1975). 

Non-Reactivation of RBAChE Inhibited by lsoparathion Methyl Enantiomers: 
A Model Study 

Although RBAChE inhibited by the (JR)-isomalathion diastereomers 

reactivated as expected, RBAChE inhibited by the (1 S)-isomalathion diastereomers 

showed no reactivation. Thus, an examination of the significance of phosphorus 

(or carbon) stereochemistry upon the time dependent loss of the enzyme's ability 

to reactivate, i.e., non-reactivatability, is precluded by those results. If the 

mechanism of inhibition of RBAChE by all of the isomalathion stereoisomers 

occurred as initially expected (loss of the thiosuccinyl moiety, Scheme 11), then 

the influence of stereochemistry upon the non-reactivatability of O,S-

dimethylphosphorothiolated RBAChE (provided only by the (JR)-diastereomers) 

could be examined. In an effort to obtain results for such an event, RBAChE 

inhibited by isoparathion methyl was examined since it would provide the putative 



108 

stereoisomers of O,S-dimethylphosphorothiolated RBAChE (Scheme 11). 

Furthermore, such a study would serve as a model for RBAChE inhibited by the 

S-methyl isomerides of other dimethyl phosphorothionate insecticides. 

RBAChE was incubated with the individual stereoisomers of isoparathion 

methyl for 20 min to afford approximately 90% inhibition. The incubation 

mixtures were then diluted 40-fold to halt the inhibition and at time intervals 

following the dilution, 2 aliquots were withdrawn to: (1) determine the activity 

that returned via spontaneous reactivation and (2) to determine the total amount 

of activity that could be restored. The second determination was executed by 

reacting the aliquot with 2-PAM for 20 min. The rate constants for 

nonreactivatability (kNR) were determined (Table 13) from slopes of graphs 

(Figure 36) plotted using the following equation: 

where A,-A/ = (activity of the reactivated enzyme with oxime at time = t) -

(activity of the inhibited enzyme without oxime at time= t) and A0-A0 ' =(activity 

of the reactivated enzyme with oxime at time = 0) - (activity of the inhibited 

enzyme without oxime at time= 0). 

RBAChE inhibited by (R)-isoparathion methyl underwent a rate of non­

reactivation approximately twice that of the (S)-stereoisomer confirming the 
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significance of phosphorus stereochemistry with regard to non-reactivation 

pathways. This result is not entirely surprising since RBAChE inhibited by (R)-

isoparathion methyl reactivated approximately 3.5-fold slower than the antipode 

(Table 12) allowing for greater competition of non-reactivating processes. 

Noteworthy is the fact that RBAChE inhibited by racemic isoparathion methyl 

underwent non-reactivatability at a rate essentially identical to that of RBAChE 
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Figure 36. Non-reactivatability ofRBAChE inhibited by IsoparathionMethyl 
Enantiomers. 
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inhibited by (S)-isoparathion. This result also was not surprising since the mole 

ratio of the enzyme inhibited by (S)-isoparathion methyl resulting from the 

incubation with the racemic mixture, was approximately 8-fold greater than that 

of enzyme inhibited by (R)-isoparathion methyl (Table 9). Thus, it was expected 

Table 13. Non-Reactivatability of 
RBAChE Inhibited by Isoparathion 

Methyl Stereoisomers. 

isoparathion methyl kNRa (min·1 x 10-1) 

s 

RS 

R 

1.42 (0.09) 

1.37 (0.04) 

3.07 (0.10) 

acoefficient of variation in parenthesis. 

that the (S)-stereoisomer would dominate the non-reactivatability profile of 

RBAChE inhibited by racemic isoparathion methyl because 8 times as much (S)-

inhibited RBAChE was available for reactivation. 

Conclusions 

Malaoxon. 

In conclusion, a significant stereoselective inhibition of AChE by the 

malaoxon enantiomers was uncovered whereby RBAChE showed greater 
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sensitivity to carbon asymmetry than bovine erythrocyte AChE did for 0,0-

diethyl malaoxon (Hassan, 1968). Furthermore, this sensitivity of RBAChE 

toward the carbon asymmetry of malaoxon was as great as that toward the 

phosphorus stereochemistry of isoparathion methyl (Ryu, 1991 b ). 

Isomalathion. 

An interdependence between both asymmetric centers (phosphorus and 

carbon) of the isomalathion stereoisomers was identified for the inhibition of 

RBAChE, and to a lesser extent, EEAChE. In addition, a species-dependent 

stereoselectivity was observed between RBAChE and EEAChE whereby the 

difference in inhibitory strength between the stereoisomers was greater for 

RBAChE than EEAChE. More importantly, the (JS,3R)- and (JS,3S)­

isomalathion stereoisomers were weaker inhibitors of RBAChE but surprisingly 

stronger inhibitors of EEAChE resulting from an interdependence between 

stereoisomer affinity (K0 ) for the EEAChE active site and the fecundity (kp) of 

that affinity. 

The reactivation profiles of RBAChE inhibited by the isomalathion 

stereoisomers along with the results from the inhibition experiments support a 

mechanistic switch for the inhibition of RBAChE from the expected thiosuccinyl 

displacement to loss of the thiomethyl ligand for (1 S,3R)- and (1 S,3S)­

isomalathion and predicts the same for EEAChE based upon phosphorylation 
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constants (kP). As a consequence, a non-reactivatable pathway is postulated for 

RBAChE inhibited by (1 S,3R)- and (1 S,3S)-isomalathion. 

Although isomalathion could provide only one phosphorus configuration 

of O,S-dimethylphosphorothiolated RBAChE due to the mechanistic switch linked 

to the phosphorus stereochemistry, isoparathion methyl could furnish both 

configurations and thus provided a model for RBAChE inhibited by each 

configuration. Consequently, the results of the non-reactivation study indicated 

that phosphorus stereochemistry was significant (although less than for inhibition 

and reactivation) for post-inhibitory processes leading to non-reactivatable 

enzyme. 



CHAPTER 5 

SUMMARY 

The individual stereoisomers of malathion, malaoxon, and isomalathion 

have been successfully prepared and as a result represent the first preparation of 

these stereoisomers. Two methods for the preparation of the isomalathion 

stereoisomers were developed, each offering distinct advantages. 

Differential toxicities of the malathion enantiomers were identified for 

Drosophila Melanogaster showing (R)-malathion to be a 4-fold stronger 

insecticide. Detailed anti-AChE profiles (ki, K0 , and kP) for the malaoxon 

enantiomers were determined demonstrating that (R)-malaoxon was a 8-fold 

stronger inhibitor than its antipode. Inhibition constants (ki, K 0 , and kP) for the 

isomalathion stereoisomers against RBAChE and EEAChE also were determined 

resulting in an apparent interdependence between both asymmetric centers 

(phosphorus and carbon) of the isomalathion stereoisomers for the inhibition of 

RBAChE, and to a lesser extent, EEAChE. Furthermore, a species-dependent 

stereoselectivity was observed between RBAChE and EEAChE. 

The reactivation profiles (k0 and kP) of RBAChE inhibited by the 

113 
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isomalathion stereoisomers were determined and support a mechanistic switch for 

the inhibition of RBAChE from the expected thiosuccinyl displacement to loss of 

the thiomethyl ligand for (1 S,3R)- and (1 S,3S)-isomalathion and predict the same 

for EEAChE based upon phosphorylation constants (kp). 

Results from a non-reactivation study using isoparathion methyl 

enantiomers to provide stereochemically opposed forms of O,S-dimethyl 

phosphorylated AChE, indicated that phosphorus stereochemistry was significant 

(although less than for inhibition and reactivation) for post-inhibitory processes 

leading to non-reactivatable enzyme. 



CHAPTER6 

FUTURE WORK 

Stereoselective Detoxication and Bioactivation of Malathion Stereoisomers 

The preparation of the individual stereoisomers of malathion 6, malaoxon 

22, and isomalathion 12 has allowed the viability of investigations concerning the 

role of the stereochemistry of these compounds upon the relevant metabolism and 

action of these compounds. For example, the stereoselectivity of malathion 

detoxication by mammalian carboxylesterases could be examined in an effort to 

identify differential in vivo lifetimes of the malathion enantiomers. In addition, 

the stereoselective activation of the malathion enantiomers to the corresponding 

malaoxon enantiomers by oxidizing enzymes should be examined. 

Stereoselective Inhibition of Carboxylesterase by Malaoxon and 
Isomalathion Stereoisomers 

The stereoselective inhibition of rat liver carboxylesterase by 0,0-diethyl 

malaoxon enantiomers 27 had been previously examined (Hassan, 1968) where 

an 8.3-fold difference in inhibitory potency was observed for the antipodes. 

However, the stereoselective inhibition of the malaoxon enantiomers 22 has been 
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left undiscovered. Because the potentiation of malathion toxicity has been 

attributed to the isomalathion 12 content through inhibition of carboxylesterase, 

the stereoselective inhibition of this enzyme by isomalathion should be examined 

and the results compared to the corresponding anti-AChE potency of the 

individual stereoisomers. Such a study would provide a better understanding of 

the toxicological profiles of each stereoisomer and aid identification of the 

contributions of each isomalathion stereoisomer to the overall toxicity of a 

racemic mixture. Acquisition of malaoxon and isomalathion stereoisomers now 

allows such investigations to be completed. 

Mechanistic Switch for UR)- and (JS)-lsomalathion 

In order to support the apparent mechanistic difference for the inhibition 

of RBAChE by the (1 R)- and (1 S)-isomalathion stereoisomers, compounds that 

would result in the same thiosuccinyl-linked phosphorodithiolated RBAChE such 

as 56b/56d (Figure 37) could be reacted with RBAChE and the corresponding 

reactivation profiles determined and compared to those of RBAChE inhibited by 

(1 S)-isomalathion diastereomers. The thionate analog 57 of 56 is also interesting 

as a potential insecticide possessing a carbethoxy portion susceptible to 

detoxication by carboxylesterases in addition to two potential leaving groups 

following bioactivation to 57. 

14CH3S-isomalathion stereoisomers 58 should be prepared and reacted with 
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Figure 37. Mechanistic Probes for RBAChE Inhibition by Isomalathion. 
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RBAChE to examine the possible mechanistic switches proposed for the (JR)- and 

(1 S)-stereoisomers. If a switch does indeed occur, then the label will remain on 

the enzyme for the (JR)-stereoisomers (58ac) while RBAChE inhibited by the 

(1 S)-stereoisomers (58bd) would be devoid of the label if the S-methyl ligand was 

displaced. 

B-Elimination of RBAChE Inhibited by (1 S)-Isomalathion 

To further examine the B-elimination proposed for RBAChE inhibited by 

the (1 S)-isomalathion stereoisomers, inhibitors with structures prone to this 

elimination (Figure 38; 59, 60, 61) should be devised and examined for similar 

reactivation profiles. Analogues that may be less prone to this type of elimination 

(62, 63, 64) should also be considered in an effort to examine the possibility of 

steric hinderance as a cause for the recalcitrant behavior toward reactivation of 

RBAChE inhibited by (1 S)-isomalathion stereoisomers. In parallel chemical 

studies, elimination should be examined in the presence of base and compared to 

those rates observed for the decomposition of malathion and malaoxon (Bhagwat, 

1974). 
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Figure 38. Possible (1 S)-Isomalathion Analogues. 



Stereoselective Inhibition and Reactivation of Other AChE's with the 
Isomalathion Stereoisomers 
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To determine possible species-dependent stereoselective inhibition of AChE 

by the isomalathion stereoisomers, other sources of AChE should be examined. 

As indicated in Section 4.5, a significant alteration of the inhibitory profile of the 

isomalathion stereoisomers for EEAChE compared to RBAChE has been 

identified. Furthermore, an examination of the reactivation profiles of EEAChE 

(as well as other AChE sources) inhibited by the isomalathion stereoisomers may 

reveal novel species-dependent reactivation or species-dependent mechanisms of 

isomalathion-mediated inhibition (i.e., loss of the thiosuccinyl or thiomethyl 

ligand). 

Molecular Docking Studies 

With the recent availability of the X-ray structure of EEAChE (Sussman, 

1991; Maelicke, 1991), differences observed for the dissociation constants (K0 ) 

of the isomalathion stereoisomers may be correlated with structural data of the 

EEAChE active site by using molecular docking studies. 

Enantioenriched O,S-Dimethyl Phosphorothiolating Reagent 

The resolved strychnine-dithioate salts prepared for use in the procurement 

of the isomalathion stereoisomers have been invaluable. Specifically, the O,S-
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Scheme 14. Chiral Phosphorylating Agents. 

dimethyl phosphorodithioate salts proved to be a convenient means to 

synthetically introduce the chiral O,S-dimethyl phosphorodithiolate moiety. To 

make this method more accessible, less toxic resolving agents may be considered 

such as phenethylamine, ephedrine or quinine. Furthermore, conversion of these 

salts to the asymmetric thiophosphoryl chloride (Scheme 14; 67) in an analogous 

fashion to which the methyl p-nitrophenyl phosphorochloridothionate enantiomers 

(66) were prepared (Hirashima, 1983) may provide useful for introducing the 

enantioenriched O,S-dimethyl thiolthionophosphoryl moieties onto a nucleophilic 
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center. Stereoselective oxidative desulfuration of 67b to 68b with MMPP or m-

CPBA may provide a more reactive analogue for introducing the O,S-dimethyl 

thiolophosphoryl moiety onto a nucleophilic center. 



CHAPTER 7 

EXPERIMENTAL 

General 

Commercially available reagents were purchased from Aldrich 

Chemical Co., Milwaukee, WI. All solvents and reagents were purified when 

necessary by standard literature methods. Melting points were determined on a 

Fisher-Johns melting point apparatus. Analytical thin-layer chromatography 

(TLC) was conducted on E. Merck aluminum-backed, 0.2 mm silica gel 60 F254, 

TLC plates. Flash chromatography was performed with K.ieselgel 60, 230-400 

mesh (Merck). Elemental analyses were performed by Midwest Microlab Ltd., 

Indianapolis, IN. 

Proton {1H), carbon {13C), and phosphorus (31P) NMR spectra were 

recorded on a Varian VXR 300-NMR instrument in deuterated chloroform 

(CDC13) unless specified otherwise. Pertinent proton frequencies are tabulated in 

the following order: chemical shift (Ci in ppm), multiplicity (s, singlet; d, doublet; 

t, triplet; q, quartet; m, multiplet), coupling constant (J in hertz), and the number 

of hydrogens. Proton and carbon frequencies of spectra obtained are relative to 
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chloroform (1H, 7.24 ppm; 13C, 77.0 ppm) as an internal standard unless specified 

otherwise. Phosphorus chemical shifts are relative to phosphoric acid (H3P04) in 

CDC13 as an external standard. 

High-performance liquid chromatography (HPLC) was performed using an 

ABI (Analytical Kratos Division, Ramsey, NJ) series 400 Spectroflow pump and 

a Spectroflow 783 programmable absorbance variable wavelength detector 

equipped with a flow cell of 8.0 nm in path length and 12 µL in dead volume. 

All results from the UV visible detector (215 nm, sensitivity range 0.1 AUFS) 

were recorded by a Hewlett Packard 3396A integrator (Avondale, PA). Injections 

were made by a Rheodyne 7125 injector (Bodman Chemical, Aston, PA) fitted 

with a 20 µL sample loop. Separation and purity detection were performed on a 

25 cm x 4.6 mm i.d. Chiralpak AD (Regis Chemical Company, Morton Grove, 

IL) analytical column. Isopropyl alcohol and hexane used (mobile phase) were 

analytical grade and were purchased from Bodman Chemical, Aston, PA (EM 

Science). The mobile phase was degassed prior to use by sonication with a 

Bransonic Model 32 (A. Daigger Scientific, Wheeling, IL). Elution was isocratic. 

Synthesis 

(S)-Diethyl malate (36a) was prepared as described previously (Cohen, 

1966) from (S)-malic acid. [a]0 
24 = -5.45° (c = 1.21, CHC13). 

1H NMR o 1.27 

(t, J = 7.2, 3H), 1.31 (t, J = 7.2, 3H), 2.75-2.90 (m, 2H), 4.18 (q, J = 7.1, 2H), 
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4.28 (q, J = 7.2, 2H), 4.49 (t, J = 5.3, lH). 13C NMR o 14.02, 38.66, 60.89, 

61.91, 67.23, 170.44, 173.30. 

(R)-Diethyl malate (36b) was prepared as described previously (Cohen, 

1966) from (R)-malic acid. [a]0 
24 = +5.23° (c = 1.05, CHC13). The NMR spectra 

data of this material were identical to that of 36a. 

(S)-0-(p-Toluenesulfonyl)-diethyl malate (37a) was prepared ( 2.96 g, 

82%) as described generally in a previous report (Kabalka, 1986) starting with 

(S)-diethyl malate (2.00 g, 10.5 mmol). [a]0 
22 = -43.4° (c = 0.615, CHC13). 

1H 

NMR o 1.17 (t, J = 7.1, 6H), 2.41 (s, 3H), 2.86 (d, J = 5.9, 2H), 4.05 (dq, J = 

2.9, 7.1, 2H), 4.11 (q, J = 7.3, 2H), 5.19 (t, J = 5.9, lH), 7.31 (d, J = 8.6, 2H), 

7.78 (d, J = 8.4, 2H). 13C NMR o 13.9, 14.0, 21.7, 37.3, 61.2, 62.1, 73.7, 128.0, 

129.6, 133.2, 144.9, 167.3, 168.0. 

(S)-0-(Methanesulfonyl)-diethyl malate (38a). To a stirring solution of 

(S)-diethyl malate (0.200 g, 1.05 mmol) in CH2Cl2 (2 mL, 0°C) under an Ar<g> 

atmosphere was added methanesulfonyl chloride (0.12 mL, 1.57 mmol) followed 

by the addition of TEA (0.15 mL, 1.05 mmol). After 15 min, the reaction was 

complete as indicated by TLC and the mixture was partitioned between 20 mL 

10% HCl and 20 mL ethyl ether. The aqueous layer was extracted with 20 mL 

ethyl ether and the organic layers were combined, washed with 20 mL brine, 

dried over sodium sulfate and rotary evaporated to give a colorless oil (0.257 g, 

81 %. [a]0
22 = -23.9° (c = 0.640, CHC13). 

1H NMR o 1.24 (t, J = 7.2, 3H), 1.28 
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(t, J = 7.1, 3H), 2.92-2.94 (m, 2H), 3.14 (s, 3H), 4.16 (q, J = 7.1, 2H), 4.25 (dq, 

J = 1.9, 7.1, 2H), 5.33 (dd, J = 5.1, 6.9, lH). 13C NMR o 14.0, 14.1, 37.0, 39.0, 

61.4, 62.4, 73.9, 167.7, 168.4. 

(S)-0-(Trifluoromethanesulfonyl)-diethyl malate (39a). 

Trifluoromethanesufonic anhydride (2.00 mL, 11.9 mmol) was dissolved in 10 mL 

CH2Cl2 under an Ar(g) and chilled to -78 °C. (S)-Diethylmalate (2.00 g, 10.6 

mmol) was dissolved in 10 mL CH2Cl2 to which 2,6-lutidine (1.24 mL, 10.6 

mmol) was added. This mixture was added dropwise to the anhydride over 15 

min. After the addition was complete, the reaction mixture was brought to 0 °c 

for 1 hand then allowed to warm slowly to room temperature until TLC indicated 

the consumption of (S)-diethylmalate (2 h). The reaction mixture was 

concentrated to an oil followed by addition of ethyl ether to precipitate the 

lutidinium salt that was filtered in vacuo and washed 3 times with 50 mL ethyl 

ether. The filtrate was rotary concentrated to an oil (3.47 g, 100% crude yield) 

and used immediately in the conversion to (R)-malathion. [a]0 
25 = +32.6° (c = 

I.39, cHC13). 
1H NMRo 1.29 (t, 1 = 1.2, 3H), 1.34 (t, 1 = 1.2, 3H), 3.06 (d, 1 

= 5.7, 2H), 4.22 (dq, J = 2.1, 7.2, 2H), 4.33 (dq, J = 2.1, 7.2, 2H), 5.49 (t, J = 

6.0, lH). 13C NMR o 13.79, 13.92, 36.81, 61.82, 63.17, 78.80, 112.45, 116.23, 

120.47, 124.70, 166.03, 167.52. 

(R)-0-(Trifluoromethanesulf onyl)-diethyl malate (39b) was prepared as 

indicated above for (S)-0-(trifluoromethanesulfonyl)-diethylmalate starting with 
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(R)-diethylmalate. [a] 0
25 = -30.1° (c = 1.71, CHC13). The NMR spectral data 

were identical to that of 39a. 

Sodium 0,0-dimethylphosphorodithioate (34) was prepared from 

neutralizing 0,0-dimethylphosphorodithioic acid with sodium carbonate in 

methanol. Following filtration and concentration of the solvent, crystallization 

was induced with ethyl ether. 0,0-dimethylphosphorodithioic acid was prepared 

as described previously (Kabachnik, 1953; Toia, 1980). 1H NMR o 3.43 (d, J = 

14.4). 13C NMR o 52.76, 52.85. 31P NMR o 117.6. 

(R)-Malathion (6a). Crude (S)-0-(trifluoromethanesulfonyl)-diethylmalate 

(3.47 g) was dissolved in 20 mL THF and chilled to 0 °c under Ar<g> atmosphere. 

Sodium 0,0-dimethylphosphorodithioate (2.86 g, 15.9 mmol) was dissolved in 

10 mL THF and added dropwise to the triflate solution over 15 min. The reaction 

mixture was allowed to warm slowly to room temperature until TLC indicated the 

consumption of starting material (2 h). The reaction mixture was partitioned 

between 50 mL ethyl ether and 50 mL water. The aqueous layer was extracted 

with 50 mL ether, the organic layers combined, extracted with brine, dried over 

sodium sulfate, and rotary evaporated. Purification via flash chromatography gave 

a colorless oil (2.79 g, 80% yield). Rf= 0.20 (petroleum ether, ethyl ether, 1:1). 

[a] 24 
0 = +79.7° (c = 1.25, CHC13). 

1H NMR o 1.22 (t, J = 7.2, 3H), 1.25 (t, J = 

7.2, 3H), 2.84 (dd, J = 5.4, 17.1, lH), 3.00 (dd, J = 9.0, 17.1, lH), 3.77 (dd, J = 

3.0, 15.3, 6H), 4.03-4.22 (m, SH). 13C NMR: 0 13.9, 14.0, 37.7, 37.8, 44.98, 
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45.03, 54.21, 54.27, 61.08, 62.04, 169.90, 169.99. 31P NMR: o 96.15. 

(S)-Malathion 6b was prepared as previously described for (R)-malathion 

starting with (R)-0-(trifluoromethanesulfonyl)-diethylmalate. [a.]27 
0 = -80.0° (c 

= 1.25, CHC13). The NMR spectra data of this material was identical to that of 

6a. 

(RS)-Malathion (6) was prepared as described previously from diethyl 

maleate (Mallipudi, 1980). 

(R)-Malaoxon (22a). Method A. (R)-Malathion (0.200 g, 0.606 mmol) 

was dissolved in 3 mL CH2Cl2 and added to a stirring suspension of technical 

grade (80%) monoperoxyphthalic acid magnesium salt (MMPP, 0.187 g, 0.606 

mmol) in 2 mL CH2Cl2• The mixture was brought to reflux for 24 h afterwhich 

it was concentrated and partitioned between 20 mL ethyl ether and 20 mL 

saturated aqueous sodium bicarbonate. The aqueous layer was extracted with 20 

mL ether, the organic layers combined, extracted with brine, dried over sodium 

sulfate, and concentrated to an oil. Purification via flash chromatography gave 

a colorless oil (0.098 g, 52% yield). Rr = 0.13 (petroleum ether, ethyl ether, 1 :2 

volume ratio). Method B. (R)-Malathion was converted to (R)-malaoxon (25% 

yield) as described for racemic material (Bellet, 1974). [a.] 25 
0 = +46.7° (c = 

0.555, CHCl3). 1H NMR: 0 1.23 (t, J = 7.0, 3H), 1.27 (t, J = 7.0, 3H), 2.90 (dd, 

J = 5.4, 17.1, lH), 3.06 (dd, J = 8.7, 17.1, lH), 3.81 (dd, J = 4.8, 12.9, 6H), 4.08-

4.24 (m, 5H). 13C NMR: 0 13.91, 14.03, 38.11, 38.18, 42.38, 42.43, 54.07, 
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54.14, 54.22, 61.06, 62.09, 169.84, 170.00, 170.08. 31 P NMR: 0 28.3. 

(S)-Malaoxon (22b) was prepared as indicated for (R)-malaoxon starting 

with (S)-malathion. [a] 27 
0 = -43.5° (c = 0.75, CHC13). 

(RS)-Malaoxon (22) was prepared as indicated for (R)-malaoxon starting 

with (RS)-malathion. 

(JRS,3R)-lsomalathion (12ac) was prepared from (R)-malathion via the 

dealkylation-realkylation sequence previously reported (Thompson, 1989). [a]27 
0 

= +41.3° (c = 1.25, CHC13). 

(JRS,3S)-Isomalathion (12bd) was prepared from (S)-malathion via the 

dealkylation-realkylation sequence as previously reported (Thompson, 1989). 

[a] 27
0 = -40.0° (c = 0.75, CHC13). 

(JRS,3RS)-Isomalathion (12) was prepared from (RS)-malathion via the 

dealkylation-realkylation sequence as previously reported (Thompson, 1989). 

(
13CH3S)-(JRS,3RS)-Isomalathion (12') was prepared from (RS)-malathion 

via the dealkylation-realkylation sequence as previously reported (Thompson, 

1989) by substituting (13CH30)2S02 for (CH30)2S02• 

S-Methyl phosphorodichloridate (47). Thiophosphoryl chloride (21.12 

g, 0.125 mol) was dissolved in 75 mL benzene (0 °C) followed by the addition 

of CaO (14 g), acridine (90 mg), and methanol (7.5 mL). The reaction mixture 

was allowed to warm slowly to room temperature, and after 3.5 h, the mixture 

was filtered and the product (0-methylthiophosphoryl chloride) was distilled (20 
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mm Hg, 45 °C). The distillate was isomerized by heating the 0-

methylthiophosphoryl chloride at 100 °c for 20 h as described previously 

(Hilgetag, 1969) after which the product, S-methyl phosphorodichloridate, was 

distilled in vacuo at 60 °C. 1H NMR: o 2.64 (d, J = 23.1). 

N-(Ethyl prolinyl) S-methyl chlorophosphoramidothiolate (50). S­

Methylphosphorochloridate (0.98 g, 5.94 mmol) was dissolved in 7.5 mL benzene 

and a solution of ethylprolinate (0.85 g, 5.94 mmol) and TEA (0.82 mL, 5.94 

mmol) was added dropwise over 15 min. The reaction was stopped after 1 h. 

Following separation and purification by flash chromatography, colorless oils were 

obtained for the two diastereomers. Rr = 0.42, 0.30 (ethyl ether). 

Fast Band. [a]0 
24 = -52.6° (c = 1.04, CHC13). 

1H NMR: o 1.28 (t, J = 

7.1, 3H), 1.95-2.30 (m, 4H), 2.50 (d, J = 18.2, 3H), 3.38-3.46 (m, 2H), 4.19 (q, 

J = 7.1, 2H), 4.48 (dt, J = 3.6, 8.1, lH). 31P NMR: O 37.71. 

Slow Band. [a] 0 
24 = -48.2° (c = 1.15, CHC13). 

1H NMR: 1.30 (t, J = 7.2, 

3H), 1.98-2.29 (m, 2H), 2.40 (d, J = 18.0, 3H), 3.51 (q, J = 6.6, 2H), 4.21 (dq, 

J = 1.8, 7.2, 2H), 4.35 (dt, J = 3.3, 8.5, lH). 31P NMR: o 38.05. 

(S)-Diethylmercaptosuccinate (Sla). (R)-Diethyl bromosuccinate (0.5 g, 

1.98 mmol), prepared as described previously (Hassan, 1968) was dissolved in 2.0 

mL acetone (0 °C). Sodium hydrosulfide (0.142 g, 2.5 mmol) was dissolved in 

1 mL water and diluted to 2 mL with acetone. The sodium hydrosulfide solution 

was added to the diethyl bromosuccinate solution, and after 2 h, the acetone was 
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removed by rotary evaporation and the product was extracted from the water with 

ethyl ether and further purified by distillation (lmm Hg, 55 °C) using a Kugelrhor 

apparatus to give a colorless oil (0.18 g, 44% ). [ a]0 
26 = -19 .1° ( c = 1.6, CHC13). 

1H NMR: 0 1.22 (t, J = 7.1, 3H), 1.26 (t, J = 7.1, 3H), 2.16 (d, J = 9.4, lH), 2.71 

(dd, J = 6.0, 16.9, lH), 2.96 (dd, J = 9.0, 16.9, lH), 3.70 (dt, J = 6.0, 9.3, lH), 

4.12 (q, J = 7.1, 2H), 4.18 (q, J = 7.1, 2H). 13C NMR: o 14.08, 14.21, 36.33, 

36.96, 61.02, 61.77, 170.14, 172.13. 

(RS)-Diethyl mercaptosuccinate (51) was prepared as described for 

diethyl malate starting with mercaptosuccinic acid (Ailman, 1965). This material 

was purified as described above for (R)-diethyl mercaptosuccinate. 

S-(1,2-Dicarbethoxy)ethyl S-methyl N-(ethyl prolinyl) 

phosphoramidodithiolate (52). The fast band of 50 (0.10 g, 3.68 mmol) was 

dissolved in 0.5 mL THF (freshly distilled) followed by the addition of 

diethylmercaptosuccinate (0.083 g, 4.05 mmol) and TEA (0.056 g, 4.05 mmol) 

and allowed to stir under an Ar<g> atmosphere for 20 h. The reaction mixture was 

filtered and purified via flash chromatography to give a colorless oil (0.056 g, 

34.5%). Rf= 0.27 (ethyl ether). [a]0 
24 = -48.0° (c = 1.24, CHC13). 

1H NMR: 

o 1.22-1.32 (m, 9H), 1.94-2.23 (m, 4H), 2.37 (dd, J = 1.2, 15.3, 3H), 3.09-3.15 

(m, 2H), 3.43-3.51 (m, 2H), 4.10-4.46 (m, 8H). 31P NMR: o 47.52, 48.12. 

Strychnine-(3R)-isomalathion salt (53a, 53c). (R)-Malathion (2.0 g, 6.06 

mmol) was dissolved in 30 mL methanol, strychnine (2.23 g, 6.66 mmol) was 
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added, and the mixture brought to reflux for 16 h. The solvent was evaporated 

and the waxy solid was taken up in 25 mL chloroform. Ethyl acetate (480 mL) 

was added followed by 70 mL ether. The solution was heated to effect solution 

and stored at 0 °C. After 4 days, the first crop of crystals was filtered and 

washed with 75 mL ethyl ether. Ethyl ether (125 mL) was added to the filtrate, 

which was permitted to stand at room temperature for 2 days, after which the 

flocculent second crop of crystals was filtered and washed with 50 mL ethyl 

ether. By 31 P NMR, the first crop (53c, JS,3R) showed 72% diastereomeric 

enrichment. The second crop (53a, JR,3R) showed 100% diastereomeric 

enrichment. The first crop was recrystallized by dissolving 1.65 g in 99 mL 

methanol to which 594 mL ethyl ether was added. 31P NMR of the resulting 

crystals showed 93% enrichment. Final recrystallization of these crystals (SpRc) 

to 100% enrichment was achieved by dissolving 1.37 g in 80 mL methanol 

followed by the addition of 320 mL ethyl ether. Data for 53a: mp= 159-160°C. 

[a] 0 
24 = +32.2° (c = 0.25,CHC13). 

1H NMR: cS 1.18 (t, J = 7.1, 3H), 1.19 (t, J 

= 7.1, 3H), 1.38 (dt, J = 2.9, 10.5, lH), 1.67 (d, J = 15.4, lH), 2.17 (dd, J = 5.1, 

13.3, lH), 2.33 (dt, J = 6.8, 13.9, lH), 2.68 (dd, J = 2.8, 17.7, lH), 2.95-3.18 (m, 

4H), 3.35 (s, lH), 3.62 (d, J = 15.0, 3H), 3.84 (s, 4H), 4.00-4.17 (m, 8H), 4.21-

4.35 (m, 2H), 4.43 (d, J = 13.l, 3H), 6.59 (s, lH), 7.15 (t, J = 7.5, lH), 7.31 (t, 

J = 7.8, lH), 7.50 (d, J = 7.1, lH), 8.07 (d, J = 8.0, lH). 13C NMR: cS 14.20, 

14.24, 25.29, 29.75, 38.53, 39.70, 42.10, 44.43, 44.47, 47.11, 53.20, 53.39, 53.48, 
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55.82, 58.82, 60.65, 61.25, 61.16, 64.24, 64.32, 75.09, 116.52, 122.59, 124.82, 

127.76, 130.16, 132.77, 136.67, 141.67, 166.65, 171.03, 171.42, 171.50. Jlp 

NMR: o 67.20. Anal. Calcd for C31H41N20 8PS2: C, 56.01; H, 6.22; N, 4.21. 

Found: C, 56.26; H, 6.23; N, 4.32. Data for 53c: mp = 181-182°C. [a]0
22 = 

+16.1° (c = 0.31, CHC13). 
1H NMR: o 1.18 (t, J = 7.2, 3H), 1.20 (t, J = 7.1, 3H), 

1.38 (dt, J = 2.8, 10.5, lH), 1.69 (d, J = 16.1, lH), 2.17 (dd, J = 4.6, 14.2, lH), 

2.33 (dt, J = 7.3, 13.6, lH), 2.68 (dd, J = 2.8, 17.7, lH), 2.95-3.18 (m, 4H), 3.34 

(s, lH), 3.62 (d, J = 14.9, 3H), 3.83 (s, 4H), 4.00-4.20 (m, 8H), 4.21-4.49 (m, 

5H), 6.57 (s, lH), 7.15 (t, J = 7.7, lH), 7.32 (t, J = 7.4, lH), 7.50 (d, J = 7.1, 

lH), 8.08 (d, J = 8.0, lH). 13C NMR: o 14.19, 14.24, 25.30, 29.76, 38.62, 38.65, 

39.68, 42.11, 44.40, 44.44, 47.08, 53.22, 53.41, 53.50, 55.87, 55.91, 58.81, 60.66, 

61.27, 61.84, 61.88, 64.23, 64.38, 64.42, 75.13, 116.56, 122.54, 124.87, 127.68, 

130.22, 132.73, 136.74, 141.68, 168.63, 171.08, 171.66. 31P NMR: o 68.10. 

Strychnine-(3S)-isomalathion salt (53b, 53d). (S)-Malathion (2.0, 6.06 

mmol) was dissolved in 30 mL methanol, strychnine (2.23 g, 6.66 mmol) was 

added, and the mixture refluxed for 16 h. The solvent was evaporated and the 

waxy solid was taken up in a minimum of methanol followed by addition of 300 

mL ethyl acetate and 100 mL ethyl ether. The solution was heated to reflux and 

allowed to cool to r.t. The first crop of crystals was filtered and washed with 120 

mL ethyl ether. The filtrate was allowed to stand at room temperature and the 

second crop of crystals were filtered and washed with ethyl ether. By 31P NMR, 
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the first crop (53b, JR,3S) showed 71 % diastereomeric enrichment. The second 

crop (53d., JS,3S) showed 100% diastereomeric enrichment. The first crop was 

recrystallized by dissolving 1.032 g in 62 mL methanol to which 372 mL ethyl 

ether was added. The resulting crystals showed 86% enrichment by 31P NMR. 

These crystals (2.460 g) were dissolved in 150 mL of methanol followed by the 

addition of 750 mL ethyl ether giving crystals of 94% enrichment. Final 

recrystallization of these crystals to 100% enrichment was achieved by dissolving 

1.100 g in 33 mL ethylene glycol and 55 mL absolute ethanol followed by the 

addition of 495 mL ethyl ether. Data for 53b: mp= 189° C. [a] 0
24 = -45.1° (c 

= 0.26, CHCl3) 1H NMR: 0 1.17 (t, J = 7.1, 3H), 1.19 (t, J = 6.9, 3H), 1.37 (d, 

J = 10.5, lH), 1.66 (d, J = 15.6, lH), 2.18 (dd, J = 5.5, 14.3, lH), 2.33 (dt, J = 

7.0, 13.9, lH), 2.67 (dd, J = 2.7, 17.8, lH), 2.94-3.17 (m, 4H), 3.34 (s, lH), 3.60 

(d, 14.9, 3H), 3.81 (s, 4H), 4.01-4.13 (m, 8H), 4.20-4.42 (m, 5H), 6.55 (s, lH), 

7.14 (t, J = 7.5, lH), 7.30 (t, J = 7.4, lH), 7.51 (d, J = 7.3, lH), 8.06 (d, J = 8.0, 

lH). 13C NMR o 14.17, 14.23, 25.29, 29.74, 38.60, 38.63, 39.67, 42.08, 44.39, 

44.43, 47.07, 53.21, 53.39, 53.48, 55.86, 58.80, 60.66, 61.26, 61.86, 64.22, 64.38, 

75.08, 116.52, 122.59, 124.85, 127.72, 130.17, 132.75, 136.69, 141.66, 168.63, 

171.06, 171.63. 31PNMRo68.12. Datafor53d: mp= 158-159°C. [a]0
22 = 

-61.7 (c = 0.31, CHC13). 
1H NMR o 1.18 (t, J = 7.1, 6H), 1.37 (d, J = 10.3, lH), 

1.66 (d, J = 15.1, lH), 2.16 (dd, J = 5.4, 13.1, lH), 2.27-2.38 (m, lH), 2.68 (dd, 

J = 2.7, 17.8, lH), 2.93-3.17 (m, 4H), 3.34 (s, lH), 3.62 (d, J = 15.1, 3H), 3.83 
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(s, 4H), 4.01-4.18 (m, 8H), 4.21-4.33 (m, 2H), 4.43 (s, 3H), 6.58 (s, lH), 7.14 (t, 

J = 7.4, lH), 7.31 (t, J = 7.8, lH), 7.52 (d, J = 7.4, lH), 8.07 (d, J = 7.9, lH). 

13C NMR: o 14.17, 14.23, 25.34, 29.72, 38.50, 39.67, 42.06, 44.45, 44.49, 47.10, 

53.20, 53.39, 53.48, 55.78, 55.80, 58.81, 60.65, 61.28, 61.81, 64.23, 74.99, 

116.48, 122.64, 124.81, 127.81, 130.12, 132.80, 136.64, 141.65, 168.66, 171.02, 

171.43. 31P NMR: o 67.18. 

0,0,S-trimethylphosphorodithioate (23) was prepared from as described 

previously (Umetsu, 1977). 

Strychnine-0,0,S-trimethylphosphorodithioate Salt (54). This 

procedure has been reported previously (Hilgetag, 1969) but is repeated here with 

slight modifications. Strychnine (24.40 g, 0.0730 mol) was added to a stirring 

solution of 0,0,S-trimethylphosphorodithioate in methanol (180 mL). The 

reaction mixture was brought to reflux for 24 h. Upon cooling, the first crop of 

crystals (54a, R) precipitated and was filtered, washed with methanol, and 

recrystallized twice from methanol. Data for 54a: mp= 202-203° C. [a.]0
22 = 

+15.8° (c = 0.545, MeOH). 1H NMR: o 1.38 (dt, J = 3.1, 10.7, lH), 1.56 (d, J 

= 14.8, lH), 1.97 (d, J = 2.8, lH), 2.02 (d, J = 14.1, 3H), 2.14 (dt, J = 7.6, 13.7, 

lH), 2.44-2.59 (m, 2H), 2.97 (dd, J = 8.2, 17.8, lH), 3.27 (s, 3H), 3.30 (s, lH), 

3.44 (d, J = 14.6, 3H), 3.56-3.76 (m, 3H), 3.95-4.25 (m, 5H), 4.35 (dt, J = 3.2, 

8.3, lH), 6.28 (s, lH), 7.12 (t, J = 7.6, lH), 7.25 (t, J = 7.7, lH), 7.37 (d, 7.6, 

lH), 7.78 (d, 8.1, lH). 13C NMR: o 13.53, 13.58, 24.18, 28.87, 38.82, 40.68, 
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46.03, 48.83, 52.82, 53.09, 53.18, 54.40, 58.39, 61.63, 63.78, 64.10, 74.71, 76.36, 

115.82, 122.94, 125.43, 129.08, 129.93, 132.68, 135.60, 140.65, 171.32. 31P 

NMR: o 78.87. The mother liquor was stored at 0 °c and gave a second crop that 

was recrystallized in 95% ethanol. The mother liquor was concentrated in vacuo 

to a solid and recrystallized in 95% ethanol to give a third crop of crystals. The 

second and third crop were combined and recrystallized once more in 95% 

ethanol (54b, S). Data for 54b: mp= 253° C. [a]0
22 = -13.5° (c = 0.63, MeOH). 

1H NMR: 0 1.36 (d, J = 10.7, lH), 1.55 (d, J = 15.7, lH), 1.91 (d, J = 12.2, lH), 

2.01 (d, J = 14.1, 3H), 2.12 (dt, J = 7.8, 13.7, lH), 2.44-2.57 (m, 2H), 2.96 (dd, 

J = 8.2, 18.1, lH), 3.27 (s, 4H), 3.44 (d, J = 14.5, 3H), 3.53-3.76 (m, 3H), 3.93-

4.25 (m, 5H), 4.34 (dt, J = 3.1, 8.3, lH), 6.28 (s, lH), 7.12 (t, J = 7.6, IH), 7.24 

(t, J = 7.6, lH), 7.36 (d, J = 7.6, lH), 7.76 (d, J = 8.1, lH). 13C NMR: o 13.56, 

13.60, 24.21, 28.89, 38.84, 40.72, 46.06, 52.83, 53.11, 53.20, 54.44, 58.40, 61.63, 

63.80, 64.10, 74.72, 76.36, 115.83, 122.98, 125.45, 129.09, 129.95, 132.67, 

135.63, 140.66, 171.29. 31P NMR: o 78.79. 

General Procedure for the Stereoisomers of Isomalathion (12) from 

Strychnine-isomalathion Salt (53). To a 0.12 M stirring solution of 12 in 

methanol:acetone (1 :3), 1 equiv of dimethyl sulfate was added and the solution 

was brought to reflux for 3 h, afterwhich 3 mL ethyl ether was added to 

precipitate the sulfate salt. The reaction mixture was filtered, concentrated to an 

oil and purified via flash chromatography (petroleum ether:ethyl ether; 1 :2) to 
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give a colorless oil. 

General Procedure for the Preparation of Isomalathion Stereoisomers 

(12a,12b,12c,12d) from Strychnine-0,0,S-trimethylphosphorodithioate salt 

(54). To a 0.2 M stirring suspension of 54 in CH3CN was added 1 equiv of a 

0.78 M solution of 39 in CH3CN dropwise over 5 min. After 1 h, the solution 

was diluted two fold with ethyl ether to precipitate the strychninium triflate salt 

and the mixture was filtered in vacuo. The filtrate was concentrated in vacuo to 

an oil and purified by gravity chromatography (petroleum ether: ethyl ether; 1: 1) 

to give the respective stereoisomer of 12 as a colorless oil. 

(JR,3R)-lsomalathion (12a). Prepared from 53a (0.313 g, 0.471 mmol) 

to give 12a (0.098 g, 63%). [a]0
22 = +43.6° (c 0.55, CHC13). Prepared from 54b 

(1.10 g, 2.17 mmol) and 39a (0.700 g, 0.217 mmol) to give 12a (0.220 g, 31 %). 

[a]0
22 = 42.3° (c 0.64, CHC13). 

1H NMR: o 1.23 (t, J = 7.1, 3H), 1.27 (t, J = 7.1, 

3H), 2.36 (d, J = 16.9, 3H), 2.97 (dd, J = 5.2, 17.2, lH), 3.08 (dd, J = 8.9, 17.1, 

lH), 3.84 (d, J = 13.6, 3H), 4.08-4.25 (m, 5H). 13C NMR: 0 13.38, 13.43, 13.98, 

14.08, 38.16, 38.21, 43.24, 43.27, 53.83, 53.93, 61.12, 62.18, 169.93, 170.01. Jlp 

NMR: o 58.38. 

(JR,3S)-Isomalathion (12b). Prepared from 53b (0.200 g, 0.301 mmol) 

to give 12b (0.066 g, 66%). [a]0
22 = -64.3° (c 0.59, CHC13). Prepared from 54b 

(1.57 g, 3.11 mmol) and 39b (l.00 g, 3.11 mmol) to give 12b (0.612 g, 60%). 

[a] 0
22 = -57.6° (c 0.50, CHC13). 

1H NMR: o 1.23 (t, J = 7.1, 3H), 1.27 (t, J = 
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7.1, 3H), 2.37 (d, J = 16.8, 3H), 2.94 (dd, J = 5.2, 17.1, lH), 3.08 (dd, J = 8.8, 

17.1, lH), 3.85 (d, J = 13.7, 3H), 4.09-4.26 (m, SH). 13C NMR: 0 13.13, 13.17, 

13.96, 14.07, 37.97, 38.02, 43.35, 43.40, 54.00, 54.11, 61.11, 62.18, 169.89. 31P 

NMR: o 56.92. 

(JS,3R)-Isomalathion (12c). Prepared from 53c (0.313, 0.471 mmol) to 

give 12c (0.122 g, 79%). [a]0
22 = +57.5° (c 0.57, CHC13). Prepared from 54a 

(1.10 g, 2.17 mmol) and 39a (0.700 g, 2.17 mmol) to give 54a (0.178 g, 25%). 

[a]0
22 = +58.6° (c 0.64, CHC13). The NMR spectral data of this material was 

identical to that of 12b. 

(1 S,3S)-isomalathion (12d). Prepared from 53d (0.300 g, 0.452 mmol) to 

give 12d (0.107 g, 72%). [a]0
22 = -34.2 (c 0.59, CHC13). Prepared from 54a 

(1.57 g, 3.11 mmol) and 39b (1.0 g, 3.11 mmol) to give 12d (0.523 g, 51 %). 

[a]0
22 = -44.8 (c 0.58, CHC13). The NMR spectral data of this material was 

identical to that of 12a. 

Assay of Anti-cholinesterase Potency 

Determination of k; (time dependent). 

Of an appropriately diluted solubilized rat brain AChE (approximating an 

acetylthiocholine hydrolysis rate of 0.100 Abs. units/min), 1.09 mL was 

withdrawn and placed in a test tube and transferred to a Forma-Scientific constant 

temperature shaker bath set at 37 °c. To each of six cuvettes was added 2.5 mL 
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of DTNB solution (3.33 x 10-3 M 5,5' -dithiobis(2-nitrobenzoic acid (DTNB) and 

5.9 x 104 M sodium bicarbonate in pH 7.6 phosphate buffer) and 0.020 mL 

acetylthiocholine iodide (ATCh-I) solution (7 .5 x 10-3 M in pH 7 .6 phosphate 

buffer) and these cuvettes were placed in a Beckman DU-40 spectrophotometer 

equipped with a kinetic Soft-Pac module. From the test tube of AChE solution, 

0.10 mL was withdrawn and added to cuvette 1 to serve as a control. To the 

remaining 0.990 mL in the test tube, 0.100 mL of an inhibitor solution was added 

and the enzyme solution vortexed. At 3, 6, 9, 12, and 15 min, 0.100 mL of the 

enzyme-inhibitor solution was added to cuvettes 2, 3, 4, 5, and 6, respectively. 

The rate of hydrolysis was monitored at 412 nm at 30-s intervals for 15 min from 

the addition of the enzyme. The bimolecular inhibition rate constant (k;) was 

determined (in triplicate) using the following equation as defined previously 

(Aldridge, 1950): 

where A0 represents the initial activity of the enzyme (time t = 0), A, represents 

the depressed enzyme activity at time = t following the addition of the inhibitor 

[i]. 

Determination of k;, Kv, and kP (concentration dependence). 
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Five of test tubes containing suitably diluted AChE solution (0.490 mL) 

were each treated with 0.010 mL of a progression of inhibitor concentrations. A 

sixth test tube was treated with 0.010 mL of methanol to serve as control. The 

inhibition was permitted to progress for 20 min, and the remaining enzyme 

activity was determined as described above (A) over a period of 15 min (30-s 

intervals). The bimolecular reaction constant (k), dissociation constant (KD), and 

phosphorylation constant (kP) were determined using the following equation as 

defined previously (Main, 1964): 

ll[i] = (lit I Afnv)k; - l!Kv 

where Llt = 20 mm, .Lllnv = ln(Aof A20), and k; = k/KD. Assays involving 

solubilized rat brain AChE and electric eel AChE were performed similarly except 

that the solutions were made with pH 7 .6 and pH 8.0 phosphate buffer, 

respectively. 

Spontaneous Reactivation 

Solubilized rat brain AChE (0.20 mL) and 0.80 mL of 0.1 M phosphate 

buffer (pH 7.6) were added to each of two test tubes. A 0.010-mL inhibitor 

solution that caused 90% inhibition was added to the first tube and incubated in 

a shaker bath at 37 °c for 20 min. Synchronously, MeOH (0.010 mL) was added 
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to the second tube as a control and placed in the bath for 20 min. Following 

inhibition, the first tube was further diluted with 40 mL of phosphate buffer (pH 

7.6) to halt inhibition (t = 0 min), and 1 mL was withdrawn and placed in a 

cuvette containing 1.5 mL of 5,5' -dithiobis(2-nitrobenzoic acid) (DTNB) solution 

(3.33 x 104 M DTNB and 5.9 x 104 M NaHC03 in pH 7.6 phosphate buffer) and 

0.020 mL of acetylthiocholine iodide (ATCh-I) solution (7.5 x 10-3 Min pH 7.6 

phosphate buffer) to determine the remaining enzyme activity (A0) while the 

remainder of the solution was returned to the bath. The second tube was diluted 

with 40 mL of phosphate buffer (pH 7 .6), and 1 mL of the diluted solution was 

placed in a second cuvette containing the solutions described above to determine 

the initial enzyme activity (A, control). At subsequent 4-min intervals, 1 mL was 

withdrawn from the remaining diluted solution of tube 1 and the enzyme activity 

(A,) determined. The rate constant for spontaneous reactivation (k0) was 

calculated from the linear portion of the graph (0-32 min) using the following 

equation: 

In ( 1001 % inhibition) = krJ 

where % inhibition = lOO[(A - A,)l(A - A0)]. 
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Oxime-Mediated Reactivation 

Solubilized rat brain AChE (0.20 mL) and 0.80 mL of phosphate buffer 

(pH 7 .6) were placed in each of two test tubes, and the identical procedure to 

spontaneous reactivation was followed. Following dilution with 40 mL of 

phosphate buffer (pH 7 .6), 1 mL was withdrawn from the first tube and the 

remaining enzyme activity determined (A0). Immediately following, 2-pyridine 

aldoxime methiodide (2-PAM; 0.20 mL; 1.0 x 10-2 M) was added to the diluted 

solution and the enzyme mixture returned to the water bath. The point at which 

oxime was added was considered reactivation time t = 0. The second tube was 

diluted with 40 mL of buffer and assayed for activity (AJ The rate constant for 

oxime-mediated reactivation (koxime) was calculated from the linear portion of the 

graph (0-10 min) using the following equation: 

In ( 100/ % inhibition) = koximet 

where % inhibition = lOO[(A - At)l(A - A0)]. 

After 10 min had elapsed, the enzyme was assayed at 10-min intervals to 

determine the returned enzyme activity and the total% reactivation after 60 min. 

Total % reactivation was calculated using the following equation: 
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total % reactivation= 100 - (% inhibition at 60 min). 

N on-Reactivatability 

Rat brain AChE stock solution (0.20 mL) was diluted to 1.0 mL with 

phosphate buffer (pH 7.6) and incubated for 20 min with inhibitor to produce 

approximately 10-15% residual activity. Following the inhibition, the sample was 

diluted with 40 rnL of phosphate buffer (t = 0), and at regular time intervals, 1-

rnL aliquots were withdrawn and added to a 1.52-rnL solution containing DTNB 

and ATCh-1 as noted previously to determine the enzyme activity that returned 

via spontaneous reactivation over the time course of this experiment. 

Concurrently, 2-rnL aliquots were withdrawn and reacted with 1,1 ' -

trimethylenebis(4-formylpyridinium bromide) dioxime (TMB-4) (0.010 mL; 2.0 

x 10-3 M) or 2-PAM for 20 min. The enzyme activity was evaluated as described 

above to determine the amount of returned activity from oxime-mediated 

reactivation. The rate constants of non-reactivatability (kNR) were calculated from 

the linear portion of the graphs (20-60 min) according to the following equation: 

2.3 log [(A1 - A/)l(A0 - A0 ')] = -kNRt 

where A1 - A/ = (activity of the reactivated enzyme with oxime at time = t) -
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(activity of the inhibited enzyme without oxime at time = t) and A0 - A0 ' = 

(activity of reactivated enzyme with oxime at time = 0) - (activity of inhibited 

enzyme without oxime at time = 0). 
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1000 ' KI .... AN ENZYME INHIBITION ANALYSIS PROGRAM 
1100 ' Determination of Bimolecular Inhibition Rate Constants "ki" 
1200 ' Written by Clifford E. Berkman 8/24/90f 
1300 ' This program was written using equations from: 
1400 'INTRODUCTION TO BIOSTATISTICS by Sokal and Rohlf 
1500 ' { pages 237, 247 272 } 
1600 'For GWBASIC 
1700 '******* ENTER TIME POINTS following Time= 0 ******* 
1800 ' 
1900 CLS: PRINT "DETERMINATION OF ki" 
1950 DIM X(IOO): DIM Y(IOO): DIM A(IOO) 
2000 PRINT: INPUT: "Name of inhibitor compound: ",INHIB$ 
2100 PRINT: INPUT: "Inhibitor concentration (M): ",INHIBCONC 
2200 PRINT: INPUT: "This is Run #: ",R: CLS 
2250 PRINT: INPUT: "Number of cuvettes = ",N 
2300 PRINT "Cuvette # 1 :": PRINT "Time (min)= ";O 
2400 INPUT "Activity (rate)= ",AO: PRINT 
2500 FOR C=l to N-1 
2600 PRINT "Cuvette #";C+l;":": INPUT "Time (min)= ",X(C) 
2700 INPUT "Activity (rate) = ",A(C): PRINT 
2800 Y(C)=LOG(AO/A(C)) 
2900 SUMX=SUMX + X(C) 
3000 SUMY=SUMY + Y(C) 
3100 SUMXY=SUMXY + X(C)*Y(C) 
3200 NEXT C 
3300 XMEAN=SUMX/(N-1) 
3400 YMEAN=SUMY/(N-1) 
3500 SUMPRODXY=SUMXY-SUMX*SUMY /(N-1) 
3600 FOR C=l TO N-1 
3700 SUMSQRX=SUMSQRX + (X(C)-XMEAN)"2 
3800 SUMSQRY=SUMSQRY + (Y(C)-YMEAN)"2 
3900 NEXT C 
4000 SLOPE=SUMPRODXY/SUMSQRX 
4100 INTERCEPT=YMEAN - SLOPE*XMEAN 
4200 CORRELCOEFF=SUMPRODXY /(SUMSQRX*SUMSQRY)".5 
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4300 STDDEVSLOPE=(((SUMSQRY-SUMPRODXY"2/SUMSQRX)/3) 
/SUMSQRX)" .5 

4400 Kl=SLOPE/INHIBCONC 
4500 CLS: LPRINT: LPRINT: LPRINT 
4600 LPRINT TAB(IO); "Bimolecular Inhibition Rate Constant Determination: 

'ki'" 



147 

4700 PRINT TAB(lO); "Bimolecular Inhibition Rate Constant Determination: 
'ki'" 

4800 LPRINT: LPRINT: LPRINT 
4900 LPRINT: LPRINT "Inhibitor Compound: "TAB(40) INHIB$: LPRINT 
5000 PRINT: PRINT "Inhibitor Compound: " TAB( 40) INHIB$: PRINT 
5100 LPRINT "Inhibitor Concentration: "TAB(40) INHIBCONC; "M": LPRINT 
5200 PRINT "Inhibitor Concentration: "TAB(40) INHIBCONC; "M": PRINT 
5300 LPRINT "Time","ln(AO/At)" TAB(40) "Run #";R: LPRINT 
5400 PRINT "Time","ln(AO/At)" TAB(40) "Run #";R: PRINT 
5500 FOR C=l TO N-1 
5600 LPRINT X(C),Y(C): PRINT X(C),Y(C) 
5700 NEXT C 
5800 LPRINT: PRINT 
5900 LPRINT "Equation for the Line:" TAB(40) "Y= "; SLOPE; " X + 

";INTERCEPT 
6000 PRINT "Equation for the Line:" TAB(40) "Y= "; SLOPE; " X + 

";INTERCEPT 
6100 LPRINT: LPRINT "Correlation Coefficient: "TAB(40) CORRELCOEFF: 

LPRINT 
6200 PRINT: PRINT "Correlation Coefficient: "TAB(40) CORRELCOEFF: 

PRINT 
6300 LPRINT "Standard Deviation of the Slope: "; TAB(40) STDDEVSLOPE: 

6400 

6500 
6600 
6700 
6800 

LPRINT 
PRINT "Standard Deviation of the Slope: "; TAB(40) STDDEVSLOPE: 
PRINT 

LPRINT "·····························>>>>>"· TAB(40) "ki = " KI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' 
PRINT ":::::::::::::::::::::::::::::>>>>>"; TAB(40) "ki = " KI 

LPRINT CHR$(12) 'Epson Printer Form Feed 
END 
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Bimolecular Rate Constant 

Sample Data and Calculation of ki according to Eqn. 3 for the inhibition of 

RBAChE by (R)-malaoxon (Figure 30, Table 8) are shown. 

In(Ac/At) = [i]kl 

[i] = 1.00 x 10-6 M 

t (min) A1 (Abs412nm /min) ln(AJA1) 

0 0.1005 -----

3 0.0583 0.544 

6 0.0314 1.16 

9 0.0187 1.68 

12 0.0126 2.07 

15 0.0089 2.42 

r = 0.993 
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Bimolecular Reaction, Dissociation, and Phosphorylation Constants 

Sample Data and Calculation of ki, K0 , and kP according to Eqn. 2 for the 

inhibition of RBAChE by (JR,3R)-isomalathion (Figure 32, Table 10). 

1/[i] = (Lit/LilnA)ki - l/K0 

k = k/K0 1 p 

At= 20 min 

A0 = 0.0952 (Abs412 nm /min) 

[i] (M) I ll[i] (M-1
) A20 (Abs412nm /min) At!In(AJA20) 

2.50 x 10-Q 20.0 x 106 0.0703 66.0 

5.00 x 10-Q 10.0 x 106 0.0531 34.3 

10.0 x 10-Q 5.00 x 106 0.0369 21.1 

20.0 x 10-Q 2.50 x 106 0.0198 12.7 

40.0 x 10-Q 1.25 x 106 0.0129 10.0 

r = 0.991 

K0 = 5.34 x 10-7 (M) 

kp = 0.178 
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Spontaneous Reactivation 

Sample Data and Calculation of k0 according to Eqn. 4 for the spontaneous 

reactivation of RBAChE inhibited by (JR,JR)-isomalathion (Figure 34, Table 12). 

In( 1 OO/%inhibition) = k0t 

%inhibition = (A - At)l(A - A0) 

A = 0.0475 (Abs412 nm /min) 

t (min) At (Abs412 /min) %inhibition In( 1 OO/%inhibition) 

0 0.0077 100.0 0.000 

4 0.0093 96.0 0.041 

8 0.0123 88.4 0.123 

12 0.0145 82.9 0.187 

16 0.0164 78.1 0.247 

20 0.0170 76.6 0.266 

24 0.0198 69.6 0.362 

28 0.0207 67.3 0.396 

32 0.0214 65.6 0.422 

36 0.0217 64.8 0.433 

40 0.0227 62.3 0.473 

44 0.0262 53.5 0.625 

48 0.0236 60.1 0.510 

52 0.0243 58.3 0.540 

56 0.0202 68.6 0.377 

60 0.0217 64.8 0.434 

r = 0.990 
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Oxime-Mediated Reactivation 

Sample Data and Calculation of koxime according to Eqn. 4 for the 

spontaneous reactivation of RBAChE inhibited by (JR,JR)-isomalathion (Figure 34, 

Table 12). 

In( 1 OO/%inhibition) = koximet 

%inhibition = (A - At)l(A - A0) 

A = 0.0671 (Abs412run /min) 

t (min) At (Abs412 /min) %inhibition ln(l 00/o/oinhibition) 

0 0.0084 100.0 0.000 

1 0.0127 92.7 0.076 

2 0.0146 89.4 0.112 

3 0.0177 84.2 0.172 

4 0.0203 79.7 0.227 

5 0.0222 76.5 0.268 

6 0.0240 73.4 0.309 

7 0.0276 67.3 0.396 

8 0.0293 64.4 0.440 

9 0.0299 63.4 0.456 

10 0.0324 59.1 0.526 

k0 = 0.050.6 (min-1
) r = 0.997 
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(S)-Diethyl malate (36a) 
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(S)-0-(Trifluoromethanesulfonyl)-diethyl malate (39a) 
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(R)-Malaoxon (22a) 
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N-(Ethyl prolinyl) S-methyl chlorophosphoramidothiolate (50; Fast Band) 

PPM 
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N-(Ethyl prolinyl) S-methyl chlorophosphoramidothiolate (50; Slow Band) 
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Strychnine-(3R)-isomalathion salt (53a) 
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Strychnine-(3R)-isomalathion salt ( 53b) 
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Strychnine-(3R)-isomalathion salt (53c) 
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Strychnine-(3R)-isomalathion salt (53d) 
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Strychnine-0,0,S-trimethylphosphorodithioate Salt (54a) 
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Strychnine-0,0,S-trimethylphosphorodithioate Salt ( 54b) 
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(JR,3R)-Isomalathion (12a) 
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(1R,3S)-lsomalathion (12b) 
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(13CH3S)-(J RS,3RS)-lsomalathion (12 ') 
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