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ABSTRACT 

 

Adoptive cell transfer (ACT) immunotherapy using genetically modified antigen (Ag)-

specific T cells is a rapidly evolving field. Although evidence from pre-clinical and clinical 

studies suggests the use of Ag-specific T cells can be effective treating different malignancies, 

several challenges remain in order to improve these therapeutics. Host factors that can affect Ag-

specific T cells during ACT immunotherapy remain understudied. Evidence of this lack in 

research includes characterizing the effects of sex and sex hormone receptor signaling on Ag-

specific T cell function. Males and females have great differences in their circulating T cell 

populations and subset phenotypes. While some of these sex-differences in T cell phenotype are 

genetically and environmentally mediated, many of these differences heighten or decrease with 

puberty and reproductive senescence indicating a sex hormone receptor involvement. Estrogen 

was shown to modulate the development and differentiation of T cells. The effect of estrogen on 

T cell function remains controversial and incompletely understood. With most of the important 

aspects concerning the role of estrogen on T cells previously investigated in autoimmunity 

models and at hormone concentrations limited to physiological and pregnancy estrogen levels, 

the role of estrogen signaling through its canonical receptors, estrogen receptor  and  (ER 

and ER) at other ranges of estrogen dosage need to be investigated. Knowing that sex and 

estrogen have direct effects on T cell differentiation and function, it is important to carefully 

characterize their effects on Ag-specific T cells for immunotherapy in order to identify possible
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mechanisms that can be targeted to enhance T cell anti-tumor immune responses and 

immunotherapy efficacy. 

The effects of sex and estrogen signaling on T cells and other immune cells result in 

differences on pathogenesis of malignancies including hepatocellular carcinoma (HCC). HCC is 

significantly more prevalent in males and post-menopausal females not undergoing estrogen 

hormone replacement therapy compared to pre-menopausal females, demonstrating a protective 

role of estrogen against HCC. The role of estrogen signaling was investigated in transformed 

hepatocytes and infiltrating innate immune cells but was not reported in tumor infiltrating T 

cells. ACT immunotherapy using genetically modified T cells showed some success on treating 

HCC in pre-clinical and clinical studies but the efficacy of ACT fighting HCC remains 

unsatisfactory. In this study, it was hypothesized that the protective role of estrogen against HCC 

is partially due to the estrogen-mediated enhancement of the T cell anti-tumor immune 

responses. Thus, if the T cell anti-tumor immune response is enhanced by estrogen, then estrogen 

signaling can be used to increase the efficacy of adoptive T cell transfer immunotherapy.  

The work performed in this dissertation was aimed to characterize the role of estrogen 

signaling on T cell function in vitro, and during ACT immunotherapy against HCC in vivo. 

Using human male and female Ag-specific T cells, the effect of estrogen receptor signaling on 

overall T cell function and anti-tumor immunity was determined. Estrogen signaling through 

ER was shown to enhance the expression and secretion of Type I effector cytokines including 

interferon  (IFN), tumor necrosis factor  (TNF), and Granzyme B in male and female Ag-

specific T cells activated with their cognate tumor Ag. Estrogen signaling through ER was also 

shown to modulate the overall expression of the Type 2 cytokine interleukin 4 (IL-4) in male and 
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female Ag-specific T cells. These results indicated that estrogen signaling through ER mediates 

the balance between Type I and Type II Ag-specific T cell responses. Estrogen signaling through 

ER enhanced the polyfunctionality, or the ability of a T cell to express several markers 

simultaneously upon activation, of male and female Ag-specific T cells activated with their 

cognate Ag. T cell polyfunctionality is correlated with enhanced T cell receptor (TCR) signaling, 

indicating that estrogen signaling through ER enhances TCR downstream signaling pathways. 

These results demonstrated for the first time that estrogen signaling through ER and ER can 

enhance the function of human Ag-specific T cells. Using an HCC mouse model treated using 

ACT immunotherapy, the effect of estrogen on the Ag-specific T cell anti-tumor immune 

response was measured. The presence of estrogen resulted in reduced tumor burden through 

higher Ag-specific T cell tumor infiltration, survival, activation state, and cytokine expression. 

Removal of physiological estrogen during ACT immunotherapy reduced the survival of CD4+ 

Ag-specific T cells resulting in reduced tumor infiltration. Lack of physiological estrogen during 

ACT also caused hindered cytokine production and polyfunctionality of CD4+ Ag-specific T 

cells. These results revealed for the first time that estrogen signaling can enhance the survival 

and function of CD4+ Ag-specific T cells which results in enhanced anti-tumor responses and 

reduced tumor burden. 

In summary, estrogen signaling enhances male and female Ag-specific T cell cytokine 

expression and secretion, and polyfunctionality which lead to enhanced tumor infiltration, 

survival, activation state, and function during ACT immunotherapy. This indicates that inducing 

estrogen signaling on Ag-specific T cells can enhance the efficacy and therapeutic outcome of 

ACT immunotherapy. 
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CHAPTER I 

LITERATURE REVIEW 

Immunotherapy 

 The immune system has the ability to recognize and destroy tumor cells without affecting 

normal cells through a mechanism called immune surveillance, and thus functions as a primary 

anti-cancer defense mechanism [1]. The immune system can also prevent cancer through 

generating long-term memory T cell responses [1]. Immunotherapy involves the enhancement of 

immune responses in cancer patients to increase tumor recognition and initiation of anti-tumor 

responses [2]. Because of the success obtained in recent years treating specific cancers with this 

therapeutic approach, immunotherapy has become the fourth pillar of cancer treatment together 

with surgery, radiation, and traditional chemotherapy. Most clinically approved immunotherapies 

have T cells central to their mechanism and fall broadly into two categories: first, agents that 

directly target and modulate endogenous T cell responses; and, second, cellular therapies where 

genetically modified T cells are used as treatment. T cells are immune cells that can be activated 

by tumor antigens, they can specifically destroy tumor cells in response to tumor antigen 

stimulation, and further generate memory responses that last long periods of time. While 

immunotherapy enhances the anti-tumor immune response, tumors can avoid it and still develop 

in the presence of an active immune system through a mechanism called immune tolerance. 

Therefore, the focus of ongoing immunotherapy research is on not only the recognition and 

destruction of specific tumor cells but also toward overcoming immune tolerance posed by the
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tumor microenvironment (TME), and finally in discovering new host pathways that can be 

targeted to enhance its efficacy. The work performed in this dissertation was aimed at identifying 

novel roles of host factors present in the TME, like the sex hormone estrogen, that can be 

modulated in order to enhance T cell-based immunotherapy. In the upcoming paragraphs, T cell 

function and subsets are described as well as the different current  types of T cell-based 

immunotherapies and the challenges that immunotherapy is faced with in the clinic. 

T cell Signaling and Function 

 

T cells play a central role in mediating cellular immunity. T cells are multi-functional 

effector cells that protect humans from disease throughout their entire lives with their ability to 

recognize bacterial, viral, and cancer antigens. The specificity of T cells is mediated by the T cell 

receptor (TCR), a surface receptor that facilitates target antigen recognition in the context of a 

major histocompatibility complex (MHC) molecule. Cell surface expression of the TCR requires 

its association with the CD3 complex (Figure 1) [3]. The CD4 and CD8 co-receptors enhance the 

binding of the TCR to MHC class II and I respectively and promote downstream signaling by 

localizing the lymphocyte-specific protein tyrosine kinase (lck) to the TCR/CD3 complex 

(Figure 1) [3, 4]. Upon recognition and binding to the antigen-bearing MHC, a signaling cascade 

begins downstream from the TCR consisting on phosphorylation of immunoreceptor tyrosine-

based activation motifs (ITAMs) by lck in the CD3 chain and recruitment of -chain associated 

protein (Zap70), which induces assembly of the remaining signaling components (Figure 1) [5]. 

Several signaling pathways are triggered downstream from the TCR including the activation of 

phospholipase C  (PLC) which hydrolyzes membrane-bound phosphatidylinositol 4, 5-

biphosphate (PIP2) into inositol-3-phosphate (IP3) and diacylglycerol (DAG). IP3 triggers the 
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activation of the calcium (Ca+2)-dependent nuclear factor of activated T cells (NFAT) signaling 

pathway [6]. DAG activates several major signaling pathways including the mitogen activated 

kinase (MAP kinase) pathway, and the nuclear factor kappa-light-chain-enhancer of activated B 

cells (NFB) pathway induced by protein kinase C (PKC) activation [6]. Activation of these 

signaling pathways induce intracellular Ca2+ release, actin polymerization, integrin activation, T 

cell proliferation, cytokine secretion, and degranulation [7]. This T cell functional response 

varies depending on the subset of activated T cell. Naïve T cells can differentiate into various 

subsets depending on the activating stimulus and the cocktail of cytokines present during Ag 

recognition [8, 9]. T cell subsets are identified by cell surface markers, transcription factors 

expression, and cytokines secreted.  

A well characterized example of T cell subsets being distinguished by cytokine secretion 

and transcription factor expression is the Th1 and Th2 CD4+ helper T cell subsets. Th1 CD4+ T 

cells express the transcription factor T-Bet and secrete mainly interferon  (IFN), interleukin-2 

(IL-2), and tumor necrosis factor  (TNF) upon activation [9]. Th1 mediate pro-inflammatory 

cell mediated immunity and were shown to induce delayed-type hypersensitivity and mediate the 

response to some protozoa. On the other hand, Th2 CD4+ T cells express the transcription factor 

GATA3 and secrete mainly IL-4, -5, -6, -10, and -13 [9]. Th2 cells promote non-inflammatory 

immediate immune responses and are essential in B cell production of immunoglobulin G (IgG), 

IgA, and IgE [9]. Th1 and Th2 development routes are mutually antagonistic, giving rise to the 

model of polarization of the T cell immune response. Other CD4+ helper T cells subsets that 

differentiate based on transcription factor expression and cytokine production are the Th17 

subset which expresses RORt and produces IL-17a and IL-22, the regulatory T cells (Tregs) 
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subset which expresses forkhead box P3 (FoxP3) and secretes IL-10 and transforming growth 

factor  (TGF), and the Th9 subset which produces IL-9 [9].  

 

 

 

 

 

 

Figure 1. T Cell Receptor (TCR) Mediated Target Recognition and T Cell Activation. Depicted 

is a target cell, such as a tumor cell, presenting an antigen in the context of the MHC to a T cell’s 

TCR. The TCR  and  chains form a complex with CD3 components and the CD8 or CD4 co-

receptors stabilize the TCR-MHC interaction. Upon antigen recognition and TCR ligation, Lck 

phosphorylates the ITAMs on the CD3 chains which recruit Zap70 which facilitates TCR 

downstream signaling which results in T cell activation. MHC: major histocompatibility complex, 

Lck: lymphocyte-specific protein tyrosine kinase, ITAM: immunoreceptor tyrosine-based activation 

motif, Zap70: -chain associated protein. 
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CD8+ cytotoxic T lymphocytes (CTLs) are derived from naïve CD8+ T cells, proliferate 

in the presence of IL-2, and can expand their number by a thousand-fold upon activation at the 

peak of a primary immune response [9]. Rapid expansion and the ability of CD8+ CTLs to 

destroy more than one target while sparing bystander cells, make CTLs very efficient Ag-

specific effector cells [9]. Destruction of target cells by CTLs requires Ag recognition which 

initiates the release of cytotoxic granules such as perforin and Granzyme B into the 

immunological synapse between CTL and target cells, or the initiation of Fas/Fas-ligand-

mediated apoptosis. Similarly to CD4+ T cells, cytotoxic CD8+ effector T cells fall into two 

subpopulations based on cytokine secretion. Type I CD8+ T cells secrete IFN, whereas Type II 

CD8+ T cells secrete IL-4, IL-5, and IL-10 [10]. Both Type I and Type II CD8+ T cells were 

shown to provide strong immunity against tumors and differentiate into CD8+ memory T cells. 

Long-lasting protection by Type I and Type II CD8+ effector cells was dependent on IL-4, IL-2, 

and INF production indicating both subsets are required for the generation of superior anti-

tumor responses [10]. Overall, the immunology field generally accepts that T cells are 

functionally restricted by the subset into which they differentiate, each CD4+ and CD8+ T cell 

subset has different functions based on the cytokines and factors they secrete upon TCR 

activation [9].   
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Types of Immunotherapy 

Immune Checkpoint Blockade  

Upon Ag encounter, to ensure robust T cell activation, two independent signaling 

pathways are involved. The first signal requires recognition of the Ag-bearing MHC on the 

surface of antigen presenting cells (APCs) or tumor cells by the corresponding TCR. The second 

signal, which is Ag independent, is delivered by the engagement of co-stimulatory molecules 

[11, 12]. Positive co-stimulation is mainly mediated by CD28 receptors expressed on T cells 

binding to B7.1 (CD80) and B7.2 (CD86) on APCs [13]. This interaction leads to a cascade of 

intracellular signal transducers and regulators, and results in T cell activation and proliferation, 

as well as the production of various cytokines, including IL-2, thus avoiding anergy [11, 14]. 

CD4+ and CD8+ T cells have severely impaired proliferation and produce reduced levels of 

effector cytokines in the absence of CD28 [15, 16]. T cells can also express several inhibitory co-

stimulatory factors, such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and 

programmed cell death protein-1 (PD-1) which are denominated immune checkpoints. Binding 

of these negative co-stimulatory factors to their ligands antagonizes T cell activation. T cell 

immunosppression by immune checkpoints is relevant in order to avoid T cell responses against 

self Ag which can promote autoimmunity. In the TME, the expression of immune checkpoints by 

TILs results in T cell hyporesponsiveness and immune exhaustion contributing to tumor immune 

scape. Blocking the interactions of TIL inhibitory co-stimulatory molecules results in sustained 

activation of the anti-tumor immune response thereby making checkpoint blockade an 

efficacious immunotherapy.  

 Activated T cells express CTLA-4 which binds to ligands B7.1 (CD80) and B7.2 (CD86) 

with much higher affinity than CD28 [17]. Binding of CTLA-4 to B7.1 or -2 induces powerful 
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inhibitory signaling that dampens T cell activation, leading to decreased cell cycle progression, 

proliferation, and IL-2 secretion [17]. CTLA-4 inhibition with monoclonal antibodies prevents 

the binding of CTLA-4 to B7.1, 2, thereby promoting T cell activation and successful anti-tumor 

immune responses. Several CTLA-4 blocking monoclonal antibodies such as Ipilimumab and 

Tremelimumab were approved by the Food and Drug Administration (FDA) to treat melanoma. 

Although CTLA-4 blockade was successful for some patients, the objective response rates 

(ORR) for stage III or IV melanoma patients treated with Ipilimumab was 15-20%, and only 

11% for those treated with Tremelimumab [18-21]. Progression free survival rates (SR) for 

melanoma patients treated with CTLA-4 inhibitors were around 2.8 months.  

The surface receptor PD-1, which is homologous to CD28, is also expressed in activated 

T cells and it is primarily involved in inhibitory immune signaling. PD-1 binds to the 

programmed cell death ligand 1 (PD-L1) and elicits intracellular signaling that results on the 

dephosphorylation of TCR proximal components such as CD28 [22-24]. Interfering with CD28 

signaling, PD-1 signaling therefore results in reduced cytokine production, reduced T cell 

proliferation and survival, and reduced expression of T cell effector functions such as T-Bet and 

Eomes [23-25]. PD-L1 expression is observed in both cancer cells and tumor-infiltrating immune 

cells such as macrophages. PD-L1 expression on the cells present in the TME is upregulated in 

response to IFN signaling [26]. PD-L1 expression therefore indicates an active anti-tumor 

immune response and it is a way for the tumor cells to escape it through immunosuppression. 

Blockade of PD-1 and PD-L1 using monoclonal antibodies was approved by the FDA as a 

therapy for cancers including melanoma, renal cell carcinoma, squamous cell carcinoma, and 

non-small cell lung cancer (NSCLC). PD-1 inhibitors such as Nivolumab and Pembrolizumab 
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showed encouraging ORR of over 40% on stage III or IV melanoma patients with progression 

free survival rates of over 7 months [18, 21]. PD-1 inhibitors were also used to treat NSCLC 

(ORR of 20% and SR of 3 months), renal carcinoma (ORR of 25% and SR of 5 months), 

Hodgkin’s lymphoma (ORR of 87%), ovarian cancer (ORR of 15% and SR of 4 months), and 

metastatic colorectal cancer (ORR of 40% and SR of 5 months) [27-31]. PD-L1 inhibitor 

Atezolizumab was found to be successful in solid tumors with ORR of 16% and 23% in NSCLC 

and urothelial carcinoma respectively [32, 33]. Better outcome was observed when both 

Nivolumab and Ipilimumab were used to treat stage III and IV melanoma (ORR of 57% and SR 

of over 11 months) indicating that blocking both PD-1 and CTLA-4 simultaneously can induce 

stronger anti-tumor immune responses [21, 34].   

Immune checkpoint blockade treatment proves to be initially effective but unfortunately 

many patients eventually relapse. Due to the selection pressure caused by checkpoint blockade 

monoclonal antibody therapy, resistant tumor cells can arise. These checkpoint blockade 

immunotherapy resistant tumor cells upregulate or downregulate pathways that allow them to 

evade immune recognition and T cell anti-tumor immune responses. Tumor cells from relapsing 

anti-PD-1 treated patients were shown to downregulate IFN response elements including MHC 

class I through deactivating mutations to avoid T cell recognition [35]. Also, immune cells in 

anti-PD-1 treated melanoma or prostate cancer patients exhibited upregulation of other immune 

checkpoints like TIM-3 [36]. Tumor-associated macrophages (TAMs) present in the TME of 

relapsing patients were shown to be able to phagocytize the therapeutic monoclonal antibody 

bound to the surface of T cells, rendering them again susceptible to PD-1 inhibitory signaling 

[37]. A better understanding of these immune escape mechanisms in the TME limiting the 
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effectiveness of immune checkpoint blockade immunotherapy will therefore allow for 

improvement of cancer treatment. 

Adoptive T cell Transfer Immunotherapy 

 

Adoptive T cell therapy (ACT) consists on generating robust T cell anti-tumor immune 

responses by the ex vivo manipulation of patients’ endogenous T cells. ACT has multiple 

advantages compared to other forms of immunotherapy that rely on generating enough numbers 

of functionally active and tumor reactive T cells in vivo. For use in ACT, large numbers of anti-

tumor T cells can be readily generated and selected for high-avidity recognition of the tumor, as 

well as for the effector functions required to mediate tumor destruction. In addition, these anti-

tumor T cells are generated from the patient’s own circulating T cells so there is no risk of graft-

versus-host disease. The first type of ACT was generated by isolating autologous Ag-specific 

tumor infiltrating lymphocytes (TILs) from resected melanomas [38]. Melanoma Ag-specific 

TILs were expanded in vitro and transferred into the patient in combination with IL-2 to enhance 

T cell activation and function. Using TILs for ACT immunotherapy, the ORR of metastatic 

melanoma patients reached 50% and durable remissions were achieved [38-41]. Even if TILs can 

be grown in vitro from many tumor types, only melanomas consistently give rise to TILs with 

effective tumor reactivity [42]. In order to develop ACT for other tumor types, techniques were 

developed to genetically introduce anti-tumor receptors into normal T cells that could be used for 

therapy. The specificity of T cells can be redirected by the integration of genes encoding either 

conventional  TCRs or CARs. 

The first successful clinical application of ACT using genetically engineered T cells 

treated melanoma patients using autologous T cells transduced with a human TCR recognizing 
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the MART-1 melanoma-melanocyte differentiation antigen [43]. These initial studies 

demonstrated that TCR gene-modified T cells were generally tolerated by patients and safe to 

use as cancer therapeutics. Then, this approach was expanded to larger metastatic melanoma 

patient numbers who received T cells modified with high-avidity TCRs recognizing MART-1 

(ORR of 30%) and gp100 (ORR of 19%) [44]. Even if this treatment was efficacious it showed 

severe off-tumor on-target toxicity in the skin, eyes and ears due to melanocyte presence in these 

organs. Fortunately, in this case such toxicities resolved naturally or with administration of 

topical steroids. These earliest studies suggested TCR gene-modified T cells could reach clinical 

benefit, but that the choice of TCR was important in order to limit toxicities. Since the early 

studies, numerous TCR genes capable of recognizing tumor antigens were identified, and 

improvements in TCR gene transfer have allowed for recognition of a variety of other antigens 

and malignancies. These include, but are not limited to, carcinoembryonic antigen (CEA) 

expressed in epithelial cancers like colorectal cancer [45], cancer-testis antigens such as NY-

ESO-1 and MAGE expressed in breast, bladder, colon, lung, ovarian, thyroid cancers and 

myeloma [46-48], and viral proteins expressed in cancers derived from viral infections. The use 

of these TCR engineered T cells to treat patients showed some limitations especially regarding 

severe side effects. Colorectal cancer patients treated with CEA-specific T cells experienced life 

threatening colitis and colonic hemorrhage which prevented further use of this TCR even if 

partial response on liver metastases was achieved [45]. Unexpected brain toxicity and gray 

matter destruction were observed when using MAGE-specific T cells to treat melanoma patients 

[43]. TCR engineered T cells that are specific for viral proteins include targets such as 

cytomegalovirus (CMV) [49], human immunodeficiency virus (HIV) [50], hepatitis C virus 

(HCV) [51, 52], and human papilloma virus (HPV) [53]. No clinical reports have yet been 
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published testing virus-specific TCR expressing T cells in humans, however this is a good 

approach to avoid off-tumor on-target effects since viral proteins are not expressed by non-

infected human tissues.  

Chimeric antigen receptors (CARs) are assembled by linking the variable regions of the 

antibody heavy and light chains, specifically reactive to a tumor antigen, to intracellular 

signaling molecules such as CD3 CARs often include the sequences of co-stimulatory domains 

including but not limited to CD28 or CD137 (4-1BB) in order to fully activate T cells [54-56]. 

The antibody part of the CAR is specific for an antigen expressed in the tumor providing non-

MHC-restricted recognition of cell surface components. CARs can be introduced into T cells 

with high efficiency using viral vectors [42].  Tumor antigens that are shared with nonessential 

organs represent potential targets for ACT immunotherapy. A prominent example is the 

molecule CD19 expressed in more than 90% of B cell malignancies and differentiating B cells 

excluding plasma cells. Administration of autologous T cells expressing the anti-CD19 CAR to 

patients with follicular lymphoma, large-cell lymphomas, chronic lymphocytic leukemia, and 

acute lymphocytic leukemia was shown to successfully reject the tumors with ORRs from 80 to 

100% [55, 57-59]. Anti-CD19 CAR ACT immunotherapy not only elicits dramatic regression of 

lymphomas and leukemia but also provides patients lifelong protection since CAR T cells can 

become memory T cells detectable on circulation years after ACT [60]. Due to its success, anti-

CD19 CAR T cell immunotherapy was approved by the FDA to treat B cell lymphoblastic 

leukemia and certain types of non-Hodgkin’s lymphoma in 2017. A wide variety of other CARs 

were designed to target several antigens showing promise as potential cancer immunotherapies. 

Other targets that were pre-clinically evaluated include but are not limited to CD33 and CD123 



 
 

 
 

12 

for myeloid leukemia [61, 62], GD2 for neuroblastoma (ORR of 27%) [63], HER-2 and MUC-1 

for breast cancer [64, 65], and MUC16 for ovarian cancer [66].  

There are some limitations using CAR T cells for immunotherapy. For example, CARs 

target surface antigens, rendering them ineffective against intracellular antigens that would 

otherwise be processed and presented by MHC. A search for tumor-specific surface antigens 

expressed on tissues that are not essential for survival remains in progress. Also, the antibody-

antigen interaction is much stronger than the TCR-antigen interaction which negatively impacts 

T cell function since T cells are more likely to undergo activation induced cell death (AICD) [67, 

68]. Also, there were several reports of adverse events after CAR T cell immunotherapy due to 

tumor lysis syndrome and cytokine storm which are deadly side effects resulting from massive T 

cell activation, cytokine production, and tumor cell killing [69-71].  

An important question concerning the use of genetically engineered cells for the 

treatment of cancer involves selection of the ideal T cell population unto which the gene should 

be introduced. T cells can be categorized into distinct memory subsets based on their 

differentiation states. CD8+ T cells follow a progressive pathway of differentiation from naïve T 

cells into central memory and effector memory T cell populations [72]. Preclinical studies 

strongly suggest that improved anti-tumor responses are seen when T cells in early stages of 

differentiation (such as naïve or central memory cells) are transduced, a result supported by 

studies in monkeys showing improved in vivo persistence of infused central memory compared 

with effector memory cells [73, 74]. Also, the differentiation state of CD8+ T cells is inversely 

correlated with their ability to undergo homeostatic proliferation. Homeostatic proliferation of 

adoptively transferred cells and the presence of homeostatic cytokines such as IL-7 and IL-15 
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were shown to increase ACT efficacy [75, 76]. Adoptively transferred younger CD8+ T cells 

need to get activated upon antigen stimulation, lyse the tumor target cells by secreting factors 

like Granzyme, and secrete cytokines such as IFN and TNF [77]. CD4+ T cells are also critical 

for tumor rejection and success of immunotherapy. Adoptively transferred CD4+ T cells were 

shown to be required for supporting the CD8+ cytotoxic anti-tumor response [78-80]. CD4+ T 

cells do not merely enhance CD8+ T cell function, but they also play a more direct role in tumor 

elimination during immunotherapy [81]. The roles that CD4+ T cells play in the antitumor 

immune response depend on their polarization, which is determined by their expression of key 

transcription factors. Adoptively transferred Th1, Th2 and Th17 CD4+ T cells can directly clear 

the tumor and promote long-lived antitumor immunity [82-85]. On the other hand, Tregs are 

immunosuppressive and were shown to inhibit T cell anti-tumor responses and promote immune 

escape [86, 87]. Overall, in order to achieve ACT immunotherapy success, not fully 

differentiated cytotoxic CD8+ and CD4+ T cells need to be genetically modified to recognize a 

suitable tumor antigen that is not expressed in an essential organ. 

Immune Escape 

 

 Once adoptively transferred T cells reach the tumor, the major challenge they face is to 

overcome the multiple mechanisms the tumor can elicit to avoid immune-mediated elimination. 

The ability of T cells to recognize and destroy tumors relies on the antigenicity of tumor cells. 

Tumors can express a variety of mutated and endogenous antigens that can be recognized by T 

cells. However, to avoid anti-tumor responses the tumor cells can lose antigenicity [88]. Cancer 

cells can lose antigenicity due to lack or mutation of tumor antigens, as well as through the 

acquirement of defects and deficiencies in antigen presentation [89]. Downregulation of the cell 
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surface expression of MHC class I molecules was found in approximately 20% to 60% of solid 

tumors, including melanoma, lung, breast, renal, prostate, and bladder cancer [90, 91]. Tumors 

can not only lose antigenicity but also immunogenicity in order to escape immune responses. 

IFN produced by TILs can induce the upregulation of immunoinhibitory molecules on 

malignant cells, surrounding stromal cells, and other immunosuppressive infiltrating immune 

cells [36, 92]. Some of this immunoinhibitory molecules include but are not limited to ligands of 

the PD-1, CTLA-4, LAG-3, TIM-3, and VISTA inhibitory receptors [93]. As described before, 

these inhibitory pathways alter the balance between activation and inhibitory signals received by 

T cells and lead to dampened antitumor T cell responses. In addition to these mechanisms, tumor 

cells can also metabolically restrict T cell function via glucose and oxygen restriction. High 

glucose intake by tumor cells creates a hypoglycemic TME and dampen TIL mTOR activity, 

glycolytic capacity, and IFN production [94]. Solid tumors have large hypoxic areas which can 

also interfere with immunity and cause T cell dysfunction [95, 96].  

Non-neoplastic infiltrating cells can contribute to tumor progression and metastasis by 

hindering the anti-tumor function of T cells and other immune cells. Tregs are immunosuppressive 

CD4+ T cells that contribute to tumor immune evasion by secreting TGF and IL-10 which are 

cytokines that help create an immunosuppressive environment that blunts the anti-tumor 

functions of CD4+ and CD8+ effector T cells, and NK cells [97, 98]. Tregs also express an IL-2 

receptor that has 100-fold higher affinity for IL-2 than the receptor form expressed in effector T 

cells resulting in Tregs acting as competitive sinks for IL-2 in the TME [99]. In addition, Tregs can 

secrete copious levels of the nucleoside adenosine [100]. Adenosine binds to its receptor (A2AR) 

in effector T cells and downregulates the intracellular levels of 3’, 5’-cyclic AMP which result in 
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T cells function inhibition and subsequent immunosuppression [101, 102].  In addition, the 

adenosine pathways promotes further polarization, proliferation and expansion of Tregs and 

myeloid derived suppressor cells (MDSCs) [103]. MDSCs are myeloid cells found in the TME 

that can also mediate immune escape through several mechanisms. MDSCs express high levels 

of nitric oxide synthase arginase 1 which results in the metabolism of arginine and the 

production of nitric oxide (NO) [104, 105]. The depletion of arginine from the TME impairs the 

local proliferative capacity of T cells. NO has a direct suppressive role on effector T cells by the 

induction of apoptosis, inhibition of STAT5 signaling, and formation of peroxynitrite, a potent 

oxidant of amino acids that are essential for T cell function [104, 105]. Other mechanisms of 

MDSC-mediated immune suppression include the sequestration of cysteine leading to the limited 

availability of this essential amino acid for T cells [106], the secretion of suppressive cytokines 

including IL-10 [107], and the overproduction of reactive oxygen species [108]. Other myeloid 

cells with immunosuppressive abilities that play a role in immune escape are TAMS and tumor 

associated dendritic cells (TADCs). TAMs produce lower levels of proinflammatory cytokines, 

such as IL-1, TNF, and IL-12, and higher levels of immunosuppressive mediators IL-10, 

TGF, and vascular endothelial growth factor (VEGF) indicating that TAMs not only suppress T 

cell function but promote tumor angiogenesis [109]. TAMs are also stunted in their ability to 

mediate direct lysis of malignant cells.  TADCs express no or low levels of costimulatory 

molecules CD40, CD80, and CD86, and express indoleamine 2, 3-dioxygenase, an enzyme that 

degrades the essential amino acid tryptophan that leads to the suppression of T cell functions 

[110, 111]. TADCs also possess defects in the machinery to effectively present antigen to T cells 

and downregulate MHC class I and II molecules in addition to other proteins important for this 

process like transporter associated with antigen processing (TAP) [112].  
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 Overall, tumors are complex structures composed of both malignant and nonmalignant 

cells that support cancer growth and prevent immune destruction. The understanding of the 

cellular constituents of the tumor microenvironment has helped guide the design of powerful T 

cell therapies that can cause the regression of large tumor burdens. Finding appropriate tumor 

antigens, overcoming the immunosuppressive and immunotolerant tumor microenvironment, and 

reducing are major obstacles being investigated today in order to improve the efficacy of cancer 

immunotherapy.  

Sexual Dimorphism in Immune Responses: The role of Estrogen 

 

 Other examples of host specific factors that can affect the efficacy of immunotherapy are 

the patient’s age, sex, and reproductive stage in life. While the lethal side-effects of 

immunotherapy are markedly exacerbated with aging [113, 114], age was shown to not 

significantly affect the outcome or clinical efficacy of checkpoint blockade immunotherapy 

[115]. Elucidating the effect of patient’s sex on the outcome and efficacy of immunotherapy was 

proven to be controversial and there are very few studies investigating this. Meta-analysis of 

checkpoint blockade immunotherapy treated melanoma and NSCLC patients showed that men 

had overall better survival rates than women indicating a sex-difference in immunotherapy 

efficacy [116]. This conclusion cannot be generalized to all patient populations since other group 

found no sex-effect on the efficacy of Nivolumab in melanoma patients [117]. On the other hand, 

a preclinical model of melanoma treated with checkpoint blockade immunotherapy showed 

increased tumor rejection and overall survival in females compared to males [118]. This was 

found to be through mechanisms involving estrogen signaling in Tregs and Ag-specific CTLs 

[118]. While all these studies investigated the role of sex in checkpoint blockade 
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immunotherapy, there are no reports on the effect of sex and hormone signaling on ACT 

immunotherapy due to the lack of adequate sample size and statistical power. It is well known, 

though, that there are marked physiological differences in T cell immunological responses and 

tumor incidence between males and females [119-122]. While some of these sex-specific tumor 

and immunological differences are genetically and environmentally mediated, many of them 

accentuate with puberty and reproductive senescence indicating an involvement of sex 

hormones, androgen and estrogen. This indicates that sex and sex hormone signaling could be an 

important factor to consider in order to improve efficacy of anticancer immunotherapies and 

further research in this field is highly necessary. In this dissertation, the role of sex and estrogen 

receptor signaling on Ag-specific T cells for ACT immunotherapy is studied utilizing novel 

approaches to characterize the role of estrogen receptor signaling on T cell cytokine production 

and anti-tumor function. 

Circulating estrogen is present physiologically in females, and in lower concentrations in 

males. Additionally, adult women are exposed to exogenous estrogen in therapeutic forms as oral 

contraceptives and hormone replacement therapy (HRT). The next sections focus on describing 

the signaling and downstream effects of physiological estrogen (17-estradiol or E2), which is 

the most common form of active estrogen in the body, and the principal hormone employed in 

the studies for this dissertation. Then, the effect of estrogen signaling on main immune cell types 

which account for the observed sex-specific differences in immunity is described as well. 

Sources of Estrogen 

 

 Physiologically available estrogens are predominantly produced in the ovaries, the corpus 

luteum and the placenta [123]. There are three major forms of physiological estrogens in 
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females, estrone (E1), estradiol (E2 or 17-estradiol), and estriol (E3), and they are all 

synthesized from cholesterol by a series of reactions called estrogen biosynthesis [123]. E2 is the 

major estrogen biosynthesis product and plays a major role during women’s pre-menopausal 

period. In the ovaries, E2 is synthesized in theca and granulosa cells. The luteinizing hormone 

(LH) stimulates cholesterol uptake by theca cells where it is converted into progesterone and 

later into androstenedione [124, 125]. In response to LH, androstenedione is then diffused into 

granulosa cells. Follicle-stimulating hormone (FSH) stimulates the enzyme aromatase in 

granulosa cells to convert androstenedione into testosterone and testosterone into E2 by 

aromatization of the A-rings of androgens [125]. Then, E2 is released into general circulation 

and targets distal estrogen-responsive tissues including reproductive and non-reproductive 

organs [123]. Circulating E2 reaches highest concentrations immediately before ovulation. 

During the follicular phase, pre-ovulatory phase, and luteal phase serum E2 concentrations are 

50-140 pg/mL, 110-410 pg/mL, and 50-160 pg/mL respectively (ranging from 0.5-1 nmol/L or 

nM) [124]. During the menopausal transition, serum estrogen concentrations decrease by 85-

90% [123]. Circulating E2 concentrations in menopausal women and men are below 35 pg/mL 

(under 0.1 nmol/L or nM) [124]. E1 can also be synthesized in the ovaries but plays a major role 

after menopause when it is synthesized by adipose tissue [123]. E3 is the least potent form of 

estrogen and it is synthesized in the placenta from E1 hydroxylation during pregnancy [123].  

 In addition to the ovary, extra gonadal estrogen biosynthesis takes place in astrocytes in 

the hypothalamus and hippocampus regions of the brain, in stromal cells and adipocytes in the 

breast, in osteoblasts and chondrocytes of the bone, in adrenocortical cells of the adrenal glands, 

in skin fibroblasts and in hepatocytes [126]. These peripheral sites biosynthesize estrogen which 



 
 

 
 

19 

tends to act locally at high concentrations, and which signaling is especially important in 

menopausal women and men [127]. High concentrations of locally produced estrogen can also be 

found in the TME of some cancers including breast cancer and hepatocellular carcinoma (HCC). 

These high estrogen concentrations found in the TME are partially due to aromatase expression 

dysregulation in tumor and stromal cells [128, 129]. Overexpression of aromatase in breast 

cancer was found in tumor, stromal and parenchymal cells and it was upregulated by factors 

including inflammatory cytokines and secreted factors like prostaglandins [130, 131]. Elevated 

aromatase expression was detected in cirrhotic and malignant HCC tissue [128, 132-134]. This 

elevated aromatase expression results on high local estrogen concentrations in the liver. In 

addition, estrogen metabolism is abnormal in patients with cirrhosis and HCC which show 

decreased conversion of E2 into E1 and E3 via hydroxylation, and subsequent accumulation of 

E2 in the liver or tumor tissue [135, 136]. 

Estrogen Receptors (ERs) 

 

 Estrogen exerts its physiological functions on target tissues through ER-dependent and 

ER-independent mechanisms [137]. Estrogen can bind three specific but distinct receptors 

including the nuclear receptors estrogen receptor alpha and beta (ER and ER) and the G-

protein coupled estrogen receptor (GPER). ER and ER are ligand activated transcription 

factors which are located intracellularly and to some degree on the cell membrane [138]. Apart 

from the gonads, each ER is differentially expressed in various tissues. ER is expressed in high 

concentrations in the mammary glands, the pituitary, the kidney, the epididymis, the liver, bone 

and the adrenal gland but it has very low or undetectable expression in the prostate, the pineal 

gland, the thyroid gland, the urinary tract, and erythroid tissue [126, 139]. ER is expressed 
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predominantly in the prostate, the lungs, the bladder, and the hypothalamus [139, 140]. GPER is 

ubiquitously expressed in the membrane of cells throughout the body including the heart, brain, 

pancreas, skeletal muscle, kidney, vessels, and reproductive organs [141]. 

Structure of Estrogen Receptors 

 

ER and ER belong to the steroid nuclear receptor family, which is composed of 

proteins with four independent but interacting protein domains [142]. The A/B domain in the 

amino (NH2) terminal, the C or DNA-binding domain, the D domain which is a hinge region, and 

the E/F or the ligand binding domain in the carboxyl (COOH) terminal [143, 144] (Figure 2). 

The NH2 terminal domain encodes a ligand-independent activation function (AF-1) which is a 

region of the receptor involved in protein-protein interactions with other transcription factors and 

co-activators of target-gene expression [144]. In ER this region was shown to be very active in 

stimulating target-gene expression, and AF-1 was shown to be active even in the absence of 

estrogen ligand [145]. In ER the activity of AF-1 is negligible and most of the protein-protein 

interactions happen through AF-2 found in the ligand binding domain (LBD) (Figure 2) [146]. 

The DNA binding domain (DBD) is 97% homologous between ER and ER and contains a 

zinc finger structure necessary for receptor dimerization and binding of the receptors to specific 

DNA sequences denominated estrogen response elements (EREs) [144, 147]. The hinge region 

contains the nuclear localization signal and links the C domain to the multi-functional COOH-

terminus E/F domain [142] (Figure 2). The hormone dependent AF-2 region in the E/F LBD is 

important in estrogen ligand binding dependent transcriptional activity and co-activator protein-

protein interactions [148]. Besides ligand binding, the E/F region is necessary for nuclear 

translocation, heat shock proteins interactions, and transactivation of target gene expression 
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[144]. Heat shock protein such as Hsp90 act as ER chaperones in the absence of ligands, binding 

to unliganded ERs and maintaining the receptors in an inactive yet functional state [149]. The 

LBD of ER and ER are highly homologous in both primary amino acid sequence and tertiary 

structure which results in similar affinity of both receptors for E2 and other antagonistic and 

agonistic compounds [139, 150] (Figure 2). 

 

 

 

 

 

 

GPER is a membrane bound Gs-protein coupled receptor. GPER associates with a 

Gs/G complex in its inactive state. Upon estrogen ligand binding and GPER activation, Gs 

and G quickly dissociate from GPER. Gs and G can then activate several signaling 

pathways some of them which result in gene expression regulation [151]. GPER was also found 

Figure 2. Structure of Estrogen Receptor  and  and Percent Homology between Them. 

Estrogen receptor  and  (ER and ) are nuclear receptors that can act as transcription factors 

upon ligand binding. ER and  are highly homologous and contain four different functional 

domains: the A/B domain in the amino (NH2) terminus which contains the AF-1, the C or DNA-

binding domain, the D domain or hinge region, and the E/F carboxyl (COOH) terminus domain 

which contains the ligand binding domain and the AF-2 important for receptor dimerization. 

AF: activating function. 
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to be expressed intracellularly in some specific tissues including the mammary glands, the 

ovarian epithelium, and breast and ovarian cancer cells [141]. This indicates that GPER 

expression and signaling is not restricted to the plasma membrane but can also signal from the 

intracellular membranes of the endoplasmic reticulum (ER) and the Golgi apparatus [151].  

Estrogen Receptor Signaling 

 

Ligand-bound ER and ER can regulate the transcription rates and overall expression of 

target genes by binding to EREs on their promoters or by assembling transcription regulation 

complexes with other transcription factors. It was also previously shown that ERs can regulate 

target gene expression in a ligand-independent manner. Membrane bound GPER signals upon 

estrogen ligand binding and can activate several signaling pathways that regulate many cell 

processes and can ultimately result in gene expression modulation.  

Ligand-Dependent Estrogen Signaling 

The classical pathway: the ERE-dependent genomic pathway (Figure 3A). 

 

Transcription activation by ligand-bound ER is a multistep process that occurs in a sequential 

order and requires the interaction of the ER with several enzymatic activities in order to obtain a 

productive interaction with the transcription complexes [152]. Ligand-operated transcription by 

ERs is initiated when the estrogen ligand binds to the inactive ER-chaperone complex [152]. The 

estrogen ligand binds to the ER C-terminal LBD causing a conformational change which 

mediates the dissociation of the ER from its chaperones [152]. Shedding the chaperones exposes 

the dimerization, nuclear localization, and DNA binding domains. Dimerization of the ER 

strengthens the stability of the receptors and ensures binding to the EREs on target-gene 

promoters [152]. EREs are direct or indirect palindromic sequences separated by three non-
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specific nucleotides (TCCAGTnnnACTGGA or AGGTCAnnnTGACCT) [153]. Once bound to 

the DNA, ER transcriptional ability depends on the AF-1 and AF-2 activating functions. 

Although AF-1 and AF-2 can function independently, maximal ER transcriptional activity is 

achieved when there is synergy between them [154]. AF-1 and AF-2 serve as sites for interaction 

with several co-activator or co-repressor proteins. Co-activator proteins enhance gene expression 

by remodeling chromatin and allowing interactions with the transcription machinery. The AF-1 

region of the ER interacts with co-activators from the p160 family which include the steroid 

receptor co-activators 1, 2 and 3 (SRC-1, 2, 3) [155]. p160/SRC function predominantly by 

recruiting chromatin modifying enzymes such as histone acetylases (HATs) to the ER-DNA 

complex [156]. Histone deacetylation results in chromatin de-condensation and increased 

transcription of target genes. p160/SRC can also recruit other co-activators such as CREB 

binding protein (CBP) and p300 [157, 158]. The hydrophobic region of the AF-2 domain binds 

co-activator proteins such as GRIP1 and TIF2 [159, 160].   

AF-1 and AF-2 can also recruit negative co-repressors to the ER-DNA complex which 

inhibit gene activation or turn off activated genes. Negative coregulatory factors RIP140 and 

LCoR compete with the p160/SRC co-activators for AF-1 and AF-2 binding [161, 162]. 

Repression by RIP140 and LCoR occurs through the recruitment of histone deacetylases 

(HDACs) which results in chromatin condensation and suppression of the estrogen target genes 

expression [156]. Other molecules found in the ER-DNA transcription complex can also recruit 

co-repressors. While p300 is considered a co-activator of the ER due to its activity enhancing 

transcription initiation when recruited to ER and ER, it was shown that p300 can also recruit 

the co-repressor C-terminal-binding protein 1 (CtBP1) to the ER transcription factor complex. 
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CtBP1 can stop and inhibit the transcription of target genes by recruiting HDACs which 

deacetylate histone 3 lysine 9 (H3K9) and H3K13 [163]. Overall, transcription of estrogen target 

genes is predominantly enhanced by the binding of the ligand-bound ER homo or heterodimer to 

EREs on gene promoters and the recruitment of co-activators but in some cases, co-repressors 

compete with co-activators for ER complex binding which results in target gene expression 

downregulation. 

Both ER and ER can signal this way in order to regulate target gene expression. 

Interestingly, ER and ER can form homo or heterodimers upon ligand binding (ERER, 

ERER or ERER) [164]. These homo or heterodimers show differential transcriptional 

activities and could explain the selective actions of estrogen in different cell types and target 

genes. Although both ER and ER are expressed in tissues and form functional heterodimers; 

when co-expressed, ER can inhibit the transcriptional ability of ER and vice versa [165, 166]. 

Therefore, overall estrogen responsiveness in specific tissues depends on the ER versus ER 

ratio.  

The ERE-independent genomic pathway (Figure 3B) 

 

 In addition to the classical mechanism of ER function, ERs can regulate gene expression 

of genes that lack EREs. Estrogen-bound ER dimers can bind to Jun and Fos dimers located on 

gene activating protein-1 (AP-1) binding sites [167]. The co-activators (p160/SRC) recruited by 

the ERs to Jun/Fos subunits of the AP-1 transcription factor which can then activate transcription 

of the AP-1 site containing genes [167, 168]. Another way that ERs can affect transcription of 

genes is by physically interacting with the Sp1 transcription factor. Ligand-bound ERs enhance 
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Sp1 DNA binding which upregulates target gene expression [169]. ERs can also repress the 

transcription of genes in an ERE-independent manner. ER can interact with and sequester the c-

Rel subunit of the NFB transcription factor complex [170]. This interaction prevents NFB 

from binding and stimulating expression of NFB response element containing genes [171].  

Ligand-independent estrogen signaling (Figure 3C) 

 

Another mechanism of ER action involves the ligand-independent ER activation through 

ER phosphorylation by protein kinases or growth factor receptors. The epithelial growth factor 

receptor (EGFR) and the insulin-like growth factor receptor (IGFR) are able to bind the AF-1 

domain but not the AF-2 domain and phosphorylate ER via the MAP kinase or the PI3 kinase 

(PI3K)-Akt pathways [172, 173]. ERs can also be directly phosphorylated by protein kinase A 

(PKA) or PKC [174, 175]. Phosphorylated non-ligand bound ERs can then homo or 

heterodimerize and translocate into the nucleus where they regulate expression of ERE-

containing and non-ERE containing genes even in the absence of estrogen ligand.  

Non-genomic membrane bound estrogen signaling (Figure 3D) 

 

In addition to the nuclear genomic actions, estrogen signaling can exert rapid effects non-

accounted for by the transcriptional mechanisms. These non-genomic changes by rapid signaling 

are provoked by membrane-bound ER and GPER. Palmitoylation of ER anchors a pool of 

ER to the plasma membrane where they can interact with other  signaling proteins such as Src 

and p85, the regulatory subunit of PI3K [176]. Estrogen signaling through GPER occurs through 

transactivation of EGFR and involves activation of non-receptor tyrosine kinases of the Src 

family [177]. Estrogen binding to GPER induces activation of metalloproteinases which induce 
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the release of heparin-binding EGF, which binds and activates EGFR leading to rapid activation 

of downstream signaling molecules such as the MAP kinase pathway including ERK1/2 [177]. 

Estradiol activation of GPER also stimulates production of intracellular cyclic adenosine 

monophosphate (cAMP), induces intracellular Ca2+ mobilization, and PI3K activation. In 

addition to these rapid signaling events, GPER was also shown to be internalized from the 

plasma membrane and was demonstrated to regulate gene transcriptional activity of genes such 

as c-Fos, one of the monomers of the AP-1 transcription factor complex [178]. Overall, signaling 

though membrane-bound ERs is more rapid than genomic ER signaling and leads to rapid 

activation of signaling pathways that result in cellular processes such as increase DNA synthesis 

and cell proliferation, and further gene transcription regulation. 

Estrogen Effect on Key Cells of the Immune System 

 

Estrogen receptors are expressed ubiquitously on immune cells and estrogen is known to 

modulate the survival, development, differentiation, and function of key cells of the immune 

system such as T and B cells, macrophages, dendritic cells (DCs) and natural killer cells (NK) 

[179]. In the following paragraphs, the effects of estrogen signaling on different cells of the 

immune system are described. 

T cells & T cell cytokines 

 

In the peripheral blood of humans, around 30% of white blood cells are lymphocytes and 

around 85-90% of these lymphocytes are T cells [180]. Although the total lymphocyte count in 

males is equivalent to females, the percentage of T cells within the total lymphocyte population 

is higher in females compared to males and post-menopausal females [181].  Females have 
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higher CD4+ T cell counts and higher CD8+/CD4+ ratios than age-matched males and post-

menopausal females; whereas males have higher CD8+ T cell frequencies [182-184]. 
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Figure 3. The Different Types of Estrogen Signaling in the Cell. The ligand-dependent and ERE-dependent or ERE-independent 

classical genomic estrogen receptor pathway consists on ERs binding to the estrogen ligand in the cytoplasm of the cell, dimerizing, 

and translocating into the nucleus where they bind A) EREs in gene promoters, or B) form complexes with other transcription factors 

such as AP-1 and regulate gene expression.  C) The ligand-independent genomic estrogen receptor pathway happens when growth 

factor tyrosine kinase receptors or protein kinases phosphorylate the ERs promoting dimerization and translocation into the nucleus 

where they regulate gene expression in a ERE-dependent or independent manner. D) The non-genomic G-protein coupled estrogen 

receptor signaling happens through GPER which activated the MAP kinase pathway upon estrogen ligand binding promoting 

downstream signaling and gene expression regulation. E2: 17-estradiol, ERE: estrogen response element, AP-1: activator protein-

1, PKC/A: protein kinase C/A, MAPK: mitogen activated kinase, PI3K: phosphoinositide-3 kinase. 
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Following in vitro T cell stimulation, females have higher numbers of proliferating T 

cells and higher numbers of CD8+ and CD4+ activated T cells compared to males [181]. 

Transcriptional analysis of these activated T cells showed greater cytotoxic activity in T cells 

from adult females, with stimulated female T cells upregulating more antiviral and pro-

inflammatory genes compared to male activated T cells [185]. Notably, over half of these 

activated genes have EREs in their promoters indicating direct involvement of estrogen signaling 

on T cell function [185].  Both CD8+ and CD4+ T cell subsets express ER and ER and 

estrogen signaling was shown to also affect T cell development and differentiation.  

Estrogen stimulation was shown to cause structural changes in the thymus and to affect 

immature T cell development. Ovariectomized mice that were treated with estrogen showed dose 

dependent thymic atrophy with a decrease proportion of early T cell progenitors, and an 

increased proportion of mature T cell populations [186]. Estrogen inhibits thymic development 

by decreasing the number of triple negative immature T cells (CD3-CD4-CD8-) and depleting the 

rest of the maturation stages such as CD44+ CD25+, CD44-CD25+, and CD44- CD25- T cells 

[186]. On the other hand, estrogen treatment increased the numbers of thymic CD8+ and CD4+ 

single positive mature T cells. All these effects were mediated by ER AF-1 and AF-2 functions 

simultaneously since the deletion of the receptor or any of these functions abolished the 

inhibitory effects of estrogen on the thymus [187]. Ovariectomized mice showed reduced levels 

of CD8+ splenic T cells and the CD8+/CD4+ single positive cell ratio was increased after 

physiological estrogen stimulation agreeing with the human observation on pre-menopausal 

females [188]. Overall these data indicated that estrogen signaling though ER induces 

differentiation of mature CD8+ and CD4+ T cells.  



 
 

 
 

30 

Besides affecting the development of T cells, estrogen is capable of affecting T cell 

activation and T cell function. T cells stimulated with post-menopausal estrogen levels showed 

decreased activation-induced phosphorylation of the CD3/TCR complex and reduced expression 

of the Janus kinases 2 and 3 (JAK2 and 3 kinases) compared to T cells treated with physiological 

estrogen [189]. JAK2 and 3 are non-receptor tyrosine kinases that mediate cytokine-mediated 

signals via the JAK-STAT pathway in response to IL-2 which secretion was also downregulated 

in T cells treated with low estrogen [189]. In a model of colitis, it was observed that ER-

deficient mice showed decreased T cell proliferation and activation state, and increased FoxP3 

expression compared to WT mice indicating that T cells in ER-deficient mouse were skewed 

towards a regulatory phenotype decreasing the severity of the autoimmune inflammation [190]. 

In addition to enhancing T cell activation, physiological estrogen stimulation was shown to 

induce Th1 effector T cell responses. IFN is a major cytokine involved in cytotoxic and effector 

Th1 T cells responses and it is sensitive to estrogen stimulation in mice and humans. Estrogen 

can modulate IFN secretion by enhancing Ifn gene expression in CD4+ and CD8+ T cells [190]. 

This happens through direct interaction of ER with an ERE in the promoter of the Ifn gene 

[191, 192]. Administration of physiological estrogen to ovariectomized mice resulted in an 

increase of IFN producing cells as well as an increase of Th1 CD4+ antigen-specific T cell 

responses [193]. Overall this indicates that physiological estrogen signaling through ER 

promotes effector and Th1 responses which are reduced in the presence of low estrogen 

concentrations like the ones found in post-menopausal females and males.  

Most of the important aspects concerning the role of estrogen signaling on T cell function 

were studied using T cells from autoimmune disease patients, and autoimmunity mouse models 
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including multiple sclerosis (MS) and colitis. Using primary T cells from MS patients that were 

treated with estrogen, it was shown that estrogen signaling mediated a dose dependent 

enhancement on the secretion of IL-10 by CD4+ T cells [194]. The secretion of IFN by T cells 

was also increased by estrogen in a dose dependent manner confirming the genomic regulation of 

IFN through the ERE on its promoter [194]. The effects of estrogen on expression of TNF 

expression were shown to be controversial. Physiological estrogen concentrations were shown to 

enhance TNF expression, while pregnancy estrogen levels inhibited TNF expression [194]. 

On the other hand, in bone research studies, ovariectomy of mice enhanced the production of 

TNF by CD8+ and CD4+ T cells, and the subsequent bone loss which was abolished by estradiol 

replacement therapy [195].  

Estrogen-induced changes in IL-4 mRNA or protein expression were not observed in 

response to estrogen stimulation in MS patient’s primary T cells [194]. Interestingly, studies 

characterizing the role of estrogen during pregnancy, a state where estrogen levels are higher 

than physiological, demonstrated that the T cell immune response skewed toward the Th2 type 

compared to Th1 type response [189]. Estrogen at pregnancy levels increased IL-4 secretion and 

GATA3 expression in ER+CD4+ cells but not on ER- ones [190]. IL-4 is a common cytokine 

secreted by Th2 cells and its expression is induced by GATA3 which is the transcription factor 

that drives Th2 T cell differentiation. Peripheral mononuclear blood cells (PBMCs) stimulated 

with different estrogen levels showed that those cells treated with physiological estrogen 

enhanced production of IFN, IL-12, and IL-10 which is a Th1 skewed immune response [191]. 

On the other hand, cells treated with pregnancy estrogen levels had decreased IL-12 and IFN 

ratio while IL-10 production was enhanced [191]. Overall, the estrogen mediated enhancement 
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of cytokines such as IL-10 and IL-4 by T cells switches the T cell immune response from Th1 to 

Th2. 

Estrogen signaling has also been shown to affect immunosuppressive Tregs. Pregnancy 

estrogen levels were reported to increase the expression of FoxP3 expression on CD4+CD25+ 

cells [196-199]. Pregnancy estrogen levels were able to enhance FoxP3 expression in vivo and in 

vitro and increase CD25+ cell number, which are reduced in ER-CD4+ cells [198]. Mouse 

studies also showed that physiological estrogen concentration could induce expression of FoxP3 

and enhance the number of CD25+ regulatory CD4+ T cells [188]. The role of estrogen 

modulating Treg differentiation proves to also be controversial since post-menopausal women 

were shown to have enhanced numbers of circulating Tregs compared to pre-menopausal women 

[189]. 

 While many studies have reported the effect of estrogen signaling on T cell function and 

cytokine production, many of the reported results are contradicting and indicate opposite roles of 

estrogen signaling on T cell function especially in cytokine expression and production. Overall 

the studies summarized in this section indicate that the effect of estrogen on T cell function and 

cytokine production is highly concentration dependent. Different effects were observed when T 

cells were exposed to physiological, post-menopausal and pregnancy estrogen concentrations. 

The effects of estrogen on T cell function and cytokine production were also affected by the 

species in which they were tested with contradicting results obtained when testing the role of 

estrogen signaling on human compared to mouse T cells. This indicates differences in T cell 

biology and estrogen signaling between these species. Regarding T cell differentiation, estrogen 

was reported to promote Th1, Th2, or Treg CD4+ T cell differentiation depending on the 
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concentration of the hormone, again indicating concentration dependent effects. While these 

studies demonstrated the effect of estrogen in signaling in T cell function and differentiation, not 

many of them reported through which receptor estrogen is signaling through on each case. Most 

of the time, estrogen signaling through ER was investigated while ER and GPER were not 

mentioned. This indicates there is a high need for research characterizing the effects of estrogen 

signaling at different concentrations through each of its receptors and signaling pathways on T 

cell function, including the expression of several cytokines, as well as T cell differentiation.  

B cells and Antibody Production 

 

Regardless of age, females show greater B cell numbers, higher antibody responses, and 

higher basal immunoglobulin levels than males [181]. Estrogen affects the development and 

activity of B cells at different stages of differentiation and function, which can also vary among 

lymphoid organs. For example, in the bone marrow, estrogen was shown to decrease the number 

of B cells by negatively affecting the viability, proliferation and differentiation of early B cell 

precursors [200]. On the other hand, estrogen treated ovariectomized mice showed increase 

splenic weight and enlarged volumes of white and red pulp [201]. Even if estrogen treatment 

promoted a decrease in B220+ splenic lymphocytes, there was a 10-fold increase in plasma cell 

numbers and this effect required signaling though both ER and ER [202, 203]. Estrogen was 

also shown to increase splenic B cell activation and plasma cell antibody secretion [204, 205]. It 

was also shown that estrogen increases the expression of the anti-apoptotic gene bcl-2, and other 

genes such as cd22, shp-1, and vcam-1 in B cells that result in increased survival and activation 

[206, 207]. Estrogen signaling also modulates B cell function by increasing immunoglobulin 

secretion such as IgG and IgM through ER signaling but not ER [208]. This overall indicates 
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that while estrogen signaling inhibits B cell lymphopoiesis in the bone marrow, it enhances 

mature B cell survival and differentiation into plasma cells as well as antibody production upon 

activation.  

Macrophages and Dendritic Cells 

 

Antigen presenting cells, such as macrophages and dendritic cells, which are crucial for 

induction of immune responses are another target of estrogen. Macrophages express ER, ER, 

and GPER and estrogen signaling was shown to modulate macrophage polarization, activation, 

and cytokine production [209]. Macrophages can be classified into classically (inflammatory) or 

alternatively (anti-inflammatory) activated macrophages depending on the activation stimuli. 

Classically activated macrophages result from activation in the presence of Th1 cytokines 

including IFN or NF, while alternatively activated macrophages are activated in presence of 

Th2 cytokines including IL-4 or IL-13 [210].  Classically activated macrophages downregulate 

ER expression while they maintain ER and GPER expression, while alternatively activated 

macrophages retain ER and ER expression [210]. Many studies have described how 

physiological estrogen can upregulate inducible nitric oxide synthase (iNOS) and NO 

production, increased production of proinflammatory cytokines and increased cell surface 

expression of Toll-like receptor 4 (TLR4) in human and mice classically activated macrophages 

probably through mechanisms involving ER or GPER [211-215]. This leads to increased 

macrophage activation and killing thus to increased resistance to extracellular bacteria and 

infections in the presence of estrogen [216]. On the other hand, high dose estrogen stimulation 

reduced the production of inflammatory cytokines such as IL-1, IL-6, and TNF in activated 

macrophages indicating a dose dependent effect of estrogen [217].  
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Dendritic cells express ER and ER and estrogen signaling was shown to affect 

functional DC differentiation from bone marrow progenitors. Differentiation of DC bone marrow 

progenitors stimulated with granulocyte macrophage-colony-stimulating factors (GM-CSF) was 

inhibited when cells were cultured in estrogen-deficient media or in vivo in ovariectomized mice 

[218-220]. DC differentiation was restored when physiological estrogen concentrations were 

introduced back. The estrogen-mediated DC bone marrow progenitor differentiation was found 

to be mediated by ER and not ER signaling. ER signaling increases the expression of IRF4, 

a key transcription factor induced by GM-CSF and critical for DC development [218, 219]. 

These estrogen-treated mature DCs were CD11c+CD11bintermediateLy6C- and expressed high 

levels of MHC class II and co-stimulatory molecules B7.1, B7.2 and CD40 [220, 221]. These 

DCs were able to stimulate the proliferation of CD4+ T cells and were able to produce higher 

levels of the inflammatory cytokines IL-16 and IL-12 [221]. Short-term estrogen stimulation had 

no effect on DC survival or surface marker expression. However, estrogen stimulation enhanced 

activated DC IL-6, IL-8, and monocyte chemoattractant protein 1 (MCP-1) production and it 

enhanced the migration of mature DCs towards chemokine C-C motif ligand 19 (CCL19) [222]. 

Overall, these data indicate that estrogen signaling enhances the differentiation and function of 

DCs which can further result on more potent immune responses from DC-activated B cells and T 

cells. 

NK cells 

 

NK cells are large granular lymphocytes from the innate immune compartment which 

attributed with the ability to directly lyse virus-infected cells or tumor cells, and to produce and 

release type I cytokines such as IL-2 or IFN. Surprisingly, the number and activity of NK cell 
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changes during the menstrual cycle of human females [223]. NK cell activity increases during 

the first trimester of pregnancy, but it significantly decreases during the second and third 

trimesters indicating an important role of estrogen in regulating NK cell activity [224]. NK cells 

express both ER and ER and estrogen signaling was shown to affect NK cell function. 

Prolonged high concentration estrogen stimulation was shown to increase overall NK cell 

numbers but to reduce NK cell activity in a dose dependent manner [224-226].  NK cell numbers 

were increased by the estrogen mediated upregulation of minichromosome maintenance 

component 7 and 10 (MCM7 and MCM10) expression which are proteins required for DNA 

replication and NK cell proliferation [226]. On the other hand, the suppressed cytotoxicity of NK 

cells was attributed to the estrogen down-regulation of activating receptors NKp46, NKG2D, and 

CD244 which resulted in reduced secretion of Granzyme B and Fas ligand [226]. This 

suppression of NK cell activity was observed in several mouse strains and human cells when the 

duration of the estrogen treatment was prolonged over one month, and it was mediated by 

ER signaling since no differences were observed when ER knockout (KO) mice were used 

[224]. This overall indicates that while estrogen signaling enhances NK cell proliferation, it 

decreases NK cell activation and cytotoxic function especially when NK cells are exposed to 

high dose estrogen for long periods of time like in the case of pregnancy. 

Estrogen and Disease 

 

 As described in the previous section, estrogen signaling has profound effects on the 

development, differentiation, and function of key immune cells indicative that estrogen signaling 

also affects those diseases that arise from immune cell function dysregulation, like 
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autoimmunity, or those that are heavily controlled by immune responses, like infections and 

cancer. In the next paragraphs the known effects of estrogen on these diseases are described.  

Estrogen and autoimmunity 

 

About 8% of the world’s population suffers from autoimmune diseases, of which 78% of 

all autoimmunity cases are women [227]. The female to male autoimmune disease ratio ranges 

from 2:1 in rheumatoid arthritis (RA) to 3:1 in MS, and to 9:1 in systemic lupus erythematosus 

(SLE) [227, 228]. The effects of estrogen on autoimmune diseases cannot be generalized since 

estrogen signaling differs depending on concentration, the estrogen receptor, and the target cell 

type. Estrogen was shown to enhance the severity of some autoimmune diseases. Estrogen 

signaling promotes systemic inflammation and induces B cell activation and anti-double stranded 

DNA antibody production which increases reactivity to endogenous antigens that are expressed 

in SLE [208, 229]. Altered expression of ER was shown in immune cells of SLE patients which 

have upregulated expression of ER and decreased expression of ER compared to healthy 

controls [230]. Increased ER expression in CD4+ and CD8+ T cells, macrophages, and DCs in 

SLE enhances Th1 type autoimmune responses by the production of cytokines including IFN 

and IL-12 [231]. T cells from SLE patients also have upregulated expression of the co-

stimulatory ligand molecule CD40L which is shown to be important for activated Th1 T cells 

priming and IFN production [232]. In a T cell dependent inflammatory bowel disease (IBD) 

model, estrogen signaling through ER worsens prognosis by promoting the accumulation of 

Th1 and Th17 T cells, and increasing T cell activation and proliferative state [233].  

Contrary to other autoimmune disorders, estrogen has a protective role against MS, a 

disease characterized by the presence of myelin reactive CD4+ T cells in the central nervous 
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system which leads to demyelination of axons and neuronal death [234-236]. Estrogen signaling 

through ER decreases autoantigen-specific proinflammatory molecules such as TNF, IL-17, 

iNOS, and MCP-1 and inhibits autoimmune inflammation [236]. ER signaling was also shown 

to be necessary for the estrogen-mediated protection against MS and for enhancing endogenous 

myelination [237]. Pregnant mice showed reduced CNS pathology when compared to non-

pregnant animals, and the rates of relapse increases post-partum at a phase where there is a 

marked decrease in estrogen levels compared to pregnancy [238].  

Estrogen was shown to have different effects in various autoimmune disorders. Given 

that estrogen affects all cells of the immune system as well as non-lymphoid tissue that is in 

proximity of target tissue, it is understandable that estrogen has different effects dependent on 

the context of each autoimmune disorder.  While estrogen plays a role in sex differences in 

autoimmune diseases, clearly estrogen alone does not exclusively contribute to this sex 

differential susceptibility.  

Estrogen and infection 

 

 Females and males differ in the severity, prevalence, and pathogenesis of infections 

caused by bacteria, virus, fungi and parasites, with males being generally more susceptible to 

these infections than females [239]. Males exhibit higher incidence rates for leptospirosis (4-fold 

increased incidence compared to females), schistosomiasis (1.5-fold), brucellosis, rabies, 

leishmaniasis (3-fold), pulmonary tuberculosis (2.5-fold), and hepatitis A, B and C (1.5 to 3-fold) 

[119, 240-243]. Similarly, premenopausal women are significantly less likely to develop 

meningococcal or pneumococcal infections [119]. Estrogen is thought be protective against 

infections due to the pro-inflammatory effects of estrogen signaling on immune cells. 
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Physiological estrogen concentrations were used to treat different kinds of infections in murine 

models and humans. Physiological estrogen administration was shown to reduce infection in 

males and females that suffered viral infections with encephalomyocarditis or Friend virus [244, 

245], bacterial infections with Salmonella typhimurium [246], fungal infections with Candida 

albicans and Paracoccidioides brasiliensis [247, 248], and even infections with parasitic 

protozoa like L. Mexicana [249]. Overall, these data indicate that estrogen signaling has a 

protective role against some infectious diseases through the enhancement of immune cell 

function against pathogens. Heightened immunity to pathogens among females contributes to 

lower intensity, such as lower viral load found in the serum of hepatitis or HIV female patients 

[250], and prevalence of infected individuals within a population compared to males, but it may 

increase disease symptoms and severity among females compared with males as seen in 

infections including malaria or HIV [251].  

Estrogen and cancer 

 

 Sex is an important factor in the pathogenesis and prognosis of cancers that occur outside 

of the reproductive tract [121]. For the majority of cancers throughout life, males have a higher 

risk of malignancy compared to females [252, 253]. Males have two-fold greater rates of 

mortality from malignant cancers compared to females, with sex-dependent outcomes being 

greatest for larynx, esophagus, lung and bronchus, skin, and liver cancers [253]. This male-

biased incidence and mortality is hypothesized to reflect a combination of factors including but 

not limited to sex-differences in genomic predisposition, infection, immune function, gene 

expression, and hormonal regulation. Estrogen is thought to have a protective role against cancer 

which is supported by the observation that cancer incidence and mortality rates increase after 
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menopause in women not undergoing hormone replacement therapy [254]. In some specific 

cancers such as melanoma or liver cancer, estrogen signaling has an antitumor role by enhancing 

antitumor immune responses [255-257]. Despite the normal and beneficial actions of 

physiological estrogen in women, estrogen was classified as a carcinogen after the Women’s 

Health Initiative research program discovered that postmenopausal women treated with HRT had 

a significant increase in the incidence of breast cancer after at least 5 years of treatment [258]. 

The effects of estrogen are tissue-specific and depend on which ER is predominantly expressed 

and further which downstream signaling pathways become activated.  

Estrogen receptor signaling is well known to be cancer promoting in ER-positive (ER+) 

breast tumors.  In breast cancer cells, ERα regulates various genes that play key roles in cell 

cycle progression and proliferation. ERα can transcriptionally upregulate c-Myc (as early as 15 

minutes after estrogen stimulation) and cyclin D1 which are necessary for the G1-to-S phase 

transition [259, 260]. On the other hand, ERβ signaling can induce G2 cell cycle arrest and 

inhibit the estrogen-induced cancer cell proliferation [261-263]. Expression of ER and ER in 

human NSCLC is correlated with worse prognosis and more aggressive disease [264, 265]. ER 

and ER are found in the nucleus and cytoplasm of NSCLS cells and are phosphorylated in 

residues commonly modulated by growth factors indicating ligand-independent ER signaling 

[266, 267]. ER signaling promotes the early activation of the MAP kinase pathway which is 

oncogenic in NSCLC [266].  In ovarian cancer, estrogen signaling was correlated with both 

worse and better disease prognosis. Estrogen levels are often observed in ovarian cancer patients 

and ER signaling promotes metastasis by inhibiting cell-cell adhesion and cell survival and 

proliferation [268, 269]. On the other hand, ER expression in ovarian cancer predicts longer 
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overall survival [270-272]. There is also contradicting evidence about the role of ER in ovarian 

cancer. Some early studies correlate ER expression with worse ovarian cancer prognosis [273], 

but ovarian cancer meta-analyses showed that ER expression is downregulated as disease 

progresses and ER is predominantly expressed in advanced and metastatic disease [272, 274, 

275].  

In some cancers including endometrial, prostate, liver cancer and melanoma estrogen 

signaling contributes to decreased tumor risk and better disease prognosis. Meta-analyses 

revealed that ER expression of both ER and ER simultaneously correlate with better overall 

survival of endometrial carcinoma [276]. Even if meta-analyses were not able to correlate 

prostate cancer prognosis with ER expression, prostate cancer cells express ER, ER and 

GPER and decreasing estrogen concentrations were observed to be associated with increased 

prostate cancer risk [277, 278]. Melanoma tumors express both ERα and ERβ, and ER 

expression decreases as the melanoma tumor develops. Although the mechanisms remain 

unclear, it is thought that ER acts as a tumor suppressor but it is downregulated as the tumor 

progresses [257, 279]. Estrogen can suppress the growth of human melanoma by inhibiting IL-8 

production and subsequent chronic inflammation through ER signaling [280]. Estrogen is a key 

molecule in cellular development and cell cycle regulation and therefore impacts many varieties 

of cancer cells directly. In summary, R expression is correlated with better prognosis and 

survival, and it can be concluded that ERβ acts as a tumor suppressor in most cancers. ERα acts 

as an oncogene in breast, lung and ovarian cancers, even if ER expression is correlated with 

better prognosis on melanoma, prostate, and endometrial cancer. 
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Another cancer that is heavily affected by sex and estrogen receptor signaling is HCC. 

HCC is the main disease model used in the studies of this dissertation. The next paragraphs 

describe current knowledge on the causes and treatments of HCC, as well as the role of estrogen 

on tumorigenesis.   

Hepatocellular Carcinoma 

 

 Primary liver cancer consists of a heterogeneous group of malignant tumors not 

including liver metastases from other cancer sites [281]. Primary liver cancer is the second 

leading cause of cancer-related deaths worldwide, and it accounts for approximately 800,000 

deaths each year [282, 283]. Hepatocellular carcinoma (HCC) is the most common primary liver 

cancer and it accounts for 80-90% of all cases [284]. The incidence of HCC is highest in East 

and Southeast Asia, and East and Western Africa but HCC incidence has risen in areas with 

historically low rates in the last decades, such as Western Europe and North America making it a 

major global health burden [285]. Life expectancy of HCC patients depends on the stage of the 

cancer at the time of diagnosis. In advanced stage, survival of only few months is expected, 

however, if diagnosis is early and effective treatment is performed, then five-year survival rate 

can be achieved [286].  

Causes  

 

Around 90% of HCC tumors develop from the induction of liver fibrosis and/or cirrhosis 

resultant from chronic inflammation of the liver caused by diseases such as chronic hepatitis B 

virus (HBV) and HCV, autoimmune hepatitis, excessive alcohol consumption, non-alcoholic 

fatty liver disease (NAFLD), diabetes mellitus, and excessive tobacco use [283, 287-289]. The 
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liver has the unique ability to repair itself after acute damage. Differentiated hepatocytes have 

the ability to re-enter the cell cycle and replace themselves [290]. However, under chronic 

inflammatory conditions, the altered immune response and constant cell death of hepatocytes 

promote liver fibrosis and tumorigenesis [284, 291]. Altered survival and proliferative signals 

during chronic inflammation, cellular stress, epigenetic modifications, and senescence promote 

tumorigenesis [283]. Chronic inflammation also promotes DNA damage, replication stress, and 

genomic instability which are detectable before transformation fully occurs [292]. Cytokines 

such as IL-6 and TNF, which activate the STAT3 and NF-B pathways respectively, were 

reported to be responsible for chronic inflammatory conditions and development of HCC [293, 

294]. Chronic inflammation of the liver can result on activation of oncogenic pathways and 

suppression of tumor-suppressive mechanisms. The main oncogenic pathways involved in HCC 

are PI3K-Akt and MAPK pathways, the Wnt/-Catenin pathway, c-myc, and the sonic hedgehog 

(HH) pathway.  

Activation by ligand binding and phosphorylation of growth factor tyrosine kinase 

receptors such as c-MET and EGFR lead to activation of the MAPK and PI3K pathways [295]. 

MAPK pathway activates the oncogene cFos and transcription factor AP-1/c-Jun which induce 

transcription of genes that drive cell proliferation of tumor cells [296]. Activation of the PI3K-

Akt pathway results on activation of the mammalian target of rapamycin (mTOR) pathway 

promoting carcinogenesis [297]. This pathway can also be dysregulated by constitutive 

activation of PI3K due to loss of function of the tumor suppressor PTEN by either mutations or 

epigenetic silencing [298]. C-myc amplification is observed in around 33% of all HCCs and it 

normally corresponds to large, less differentiated tumors in younger patients [299]. C-myc 
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overexpression in HCC induces tumor cell stemness, cell proliferation, and increases glutamine 

metabolism and cell growth [300-302]. Mutations on the Wnt/-Catenin pathway are observed in 

around 50% of HCCs [303]. Activating mutations result in stabilization and hyperactivation of -

Catenin signaling [304]. Additionally, inactivation mutations in negative regulators of the Wnt 

pathway and the tumor suppressor gene adenomatous polyposis coli (APC) further contribute to 

Wnt pathway activation [304]. While mature hepatocytes show no HH signaling activity, 

hyperactivation of HH and its pathway components were observed in 50% of HCCs [295, 305]. 

In HCC cells, reactivation of the HH pathway maintains tumor cell stemness and induces 

epithelial-to-mesenchymal transition which increases risk of metastasis [305, 306].  

Overall, several conditions including hepatitis infection, NAFLD, and excessive alcohol 

consumption can result in chronic inflammation of the liver. Chronic inflammation of the liver 

induces cell stress and cell death which can result in liver fibrosis and cirrhosis and subsequent 

oncogenic transformation into HCC. Many signaling pathways can induce HCC including those 

that enhance liver cell proliferation, stemness and metastatic capacity.  

Estrogen and HCC 

 

 The age-adjusted incidence ratios of HCC in men and women are extremely consistent in 

157 registries worldwide [253, 307]. Significantly higher incidence and mortality ratios of HCC 

in men compared to women are well documented. Worldwide, male-to-female HCC incidence 

rates range from 2 to 4, being greatest for age-matched males and females under 53 years of age 

[308]. Women have significantly longer survival rates than age-matched men. While the overall 

survival for women between 18-45 years old is 25 months, it is only 10 months for age-matched 

men [309, 310]. The incidence and mortality of HCC significantly increase in post-menopausal 
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women over 55 years old indicating that reproductive senescence increases the risk of HCC. The 

HCC overall survival in women between 45-55 years old decreases to between 10 and 15 months 

which almost matches the overall survival of age-matched men (8-9 months) [309, 310].  

Interestingly, those menopausal women using estrogen hormone replacement therapy showed 

decreased incidence of developing HCC compared to the non-estrogen users [311]. This 

indicates that estrogen has a protective role against HCC and estrogen signaling inhibits tumor 

formation and development making HCC significantly more prevalent in males compared to 

females. Thus, male sex, menopause, and female therapeutic ovariectomies are considered risk 

factors for HCC [312].  

Estrogen signaling is protective against HCC in several ways. Estrogen signaling inhibits 

chronic inflammation of the liver, the main cause of HCC. Estrogen signaling through ER 

directly inhibits transcription and expression of IL-6 by binding to its promoter and impairing c-

rel and RelA binding to the NF-B promoter site [170, 313]. This mechanism was observed upon 

estrogen treatment in hepatocytes and Kupffer cells, the resident macrophages of the liver [293]. 

ER signaling also inhibits STAT3 activity, a critical factor regulating liver chronic 

inflammation in hepatocytes [294]. ER transcriptionally activates protein tyrosine phosphatase 

receptor type O (PTPRO) which dephosphorylates STAT3 and subsequently attenuates STAT3 

signaling [314].  

HCV infection, a cause for chronic inflammation of the liver that results in cirrhosis and 

HCC, was shown to be inhibited by estrogen signaling through GPER in hepatocytes [315]. 

GPER signaling promotes the cellular export of matrix metallopeptidase 9 (MMP-9) which leads 

to cleavage of occluding, which is a tight junction protein and HCV receptor, overall reducing 
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HCV hepatocyte infection and viral RNA production [315]. Estrogen signaling through ER in 

hepatocytes was also shown to transcriptionally activate microRNA 34a (miR-34a) which 

enhances activation of p53, a well-known apoptosis inducer and tumor suppressor [316]. These 

data indicate that estrogen signaling not only reduces HCV infection of hepatocytes but also 

reduces overall inflammation and induces apoptosis in a p53 dependent manner.  

Estrogen signaling was also shown to affect HCC tumor infiltrating immune cells like 

macrophages. During HCC progression, TAMS replace Kupffer cells as the main modulators of 

chronic inflammation of the liver by secreting IL-6 and TNF. TAMs not only induce chronic 

inflammation but also secrete immunosuppressive molecules such as TGF and IL-10 that 

suppress the anti-tumor immune response and increase the fibrotic, hard to infiltrate, tumor 

microenvironment [317]. Estrogen signaling functions as suppressor for macrophage alternative 

activation into TAMs by inhibiting the JAK1-STAT6 pathway though ER . Overall these 

data indicate that estrogen signaling suppresses tumor growth partially via regulating the 

polarization of macrophages. Although this is promising in order to develop new therapies based 

on estrogen, the role of estrogen signaling on other HCC tumor infiltrating immune cells remains 

unclear and needs further investigation.   

Treatments for HCC 

Treatments for early stage HCC 

 

 According to the Barcelona Clinic Liver Cancer (BCLC) staging classification, HCC 

patients are categorized into four different stages according to the tumor burden, the number of 

tumors, the presence of vascular invasion, and the spread of nodules or presence of extrahepatic 

metastases. According to these parameters, HCC patients are considered stage 0 or very early 
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stage, stage A or early stage, stage B or intermediate stage, stage C or advanced stage, or stage D 

or terminal stage [319, 320]. Resection, ablation, and transplantation are considered for patients 

in the early HCC stages (0 and A).  Surgical resection or radiofrequency ablation are indicated to 

treat patients with preserved liver function, single nodule occurrence, and absence of cirrhosis. 

Even if the five-year survival rate is high after these therapies (50-75%), the tumor recurrence 

rate can reach 50% making resection and ablation not appropriate for patients with vascular 

invasion or metastasis [281, 321]. In early stage HCC patients with cirrhosis, liver 

transplantation is performed.  Liver transplantation ensures reduced tumor recurrence rates and 

increased survival however, there is a great lack of organs available for transplantation [322, 

323]. Surgical resection, tumor ablation, and liver transplantation are efficacious treatments for 

HCC but due to problematic HCC diagnosis that reveals high levels of false negatives and high 

percentage of asymptomatic patients, these treatments can only be performed in under 20% of all 

HCC cases [324].  

Sorafenib 

 

Intermediated or advanced stage (B and C) HCC patients with preserved liver function 

are treated with Sorafenib. Sorafenib is an oral multi-kinase inhibitor with anti-angiogenic and 

anti-proliferative properties [325]. In vascular endothelial cells, Sorafenib inhibits the receptor 

tyrosine kinases VEGFR1, 2 and 3 and platelet-derived growth factor receptor-β (PDGFR-β) 

which are involved in promoting tumor angiogenesis [325-327]. In tumor cells, Sorafenib targets 

the MAP kinase pathway and induces apoptosis by inhibiting RAF isoform signaling [326, 327]. 

Sorafenib can also induce apoptosis in a MAP-kinase independent way by inhibiting the 

phosphorylation of the translation initiation factor eIF4E which promotes the translation of anti-



 
 

 
 

48 

apoptotic protein myeloid cell leukemia-1 (Mcl-1) [327, 328]. Sorafenib increases overall 

survival by 2.3-2.8 months and it is the current standard of care for patients with advanced HCC 

[329]. Overall however, the median survival for Sorafenib treated patients with advanced stage, 

unresectable HCC is less than one year (11 months) [330]. Sorafenib treatment in advanced HCC 

patients also results in major side effects such as diarrhea, fatigue, and hand-foot syndrome, a 

troublesome condition characterized by painful, erythematous, blistering patches on palms and 

soles of the feet [330]. Overall, even if treatment with the multi-kinase inhibitor Sorafenib 

provides some therapeutic benefit for advanced HCC cases, a great unmet need remains for 

patients indicating that the development of new therapies to increase the overall survival of 

advanced HCC patients is highly necessary. 

Immunotherapy for HCC 

 

Immunotherapy is an emerging treatment modality that could become a promising 

treatment option for HCC as, first, it is an inflammation-associated cancer which makes 

immunotherapy more likely to be effective [331]. Second, it was observed that HCC patients 

whose tumors contain increased lymphocytic infiltration including CD8+ and CD4+ T cells show 

longer overall survival and lower risk of recurrence than those patients with no immune tumor 

infiltrates [332-334]. Third, the liver is an ‘immune privileged’ organ and it is tolerogenic to 

immune responses to antigens by various immune-suppressive mechanisms, including immune 

checkpoint expression, Treg recruitment, cytokine secretion dysregulation, and changes in the 

local TME that suppress APCs and T cells [335-338]. Considering all these facts, the blockade of 

immune checkpoints and the enhancement of the T cell anti-tumor immune response are 

treatment possibilities that can be highly effective against HCC. 
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Treatment of HCV-induced HCC patients with CTLA-4 inhibitor Tremelimumab showed 

20% partial response rates and increased overall survival by around 7 months [339]. Moreover, 

viral loads of HCV were significantly decreased indicating anti-viral immune responses, and no 

patients experienced immune-related adverse events or hepatotoxicity [339]. High PD-L1 and 2 

expression was observed in HCC tissue [340]. Several clinical trials were conducted treating 

advanced HCC patients with PD-1 inhibitors Nivolumab and Pembrolizumab. Nivolumab treated 

patients showed manageable adverse events and 5% of them showed complete response rate 

while 20% showed partial response rate [341, 342]. The overall survival rate at 6 months was 

72% indicating that Nivolumab did activate sustained tumor-specific immune responses [341, 

342]. Furthermore, Sorafenib resistance in HCC was shown to be mediated by enhanced DNA 

(cytosine-5)-methyltransferase 1 (DNMT1) expression induced by PD-L1 [343]. These data 

indicate that PD-L1 blockade and Sorafenib combinatorial treatment could not only enhance the 

anti-tumor immune response but also target the tumor cells themselves.  

ACT immunotherapy for HCC consists on the use of genetically modified autologous T 

cells that express a TCR specific for a HCC tumor antigen (Figure 4). ACT immunotherapy was 

shown to be partially successful in treating HCC in preclinical models and clinical trials. ACT 

shows unique advantages over Sorafenib and checkpoint blockade immunotherapy in treating 

HCC since it improves the quality and quantity of cells destroying the tumor in order to 

overcome immune tolerance [330]. ACT immunotherapy using the patient’s autologous TILs 

expanded with IL-2 in vitro after liver surgical resection showed 68% overall survival rates [344, 

345]. However, due to small tumor burden collected during biopsies and low T cell survival after 

extraction, it is hard to isolate TILs from HCC patients [346]. Genetically modified T cells 

including CAR T cell and TCR transduced T cells are being tested for ACT immunotherapy for 
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HCC in phase I and II clinical trials targeting tumor antigens such as glypican-3 (GPC3) 

expressed in the majority of HCCs [347-350] (Clinical trial IDs: NCT02715362, NCT03130712, 

NCT03198546, NCT03146234), -fetoprotein (AFP) expressed in 60-80% of HCCs [351, 352] 

(NCT03349255), mucin-1 (MUC-1) expressed in 60% of HCCs [353, 354] (NCT02587689), and 

epithelial cell adhesion molecule (EpCAM) (NCT03013712). ACT immunotherapy for virally-

induced HCC was also clinically tested using HBV or HCV viral proteins as tumor antigens. 

During chronic hepatitis infection, HBV and HCV can integrate its genetic material into the 

hepatocyte’s genome, and HBV and HCV antigens are found in HCC tumors even after viral 

infection clearance [355, 356]. Patients treated with HBV Ag-specific T cells showed positive 

ORRs including volumetric reduction of lung metastases with no new lesions observed in the 

liver or lungs [357]. In addition, no therapy-related adverse events were observed [357]. HCV 

Ag-specific T cells for ACT immunotherapy were generated and tested in preclinical models 

where they showed success, but they have not been tested in humans yet [51, 52, 358].  

Overall, checkpoint blockade and ACT immunotherapy for HCC were proven to be a 

partially successful and safe antitumor and antiviral method for advanced HCC, but the efficacy 

of this therapies needs to be optimized to obtain higher response rates. Even if ACT 

immunotherapy brings hope for the treatment of HCC, there are several aspects of it that need to 

be further improved. These include the facilitation of greater T cell tumor infiltration, avoiding T 

cell exhaustion and tumor immune scape, and reducing adverse side effects such as cytokine 

storm. 
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Figure 4. Adoptive T Cell Transfer Immunotherapy Using TCR Gene-Modified T Cells. 

A) Viral or cancer antigen specific T cell clones are isolated from hepatocellular carcinoma 

tumor infiltrating lymphocytes or peripheral blood and expanded in vitro to identify a 

therapeutic Ag-specific TCR candidate. B) TCR  and  genes are identified and cloned into 

retroviral vectors. C) Packing and producer cell lines are engineered to produce high titers of 

retrovirus containing the Ag-specific TCR. D) Retrovirus are used to transduce activated 

peripheral mononuclear blood cells from hepatocellular patients which are then expanded in 

vitro, and E) re-infused back into the patient. These autologous Ag-specific T cells have 

redirected specificity to provide anti-tumor immunity. 
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Summary 

 

 The field of immunotherapy has shown great advances for the treatment of solid tumors 

and hematopoietic malignancies in the last fest years. The use of genetically modified T cells that 

express TCRs specific for tumor antigens for ACT immunotherapy represents a promising 

approach to treating cancer patients [359]. Despite of the recent clinical success, there are many 

issues that remain in optimizing the efficacy of this type of immunotherapy. Many studies have 

focused on understanding the mechanisms of immune escape posed by the tumor including the 

role of the immunosuppressive TME. Malignant and non-malignant immune cells in the TME 

were characterized as well as their mechanisms to inhibit T cell anti-tumor function. On the other 

hand, other host factors that can affect T cell function and ACT immunotherapy efficacy remain 

well understudied. An example of this is the effect of sex and sex hormone signaling on the T 

cell anti-tumor function during immunotherapy. The sex hormone estrogen is present at 

physiological concentrations in females, and lower concentrations in males and post-menopausal 

females. Interestingly, some tumor and tumor-adjacent cells were shown to upregulate the 

expression of aromatase, the enzyme that synthesizes estrogen, which results in significantly 

increased estrogen concentrations in the TME. This indicates that adoptively transferred T cells 

will be exposed to different concentrations of estrogen throughout the body including the 

peripheral circulation depending on the sex of the patient, and then the TME. 

  Estrogen signaling can affect the differentiation, maturation and function of immune cells 

depending on various factors such as the concentration of hormone present, and the different 

estrogen receptor signaling pathways. Given that, one important mechanism of estrogen 

modulation of the immune system is by altering the differentiation, function, and cytokine 
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production of T cells. Estrogen signaling at physiological concentrations is generally pro-

inflammatory and enhances the function of T cells. However, the effect of estrogen on T cell 

function at non-physiological concentrations like the ones found the TME remains unclear.  

The effects of estrogen signaling on T cells and other immune cells results on differences 

on pathogenesis of diseases that arise from immune cell function dysregulation, like 

autoimmunity, or diseases that are heavily controlled by immune responses, like infections and 

cancer. Estrogen generally enhances the pathogenesis of autoimmunity while is protective 

against some infections and non-reproductive cancers. One malignancy that is heavily affected 

by estrogen is HCC. HCC is significantly more prevalent in males compared to pre-menopausal 

females [360, 361]. Post-menopausal females that are not undergoing estrogen HRT are also 

more prone to develop HCC than pre-menopausal females and estrogen users. The protective 

role of estrogen against HCC was shown to be mediated by estrogen receptor signaling inhibition 

of IL-6-mediated chronic inflammation and tumor infiltrating macrophage polarization. The role 

of estrogen signaling on other HCC tumor infiltrating immune cells remains unclear and needs 

further investigation.   

The goal of this dissertation is to better understand the effect of estrogen signaling on 

genetically modified T cells used in ACT immunotherapy. The effect of estrogen signaling on T 

cell function, cytokine production and polyfunctionality will be investigated at physiological and 

non-physiological high estrogen concentrations. In addition, due to the many possibilities in 

estrogen receptors and different downstream signaling, the receptors through which estrogen 

predominantly signals in T cells from males and females, and the signaling happening 

downstream from the estrogen receptors will be investigated in the context of immunotherapy. 
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Lastly, using a novel HCC preclinical model, the effect of estrogen presence during ACT 

immunotherapy will be measured. Taken together, these studies will help to understand how 

estrogen can be beneficial or disadvantageous for T cell function in anti-tumor immune 

responses and will aid to design better and stronger T cells for adoptive cell transfer ACT 

immunotherapy. 
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CHAPTER II 

MATERIALS AND METHODS 

T Cells 

All human female and male PBMCs samples used for T cell transductions were obtained 

from HLA-A2+ buffy coats purchased from Zenbio Inc. (Research triangle Park, NC). T cells 

were derived from the PBMCs of healthy donors isolated from buffy coats using Ficoll-Hypaque 

(Sigma-Aldrich, St. Louis, MO) density gradient centrifugation. T cells were then maintained on 

AIM-V serum-free media (Gibco) containing 10% pooled human male AB serum (Sigma-

Aldrich), 300 IU/mL recombinant human IL-2, and 100 ng/mL recombinant human IL-15 (rhIL-

2 and rhIL-15, National Institute of Health, Biological Resources Branch Bethesda, MD) at 37ºC 

in a humidified 5% CO2 incubator.  

HCV1406 TCR Retroviral Vector 

 

 The retroviral vector containing the TCR specific for the HCV antigen was generated by 

introducing the TCR chain genes and a truncated CD34 (CD34t) molecule lacking its 

intracellular signaling domain into an original SAMEN vector described by Treisman et al. [362-

364]. The modified SAMEN vector, denominated HCV1406, contains the sequence for the  and 

 chains of the TCR specific for the HCV non-structural protein 3 (NS3) antigen (amino acids 

1406-1415) separated by a P2A-self-cleaving linker, and then it contains the CD34t sequence 

separated by a T2A self-cleaving linker (Figure 5) [51, 358, 365]. The HCV1406 TCR retroviral 
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vector was used to generate a high viral titer producer PG13 cell line which retroviral supernatant 

was used to transduce human male and female primary T cells.  

 

 

 

 

 

 

 

 

Generation of High Viral Titer Producer PG13 Cells 
 

 To generate stable virus producer cells, 3×106 HEK-293gp cells were plated in a 10 cm 

tissue culture plate in DMEM medium (Gibco) containing 10% FBS. The next day, the HEK-

293gp cells were transfected with 20 g of the HCV1406 TCR retroviral vector and 5g of a 

plasmid encoding the vesicular stomatitis virus envelope gene in 50 L of Lipofectamine 2000 

(LifeTechnologies). After six hours, the supernatant was carefully removed and replaced with 10 

mL of fresh DMEM containing 10% FBS. After 48-hour incubation at 37ºC in a humidified 5% 

CO2 incubator the viral supernatant was collected and filtered through a 0.45 m cellulose 

acetate syringe filter (VWR). 2×106 PG13 cells were plated in a 10 cm tissue culture plate and 

the viral supernatant from the HEK-293gp cells was used to transduce them over three days 

while incubated at 37ºC in a humidified 5% CO2 incubator. Transduction efficiency was 

quantified by measuring CD34 expression via flow cytometry with an anti-human CD34-PE 

Figure 5. Structure of the HCV1406 TCR Retroviral Vector Used to Transduce Human Male 

and Female T Cells. TCR retroviral vector containing the HCV1406 TCR  and  chain genes 

fused by a P2A self-cleaving peptide linker. A truncated version of the CD34 molecule (CD34t) 

missing the intracellular signaling domain serves as a marker for transduction and it is fused to 

the 3’ end of the TCR b chain via a T2A self-cleaving peptide. LTR: long terminal repeat, SD: 

splicing donor, SA: splicing acceptor, ’: packaging signal. This retroviral vector was previously 

described by Rosen et al. J. Immunol. 2004.  
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antibody (BioLegend), and transduced cells were sorted for high and uniform CD34 expression 

using a FACS Aria Illu cell sorter (BD BioSciences).  

 In order to generate HCV1406 TCR retrovirus for transductions, 10x106 sorted stable 

producer PG13 cells were plated in a T-175 flask and treated with IMDM media supplemented 

with 10% FBS, 1 M sodium butyrate (Sigma-Aldrich), and 10 mM HEPES (Gibco) for 8 to 10 

hours. After treatment, sodium butyrate containing media was replaced with IMDM 

supplemented with 10% FBS and cells were incubated overnight. Then, fresh retroviral 

supernatant was collected and filtered through a 0.45 m cellulose acetate syringe filter and used 

for T cell transduction.  

HCV1406 Retroviral T cell Transduction 

 

Primary human male and female T cells obtained from HLA-A2+ buffy coats were transduced 

via inoculation [366, 367]. Prior to retroviral transduction, primary human male and female T 

cells were activated with 50 ng/mL of anti-CD3 mAb OKT3 (BioLegend, San Diego, CA) for 

four to five days. 24-well flat-bottom non-tissue culture plates (VWR) were coated with 30 

mg/mL Retronectin (Takara, Otsu, Japan) in 0.5 mL of DPBS (Dulbecco’s modified phosphate 

buffered saline) (Gibco) overnight at 4ºC. Before transduction, Retronectin coated plates were 

blocked with 2% PBSA (bovine serum albumin in PBS) for 30 minutes at room temperature 

(RT) and washed with DPBS. Then, 2 mL of fresh retroviral supernatant was added to each well 

and plates were spun for 2 hours at 32ºC at 2,000×g. Then, viral supernatants were aspirated and 

2×106 activated T cells were placed on each well in 1 mL of AIM-V media containing 10% 

human serum, 600 IU/mL rhIL-2, and 200 ng/mL rhIL-15 in combination with 1 mL of retroviral 

supernatant. Plates were spun for 2 hours at 32ºC at 2,000×g. Plates were then incubated 
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overnight at 37ºC in a 5% CO2 humidified incubator and then cells were transferred to tissue-

culture treated plates in supplemented AIM-V medium. Three or four days after, transduction 

efficiency was measured via flow cytometry using human anti-human CD3-APC-Cy7 and anti-

CD34-AlexaFluor700 antibodies (BioLegend).  

Transduced cells were sorted by adding anti-CD34 magnetic microbeads (Miltenyi) to the 

T cells and passing them through a magnetic column (positive selection sorting). T cells that 

remained magnetically attached to the column were eluted and purity of selection was confirmed 

via flow cytometric analysis. All experiments described in this dissertation were performed using 

>90% pure CD34+ transduced T cell populations. 

Cell Lines and Media 

 

The PG13 cell line (stable viral producer cell line) and the T2 cell line (CD3 negative, 

TAP-deficient HLA-A2-expressing APC) were gifts from Dr. Nishimura, Loyola University 

Chicago, Maywood. PG13 cells were maintained in IMEM medium (Gibco) supplemented with 

10% fetal bovine serum (FBS) (VWR, Radnor, PA). T2 cells were maintained in RPMI 1640 

medium (Gibco) supplemented with 10% FBS, 5% penicillin and streptomycin (Gibco), and 5% 

L-glutamine (Gibco). 

Sorting of CD4+ and CD8+ Ag-specific T cells 

 

 Human male and female HCV1406 TCR transduced T cells were sorted into CD4+ or 

CD8+ populations using CD4 or CD8 negative selection magnetic microbead kits (Miltenyi 

Biotec). Non-CD4+ or non-CD8+ cells were labeled with a cocktail of biotin-conjugated 

antibodies as indicated by the manufacturer. Subsequently, non-CD4+ cells or non-CD8+ target 
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cells were magnetically labeled with beads and passed through a magnetic column that captured 

them. The column flow-through was collected and contained >90% pure unlabeled CD4+ or 

CD8+ T cells. Flow cytometry was used to ensure purification with antibodies anti-human CD3-

APCyCy7, CD4-PECy7, and CD8-FITC (BioLegend).  

Estrogen and Estrogen Receptor Antagonists and Agonists 

 

17-estradiol (≥98% purity) powder suitable for cell culture was obtained from Sigma-

Aldrich and reconstituted in DMSO at a 10 M concentration. Human female and male Ag-

specific T cells were treated with 0.5 nM (physiological) or 50 nM (super-physiological) 17-

estradiol for 2 hours and control cells were treated with DMSO alone for 2 hours prior to co-

culture with target T2 cells. The ER antagonist 1,3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-

piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP-dihydrochloride) (≥98% purity), 

and the ER antagonist 4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-

yl]phenol (PHTPP) (≥99% purity) were obtained from Tocris Biotechne and were reconstituted 

in  in DMSO at a 10 M concentration [368, 369]. Human female and male Ag-specific T cells 

were treated with 100 nM of either antagonist or both simultaneously for 2 hours in combination 

with 0.5 or 50 nM 17-estradiol for 2 hours prior to co-culture with target T2 cells.  

Isolation of Cytoplasmic and Nuclear Extracts 

 

 As previously described in Navarro & Watkins (Gender and the Genome, 2017), 3×106 

Ag-specific T cells from male and female donors were treated with none, 0.5, or 50 nM E2 for 2, 

10, 30, 60, or 120 minutes and nuclear and cytoplasmic protein extracts were obtained using the 

NE-PER Nuclear Cytoplasmic Extraction Reagent Kit (Pierce, Rockford, IL) according to the 
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manufacturer's instructions. Treated cells were washed twice with ice-cold phosphate buffered 

saline (PBS) and centrifuged at 500×g for 5 minutes. Cell pellets were resuspended in 100 L of 

cytoplasmic extraction reagent I (CER I) by vortexing and incubated on ice for 10 minutes 

followed by the addition of 5.5 L of CER II. They were then vortexed for 5 seconds, incubated 

on ice for 1 minute, and centrifuged for 5 minutes at 16000×g. The supernatant fraction 

(cytoplasmic) was transferred to a pre-chilled tube and stored at -80°C. The insoluble fraction 

was resuspended in 50 L of nuclear extraction reagent and vortexed every 10 minutes for a total 

of 40 minutes. Tubes were centrifuged at 16000×g for 10 minutes, and the resulting supernatant 

was collected (nuclear fraction) and stored at -80°C until further Western Blot analysis. 

Western Blot Analysis 

 

As previously described in Navarro & Watkins (Gender and the Genome, 2017), equal 

amounts of nuclear and cytoplasmic protein isolated from estrogen treated male and female Ag-

specific T cells were loaded onto a sodium dodecyl sulfate (SDS)/polyacrylamide gel. After 

electrophoresis, proteins were transferred into a polyvinylidene fluoride membrane (Bio-Rad) 

and blocked for 1 hour with 5% BSA in Tris-buffered saline containing Tween-20. After 

blocking, membranes were incubated overnight with the anti-human ER primary antibody 

clone D8H8 (1:1000) (Cell Signaling Technologies) at 4°C while shaking. After washing, 

membranes were incubated for 1 hour at RT with the horseradish peroxidase-conjugated anti-

rabbit IgG secondary antibody (1:5000) (Cell Signaling Technologies). Proteins were detected 

using an enhanced chemiluminescence substrate kit (Thermo Fisher). All blots were stripped and 

re-probed with anti-human β-actin antibody (1:2000) or anti-human Lamin A/C (1:1000) (Cell 
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signaling Technologies). Western blots were imaged using a ChemiDoc MP imaging system 

(Bio-Rad) and quantified using the software ImageJ.  

Peptides 

 

HCV-NS3 (1406–1415): KLVALGINAV and tyrosinase (368–376): YMDGTMSQV 

peptides were obtained from Synthetic Biomolecules (San Diego, CA). Peptides were 

reconstituted in dimethyl sulfoxide (DMSO) and stored at -20ºC. For all the experiments 

described, T2 cells were pulsed with 5µg/mL of either peptide for 2 to 4 hours at 37ºC in a 5% 

CO2 humidified incubator. 

Cytokine Release Assays 

 

T cell cytokine secretion was measured in cytokine release assays such as enzyme-linked 

immune absorbent spot (ELISPOT) and enzyme-linked immunosorbent assay (ELISA). 2.5×104 

T2 cells loaded with peptides or HCV-expressing tumor cells were used as target cells. T2 cells 

were pulsed with 5 g/mL of HCV1406 or tyrosinase peptides for 2-4 hours, and 2.5×104 human 

male and female HCV Ag-specific T cells were treated with 0, 0.5, or 50 nM estrogen for two 

hours. IFN and Granzyme B secretion was measured via ELISPOT by coating ethanol activated 

ELISPOT plates with anti-human IFN (BD Biosciences) or anti-human Granzyme B (R&D 

Systems) capture antibodies overnight at 4°C. Plates were blocked with RPMI containing 10% 

FBS for 2 hours at RT. Treated T cells were co-cultured with pulsed T2 target cells at a 1:1 ratio 

on coated ELISPOT plates for 18 hours at 37ºC in a 5% CO2 humidified incubator. Co-cultures 

were then aspirated and the relevant biotinylated secondary and streptavidin–horseradish 

peroxidase antibodies (Streptavidin-HRP, BD Biosciences) were added and plates were 
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incubated for 2 hours or 1 hour respectively at RT. Plates were developed using 3-Amino-9-

ethylcarbazole (AEC) substrate (BD Biosciences) and spots were quantified using a CTL 

ImmunoSpot S6 reader. After each step of this process, the plate was thoroughly washed 5 times 

with PBS containing 0.05% Tween-20. 

 TNF and IL-4 secretion was measured via ELISA by coating 96-wells ELISA plates 

with anti-human TNF or IL-4 (MabTech) capture antibodies overnight at 4°C. Plates were 

blocked using PBS with 10% FBS for 1 hour at RT. Then, 100 L of co-culture supernatant and 

standards were added to the plate and incubated for 2 hours at RT. This was followed by 

incubating the plate with the relevant biotinylated secondary and streptavidin-HRP antibodies for 

1 hour at RT. Plates were developed using tetramethylbenzidine (TMB) substrate and stopped by 

adding 1 M sulfuric acid. The absorbance was then read at 450 nm in iMark Microplate 

absorbance reader (Bio-Rad). After each step of this process, the plate was thoroughly washed 5 

times with PBS containing 0.05% Tween-20. 

Flow Cytometry 

 

 Fluorochrome-conjugated antibodies were used to detect human transduced Ag-specific 

T cell surface markers (CD3, CD34, CD4 and CD8) and activation markers (CD25, CD69). In 

functional assays, Ag-specific T cells were also stained for the lytic marker CD107a and 

intracellular cytokines (IFN, TNF, IL-2, IL-4, IL-17a, IL-22, and Granzyme B). Intra-nuclear 

staining was used to detect T cell transcription factors (T-Bet, GATA3, RORt, and FoxP3). A 

table summarizing all flow cytometry antibodies used can be found in Table 1. 
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Flow cytometry staining standard protocols were followed for measuring extra and 

intracellular protein expression. Cells were spun in 5 mL polystyrene tubes (VWR) and washed 

with PBS containing 2% FBS and 0.01% sodium azide (FACS buffer) twice. Cell suspensions 

were treated with anti-CD16/32 antibody (BD Pharmigen) for 10 minutes to block Fc receptors 

and non-specific staining. Next, cell suspensions were incubated with extracellular marker 

antibodies for 30 minutes at 4°C in the dark. Cells were washed to remove antibody excess and 

incubated with intracellular fixation buffer (BioLegend) for 20 minutes at 4°C in the dark and 

then washed twice with permeabilization buffer (BioLegend). Fixed and permeabilized cells 

were then incubated with intracellular marker antibodies for 30 minutes at 4°C in the dark. Then, 

cells were washed with permeabilization buffer and staining was measured in a BD Fortessa flow 

cytometer. Data were analyzed using FlowJo software package. 
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For transcription factor staining, cells that had been stained for extracellular markers 

were incubated in 1 mL of Foxp3 Fixation/Permeabilization working solution (eBioscience) for 

45 minutes at RT in the dark and then washed twice with permeabilization buffer (eBioscience). 

Fixed and permeabilized cells were then incubated with transcription factor antibodies for 45 

minutes at RT in the dark. Then, cells were washed with permeabilization buffer and staining 

was measured in a BD Fortessa flow cytometer. Data were analyzed using FlowJo software 

package. 

Table 1. Antibodies Used for Flow Cytometry Staining.  
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Multi-Intracellular Cytokine Assay 

 

2.5×105 human male and female sorted HCV Ag-specific T cells were treated with 0, 0.5, 

or 50 nM estrogen in combination with 100 nM MPP-dihydrochloride (ER inhibitor), or 100 

nM PHTPP (ER inhibitor), or 100 nM of both MPP-dihydrochloride and PHTPP 

simultaneously for 2 hours. Treated T cells were then co-cultured with 2.5×105 T2 cells that had 

been pulsed with 5g/mL of HCV NS3 or tyrosinase peptides at 37ºC for 5 hours in the presence 

of protein transport inhibitors GolgiPlug and GolgiStop (BD Biosceinces).  Then extracellular 

staining for markers CD3, CD34, CD4, CD8, and CD107a was performed as described before. 

Subsequently, cells were fixed and permeabilized and staining for intracellular markers IFN, 

TNF, IL-2, IL-4, IL-17a, IL-22 was performed as described before. Samples were ran in a BD 

Fortessa flow cytometer and analyzed using FlowJoX. 

Gating strategy to analyze these data consisted on selecting the singlet population (FSC-

A vs FSC-H), and then the T cell population was gated individually from T2 cells by FSC vs 

SSC comparison. T cells were gated on CD3+CD34+ populations and then Ag-specific T cells 

were gated on CD8+CD4- or CD8-CD4+ populations. These CD3+CD34+CD8+CD4- or 

CD3+CD34+CD8-CD4+ populations were used as starting point for subsequent functional 

analysis. Functional parameters included CD107a, IFN, TNF, IL-2, IL-4, IL-17a, and IL-22. 

All these parameters were gated against SSC to obtain the percent frequency of 

CD3+CD34+CD8+CD4- or CD3+CD34+CD8-CD4+expressing each of them 
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Polyfunctional Flow Cytometry Data Analysis 

 

In order to obtain the levels of expression of all the possible marker combinations, 

Boolean combinatorial gating was applied to the seven markers expressed in both the 

CD3+CD34+CD8+CD4- and CD3+CD34+CD8-CD4+ population. Boolean combinatorial gating 

yielded a total of 128 marker combinations (2n n=7 27=128). This seven-parameter functional 

analysis yielded a dataset way too complex to graphically depict in FlowJoX. Comparisons of 

expression of all these marker combination between sexes and estrogen and estrogen receptor 

inhibitor treatments were also too complicated to perform using FlowJoX. Subsequent analysis 

of these data was performed using the software Simplified Presentation of Incredibly Complex 

Evaluation (SPICE). Pre-processing of the data was performed using the software Pestle. After 

combinatorial Boolean gating, Pestle offers data formatting and background subtraction of 

multivariate data sets. The polyfunctionality data obtained from Ag-specific T cells stimulated 

with T2 cells pulsed with tyrosinase was used for background subtraction. Data sets were then 

imported to SPICE for graphical analysis. While background subtraction can result in below zero 

values, SPICE has a threshold approach which will minimize systematic bias and can maximize 

the amount of information that can be gained from positive measurements [370]. Visualization of 

data includes pie charts, bar graphs, and cool plots, a type of heat map. Heat maps were chosen 

to represent the data. The mean of the percent frequency expression of each cytokine 

combination for the 15 female and 15 male donors mean values were plotted in the heat maps. 
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Animal Experiments 

 

All NOD.Cg-Mcph1Tg(HLA-A2.1)1Enge Prkdcscid Il2rgtm1Wjl/SzJ (NSG-A2) mice aged 6-8 

weeks were obtained from The Jackson Laboratory. Bilateral ovariectomies or sham surgeries 

were performed on female and male mice. Briefly, any mouse having surgery was placed on 

Carprofen gel diet (MediGel) 24 hours preceding surgery and kept on that diet for 72 hours post-

operation. Each animal also received Enrofloxacin (Bayer Animal Health) injected 

subcutaneously at 10 mg/kg as a broad-spectrum antibiotic. The animal was then anesthetized 

using Isoflurane (Abbott Labs) and placed on its sternum and prepared for surgery using 70% 

ethanol and iodine wipes. Two 1 cm skin incisions were made longitudinally over the animal’s 

fat pads, then one at the time, the fat pads were pulled from the body cavity until the ovaries 

were exposed. Ovaries were dissected away from the fat pad and the remaining uterine horns 

were placed back into the cavity (this step was skipped during sham surgeries). Skin was closed 

using 9 mm skin clips on each side. Then, the animal was placed in a clean cage with access to 

Carprofen gel diet and Enrofloxacin treatments as indicated before. Skin clips were removed 14 

days post-operation and tumor challenge was then performed.  

To generate HCC tumors, human oncogenes c-MET and -catenin, and the HCV:NS3 

antigen expressions vectors in combination with sleeping beauty (SB) transposons were used 

[371, 372]. Plasmids maps containing the expression vectors for c-Met, catenin and sleeping 

beauty transposase are described in Figure 6. The structure of the HCV NS3 expression vector is 

described in Figure 7. 9 g of pT3hMET, 9 g of pT3CAT, and 9 g of pCDNAIII-NS3 

(containing the sequence of the HCV:NS3 peptide) in combination with SB transposase at a 2:1 
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ratio were diluted in 2 mL of normal saline (0.9% NaCl), filtered through a 0.2 m filter 

(Corning), and injected into the lateral tail vein of female ovariectomized/sham mice or male 

sham mice that were around 8-9 weeks old in <7 seconds. At day 20 or day 40 after tumor 

challenge, mice were given ACT immunotherapy consisting of 10×106 sex-matched human HCV 

Ag-specific T cells via tail vein injection. Mice that received ACT were given 2.5 g of rhIL-15 

every 3 days to ensure human Ag-specific T cell survival. 20 days after T cell transfer, mice 

were sacrificed, and livers and spleens were collected for analysis. All mice were housed under 

specific pathogen-free conditions and were treated in accordance with NIH guidelines under 

protocols approved by the animal care and use committee (IACUC) of Loyola University 

Chicago (Maywood, IL). 

Cell Isolations 

 

Human Ag-specific T cells were isolated from single cell suspensions of tumors obtained 

by digesting livers with 1 mg/mL collagenase D (Roche) for 30 minutes at 37°C while shaking 

and dissociating them using a Stomacher bag (Sewer). Liver single cell suspensions were then 

subjected to a Percoll (GE Healthcare) density gradient. Briefly, cell suspensions were prepared 

in 10 mL cell culture media and underlayed with 40% and subsequently 80% Percoll to separate 

out lymphocytes from tumor cells. Cells were collected at the 40/80 interface for further analysis. 

Human Ag-specific T cells were also isolated from spleen single cell suspensions obtained by 

pushing the tissue through a 70 m nylon filter. Then, red blood cells were lysed using 

ammonium-chloride-potassium (ACK) lysis buffer (Lonza). 

 



 
 

 
 

69 

 

 

 



 
 

 
 

70 

 

 

 

 

 

 

 

 

Figure 6. Vector Maps of Human c-MET and Catenin-P3T, and Sleeping Beauty 100 

Transposase-pCMV Used to Generate HCC in Mice. A) Human c-MET (9745 bp) and B) 

human Catenin (7691 bp) are shown in the black arrows. C) Human SB100 (4752 bp) is shown 

in the cyan after the T7 promoter. These vectors were previously described by Tward et al. 

PNAS. 2007. 

Figure 7. Structure of the pcDNAIII Vector Containing the HCV NS3 Sequence. The full 

sequence of the HCV non-structural protein 3 (NS3) was linked to GFP with a T2A self-cleaving 

peptide. LTR: long terminal repeat, SD: splicing donor, SA: splicing acceptor, ’: packaging 

signal. This pdNAIII vector was described by Spear et al. Cancer Immunol Immunother. 2016.  
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ELISPOT Using Tumor Cells as Targets 

 

 NSG-A2+ mice were injected with MET/CAT/HCV or MET/CAT hydrodynamically and 

tumors were left to develop for 60 days. On day 60 tumors were extracted and digested using 1 

mg/mL of collagenase D as previously described. Single cell suspensions of tumor cells were 

washed using RPMI containing 10% FBS and counted. 2.5×105 tumor cells from mice injected 

with MET/CAT/HCV or MET/CAT were then co-cultured with human female and male HCV 

Ag-specific T cells from 3 different donors in triplicates in a 1:1 ratio for 18 hours on an anti-

human IFN coated ELISPOT plate. After 18 hour co-culture plates were developed as 

previously described and spots were quantified.  

Statistical Analysis 

 

All data are represented as the mean ± standard error of the mean (SEM). All the 

statistical analyses were conducted using GraphPad Prism (version 7). For experiments that did 

not require group wise comparisons, student’s t test was used with significance set at p<0.05. For 

experiments that did require group wise comparisons, 1 or 2 way ANOVA were used with a 

Tukey’s post-hoc test with significance set at p<0.05.  

For experiments analyzing the effect of estrogen signaling on T cell polyfunctionality, 

data were analyzed using MANOVA with a Tukey’s post-hoc test with significance set at 

p<0.05. In order to test whether the effects of estrogen inhibitor treatments on the percent 

expression for a given cytokine combination vary significantly based on estrogen treatment, and 

vice versa, Michael Wesolowski, MPH (Clinical Research Office, Loyola University Chicago, 

IL) performed linear regression model. Mixed-effects linear regression models were used to 
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estimate the expression of unique cytokine combinations for various estrogen and estrogen 

inhibitor treatment combinations. Models including an estrogen main effect, an estrogen 

inhibitor main effect, and an estrogen x estrogen inhibitor interaction term were run for each 

unique cytokine combination. These models featured random intercepts to account for within-

donor correlations existing between cells and treatments related to the same donor, and 

unstructured variance-covariance structures. The estimated effects of estrogen and estrogen 

inhibitor treatment combinations, as well as the average estimated cytokine expression for each 

estrogen and estrogen inhibitor treatment combination, are reported. Post-hoc pairwise 

comparisons between each index estrogen treatment (50 & 0.5) and the reference estrogen 

treatment (0) were conducted within each estrogen inhibitor treatment stratum. Separate models 

were run for each of 83 unique cytokine combinations, and as a result, an experiment-wise 

Sidak-corrected significance level of α = 0.000618 was used to control the Type I error rate. An 

additional Sidak adjustment was used to correct p values for the multiple, post-hoc pairwise 

comparison tests. 

Mixed-effects linear regression model was described as: 

Within-Donor Model:  

𝐶𝑦𝑡𝑜𝑘𝑖𝑛𝑒 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑗 =  𝑏0𝑖 + 𝑏1𝑖*𝐸𝑠𝑡𝑟𝑜𝑔𝑒𝑛 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑖𝑗  + 𝑏2𝑖*𝐸𝑠𝑡𝑟𝑜𝑔𝑒𝑛𝑖𝑗  

+ 𝑏3𝑖*𝐸𝑠𝑡𝑟𝑜𝑔𝑒𝑛 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑖𝑗*𝐸𝑠𝑡𝑟𝑜𝑔𝑒𝑛𝑖𝑗  + 𝜀𝑖𝑗 

Between-Donor Model: 

𝑏0𝑖 = 𝛽0 + 𝜈0𝑖 

𝑏1𝑖 = 𝛽1 

𝑏2𝑖 = 𝛽2 

𝑏3𝑖 = 𝛽3
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CHAPTER III 

ESTROGEN SIGNALING THROUGH ER AND ER DIFFRENTIALLY IMPACTS 

HUMAN MALE AND FEMALE AG-SPECIFIC T CELL CYTOKINE PRODUCTION 

 

Introduction and Rationale 

Immunotherapy is a treatment modality that was proven to be effective in many types of 

difficult to treat cancer, and it is a promising therapy option for HCC. Treatment of HCC patients 

with checkpoint blockade immunotherapy showed some success with 20% partial response rates 

[342]. Many tumor specific antigens that can be used as targets of T cells for ACT 

immunotherapy were identified including but not limited to GPC3, -fetoprotein, MUC-1, and 

the viral proteins of HCV and HBV [350, 351, 354, 357]. Even if ACT immunotherapy brings 

hope for the treatment of HCC, critical aspects that need to be further improved upon during 

immunotherapy include facilitating greater T cell tumor infiltration, avoiding T cell exhaustion, 

and reducing adverse side effects such as cytokine storm. The role of host factors including sex 

and estrogen signaling has never been investigated in ACT immunotherapy for HCC. Adoptively 

transferred T cells are exposed to different estrogen concentrations in the body including 

physiological estrogen or low estrogen depending on the sex and reproductive state of the 

patient, and super-physiological estrogen in the TME. Considering that estrogen has a protective 

role against HCC through mechanisms involving inflammation, it can be hypothesized that 

estrogen signaling enhances T cell function and anti-tumor response which subsequently can 

enhance the efficacy of ACT immunotherapy. Estrogen signaling in immune cells is highly 
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dependent on concentration and estrogen receptor subtype hence it is necessary to investigate 

these factors on immune cells mediating the anti-tumor immune response in order to optimize 

immunotherapy treatment against HCC. This dissertation is based in studying the effects of 

estrogen signaling on the function of TCR transduced T cells used for immunotherapy. 

 In order to characterize the effect of estrogen signaling on Ag-specific T cells used for 

ACT immunotherapy against HCC, HCV was chosen as a model target antigen. HCV infects 

approximately 140 million people worldwide and chronic HCV infection can result in associated 

liver disease including cirrhosis and HCC [284]. Moreover, 50 to 80% of HCC cases derive from 

chronic HCV infection [373]. Even if HCV protease inhibitor anti-viral drugs Telaprevir, 

Boceprevir, and Simeprevir were developed and recently approved for clinical use [374, 375], 

the rapidly mutating HCV genome generates drug resistance in hepatocyte [376, 377]. In 

addition, many patients treated with anti-viral drugs have already developed associated liver 

disease, such as cirrhosis, that cannot be treated with these drugs. Knowing all this, a TCR that 

recognizes the HCV NS3 (amino acids 1406 to 1415) antigen was selected. This TCR, 

denominated HCV1406, was isolated from a T cell clone found in an HLA-A2+ HCV+ HCC 

patient that received an HLA-A2+ liver transplant [378]. T cells genetically modified with this 

TCR were previously shown to recognize HCV+ target cells in vitro in an HLA-A2-dependent 

manner, and to be able to reject patient-derived xenografts (PDX) tumors in vivo [51]. In the 

following sections, the effect of estrogen signaling on human male and female HCV Ag-specific 

T cell cytokine expression and production are described. 
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Results 

Ag-specific T cells from Male and Female Donors Express and Signal through ER in 

Response to Estrogen Stimulation 

 

 To study the effect of estrogen signaling on human male and female Ag-specific T cells, 

peripheral blood derived T cells from 15 healthy male and 15 healthy female donors were 

transduced with the HCV1406 TCR (Figure 5). While 5 male and 5 female donors were of 

unknown age, the remaining male and female donors were between 22 and 48 years old 

corresponding to pre-menopausal age for female donors. The HCV1406 TCR retroviral vector 

codes for a truncated version of CD34 (CD34t), which was used for transduction recognition and 

purification of transduced T cells for further in vitro and in vivo studies. Transduction of either 

male or female T cells with the HCV1406 TCR typically yielded around 30 to 60% transduction 

efficiency (Figure 8 A). After purification by magnetic bead cell sorting using the CD34 

expression as a target, studies described in this dissertation are based on the effect of estrogen on 

a population of Ag-specific T cells at > 90% purity (Figure 8 A). HCV 1406 transduced sorted T 

cells from male and female donors had very similar CD3+CD34+ mean fluoresce intensity (MFI) 

which is important to achieve to ensure that differences on HCV1406 TCR expression between 

donors did not give rise to differences on T cell activation and function (Figure 8 A). Transduced 

T cell populations from male and females showed significantly higher frequencies of CD8+ 

compared to CD4+ T cells but there were no significant differences on T cell subset distribution 

between sexes (Figure 8 B, C).   

 After transduction and CD34+ purification, male and female HCV Ag-specific T cells 

were sorted into CD4+ and CD8+ populations and ER expression was tested via western blot. 

There were no sex-differences on the expression level of ER in the bulk population or in the 
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CD4+ and CD8+ populations of Ag-specific T cells (Figure 9 A, B). CD4+ Ag-specific T cells 

from both sexes showed significantly higher expression of ER compared to CD8+ T cells and 

bulk T cell populations (Figure 9 A, B). In order to test if ER translocates into the nucleus after 

estrogen ligand stimulation, male and female Ag-specific T cells were treated with no estrogen 

(0), physiological (0.5 nM), or super-physiological (50 nM) concentrations of E2 for 0, 2, 10, 30, 

60, and 120 minutes before lysis of the cells and separation of cytoplasmic and nuclear fractions 

to tests for ER expression. ER was expressed in the cytoplasm of the cell of male and female 

Ag-specific T cells but its expression was significantly decreased after 2-minute estrogen 

treatment on female T cells (Figure 9 C, E) and after 10-minute estrogen treatment on male cells 

as demonstrated by normalizing expression to -actin as a loading control (Figure 9 C, F). On the 

other hand, ER expression in the nucleus was quickly increased in male T cells after 2-minute 

estrogen treatment (Figure 9 D, F), and increased overtime after estrogen stimulation in female T 

cells as demonstrated by normalizing expression to Lamin A/C loading control (Figure 9 D, E). 

The time course of E2 treatment revealed that nuclear translocation of ER upon E2 ligation is 

very rapid, within 2 to 10 minutes, in male and female Ag-specific T cells. This rapid 

translocation was found to be transient since cytoplasmic ER expression re-accumulated, and 

nuclear ER expression diminished over time. Cytoplasmic and nuclear ER was not 

significantly different during this time course between T cells treated with 0.5 nM or 50 nM 

estrogen concentrations indicating that ER can quickly translocate into the nucleus of male and 

female Ag-specific T cells upon ligand binding in physiological and super-physiological 

conditions.  
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Figure 8. T Cells from Male and Female Donors Were Transduced to Express the 

HCV1406 TCR to Study Ag-specific T Cell Function. A) Representative flow cytometry dot 

plots for one female and one male donor T cells before transduction showing T cell populations 

with very low CD34 expression, after transduction showing T cell populations with variable 

expression of CD34, and after CD34 magnetic bead sorting showing T cell populations over 

95% CD3
+
CD34

+
. B) Representative dot plots for CD4

+
 and CD8

+
 T cell subsets of TCR 

transduced and sorted T cells. C) CD4
+
 and CD8

+
 frequencies of TCR transduced and sorted T 

cells from 15 female and 15 male human healthy donors. Each donor plotted and SEM 

indicated. Analyzed using 2-way ANOVA with Tukey’s post-hoc. p<0.0001=****, 

p<0.001=***. 
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Figure 9. Female and Male HCV1406 TCR-transduced T Cells Express ER which 

Rapidly Translocates into the Nucleus upon 17-estradiol (E2) Stimulation. A) 

Representative western blot showing ER expression in the bulk  Ag-specific T cell population 

or sorted CD4
+
 or CD8

+
 T cells from one female and one male donor, and B) quantification of 

the relative expression of ER compared to Actin in bulk T cells, CD4
+
, and CD8

+
 sorted Ag-

specific T cells. TCR-transduced T cells were then treated with 0.5, or 50 nM E2 for 0, 2, 10, 

30, 60, or 120 minutes and ER expression was measured via western blot from protein extracts 

of C) the cytoplasm or D) the nucleus. ER expression compared to Actin cytoplasmic loading 

control or Lamin A/C nuclear loading control was quantified for Ag-specific T cells from E) 

female and F) male donors treated with 0.5 or 50 nM E2 and normalized to T cells treated with 

no estrogen (0 nM). Data represents n=4 donors, each donor plotted and the SEM indicated. 

Analyzed using 2-way ANOVA with Tukey’s post-hoc. p<0.001=***, p<0.01=**, p<0.05=*. 
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This western blot analysis was not able to be performed to test for ER nuclear 

translocation due to lack of reliable antibodies [379, 380]. ER was previously shown to be 

expressed in human CD4+ and CD8+ T cells even if it was expressed at significantly lower levels 

than ER  Knowing than ER and ER are highly homologous and have similar affinity 

for the estrogen ligand [382], it can be hypothesized that ER also translocates into the nucleus 

of Ag-specific T cells upon estrogen ligand binding. The roles of estrogen signaling through both 

ER and ER on male and female Ag-specific T cell function were studied throughout this 

dissertation. 

Estrogen Signaling through ER and ER Differentially Modulates T cell Cytokine 

Expression and Secretion  
 

 In order to determine the effect of physiological and super-physiological estrogen 

signaling through ER and ER on T cell function, Ag-specific T cells were activated with their 

HCV cognate antigen in the presence of estrogen and ER and ER selective inhibitors, and 

cytokine production was measured. The best system to assess HCV1406 TCR-transduced T cell 

activation and cytokine production would be to use HCV-expressing human liver cells or liver 

tumor cells, but these cells were not available for the experiments described. As an alternative, 

HLA-A2+ T2 cells were pulsed with the HCV NS3 antigen and used as Ag-specific T cell 

targets. T2 cells pulsed with a tyrosinase irrelevant peptide were used as controls. Male and 

female Ag-specific T cells were treated with no estrogen, physiological (0.5 nM), or super-

physiological (50 nM) estrogen in combination with 100 nM of an ER, or ER selective 

antagonists, or both inhibitors simultaneously for two hours. The ER and ER inhibitors used 

were MPP-dihydrochloride and PHTPP respectively. MPP-dihydrochloride is a selective, high 
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affinity silent antagonist of ER that displays greater than 200-fold selectivity of ER over 

ER (Ki values are 2.7 and 1800 nM at ER and ER respectively) [383, 384]. PHTPP is a 

selective ER antagonist that exhibits 36-fold selectivity for ER over ER (Ki values 139 nM 

and 2.22 M at ER and ER respectively) [384].  

Treated T cells were then co-cultured with pulsed T2 cells. Co-cultures were maintained 

for 5 hours in the presence of protein transport inhibitors to avoid secretion of markers, and then 

cells were stained and analyzed for expression of several T cell cytokines. The cytokines 

assessed included IFN, TNF, IL-2, IL-4, IL-17a, IL-22 and the lytic marker CD107a was 

assessed on the surface. These markers were chosen to represent the signature cytokines of the 

different effector and helper T cell subsets (effector CD8+, and CD4+ Th1, Th2, Th17, and Th22) 

excluding Tregs which do not mediate tumor cell killing or beneficial T helper responses for 

immunotherapy. CD8+ effector T cells commonly secrete high amounts of cytotoxic granules 

(Perforin and Granzymes), as well as IFN and TNF upon Ag stimulation and activation [385]. 

Effector CD4 Th1 cells can secrete IFN and TNF as well, while Th2 cells also secrete IL-4. 

IL-17 and IL-22 were chosen to represent the Th17 and Th22 subsets respectively. Upon 

activation, Ag-specific CD4+ and CD8+ T cells also produce IL-2 which promotes survival of 

both CD4+ and CD8+ T cells, and induces subset differentiation of CD4+ T cells 5 [385]. CD107a 

was chosen as an indicator of Granzyme B release [386]. Granzyme B is released by effector T 

cells upon antigen stimulation and activation; it is a serine protease which activates apoptosis 

once in the cytoplasm of the target cell [385, 386].  Gating strategy of these cytokines and 

CD107a for CD4+ and CD8+ HCV Ag-specific T cells is represented in Figure 10. Gates were 

selected for the CD3+CD34+ transduced T cell population and CD8+ and CD4+ T cell subsets 
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were analyzed separately. For each T cell subset each cytokine and the lytic marker CD107a 

were plotted against side scatter (SSC) and gated based on unstained controls. The dot plots in 

Figure 10 represent the data obtained for CD8+ Ag-specific T cells of one donor out of the 30 

analyzed. The majority of the donors showed highly increased frequency of CD8+ and CD4+ T 

cells expressing IFN, CD107a and TNF upon activation which correspond to a cytotoxic CD8+ 

or an effector Th1 CD4+ T cell response. Some donors also showed increased frequency of CD4+ 

T cells expressing IL-4 upon activation corresponding to Th2 responses. Surprisingly, CD8+ Ag-

specific T cells also expressed IL-4 upon antigen stimulation. IL-2 was expressed by low 

frequencies of activated T cells. Recombinant human IL-2 was added to Ag-specific T cell 

cultures during their expansion after transduction and this IL-2 supplementation could be the 

reason why activated Ag-specific T cells do not express high IL-2 upon antigen stimulation. 

Also, IL-4 is another gamma cytokine that was shown to enhance the survival of T cells and 

promote memory formation [387-389] indicating that T cells in these experiments could be 

partially surviving by IL-4 downstream signaling instead of IL-2. IL-22 and IL-17 were 

expressed in very low frequencies of T cells upon activation indicating low Th17 and Th22 

responses (Figure 10). ELISPOT or ELISA were used to measure effector and helper T cell 

cytokine secretion including TNF, IL-4, IFN, and Granzyme B from the co-cultures of 

estrogen treated Ag-specific T cells from male and female donors and T2 cells pulsed with the 

HCV antigen or the tyrosinase irrelevant peptide. While the expression or secretion of several of 

the cytokines tested were not directly affected by estrogen receptor signaling, the expression and 

secretion of three of the cytokines (TNF, IL-4, and IFN) and the lytic molecule Granzyme B 

were significantly changed upon estrogen stimulation and estrogen receptor signaling as 

described in the following sections. 
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Figure 10. Representative Gating Strategy to Measure Cytokine and CD107a Expression 

on HCV 1406 TCR-transduced T Cells. T cells were activated with T2 target cells pulsed with 

the HCV NS3 relevant antigen, T2(HCV), or an tyrosinase irrelevant peptide, T2(TYRO). 

Singlet cells were gated in the lymphocyte population, and then CD4
+
CD34

+
 transduced T cells 

were gated into CD4
+
 and CD8

+
 populations. Cytokines and CD107a were gated against side 

scatter (SSC) for both CD4
+
 and CD8

+
 transduced T cell populations. 
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Estrogen Signaling Through ER Enhances TNF Expression and Secretion in a Dose 

Dependent Manner 

 

The percent frequency of male and female transduced CD8+ T cells stimulated with the 

HCV cognate antigen expressing TNF was significantly increased upon super-physiological 

estrogen stimulation (Figure 11 B). The estrogen-mediated increase of TNF expression was 

abrogated when male and female CD8+ T cells were treated with estrogen in combination with an 

ER inhibitor, or when T cells were treated with estrogen in combination with ER and ER 

inhibitors simultaneously (Figure 11 B). On the other hand, the estrogen-mediated increase of 

TNF expression was not affected by blocking ER signaling with an R-specific inhibitor 

(Figure 11 B). A representative example of these flow cytometry results is depicted in Figure 11 

A. These data indicate that super-physiological estrogen enhances the expression of TNF in 

male and female CD8+ Ag-specific T cells through ER and not ER mediated signaling. The 

expression of TNF in CD4+ male and female Ag-specific T cells showed similar trends like the 

ones observed in CD8+ T cells but due to variability among donors resulting in larger error bars, 

significance was not achieved (Figure 11 C). There were no sex differences observed in the 

expression of TNF since similar frequencies of CD8+ and CD4+ male and female T cells 

expressed TNF upon activation (Figure 11 B, C). 

TNF secretion by male and female Ag-specific T cells stimulated with cognate or 

irrelevant antigen was measured via ELISA. Estrogen stimulation of male and female Ag-

specific T cells significantly increased TNF secretion at physiological (0.5 nM), and super-

physiological (50 nM) concentration (Figure 11 D, E).
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Figure 11. Estrogen Signaling through ER Enhances TNF Expression and Secretion in Female and Male Ag-specific T 

Cells upon Ag Stimulation. Male and female HCV Ag-specific T cells were treated with no estrogen, physiological (0.5 nM), or 

super-physiological (50 nM) estrogen in combination with 100 nM of an ER inhibitor (MPP-dihydrochloride), an ER inhibitor 

(PHTPP), or both inhibitors simultaneously for 2 hours prior to activation with T2 cells pulsed with HCV cognate antigen or a 

tyrosinase irrelevant peptide. After 5 hour activation in the presence of protein transport inhibitors, T cells were analyzed for TNF 

expression via flow cytometry intracellular staining. A) Representative dot plots for the expression of TNF in treated T cells from 

one donor. B) & C) The percent frequency of female and male activated B) CD8
+
 and C) CD4

+
 Ag-specific T cells expressing TNF 

after being treated with 0, 0.5, or 50 nM estrogen in combination with ER inhibitors.  D) & E) In order to measure TNF secretion, 

the supernatant of 18 hour co-cultures containing equal number of estrogen treated T cells and pulsed T2 target cells were tested via 

anti-human TNF ELISA. Data represents n=15 or n=4 donors, each donor plotted and the SEM indicated. Analyzed using 2-way 

ANOVA with Tukey’s post-hoc. p<0.01=**, p<0.05=* comparing the different estrogen receptor treatment groups. p<0.0001=####, 

p<0.001=###, p<0.01=##, p<0.05=# comparing estrogen treatments (0, 0.5, 50 nM) within each group. 
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 Overall these data indicate that estrogen stimulation can enhance the secretion of TNF, 

and estrogen signaling through ER can enhance the expression of TNF on CD8+ male and 

female Ag-specific T cells. 

Estrogen Signaling Through ER Modulates the Overall Expression of IL-4, and Further 

Enhances its Expression and Secretion in a Dose Dependent Manner 

 

The percent frequency of male and female transduced CD8+ T cells stimulated with their 

HCV cognate antigen expressing IL-4 was significantly increased upon estrogen stimulation at 

physiological and super-physiological concentrations (Figure 12 B). The estrogen-mediated 

increase in IL-4 expression was completely abrogated when male and female CD8+ T cells were 

treated with estrogen in combination with an ER inhibitor or with ER and ER inhibitors 

simultaneously (Figure 12 B). Not only the estrogen-mediated increase on IL-4 expression was 

abrogated but IL-4 expression was decreased to the levels observed in CD8+ T cells stimulated 

with the tyrosinase irrelevant antigen (Figure 12 B). On the other hand, blocking ER during 

estrogen stimulation showed no effect on the estrogen-mediated increase, or the overall IL-4 

expression of male and female CD8+ Ag-specific T cells (Figure 12 B). Similar results were 

obtained regarding the expression of IL-4 on estrogen stimulated CD4+ male and female Ag-

specific T cells. Estrogen stimulation significantly increased the frequency of CD4+ T cells 

expressing IL-4 upon cognate antigen activation, and the blockade of ER signaling during 

estrogen stimulation decreased IL-4 to the levels of Ag-specific T cells activated with tyrosinase 

(irrelevant peptide) (Figure 12 C). Blockade of ER signaling during estrogen stimulation had no 

effect on the estrogen-mediated increase of IL-4 expression (Figure 12 C). There were no sex 

differences observed in the expression of IL-4 since similar frequencies of CD8+ and CD4+ male 

and female T cells expressed IL-4 upon activation (Figure 12 B, C). These data indicate that 
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estrogen signaling through ER and not ER modulates the overall expression, and the estrogen-

mediated enhancement of expression of IL-4 in male and female Ag-specific T cells. 

IL-4 secretion by male and female Ag-specific T cells stimulated with cognate or 

irrelevant antigen was measured via ELISA. Estrogen stimulation at physiological (0.5 nM), and 

super-physiological (50 nM) concentrations significantly increased IL-4 secretion of male and 

female Ag-specific T cells (Figure 12 D, E). Interestingly, estrogen stimulation increased the 

secretion of IL-4 on male T cells activated with tyrosinase irrelevant antigen (Figure 12 E). This 

indicates that estrogen stimulation can directly upregulate IL-4 secretion independently from 

TCR stimulation and T cell activation. These results demonstrate that estrogen signaling through 

ER and not ER modulates the overall expression of IL-4, and estrogen stimulation at 

physiological and super-physiological concentrations enhances IL-4 expression and secretion on 

male and female activated Ag-specific T cells.  

Ideally, in order to conclude that Estrogen signaling through ER directly enhances 

expression and secretion of TNF and IL-4, a different set of experiments need to be performed 

in which human Ag-specific T cells are treated with an ER agonist instead of estrogen. The 

ER selective agonist 4,4',4''-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) which shows 

a 410-fold selectivity for ER over ER can be used [368, 369]. If expression and/or secretion of 

TNF and IL-4 are enhanced in male and female Ag-specific T cells treated with PPT after Ag 

stimulation to levels similar to those treated with estrogen, then ER alone may enhance the 

expression/secretion of these cytokines. This can be fully concluded if the PPT-mediated 

enhancement on the cytokine expression/production is abrogated in T cells treated with PPT and 

MPP-dihydrochloride (ER antagonist) simultaneously. 
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Figure 12. Estrogen Signaling through ER Modulates Overall IL-4 Expression and Enhances IL-4 Secretion on Male and 

Female Ag-specific T Cells upon Ag Stimulation. Male and female HCV Ag-specific T cells were treated with no estrogen, 

physiological (0.5 nM), or super-physiological (50 nM) estrogen in combination with 100 nM of an ER inhibitor (MPP-

dihydrochloride), an ER inhibitor (PHTPP), or both inhibitors simultaneously for 2 hours prior to activation with T2 cells pulsed 

with HCV cognate antigen or a tyrosinase irrelevant peptide. After 5 hour activation in the presence of protein transport inhibitors, T 

cells were analyzed for IL-4 expression via flow cytometry intracellular staining. A) Representative flow cytometry dot plots for the 

expression of IL-4 in treated T cells from one donor out of the 30 tested. B) & C) The percent frequency of female and male activated 

B) CD8
+
 and C) CD4

+
 Ag-specific T cells expressing IL-4 after being treated with 0, 0.5, or 50 nM estrogen in combination with ER 

inhibitors.  D) & E) In order to measure IL-4 secretion, the supernatant of 18 hour co-cultures containing equal number of estrogen 

treated T cells and pulsed T2 target cells were tested via anti-human IL-4 ELISA. Data represents n=15 or n=4 donors, each donor 

plotted and the SEM indicated. Analyzed using 2-way ANOVA with Tukey’s post-hoc. P<0.001=***, p<0.01=**, p<0.05=* 

Comparing the different estrogen receptor treatment groups. p<0.0001=####, p<0.001=###, p<0.01=##, p<0.05=# comparing 

estrogen treatments (0, 0.5, 50 nM) within each group. 
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On the other hand, if treating Ag-specific T cells with PPT does not enhance cytokine 

expression upon Ag-stimulation, then estrogen signaling through other receptor is mediating this 

effect. Inhibition of ER showed no effect on the estrogen-mediated enhancement of these 

cytokines’ expression indicating that ER signaling is not required for their expression. Estrogen 

signaling through GPER could be enhancing T cell cytokine expression in response to Ag. To 

investigate that possibility, male and female Ag-specific T cells need to be treated with estrogen 

in combination of a GPER antagonist. If the expression of TNF and IL-4 is decreased in T cells 

treated with estrogen in combination of a GPER antagonist compared to estrogen treated cells 

then, estrogen is enhancing TNF and IL-4 expression through GPER. GPER signaling was 

shown to upregulate expression of some cytokines such as IL-10 and IL-1 [390, 391] so there is 

a possibility that GPER signaling controls expression of other cytokines such as TNF and IL-4. 

Unfortunately, these experiments could not be performed, but these results in combination with 

the ones reported in this chapter, would indicate that estrogen signaling through ER and GPER 

enhance Ag-specific T cell cytokine expression and secretion. 

Estrogen Stimulation Enhances Ag-specific T cell IFN and Granzyme B Secretion 

 

Even if some trends were observed, the frequency of male and female CD4+ and CD8+ 

Ag-specific T cells expressing IFN was not significantly changed by estrogen stimulation and 

estrogen receptor signaling during activation as measured by flow cytometry (Figure 13 A, B). 

The trends observed indicated that estrogen stimulation increased IFN expression possibly 

through ER and not ER. Although IFN expression was not significantly affected by estrogen 

stimulation, there was a significant increase on IFN secretion upon super-physiological estrogen 

treatment in female and male CD8+ and CD4+ Ag-specific T cells activated with the HCV 



 
 

 
 

89 

cognate antigen as measured by ELISPOT (Figure 13 C, D, E). Physiological estrogen 

significantly increased the secretion of IFN in activated male CD4+ Ag-specific T cells (Figure 

13 D).  Interestingly, the secretion of IFN was overall higher in CD8+ and CD4+ Ag-specific T 

cells from female donors compared to male donors (Figure 13 C, D, E). While female Ag-

specific T cells showed an average of 600 to 800 IFN spots at baseline estrogen, male T cells 

showed an average of 300 IFN spots at baseline estrogen (Figure 13 C, D). Overall these data 

demonstrate that estrogen significantly enhances the secretion of IFN on male and female CD4+ 

and CD8+ T cells upon antigen stimulation even if female T cells secrete more IFN than male T 

cells in an estrogen-independent manner.  

The secretion of Granzyme B was also measured via ELISPOT on estrogen treated male 

and female activated Ag-specific T cells. There was a significant increase on Granzyme B 

secretion on male and female CD8+ Ag-specific T cells treated with super-physiological estrogen 

(Figure 14 A, B, C). The secretion of Granzyme B was also significantly increased by super-

physiological estrogen treatment on female CD4+ Ag-specific T cells, and a trend was observed 

for male CD4+ T cells even if significance was not achieved (Figure 14 A). The secretion of 

Granzyme B by female CD4+ T cells was higher than by male CD4+ T cells at baseline estrogen 

(around 100 average Granzyme B spots compared to 50) and it was increased significantly upon 

estrogen treatment to around 300 Granzyme B spots compared to only around 100 spots in male 

CD4+ T cells. Overall these results indicate that estrogen signaling enhances the secretion of 

Granzyme B in female and male CD8+ T cells, and female CD4+ T cells which secrete more 

Granzyme B than male T cells in an estrogen-independent manner
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Figure 13. Estrogen Signaling Enhances Male and Female Ag-specific T Cell IFN Secretion upon Ag Stimulation. Male and 

female HCV Ag-specific T cells were treated with no estrogen, physiological (0.5 nM), or super-physiological (50 nM) estrogen in 

combination with 100 nM of an ER inhibitor (MPP-dihydrochloride), an ER inhibitor (PHTPP), or both inhibitors simultaneously 

for 2 hours prior to activation with T2 cells pulsed with HCV cognate antigen or a tyrosinase irrelevant peptide. After 5 hour activation 

in the presence of protein transport inhibitors, T cells were analyzed for IFN expression via flow cytometry intracellular staining. 

A) & B) The percent frequency of female and male activated A) CD8
+
 and B) CD4

+
 Ag-specific T cells expressing IFN after being 

treated with 0, 0.5, or 50 nM estrogen in combination with ER inhibitors. In order to measure IFN secretion, 18 hour co-cultures 

containing equal number of estrogen treated C) female or D) male sorted CD8
+
 or CD4

+ 
T cells and pulsed T2 target cells were tested 

via ELISPOT. E) Representative ELISPOT plate image from co-cultures of CD8
+
 or CD4

+
 T cells from one female and male donor 

out of the 4 donors tested. Data represents n=15 or n=4 donors, each donor plotted and the SEM indicated. Analyzed using 2-way 

ANOVA with Tukey’s post-hoc. P<0.0001=****, p<0.01=**, p<0.05=*. 
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Figure 14. Estrogen Signaling Enhances Granzyme B Secretion in Female and Male 

CD8
+
 Ag-specific T Cells, and Female CD4

+
 Ag-specific T Cells upon Ag Stimulation. 

In order to measure Granzyme B secretion, 18 hour co-cultures containing equal number 

of estrogen treated A) female or B) male CD8
+
 or CD4

+ 
T cells and pulsed T2 target cells 

were tested via anti-human Granzyme B ELISPOT. C) Representative ELISPOT plate 

from co-cultures of CD8
+
 or CD4

+
 T cells from one female and male donor out of the 4 

donors tested. Data represents n=4 donors, each donor plotted and the SEM. Analyzed 

using 2-way ANOVA with Tukey’s post-hoc. P<0.0001=****, p<0.01=**, p<0.05=*. 
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Chapter Discussion 

 

 This chapter of the dissertation was aimed to determine the impact of sex and estrogen 

signaling in regulating Ag-specific T cell function and cytokine production. For the first time, it 

was demonstrated that estrogen signaling and sex of the donor regulate the expression and 

secretion of effector, helper, and lytic T cell cytokines such as TNF, IL-4, IFN, and Granzyme 

B in human Ag-specific T cells.  

Herein it was shown that male and female Ag-specific T cells express equivalent levels of 

the canonical estrogen receptor, ER. ER is well known to bind the estrogen ligand in the 

cytoplasm of the cell and then to translocate into the nucleus where it can regulate target gene 

expression by binding to EREs on gene promoters or by binding other transcription factor 

complexes. ER rapid nucleus translocation upon ligand binding was observed when both male 

and female Ag-specific T cells were stimulated with physiological (0.5 nM) or super-

physiological (50 nM) estrogen concentrations. This rapid translocation was transient since 

reduced nuclear ER expression, and increased cytoplasmic ER expression was observed 

overtime after estrogen treatment. This indicates that both male and female Ag-specific T cells 

can signal through ER in response to two different estrogen ligand concentrations. It is notable 

that estrogen can also bind to ER with same affinity as ER  which elicits different 

downstream effects and modulates different gene expression than ER. Due to insufficient 

antibody validation [379, 380], the nuclear translocation of ER upon estrogen binding in Ag-

specific T cells could not be tested at this time. Knowing that human T cells express ER , 

ER signaling effects on T cell function cannot be dismissed and are further studied in the 

chapters of this dissertation. Estrogen can also bind to the membrane bound GPER which 
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mediates rapid non-genomic responses such as the activation of the MAPK pathway [177]. The 

changes in cytokine secretion and expression observed in Ag-specific T cells could be the work 

of not only the canonical ERs but also be influenced by GPER. This needs to be further studied 

to better understand how to improve the beneficial signaling cascades in these T cells that will 

promote stronger antitumor responses. 

To determine the functional consequences of ER expression in T cells, cytokine 

expression and secretion was measured from antigen stimulated CD8+ and CD4+ T cells. 

Estrogen signaling through ER was shown to enhance the expression of TNF in male and 

female CD8+ Ag-specific T cells, and estrogen treatment also enhanced the secretion of TNF in 

male and female Ag-specific T cells in a concentration dependent manner. The promoter of 

TNF contains an ERE at position -1044 bp [392] indicating that the enhancement of TNF 

expression and secretion in male and female Ag-specific T cells could be mediated by canonical 

ligand-dependent genomic ER signaling (Table 2).  

Estrogen signaling through ER was shown to regulate the overall expression of IL-4 in 

male and female CD8+ and CD4+ Ag-specific T cells. The estrogen-mediated enhancement of IL-

4 expression and the overall IL-4 expression were abrogated when T cells were treated with 

estrogen in combination with an ER inhibitor, suggesting that estrogen regulates IL-4 

expression in a classical ligand-dependent genomic manner. Surprisingly, an ERE was not found 

on the promoter of IL-4 which could indicate ERE-independent ER genomic signaling. It was 

demonstrated that a significant correlation exists between the expression of ER and GATA3 in 

breast cancer cell lines and mouse T cells, and an ERE was found at position -1502 bp on the 

promoter of GATA3 (Table 2) [393-395]. GATA3 is an essential Th2 transcription factor that 
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not only drives differentiation of TCR stimulated CD4+ T cells into the Th2 subset but also 

directly induces IL-4 gene expression [396, 397]. In fact, T cells from GATA3 KO mice fail to 

develop appropriate Th2 cytokine expression including IL-4 [398, 399]. Overall this indicates 

that ER signaling regulates IL-4 expression and secretion in Ag-specific T cells through 

mechanisms that are ERE-independent possibly including the upregulation of expression of 

GATA3.  

Estrogen signaling was shown to enhance the secretion of IFN in female and male Ag-

specific T cells. IFN contains an ERE at position -8342 bp of its promoter which indicates that 

estrogen signaling through ER can enhance IFN secretion through the ligand-bound ERE-

dependent canonical pathway. In addition, an ERE was also found on the promoter of T-BET at 

position -1676 bp (Table 2). T-BET is a transcription factor known to mediate Th1 T cell 

differentiation and induce IFN expression [400, 401]. Estrogen signaling enhancement of T-

BET expression could result in subsequent IFN expression and secretion enhancement in 

activated T cells. Estrogen was also shown to enhance the secretion of Granzyme B in female 

and male Ag-specific T cells. While Granzyme B does not contain an ERE in its promoter, 

proteinase inhibitor 9 (PI-9), which is a Granzyme B inhibitor, contains one ERE at position -200 

bp of its promoter [402, 403]. This indicates that estrogen could be upregulating Granzyme B 

secretion by negatively regulating transcription of PI-9 through ER ligand-bound ERE-

dependent genomic pathway. 

Estrogen treatment increases the expression and/or secretion of TNF, IL-4, IFN, and 

Granzyme B in human Ag-specific T cells. TNF, IFN, and Granzyme B are cytokines 

commonly secreted by Type I cytotoxic CD8+ T cells and effector Th1 CD4+ T cells in response 
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to antigen stimulation. On the other hand, IL-4 is secreted by Type II CD8+ T cells and it is the 

prototypic Th2 CD4+ T cell cytokine required for Th2 T cell differentiation. The Th1 and Th2 

CD4+ T cell subset differentiation pathways can downregulate each other and are believed to be 

mutually exclusive [404, 405]. Estrogen signaling through ER can upregulate the expression 

and secretion of both Type I/Th1 and Type II/Th2 cytokines in male and female Ag-specific T 

cells. This could indicate that estrogen modulates the balance of the CD8+ Type I and Type II, 

and the CD4+ Th1 and Th2 T cell responses. Most of the effects on these cytokines were 

observed when T cells were stimulated with super-physiological estrogen (50 nM) indicating that 

the estrogen-mediated Th1/Th2 T cell response balance could happen in locally elevated 

estrogen environments including the HCC TME. In order to test if ER signaling can modulate 

the balance between Th1 and Th2 T cell subset differentiation, first, estrogen receptor binding to 

the EREs present on the GATA3 and T-BET gene promoters needs to be confirmed via 

chromatin immunoprecipitation (ChIP); and, second, enhancement of T-BET and GATA3 

expression by ER signaling needs to be confirmed by real time polymerase chain reaction (RT-

PCR) or by transducing T cells with expression vectors containing the promoters of T-BET and 

GATA3. 

Apart from their roles in Th1 and Th2 T cell differentiation, the cytokines enhanced by 

estrogen in Ag-specific T cells have important anti-tumor roles. IFN is cytotoxic to certain 

malignant cells, and it enhances MHC class I expression [406]. Granzyme B directly lyses 

malignant cells, and TNF promotes T cell activation, co-stimulation, and promotes certain 

cancer cell death [406]. IL-4 promotes T cell and B cell survival, induces Ig class switch to IgE 

and IgG in B cells, drives long-term development of CD8+ T cell memory, and in combination 
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with TGF it drives Th9 T cell differentiation which are T cells that augment anti-tumor 

responses in ACT models [387-389, 407, 408]. Overall these data indicate for the first time, that 

estrogen signaling through ER enhances expression and secretion of cytokines that enhance the 

T cell anti-tumor immune response and estrogen signaling is an important factor to consider 

when designing ACT immunotherapies for estrogen-sensitive and estrogen-producing 

malignancies like HCC.
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Table 2. Estrogen Response Elements Found in the Promoters of TNF, GATA3, IFN, TBX21(T-BET), and IP-9 Genes. Table 

shows the human (Hs) gene name, the chromosome location, the ERE sequence and its position in respect to the gene starting site. 

EREs were found in the EREfinder database described by Bourdeade et al. Mol Endocrinol. 2004.  



 
 

98 

CHAPTER IV 

ESTROGEN SIGNALING THROUGH ER AND ER DIFFRENTIALLY IMPACTS 

HUMAN MALE AND FEMALE AG-SPECIFIC T CELL POLYFUNCTIONALITY 
 

Introduction and Rationale 

 The results presented in the previous chapter demonstrated that estrogen signaling 

enhances the expression and secretion of T cell cytokines typically classified into the CD4+ Th1 

or Th2 subsets, or into the CD8+ Type I or Type II subsets. Despite their differences, both Type 

I/Th1 and Type II/Th2 T cell responses were shown to enhance anti-tumor immunity by 

enhancing CTL expansion and survival, and by killing tumor cells directly [409, 410].  Most 

importantly, ACT immunotherapy was shown to be most successful when CD8+ T cells were 

delivered in combination with a mixture of CD4+ Th1 cells and Th2 cells [82, 411].  More 

recently, other T cell subsets were correlated with enhanced T cell anti-tumor immune responses 

such as the IL-9 producing Th9 CD4+ T cells [412, 413], and the IL-17a producing Th17 CD4+ T 

cells [83]. Even if the anti-tumor or tumor-promoting role of IL-22 producing Th22 CD4+ T cells 

remains controversial, Th22 infiltration was correlated with tumor rejection in colorectal cancer 

[414]. The presence of multiple T cell subsets secreting varying combinations of cytokines 

indicates that the evaluation of a single cytokine at one time does not accurately characterize the 

role of estrogen signaling on the overall T cell anti-tumor function. In fact, a previous study 

demonstrated that analysis of expression of only one effector T cell cytokine, such as IFN in 

advanced stage cancer patients was not correlated with survival advantage, but once other
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cytokines, such as IL-2, were analyzed simultaneously via flow cytometry with IFN there was 

an association with clinical outcome [415]. In addition to the heterogeneity of their subset 

phenotype, T cells show differences in their functional profile or the mixture of cytokines that 

they secrete upon TCR ligation. It was found that T cells can not only be subdivided based on 

prototypic cytokine and transcription factor expression, but also based on the distinctive patterns 

of cytokines secreted after stimulation [416]. Activated T cells can be monofunctional if they 

only express one cytokine, or polyfunctional if they expressed over two different cytokines upon 

TCR stimulation.  

T cell polyfunctionality is described as the ability of one T cell to deploy a broad 

spectrum of immune programs upon antigen stimulation. These immune programs can be 

cytokines or lytic markers with polyfunctional T cells being able to, for example, secrete IFN, 

IL-2 and degranulate producing Granzyme B simultaneously. Polyfunctional CD8+ and CD4+ T 

cells were shown to be able to generate superior anti-tumor immune responses [417-420], and to 

clear viral infections better than monofunctional T cells [421, 422]. In the setting of 

immunotherapy, several studies have found enhanced numbers of tumor Ag-specific 

polyfunctional T cells in patients responding favorably to ACT, and checkpoint blockade using 

anti-CTLA-4 [423-427]. A study by Rossi et al. using CD19-targeted CAR T cells to treat acute 

lymphoblastic leukemia demonstrated that CAR-T cell polyfunctionality was correlated with 

patient clinical outcome [428]. Even if only approximately 20% of adoptively transferred CAR T 

cells were polyfunctional (able to produce >2 out of 32 different cytokines and chemokines 

simultaneously), this low frequency of polyfunctional cells was still able to produce superior 

anti-tumor immune responses compared to monofunctional T cells. Polyfunctional CD8+ CAR-T 

cells in this study produced combinations of IFN, macrophage inflammatory protein-1 (MIP-
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1) (or CCL3), IL-8, and Granzyme B simultaneously while CD4+ CAR-T cells expressed 

combinations of IFN, MIP-1, IL-8, IL-2, IL-17a, and IL-5 simultaneously [428]. T cell 

polyfunctionality was also correlated with CD8+ T cell memory formation. Memory CD8+ T 

cells were shown to be highly polyfunctional expressing cytokine combinations such as IFN+IL-

2+TNF+MIP-1+ (or CCL4), IFN+TNF+IL-2+, and IFN+IL-2+CD107a+ during antigen 

stimulation [429-432]. This indicates that the use of polyfunctional T cells could increase the 

efficacy of ACT immunotherapy by generating superior anti-tumor responses and subsequent T 

cell memory development against tumor antigens.  

Since estrogen signaling was able to enhance the secretion of several effector Th1 and 

helper Th2 cytokines in female and male Ag-specific T cells, it was hypothesized that estrogen 

signaling enhances the polyfunctionality or the ability of Ag-specific T cells to express several 

cytokines simultaneously upon antigen stimulation. In order to study the effect of estrogen 

receptor signaling on Ag-specific T cell polyfunctionality, male and female Ag-specific T cells 

were treated with physiological (0.5 nM) or super-physiological (50 nM) estrogen alone or in 

combination with an ER inhibitor (100 nM), an ER inhibitor (100 nM), or both inhibitors 

simultaneously prior to activation with T2 cells pulsed with the HCV cognate antigen or a 

tyrosinase irrelevant peptide. After 5 hour activation in the presence of protein transport 

inhibitors, multi-dimensional flow cytometry was used to measure expression of IFN, TNF, 

IL-2, IL-4, IL-17a, IL-22 and the lytic marker CD107a. This multi-functional evaluation was 

designed to reflect the changes in mono or polyfunctional phenotypes of T cell populations. The 

analysis of these seven functional markers after gating on CD3+CD34+ transduced T cells 

generated 128 possible combinations (2n, n=7, 27=128) of markers expressed by CD8+ or CD4+ T 
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cells; from monofunctional cells that only express one marker, to highly polyfunctional cells that 

expressed all 7 markers simultaneously. Since they were a total number of 12 treatments, 

including 3 estrogen conditions (0, 0.5, and 50 nM) and 4 ER inhibitor conditions (no inhibitor, 

ER inhibitor, ER inhibitor, and both inhibitors), an exceptionally complex dataset was 

generated that was difficult to analyze with basic flow cytometry software (FlowJoX).  

Analysis of polyfunctionality data using FlowJo is very limited since it restricts the 

visualization of data to one or two parameters at a time. In this case, visualization and analysis of 

7 markers requires 21 pairwise dot plots for a single Ag-stimulation condition per estrogen 

treatment. Figure 15 shows a representative example of pairwise dot plots in untreated female 

CD8+ HCV Ag-specific T cells stimulated with HCV (Figure 15 A) or tyrosinase (Figure 15 B) 

pulsed T2 target cells. Even if these comparisons are very limited, some simple observations can 

be deduced by observing the percent frequency of T cells that express two markers 

simultaneously. The highest frequency of bifunctional CD8+ cells expressed the IFN+TNF+ 

combination but IFN+ cells also expressed CD107a, or IL-4 simultaneously. Similarly, TNF+ 

cells also expressed IL-4, and some CD107a or IL-2 simultaneously. This was surprising since 

CD8+ T cells could express cytokines like IFN and TNF which are believed to be restricted to 

the type I (Th1) phenotype, simultaneously with the type II (Th2) cytokine IL-4. These data 

contradicts what is normally accepted in the field of T cell immunology concerning type I and II 

T cell populations and function. This indicates that evaluation of several functional markers and 

generation of polyfunctional T cell profiles can shine light on the study of new patterns of T cell 

function benefigureFficial for generating superior anti-tumor immune responses. 
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Figure 15. Pairwise Comparisons of Each Functional Marker Expressed by Activated CD8
+
 HCV Ag-specific T Cells. HCV 

Ag-specific T cells from one female donor were co-cultured with T2 cells pulsed with the A) HCV cognate antigen or B) a tyrosinase 

irrelevant peptide for 5 hours in the presence of protein transport inhibitors. Cells were then stained for flow cytometric analysis of 

CD3, CD34, CD8, and CD4 and functional markers CD107a, IFN, TNF, IL-4, IL-2, Il-17a, and IL-22. Gating and analysis was 

performed using FlowJoX. Uni-dimensional histograms represent the expression of each functional marker, and each dot plot 

represents pairwise comparisons between each of the 7 functional markers expressed by CD8
+
 Ag-specific T cells 
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In order to generate the frequency of T cells expressing each of the 128 different cytokine 

combinations, higher resolution multi-dimensional analysis was performed within FlowJo using 

Boolean combinatorial gates for all 7 markers. The frequencies of populations were added into 

categories comprising cells expressing 1 through 7 markers simultaneously. Percent frequencies 

of T cells expressing >2 makers simultaneously were considered polyfunctional. By grouping 

polyfunctional phenotypes into categories according to the number of markers expressed, clear 

comparisons between female and male T cells and different estrogen and inhibitor treatments can 

be made. Statistical analysis of these data can be performed using a Multivariate Analysis of 

Variance (MANOVA) which is a multivariate ANOVA with two or more continuous response 

variables. MANOVA allows analyzing CD8+ and CD4+ T cells within one sex under one 

treatment condition (either estrogen or estrogen + ER inhibitor) and compares two or more 

continuous response variables, in this case 7 different categories, or groups of T cells expressing 

1 through 7 markers simultaneously. Post-hoc pairwise comparisons between each index 

estrogen treatment (50 & 0.5) and the reference estrogen treatment (0) were conducted within 

each estrogen inhibitor treatment.  

Despite these meaningful interpretations, analysis in FlowJo lacks the ability to 

graphically represent individual polyfunctional phenotypes or display how estrogen signaling 

impacts their relative abundance. In order to compare the levels of expression of all 128 marker 

combinations, Boolean gating with FlowJo was followed by analysis in Pestle and SPICE data 

processing software packages which allow to adequately visualize individual and polyfunctional 

populations. Using the data generated from Pestle and SPICE, heat maps were created containing 

the percent frequency of cells expressing each combination of markers. Results from these 
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analyses are discussed in the following sections. Statistical analysis of the percent expression of 

each cytokine combination can be performed using MANOVA. MANOVA is used on CD8+ and 

CD4+ T cells within one sex under one treatment condition (either estrogen or estrogen + ER 

inhibitor) and compares two or more continuous response variables, in this case all the different 

(up to 83) combinations of cytokines expressed by Ag stimulated T cells. Post-hoc pairwise 

comparisons between each index estrogen treatment (50 & 0.5) and the reference estrogen 

treatment (0) were conducted within each estrogen inhibitor treatment stratum. 

Results 
 

CD8+ Ag-specific female T cells are inherently more polyfunctional than male T cells 
 

 It was observed that non-estrogen treated CD8+ and CD4+ Ag-specific T cells contained 

similar percentages of monofunctional and polyfunctional cells when stimulated with their HCV 

cognate antigen. Both populations exhibited around 30 to 40% of monofunctional and 

bifunctional cells, and around 15 to 20% of trifunctional cells. Less than 10% of CD8+ and CD4+ 

Ag-specific T cells expressed more than 4 markers simultaneously and percentages for those 

cells expressing 6 or 7 markers were so low that are not represented on the results (Figure 16). 

While there were no sex-differences on the polyfunctionality of CD4+ Ag-specific T cells when 

marker combinations were analyzed as added groups (Figure 16 B), significantly higher 

percentage of male CD8+ Ag-specific T cells were monofunctional (only expressed 1 marker) 

compared to female CD8+ T cells (Figure 16 A). A trend was observed for higher percentages of 

female CD8+ T cells expressing 3 markers simultaneously compared to male CD8+ T cells. This 

indicates that independently from estrogen signaling, female CD8+ Ag-specific T cells are 

inherently more polyfunctional than male CD8+ T cells. While these results were shown to be 
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statistically significant, there was a high variability between male donors in the percentage of 

CD8+ T cells expressing only one marker. Most of the male donors had frequencies of 

monofunctional cells similar to those of female donors, but some of the male donors showed 

very high percentage of monofunctional cells.  This variability is not surprising due to genetic 

and environmental differences between humans, and it indicates that there are differences in 

polyfunctionality between same sex donors. This could be caused by differences on age (some of 

the donors used for the experiment were of unknown age), disease background, circulating 

hormone levels, and differences on T cell activation.  

The female and male CD8+ and CD4+ Ag-specific polyfunctional responses were very 

diverse expressing a great amount of marker combinations that were polyfunctional, 

bifunctional, and monofunctional. CD8+ T cells from females and males expressed 71 different 

functional marker combinations in response to antigen stimulation (Figure 17 A). While a lot of 

these marker combinations were expressed by a very low frequency of cells, some combinations 

including TNF+ (~10-15%), IFN+TNF+ (~25-30%), IFN+ (~25%), CD107a+IFN+TNF+ 

(~7%), IFN+ IL-2+TNF+ (~5%), and IFN+IL-4+TNF+ (~4%) were expressed at higher levels. 

The only combination that shows significant differences in expression between female and male 

T cells was TNF alone which was expressed by a significantly higher frequency of male T cells 

compared to female T cells (Figure 17 A). Other combinations that showed trending differences 

in expression included CD107a+IFN+TNF+, CD107a+IFN+, IFN+IL-2+TNF+, IFN+IL-

4+TNF+, and IFN+TNF+ which were all expressed by higher frequencies on female T cells 

compared to male T cells. Taking these data together with the ones obtained in Figure 16 A, it 

can be concluded that female CD8+ Ag-specific T cells are inherently more polyfunctional upon 
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antigen stimulation than male CD8+ Ag-specific T cells. In addition, higher percentages of 

female CD8+ polyfunctional cells expressed marker combinations that are detrimental to tumors, 

such as the ones containing cytotoxic cytokines IFN TNF, and the marker CD107a, as well as 

marker combinations that include cytokines known to enhance T cell survival like IL-2 and IL-4.  

 Male and female CD4+ Ag-specific T cells expressed up to 83 different functional marker 

combinations upon antigen stimulation (Figure 17 B). As observed in the CD8+ T cell subset, 

most of the combinations were expressed by very low frequency of cells with the exception of 

the highest expressed functional combinations being IFN+TNF+ (~30%), IFN+  (~22%), 

TNF+  (~15%), IFN+ IL-4+TNF+ (~), and IFN+IL-2+TNF+ (~) (Figure 17 B). The 

only combination that showed a significant difference in expression between female and male 

CD4+ T cells was IFN alone which was expressed by a significantly higher frequency of female 

T cells compared to male T cells (Figure 17 B). Other trending differences in expression were 

observed including higher frequencies of female CD4+ T cells expressing 

IFN+TNF+ and IFN+IL-4+TNF+ compared to male CD4+ T cells. While there may be 

differences in expression on some polyfunctional phenotypes between female and male CD4+ T 

cells, significance was not achieved and taken these results with the ones observed in Figure 16 

B it can be concluded that there are no sex-differences in male and female CD4+ T cell 

polyfunctionality. 
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Figure 16. Female CD8
+
 Ag-specific T Cells are More Polyfunctional than Male 

Counterparts upon Ag Stimulation. Male and female HCV Ag-specific T cells from 15 

female and 15 male donors were co-cultured for 5 hours with T2 cells pulsed with HCV cognate 

antigen or a tyrosinase irrelevant peptide in the presence of protein transport inhibitors. Cells 

were then stained for flow cytometric analysis of CD3, CD34, CD8, and CD4 and functional 

markers CD107a, IFN, TNF, IL-4, IL-2, IL-17a, and IL-22. Using Boolean gates in FlowJoX, 

the frequency of CD8
+
 and CD4

+
 T cells expressing each combination of these 7 markers was 

generated and added into 7 functional categories. The frequencies of A) CD8
+
 , and B) CD4

+
 

female and male Ag-specific T cells expressing one through seven markers simultaneously was 

plotted. The frequencies of CD8
+
 and CD4

+
 T cells stimulated with the tyrosinase irrelevant 

peptide were used for background subtraction. Data for T cells expressing 6 or 7 markers 

simultaneously is not shown since the percent frequency was very low (<1%). Data represents 

n=15 donors, each donor plotted and SEM indicated. Data was analyzed using MANOVA and 

Tukey’s post-hoc. p<0.05=*. 
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Figure 17. Significantly Higher Percentage of Male CD8
+
 Ag-specific T Cells Express TNF in Combination with no Other 

Marker Compared to Female CD8
+
 T Cells. Significantly Higher Percentage of Female CD4

+
 Ag-specific T Cells Express 

IFN in Combination with no Other Marker Compared to Male CD4
+
 T Cells. Male and female HCV Ag-specific T cells from 

15 female and 15 male donors were co-cultured for 5 hours with T2 cells pulsed with HCV cognate antigen or a tyrosinase irrelevant 
peptide in the presence of protein transport inhibitors. Cells were then stained for flow cytometric analysis of CD3, CD34, CD8, and 
CD4 and functional markers CD107a, IFN, TNF, IL-4, IL-2, IL-17a, and IL-22. Using Boolean gates in FlowJoX, and the software 

SPICE the frequency of CD8
+
 and CD4

+
 T cells expressing each combination of these 7 markers was generated. The frequencies of 

A) CD8
+
 and B) CD4

+
 female and male Ag-specific T cells expressing each of the 128 possible markers combinations was plotted. 

Data represents the mean of n=15 donors. Data was analyzed using MANOVA and Tukey’s post-hoc. p<0.001=***, p<0.05=*. 
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Estrogen signaling through ER enhances female and male CD8+ Ag-specific T cell 

polyfunctionality 

 

 A significant decrease on the percent frequency of monofunctional male and female 

CD8+ Ag-specific T cells was observed upon estrogen treatment, especially at super-

physiological concentrations. While the percent frequency of bifunctional cells was not 

significantly changed, the percent frequency of CD8+ T cells expressing 3 markers 

simultaneously was significantly increased upon estrogen treatment (Figure 18 & 19 A). This 

indicated that estrogen signaling enhances the percentage of polyfunctional cells while 

decreasing the percentage of monofunctional cells. The estrogen-mediated enhancement of CD8+ 

male and female T cell polyfunctionality was not affected by blocking ER with a specific 

antagonist (MPP-dihydrochloride) during estrogen treatment (Figure 18 & 19 B). In fact, upon 

ER blockade, the estrogen-mediated decrease on monofunctional T cell percentage and 

increase on trifunctional percentages was even more significant at physiological estrogen 

concentrations. Thus demonstrating that ER signaling does not enhance CD8+ Ag-specific 

polyfunctionality but rather it partially inhibits it when T cells are exposed to physiological 

estrogen. Surprisingly, the estrogen-mediated enhancement of CD8+ T cell polyfunctionality was 

completely abrogated when ER signaling was blocked with a specific antagonist (PHTPP) 

(Figure 18 & 19 C). No changes in polyfunctionality were observed when male and female CD8+ 

T cells were treated with estrogen in combination with both ER and ER antagonists (Figure 18 

& 19 D). Overall these data reveal that estrogen signaling through ER enhances CD8+ male and 

female Ag-specific T cell polyfunctionality.  
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Figure 18. Estrogen Signaling through ER Enhances the Percentage of Polyfunctional 

Female CD8
+
 Ag-specific T Cells and Decreases the Percentage of Monofunctional T Cells after 

Ag Stimulation. Female HCV Ag-specific T cells from 15 donors were treated with 0, 0.5, or 50 

nM estrogen in combination with an ER inhibitor, and ER inhibitor, or both inhibitors 

simultaneously for 2 hours. After treatment, Ag-specific T cells were co-cultured for 5 hours with 

T2 cells pulsed with HCV cognate antigen or a tyrosinase irrelevant peptide in the presence of 

protein transport inhibitors. Cells were then stained for flow cytometric analysis of CD3, CD34, 

CD8, and CD4 and functional markers CD107a, IFN, TNF, IL-4, IL-2, IL-17a, and IL-22. Using 

Boolean gates in FlowJoX, the frequency of CD8
+
 T cells expressing each combination of these 7 

markers was generated and added into 7 functional categories. The frequencies of CD8
+
 female Ag-

specific T cells expressing one through seven markers simultaneously after treatment with A) 

estrogen, B) estrogen in combination with an ER inhibitor, C) estrogen in combination with an 

ER inhibitor, D) estrogen in combination of both ER and ER inhibitors were plotted. Data for 

T cells expressing 6 or 7 markers simultaneously is not shown since the percent frequency was very 

low. Data represents n=15 donors, each donor plotted and SEM represented. Data was analyzed 

using MANOVA and Tukey’s post-hoc. p< 0.001=***, p<0.05=*. 
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Figure 19. Estrogen Signaling through ER Enhances the Percentage of Polyfunctional 

Male CD8
+
 Ag-specific T Cells and Decreases the Percentage of Monofunctional T Cells 

after Ag Stimulation. Male HCV Ag-specific T cells from 15 donors were treated with 0, 0.5, 

or 50 nM estrogen in combination with an ER inhibitor, and ER inhibitor, or both inhibitors 

simultaneously for 2 hours. After treatment, Ag-specific T cells were co-cultured for 5 hours 

with T2 cells pulsed with HCV cognate antigen or a tyrosinase irrelevant peptide in the presence 

of protein transport inhibitors. Cells were then stained for flow cytometric analysis of CD3, 

CD34, CD8, and CD4 and functional markers CD107a, IFN, TNF, IL-4, IL-2, IL-17a, and 

IL-22. Using Boolean gates in FlowJoX, the frequency of CD8
+
 T cells expressing each 

combination of these 7 markers was generated and added into 7 functional categories. The 

frequencies of CD8
+
 male Ag-specific T cells expressing one through seven markers 

simultaneously after treatment with A) estrogen, B) estrogen in combination with an ER 

inhibitor, C) estrogen in combination with an ER inhibitor, D) estrogen in combination of both 

ER and ER inhibitors were plotted. Data for T cells expressing 6 or 7 markers simultaneously 

is not shown since the percent frequency was very low. Data represents n=15 donors, each donor 

plotted and SEM indicated. Data was analyzed using MANOVA and Tukey’s post-hoc. p< 

0.01=**, p<0.05=*. 
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 The percent frequencies of female and male CD8+ Ag-specific T cells expressing 

CD107a+ IFN+TNF+ was significantly increased by super-physiological estrogen treatment 

(Figure 20 & 21 A). The percent frequency of female CD8+ T cells expressing IFN+IL-4+TNF+ 

was also significantly increased by super-physiological estrogen treatment (Figure 20 A). On the 

other hand, the frequencies of male and female CD8+ T cells expressing TNF+IFN+, IFN+, 

and TNF+ were significantly decreased upon physiological and super-physiological estrogen 

treatments (Figure 20 & 21 A). The estrogen-induced significant changes on expression of 

polyfunctional (CD107a+IFN+TNF+), bifunctional (TNF+IFN+), and monofunctional (TNF 

or IFN alone) phenotypes were maintained when CD8+ Ag-specific T cells were treated with 

estrogen in combination with an ER inhibitor (Figure 20 & 21 B). In female CD8+ T cells, 

blockade of ER during physiological estrogen treatment significantly enhanced the expression 

of CD107a+IFN+TNF+ indicating that ER signaling could be partially inhibiting the 

expression of these three markers simultaneously (Figure 20 B). When male and female Ag-

specific T cells were treated with estrogen in combination with an ER inhibitor or with ER 

and ER inhibitors simultaneously, all significant changes on expression of monofunctional or 

polyfunctional phenotypes were abrogated (Figure 20 & 21 C, D). Overall, taking these data 

together with the results obtained in Figures 18 & 19, it can be concluded that estrogen signaling 

through ER enhances CD8+ Ag-specific T cell polyfunctionality by increasing expression of 

polyfunctional phenotypes CD107a+IFN+TNF+ and IFN+IL-4+TNF+ and decreasing 

expression of monofunctional and bifunctional phenotypes including TNF+IFN+ TNF+, and 

IFN+
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Figure 20. Estrogen Signaling through ER Increases the Percent Frequency of CD8
+
 Female Ag-specific T Cells Expressing 

CD107a
+
IFN

+
TNF

+
 and IFN

+
IL-4

+
TNF

+
 and Decreases the Percent Frequency of T Cells Expressing IFN

+
TNF

+
, 

IFN
+
, and TNF

+
. Female HCV Ag-specific T cells from 15 donors were treated with 0, 0.5, or 50 nM estrogen in combination 

with an ER inhibitor, and ER inhibitor, or both inhibitors simultaneously for 2 hours. After treatment, Ag-specific T cells were co-

cultured for 5 hours with T2 cells pulsed with HCV cognate antigen or a tyrosinase irrelevant peptide in the presence of protein 

transport inhibitors. Cells were then stained for flow cytometric analysis of CD3, CD34, CD8, and CD4 and functional markers 

CD107a, IFN, TNF, IL-4, IL-2, IL-17a, and IL-22. Using Boolean gates in FlowJoX, and the software SPICE the frequency of 

CD8
+
 T cells expressing each combination of these 7 markers was generated. The frequencies of CD8

+
 female Ag-specific T cells 

expressing each of these marker combinations after treatment with A) estrogen, B) estrogen in combination with an ER inhibitor, 

C) estrogen in combination with an ER inhibitor, D) estrogen in combination of both ER and ER inhibitors were plotted. Data 

represents the mean of n=15 donors. Data was analyzed using MANOVA and Tukey’s post-hoc. p<0.0001=****, p< 0.01=**. 
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Figure 21. Estrogen Signaling Through ER Increases the Percent Frequency of CD8
+
 Male Ag-Specific T Cells Expressing 

CD107a
+
IFN

+
TNF

+
 and Decreases the Percent Frequency of T Cells Expressing IFN

+
TNF

+
, IFN

+
, and TNF

+
. Male 

HCV Ag-specific T cells from 15 donors were treated with 0, 0.5, or 50 nM estrogen in combination with an ER inhibitor, and ER 

inhibitor, or both inhibitors simultaneously for 2 hours. After treatment, Ag-specific T cells were co-cultured for 5 hours with T2 cells 

pulsed with HCV cognate antigen or a tyrosinase irrelevant peptide in the presence of protein transport inhibitors. Cells were then 

stained for flow cytometric analysis of CD3, CD34, CD8, and CD4 and functional markers CD107a, IFN, TNF, IL-4, IL-2, IL-

17a, and IL-22. Using Boolean gates in FlowJoX, and the software SPICE the frequency of CD8
+
 T cells expressing each combination 

of these 7 markers was generated. The frequencies of CD8
+
 male Ag-specific T cells expressing each of these markers combinations 

after treatment with A) estrogen, B) estrogen in combination with an ER inhibitor, C) estrogen in combination with an ER inhibitor, 

D) estrogen in combination of both ER and ER inhibitors were plotted. Data represents the mean of n=15 donors. Data was 

analyzed using MANOVA and Tukey’s post-hoc. P<0.0001=****, p< 0.001=***, p<0.01=**, p<0.05=*. 
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Estrogen Signaling through ER Enhances Female and Male CD4+ Ag-specific T cell 

Polyfunctionality 

 

Estrogen signaling had similar effects on CD4+ T cell polyfunctionality to those observed 

in CD8+ Ag-specific T cells. Estrogen stimulation at super-physiological concentrations 

significantly decreased the percent frequency of monofunctional CD4+ T cells, and significantly 

increased the percent frequency of polyfunctional cells expressing three markers simultaneously 

(Figure 22 & 23 A). Super-physiological estrogen also significantly decreased the percentage of 

bifunctional female CD4+ T cells (Figure 22 A). ER signaling blockade had no effect of the 

estrogen-dependent enhancement of polyfunctionality of male CD4+ T cells, but it increased 

CD4+ T cell polyfunctionality at physiological estrogen concentration in female CD4+ T cells 

(Figure 22 & 23 B). Indicating that ER signaling inhibits female CD4+ T cell polyfunctionality. 

Blockade of ER or ER and ER simultaneously completely abrogated the estrogen-mediated 

increase in polyfunctionality of CD4+ male and female Ag-specific T cells (Figure 22 & 23 C, 

D). Overall these data indicate that estrogen signaling through ER increases polyfunctionality 

of male and female CD4+ T cells, and estrogen signaling through ER inhibits female CD4+ T 

cell polyfunctionality at physiological estrogen concentration.  

The percent frequencies of male and female CD4+ Ag-specific T cells expressing 

IFN+TNF+, and IFN+ or TNF+ were significantly decreased by physiological and super-

physiological estrogen treatment (Figure 24 & 25 A). The percent frequency of male CD4+ T 

cells expressing IFN+IL-4+TNF+ was also significantly increased by super-physiological 

estrogen treatment (Figure 25 A). A trending increase on the frequencies of CD4+ T cells 
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expressing IFN+ IL2+IL4+TNF+, and IFN+IL-2+TNF+ were observed upon estrogen 

treatment even if significance was not achieved. Female CD4+ Ag-specific T cells also showed a 

trending increase on expression of IFN+IFN+TNF+ upon estrogen treatment (Figure 24 A). 

Blockade of ER showed no effect on the estrogen-mediated changes on expression of 

functional phenotypes indicating that ER signaling does not affect CD4+ T cell 

polyfunctionality (Figure 24 & 25 B). On the other hand, ER blockade or ER and ER 

simultaneous blockade during estrogen treatment abrogated the estrogen-mediated decrease of 

monofunctional (IFN or TNF alone) and bifunctional (IFN+TNF+) T cell phenotypes, and 

increase in polyfunctional phenotypes such as IFN+IL-4+TNF+ (Figure 24 & 25 C, D). Overall, 

taking these data together with the results obtained in Figures 22 & 23, it can be concluded that 

estrogen signaling through ER enhances CD4+ Ag-specific T cell polyfunctionality by 

increasing expression of polyfunctional phenotypes such as IFN+IL-4+TNF+ and decreasing 

expression of monofunctional and bifunctional phenotypes including TNF+IFN+ TNF+, and 

IFN+ 

Ideally, in order to conclude that the effects of estrogen signaling on polyfunctionality are 

fully mediated by ER signaling another set of experiments need to be performed using ER 

agonists to stimulate human Ag-specific T cells instead of estrogen. The ER-specific agonist 

diarylpropionitrile (DPN) which has a 70-fold selectivity over ER (EC50 values are 0.85 nM 

and 66 nM for ER and ER respectively) [150] can be used to determine if estrogen signaling 

through ER is directly upregulating T cell polyfunctionality upon Ag stimulation. In order to 

test this, male and female Ag-specific T cells need to be treated with DPN alone, DPN in 
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combination with PHTPP (ER antagonist), and DPN in combination with PHTPP and estrogen. 

If after DPN treatment alone the polyfunctionality of T cells is enhanced to levels similar to 

those observed in estrogen treated T cells, then estrogen signaling through ER alone enhances T 

cell polyfunctionality. These data can be confirmed if T cells treated with DNP and PHTPP 

simultaneously show no increase in polyfunctionality. If treating T cells with DPN shows no 

increase on T cell polyfunctionality but treating T cells with estrogen, DNP and PHTPP do show 

an increase, then estrogen signaling through other receptor is causing the estrogen-mediated 

enhancement of polyfunctionality. Inhibition of ER during estrogen stimulation was shown to 

enhance polyfunctionality, even to higher extent than estrogen alone in some cases, indicating 

that ER has an inhibiting effect. Estrogen signaling through its other receptor, GPER, may be 

enhancing T cell polyfunctionality. In order to rule out that polyfunctionality is enhanced 

through GPER signaling, male and female Ag-specific T cells need to be treated with estrogen in 

combination of a GPER antagonist. If T cell polyfunctionality is decreased in T cells treated with 

estrogen in combination with a GPER antagonist compared to estrogen treated T cells, then 

estrogen signaling through GPER enhances T cell polyfunctionality. GPER signaling was shown 

to rapidly activate the PI3K and the MAPK pathways which are known to contribute to T cell 

cytokine secretion downstream from the TCR [177] indicating that GPER signaling could have 

an enhancing effect on TCR signaling leading to polyfunctionality. Unfortunately, these 

experiments could not be performed due to lack of time and support but these results would 

indicate that estrogen signaling through ER and GPER enhance T cell polyfunctionality 

downstream from the TCR. 
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Figure 22. Estrogen Signaling Through ER Enhances the Percentage of Polyfunctional 

Female CD4
+
 Ag-specific T Cells and Decreases the Percentage of Monofunctional and 

Bifunctional T Cells after Ag Stimulation. Female HCV Ag-specific T cells from 15 donors 

were treated with 0, 0.5, or 50 nM estrogen in combination with an ER inhibitor, and ER 

inhibitor, or both inhibitors simultaneously for 2 hours. After treatment, Ag-specific T cells 

were co-cultured for 5 hours with T2 cells pulsed with HCV cognate antigen or a tyrosinase 

irrelevant peptide in the presence of protein transport inhibitors. Cells were then stained for 

flow cytometric analysis of CD3, CD34, CD8, and CD4 and functional markers CD107a, IFN, 

TNF, IL-4, IL-2, IL-17a, and IL-22. Using Boolean gates in FlowJoX, the frequency of CD4
+
 

T cells expressing each combination of these 7 markers was generated and added into 7 

functional categories. The frequencies of CD4
+
 female Ag-specific T cells expressing one 

through seven markers simultaneously after treatment with A) estrogen, B) estrogen in 

combination with an ER inhibitor, C) estrogen in combination with an ER inhibitor, D) 

estrogen in combination of both ER and ER inhibitors were plotted. Data for T cells 

expressing 6 or 7 markers simultaneously is not shown since the percent frequency was very 

low. Data represents n=15 donors, each donor plotted and SEM represented. Data was analyzed 

using MANOVA and Tukey’s post-hoc. p<0.0001=****, p< 0.001=***, p<0.01=**, p<0.05=*. 
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Figure 23. Estrogen Signaling Through ER Enhances the Percentage of Polyfunctional 

Male CD4
+
 Ag-specific T Cells and Decreases the Percentage of Monofunctional T Cells 

after Ag Stimulation. Male HCV Ag-specific T cells from 15 donors were treated with 0, 0.5, 

or 50 nM estrogen in combination with an ER inhibitor, and ER inhibitor, or both inhibitors 

simultaneously for 2 hours. After treatment, Ag-specific T cells were co-cultured for 5 hours 

with T2 cells pulsed with HCV cognate antigen or a tyrosinase irrelevant peptide in the presence 

of protein transport inhibitors. Cells were then stained for flow cytometric analysis of CD3, 

CD34, CD8, and CD4 and functional markers CD107a, IFN, TNF, IL-4, IL-2, IL-17a, and 

IL-22. Using Boolean gates in FlowJoX, the frequency of CD4
+
 T cells expressing each 

combination of these 7 markers was generated and added into 7 functional categories. The 

frequencies of CD4
+
 male Ag-specific T cells expressing one through seven markers 

simultaneously after treatment with A) estrogen, B) estrogen in combination with an ER 

inhibitor, C) estrogen in combination with an ER inhibitor, D) estrogen in combination of both 

ER and ER inhibitors were plotted. Data for T cells expressing 6 or 7 markers simultaneously 

is not shown since the percent frequency was very low. Data represents n=15 donors, each donor 

plotted and SEM represented. Data was analyzed using MANOVA and Tukey’s post-hoc. p< 

0.001=***, p<0.01=**,  p<0.05=*. 
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Figure 24. Estrogen Signaling Through ER Decreases the Percent Frequency of  Female CD4
+
 Ag-specific T Cells Expressing 

IFN
+
TNF

+
, IFN

+
, and TNF

+
. Female HCV Ag-specific T cells from 15 donors were treated with 0, 0.5, or 50 nM estrogen in 

combination with an ER inhibitor, and ER inhibitor, or both inhibitors simultaneously for 2 hours. After treatment, Ag-specific T 

cells were co-cultured for 5 hours with T2 cells pulsed with HCV cognate antigen or a tyrosinase irrelevant peptide in the presence 

of protein transport inhibitors. Cells were then stained for flow cytometric analysis of CD3, CD34, CD8, and CD4 and functional 

markers CD107a, IFN, TNF, IL-4, IL-2, IL-17a, and IL-22. Using Boolean gates in FlowJoX and the software SPICE, the 

frequency of CD4
+
 T cells expressing each combination of these 7 markers was generated. The frequencies of CD4

+
 female Ag-

specific T cells expressing one through seven markers simultaneously after treatment with A) estrogen, B) estrogen in combination 

with an ER inhibitor, C) estrogen in combination with an ER inhibitor, D) estrogen in combination of both ER and ER inhibitors 

were plotted. Data for T cells expressing 6 or 7 markers simultaneously is not shown since the percent frequency was very low. Data 

represents the mean of n=15 donors. Data was analyzed using MANOVA and Tukey’s post-hoc. p<0.0001=****, p< 0.001=***, 

p<0.01=**, p<0.05=*. 
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Figure 25. Estrogen Signaling Through ER Increases the Percent Frequency of CD4
+
 Male Ag-specific T Cells Expressing 

IFN
+
IL-4

+
TNF

+
 and Decreases the Percent Frequency of T Cells Expressing IFN

+
TNF

+
, IFN

+
, and TNF

+
. Male HCV 

Ag-specific T cells from 15 donors were treated with 0, 0.5, or 50 nM estrogen in combination with an ER inhibitor, and ER 

inhibitor, or both inhibitors simultaneously for 2 hours. After treatment, Ag-specific T cells were co-cultured for 5 hours with T2 cells 

pulsed with HCV cognate antigen or a tyrosinase irrelevant peptide in the presence of protein transport inhibitors. Cells were then 

stained for flow cytometric analysis of CD3, CD34, CD8, and CD4 and functional markers CD107a, IFN, TNF, IL-4, IL-2, IL-

17a, and IL-22. Using Boolean gates in FlowJoX and the software SPICE, the frequency of CD4
+
 T cells expressing each combination 

of these 7 markers was generated. The frequencies of CD4
+
 male Ag-specific T cells expressing each of the markers combinations 

after treatment with A) estrogen, B) estrogen in combination with an ER inhibitor, C) estrogen in combination with an ER inhibitor, 

D) estrogen in combination of both ER and ER inhibitors were plotted. Data represents the mean of n=15 donors. Data was 

analyzed using MANOVA and Tukey’s post-hoc. p< 0.001=***, p<0.01=**,  p<0.05=*. 
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Estrogen Signaling through ER Enhances the Percent Frequency of Ag-specific T cells 

Expressing Polyfunctional Marker Combinations 

 Up to this section of the results, polyfunctionality data were statistically analyzed for 

CD4+ and CD8+ T cells within each sex separately for each of the estrogen or estrogen + 

inhibitor treatments individually. This indicates that statistical significance was reported by 

comparing the percent frequency of T cells expressing each marker combination when treated 

with estrogen alone (0.5 nM or 50 nM) or in combination with each ER inhibitor or both 

simultaneously to the percent frequency of T cells expressing each marker combination when 

treated with 0 nM estrogen in combination with each inhibitor or both separately. In order to 

statistically analyze the interaction of estrogen and estrogen receptor inhibitor treatment on the 

expression of each of the combination of cytokines, a mixed-effect linear regression model was 

used. The estrogen main effect, estrogen inhibitor main effect, and estrogen x estrogen inhibitor 

interaction were run for every unique marker combination. An n=10 is needed for statistically 

analyzing each main effect/interaction so an n=30 was achieved by analyzing Ag-specific T cells 

from 15 female and 15 male donors together. Analyzing the data from male and female Ag-

specific T cells together has its limitations since the effect of sex in the expression of each 

marker combination is not taken into account but, based on previous data, it was demonstrated 

that estrogen signaling affects the polyfunctionality of male and female T cells similarly. Also, 

the bulk Ag-specific T cell population was analyzed instead of analyzing CD8+ and CD4+ T cell 

subset separately since during HCC immunotherapy T cells are infused into patients as a mixed 

population and superior anti-tumor immune responses are achieved when both functional subsets 

are found infiltrating the tumor, indicating a combined CD8+ and CD4+ T cell anti-tumor 

function [352].  
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IFN+IL-4+TNF+ was one of the cytokine combination that demonstrated a significant 

interaction effect between estrogen and estrogen inhibitor treatments (p = 0.0002). This indicates 

that the effect of estrogen treatment on IFN+IL-4+TNF+ expression varies significantly based 

on each estrogen inhibitor treatment, and vice versa. Physiological and super-physiological 

estrogen treatment significantly enhanced the percent frequency of cells expressing IFN+IL-

4+TNF+ (4.4731% and 5.1938% compared to 3.3751% in 0 nM treated T cells) (Table 3). The 

percent frequency of T cells expressing IFN+IL-4+TNF+ was significantly decreased when T 

cells were treated with 0.5 or 50 nM estrogen in combination of an ER inhibitor was added 

(3.2479% and 2.9269%) or both ER and ER inhibitors are added (3.182% and 2.9945%) 

(Table 3). On the other hand, the percent frequency of T cells expressing IFN+IL-4+TNF+ 

significantly increased when T cells were treated with 0.5 nM or 50 nM estrogen in combination 

with an ER inhibitor (5.0915% and 5.5498%) (Table 3). This indicates that physiological and 

super-physiological estrogen signaling through ER enhances the expression of IFN+IL-

4+TNF+, while signaling through ER significantly inhibits expression of IFN+IL-4+TNF+. 

Other cytokine combinations that demonstrated a significant interaction effect between 

super-physiological estrogen and estrogen inhibitor treatments (p<0.000618). This indicates that 

the effect of super-physiological estrogen concentration on the expression of IFN+IL-2+IL-4+IL-

17a+TNF+, and IL-2+IL-4+TNF+varies significantly based on each estrogen inhibitor 

treatment, and vice versa. The percent frequency of T cells expressing these marker 

combinations were significantly increased when treated with physiological (0.5 nM) or super-

physiological (50 nM) estrogen concentrations (Table 4). A significant decrease on the frequency 

of cells expressing IFN+IL-2+IL-4+IL-17a+TNF+, and IL-2+IL-4+TNF+ was observed when T 
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cells were treated with super-physiological estrogen in combination with an ER inhibitor, or 

ER and ER inhibitors simultaneously when compared to those cells treated with estrogen only 

(Table 4). A significant increase on the frequency of cells expressing IFN+IL-2+IL-4+IL-

17a+TNF+, and IL-2+IL-4+TNF+ was observed when T cells were treated with super-

physiological estrogen in combination with an ER inhibitor (Table 4). Overall these result 

indicate that estrogen signaling through ER enhances the expression of polyfunctional 

combinations IFN+IL-2+IL-4+IL-17a+TNF+, and IL-2+IL-4+TNF+ in Ag-specific T cells 

while estrogen signaling through ER inhibits the expression of these polyfunctional 

combinations. 

 Significant interaction effect between super-physiological estrogen and estrogen inhibitor 

treatments (p<0.000618) were also found for Ag-specific T cells expressing only IFN+ or 

TNF+ in combination with no other marker. Percent frequency of T cells expressing only IFN+ 

or TNF+ were significantly decreased when treated with physiological (0.5 nM) or super-

physiological (50 nM) estrogen concentrations (Table 4). A significant increase on the frequency 

of cells expressing only IFN+ or TNF+ was observed when T cells were treated with super-

physiological estrogen in combination with an ER inhibitor, or ER and ER inhibitors 

simultaneously when compared to those cells treated with estrogen only. A significant decrease 

on the frequency of cells expressing only IFN+ or TNF+ was observed when T cells were 

treated with super-physiological estrogen in combination with an ER inhibitor (Table 4).  
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Table 3. Estimated Effects of Estrogen and Estrogen Inhibitor Treatment on the Percent 

Frequency of Ag-specific T Cells Expressing IFN
+
IL-4

+
TNF

+
. The 95% confidence interval 

mean estimates for the percent frequency of Ag-specific T cells expressing IFN
+
IL-4

+
TNF

+ 
is 

represented for each estrogen treatment (0.5, 50 nM) compared to 0 nM treatment, and for each 

estrogen treatment (0.5 or 50 nM) in combination with either ER or ER inhibitors or both 

simultaneously, compared to estrogen treatment in combination with no inhibitor (none). 

Significant at p=0.000618.  
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Table 4. Adjusted Effects of Estrogen and Estrogen Inhibitor Treatment on Unique 

Cytokine Combination Expression. The 95% confidence interval mean estimates for the 

percent frequency of Ag-specific T cells expressing IFN
+ 

IL-2
+
IL-4

+
IL-17a

+
TNF

+
, IFN

+
, 

IL-2
+
IL-4

+
TNF

+
, and TNF

+ 
is represented for each estrogen treatment (0.5, 50 nM) 

compared to 0 nM treatment, and for each estrogen treatment (0.5 or 50 nM) in combination 

with either ER or ER inhibitors or both simultaneously, compared to estrogen treatment in 

combination with no inhibitor (none). Significant at p=0.000618.  
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Overall these result indicate that estrogen signaling through ER enhances the expression of 

monofunctional combinations IFN+ or TNF+ in Ag-specific T cells while estrogen signaling 

through ER inhibits the expression of these monofunctional combinations. 

Overall these statistical analysis indicates than in a human HCV Ag-specific population 

comprised of a mixture of CD4+ and CD8+ T cells that are activated with the HCV cognate 

antigen, estrogen signaling through ER significantly enhances the percentage of T cells 

expressing polyfunctional phenotypes such as IFN+IL-4+TNF+, IFN+IL-2+IL-4+IL-

17a+TNF+, and IL-2+IL-4+TNF+ and inhibits the expression of mono-functional phenotypes 

such as IFN+ or TNF+. On the other hand, estrogen signaling through ER significantly 

inhibits the percentage of cells expressing polyfunctional phenotypes while enhancing the 

percentage of cells expressing mono-functional phenotypes. This results demonstrate that 

estrogen signaling through ER enhances the polyfunctionality of Ag-specific T cells for 

immunotherapy. 

Chapter Discussion 

 

This chapter of the dissertation was aimed to determine the impact of sex and estrogen 

signaling in regulating Ag-specific T cell polyfunctionality. Here it was found that female CD8+ 

T cells are inherently more polyfunctional than male CD8+ T cells indicating that sex 

intrinsically impacts CD8+ T cell function upon antigen stimulation. In addition, it was shown 

that estrogen signaling through ER and not ER enhances male and female CD8+ and CD4+ 

Ag-specific T cell polyfunctionality. Overall these results report, for the first time, the impact of 
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estrogen stimulation on T cell polyfunctionality, and recognize specific functional phenotypes 

that are directly affected by estrogen receptor signaling in Ag-specific T cells.  

T cell polyfunctionality was evaluated by measuring the expression of cytokines IFN, 

TNF, IL-2, IL-4, IL-17a, and IL-22 and the lytic marker CD107a. Analysis of these factors 

yielded highly complex multi-dimensional data sets that were analyzed using software packages 

FlowJo, Pestle, and SPICE which allowed for graphical representation of the data and allowed to 

make comparison between sexes and estrogen receptor inhibitor treatment groups. It was found 

that male and female CD8+ and CD4+ Ag-specific T cells are highly diverse on their phenotypic 

and functional complexity. Female CD8+ Ag-specific T cells were more polyfunctional than 

male CD8+ T cells upon antigen stimulation expressing higher degrees of functional phenotypes 

such as CD107a+IFN+TNF+, IFN+IL-2+TNF+, and   IFN+TNF+ indicating strong type I T 

cell responses. On the other hand, significantly higher percentages of male CD8+ Ag-specific T 

cells expressed TNF+ compared to female T cells. This indicates that male CD8+ Ag-specific T 

cells also produce strong type I effector responses but T cells are less likely to express several 

markers simultaneously.  

Despite the sex differences on CD8+ T cell polyfunctionality, estrogen signaling showed 

equal effects modulating the polyfunctionality of male and female CD8+ and CD4+ Ag-specific T 

cells. Estrogen signaling through ER significantly increased the frequency of T cells expressing 

trifunctional phenotypes like CD107a+IFN+TNF+, and IFN+IL-4+TNF+ and significantly 

decreased the frequency of T cells expressing bifunctional or monofunctional phenotypes 

including IFN+TNF+, IFN+, and TNF+. ER signaling enhances the expression of 

polyfunctional phenotypes that include effector type I cytokines that enhance the T cell anti-
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tumor immune response, the lytic marker CD107a indicating T cell degranulation, and the type II 

cytokine IL-4 which promotes T cell survival and memory formation. Since polyfunctional CD8+ 

and CD4+ T cells were shown to generate superior anti-tumor immune responses [417, 423, 428, 

433], it can be hypothesized that female CD8+ T cells can modulate stronger anti-tumor immune 

responses compared to male CD8+ T cells. Based on the findings in this chapter it can also be 

hypothesized that estrogen signaling through ER can modulate stronger CD8+ and CD4+ T cell 

anti-tumor immune responses through enhancement of their polyfunctionality.  

Estrogen signaling through ER was also shown to enhance the polyfunctionality of the 

whole Ag-specific T cell population containing CD4+ and CD8+ T cells and independently of the 

sex of the 30 donors tested. Physiological and super-physiological estrogen signaling through 

ER enhanced the percent frequency of Ag-specific T cells expressing IFN, TNF, and IL-4 

simultaneously upon activation. Surprisingly, estrogen signaling through ER significantly 

inhibited the percent of Ag-specific T cells expressing this polyfunctional phenotype. Super-

physiological concentrations of estrogen significantly increased the percentage of Ag-specific T 

cells expressing INF+IL-2+IL-4+ and IL-17a+TNF+IL-2+IL-4+TNF+ and the super-

physiological estrogen-mediated enhancement of expression was abrogated when ER was 

blocked, but significantly enhanced when ER was blocked. Opposite results were obtained for 

monofunctional phenotypes IFN+ and TNF+ which were significantly decreased upon estrogen 

treatment, but significantly increased when physiological estrogen signaling through ER was 

inhibited. On the other hand, the percent of Ag-specific T cells expressing monofunctional 

phenotypes IFN+ and TNF+ was significantly decreased when ER was blocked indicating that 

super-physiological estrogen signaling through ER enhances monofunctional phenotypes. 
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Overall, these results indicate that estrogen signaling through ER enhances the 

polyfunctionality of the bulk Ag-specific T cell population in a dose-dependent manner, while 

estrogen signaling through ER inhibits the polyfunctionality of the bulk Ag-specific T cell 

population. Previously, ER signaling was shown to enhance expression of specific cytokines, 

IFN, TNF and IL4, through its genomic pathway. This could indicate that ER is enhancing 

Ag-specific T cell polyfunctionality through modulating T cell pathways and genes that promote 

polyfunctionality.  

T cell polyfunctionality is induced by TCR ligation of the antigen-MHC complex 

resulting in subsequent T cell activation, proliferation and cytokine production. Upon antigen 

ligation the TCR gets phosphorylated by lck and the kinase ZAP70 is recruited to 

phosphorylation sites. ZAP70 then activates several signaling pathways that modulate T cell 

function and cytokine expression. The three major pathways activated downstream from the 

TCR are the MAP kinase pathway, the NFB pathway, and the NFAT pathway [6]. NFAT and 

NFB are transcription factors that translocate into the nucleus when activated by TCR 

downstream signaling and modulate expression of immune genes and cytokines [6]. The MAP 

kinase pathway induces the expression of the transcription factor c-Fos which together with Jun 

form the dimeric transcription factor complex AP-1 [6]. AP-1 can also modulate expression of 

immune genes and cytokines. While the effect of ER on TCR downstream signaling remains 

unknown, there are studies confirming a relationship between estrogen signaling and activation 

of the MAPK, NFAT, and NFB pathways. While the specific estrogen receptor was not 

reported, estrogen signaling was shown to induce rapid activation of the MAP kinase pathway in 

mammalian cells [434]. Estrogen activation of the MAPK pathway is preceded by a rapid 
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increase in cytosolic Ca2+ concentration indicating that estrogen promotes Ca2+ release from the 

intracellular storages [435, 436]. The estrogen-mediated increase of cytosolic Ca2+ can also 

activate NFAT [437]. NFAT is activated via dephosphorylation by the Ca2+-dependent 

phosphatase calcineurin [438].  This indicates that estrogen can enhance intracellular Ca2+ levels 

which result on subsequent activation of the MAPK and NFAT pathways. Estrogen was also 

shown to rapidly activate the NFB pathway in endothelial and breast cancer cells [439].  While 

treating cells with estrogen ligand enhanced NFB signaling, ER and ER were shown to 

inhibit NFB binding to DNA target sites in myocardial cells impeding NFB target gene 

expression, and to enhance expression of the NFB inhibitory protein IK [440, 441]. The 

controversial effect of estrogen signaling on NFB seems to be cell dependent and it cannot be 

ruled out that estrogen signaling through ER enhances NFB signaling. 

In addition to the evidence supporting that estrogen activates these TCR downstream 

signaling pathways, EREs were found in the promoters of genes coding for important TCR 

downstream signaling proteins like lck, ZAP70 and c-Fos. Lck contains an ERE at position 3451 

bp of its promoter, and ZAP70 contains an ERE at position 4305 bp of its promoter, and c-Fos 

contains an ERE at location -3411 of its promoter (Table 5) [442]. This indicates that 

transcription of these genes could be regulated by ligand and ERE-independent ER canonical 

genomic signaling. Overall, given that ER enhances T cell polyfunctionality which is induced 

by TCR signaling, and knowing that estrogen signaling can enhance TCR signaling proteins 

expression and activation of downstream pathways it can be hypothesized that ER enhances 

human male and female Ag-specific T cell polyfunctionality by enhancing overall TCR 

signaling.  
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 In order to exclude the possibility that ER mediated enhancement of CD8+ and CD4+ 

Ag-specific T cell polyfunctionality is caused by changes on monofunctional and polyfunctional 

T cell survival and proliferation rather than enhancement of the TCR signaling, cell viability and 

proliferation staining need to incorporated into these experiments. Survival of monofunctional 

and polyfunctional Ag-specific T cells after antigen stimulation can be assessed by a viability 

dye and compared between estrogen and ER inhibitor treatments. Ag-specific T cell proliferation 

can be accessed via Ki67 staining and equally compared between estrogen and ER inhibitor 

treatments. 
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Table 5. Estrogen Response Elements Found in the Promoters of LCK, ZAP70, and FOS. Table shows the human (Hs) gene 

name, the chromosome location, the ERE sequence and its position in respect to the gene starting site. EREs were found in n the 

EREfinder database. c-Fos ERE was previously reported by Weisz & Rosales, Nucleic Acids Res, 1990. 
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CHAPTER VI 

ESTROGEN ENHANCES T CELL SURVIVAL, TUMOR INFILTRATION AND ANTI-

TUMOR FUNCTION DURING IMMUNOTHERAPY FOR HCC 
 

Introduction and Rationale 

 

The protective role of estrogen against HCC is widely accepted and supported by the 

observation that the HCC female-biased survival is significantly reduced after menopause [311]. 

Post-menopausal females undergoing estrogen hormone-replacement therapy have a decreased 

risk of HCC and increased survival rates compared to non-estrogen users [311]. Previous studies 

demonstrated that the protective activity of estrogen against HCC is mediated through inhibition 

of expression and signaling of IL-6 and inactivation of the STAT3 pathway in hepatocytes and 

Kupffer cells, as well as inhibition of tumor-associated macrophages, which all result in 

reduction of chronic inflammation of the liver and subsequent transformation [293, 318, 443]. 

The effect of estrogen on other immune cells present in the TME that impact anti-tumor immune 

responses and may have critical bearings on the success of ACT immunotherapy, including T 

cells, remains unclear and understudied. Since higher frequencies of infiltrating lymphocytes 

including CD4+ and CD8+ T cells have been correlated with increased survival in HCC patients 

[333, 334], it is important to study the role of estrogen signaling regulating the function of T 

cells in the HCC TME. The previous chapters of this dissertation demonstrated that estrogen 

signaling through ER enhances the expression of specific cytokines including IFN, TNF, and 

IL-4, in Ag-specific T cells upon TCR ligation and estrogen signaling through ER significantly 
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enhances the polyfunctionality, or the ability to express several functional markers 

simultaneously, of human male and female Ag-specific T cells activated by their cognate 

antigen. These results indicate that estrogen signaling through both ER and ER contribute to 

enhancing Ag-specific T cell function in response to antigen stimulation.  

ACT immunotherapy using genetically modified T cells including CAR-T cells and 

TCR-transduced T cells showed some success for treating HCC in preclinical models, and in 

early stage clinical trials. However, due to high fibrosis and cirrhosis, HCC tumors are hard to 

penetrate physically by Ag-specific T cells [444] therefore, currently the clinical results in 

treating HCC remain unsatisfactory. In addition, the HCC TME comprises immunosuppressive 

stromal cells and molecules including checkpoint molecules that promote tumor growth by 

exhausting T cells [444]. These data indicate that there is a high need for ways to improve the 

anti-tumor function of Ag-specific T cells in order to generate more successful ACT 

immunotherapy for HCC. Since estrogen has a protective role against HCC through mechanisms 

involving inflammation, and can enhance cytokine production and polyfunctionality of T cells in 

vitro, it was hypothesized that the protective role of estrogen against HCC is partially due to the 

estrogen-mediated enhancement of the T cell anti-tumor immune response. Estrogen receptor 

signaling was shown to enhance T cell activation, proliferation, and survival in models of 

autoimmune disease [233], indicating that estrogen could further strengthen the efficacy of ACT 

immunotherapy for HCC. In this chapter of the dissertation, the impact of estrogen signaling on 

tumor growth and T cell function is assessed during ACT immunotherapy using human HCV 

Ag-specific T cells to treat a HCV+HCC generated in mice. 
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Results 

The ideal target tumor tissue to be used for studying the role of estrogen during ACT 

immunotherapy for HCC would be patient derived xenografts (PDX) from HCV+HCC HLA-A2+ 

patients. PDX are transplanted into immune-deficient mice which then receive ACT 

immunotherapy with human HCV Ag-specific T cells, and tumor rejection can be measured as 

well as T cell function. Unfortunately, HCV+HCC xenografts from HLA-A2+ patients were not 

available to be used for the following experiments so a genetic HCC mouse model was used 

instead. HCC can be generated in mice by forcing the expression of human oncogenes c-MET 

(MET) and −catenin (CAT) in hepatocytes by sleeping beauty (SB) transposase-mediated 

somatic integration [445]. SB100 is retrovirally transduced into the liver in combination with 

transposon containing vectors for MET and CAT. SB recognizes and binds to inverted repeats 

flanking the MET and CAT sequences, excises the sequences, and inserts them into a new 

location containing a TA dinucleotide in the hepatocyte genome (Figure 26) [445]. This is a 

previously described clinically relevant HCC model that relies on the co-activation of MET and 

CAT which often occur in human HCC cases [371, 446, 447]. Co-delivery of both MET and 

CAT simultaneously on mouse livers using the sleeping beauty transposase system induces HCC 

within 40 to 60 days [372]. In order to include the HCV specific antigen in these HCC tumors 

that could be recognized by human Ag-specific T cells, a pcDNAIII expression vector containing 

the sequence of the full length HCV NS3 (Figure 7) [51, 358] was also delivered in combination 

with MET and CAT. Using this model, HCC tumors expressing the HCV NS3 antigen were 

generated. Ideally these tumors generated in mice would be treated syngeneically using mouse 

HCV Ag-specific T cells. On the other hand, considering that the effects of estrogen cytokine 

production and polyfunctionality were observed specifically in human T cells, it was decided to 
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use human male and female HCV Ag-specific T cells to perform ACT immunotherapy for HCC 

in these mice.  In order to test human T cells in the mouse system, the strain of mice used were 

the NSG-A2+ mice which are completely immune-deficient HLA-A2 expressing mice. NSG-A2+ 

mice lack functional mature B cells, T cells, NK cells and have defective DCs and macrophages, 

which prevents them from targeting and depleting or “rejecting” adoptively transferred human T 

cells. Furthermore, human T cells were shown to survive and be fully functional in NSG-A2+ 

mice [448-450], indicating this is a valid mouse model for the study of human T cell based 

immunotherapy. 

 

 

Figure 26. Mechanisms of Sleeping Beauty 100 (SB100)-mediated Transposition. Diagram 

of SB100 transposase-mediated cut-and-paste transposition of the sequences of the oncogenes 

MET and CAT into hepatocyte’s genome. A transposon, defined by the mirrored sets of red 

double arrows (IR/DRs) is shown on each end of the plasmid containing the sequence of MET 

and CAT oncogenes. The transposon harbors the expression cassette consisting of a promoter 

(blue square) that can direct the transcription of MET and CAT. SB100 binds to the IR/DRs and 

cuts the transposons out of the plasmid. A DNA molecule, in this case genomic DNA in mouse 

hepatocytes, containing the TA sequence becomes the recipient of the transposed transposon. In 

this process the TA sequence at the insertion site is duplicated.  
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While the MET-CAT HCC tumor model was previously used to study HCC oncogenesis 

and pharmacological drug design and delivery, it has never been used before to study ACT 

immunotherapy. To ensure that human HCC Ag-specific T cells could recognize the HCV 

antigen presented in  the context of HLA-A2 in mouse HCC cells, HCV+HCC tumors generated 

in NSG-A2+ mice were digested into a single cell suspension and incubated with male and 

female human Ag-specific T cells. T cell activation in response to target tumor antigen was 

measured via IFN release by ELISPOT. It was observed that female and male Ag-specific T 

cells secreted IFN in response to HCV+HCC cells but not in response to HCV-HCC cells 

generated in mice challenged with MET/CAT (Figure 27). These resulting data demonstrate that 

human Ag-specific T cells can recognize HCV antigen expressing HCC tumors generated in 

mice but do not respond to hepatocytes or tumor cells in the absence of the cognate Ag. The lack 

of response to tumors missing HCV Ag expression rules out the possible off-antigen reactivity to 

mouse tissue. Overall these results indicate that HCC Ag-specific T cells can be safely used to 

treat HCC bearing mice with ACT immunotherapy. 

In order to study the role of estrogen signaling in the T cell anti-tumor immune response 

generated during ACT immunotherapy in vivo, physiological estrogen was removed via 

ovariectomy (OVX) which consists of surgically ablating the ovaries of female mice. The ovaries 

are the main source of estrogen in the body of female mice and removing them was shown to 

significantly reduce the serum estrogen concentration to levels similar to those observed in male 

mice [451]. Physiological estrogen serum concentration in female mice is around 30-60 pg/mL 

and ovariectomy was shown to reduce this concentration to around 1.5-3 pg/mL [451, 452].  
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These serum estrogen concentrations can be correlated to the ones found in human females 

before (30-800 pg/mL) and after menopause (less than 20 pg/mL). Ovariectomy of female mice 

was considered a clinically relevant model to study the effect of physiological estrogen presence 

or absence during ACT for HCC. Sham surgeries omitting the ablation of the ovaries were 

performed in control female and male mice to take into account possible effects of surgery-

mediated inflammation on all experimental groups. Before tumor challenge, mice were left to 

stabilize for 3 weeks which is the minimum time reported for accumulated serum estrogen 

concentration to significantly decrease after ovariectomy [453, 454]. 

Figure 27. Human HCV Ag-specific T Cells Secrete IFN in Response to HCV
+
 HCC Cells 

Generated in NSG-A2
+
 Mice. NSG-A2

+
 mice were challenged with c-MET and -catenin 

human oncogenes in combination with an expression vector for the HCV NS3 peptide to 

generate HCV-expressing HCC. HCC were left to develop for 60 days and then were collected 

and digested into a single cell suspension. Tumor cells were co-cultured with human male or 

female HCV Ag-specific T cells at a 1:1 ratio for 18 hours, and IFN secretion was measured 

via ELISPOT. A) Female and male Ag-specific T cells secreted IFN in response to HCV 

expressing-HCV but not to HCV
-
HCC. B) ELISPOT plate demonstrating IFN secretion from 

three different female and three different male donors (D1, D2, D3). Data represents n=3 

donors, each donor plotted and the standard error of the mean indicated. Data was analyzed 

using 2-way ANOVA with Tukey’s post-hoc. No significance was observed. 
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Estrogen Inhibits Tumor Growth during Adoptive T cell Transfer Immunotherapy 

 

Using mice at 6-8 weeks old, treatment groups consisted of ovariectomized females, 

sham females and sham males were challenged with MET and CAT oncogenes in combination 

with the HCV NS3 expression vector. After tumor initiation, at day 20 or day 40 after 

MET/CAT/HCV injection, sham/OVX females and sham males received ACT immunotherapy 

of 107 sex-matched human HCV Ag-specific T cells via tail vein. 20 days after ACT 

immunotherapy, livers were collected and analyzed for tumor presence, and T cells were isolated 

from livers and spleens for analysis. All mice in these experiments received HCV Ag-specific T 

cells generated from one male and one female healthy donor. Phenotypical analysis of the Ag-

specific T cells before adoptive transfer demonstrated similar percentage and MFI of 

CD3+CD34+ in male and female T cells indicating equal anti-HCV TCR expression in both sexes 

(Figure 28 A). While female Ag-specific T cells showed a 1:1 CD8+:CD4+ ratio, the male T cells 

showed a 2:1 CD8+:CD4+ (Figure 28 B). The percentage of CD8+ T cells expressing intracellular 

Granzyme B was approximately 70% in female T cells compared to 85% in male T cells 

indicating a higher percentage of CTLs in transferred male Ag-specific T cells (Figure 28 C). 

Both male and female CD4+ T cells expressed low percentages of T-BET and high percentages 

of GATA3 indicating low Th1 and high Th2 CD4+ populations (Figure 28 D, E). Approximately 

18% of female T cells expressed RORt compared to only 2% of male T cells indicating a higher 

Th17 population in female CD4+ Ag-specific compared to male T cells (Figure 28 F). 

Surprisingly a high percentage of both male and female CD4+ T cells expressed FoxP3 (50-55%) 
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indicating a high Treg population (Figure 28 G). These data indicate that the Ag-specific T cells 

transferred into female mice consisted of a more heavily CD4+ helper T cell population including  

 

 

 

 

high percentage of Th2 and Th17 cells, while Ag-specific T cells transferred into male mice 

consisted of a more CD8+ CTL population. 

Figure 28. Phenotype of Human Female and Male Ag-specific T Cells Used for ACT 

Immunotherapy. Flow cytometry dot plots representing the percent frequency of human 

female and male T cells that were A) CD3
+
CD34

+
. B) Percent frequency of female and male 

CD3
+
CD34

+
 that were either in the CD8

+
 or CD4

+ 
subset. C) Percent frequency of 

CD3
+
CD34

+
CD8

+
 female and male T cells expressing Granzyme B. Percent frequency of 

CD3
+
CD34

+
CD4

+
 T cells expressing D) T-BET, E) GATA3, F) RORt, and G) FoxP3.  
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HCC tumors in mice are commonly quantified by measuring the ratio of tumor over body 

weight [455]. Since mice used for these experiments were a range of ages, and male mice were 

bigger than female mice, no significant differences in tumor over body weight ratios were found 

between sexes or treatment groups. It is important to note that the transformed livers were three 

times heavier than livers of non-challenged mice, healthy livers weighting approximately 1.5 

grams and fully transformed livers weighting approximately 4 grams. Alternatively, to using the 

ratio of liver tumor:body weight, the BCLC staging classification was used to compare tumor 

burden between experimental groups. According to this staging method, HCC tumors are 

classified into four different categories according to the number of tumors, the size of the tumors, 

the presence of vascular invasion, and the spread of nodules or presence of extrahepatic 

metastases [320]. According to these parameters, HCC tumors are considered stage 0 (very early 

stage) when only one small nodule <2 mm is found, stage A (early stage) when between 1 and 3 

small nodules are found, stage B (intermediate stage) when several nodules >3 mm are found, 

stage C (advanced stage) when several large nodules are found and there is portal invasion, or 

stage D (terminal stage) when several large nodules are present and there is extrahepatic spread 

[319-321]. Extrahepatic spread in mice HCC models is described as presence of metastases in 

the lungs, the spleen, the kidneys, and the heart [456]. HCC tumors that were left to develop for 

20 days before ACT were on the very early stage (stage 0) since tumor nodes were not detected. 

Only OVX females and sham males, which have minimal estrogen levels, that did not receive 

ACT showed transformation of the liver and tumor node presence (Figure 29 B lower panel). 

This indicates that ACT immunotherapy prevented tumor development since none of the mice 

that received ACT had tumor nodules present compared to untreated mice (Figure 29 B upper 

panel).  
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Tumors that were left to develop for 40 days prior to ACT were in very advanced HCC 

stage and resulted in an almost complete transformation of the liver (Figure 29 C). HCC tumors 

were multinodular, nodules were very large, and some mice even presented tumor nodules on the 

spleen which were characterized as metastases (represented on Figure 29 C), indicating that these 

tumors were in the intermediate (stage B), advanced or very advanced stages (stage C and D). In 

mice that did not receive ACT immunotherapy, tumor burden was greater in OVX females and 

sham males compared to sham females (Figure 29 C lower panel). Tumor burden was overall 

reduced in mice that received ACT indicating T cell tumor recognition and killing. Sham females 

treated with ACT immunotherapy showed less tumor burden than OVX females and sham males 

counterparts (Figure 29 C upper panel). These data overall support the hypothesis that estrogen 

has a protective roll against HCC. The HCC tumor burden in ACT treated mice was quantified 

and showed that even if tumor burden was improved with ACT immunotherapy, OVX females 

had the overall worst diagnosis when compared to sham females or sham males. A significantly 

greater percentage of ACT treated OVX female mice developed HCC tumors in the very advance 

stage D (multinodular and spleen metastasis presence) compared to sham females (Figure 29 D). 

HCC tumor burden on OVX females treated with ACT was also worse compared to sham males 

showing higher percentage of mice in the very advanced stage even if significance was not 

achieved. Overall, sham females that received immunotherapy showed significantly less 

advanced tumor burden compared to OVX females, and trending less advanced tumor burden 

compared to sham males (Figure 29 D). These results indicate that removal of endogenous 

estrogen enhances HCC tumor burden and decreases ACT immunotherapy efficacy.
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Figure 29. Removal of Endogenous Estrogen via Ovariectomy Enhances HCC Tumor Burden and Reduces ACT 

Immunotherapy Efficacy. A) Experimental set up. B) Representative pictures of livers of sham females, OVX females, and sham 

males that were challenged with MET and CAT oncogenes in combination with an HCV antigen expression vector. Upper panels 

show livers of mice that received ACT immunotherapy with sex-matched human HCV Ag-specific T cells 20 days after tumor 

challenge and that were sacrificed 20 days after therapy administration. Lower panels show mice counterparts that did not receive 

ACT immunotherapy. C) Representative pictures of mice that received ACT immunotherapy with sex-matched human HCV Ag-

specific T cells 40 days after tumor challenge and were sacrificed 20 days after therapy administration. Arrows point at tumor nodules. 

Small panel shows a representative picture of a spleen metastasis (MET). D) HCC tumor burden was determined using the BCLC 

staging based on the number of nodules, the percent transformation of the liver, and presence of spleen metastases in mice that 

received ACT 40 days after tumor challenge compared to untreated mice. ACT day 20: n=6 sham females, n=7 OVX females, n=10 

sham males. ACT day 40: n=5 sham females, n=5 OVX females, n=6 sham males. Data was analyzed with 2-way ANOVA with 

Tukey’s post-hoc. p<0.05. 
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Estrogen Presence during Adoptive T cell Transfer Immunotherapy Enhances Human CD4+ 

Ag-specific T cell Tumor Infiltration 

 

After assessing tumor burden, HCC tumors were digested and T cells were isolated from 

whole tumors and analyzed via flow cytometry in order to determine Ag-specific T cell tumor 

infiltration. T cells obtained from the tumors of each mouse were analyzed separately and no 

tumors were pooled together. Even if the Ag-specific T cell numbers recovered were low they 

were sufficient for analysis and for making meaningful comparisons. Significantly greater 

numbers of human Ag-specific T cells were found infiltrating the livers of sham females, an 

average of approximately 2000-4000 cells,  compared to OVX females, an average of 1500-2000 

cells, at both time points of ACT  (Figure 30 B). A trend was observed indicating increased 

numbers of infiltrating T cells in sham females compared to sham males but significance was not 

achieved (Figure 30 B). The number of infiltrating CD8+ Ag-specific T cells was not 

significantly different in early stage tumors treated with ACT immunotherapy at day 20 after 

tumor challenge. On the other hand, significantly higher numbers of infiltrating CD8+ T cells 

were found in advanced tumors of sham females, an average of approximately 1700 cells, 

compared to OVX females and males that received ACT immunotherapy at day 40 after tumor 

challenge, >500 cells (Figure 30 C). The numbers of infiltrating CD4+ Ag-specific T cells were 

significantly higher in sham females compared to OVX females and males at both time points of 

ACT (Figure 30 D). Overall, these data indicates that endogenous estrogen enhances tumor 

infiltration of CD4+ Ag-specific T cells no matter on tumor burden, and enhances the infiltration 

of CD8+ Ag-specific T cells in advanced tumors. 
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Figure 30. Endogenous Estrogen Enhances Human Ag-specific T Cell Tumor Infiltration. 

Human Ag-specific T cells were adoptively transferred into OVX/sham female or sham male 

mice 20 or 40 days after HCC tumor challenge, and then isolated from tumors 20 days after 

transfer for flow cytometric analysis. A) Representative flow cytometry dot plots containing 

the gating strategy performed to analyze HCV Ag-specific T cells isolated from tumors of one 

female sham, one female OVX, and one male sham mouse. Total number of B) CD3
+
CD34

+
, 

C) CD3
+
CD34

+
CD8

+
, or D) CD3

+
CD34

+
CD4

+
 HCV Ag-specific T cells found infiltrating the 

liver of sham females, OVX females, and sham males that were treated with ACT 

immunotherapy either 20 or 40 days after tumor challenge. ACT day 20: n=6 sham females, 

n=7 OVX females, n=10 sham males. ACT day 40: n=5 sham females, n=5 OVX females, n=6 

sham males. Each mouse plotted and the standard error of the mean indicated. Data were 

analyzed by 1way-ANOVA and Tukey’s post-hoc. p<0.001=***, p<0.01**, p<0.05=*. 
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The subset distribution of CD4+ Ag-specific T cells infiltrating the tumors of OVX and 

sham females was analyzed via flow cytometry staining. No significant differences were found 

on expression of any of these transcription factors between sham and OVX females indicating 

that endogenous estrogen does not affect CD4+ T cell subset differentiation during ACT 

immunotherapy. High percent frequency of CD4+ T cells infiltrating the livers of female sham 

and OVX mice expressed GATA3 and RORt compared to other transcription factors, which are 

the prototypic transcription factors for the Th2 and Th17 CD4+ T cell subsets (Figure 31).  

 

 

 

 

Figure 31. The CD4
+
 Ag-specific T Cell Subset Distribution was not Affected by Removal 

of Endogenous Estrogen. Human CD4
+
 Ag-specific T cells isolated from livers of sham and 

OVX female mice were intracellularly stained for the transcription factors T-BET, GATA3, 
RORt, and FOXP3 which correspond to the Th1, Th2, Th17, and Treg subsets respectively. A) 

Representative histograms showing the expression of T-BET, GATA3, RORt, and FOXP3 in 

tumor infiltrating CD3
+
CD34

+
CD4

+
 T cells from one sham female and one OVX female mouse. 

Percent frequencies of tumor infiltrating CD3
+
CD34

+
CD4

+
 T cells from sham females and 

OVX females that received ACT immunotherapy B) 20 days or C) 40 days after HCC tumor 
challenge. ACT day 20: n=6 sham females, n=7 OVX females. ACT day 40: n=5 sham females, 
n=5 OV females. Each mouse plotted and the standard error of the mean indicated. Male group 

is not included since not enough CD4
+
 T cell numbers were present infiltrating the liver to 

perform this analysis.  
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Surprisingly, low frequency of CD4+ T cells, less than 10%, expressed the transcription 

factor T-BET indicating low percentage of Th1 CD4+ Ag-specific T cells infiltrating the tumors 

of sham and OVX mice.  Low frequencies of CD4+ T cells, less than 10%, expressed FoxP3, 

indicative of lack of immunosuppressive regulatory Tregs, infiltrating the tumors of sham and 

OVX females (Figure 31). These results indicate that CD4+ T cells infiltrating the tumors of 

female mice belonged mostly to the Th2 and Th17 subsets. 

In order to demonstrate that the significant differences in CD4+ Ag-specific T cell 

infiltration between sham females and sham males were not due to the differences in CD8+:CD4+ 

ratios observed in Ag-specific T cells populations before transfer (Figure 28), opposite sex ACT 

immunotherapy was performed. Female mice received 107 male human Ag-specific T cells, and 

male mice received 107 female human Ag-specific T cells on day 20 after tumor challenge. On 

day 20 after ACT immunotherapy, livers were collected, and Ag-specific T cells were isolated. It 

was observed that female and male mice that received opposite sex ACT had similar numbers of 

CD3+CD34+ Ag-specific T cells infiltrating the tumor, approximately 2500 to 4000 TILs (Figure 

32 B). The numbers of infiltrating CD8+ Ag-specific T cells were comparable in male and 

females that received opposite sex ACT, m approximately 1200 TILs (Figure 32 C). On the other 

hand, female mice that received male human Ag-specific T cells had significantly greater 

number, around 500, of infiltrating CD4+ Ag-specific T cells compared to males, around 200, 

that received human female  T cells (Figure 32 C). These results indicate that females have 

increased CD4+ Ag-specific T cell tumor infiltration independently of the sex of the T cell donor. 

These results in combination with the ones presented in Figure 30 indicate that endogenous 

estrogen enhances tumor infiltration of CD4+ T cells from male and female source.  
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Figure 32. Endogenous Estrogen Enhances Tumor Infiltration of CD4
+
 Ag-specific T Cells 

Independently of the Donor’s Sex. Female and male NSG-A2
+
 mice were challenged with 

MET-CAT-HCV oncogenes and 20 days after they received ACT immunotherapy with T cells 

of the opposite sex. 20 days after ACT immunotherapy, livers were collected and T cells were 

analyzed via flow cytometry. A) Representative dot plots of infiltrating Ag-specific T cells from 

one female (received male T cells) and one male (received female T cells) mouse. B) Total 

number of CD3
+
CD34

+
 Ag-specific T cells found in the liver of female and male mice. Total 

number of C) CD3
+
CD34

+
CD8

+ 
or D) CD3

+
CD34

+
CD4

+
 T cells found infiltrating the liver of 

female or male mice. Data represents n=5 sham females, n=5 sham males. Each mouse plotted 

and the standard error of the mean indicated. Data analyzed with Student’s t test. p<0.05=*. 
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Estrogen Presence during Adoptive T cell Transfer Immunotherapy Enhances Human CD4+ 

Ag-specific T cell Survival 

 

In order to determine if the overall survival of adoptively transferred cells outside of the 

tumor was affected by estrogen removal, the number of circulating human T cells present in the 

spleen was quantified. While no differences were observed in mice that received ACT 20 days 

after tumor challenge and were bearing early stage tumors, there were significantly higher 

numbers of CD3+CD34+ and CD3+CD34+CD8+ T cells in the spleens of sham female mice with 

advanced stage tumors compared to OVX females and males which received ACT 40 days after 

tumor challenge (Figure 33 B, C). CD3+CD34+CD4+ T cell numbers were significantly higher in 

the spleens of sham female mice compared to OVX females and males at both time points of 

ACT immunotherapy and independently of tumor stage (Figure 33 D). These data demonstrate 

that estrogen enhances the persistence of adoptively transferred Ag-specific T cells. Estrogen 

removal is deleterious for T cell survival with an even more significant impact on the survival of 

the CD4+ T cell subset. 

Ideally, conclusions of these experiments would be supported by data measuring the 

effect of endogenous estrogen on the viability and proliferation state of tumor infiltrating and 

circulating T cells in order to determine if decreased CD4+ numbers found in the tumors and 

spleens of OVX females and sham males are due to increased T cell apoptosis or decreased 

proliferation. To test this, HCC tumors and spleens from sham/OVX females and sham males 

can be fixed and sectioned, and then stained for human CD4+ to detect the T cells in combination 

with staining for fragmented DNA (a feature of apoptotic cells) by terminal deoxynucleotidyl 

transferase dUTP nick-end labeling (TUNEL) [457].
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Figure 33. Endogenous Estrogen Enhances Human Ag-specific T Cell Survival. Human Ag-specific T cells were adoptively 

transferred into OVX/sham female or sham male mice 20 or 40 days after HCC tumor challenge, and then isolated from spleens 20 days 

after transfer for flow cytometric analysis. A) Representative flow cytometry dot plots containing the gating strategy performed to 

analyze HCV Ag-specific T cells isolated from spleens of one female sham, one female OVX, and one male sham mouse. Total number 

of B) CD3
+
CD34

+
, C) CD3

+
CD34

+
CD8

+
, or D) CD3

+
CD34

+
CD4

+
 HCV Ag-specific T cells found in the spleens of sham females, OVX 

females, and sham males that were treated with ACT immunotherapy either 20 or 40 days after tumor challenge. ACT day 20: n=6 sham 

females, n=7 OVX females, n=10 sham males. ACT day 40: n=5 sham females, n=5 OVX females, n=6 sham males. Each mouse plotted 

and the standard error of the mean indicated. Data were analyzed by 1way-ANOVA and Tukey’s post-hoc. p<0.0001=****, 

p<0.001=***, p<0.01**, p<0.05=*. 
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 If CD4+ T cells in OVX mice show increased TUNEL staining compared to sham females, then 

estrogen inhibits CD4+ T cell apoptosis. This could happen through enhancing of expression of 

anti-apoptotic genes such as Bcl-2. Lack of estrogen during ACT, removes the protective effect 

of the hormone in enhancing expression of anti-apoptotic genes. If similar TUNEL staining is 

found in CD4+ T cells from sham and OVX mice, then it would be concluded that removal of 

endogenous estrogen would have no effect on the apoptosis of CD4+ T cells. This could be due 

to CD4+ T cells dying through other mechanisms such as necrosis, or could simply be that 

estrogen does not modulate CD4+ T cell survival. In this case, enhanced proliferation would be 

the reason for increased CD4+ T cell numbers observed in the presence of estrogen which should 

be confirmed in conjunction with proliferation staining using Ki67. If CD4+ T cells in female 

sham mice show increased Ki67 staining compared to OVX mice, then it can be resolved that 

estrogen enhances the proliferation of CD4+ T cells. T cell proliferation is induced through Ag 

recognition and TCR activation and downstream signaling thus indicating the estrogen could be 

regulating TCR downstream signaling. Based on data presented in previous chapters, estrogen 

enhanced CD4+ T cell cytokine production and polyfunctionality which are downstream of the 

TCR indicating that estrogen enhancing proliferation through TCR-mediated signaling is the 

most likely scenario. In addition, estrogen could be enhancing signaling of pathways such as 

MAP kinase which enhance T cell proliferation independently from the TCR. On the contrary, if 

Ki67 staining is equally found in CD4+ T cells from both sham and OVX mice, then it would 

have to be considered that estrogen may not modulate CD4+ T cell proliferation. In this case 

reduced number of CD4+ T cells found in OVX mice could be due to reduced survival which 

would rule out an effect of estrogen on proliferation/TCR signaling enhancement. However, it 

should also remain a consideration that Ki67 staining is a single snap shot of time in the overall 
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process and may need to be repeated at multiple time points after adoptive transfer in order to 

truly determine whether proliferation occurs in the TME.  If enhanced proliferation occurs in the 

lymph nodes but T cells do not survive infiltration to the TME, the result of the stain may not be 

able to be observed through the current measurement. If CD4+ T cells are positive for both Ki67 

and TUNEL staining in the absence of estrogen, then this could be due to cells proliferating but 

not surviving due to apoptosis-induced proliferation. This could indicate T cell exhaustion due to 

constant Ag stimulation, and estrogen being protective against T cell exhaustion which would be 

beneficial for immunotherapy. 

Estrogen Enhances Tumor Infiltrating Lymphocyte Activation during Immunotherapy 

 

Next, estrogen’s ability to modulate T cell activation of infiltrating adoptively transferred 

T cells was tested. In order to measure T cell activation, Ag-specific T cells were stained for cell 

surface expression of CD69 and CD25. CD69 and CD25 are activation markers which 

expression is upregulated after antigen stimulation and TCR signaling activation [458]. A 

significantly greater percentage of Ag-specific T cells expressing CD25 was found infiltrating 

the livers of sham females compared to the estrogen depleted, OVX females at both time points 

of ACT (Figure 34 B). Similarly, significantly greater frequency of Ag-specific T cells 

infiltrating sham female tumors expressed CD69 than the ones infiltrating the tumors of OVX 

female at both time points of ACT (Figure 34 C). Significantly greater percentage of TILs from 

sham females expressed CD69 compared to TILs found in sham males (Figure 34 C). These data 

demonstrate removing endogenous estrogen diminishes the activation state of TILs. 
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Figure 34. Removal of Endogenous Estrogen Diminished Ag-specific T Cell Activation 

State. Human Ag-specific T cells infiltrating the livers of sham females, OVX females, and 

sham males were isolated and stained for CD25 and CD69 extracellular markers. A) 

Representative flow cytometry dot plots of CD3
+
CD34

+
 TILs expressing CD25 or CD69 from 

one sham female, one OVX female, and one shame male mouse. B) Expression of CD25 in 

tumor infiltrating Ag-specific T cells from sham/OVX females and sham males that received 

ACT immunotherapy 20 or 40 days after tumor challenge. C) CD69 expression CD25 in tumor 

infiltrating Ag-specific T cells from sham/OVX females and sham males that received ACT 

immunotherapy 20 or 40 days after tumor challenge. ACT day 20: n=6 sham females, n=7 OVX 

females. AdTx day 20: n=6 sham females, n=7 OVX females, n=10 sham males. ACT day 40: 

n=5 sham females, n=5 OVX females, n=6 sham males. Each mouse plotted and the standard 

error of the mean indicated. Data were analyzed by 1way-ANOVA and Tukey’s post-hoc. 

p<0.01=**, p<0.05=*. 
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Endogenous Estrogen Enhances TIL Cytotoxic and Helper Cytokine Production during 

Immunotherapy 

 

 Ag-specific T cells found infiltrating the livers of HCC challenged sham/OVX females 

and sham males expressed diverse levels of CD25 and CD69 indicating differential T cell 

activation state and TCR signaling in response to antigen. Differences in T cell activation and 

TCR signaling can result in altered T cell cytokine expression and T cell polyfunctionality in 

response to antigen.  It was previously demonstrated that estrogen signaling enhances the 

secretion of certain cytokines including Granzyme B, IFN, TNF, and IL-4, upon T cell 

activation. In order to investigate if estrogen presence during immunotherapy affects TIL 

cytokine production, equal numbers of human Ag-specific TILs from sham/OVX females and 

sham males were co-cultured in vitro with target T2 cells pulsed with HCV cognate Ag or 

tyrosinase irrelevant peptide. Activated TILs were then stained extracellularly for CD107a (a 

lytic marker indicative of Granzyme B degranulation), and intracellularly for IFN, TNF, IL-4. 

As predicted, minimal numbers of Ag-specific TILs expressed any of these cytokines when co-

cultured with T2 cells pulsed with tyrosinase (Figure 35 A). No significant differences in the 

percentage of HCV activated CD8+ Ag-specific TILs expressing IFN, TNF D107a were 

found between sham females, OVX females, and sham males (Figure 35 B). Significantly greater 

numbers of female sham CD8+ Ag-specific TILs expressed IL-4 in comparison to OVX female 

TILs (Figure 35 B). This indicates that endogenous estrogen enhances the expression of IL-4 in 

CD8+ Ag-specific TILs upon antigen stimulation. Significantly higher numbers of CD4+ TILs 

from sham females expressed IFN, TNF IL-4 and CD107a compared to OVX female TILs 

(Figure 35 C). 
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Figure 35. Removal of Endogenous Estrogen Enhances Expression of Th1 and Th2 Cytokines in CD4
+
 TILs. Isolated TILs 

from livers of sham/OVX females and sham males were co-cultured with T2 cells expressing the HCV antigen for 5 hours in the 

presence of protein-transport inhibitors, cytokine expression was then measured by flow cytometry staining. A) Representative 

histograms of CD3
+
CD34

+
CD4

+
 Ag-specific T cells from one sham and one OVX female expressing each of the cytokines after 

stimulation with HCV cognate antigen or tyrosinase irrelevant peptide. B) Total number of CD3
+
CD34

+
CD8

+
 human Ag-specific 

TILs from sham/OVX females and sham males expressing IFN, TNF, IL-4 or CD107a that were transferred 40 days after tumor 

challenge. C) Total number of CD3
+
CD34

+
CD4

+
 human Ag-specific TILs from sham and OVX females expressing IFN, TNF, IL-

4 or Cd107a that were transferred either 40 days after tumor challenge. ACT day 40: n=5 sham females, n=5 OVX females, n=6 sham 

males. Each mouse plotted and the standard error of the mean indicated. Data were analyzed by 1way-ANOVA and Tukey’s post-

hoc. p<0.05=*. 
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This demonstrates that removing endogenous estrogen significantly reduces the expression of 

cytotoxic and helper cytokines in CD4+ Ag-specific TILs activated with their cognate Ag.  

Removal of Endogenous Estrogen Decreases CD4+ TIL Polyfunctionality during 

Immunotherapy  

 

To assess if polyfunctionality of adoptively transferred T cells is enhanced and/or 

regulated by the presence and availability of endogenous estrogen, TILs from sham and OVX 

females and sham males were activated using T2 cells as described before. Activated T cells 

were then stained using fluorescent antibodies against six different intracellular cytokines 

(TNF, IFN, IL-2, IL-4, IL-17a, and IL-22), and the cell surface lytic marker CD107a as 

described in Chapter V. All the different 128 combinations of these markers that were expressed 

simultaneously by activated TILs were calculated using tandem analysis with FlowJoX Boolean 

gates, Pestle, and SPICE. Then, the percent frequencies of TILs expressing each marker 

combination were added into 7 categories depending on the number of markers expressed 

simultaneously, from one through seven markers. T cells were considered polyfunctional if they 

expressed more than two markers simultaneously. The frequencies of cells expressing 6 and 7 

markers simultaneously were under 1% so they were not depicted on the graphs in Figure 36. 

Significantly higher frequency of CD8+ female TILs, regardless of the estrogen level, expressed 

3 or 4 markers simultaneously compared to males (Figure 36 A). A significantly higher 

frequency of male CD8+ TILs expressed two markers simultaneously compared to sham and 

OVX female TILs (Figure 36 A). These data demonstrate that adoptively transferred CD8+ 

female T cells are inherently more polyfunctional than male T cells regardless of physiological 

estrogen presence. A significantly higher frequency of CD4+ TILs from sham females expressed 
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three markers simultaneously compared to OVX female TILs (Figure 36 B), demonstrating that 

removal of endogenous estrogen reduces CD4+ T cell polyfunctionality. 

 

 

 

 

 

 

Figure 36. Female CD8
+
 Ag-specific TILs are More Polyfunctional than Male CD8

+
 TILs 

Independently of Estrogen, but Removal of Endogenous Estrogen Diminishes Female 

CD4
+
 TIL Polyfunctionality. Human CD8

+
 and CD4

+
 Ag-specific T cells were isolated from 

HCC livers of sham females, OVX females, and sham male mice and co-cultured with T2 target 

cells at a 1:1 ratio for 5 hours in the presence of protein transport inhibitors. Then, cells were 

intracellularly stained for cytokines TNF, IFN, IL-2, IL-4, IL-17a, and IL-22 and the lytic 

marker CD107a. Using FlowJoX Boolean combinatorial gates the % frequency of T cells 

expressing every combination of these 7 markers simultaneously was generated and added into 

7 categories. A) The percent frequency of CD3
+
CD34

+
CD8

+
 TILs that expressed one through 

five markers simultaneously when activated with their cognate antigen. B) The percent 

frequency of CD3
+
CD34

+
CD4

+
 TILs that expressed one through five markers simultaneously 

when activated with their cognate antigen.  ACT day 40: n=5 sham females, n=5 OVX females, 

n=6 sham males. Each mouse plotted and the standard error of the mean indicated. Data were 

analyzed by MANOVA and Tukey’s post-hoc. p<0.0001=****, p<0.001=***, p<0.01=**, 

p<0.05=*. 
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 Analysis of all the possible marker combinations simultaneously expressed showed that 

significantly higher frequencies of sham female CD4+ T cells expressed combinations including 

CD107a+IFN+TNF+, IFN+IL-2+TNF+ and IFN+IL-17+TNF+ than OVX female T cells 

(Figure 37). On the other hand, even if significance was not achieved, higher frequencies of 

OVX female CD4+ TILs expressed combinations including IFN alone, TNF alone, or 

IFN+TNF+ (Figure 37). Overall, these data demonstrate that endogenous estrogen enhances the 

expression of polyfunctional phenotypes of three markers in CD4+ TILs used for 

immunotherapy. In addition, removal of endogenous estrogen enhances the expression of mono- 

and bifunctional phenotypes in CD4+ TILs found after ACT immunotherapy. 

  Overall, the data presented in this chapter demonstrate that estrogen removal during ACT 

immunotherapy for HCC reduces Ag-specific T cell survival and tumor infiltration, impairs T 

cell activation and decreases CD4+ T cell cytokine production and polyfunctionality. These 

results were obtained by comparing sham female to OVX female mice. Surgically removing the 

ovaries not only eliminates the main source of estrogen on the body but was also shown to 

decrease progesterone and increase testosterone serum levels [459]. In order to conclude that 

estrogen mediates T cell function during ACT immunotherapy, the effects of progesterone and 

testosterone on T cell function need to be ruled out. In order to test this, a second set of 

experiments in which estrogen is added back to OVX females during ACT immunotherapy needs 

to be performed. Estrogen can be given back orally or subcutaneously via estradiol capsules to 

obtain physiological estrogen concentrations in the serum of OVX females [460]. If adding back 

estrogen to OVX mice via estradiol capsules enhances Ag-specific T cell tumor infiltration, 

activation state, cytokine production and polyfunctionality to levels similar to those found in 
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sham females, then estrogen signaling alone mediates all these aspects of T cell function. This 

would indicate that estrogen can directly enhance the efficacy of ACT immunotherapy. Based on 

the results obtained in the experiments testing the effects of estrogen signaling in vitro that 

indicated estrogen enhances expression of T cell cytokines and polyfunctionality in response to 

Ag-stimulation this is the most likely scenario. If rescuing estrogen in OVX mice does not 

enhance Ag-specific T cell function to levels similar to those seen in sham female mice, then 

estrogen alone does not mediate T cell function. This could indicate that the reduction in 

progesterone or the increase in testosterone serum concentrations induced by ovariectomy are 

detrimental for T cell tumor infiltration, activation, cytokine production, and polyfunctionality. 

Progesterone was previously shown to exert immunosuppressive effects on human T cells during 

pregnancy by inhibiting IFN expression [461], promoting naïve T cell differentiation into Tregs 

[462], and by inhibiting Th1 differentiation [463] so it is not expected that the removal of ovaries 

and subsequent decrease in serum progesterone impairs T cell function. Testosterone was also 

shown to have immunosuppressive effects on T cells with humans with high testosterone levels 

exhibiting lower activation-induced pro-inflammatory cytokine production [464], decreased Th1 

differentiation [465], and increased IL-10 secretion by CD4+ T cells [466]. This indicates that the 

increase of serum testosterone after ovariectomy could mediate the reduced T cell proliferation, 

survival, cytokine production and polyfunctionality observed in OVX mice. Antagonistic effect 

of testosterone and estrogen on T cell function is also a possibility that could be tested by giving 

sham mice testosterone capsules with levels similar to those observed in males or OVX females, 

or alternatively treating OVX mice with a testosterone blocker and comparing T cell function 

during immunotherapy with sham females.  
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Figure 37. Removal of Endogenous Estrogen Diminishes the Frequency of CD4
+
 Ag-

specific TILs Expressing CD107a
+
IFN

+
TNF

+
, IFN

+
IL-2

+
TNF

+
 and IFN

+
IL-

17a
+
TNF

+
. Human CD8

+
 and CD4

+
 Ag-specific T cells were isolated from HCC livers of 

sham and OVX females and co-cultured with T2 target cells at a 1:1 ratio for 5 hours in the 

presence of protein transport inhibitors. Then, cells were intracellularly stained for cytokines 

TNF, IFN, IL-2, IL-4, IL-17a, and IL-22 and the lytic marker CD107a. Using FlowJoX 

Boolean gating and the software SPICE all the possible combinations of these 7 markers 

expressed simultaneously by T cells were generated. The heat map shows the mean % frequency 

of CD3
+
CD34

+
CD4

+
 Ag-specific TILs obtained from 5 mice that expressed each of the marker 

combinations depicted on the left. ACT day 40: n=5 sham females, n=5 OVX females. Data 

were analyzed by MANOVA and Tukey’s post-hoc. p<0.01=**, p<0.05=*. 
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Chapter Discussion 

 

 This chapter of the dissertation was aimed to characterize the effects of sex and estrogen 

on the T cell anti-tumor immune response generated during ACT immunotherapy. A forced 

oncogene expression HCC model in combination with a HCV NS3 antigen expression vector 

was used to generate HCV-expressing liver tumors in mice. Using this novel model, it was 

demonstrated that estrogen enhances the anti-tumor function of HCV Ag-specific T cells by 

increasing T cell tumor infiltration, survival, cytokine expression, and polyfunctionality. While 

some of these effects were observed in both CD8+ and CD4+ T cell populations when advanced 

stage tumors were present, enhanced T cell anti-tumor function was specially observed in the 

CD4+ T cell subset. Removal of estrogen during ACT immunotherapy decreased CD4+ Ag-

specific T cells infiltration and survival, and decreased overall CD4+ T cell functions including 

cytokine production and polyfunctionality. These results indicate that estrogen signaling during 

ACT immunotherapy could improve the anti-tumor immune response of CD4+ male and female 

Ag-specific T cells. 

 Using this HCV+HCC tumor model, it was first demonstrated that estrogen has a 

protective role against HCC where sham female mice, which have circulating physiological 

estrogen levels, showed reduced tumor burden compared to ovariectomized female and males, 

which had minimal circulating estrogen. While these results do support the findings of previous 

studies that estrogen has a protective effect on hepatocytes directly, more importantly, it was 

found that ACT immunotherapy using HCV Ag-specific T cells reduced HCC tumor burden. 

Furthermore, the differences were maintained based on the presence of physiological estrogen, in 

sham females, or very low estrogen, in OVX females and males. Thus suggesting that ACT 
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immunotherapy for HCC is enhanced by estrogen, and estrogen signaling should be considered 

in the development and optimization of T cell based immunotherapies. ACT immunotherapy 

using Ag-specific T cells was tested in mice 20 days after tumor challenge which developed 

early stage tumors when not treated, and no visible tumors when treated with ACT. On the other 

hand, mice that were treated with ACT immunotherapy 40 days after tumor challenge developed 

very advanced HCC tumors. The effect of ACT immunotherapy on tumor burden was partial 

with some of the ACT treated mice still presenting very advanced tumors. This could be due to 

the highly the fibrotic and cirrhotic HCC TME which was previously shown to inhibit T cell 

tumor infiltration and subsequent T cell anti-tumor responses [467]. Another possibility being 

CD8+ T cells getting exhausted due to continuous antigen stimulation by HCV expression in 

these large tumors.  

Tumor burden in ovariectomized females was far greater than in control females and 

surprisingly also greater than in males. This indicates that female adoptively transferred T cells 

for immunotherapy require physiological estrogen stimulation to generate a superior anti-tumor 

immune response. It was previously reported that HCC incidence and mortality significantly 

increase in post-menopausal women compared to pre-menopausal women and post-menopausal 

estrogen users. The results obtained in this study indicate that the increase in cancer incidence 

after menopause may be partially mediated by the dampening of T cell anti-tumor immune 

responses. Therefore, when designing of immunotherapies for post-menopausal women, their 

lack of physiological estrogen, and consequent reduced T cell anti-tumor responses need to be 

taken into account. 
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Part of the mechanism of enhanced therapeutic outcome can be demonstrated by the 

finding that estrogen enhanced T cell survival and T cell infiltration of HCC tumors. 

Specifically, estrogen enhanced the persistence of CD4+ T cells which were found in greater 

number in the spleen and infiltrating the tumors of sham females which have physiological 

estrogen compared to OVX females and males. It was previously reported that CD4+ helper T 

cells are critical for maintenance of CTL responses during cancer and infection [78-80].  CD4+ T 

cells are not only necessary for supporting CD8+ T cell survival but it has been shown that CD4+ 

T cell subsets Th1 Th2 and th17 are required for successful anti-tumor immune responses [468-

470]. It was found that the majority of the CD4+ T cells that persisted in females were from the 

Th2 and Th17 subsets ruling out immunosuppression by Tregs. The effect of estrogen signaling on 

CD8+ T cells was found to be controversial since it mainly affected their survival and infiltration 

when advanced tumors were present. This could indicate that estrogen signaling is especially 

important for CD8+ T cells survival and function in environments where strong immune 

tolerance and T cell exhaustion is being mediated by the tumor. Also, HCC tumors where shown 

to produce high local estrogen concentrations indicating that super-physiological estrogen could 

affect CD8+ T cells greater than physiological estrogen. 

In addition to infiltration, significantly higher frequencies of TILs from estrogen 

competent females expressed activation markers CD25 and CD69 than those of estrogen 

depleted females or males. Expression of CD69 and CD25 is upregulated upon T cell activation 

via TCR signaling, and is maintained during antigenic stimulation [471]. Estrogen signaling 

through ER and ER was shown to enhance some important signaling molecules downstream 

from the TCR like NFb, AP-1, and the NFAT pathways [211, 472, 473]. Up-regulation of these 
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activation markers indicate that estrogen enhances TCR signaling in response to Ag stimulation 

and subsequently increases the T cell activation state. Estrogen regulation of TCR signaling 

components and T cell activation was previously shown in a colitis model for autoimmunity 

[233], indicating that these findings not only apply to T cell function in cancer but also during 

autoimmunity. 

Functionally, expression of cytotoxic cytokines including IFN and TNF and the lytic 

marker CD107a was increased in antigen stimulated CD4+ TILs from sham females compared to 

OVX females. Expression of the Th2 cytokine IL-4 was also increased in antigen stimulated 

CD4+ and CD8+ TILs from sham females compared to OVX females. While IFN, TNF are 

cytokines expressed by cytotoxic and Th1 effector T cells, IL-4 is expressed mainly by T2 helper 

T cells. Estrogen can enhance the expression of these cytokines which are in the two ends of the 

inflammatory spectrum indicating that estrogen may be regulating the balance between 

cytotoxic/effector and Th2 helper T cell responses agreeing with the results obtained in the 

previous chapters in which estrogen signaling effect on Ag-specific function was investigated  in 

vitro. 

In combination with the results from previous chapters indicating that estrogen enhances 

CD4+ and CD8+ cytokine production directly as well as increases T cell polyfunctionality, results 

of this chapter demonstrate similar effects directly on T cells in vivo.  Specifically, estrogen 

enhanced the polyfunctionality of CD4+ TILs. The frequency of CD4+ Ag-specific T cells 

expressing three markers simultaneously in a polyfunctional manner was significantly higher in 

estrogen intact females compared to OVX, estrogen depleted females. Three marker 

combinations that were greatly expressed in CD4+ TILs in the presence of physiological estrogen 
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included CD107a+IFN+TNF+, IFN+IL-17a+TNF+, and IFN+IL-2+TNF+. These 

combinations include markers that are required for superior T cell anti-tumor immune responses, 

indicating that estrogen enhances anti-tumor immunity during ACT immunotherapy.   

Overall, the studies in this chapter demonstrate that physiological estrogen removal 

during ACT immunotherapy for HCC has a detrimental effect on T cell survival and anti-tumor 

function. These effects are especially observed on the CD4+ T cell subset indicating that estrogen 

signaling enhances the survival, tumor infiltration and polyfunctionality of CD4+ T cells. CD4+ T 

cells were previously shown to be critical for generating superior T cell anti-tumor responses, 

and for enhancing the efficacy of ACT immunotherapy by supporting CTL survival, function and 

by destroying tumor cells directly.  The results presented demonstrate a previously unappreciated 

role of estrogen signaling on CD4+ T cell function that is an avenue to enhancing infiltration, 

effectiveness, and survival of adoptive transferred T cells for immunotherapy. 
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CHAPTER VII 

OVERALL DISCUSSION AND FUTURE DIRECTIONS 

Discussion 
 

 Adoptive cell transfer immunotherapy using TCR gene-modified or Ag-specific T cells is 

rapidly evolving field. Several pre-clinical and clinical studies have had various levels of 

efficacy using TCR transduced T cells to treat different solid tumors and hematopoietic 

malignancies. Although evidence suggests the use of genetically modified Ag-specific T cells 

can be effective, several challenges remain in order to improve these therapeutics. While many 

studies have focused on optimizing Ag-specific T cells to overcome the immunosuppressive 

TME and to enhance tumor infiltration and Ag recognition, other host factors that can affect Ag-

specific T cells during ACT immunotherapy remain understudied.  

Evidence of this lack in research includes characterizing and an in depth understanding of 

the effects of sex and sex hormone receptor signaling on Ag-specific T cell function. Sex 

influences multiple aspects of adaptive immunity in humans. T cell populations and T cell subset 

phenotypes vary significantly depending on sex. Females have greater CD4+ T cell counts and 

higher CD4+:CD8+ ratios whereas age-matched males have higher CD8+ T cell frequencies [181-

184]. Females have higher numbers of activated and proliferating T cells in peripheral blood 

compared to males, and transcriptional analyses demonstrates that activated female T cells 

upregulate more antiviral and pro-inflammatory genes compared to T cells from males [185]. 
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While some of these sex-differences in T cell phenotype are genetically and 

environmentally mediated, a lot of these differences heighten or decrease with puberty and 

reproductive senescence indicating a sex hormone receptor involvement. Estrogen is considered 

the female sex hormone and it is present at physiological concentration (0.5 nM) in females and 

at low concentrations in males and post-menopausal females (<0.1 nM). Estrogen signaling was 

shown to affect the differentiation, maturation, and function of T cells as described in the 

introduction of this dissertation. For example, estrogen signaling was shown to enhance T cell 

differentiation [203, 474], to increase the secretion of cytokines such as IL-10 and IFN , 

and to induce the expression of the Treg transcription factor FoxP3 [196]. Throughout available 

scientific literature, most of the important aspects concerning the role of estrogen on T cells were 

investigated in autoimmunity models and at hormone concentrations limited to physiological and 

pregnancy estrogen levels. Other ranges of estrogen dosages were not investigated. Knowing that 

sex and estrogen have direct effects on T cell differentiation and function, it is important to 

carefully characterize their effects on Ag-specific T cells for immunotherapy in order to identify 

possible mechanisms that can be targeted to enhance T cell anti-tumor immune responses and 

immunotherapy efficacy.  

 The effects of sex and estrogen signaling on T cells and other immune cells result in 

differences on pathogenesis of diseases that arise from immune cell function dysregulation, like 

autoimmunity, or diseases that are heavily controlled by immune responses, like infections and 

cancer. One malignancy that shows a pronounced sex-bias and is heavily affected by estrogen is 

HCC. HCC is significantly more prevalent in males compared to pre-menopausal females [360, 

361]. Post-menopausal females that are not undergoing estrogen HRT are also more prone to 

develop HCC than pre-menopausal females and estrogen users [311]. The protective role of 
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estrogen against HCC was shown to be partially mediated by estrogen receptor signaling 

inhibition of IL-6-mediated chronic inflammation and tumor associated macrophage polarization 

[293, 318]. While this research beautifully demonstrated the anti-HCC role of estrogen, the 

impact of estrogen signaling on other HCC tumor infiltrating immune like T cells remains 

unclear and needs further investigation. ACT immunotherapy using genetically modified T cells 

showed some success on treating HCC in pre-clinical models and clinical trials but the efficacy 

of ACT fighting HCC remains unsatisfactory. These data indicate that there is a high need for 

ways to improve the anti-tumor function of Ag-specific T cells in order to generate more 

successful ACT immunotherapy for HCC. The work performed in this dissertation was aimed to 

characterize the role of estrogen signaling on T cell function in vitro, and during ACT 

immunotherapy against HCC in vivo. In the following sections, the results obtained and their 

implications for T cell biology and tumor immunology are discussed.  

First, the effect of estrogen signaling was studied on the function of Ag-specific T cells in 

vitro. It was observed that estrogen stimulation, especially at super-physiological concentrations, 

was able to modulate Ag-specific T cell cytokine expression and secretion in response to cognate 

Ag stimulation. Estrogen signaling through ER and not ER enhanced the expression and/or 

secretion of TNF, IFN, and Granzyme B in Ag-specific T cells from males and females in a 

dose dependent manner in response to Ag stimulation. IFN, TNF, and Granzyme B are 

cytokines produced by cytotoxic CD8+ T cells and Th1 CD4+ T cells and can directly destroy 

tumor cells. IFN is cytotoxic to certain malignant cells, and it enhances MHC class I expression 

[406]. Granzyme B directly lyses malignant cells, and TNF promotes T cell activation, co-

stimulation, and promotes certain cancer cell death [406]. Estrogen signaling through ER and 
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not ER completely controlled the expression of IL-4 in response to Ag stimulation and, in 

addition, it was shown to enhance IL-4 expression and secretion in Ag-specific T cells from 

males and females in a dose dependent manner. IL-4 promotes T cell and B cell survival, induces 

Ig class switch to IgE and IgG in B cells, drives long-term development of CD8+ T cell memory, 

and in combination with TGF it drives Th9 T cell subset differentiation which are T cells that 

augment anti-tumor responses in ACT models [387-389, 407, 408]. Overall these data 

demonstrate for the first time that estrogen signaling through ER enhances the expression and 

secretion of cytokines that promote stronger CD4+ and CD8+ T cell anti-tumor responses hence 

estrogen signaling through ER can enhance the efficacy of ACT immunotherapy. Most 

importantly, the largest effects of ER signaling enhancing cytokine expression were observed at 

super-physiological estrogen concentrations which mimic the elevated estrogen concentrations in 

the HCC TME. This indicates that infiltrating T cells from male and females will could be 

generating stronger anti-tumor responses in response to estrogen stimulation in the TME. 

EREs were found in the promoters of TNF and IFN indicating that ER ligand-bound 

ERE-independent signaling could be enhancing transcription of these genes in response to 

estrogen stimulation. In addition, an ERE on the promoter of T-BET, a transcription factor that 

induces IFN expression, was found indicating that ER signaling could be also upregulating 

transcription of T-BET. Apart from inducing IFN expression, T-BET is well known to promote 

Th1 differentiation while suppressing Th2 differentiation. No ERE was found on the promoter of 

IL-4 which was surprising due to the strong effects of ER signaling on IL-4 expression 

observed in T cells in response to Ag stimulation. Considering IL-4 related genes, an ERE was 

found on the promoter of GATA3, a transcription factor that induces IL-4 expression. This 
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indicates that ER could enhance IL-4 expression by enhancing GATA3 transcription through a 

ligand-bound ERE-dependent signaling. GATA3 is well known to promote Th2 differentiation. 

Based on these results, estrogen signaling through ER enhances expression of prototypic Th1 

and Th2 cytokines indicating that estrogen signaling does not favor differentiation towards one 

subset over the other, but it most likely plays a balancing role between Th1 and Th2 T cell 

responses. Estrogen signaling not only enhances expression of cytokines that generate stronger 

anti-tumor immune responses and facilitate T cell survival, but it balances cytotoxic type I and 

survival type II T cell responses. Type I and type II T cell responses were both shown to enhance 

the anti-tumor immune response during ACT immunotherapy, especially when both CD4+ helper 

Th1 and Th2 cells and cytotoxic CD8+ T cells were transferred as a mixture into patients 

indicating a synergistic effect between them [82, 475].  Studies in the past have reported 

contradicting evidence on the effect of estrogen on T cell cytokine production. While some 

groups demonstrated an inhibitory effect of estrogen on the expression of TNF and IL-4, other 

groups simultaneously reported enhancing effects of estrogen signaling on the expression of 

these cytokines. The effects observed were concentration dependent, and some studies reported 

that pregnancy estrogen levels (higher than physiological) induce IL-4 expression and inhibit 

TNF expression, while physiological estrogen levels induce TNF and IFN expression. Based 

on this evidence, it was believed that physiological estrogen signaling promotes type I T cell 

responses and Th1 CD4+ T cell function while pregnancy estrogen promotes type II T cell 

responses and Th2 CD4+ T cell function. The results reported in this dissertation help clarify 

some of the contradicting evidence in the field and demonstrate for the first time that in the case 

of human Ag-specific T cells from both sexes, the effect of estrogen is concentration and 
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receptor independent and that at both physiological and super-physiological concentrations 

induce Th1 and Th2 T cells responses in a dose dependent manner (Figure 38). 

An attribute of genetically modified T cells that was previously correlated with enhanced 

clinical outcome is their ability to express multiple functional markers simultaneously in 

response to Ag stimulation, or their polyfunctionality. One clinical study in which patients with 

aggressive refractory non-Hodgkin’s lymphoma were treated with CD19 CAR-T cells 

demonstrated that highly polyfunctional T cells mediated stronger anti-tumor immune responses 

and tumor rejection compared to those with lower polyfunctionality. Polyfunctionality of CAR-T 

cells was determined immediately before CAR-T cell infusion by measuring the expression of 32 

different effector, cytotoxic, helper, and chemotactic cytokines upon Ag stimulation. Cells that 

expressed >2 of these markers simultaneously were considered polyfunctional. Polyfunctional 

CD8+ and CD4+ CAR-T cells expressed combinations of markers including but not limited to 

IFN, Granzyme B, IL-8, IL-17a, and IL-2 [428]. While T cell populations only showed 

approximately 20% of polyfunctional cells, they correlated with clinical outcome significantly 

more than those patients that received monofunctional CAR-T cells [428]. Polyfunctionality of 

Ag-specific T cells also correlated with better disease outcome when patients were treated with 

immunotherapy in combination with other cancer therapies such as chemotherapy. B cell 

lymphoma challenged mice were treated with chemotherapy and then given ACT 

immunotherapy with polyfunctional or monofunctional CD4+ Ag-specific T cells. Mice showed 

reduced tumor burden when they were given adoptive transfer of polyfunctional Ag-specific 

CD4+ T cells compared to monofunctional CD4+ T cells and compared to mice treated with 

chemotherapy alone [417]. T cell polyfunctionality was also shown to correlate to clinical 
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prognosis and response to immunotherapeutic interventions in solid tumors including melanoma 

and breast cancer. Advanced melanoma patients that were treated with Ipilumab (anti-CTLA-4 

Ab) showed better disease prognosis when polyfunctional tumor Ag-specific CD4+ and CD8+ T 

cells were present infiltrating the tumor compared those patients with infiltrating monofunctional 

T cells. CD4+ and CD8+ polyfunctional cells expressed combinations of markers including but 

not limited to IFN, TNF, IL-2, and Granzyme B [426]. In addition, polyfunctional but not 

monofunctional tumor-reactive CD8+ T cells accumulated in the peripheral lymphocyte pool of 

those patients with advanced melanoma that were treated with autologous TIL immunotherapy 

and showed significant tumor regression compared to non-responders [476]. These 

polyfunctional CD8+ T cells persisted up to 1 year after infusion and even if they expressed PD-

1, they proved to be cytotoxic when re-stimulated with tumor Ag [476]. Polyfunctional CD8+ 

Ag-specific T cells were found infiltrating the tumors of breast cancer patients, and when 

isolated, polyfunctional CD8+ TILs were shown to retain cytotoxic ability against tumor target 

cells despite high PD-1 expression compared to monofunctional CD8+ TILs [477]. Overall, these 

studies demonstrated that CD8+ and CD4+ Ag-specific T cell polyfunctionality not only 

correlates with stronger T cell anti-tumor responses and increased tumor rejection, but also with 

augmented persistence of cytotoxic T cells that can exert strong responses in response to Ag 

stimulation long time after infusion. Since estrogen signaling was shown to directly enhance the 

expression of several cytokines in Ag-specific T cells, it was hypothesized that estrogen 

signaling increases Ag-specific T cell polyfunctionality which can result in better 

immunotherapy efficacy. 
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Figure 38. Proposed Mechanism I: Estrogen Signaling Through ER Enhances Expression of TNF, IFN, and IL-4 and 

Modulates the Balance Between Th1/Type I and Th2/Type II T Cell Responses and Differentiation. Estrogen signaling through 

ER gnomically enhances the expression and secretion of Type I/Th1 cytokines IFN and TNF and the Type II/Th2 cytokine IL-4. 

ER is also able to genomically enhance the expression of Th1 transcription factor T-BET and Th2 transcription factor GATA3 

through the EREs on their promoters. Overall this leads to the hypothesis that estrogen signaling through ER mediates balance 

between Type I and Type II, and Th1 and Th2 T cell differentiation. 
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Considering these facts, the effect of estrogen signaling regulating Ag-specific T cell 

polyfunctionality in response to antigen stimulation was determined by activating human male 

and female HCV Ag-specific T cells with target cells expressing the HCV Ag. One of the most 

striking results found in this dissertation was that estrogen signaling through ER and nor 

ER enhances male and female CD8+ and CD4+ Ag-specific T cell polyfunctionality. Estrogen 

signaling through ER increased the percentage of Ag-specific T cells that expressed three 

markers simultaneously in response to Ag stimulation and decreased the percentage of T cells 

that expressed only one marker in response to Ag stimulation. The marker combinations that 

were shown to be enhanced by ER signaling when CD4+ and CD8+ T cells were analyzed 

separately included CD107a+IFN+TNF+ and IFN+IL-4+TNFa+ which are combinations 

including cytotoxic/effector and Th2 T cell cytokines, again known to mediate stronger anti-

tumor immune responses and T cell survival. ER signaling reduced the percentage of T cells 

expressing IFN+TNF+, and IFN+ or TNF+ in combination with no other marker. This does 

not mean that expression of these markers is overall downregulated by ER, but it means that 

expression of these markers in combination with other markers such as IL-4 and CD107a is 

enhanced. Interestingly when the data was analyzed for the bulk Ag-specific T cell population 

without dividing it into CD8+ and CD4+ subsets, additional polyfunctional marker combinations 

were shown to be affected by estrogen signaling through ER and ER. Estrogen signaling 

through ER was shown to increase the percentage of Ag-specific T cells expressing 

polyfunctional marker combinations such as IFN+IL-4+TNFa+, IFN+IL-2+IL-4+IL-17a+TNF+, 

and IL-2+IL-4+TNF+. Strikingly, inhibition of ER during estrogen stimulation enhanced the 

percentage of T cells expressing these polyfunctional combinations even more than estrogen 
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alone, indicating that ER signaling actually inhibits Ag-specific T cell polyfunctionality. While 

these polyfunctional phenotypes were expressed by low percentage of cells, other studies 

confirmed that even if there is a small percentage of polyfunctional cells in a T cell population, 

stronger anti-tumor responses are still achieved compared to highly monofunctional T cell 

populations [428, 433]. Estrogen signaling through ER was shown to decrease the percentage 

of Ag-specific T cells expressing monofunctional marker combinations such as IFN+ and 

TNF+. On the other hand, inhibition of ER during estrogen stimulation decreased the 

percentage of T cells expressing these monofunctional combinations even more than estrogen 

alone indicating that ER signaling actually promotes expression of monofunctional phenotypes 

over polyfunctional ones. The effect of estrogen signaling on Ag-specific T cell 

polyfunctionality had been never studied before and these are completely novel findings that 

could help in the design of stronger immunotherapies.  

T cell polyfunctionality was reported to be induced by TCR signaling and antigen 

sensitivity. T cells that are stimulated with low sensitivity antigens display reduced TCR 

downstream signaling activation and are less polyfunctional than those activated with high 

sensitivity antigens [421, 478]. These data leaded to the hypothesis that estrogen signaling 

through ER enhances TCR downstream signaling and subsequent polyfunctionality. Some TCR 

downstream signaling molecules were shown to be estrogen sensitive. For example, lck, ZAP70, 

and c-Fos contain EREs on their promoters indicating possible ER genomic regulation of their 

expression. Also, estrogen was shown to enhance other TCR downstream pathways such as the 

MAP kinase, the NFAT, and the NFB pathways [436, 437, 439]. This indicates that ER 
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signaling could be enhancing TCR downstream signaling pathways which subsequently result in 

polyfunctionality (Figure 39).  

Another important implication of T cell polyfunctionality is that it promotes T cell 

memory formation. In vaccination studies against viruses, bacteria, and parasites the 

polyfunctionality of pathogen Ag-specific T cells after vaccination was not only associated with 

favorable disease outcome but also with higher effector function and effector memory formation 

[479-482]. Long-lasting polyfunctional memory cells are found at low frequencies in the 

peripheral circulation but they can rapidly proliferate and elicit strong effector response upon 

Ag-stimulation [483].  ER signaling could be promoting the development of more 

polyfunctional memory Ag-specific T cells during ACT immunotherapy, indicating an 

enhancement of long-lasting anti-tumor T cell responses. This is not only important to destroy 

the primary tumor and possible metastatic sites but also in order to prevent relapse. The ER-

mediated enhancement of polyfunctional T cells could mean the generation of more long-lasting 

memory Ag-specific T cells that are reactive to a specific tumor Ag and circulate the circulation 

of patients surveilling for new tumor sites expressing that Ag and eliminating them. Overall, this 

indicates that ER signaling could not only enhance the short-term efficacy of immunotherapy 

but also enhance immunotherapy over time through the generation of highly polyfunctional 

memory cells (Figure 39). 

Interestingly the effect of estrogen signaling on cytokine production and 

polyfunctionality was observed equally in Ag-specific T cells from male and female donors. This 

indicates that estrogen signaling through ER and ER exerts the same effects on T cells no 

matter on the sex of the donor. Estrogen signaling can be used as a way of enhancing ACT 
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immunotherapy in both males and female patients. This is especially important for males and 

post-menopausal females that have enhanced incidence rates of cancer such as HCC. 

During ACT immunotherapy both cytotoxic CD8+ and CD4+ Ag-specific T cells target 

tumor cells. Cytotoxic CD8+ directly lyse the tumor cells by secretion of perforin and Granzyme 

B upon Ag stimulation. With the exception of Tregs which are immunosuppressive, CD4+ T cells 

(Th1, Th2, and Th17 subsets) can either directly eliminate tumor cells through cytotoxic 

mechanisms or indirectly by modulating other immune infiltrating cells found in the TME. For 

example, CD4+ Th cells can express CD40L which interacts with CD40 on DCs and promotes 

the expression of MHC and other co-stimulatory molecules [484]. Furthermore, CD4+ Th cells 

can directly enhance CTL anti-tumor responses. CD4+ Th cells secrete IL-2 which is a growth 

factor that enhances survival and helps recruit CTLs to the tumor site [484]. IFN production by 

CD4+ Th1 cells results in the upregulation of MHC molecules on tumor cells leading to 

enhanced T cell (CTL and Th) recognition [484]. In addition to being required for the generation 

of optimal primary CTL responses, a number of studies have shown a critical need for CD4+ T 

cells in the generation and maintenance of memory CD8+ T cells [484]. Overall these data 

indicate that functional CD8+ and CD4+ T cells are required for the generation of superior anti-

tumor responses during immunotherapy. Since estrogen signaling was showed to enhance the 

function of both female and male CD8+ and CD4+ T cells, it was hypothesized that it also 

enhances the CD8+ and CD4+ anti-tumor responses during immunotherapy for HCC in vivo.
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Figure 39. Proposed Mechanism II: Estrogen Signaling through ER Enhances Ag-specific T Cell Polyfunctionality through 

Enhancement of TCR Downstream Signaling Pathways. Estrogen signaling through ER enhances male and female Ag-specific 

T cell polyfunctionality by genomically inducing the expression of TCR downstream signaling molecules like lck, ZAP70, and c-Fos 

through the ERE on their promoters, and by enhancing signaling through the MAP kinase, the NFAT and the NFB pathways. 

Enhancement of these pathways through ER results of the expression of polyfunctional combination of several markers 

simultaneously by one T cell, which can subsequently lead to memory T cell formation. 
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The role of estrogen signaling during ACT immunotherapy was then studied in vivo. 

Female mice, with physiological circulating estrogen concentrations, and ovariectomized female 

mice and male mice, with minimal circulating estrogen concentrations, were challenged with 

HCV+HCC and given ACT with sex-matched HCV Ag-specific human T cells. First, HCC 

tumor burden was assessed and, as expected, male mice showed increased tumor burden 

compared to sham females. OVX females showed the most advanced tumor burden compared to 

sham males and females due to loss of the protective role of estrogen against HCC. ACT 

immunotherapy reduced tumor burden on sham and OVX females and males indicating 

therapeutic potential. OVX females still showed very advanced tumors after ACT treatment, 

indicating that loss of estrogen not only enhanced tumor burden but also decreased the T cell 

anti-tumor responses generated during immunotherapy. Analysis of the phenotype of infiltrating 

T cells revealed reduced tumor infiltration of Ag-specific T cells, especially CD4+ T cells, in 

OVX females and males. Lack of physiological estrogen during ACT immunotherapy not only 

reduced tumor infiltration but also overall CD4+ T cell survival. In addition, lack of 

physiological estrogen during ACT immunotherapy hindered Ag-specific T cell activation state. 

TILs isolated from sham and OVX females and sham males were then activated with target cells 

expressing their cognate Ag and cytokine expression and polyfunctionality were measured.  

While CD8+ T cells did not show significant differences in polyfunctionality between sham and 

OVX female TILs, they showed an overall reduction on IL-4 expression in OVX females further 

indicating that estrogen directly regulates IL-4 expression in Ag-specific T cells. CD4+ TILs 

from OVX females showed decreased expression of IL-4, TNF, IFN, and the lytic marker 

CD107a compared to sham females. Furthermore, polyfunctionality of CD4+ TILs was also 

decreased in the absence of physiological estrogen with significantly lower percentages of OVX 
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female TILs expressing 3 markers simultaneously compared to sham female CD4+ TILs. Overall, 

these results indicated that physiological estrogen signaling during ACT immunotherapy 

enhances the survival, tumor infiltration, and function of CD4+ Ag-specific T cells. Considering 

the important role of CD4+ T cells both directly targeting tumor cells and enhancing CD8+ T cell 

function and survival, estrogen signaling was found to be an important factor to consider into 

enhancing the efficacy of ACT immunotherapy. 

In summary, the results presented in this dissertation are encouraging that estrogen 

signaling on Ag-specific T cells could serve as a way to enhance the efficacy of immunotherapy 

for HCC. Estrogen signaling through ER was found to enhance the expression of key T cell 

effector cytokines including IFN, TNF, and Granzyme B on Ag-specific T cells from male and 

female donors when activated with their cognate Ag in vitro and in vivo. IFN, TNF, and 

Granzyme B are required for tumor cell destruction. Estrogen signaling through ER was also 

shown to completely regulate the expression of the Th2 cytokine IL-4 on male and female Ag-

specific T cells activated with their cognate Ag in vivo and in vitro which is not only necessary 

for Th2 differentiation but promotes T cell survival and memory formation. Enhancement of 

these cytokines is believed to represent the ability of ER signaling to regulate the balance 

between Th1 and Th2 differentiation or type I and type II T cell responses. Estrogen signaling 

through ER was shown to enhance T cell polyfunctionality on male and female Ag-specific T 

cells activated with their cognate Ag.  ER signaling is believed to enhance TCR downstream 

signaling pathways which result on increased T cell polyfunctionality (Figure 40). Notably 

estrogen effects on T cell cytokine production were observed at physiological and super-

physiological concentrations in a dose dependent manner. Using an in vivo model for HCC, it 
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was found that physiological estrogen not only has a protective role against HCC, but it also 

enhances ACT immunotherapy. Estrogen presence during ACT immunotherapy for HCC was 

found to increase the tumor infiltration, survival, activation state, cytokine production and 

polyfunctionality of Ag-specific T cells. These effects were especially observed on the CD4+ T 

cell subset. Reduction of CD4+ T cell survival, cytokine expression, and polyfunctionality in the 

absence of physiological estrogen reduces ACT immunotherapy efficacy by not only lacking 

proper CD4+ anti-tumor responses but also by the lack of support to the CD8+ subset anti-tumor 

responses. Overall these results showed that estrogen signaling at physiological and super-

physiological concentrations can enhance the function of male and female CD8+ and CD4+ Ag-

specific T cells. This regulation of T cell function is especially important during immunotherapy 

in vivo, where physiological estrogen enhanced survival, tumor infiltration, and function of CD4+ 

Ag-specific T cells which result on enhanced immunotherapy efficacy through the support of 

CD8+ anti-tumor responses. In conclusion, estrogen signaling on Ag-specific T cells could 

enhance the efficacy of ACT immunotherapy to treat cancer in male and female patients. 

Future Directions 

 

The questions posed, results observed, and findings drawn from the data generated in this 

dissertation are novel and unique and provide critical information that will open the doors to new 

advancements in clinical outcomes as well as new research endeavors in the field of 

immunotherapy. The focus of this study was to characterize and mechanistically understand the 

biology of sex and estrogen signaling on Ag-specific T cell activation, function and survival in 

the context of cancer treatment. 
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Figure 40. Overall Proposed Mechanism: Estrogen Signaling through ER and ER Enhances Ag-specific T Cell Function 

Resulting in the Enhancement of ACT Immunotherapy Efficacy. Estrogen signaling though ER results in the enhancement of 

expression of key Type I/Th1 and Type II/Th2 cytokines and estrogen signaling through ER results in the enhancement of male and 

female Ag-specific T cell polyfunctionality. Physiological estrogen enhances the survival, tumor infiltration, activation, and function 

of CD4
+
 Ag-specific T cells in vivo which results in stronger anti-tumor immune responses during ACT immunotherapy. 



188 
 

 

My data, as presented, clearly demonstrates that although T cells are intrinsically different due to 

sex, meaning T cells from male donors are intrinsically different from T cells isolated from 

female donors, estrogen signaling has a profound effect on the function of T cells from both 

males and female donors. Therefore, it can be concluded that estrogen signaling mediates similar 

effects on the function of T cells independently of sex. Estrogen signaling occurs upon ligation 

of its nuclear receptors, ER and ER and results in enhanced function of Ag-specific T cells 

that can be used for immunotherapy in vitro and in vivo. These are very encouraging findings 

that indicate estrogen signaling can be used as a mean of enhancing ACT immunotherapy for 

both male and female cancer patients. In this dissertation, human Ag-specific T cells were 

acutely treated with estrogen (2-hour treatment) which elicited an enhancement of T cell 

cytokine production and polyfunctionality, especially at super-physiological concentrations. 

According to these findings, genetically modified T cells from cancer patients used for ACT 

immunotherapy can be assessed for function in response to Ag stimulation, and if patients’ T 

cells do not express and produce important cytokines for anti-tumor function including but not 

limited to, IFN, TNF, or Granzyme B, then they can be acutely treated with super-

physiological estrogen concentrations prior to infusion. This estrogen treatment will enhance the 

effector functions through ER ligation, and the polyfunctionality, specifically the combined 

simultaneous production of anti-tumor effector and helper molecules, of T cells through 

ER ligation which will result in generating stronger and more durable anti-tumor immune 

responses once transferred into the patient.  

Since adoptively transferred T cells will be circulating in the patients for long periods of 

time, it is possible that an acute estrogen treatment will not be enough to maintain enhanced T 

cell function in the long run. Because T cells benefit from estrogen presence for longer time 
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periods, estrogen could be added to patient’s T cells cultures during the in vitro Ag-specific T 

cell expansion performed prior to adoptive cell transfer.  This approach could be first tested in 

mice, where HCV Ag-specific T cells are given physiological or super-physiological estrogen 

during the 3 to 5-day expansion performed prior to ACT immunotherapy. The effect of these 

prolonged treatments would need to be tested on T cell subset distribution and function. Based 

on the results obtained in this dissertation, prolonged estrogen treatment could affect the CD4+ T 

cell subset distribution skewing it towards the Th1 and Th2 subsets. On the other hand, profound 

differences in T cell function are expected after prolonged estrogen stimulation including 

enhanced cytokine production and polyfunctionality. Long-term high concentration estrogen 

exposure was shown to downregulate the expression of ER and ER both mRNA and protein 

levels in breast cancer cells and non-reproductive estrogen target tissues [485-487]. This 

estrogen-regulated feedback loop directly inhibits the transcription of the ERs through ligand-

bound ER genomic signaling. The suppressive effects of estrogen on ER expression were 

observed after 6 hour estrogen stimulation and remained for 24 to 48 hours [485]. Decreased 

expression of ERs on Ag-specific T cells would mean loss of the beneficial ER signaling 

mediated enhancement of T cell cytokine production and polyfunctionality. Overall, indicating 

that acute estrogen treatment of Ag-specific T cells would be a better approach than long-term 

estrogen exposure.  

The work of this dissertation also determined the different roles of ER compared to 

ER signaling on T cell function. While ER enhanced the expression and secretion of specific 

cytokines, one of the most intriguing discoveries of this study indicated that ER increases the 

overall T cell polyfunctionality through mechanisms believed to enhance TCR downstream 
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signaling. Knowing that ER signaling results in enhanced T cell function and polyfunctionality 

which can result in enhanced T cell memory formation, ER signaling can be used to generate 

polyfunctional and long-lasting Ag-specific T cell responses. In order to enhance ER signaling, 

Ag-specific T cells could be treated with an ER-specific agonist prior to adoptive transfer. In 

addition, the ER-specific agonist could be delivered intra-tumorally during ACT 

immunotherapy to enhance the function of infiltrating Ag-specific T cells. Delivering the ER 

agonist into the TME would not only affect T cells but also tumor cells and other infiltrating 

immune cells. In the context of HCC, estrogen signaling was shown to inhibit tumor growth and 

TAM polarization which means that delivering an ER agonist may exert anti-tumor functions as 

well as inducing stronger T cell anti-tumor immune responses. While this would work when 

tested in NSG-A2+ mice deficient of other infiltrating immune cells, the role of ER signaling on 

the function of other immune cells in the TME including B cells, MDCSs, and DCs is unknown 

and would need to be further investigated. In order to limit the beneficial effect of ER signaling 

to T cells, human Ag-specific T cells can be genetically modified to overexpress ER. ER 

overexpression would ensure estrogen ligand binding to and activation of ER signaling over 

other estrogen receptors, including ER and GPER, present in the T cells. Enhanced ER 

signaling in T cells would increase polyfunctionality, production of several anti-tumor cytokines 

simultaneously by T cells, and increased T cell memory formation hence enhancing the efficacy 

of ACT immunotherapy. This would be especially important for malignancies such as HCC 

which can produce high concentrations of local estrogen, or malignancies located on sexual 

tissues like the ovaries or the breasts. 
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In addition to providing ways to enhancing immunotherapy to treat cancer, the results 

obtained in this study can enhance the treatment of other diseases such as infections and auto 

immune diseases. Treatment of infections using ACT immunotherapy showed some success in 

pre-clinical and clinical studies treating viral infections to which vaccines do not exist, or that 

exhibit drug resistance including HIV, CMV, and Epstein-Barr virus (EBV) infections [488-

490]. In spite of some success, ACT immunotherapy for viral infections was sometimes rendered 

unsuccessful due to large viral loads which were not able to be completely eliminated by 

transferred T cells due to T cell exhaustion under to continuous Ag stimulation, and by reduced 

transgenic T cell proliferation leading to reduced T cell numbers [491]. Interestingly, ACT 

immunotherapy for HIV infected patients using cytotoxic CD8+ T cells was shown to require 

production of high amount of Granzyme B [492], and the presence of functional helper CD4+ T 

cells [493, 494]. The results of this dissertation showed that both the secretion of Granzyme B by 

CD8+ Ag-specific T cells, and the persistence and anti-tumor function of CD4+ T cells were 

enhanced by estrogen signaling. This indicates that ACT immunotherapy for HIV could be 

enhanced by estrogen signaling enhancing the function of CD4+ and CD8+ T cells. 

CD4+ T cell subsets were shown to be able to mediate several aspects of autoimmune 

inflammation. While Th1 and Th17 cells drive the chronic autoimmune response, Tregs were 

shown to exert immunosuppressive functions in other T cell functions during autoimmunity 

[495]. In some autoimmune diseases such as RA it was shown that Tregs function is severely 

impaired [495]. The results presented in this dissertation indicated that estrogen enhances T cell 

function including pro-inflammatory cytokine production and polyfunctionality. Based on these 

findings, removal of estrogen or inhibition of ER and ER signaling on T cells may relieve the 
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pathogenesis of autoimmunity. The use of ER and ER antagonists separately and 

simultaneously during autoimmunity in mouse models may reduce the secretion and expression 

on pro-inflammatory cytokines and reduce the differentiation of activated T cells towards the 

Th1 and Th2 subsets.  

In summary, the findings of this dissertation demonstrate that estrogen signaling is an 

important factor to consider in the design and optimization of T cell-based immunotherapies for 

cancer and infections. In addition, characterizing the role of estrogen signaling on T cell function 

may have far reaching importance in terms of regulating T cells during autoimmune disease or 

even as a result of chronic inflammation due to Ag stimulation. The results in this dissertation 

have provided a new foundation in which to augment T cell-based therapy efficacy for several 

cancers and other further diseases. 

Clinical Trial Design 

 

 The studies performed in this dissertation revealed that physiological (0.5 nM) and super-

physiological (50 nM) estrogen signaling through ER enhances the expression and secretion of 

specific Type 1/Th1 cytotoxic effector T cell cytokines such as IFN and Granzyme B, as well as 

Type 2/Th2 helper T cell, cytokines including TNF and IL-4, on HCV Ag-specific T cells from 

male and female donors. It was also shown that estrogen signaling through ER at both 

physiological and super-physiological concentrations enhanced overall T cell polyfunctionality, 

or the ability of HCV Ag-specific T cells from male and female donors to express more than two 

functional markers upon Ag stimulation. In vivo, it was shown that physiological estrogen 

enhances the infiltration, survival, activations state, cytokine expression, and polyfunctionality of 

Ag-specific TILs, especially of the CD4+ subset, after ACT immunotherapy against HCC. 
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Overall, these data indicate that estrogen signaling could improve the efficacy of ACT 

immunotherapy against HCC by enhancing the anti-tumor function, tumor infiltration, and 

survival of adoptively transferred Ag-specific T cells. Since the in vivo studies performed in 

humanized mice were proven to be successful, and tumor reduction was greatly achieved in 

females containing physiological estrogen (SHAM females) compare to estrogen-depleted 

females (OVX females) and males in a safe manner, a clinical trial can be designed to evaluate if 

estrogen could enhance Ag-specific T cell function and reduce tumor burden during ACT 

immunotherapy for patients suffering from HCC. 

 For this clinical trial, HLA-A2+ pre-menopausal (containing physiological estrogen) and 

post-menopausal (estrogen-depleted) women and age-matched men suffering from chronic HCV 

infection-derived HCC will be recruited. Circulating T cells from these patients will be collected 

from blood samples and transduced with the 1406 HCV TCR as described before and sorted to 

obtain a > 99% pure transduced T cell population. Then, Ag-specific T cells will be expanded in 

vitro using irradiated Ag-presenting cells expressing the HCV cognate Ag. Before transfer, Ag-

specific T cells from pre- and post-menopausal women and men will be treated with either no 

estrogen, physiological (0.5 nM), or super-physiological (50 nM) estrogen overnight. According 

to the data obtained in the pre-clinical studies, short-term estrogen treatment was enough to 

enhance Ag-specific T cell function including cytokine expression and polyfunctionality upon 

Ag stimulation. Acute estrogen treatment will also prevent the estrogen-mediated self-

downregulation of expression of ER and ER observed after long-term estrogen exposure [485-

487]. Patients from each respective group will be receive local liver stereotactic radiation therapy 

to a total dose of 50 Gy in four 12.5 Gy fractions to control tumor burden before immunotherapy 
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and to enhance tumor Ag presentation [496], then they will receive one dose of 10x106 Ag-

specific T cells/kg treated with either no estrogen, physiological, or super-physiological estrogen. 

After adoptive transfer, patients will receive low-dose rhIL-2 (30 g/m2) every five days to 

ensure Ag-specific T cell survival [497]. Tumor burden will be monitored via liver ultrasound 

and serum concentration of -fetoprotein (AFP) [498]. Tumor burden will be compared on 

patients from each respective group that received Ag-specific T cells treated with estrogen 

compared to untreated T cells. Blood samples will be collected periodically to observe the 

phenotype and counts of Ag-specific T cells remaining on the patients’ circulation. Number of 

remaining CD4+ and CD8+ Ag-specific T cells and their phenotype (Type I/II, Tregs, Th1/2/17/22) 

will be measured, their activation state will be assessed via flow cytometry by staining for 

activation markers (CD25, CD69, CD44, and CD62L), and their function will be measured upon 

Ag re-stimulation ex vivo to observe if Ag-specific T cells are under exhaustion conditions. Also, 

over 3 months after ACT, survivor patients will be tested for Ag-specific T cell memory 

formation by collecting blood samples and surveilling for T cell central memory markers 

(CD45RO+CCR7-CD28-CD27-) as well as their ability to elicit effector responses upon HCV Ag 

re-stimulation. Since estrogen signaling through ER enhances T cell polyfunctionality, which is 

correlated with T cell memory formation [476], greater number of central memory T cells are 

expected to be found in pre-menopausal women and post-menopausal women and men whose T 

cells were estrogen treated. 

According to the pre-clinical data previously observed, men and post-menopausal women 

that receive untreated Ag-specific T cells will have the worse tumor burden compared to pre-

menopausal women. Tumor burden will decrease in men and post- and pre-menopausal women 
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that receive estrogen treated Ag-specific T cells in a dose dependent manner comparing 

physiological to super-physiological estrogen treated T cells. Ag-specific T cells from pre-

menopausal women will show enhanced survival, especially those in the Th1 and Th2 CD4+ 

subsets, as well as enhanced cytokine expression and polyfunctionality compared to those from 

post-menopausal women and men. Survival and infiltration of Ag-specific T cells should 

increase in a dose dependent manner with estrogen treatment in all three patient groups. If 

possible, a liver biopsy will be collected after ACT immunotherapy in order to analyze the 

phenotype and function of TILs (including activation state, subset differentiation, and infiltration 

level), which it is predicted to be better in the presence of physiological estrogen (pre-

menopausal women), and in patients that received estrogen-treated T cells. 

If estrogen treated T cells elicit enhance anti-tumor responses and significantly reduce 

tumor burden more than untreated T cells, a second clinical trial will be performed in order to 

determine if signaling through ER, ER, or both receptors simultaneously is necessary for the 

estrogen-mediated enhancement of the Ag-specific T cell anti-tumor immune response. In that 

case, HLA-A2+ pre- and post-menopausal women and age-matched males suffering from HCV-

derived HCC will receive ACT immunotherapy of Ag-specific T cells that were treated with an 

ER-specific agonist (PPT), and ER-specific agonist (DNP), or both simultaneously overnight 

at a concentration of 100 nM. Then, treated Ag-specific T cells will be infused into the patients 

of each group as described before, and tumor burden, T cell survival, phenotype, and function 

will be assessed. Since it was shown that estrogen signaling through ER  enhances overall Ag-

specific T cell polyfunctionality, it can be predicted that patients that receive Ag-specific T cells 
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treated with an ER agonist will show enhanced anti-tumor immune responses and reduced 

tumor burden compared to those patients that received ER agonist-treated T cells. 

These clinical studies will help determine if estrogen signaling can be used to enhance the 

efficacy of ACT immunotherapy. This is especially important because it will show that short-

term estrogen or ER-specific agonist treatment of Ag-specific T cells and not the whole patient, 

which is safe and easy to achieve, can alone increase the T cell anti-tumor immune response. In 

the case of men and post-menopausal women which show the highest incidence rates for HCC, 

estrogen treatment of the Ag-specific T cells will offer a simple yet effective way to enhance a 

cancer treatment that while has shown promising results, it is still inefficient in removing large 

solid tumors.  
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