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 Given that EPS activates MΦs to produce cytokines and chemokines (Figure 

31), and that EPS recruits neutrophils to tissues (Figure 35), we wondered if EPS could 

also activate neutrophils for the production of cytokines and chemokines. We tested this 

by isolating bone marrow neutrophils (BM-PMNs) using gradient centrifugation and 

stimulating them with EPS in vitro. We found that stimulation with EPS and LPS, but 

not ΔEPS, of BM-PMNs led to the production of IL-6, MIP-1α, and TNF (Figure 36). In 

addition, production of these molecules required TLR4, as shown by the observation 

that treatment of TLR4-deficient BM-PMNs with EPS and LPS did not induce the 

production of these cytokines (Figure 36). Together, these data suggest that EPS can 

recruit and activate neutrophils through TLR4. 

Figure 36: Effect of EPS on Cytokine and Chemokine Production by 
Neutrophils. Bone marrow neutrophils (105) isolated from WT or TLR4 KO mice were 
stimulated with 5 μg/mL EPS or ΔEPS, or 10 ng/mL LPS for 24 hr. Levels of cytokines 
and chemokines in culture supernatants were determined by CBA. Error bars represent 
SD. Representative data from 2 independent experiments. N = 3. Data analyzed using 1-
way ANOVA with Bonferroni’s multiple comparisons test. ***P<0.001. 
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CHAPTER FOUR 

DISCUSSION 

How Probiotics can Become Therapies 

Barriers to Probiotic Therapy 

 Microbes are gaining an appreciation for their ability to influence many host 

physiologic processes, especially the immune system. The use of microbes in order to 

benefit the host is a concept first characterized by Metchnikoff more than 100 years ago 

(Metchnikoff, 1908), and the practice of this is represented today by the large probiotic 

industry. It is relatively easy for the general public to access an array of probiotic 

products, but the majority of these products are food supplements, and only a limited 

number of probiotics have been approved for use in clinical settings for specific therapy. 

In 2010, the Panel on Dietetic Products, Nutrition and Allergies of the European Food 

Safety Authority gave negative opinions to all health claim submissions related to 

probiotics (Rijkers et al., 2011). 

 The reasons behind the difficulty of getting probiotics to the mainstream clinical 

settings are many and complex, including things such as the discrepancy in the field on 

how to measure health benefits. Still, the primary barrier is that the mechanistic basis 

for how probiotics, and microbes for that matter, confer health benefits are poorly 

understood. Especially concerning is the lack of knowledge on the molecular mediators 

that microbes produce to confer its benefits. Getting new drugs into the bedside relies 

on understanding their pharmacokinetic 
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properties, which allow for the prediction of drug efficacy, tissue distribution, adverse 

effects, and clearance; all are critical parameters required for clinicians to consider when 

tailoring their therapeutic approach to patients. Without identification of the molecules 

that microbes use to benefit hosts, characterization of the pharmacokinetic parameters 

of the probiotic is difficult, and so is predicting its efficacy and the adverse effects. There 

are reports of detrimental traits such as metabolic syndrome that can be conferred by 

the transfer of microbiota from one individual to another in animal models (Ridaura et 

al., 2013), demonstrating a need to understand the underlying mechanisms by which 

microbes affect host physiology. 

 However, this is not to downplay the prospect of microbial therapies. In fact, 

penicillin, the most famous and arguably the most successful medical therapy, is derived 

from a microbe (Fleming, 1929). Given the full range of physiologic systems that 

microbes are being demonstrated to affect, we suspect that studying microbes’ probiotic 

benefits will reveal many novel therapeutic targets and agents that, if their mechanisms 

are elucidated, could be used to improve patient care in many disciplines. 

 In this study, we characterized the use of an EPS molecule derived from the 

probiotic bacterium, B. subtilis, in a model of systemic infection by S. aureus, to prevent 

hosts from succumbing to the disease. We found that EPS does this by stimulating the 

immune system through TLR4, which results in bolstering antimicrobial immunity 

while limiting specific aspects of host inflammatory processes, ultimately reducing 

disease burden and improving survival. However, the structure of EPS is yet unknown, 

and means to detect EPS reliably in vivo do not exist. Therefore, it is currently not 

possible to tract the levels of EPS after administration to hosts in vivo, preventing 

studies from elucidating its pharmacokinetic properties. Developing the tools to reliably 
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detect EPS in vivo would significantly advance our goal of developing EPS into a novel 

therapy for clinical use, since we will be able to understand better the tissue distribution 

of EPS, which will help us predict how EPS affects different host tissue sites, and 

clearance of EPS from the hosts, which will help avoid potential adverse effects of EPS. 

Clinical Considerations for EPS Therapy in Sepsis 

 We demonstrated that pre-treatment of mice with EPS improved outcomes from 

S. aureus bloodstream infection that occurred one day later. In the C. rodentium-

induced colitis model, Jones and colleagues demonstrated that B. subtilis spores could 

be administered to mice as late as 3 days post exposure to C. rodentium (Jones and 

colleagues, unpublished data), suggesting that B. subtilis could potentially be used as a 

treatment for infectious colitis. However, we did not test if EPS could be administered to 

mice after exposure to S. aureus for protection. In this model, EPS-treated mice had 

signs of protection that could be detected as early as 6 h.p.i. (Figure 6C), and immune 

cells isolated from EPS-treated mice respond differently to S. aureus ex vivo by 1 day 

after EPS treatment (Figure 10 and 30), suggesting that EPS primes the host 

immunity in a way better suited for survival when challenged by S. aureus. In addition, 

the peak disease symptoms occur 10 d.p.i. in C. rodentium-induced colitis, so the 

administration of B. subtilis spores at 3 d.p.i. in this is still prior to the development of 

disease symptoms. Sepsis patients often present to the healthcare setting after the 

development of symptoms which rapidly deteriorate, making it a challenge for clinicians 

to identify patients rapidly and to immediately treat them (Rhodes et al., 2017; Singer et 

al., 2016). Therefore, testing if EPS could be used as a treatment for patients with an 

established bloodstream infection is clinically relevant. 
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 Still, the pre-treatment model can be a successful therapy in many situations 

regarding sepsis. One major risk factor for developing bloodstream infections is invasive 

procedures. S. aureus is a major concern for these patients since S. aureus is normally 

found on patients on the skin and anterior nares (Gorwitz et al., 2008). During invasive 

procedures, S. aureus on the skin can get access into the bloodstream, a concern that is 

managed by antimicrobial prophylaxis (Bratzler et al., 2013). 

 Invasive procedures are performed on a daily basis, close to 40 million episodes 

reported between 2009-2014 in the UK (Abbott et al., 2017). We reason that EPS could 

be used prior to an invasive procedure, to prime the patient’s immune system against 

potential systemic S. aureus infection and improve outcomes. As it will be discussed 

later, this approach with EPS may have some limitations given that we have not tested 

EPS against other potential bloodstream pathogens; the protective mechanism of EPS 

on S. aureus infection may not work, or even be detrimental, in infections by other 

causes. Once again, a better understanding of the mechanisms underlying EPS 

protection from S. aureus, and potentially from other etiologic agents, will help develop 

EPS into specific therapies that ultimately benefit humanity. 

EPS Protection from S. aureus Bloodstream Infection: Role of IFN-γ 

The Duality of IFN-γ: Initial Observations 

 Systemic infection is a complex challenge for the host. The host must mount 

aggressive pro-inflammatory immune responses to remove the invading pathogen, but 

in doing so, limit overt inflammation. As we discussed previously, S. aureus harbors 

numerous mechanisms to subvert host immunity, rendering the pro-inflammatory 

responses ineffective. This persistence inflammation damages the surrounding tissue 

and impedes organ functions, causing severe conditions such as sepsis. 
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 We initiated this study under the premise that EPS, through its anti-

inflammatory properties, could reduce inflammation during S. aureus infection to 

improve disease outcomes. However, we found that the effects of EPS are more complex, 

inducing hybrid MΦs that perform both pro- and anti-inflammatory functions. In 

addition, EPS prevented the induction of IFN-γ during disease, a paradoxical result 

given the canonical view of IFN-γ as a cytokine that enhances antimicrobial functions of 

phagocytes (Held et al., 1999). Consistent with our observation, some studies 

demonstrated that in S. aureus bloodstream infection, IFN-γ plays a detrimental role for 

the host since neutralization of IFN-γ using antibodies or the infection of IFN-γ-

deficient mice led to improved survival and reduced bacterial load (Nakane et al., 1995; 

Sasaki et al., 2000). EPS-treated mice had reduced IFN-γ levels both in the serum and 

in organs after infection with S. aureus, leading us to conclude that by limiting IFN-γ 

production, EPS reduces the detrimental effects of IFN-γ during pathogenesis, reducing 

disease burden. However, the specific reason as to how the reduction in IFN-γ levels 

correlates with improved disease outcomes in systemic S. aureus infection is not 

apparent. 

 Since its discovery, IFN-γ has been characterized as a molecule driving immune 

response against intracellular pathogens (Wheelock, 1965). IFN-γ mediates its effects 

through its receptor, which is a heterodimer of IFN-γ receptor 1 (IFN-γR1) and IFN-γR2 

(Basu et al., 1988; Hemmi et al., 1989; 1994; Soh et al., 1994). The activation of the IFN-

γR activates the Janus kinase-signal transducer and activator of transcription (JAK-

STAT) pathway that stimulates the expression of various genes involved in immune 

responses (Igarashi et al., 1994; Sakatsume et al., 1995). In spite of the studies showing 

that the absence of IFN-γ led to improved survival and reduced bacterial load (Nakane 
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et al., 1995; Sasaki et al., 2000), the general consensus is that IFN-γ plays a protective 

role during S. aureus infection. This is because the treatment of MΦs with IFN-γ in vitro 

augments their activation (Held et al., 1999; Murray et al., 1985), and treatment of 

neutrophils with IFN-γ in vitro enhances their capacity to kill S. aureus (Edwards et al., 

1988). In vivo, immunization of mice through primary infection with a low inoculum of 

S. aureus protects mice from subsequent re-challenge with S. aureus 8 weeks later, and 

this protection is abrogated in IFN-γ-deficient mice (Sasaki et al., 2006), suggesting that 

IFN-γ mediates protection in vivo. In addition, systemic administration of recombinant 

IFN-γ to mice reduces mortality during S. aureus bloodstream infection (Zhao et al., 

1998), consistent with the consensus view that IFN-γ plays a protective role. 

 However, a closer look into the studies of S. aureus infection involving IFN-γ 

reveals a more complicated story. Zhao and colleagues initially reported that the 

administration of recombinant IFN-γ protected mice from S. aureus bloodstream 

infection (Zhao et al., 1998). In contrast, this group previously reported that IFN-γR-

deficient mice have increased arthritis severity during systemic infection by S. aureus, 

but also noted that at later points of infection, fewer IFN-γR-deficient mice succumbed 

to disease compared to WT mice, suggesting a pathological role of IFN-γ signaling (Zhao 

and Tarkowski, 1995). These results were corroborated by another group that 

administered neutralizing anti-IFN-γ antibodies to C57Bl/6 mice during infection and 

found improved survival (Nakane et al., 1995). Also, Sasaki and colleagues used IFN-γ-

deficient mice and showed improved survival and reduced bacterial load during S. 

aureus bloodstream infection (Sasaki et al., 2000), providing a view that contradicts the 

general view that IFN-γ is protective.  
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The Duality of IFN-γ: Role of Neutrophils 

 There is an apparent paradox regarding the protective and pathogenic roles of 

IFN-γ during S. aureus bloodstream infection. Although the underlying reason for this 

duality of IFN-γ remains unclear, one hypothesis to explain this can be derived from a 

critical observation made in IFN-γ-deficient mice. When Sasaki and colleagues assessed 

the kidney of infected IFN-γ-deficient mice for histopathology, they noticed smaller and 

fewer abscesses, with neutrophils present but the borders unclear (Sasaki et al., 2000). 

Usually, abscess from S. aureus infections show a necrotic focus containing viable 

bacteria with neutrophils surrounded by a fibrous capsule. Under the premise that 

abscess is a host mechanism to contain the bacterial infection, such finding of an 

abscess with unclear borders would implicate incomplete control of bacterial 

dissemination. However, this is not the case, since these mice had improved survival. In 

addition, abscess formation is also promoted by the bacteria as well, since bacterial 

factors from S. aureus are required (Cheng et al., 2009; Lam et al., 1963). This suggests 

that S. aureus might utilize the abscess as a way to promote its own pathogenic program. 

 One target of S. aureus manipulation of host response is the neutrophil. The 

infected site becomes concentrated with neutrophils as they are recruited to clear the 

pathogen. These neutrophils augment their antimicrobial functions through NETosis 

(Brinkmann et al., 2004). Ironically, NETosis has been implicated in S. aureus immune 

evasion. Thammavongsa and colleagues assessed renal abscesses from S. aureus-

infected mice using immunohistochemical staining and found that the inner parts of the 

abscess only contained Ly6G+ neutrophils. In contrast, F4/80+ MΦs were concentrated 

around the periphery of the abscess, excluded from the central infected foci 

(Thammavongsa et al., 2013). These investigators also observed that in mice infected 
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with mutants deficient in nuclease (Nuc) and adenosine synthase A (AdsA), F4/80+ cells 

were found within the abscess, indicating that this mutant S. aureus failed to exclude 

MΦs from the abscess. This was mediated by S. aureus converting host DNA released 

from neutrophils during NETosis into deoxyadenosine, known to be toxic to MΦs 

(Thammavongsa et al., 2013). Not surprisingly, infection with one of these mutants, 

adsA, resulted in reduced CFU S. aureus in the kidney (Thammavongsa et al., 2009). It 

should be noted that NETosis is probably not required for S. aureus to obtain DNA from 

neutrophils since S. aureus can also use the pore-forming toxin LukED to directly kill 

neutrophils (Alonzo III et al., 2012a) and release DNA from neutrophils. Therefore, it 

can be inferred that while neutrophils play a critical role in containing the initial 

infection by S. aureus, they also serve as a pool of materials that S. aureus have adapted 

to utilize for immune evasion. 

 This view that the neutrophils are utilized by S. aureus during pathogenesis is 

supported by the studies assessing the role of neutrophils in systemic S. aureus infection. 

The initial studies utilized in vivo depletion of neutrophils using anti-Gr-1 antibodies 

that demonstrated that 10 of 13 neutrophil-depleted mice had died from bloodstream 

infection by S. aureus by 2 d.p.i. compared to 0 of 14 deaths in control mice (Verdrengh 

and Tarkowski, 1997). It should be noted here that the extreme sensitivity of neutrophil-

depleted mice in the study by Verdrengh and Tarkowski may be due to the fact the 

authors likely depleted both monocytes and neutrophils since anti-Gr-1 antibody (RB6-

8C5) targets both Ly6C+ monocytes and Ly6G+ neutrophils. Still, another study has used 

anti-Ly6G antibody (1A8) to specifically deplete neutrophils in vivo, which also 

rendered mice more prone to death during S. aureus bloodstream infection (Alonzo III 

et al., 2012a). The presumed protective role of neutrophils in S. aureus infection came 
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into question when investigators unexpectedly observed that an influx of neutrophils 

correlated with increased CFU S. aureus (Lowrance et al., 1994). In a study using an 

anti-Gr-1 antibody to limit, but not deplete, neutrophils in vivo, Gresham and colleagues 

found a decrease in bacterial burden during systemic S. aureus infection (Gresham et al., 

2000). Combined with the observation that S. aureus readily survives within leukocytes 

(Rogers and Tompsett, 1952), these data indicate that neutrophils, while required for 

host survival during S. aureus disease, also serve as a niche for S. aureus survival. 

The Duality of IFN-γ: Linking IFN-γ with Neutrophils 

 The observation linking the alteration of abscesses in IFN-γ-deficient mice and 

neutrophils came from a study in which McLoughlin and colleagues observed that 

TCRα/β-deficient mice had reduced numbers of S. aureus within abscesses and reduced 

local levels of CXC motif chemokines such as KC (CXCL1) and MIP-2 (CXCL8), which 

correlated with reduced myeloperoxidase (MPO) activity in tissues (McLoughlin et al., 

2006). They also observed that IFN-γ-deficient mice had slightly reduced levels of KC at 

6 h.p.i. and MIP-2 at 48 h.p.i., with reduced MPO activity (McLoughlin et al., 2008), 

suggesting that IFN-γ promotes neutrophil recruitment through local production of 

CXC motif chemokines, leading to increased bacterial burden within the abscess. 

Similarly, the study of sea mutant demonstrated that sea-infected mice had reduced 

levels of IFN-γ in the liver, which correlated with a reduced number of hepatic abscesses 

(Xu et al., 2014). This study also reported that the number of CD11b+Ly6G+ neutrophils 

was reduced in the liver by 96 h.p.i., consistent with the view that IFN-γ promotes 

neutrophil recruitment (Xu et al., 2014). These data indicate that IFN-γ contributes to 

recruitment of neutrophils during S. aureus infection, thereby increasing the cells S. 

aureus can target for its own survival within the infected site. 
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The Duality of IFN-γ: Role of Macrophages 

 While the studies of neutrophils reveal the nature of S. aureus-induced abscess 

as a potential survival mechanism, they only reported a reduction in the number and 

size of abscesses during infection. As yet, there are no data to directly explain how in 

IFN-γ-deficient mice, the abscess structure was less organized, and the borders 

obscured (Sasaki et al., 2000). The periphery of the abscess is described by a fibrous 

capsule that surrounds the necrotic region (Kobayashi et al., 2011), and the excluded 

MΦ are located just outside the periphery of the abscess (Thammavongsa et al., 2013). 

MΦs are known to express a variety of matrix metalloproteinases (MMP) upon both 

classical and alternative activation (Huang et al., 2012), and these MMPs mediate 

breakdown of extracellular matrix components (Gross and Lapiere, 1962; Wart and 

Birkedal-Hansen, 1990). We suggest that in IFN-γ-deficient mice, the reduction in 

neutrophil numbers in the abscess leads to reduced S. aureus-induced toxicity against 

MΦs, thereby increasing MΦ presence around the abscess. These MΦs could utilize their 

MMPs to break down the fibrous capsule surrounding the abscess to gain access to the 

abscess; indeed, a corresponding increase in F4/80+ cells within abscesses can be 

observed when S. aureus cannot produce deoxyadenosine to exclude MΦs 

(Thammavongsa et al., 2013). This MMP-mediated breakdown of the abscess border 

may explain why the abscess borders are obscure in IFN-γ-deficient mice, and may also 

signify that in these mice, the abscess is more accessible by immune cells, further 

enhancing host responses to S. aureus. Assessing the status of extracellular matrix 

components in IFN-γ-deficient mice during S. aureus infection could reveal if the 

breakdown in the fibrous capsule is responsible for the obscure borders.  
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Proposed Model of the Role of IFN-γ During S. aureus Pathogenesis 

 In conclusion, abscess formation, and the role of IFN-γ during S. aureus 

infection are complex processes that require further studies to elucidate. At present, we 

propose the following model (Figure 37) for the role of IFN-γ in S. aureus pathogenesis. 

S. aureus induces an early IFN-γ response from T or NK cells that leads to the local 

production of CXC motif chemokines such as KC (CXCL1) in the tissues, which 

promotes neutrophil recruitment and initiates abscess formation (Figure 37A). The 

source of CXCL1 is not known (Figure 37A). Within the abscess, PMNs take up S. 

aureus for killing, but S. aureus survives within PMNs. The more PMNs take up the 

bacteria, the more S. aureus survives within the PMNs, increasing the CFU S. aureus 

within the abscess (Figure 37B). PMNs augment their antimicrobial functions through 

NETosis, which releases chromatin to trap the invading bacteria, but S. aureus utilizes 

this DNA for its own survival, killing MΦs that are additionally recruited (Figure 37B). 

S. aureus also uses leukotoxins to kill neutrophils, releasing more DNA to kill MΦs 

(Figure 37B).   
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These processes, stemming from the initial IFN-γ production, form an abscess that 

Figure 37: Proposed Model for the Role of IFN-γ and Abscess Formation 
During S. aureus Pathogenesis. A. S. aureus stimulates IFN-γ production which 
promotes PMN recruitment through chemokine production. Dashed arrow indicates 
that the source of CXCL1 is not known. B. S. aureus readily survives within PMNs after 
phagocytosis. S. aureus utilizes DNA from PMNs to evade MΦ-mediated immunity. C. 
S. aureus excludes MΦs from the abscess outside the fibrous capsule, creating an 
immune-privileged site for bacterial persistence. 
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restricts access by immune cells, allowing S. aureus an immune-privileged environment 

to persist within the host (Figure 37C). 

Proposed Effect of EPS Suppression of IFN-γ on S. aureus Infection 

 We demonstrated that EPS prevents the production of IFN-γ during S. aureus 

infection in vivo. Based on the proposed role of IFN-γ in S. aureus pathogenesis 

(Figure 37), we suggest that EPS disrupts the formation of abscesses, thereby reducing 

bacterial load (Figure 38). With the reduction in IFN-γ levels, the recruitment of 

neutrophils to the site of infection would be disrupted, and there would be a 

corresponding decrease in CFU S. aureus persisting within neutrophils (Figure 38A).   

Figure 38: Proposed Model of the Effect of EPS on S. aureus within 
Abscesses. A. EPS inhibits IFN-γ during S. aureus infection, disrupting neutrophil-
mediated abscess formation. B. Reduced neutrophil recruitment to abscesses reduces 
MΦ toxicity and subsequent exclusion by S. aureus. C. EPS-induced hybrid MΦs 
penetrate abscesses through MMPs, disrupting the abscess capsule to render it more 
accessible by other MΦs. D. EPS-induced hybrid MΦs restrict S. aureus growth within 
the abscess through increased ROS levels. Dashed arrows indicate disruption of process 
by EPS. Yellow circles represent S. aureus. 
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Furthermore, there would be a decrease in the amount of deoxyadenosine produced by S. 

aureus using neutrophil DNA due to a reduction in neutrophil recruitment, which would 

reduce toxicity against MΦs (Figure 38B). This, in turn, could increase MΦ access into 

the abscess where bacteria are present, reducing S. aureus numbers (Figure 38B). 

Since activated MΦs express MMPs (Huang et al., 2012), EPS-activated MΦs may also 

have increased MMP expression to penetrate the abscess better (Figure 38C). We also 

demonstrated that EPS-induced MΦs had increased antimicrobial activity through ROS 

production (Figure 13-15), which would contribute to better pathogen control once the 

cell takes up S. aureus within the abscess (Figure 38D). Visualization of the abscesses 

in EPS-treated mice during S. aureus infection, particularly the periphery of the 

abscesses and the surrounding extracellular matrix components, will help test the 

validity of this model. 

How IFN-γ Can Contribute to Protection from S. aureus 

 There is one key observation we made that creates a discrepancy for the 

proposed model for EPS-mediated protection from S. aureus infection. We proposed 

that the reduction in IFN-γ levels in EPS-treated mice disrupted the recruitment of 

neutrophils to the abscess, which would then correlate with reduced CFU S. aureus 

(Figure 38A). However, we observed that EPS recruits neutrophils to tissues (Paynich, 

unpublished data and Figure 35). One explanation for this apparent discrepancy can 

be found in yet another discrepancy, the finding that mice treated with recombinant 

IFN-γ are protected from S. aureus bloodstream infection (Zhao et al., 1998). In this 

case, recombinant IFN-γ was administered to mice systemically (Zhao et al., 1998), 

which would theoretically activate all cells expressing the IFN-γR. While S. aureus 

survives within neutrophils, and the literature suggests that neutrophils contribute to S. 
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aureus persistence, IFN-γ-activated neutrophils readily kill S. aureus (Edwards et al., 

1988). Enhancing the bactericidal capacity of individual neutrophils in vivo, e.g., by 

systemic administration of recombinant IFN-γ (Zhao et al., 1998), should reduce the 

initial burden of S. aureus at the infected sites, leading to improved outcomes. We 

observed that EPS activates BM-PMNs (Figure 36), so EPS could systemically enhance 

their antimicrobial activities against S. aureus in vivo, which would lead to the better 

killing of S. aureus by PMNs, thereby reducing overall bacterial burden independent of 

the effects of EPS on IFN-γ and abscess formation. 

The Source of IFN-γ During S. aureus Infection In Vivo 

 Perhaps reflective of the important role IFN-γ plays during S. aureus 

pathogenesis, S. aureus harbors two classical and two alternative mechanisms to induce 

host IFN-γ production. The two classical mechanisms are Ag-mediated activation of 

cognate T cells and SAg-mediated polyclonal activation of T cells. In both cases, T cells 

are activated and undergo proliferation and produce effector cytokines. Experimentally, 

the activation of mouse T cells with CP8, a capsular polysaccharide Ag of S. aureus, 

resulted in IFN-γ production 72 hr post stimulation (McLoughlin et al., 2008). In our 

studies, high levels of IFN-γ were detected 96 hr after stimulation with SEl-Q containing 

culture supernatants (Figure 26B). However, the in vitro kinetics of IFN-γ do not 

match the kinetics of IFN-γ levels during S. aureus bloodstream infection in vivo. 

Nakane and colleagues reported that during systemic S. aureus infection, serum IFN-γ 

was detectable at low levels at 1 d.p.i., undetectable in the following couple days, and 

then peaked at much higher levels by 5 d.p.i (Nakane et al., 1995). We also detected IFN-

γ in the serum at 1 d.p.i. (Figure 4), but IFN-γ was not detectable at 3 d.p.i. (data not 

shown), confirming that IFN-γ is produced in a biphasic manner during S. aureus 
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bloodstream infection: an early low-level response at 1 d.p.i. and a surge in levels later in 

infection, between 3 and 5 d.p.i. SAg-induced IFN-γ in vitro was detected at 96 hr post 

stimulation (Figure 26A and B), more in line with the timing of the in vivo surge later 

in infection. In contrast, the level of IFN-γ at 24 hr after stimulation with SAg was 

relatively low (Figure 26A), so it is not likely that the activation of T cells through the 

two classic mechanisms is responsible for the early IFN-γ response observed at 1 d.p.i. 

in vivo. 

 Mice infected with the SEA-deficient mutant, compared to WT, reportedly had 

lower IFN-γ levels during infection (Xu et al., 2014), but we did not observe this with 

our SEl-Q-deficient mutant (Figure 24). One possible explanation for this is that 

because each SAg has specificities for a specific TCR Vβ sequence, the activation profile 

of the SEA and SEl-Q would be different. Therefore, SEA could activate resident cells in 

the liver that bear the TCR Vβ that SEA recognizes, while SEl-Q would not. Xu and 

colleagues also observed that in the Newman strain, sea is encoded in the same immune 

evasion cluster of β-hemolysin converting phage that encodes other immune evasion 

molecules, especially those involved in evading neutrophil-mediated immunity (Xu et al., 

2014). This suggests that sea may be co-regulated in a way that promotes expression 

during neutrophil influx early in the disease. In contrast, the seq gene is only neighbored 

by the sek gene, so SEl-Q may not be expressed in the manner sea is expressed in vivo. 

Still, the decrease in IFN-γ level in the sea-infected mice was only partial (Xu et al., 

2014), consistent with the view that S. aureus can induce IFN-γ through other means. 

 S. aureus has alternative mechanisms to induce IFN-γ responses that are more 

rapid. We found that the stimulation of splenocytes with heat-killed S. aureus-induced 

IFN-γ that was in low but detectable levels at 24 hr post stimulation (Figure 26C). The 
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production of IFN-γ through this method required NK1.1+ cells, CD11b+ cells, MyD88 

signaling, and IL-12 (Figure 27-29), suggesting that S. aureus activates myeloid cell 

production of IL-12 that activates NK cells for the production of IFN-γ. Another pathway 

may involve a specific subset of T cells. Ag-experienced CD8+ T cells were demonstrated 

to produce IFN-γ within 6 hr of stimulation with Pam3CSK4 or resiquimod (R-848), 

TLR1/2 and TLR7 agonists, respectively (Salerno et al., 2016). Since S. aureus 

stimulates immune cells though TLR2, it is possible that these CD8+ T cells could be 

activated by S. aureus directly through TLR2, leading to rapid production of IFN-γ. In 

our hands, depletion of NK1.1+ cells (NK and NKT cells) resulted in complete abrogation 

of IFN-γ production, but depletion of CD3+ cells (T and NKT cells) resulted in only a 

slight decrease that was not statistically significant (Figure 27). Based on these data, 

we suggest that NK cells are the primary mediators of the early IFN-γ response to S. 

aureus infection. We cannot rule out the possibility that NKT cells and T cells, especially 

certain subsets of CD8+ T cells, make a minor contribution to the rapid IFN-γ response 

to S. aureus, and studies utilizing NK cell-depleted mice would allow us to determine if 

non-NK cells contribute. However, we favor the idea that the NK cells are the major 

contributors since in mice infected with L. monocytogenes, another Gram positive 

pathogen, NK1.1+ cells were the dominant IFN-γ-producing compartment at 19 h.p.i., an 

early time point in infection (Thäle and Kiderlen, 2005). 

EPS Suppression of IFN-γ Production Through TNF-α 

 EPS suppressed splenic IFN-γ production in response to heat-killed S. aureus 

(Figure 30), and this required TNF-α (Figure 34). TNF-α has been classified as a pro-

inflammatory cytokine since its discovery as an endotoxin-induced serum factor 

(Carswell et al., 1975). However, TNF-α has a much more complex set of functions, 
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mediated through TNF receptor 1 and 2 (TNFR1/2). When activated, TNFR1 recruits an 

adaptor protein called TNFR type 1-associated death domain protein (TRADD) which 

mediates two seemingly counteractive signaling pathways: Fas-associated death domain 

protein (FADD)-mediated caspase activation leading to apoptosis and TNFR-associated 

factor 2 (TRAF2)-mediated NF-κB and AP-1 activation leading to pro-inflammatory 

gene expression and cell survival (Hsu et al., 1995; 1996). However, most cells are 

resistant to apoptosis when stimulated with TNF-α alone (Sugarman et al., 1985), 

though the reason for this is still not understood. Therefore, the general view is that 

TNFR1 mediates pro-inflammatory activation and survival of cells. However, a study 

showed that TNFR1-deficient mice had increased percentages of CD8+ T cells after 

immunization (Speiser et al., 1996), indicating that TNFR1 promotes peripheral deletion 

of cytotoxic T cells. In addition, TNFR1 signaling was demonstrated to induce myeloid-

derived suppressor cells (MDSC) that induced T cell anergy during S. aureus peritonitis 

(Ledo et al., 2018), indicating an immunosuppressive role. TNFR2 differs from TNFR1 

in that it lacks the death domain. Because of this, TNFR2 was initially thought to only 

mediate cell survival (Tartaglia et al., 1991). However, a later study showed that TNFR2 

could also mediate cell death (Holler et al., 1992), indicating that the signals induced by 

TNFR2 are also complicated. While TNFR1 is expressed ubiquitously, TNFR2 

expression is more limited, generally to the immune system and the nervous system 

(Ware et al., 1991; Yang et al., 2002). Predominant expression of TNFR2 is found on the 

maximally suppressive subset of Treg cells (Chen et al., 2008), and TNF is thought to 

increase survival and expansion of this Treg cell compartment to promote 

immunoregulation in response to inflammation (Grinberg-Bleyer et al., 2010). Since 

EPS induces TNF-α production, we think that some of the immunosuppressive effects of 
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EPS, especially the increase in Treg cells (Paynich et al., 2017) and the reduced response 

to S. aureus SEl-Q (Figure 19), may be mediated in part through TNFRs. TNF-α is also 

crucial for survival during S. aureus bloodstream infection (Nakane et al., 1995), 

suggesting that TNF-α-mediated effects of EPS likely play a role in protection from S. 

aureus infection. Studies using TNFR1- and TNFR2-deficient mice will help us test this 

hypothesis.  
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not shown). To understand why these in vitro-stimulated MΦs did not function like 

EPS-induced MΦs in vivo, we need to consider the dynamic nature of peritoneal MΦ 

subsets. The majority of peritoneal cavity MΦs at steady state are CD11bhighF4/80high 

LPMs (Ghosn et al., 2010). Therefore, in vitro experiments assessing the effect of EPS 

on MΦs were performed on LPMs. However, the peritoneal cavity becomes dominated 

by CD11b+F4/80+/low SPMs after EPS treatment in vivo (Paynich, unpublished data), 

and there is a corresponding decrease in the LPM compartment. By 3 days after EPS 

treatment, the LPM compartment is restored, and the MΦ compartment then consists of 

functional hybrid MΦs. While we do not know the mechanism underlying the induction 

of hybrid MΦs in vivo, we propose a model that potentially explains the process 

considering the dynamics of peritoneal cavity MΦs. 

Ontogeny of Peritoneal Macrophages 

 A hint for the origins of EPS-induced hybrid MΦs can be found in the study of 

peritoneal LPMs and SPMs. Ghosn and colleagues compared the LPMs and SPMs in 

their ability to produce the antimicrobial molecule, RNS, and found that when isolated 

20 hr after i.p. LPS treatment, SPMs increase NO levels higher than that of LPMs; SPMs 

also had higher levels of MHCII (Ghosn et al., 2010). SPMs were shown to be derived 

from the infiltrating CD11b+Ly6C+ monocytes (Ghosn et al., 2010), so it is thought that 

these are cells recruited to mediate antimicrobial responses against invading pathogens. 

EPS induces the infiltration of CD11b+Ly6C+ monocytes into the peritoneal cavity 

(Paynich, unpublished data), so we hypothesize that EPS-induced hybrid MΦs may 

originate from the recruited monocytes like SPMs, which could explain the enhanced 

antimicrobial capacities of these cells. Consistent with this view is that EPS induces the 

production of a variety of chemokines by the peritoneal F4/80+ cells (Figure 31), which 
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would recruit SPMs. It should be noted that in comparing LPMs and SPMs, Ghosn and 

colleagues did not assess ROS production, so we will need to confirm that SPMs have 

increased ROS levels like in EPS-induced MΦs. Also, we will need to confirm if EPS-

induced MΦs are derived from cells in the circulation using fate mapping or adoptive 

transfer approaches. 

Signals Governing EPS-Induced Macrophage Differentiation 

 If EPS-induced MΦs originate from the infiltrating monocytes that are classically 

characterized to mediate pro-inflammatory responses, how is it that these MΦs mediate 

anti-inflammatory functions as well? We think that the answer lies in the signaling 

events that occur after recruitment. Paynich and colleagues demonstrated that 

treatment of peritoneal MΦs increases their expression of IL-4Rα (Paynich et al., 2017), 

indicating that EPS sensitizes cells to activation by IL-4 or IL-13. While we have not 

assessed if this also occurs on the recruited SPMs, the increase in IL-4Rα depends on 

IL-10 (Figure 33), a cytokine produced by type I IFNs, resulting from TLR4-TRIF 

signaling (Chang et al., 2007). Since EPS activates NF-κB through TLR4 (Figure 32) 

and induces cytokine production multiple cell types (Figure 31 and 36), we think that 

EPS could be activating IL-10 production from the recruited SPMs as well, thus 

increasing their IL-4Rα expression. If not, IL-10 produced by the LPMs within the 

peritoneal cavity could act on the recruited SPMs to increase their IL-4Rα expression. 

Signaling through the IL-4R is the classic mechanism for alternative activation of MΦs 

(Murray et al., 2014), so we think that by increasing IL-4Rα expression on the SPMs, 

EPS makes the SPMs prone to alternative activation, leading to their immunoregulatory 

functions. 



147 
 

 
 

 Paynich and colleagues demonstrated that EPS treatment increases intracellular 

levels of IL-4 and IL-13 on LPMs (Paynich et al., 2017), but we could not detect secretion 

of IL-4 and IL-13 after treatment of peritoneal LPMs with EPS in vitro (Figure 31). In 

addition, i.p. administration of EPS results in the initial disappearance of the LPMs as 

the SPMs get recruited (Paynich, unpublished data), leading us to think that a different 

cell is the source of IL-4 or IL-13. We do not yet know this source, but a number of 

different cell types within the peritoneal cavity are known to produce IL-4 and IL-13, 

leading us to think that these cells could be the source by which EPS drives the 

induction of hybrid MΦs. Amongst these cells, we think that eosinophils, basophils, type 

2 innate lymphoid cells (ILC2), and B cells are the likely cells since they are involved in 

type 2 immune responses defined by IL-4 and IL-13. Interestingly, iNKT cells in the liver 

were demonstrated to produce IL-4 after a sterile injury to drive M2 differentiation of 

the recruited monocytes and promote wound healing (Liew et al., 2017), consistent with 

the view that an accessory cell drives M2 differentiation in EPS-treated mice. It should 

be noted that we cannot rule out the possibility that signals other than IL-4 and IL-13 

drive EPS induction of hybrid MΦs, so we need to consider other signals that could 

contribute. 

 Such an alternative signal to consider for hybrid MΦ differentiation by EPS is 

MCP-1 (CCL2). During murine systemic infection, MCP-1 is produced early and is 

thought to mediate the recruitment of monocytes through its receptor CCR2 (Kurihara 

et al., 1997), thereby promoting inflammation. However, during systemic infection, 

MCP-1 was associated with immunosuppression and increased mortality (Tsuda et al., 

2004). Blockade of MCP-1 in MΦs enhanced M1-associated gene expression while it 

reduced M2-associated genes, suggesting that MCP-1 promotes M2 polarization of MΦs 
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(Sierra-Filardi et al., 2014). EPS induces MCP-1 production by peritoneal LPMs (Figure 

31), so MCP-1 could contribute by not only recruiting monocytes to the peritoneal cavity, 

but also promote their M2 polarization in vivo. In addition, EPS-treatment results in 

abrogated serum MCP-1 levels during S. aureus infection (Figure 4). This reduction in 

MCP-1 during infection may promote MΦs to take on antimicrobial capacities rather 

than fully adopting M2 polarization as in EPS-treated mice, leading to their hybrid state 

capable of both antimicrobial and immunoregulatory functions. In addition, CCR2-

deficient mice show impaired IFN-γ production in response to immunization with 

Mycobacterium bovis (Peters et al., 2000), another parallel observation consistent with 

the abrogation of both MCP-1 and IFN-γ during S. aureus infection by EPS. 

Proposed Model of the Induction of Hybrid Macrophages by EPS 

 Taking the above information into account, we propose the following model for 

EPS induction of hybrid MΦs in the peritoneal cavity. EPS initially activates TLR4-

MyD88 signaling on LPMs, inducing the production of chemokines that lead to 

recruitment of SPMs that have increased antimicrobial capacities (Figure 40A) (Ghosn 

et al., 2010). EPS also activates TLR4-TRIF signaling, which causes IL-10 production, 

driving the expression of IL-4Rα on recruited SPMs (Figure 40B). A yet unidentified 

accessory cell provides IL-4 and IL-13, activating the SPMs and promoting their M2 

differentiation (Figure 40C). Activation through IL-4Rα converts MΦ metabolism to 

mitochondria-driven metabolism (Huang et al., 2016), and TLR4 signaling also 

increases mtROS (West et al., 2011), which contributes to M2 MΦ differentiation 

(Formentini et al., 2017) (Figure 40C). Due to the origin and the differentiation 

pathway of EPS-induced MΦs, we propose that they harbor qualities of both M1 and M2 



149 
 

 
 

MΦs, able to restrict S. aureus growth and limit T cell activation, making these hybrid 

MΦs (Figure 40D). 

Mechanism Underlying Inhibition of Superantigen-Mediated T Cell 

Activation 

 EPS-induced MΦs inhibit T cells stimulated through the TCR, using anti-CD3ε 

antibodies (Paynich et al., 2017). In this model, EPS-induced MΦs inhibit T cells 

through the inhibitory cytokine TGF-β and the co-inhibitory molecule PD-L1 (Paynich et 

al., 2017). However, the culture supernatant of S. aureus we used for SEl-Q-mediated 

stimulation of T cells contains S. aureus lipoproteins that drive pro-inflammatory 

activation of immune cells. In addition, S. aureus is known to subvert adaptive 

Figure 40: Proposed Model for the Induction of Hybrid MΦs by EPS. A. EPS 
activation of TLR4-MyD88 on LPMs induce chemokine production, recruiting SPMs 
that have increased antimicrobial capacities. B. EPS activation of TLR4-TRIF induces 
IL-10 that act on recruited SPMs to increase their IL-4Rα expression. C. An accessory 
cell produces IL-4 and IL-13 that activates the SPMs through IL-4/13R, driving M2-like 
differentiation. EPS may also increase fatty acid oxidation through IL-4Rα-mTORC2 
signaling, and also mtROS through TLR4, promoting M2 differentiation. D. The EPS-
induced MΦs have both increased antimicrobial capacities to restrict S. aureus growth 
like M1 MΦs and capacity to limit T cell activation like M2 MΦs, a characteristic of 
hybrid MΦs. 
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immunity by altering the expression of co-stimulatory molecules on Ag-presenting cells 

(Sanchez et al., 2017). Therefore, EPS-induced MΦs could use other mechanisms to 

inhibit T cells in the presence of S. aureus-derived factors due to the pro-inflammatory 

signals they receive. We will need to confirm that TGF-β and PD-L1 mediate this 

inhibition or reassess the mechanisms of inhibition to understand inhibition of SAg-

mediated activation of T cells by EPS-induced MΦs. 

Tissue-Specific Protection from S. aureus Infection by EPS 

Role of Interferon-Gamma 

 EPS-treated mice have reduced bacterial burden in the spleen and liver, but not 

in the kidney (Figure 6A and B). While we do not understand the mechanism behind 

this, we suggest that it may be due to the differences in immune cells among these 

tissues. DCs dominate the immune cell population within the kidney (Kaissling and Hir, 

1994; Zheng et al., 2006). This is in contrast to the spleen and the liver that harbor 

many MΦs and lymphocytes. Nakane and colleagues observed that IFN-γ levels in the 

kidney remain at baseline levels throughout the infection (Nakane et al., 1995), and we 

observed that renal IFN-γ levels in S. aureus-infected mice at 1 d.p.i. are barely 

detectable (Figure 23). Therefore, we think that the inhibitory effect of EPS on T and 

NK cells, and the resulting IFN-γ, in the kidney is minimal, since the kidney does not 

harbor so many of these cells. Consistent with this view, sea-infected mice had reduced 

IFN-γ levels in the liver but not in the kidney (Xu et al., 2014), suggesting that IFN-γ 

differentially contributes to pathogenesis among organs, which could explain the lack of 

EPS effects in the kidney. It should be noted that IFN-γ-deficient mice had reduced 

bacterial load in the kidney, and the observation on abscess formation was made from 

the kidney (Sasaki et al., 2000), suggesting that IFN-γ plays an overall pathogenic role 
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in the kidney as well. Therefore, we suggest that EPS does not affect kidney 

pathophysiology. 

Role of Myeloid Cells 

 Another possibility for the failure of EPS to reduce bacterial load in the kidney 

may have to do with the myeloid compartment. As discussed, DCs are the dominant 

immune cell in the kidney (Kaissling and Hir, 1994). Renal DCs are thought to rapidly 

recruit neutrophils upon recognition of infection such as uropathogenic E. coli (Tittel et 

al., 2012). In the case of S. aureus infection, this rapid recruitment of neutrophils may 

promote abscess formation, thereby increasing S. aureus survival. In contrast, the liver 

harbors Kupffer cells, unique tissue resident MΦs, that clear activated neutrophils and 

cellular debris (Brown et al., 2001). Clearance of neutrophils would reduce abscess 

formation within the hepatic tissue and not only help clear the bacteria, but also 

maintain MΦ access to the invading pathogen. Resident MΦs were recently shown to 

cloak pathogens from recognition by neutrophils, preventing the initiation of abscess 

formation and subsequent tissue damage (Uderhardt et al., 2019). This process may also 

be occurring in the liver through Kupffer cells, reducing abscesses. In addition, 

peritoneal LPMs have been demonstrated to be directly recruited to the liver during 

sterile injury, where the LPMs mediated uptake of necrotic tissue debris and promoted 

wound healing (Wang and Kubes, 2016); this may be another way the liver could recruit 

more MΦs during S. aureus infection to clear neutrophils, suppress abscesses, and 

promote wound healing. The spleen also contains specialized resident MΦs, some of 

them known to mediate immunity against bloodborne pathogens (Geijtenbeek et al., 

2002), and these could also contribute to clearing activated neutrophils and provide 

additional immunity against S. aureus. Additionally, EPS could enhance the 
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antimicrobial capacities of MΦs in these tissues to further accentuate the difference in 

responses in these tissues compared to the kidney. 

Activation of TLR4 by EPS 

Classic and Modern Views on the Effect of Lipopolysaccharide in Immunity 

 EPS has broad anti-inflammatory effects that confer host protection against a 

variety of diseases where inflammation plays a role, including infectious diarrhea (Jones 

et al., 2014; Paynich et al., 2017), allergic eosinophilia (Swartzendruber et al., 2019), and 

sepsis. However, we found that EPS also stimulates immune cells through TLR4, leading 

to the activation of NF-κB and pro-inflammatory cytokine production. The best-

characterized ligand for TLR4 is LPS, an inducer of pro-inflammatory responses, and 

the model causative agent of sepsis (Hoshino et al., 1999). However, a closer look at the 

literature on LPS indicates that TLR4 can mediate immunoregulatory responses in vivo. 

The first evidence of this was observed when Uchiyama and colleagues found that while 

LPS administration at the time of immunization enhanced antibody responses, pre-

injecting mice with LPS 3 days prior to immunization reduced antibody responses 

(Uchiyama et al., 1984). Since then, this phenomenon of has been studied in the context 

of LPS-induced endotoxemia model and has been termed sepsis-induced 

immunosuppression or immunoparalysis. Generally, the primary mechanistic focus 

from these studies has been the induction of CD11b+Gr-1+ MDSCs in vivo (Greifenberg 

et al., 2009; Wilde et al., 2009). Therefore, the underlying mechanism for how LPS 

administration results in a suppressed host immunity is poorly understood outside of 

the induction of MDSCs. Because EPS also activates TLR4, we think that some of the 

immunoregulatory mechanisms of EPS could also explain sepsis-induced 
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immunosuppression. This also suggests that the classic view of TLR4 signaling in 

mediating pro-inflammatory responses need to be re-examined. 

 The modern view of immunity is that the immune system, like virtually all other 

physiologic systems in the body, is subject to extensive homeostatic mechanisms. Such 

an idea has been highlighted in studies of inflammation that claim the need to balance 

pro- and anti-inflammatory responses. However, these processes need to be recognized 

as part of the same process. We hypothesize that LPS-induced immunosuppression, and 

even EPS-primed immunity, demonstrate this phenomenon: an initial pro-

inflammatory response activated through TLR4 that results in host countermeasures to 

limit and resolve inflammation. MDSCs would also fit into this view since MDSCs are 

known to be induced through inflammatory mediators such as IL-1β (Elkabets et al., 

2010), representing a host response to inflammation that limits or resolves 

inflammation. 

 Clinically, sepsis-induced immunosuppression is a primary concern, since many 

patients that survive the initial inflammatory phase are vulnerable to superinfections, 

presumably due to the immunosuppressed state that ensues later in the disease. 

Therefore, agents that limit inflammation have not been well-accepted by the field, in 

part due to concerns of worsening the immunosuppressed state of sepsis patients. 

However, we suggest that limiting inflammation during the early phase of sepsis can not 

only improve patient survival, but also reduce the ensuing anti-inflammatory response 

that occurs in response to the initial inflammation, essentially a reflex response. In 

addition, priming the host through TLR4, as shown in our EPS-treated mice, bolsters 

antimicrobial immunity, indicating that the immunoregulatory effect of TLR4 does not 

impair antimicrobial immunity to S. aureus. Therefore, limiting inflammation during 
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the acute phase of sepsis using a TLR4-based immunotherapeutic agent such as EPS 

may be a novel strategy to preserve host immunity during the late phase of sepsis. The 

effect of EPS treatment on preserving host immunity during the late phase of sepsis will 

need to be examined, but EPS limits activation of T cells by S. aureus SAg which 

normally results in deletion of certain T cells from the repertoire, thereby providing 

some evidence for EPS preserving host immunity. 

EPS and LPS 

 EPS and LPS both activate signaling through TLR4. However, LPS is produced 

as a part of the gram negative cell wall while EPS is produced by the gram positive B. 

subtilis, as a part of its biofilm matrix. Therefore, the structure of EPS, while not known, 

is expected to be quite dissimilar compared to LPS. While the idea of two dissimilar 

molecules acting through the same receptor seems unlikely, TLR4 is known to mediate 

signaling by a vast array of ligands, many of them endogenous ligands such as 

fibrinogen (Smiley et al., 2001), hyaluronan (Jiang et al., 2005), and S100 proteins 

(Vogl et al., 2007). The diversity of ligands for TLR4 is possible because TLR4 often 

works in conjunction with co-receptors, such as CD14 and MD-2 that mediate LPS 

recognition. Therefore, we hypothesize that EPS has a distinct receptor that acts as a co-

receptor on TLR4 to initiate EPS-induced TLR4 signaling, a potential difference from 

LPS which uses LPS-binding protein, CD14, and MD-2 (Ryu et al., 2017). While the 

signal itself induced through TLR4 is very similar between EPS and LPS, there may be 

some differences if a different co-receptor is used because this can affect the 

downstream adaptors that are recruited or the amount of TLR4 that is endocytosed to 

mediate TLR4-TRIF signaling. These differences may lead to EPS being used in 

potentially different therapeutic scenarios than other TLR4-targeting agents. The 
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elucidation of EPS structure, and the identification of the EPS receptor, will help us 

understand the biology of EPS-induced signaling, which may even reveal a novel aspect 

of TLR4 biology. 

Other Cell Types that Could Mediate Protection by EPS in S. aureus 

Infection 

 Given that EPS activates TLR4 signaling on both MΦs and neutrophils, we 

hypothesize that many other cell types contribute to EPS-mediated protection from 

sepsis, given that they express the yet unidentified EPS receptor. The following are a 

short, incomplete list of cell types that could be affected by EPS during S. aureus 

bloodstream infection. 

Basophils: Basophils have been demonstrated to protect mice from sepsis induced by 

cecal ligation and puncture through TNF, and these cells express TLR4 (Piliponsky et al., 

2019). TNF-α is crucial for survival during S. aureus infection (Nakane et al., 1995), and 

we hypothesize that EPS could potentially induce TNF-α production by basophils, 

thereby contributing to protection from sepsis. 

Eosinophils: Eosinophils have recently been implicated in protection from S. aureus 

sepsis, through a mechanism that is poorly understood (Krishack et al., 2019). We have 

some evidence that EPS increases the percentage of eosinophils within tissues (Paynich, 

Fleming-Trujillo, unpublished data), and we suggest that eosinophils could mediate EPS 

protection from sepsis. 

Endothelial cells: The major pathologic feature of sepsis, cardiovascular collapse, is 

thought to initiate from endothelial dysfunction. Endothelial cells were demonstrated to 

be activated by LPS through TLR4, but this does not lead to endothelial dysfunction as 

presumed previously (Menghini et al., 2014). Instead, activation of endothelial cells 
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leads to protection from sepsis, presumably from efficient recruitment of neutrophils to 

the site of infection (Andonegui et al., 2009). We think that EPS could also activate 

endothelial cells through TLR4, thereby contributing to protection from sepsis. 

Platelets: Platelets have been demonstrated to mediate host defense against S. aureus. 

One mechanism that bears uncanny similarity to EPS is the ability to enhance 

macrophage uptake and restriction of S. aureus growth, mediated through IL-1β 

production by platelets (Ali et al., 2017). Platelets express TLR4 (Andonegui et al., 2005), 

and stimulation of platelets with LPS leads to the production of IL-1β (Brown et al., 

2013). Therefore, we think that EPS could enhance antimicrobial activities of MΦs 

through TLR4-mediated activation of platelets. In addition, activated platelets have 

been shown to directly kill S. aureus by releasing a yet unidentified antimicrobial 

product (Ali et al., 2017), which could also be a way EPS could promote antimicrobial 

immunity against S. aureus. 

Concluding statement 

 Sepsis is one of the most dramatic manifestations of infection. Patients are 

treated immediately and aggressively, but their conditions can rapidly deteriorate, 

leading to high mortality rates. S. aureus is the leading cause of sepsis, and it is 

incredibly challenging to treat, given its broad antimicrobial resistance profile and an 

uncanny ability to subvert the immune system to persist and even promote its own 

survival. Therefore, novel agents and strategies to combat systemic S. aureus infection 

are critically needed. Probiotics represent a vast potential for developing new therapies, 

but the mechanisms by which they benefit hosts are not known. 

 In this study, we demonstrated that EPS derived from the probiotic, B. subtilis, 

can protect hosts from S. aureus bloodstream infection. EPS does this by priming host 
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immunity through TLR4, which improves antimicrobial functions of MΦs, and limits 

inflammation induced during infection. This EPS-primed immunity prevents S. aureus 

from optimally subverting the host processes for its own pathogenic program, leading to 

reduced disease burden and improved host survival. By priming high-risk patients with 

EPS, we suggest that we can benefit patients undergoing invasive procedures by limiting 

severity during subsequent infection that occurs in high frequency. Still, EPS has the 

potential to affect many other aspects of host physiology beyond the few cell types we 

presented here, so there could be other scenarios in which EPS could be beneficial. By 

increasing our understanding of the structure, host receptor, and the molecular 

pathways of EPS, we will be able to bring EPS, and more broadly TLR4-targeting 

therapy, to the healthcare industry. In addition, we will be able to open the door to 

microbial therapy, a novel sector of therapeutics with a vast potential to benefit 

humanity.
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