
Reginald Wade Williams
Loyola University Chicago

Follow this and additional works at: https://ecommons.luc.edu/luc_diss

Part of the Education Commons

Recommended Citation

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1994 Reginald Wade Williams
AFRICAN AMERICAN MALES PERCEPTION OF UNSOLICITED HELP: AN ATTRIBUTIONAL ANALYSIS OF COOPERATIVE VS. INDIVIDUALISTIC LEARNING

The investigation was designed to examine the effect of unsolicited help within the context of individualistic and cooperative learning conditions. The following general goals were investigated: To determine if help conditions (help vs. no help) influence perceptions of unsolicited help. To determine if the instructional techniques associated with cooperative learning or direct instruction influence perceptions of unsolicited help. To determine if individual differences (i.e., Task, Ego, Work Avoidance) have an influence on unsolicited help. One-hundred-fifty upper elementary African American males completed the Motivation Orientation Scale (Nicholls, 1988) and viewed two videotaped presentations depicting two instructional approaches (individualistic and cooperative instruction). Participants completed a 7-point bipolar rating scale comparing students under two help conditions. The rating scales contained measures assessing students’ perceptions of actor’s ability, effort, pride, and expectation of future success. The results provide support for unsolicited help as a low ability cue, and for the use of cooperative learning as an attribution change program. Findings also give support for the Motivation Orientation scale as an individual difference measure.
AFRICAN AMERICAN MALES PERCEPTION OF UNSOLICITED HELP: AN ATTRIBUTIONAL ANALYSIS OF COOPERATIVE VS. INDIVIDUALISTIC LEARNING

by
Reginald Wade Williams

A Dissertation Submitted to the Faculty of the Graduate School of Loyola University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
January 1994
Copyright by Reginald Wade Williams, 1993
All rights reserved.
VITA

The author, Reginald Wade Williams, was born March 5, 1949, in Chicago, Illinois.

His elementary and secondary education was obtained in the Chicago Public Schools.

In September, 1966, Mr. Williams entered the Lakeland College in Sheboygan, Wisconsin, receiving the degree of Bachelor of Arts in Sociology in May of 1970.

In September, 1970, Mr. Williams entered the Chicago State University, receiving the Masters of Science in guidance and counseling.

In June, 1988 he successfully completed an internship in school psychology. Mr. Williams is currently serving as a school psychologist in the Chicago Public Schools. Mr. Williams frequently serves as a presentor for teacher inservice training.
ACKNOWLEDGMENTS

The writer wishes to extend his sincere appreciation to David Barnes, Ed Hansbrough and the Chicago Public School students who participated in this study. Without the assistance of numerous helpful persons, the mere hope of completing this document would not have been possible.

It is impossible to adequately convey in writing the sincere appreciation hereby extended to my doctoral committee. I thank Dr. Martha Wynne for serving as chair and for her relentless support and encouragement during all phases of this research. Many thanks are also due to committee members, Dr. Ronald Morgan and Dr. Suzette Speight for their helpful insights and professional assistance throughout this research project.

Special thanks are also due to Dr. Sandra Graham and Dr. George Barker for their helpful comments regarding the preparation of videotapes used in the study.

My sincere appreciation and love is extended to my wife, Marcelle for her unconditional love and support and to our children, Reggie Jr., Matthew, and Joy. A special thanks is given to my mother, Willie Ruth Williams and my father, Bernis Williams (Deceased) who provided the foundation that aided in the accomplishment of a life long goal.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITA</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS.</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES.</td>
<td>vii</td>
</tr>
<tr>
<td>CONTENTS OF APPENDICES</td>
<td>viii</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. REVIEW OF THE LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>Attribution Theory and Student Motivation</td>
<td>8</td>
</tr>
<tr>
<td>Attribution Theory of Motivation and Emotion</td>
<td>10</td>
</tr>
<tr>
<td>Causal Antecedents</td>
<td>11</td>
</tr>
<tr>
<td>Causal Dimensions</td>
<td>11</td>
</tr>
<tr>
<td>Causal Consequences</td>
<td>14</td>
</tr>
<tr>
<td>Attribution Analysis of Helping Behavior</td>
<td>17</td>
</tr>
<tr>
<td>Effects of Perceived Causality</td>
<td>17</td>
</tr>
<tr>
<td>Process and Temporal Sequence</td>
<td>20</td>
</tr>
<tr>
<td>Expectancy and Help Giving</td>
<td>24</td>
</tr>
<tr>
<td>Evaluative Cues and Recipient’s Reactions</td>
<td>24</td>
</tr>
<tr>
<td>Attributional Style of African American Children</td>
<td>30</td>
</tr>
<tr>
<td>Individualistic/Cooperative Instruction and Attribution Style.</td>
<td>38</td>
</tr>
<tr>
<td>Cooperative Learning and African American Students.</td>
<td>41</td>
</tr>
<tr>
<td>Motivation Orientation and Individual Differences</td>
<td>43</td>
</tr>
<tr>
<td>Research Related to Motivation Orientation Scales.</td>
<td>46</td>
</tr>
<tr>
<td>Motivation Orientation and Instructional Approach.</td>
<td>47</td>
</tr>
<tr>
<td>Summary</td>
<td>48</td>
</tr>
</tbody>
</table>

iv
LIST OF TABLES

Table	Page
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Interaction of Ability Ratings for Help and Instructional Conditions.</td>
<td>65</td>
</tr>
<tr>
<td>2.</td>
<td>Interaction of Expectation of Future Success Ratings for Help and Instructional Conditions.</td>
<td>66</td>
</tr>
</tbody>
</table>
CONTENTS OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Motivation Orientation Scale</td>
<td>86</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Traditional Instruction Rating Scale</td>
<td>89</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Cooperative Instruction Rating Scale</td>
<td>92</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Results of Pilot Study</td>
<td>94</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

Recently developed educational programs designed to assist academically at risk African American males (AAM) have employed, by in large, direct instruction models in which teachers or teacher/mentors give tutorial assistance to students perceived to be in need of academic assistance (Holland, 1989). Guided by the view that special, individualized instructional assistance from similar others serves to positively orient students toward academic achievement as well as assist in remediating academic deficits, program developers have sought to enlist teacher/mentors to provide much needed assistance.

Understanding motivational factors important to the development of the African American male is particularly crucial given research (Kunjufu, 1984; Majors, 1990; Patton, 1981) suggesting schools often fail to promote positive development for many of these youngsters. AAM are disproportionately represented in data reflecting school drop-out rates, grade retention, suspensions, and expulsions (Gibbs, 1988; Parham & McDavis, 1987). Cottle (1975) noted almost 20 years ago that black males are suspended three times as often as their white counterparts and for longer
periods. Data collected from more recent research suggest that this trend continues (Garabaldi, 1989). These data, along with statistics (Gibbs, 1989) suggesting that AAM students are overrepresented in special education classrooms, signal the need to understand factors operative within the schools that can serve to undermine academic achievement and motivation for these students.

Sandra Graham, an attribution theorist primarily interested in motivational factors affecting African Americans, has conducted a series of studies (1984; 1986; 1988; 1990) along with colleagues (Barker & Graham, 1987; Graham & Brown, 1988; Graham & Hudley, 1991; Graham & Long, 1986; Graham & Weiner, 1986) investigating students' perceptions of success and failure in achievement context. In a recent study conducted by Graham and Barker (1990), the effect of unsolicited help on students' perceptions of their abilities was explored. According to Graham and Barker, simple reinforcement principles underscore the desirable consequences of help; being the recipient of help usually results in some tangible gain for the recipient. However, in the study cited by Graham and Barker, unsolicited help functioned as a low-ability cue, that is students who were given help with class assignments were perceived to have less ability than their non-helped counterparts. The negative consequences of self-ascriptions of low ability are well documented in the attribution literature (Weiner, 1985;
1986). Perceiving one’s self as having low ability in a given subject area often results in low self-esteem as well as doubts about one’s ability to succeed on future tasks. The fact that low ability is seen as uncontrollable leaves individuals with the belief that they lack the means necessary to circumvent the course of failure (Graham, 1990). Moreover, self-perception of low ability is identified as a major factor dictating the amount of effort expended on academic tasks (Nicholls, 1985).

An understanding of the negative consequences of low ability self-ascriptions involves consideration of antecedent causes. What factors cause students to attribute their performance on academic tasks to low ability, lack of effort, or the difficulty of the task? Attribution theorists cite a number of causal antecedent factors such as one’s own performance history, the performance of others, as well as motivation orientation directed at academic tasks (Kelley & Michela, 1980; Nicholls, 1988).

Many of the attributional cues in achievement context are communicated by well-intentioned teachers and mentors seeking to positively affect students’ self-esteem as well as academic achievement. Although motivated by the desire to assist students in their academic as well as social-emotional development, it has been documented that some positively motivated behaviors have paradoxical and
unintended effects on students' perceptions of their abilities (Barker & Graham, 1987; Graham, 1988; Meyer et al., 1979; Weiner, Graham, Taylor, & Meyer, 1983). Findings from the cooperative learning literature (Johnson & Johnson, 1985; Slavin & Madden, 1991) suggest what may be a resilient response to the low ability cue function of unsolicited-help. Cooperative learning methods tend to increase students' actual success, and individuals who experience success are much more likely than those who do not to believe that their efforts make a difference (Ames & Felker, 1981). Studies abound citing significantly greater motivational effects when cooperative learning is compared to individualistic instructional approaches (Devries, Edwards, & Wells, 1974; Johnson, Johnson, Johnson, & Anderson, 1976; Hulten & Devries, 1976; Oickle, 1980; Slavin, 1978). Teaching practices stressing collaborative over independent problem solving by students have been found to be positively related to task orientation, interest in school subjects, and student effort. Individualistic instructional approaches, on the other hand, have been found to be positively related to a demonstrating superiority over one's peers and a lack of focus on learning for learning's sake (Nicholls & Thorkildsen, 1987). Cooperative learning group, in which small heterogeneous ability groups work together on learning tasks and activities, have been found to be particularly effective for African American students

The focus of the study to be described in the pages that follow is to investigate, from an attributional perspective, the extent to which unsolicited help serves as a low ability cue under alternate instructional approaches. This study is anchored within the context of past research done in the realm of attributional analysis of helping behavior by Sandra Graham and George Barker (1990). This study was developed within the context of what is known about instructional methods, student motivation, and teacher-student interaction.

The theoretical implications of this study rest on its potential to add to a knowledge base that integrates important elements involved in achievement motivation, social cognition, and instructional psychology. The study has potential for contributing to recently developed programs seeking to positively affect academic performance and self-esteem among African-American male students.

Using 150 upper elementary AAM enrolled in a Chicago Public middle school, the study was designed with the following goals in mind:

1. To determine if help conditions (help vs. no help) influence perceptions of unsolicited help.

2. To determine if the instructional techniques associated with cooperative learning or direct instruction
influence perceptions of unsolicited help.

3. To determine if individual differences in motivation orientation (i.e., Task Ego, Work Avoidance) have an influence on unsolicited help.

Based on the literature and the findings reported above, it is expected that attribution as well as expectation of future success ratings, will be different for two methods of instruction (X1a & X2b). It is further anticipated that individual differences in students' motivation orientation will be predictive of how unsolicited help is perceived.
CHAPTER II
REVIEW OF LITERATURE

A major challenge for practitioners and researchers is to understand the causal antecedents that influence students' perceptions of their abilities and that of others in academic settings. Low ability ascriptions negatively impact students' effort as well as expectation for future success. Current research suggest (Graham & Barker, 1990) that unsolicited help can be a low ability cue despite the well-intentioned efforts of teachers and others who seek to give academic assistance to students. The purpose of this study is to understand the effects of unsolicited help in the context of attribution theory under different instructional conditions.

First, a discussion of achievement motivation from an attribution perspective is presented. Then attribution patterns of African American youngsters is discussed. Next, the cue function of unsolicited help and its relationship to attribution theory is presented. Finally, sections in which situational conditions and recipient's characteristics (i.e., Motivation Orientation, Nicholls, 1988) are presented as important variables moderating reaction to unsolicited help (Fisher, Nadler, & Whitcher-Alagna, 1981). For the
purpose of this study, situational conditions are explored within the context of cooperative and individualistic approaches to instruction. Within the literature on cooperative learning, a section is presented with discussion of social factors affecting the learning style of African American youngsters. An overall attempt is made to explain the relationship among unsolicited help, context characteristics, as well as students' individual differences in motivation from an attributional perspective.

Attribution Theory and Student Motivation

Freudian and Hullian theories are perhaps the most historically influential schools of thought with respect to describing general human motivation. However, these theories with their emphasis on sexual and aggressive instincts as well as reduction of biological needs and survival relevance of behavior do not provide an adequate explanation of classroom motivation. Mechanistic theories have not served to advance understanding of student motivation in achievement context. Behavior, according to an early theorist, (Tolman, 1932), is best explained by an understanding of human cognitions.

Weiner (1984) indicates that understanding of student motivation must include the following: (1) the full range of cognitive processes; (2) the full range of emotion; (3) explanation for rational and nonrational action. Cognitive processes include information about search and retrieval,
attention, memory, categorization, judgment, and decision making. This is consistent with the variety of cognitive processes important to student learning. Conscious experiences of the student within the classroom context are directed by a concern with the self and the maintenance of esteem. Within the classroom, successes and failures cause one to examine performance and to engage in social comparisons that either enhance or adversely affect personal esteem and future performance.

According to Weiner, early theorists pay too little attention to the role of emotions in motivation. The only theorist who considers emotions other than those resulting from pleasure and pain is Atkinson (1964) in his theory of achievement motivation. Atkinson's theories, however, are limited to the affective anticipations of pride and shame. Attribution theorists view Atkinson's theory as too narrow in scope and suggest that emotional experiences in educational context must include emotions such as pride and guilt, happiness and unhappiness, joy and frustration, and pity and anger.

Weiner views classroom behavior as the result of both rational and irrational actions. Students employ adaptive, creative strategies and demonstrate insight and goal direction. Conversely, strategies are employed that are irrational, demonstrate little insight, and fail to lead to desired goals. Theories of motivation must be able to
include both rational and irrational explanations for student motivation.

Attribution Theory of Motivation and Emotion

A major principle guiding the thinking of attribution theorists is that individuals search for understanding of why an event has occurred (Heider, 1958; Kelley, 1967; Weiner, 1980). Causal attribution answers questions such as, "Why did he/she help me?" Attribution questions of this nature are most evident when an unexpected outcome has occurred. Causal search is instigated when an unexpected outcome has occurred primarily to reduce the element of surprise (Pettit, 1981) and to aid in subsequent goal attainment. For example, knowledge of why one failed might increase future success.

Causal search is not limited to one specific domain. Individuals seek to understand successes and failures in diverse domains such as athletic competition, affiliative relationships, as well as in the outcome of political elections. In academic achievement situations, however, causal search primarily concerns attribution ascriptions involving ability, effort, task difficulty, and luck.

A key step in the attribution theory of motivation and emotion has been the construction of a taxonomy of causes or classification scheme that explains the important dimensions of causal search.
Causal Antecedents

Individuals seek to find answers to the questions such as "Why did I get a poor mark on the test?" "Why doesn’t she like me?" "Why did the teacher help me?" The study of attributional processes (Kelley & Michela, 1980) has as a primary focus informational cues, psychological structures, and hedonic biases related to causal inference. Causal ascriptions for current success or failure are often determined by past performance at specific and similar tasks (Kelley, 1967; Weiner, 1980). A history of success is often attributed to an internal and stable factor such as high ability. Other informational cues include consensus information such as what students do when they compare grades (Kasmin, 1979), persistence of behavior, and covariation of the performance with incentives (Weiner, 1980).

Causal Dimensions

A dialectic approach differentiating causes located within the person such as intelligence and personality, and causes considered outside of the person (environmental factors) such as task difficulty is the method used for understanding causality in the attributional framework. Much of the understanding in this area is derived from the construct of locus of control associated with Rotter’s (1966) internal-external distinctions. In the achievement domain, such causes as aptitude, effort, and health are
considered internal to the person, whereas task difficulty, help from others, and luck are considered among the environmental determinants (Weiner, 1984).

Early theorists (Brehm, 1966; deCharms, 1975; Rotter, 1966) recognized only the internal-external distinctions as causal factors in explaining behavior. However, later research by attribution theorists (Barnes, Ickes, & Kidd, 1979; Weiner, Nirenberg, & Goldstein, 1976) discovered that internal and external causes in the earlier studies were confounded. For example, ability and effort are perceived as both internal with respect to locus of causality. A view of failure due to lack of ability, however, results in lower expectancies of future success than failure due to lack of effort (Weiner, Nierenberg, & Goldstein, 1976). In achievement related contexts, failure perceived as due to lack of ability compared to failure due to lack of effort tends to have different psychological consequences for students. Due to the shortcoming of the internal-external distinction in explaining causality within a given causal structure, a causal stability dimension was postulated (Heider, 1958; Weiner, 1979; 1980). Causal stability differentiates causes on the basis of temporal consistency or constancy. For example, ability is considered to be more constant and less subject to change than effort. In an achievement context, ascriptions of success or failure to ability are viewed as less likely to undergo change than
effort ascriptions as it relates to future goal attainment.

Researchers (Litman-Adizes, 1978; Rosenbaum, 1972; Weiner, 1979) discovered that the dimensions of locus of causality and stability did not fully explain causal thinking. Causes identically classified on locus and stability dimensions were found to have dissimilar reactions in some cases. For example, according to Weiner (1984), failure attributed to lack of effort results in greater punishment than failure due to ill health, although both can be conceived as internal and unstable causes. Limitations suggested by examples of this sort suggested a third causal property, labeled controllability. The concept of control suggest that the actor could have done otherwise (Hamilton, 1980). Effort, for example, is thought to be under volitional control. Individuals are held responsible for how hard they try. On the other hand, ability is considered to be an inherited characteristic not under volitional control.

Thus, the classification scheme that explains causal search from an attributional perspective, according to Weiner (1985), includes the following: (1) locus, or whether the cause is perceived as internal or external; (2) stability, which entails the perception of a cause as temporary or enduring; (3) controllability, or whether the cause is perceived as subject to volitional control. An example of how this causal scheme unfolds can be seen in the
way that students perceive their efforts in relation to success and failure in the classroom. Effort, for example, is often conceptualized as internal, unstable, and controllable.

Causal Consequences

The major issue of concern of attributional psychologist is the consequences of causal ascriptions. Goal expectancies and emotional reactions are the primary focus in this area. Ascriptions of an outcome to stable or unstable factors in large part determine expectancies of future success or failure given the same circumstances. For example, if success or failure has been attained and if the conditions or causes of that outcome are perceived as remaining unchanged, then future success or failure will be anticipated with a reasonable degree of certainty. But if the conditions or the causes are subject to change then there is reasonable doubt of the future outcome. There is a large body of research covering different domains supporting the linkage between causal consequences and stability attributions. Outcomes attributed to stable factors are expected to recur. The attributional formulation points out that academic failure because of perceived lack of ability, occupational failure because of poor personality, social rejection because of unattractiveness, and scientific rejection because of unsound research, are all similar due to stable ascriptions by experimental subjects. Conversely,
academic failure because of perceived bad luck or lack of effort, job failure because of a difficult but changing sales territory, social rejection because of temporary illness, and scientific rejection because of choice of reviewers, share the possibilities that the future may be different because the outcome is attributed to unstable causes (Crittenden & Wiley, 1980; Folkes, 1982; Orpen, 1980; Weiner, et al., 1976). Weiner (1984) views the linkage between causal stability and expectancy change as a fundamental "law" of psychology.

Attributional thinking has contributed much to expectancy of success and achievement change programs. An attributional approach to achievement change begins with the assumption that the perception of why an event has occurred is an important determinant of subsequent action. If this assumption is correct, it follows that modifications of causal perceptions should produce changes in action. Much of the research in this area has focused on changing the perceived causes of failure in achievement settings (Dweck, 1978). These change programs presume attribution of failure to lack of ability is particularly debilitating because ability is viewed by many as a stable, uncontrollable factor. On the other hand, failure due to lack of effort or to poor strategy is adaptive in that these factors are unstable and subject to control (Anderson & Jennings, 1980). Locus of causality attributions (internal-external) have
psychological consequences that take the form of esteem-related affect. Cognitions are considered by Weiner (1980; 1982) as determinants of feeling states. In achievement-related context, there are multiple sources of feeling states following success and failure. In studies conducted by Weiner et al. (1978; 1979), participants were asked to imagine that a student succeeded or failed at an exam for a particular reason such as hard work or bad luck. The subjects then reported the intensity of their affective reactions. Studies revealed that determinants of affect are related to the outcome of action and particular attributions. Some of the linkages discovered by the previously cited research with respect to success are ability-competence, long term effort-relaxation, help from others-gratitude, and luck-surprise. Failure attributions and their affect linkages are low ability-humiliation, lack of effort-guilt, hindrances from others-anger, and luck-surprise. Researchers (Weiner et al., 1978; 1979) discovered that causal attributions yield opposing reactions to success and failure; on occasions the reactions to success are unrelated given the same causal factor; and in still others, the ascription-mediated reactions to success and failure are identical, i.e., when there is a luck attribution. Weiner warns that given a causal ascription, the linked emotion does not necessarily follow. For example, one may ascribe success to help from others, yet
not experience gratitude.

An attribution theory of motivation takes the following form:

Causal antecedents -- Perceived causes -- Causal dimensions -- Psychological Consequences -- Behavioral consequences

Weiner maintains that this conceptual analysis is not limited to any specific content domain. Thus, what is provided is considered a general theory of motivation.

Attributional Analysis of Helping Behavior

The attributional analysis of helping behavior provides the basis for understanding the role of unsolicited help as a low ability cue (Schmidt & Weiner, 1988; Weiner, 1986). Whether help is provided or withheld, according to this view, is due in part to the donor's perceptions of recipient's need. Uncontrollable factors such as low ability ascriptions tend to elicit favorable responses in the form of assistance. On the other hand, need states perceived as controllable, such as effort, often leads to neglect on the part of would be donors (Weiner, 1986).

Effects of Perceived Causality on Helping

Attributional thinking did not guide early research on the decision to help or not help. In a frequently cited study by Pillavin et al. (1969), observations of the behavior of passengers in response to a drunk person that falls down and a blind person that falls, revealed that the
blind person was more likely to be helped than the drunk person. Pillavin believed that the donors reacted in this manner due to what they saw as potential cost to themselves, i.e., the drunk person might resist aid or be aggressive. A study published in the same year by Berkowitz (1969) was among the first to cite the effect of causal ascriptions on help giving. Subjects in this study requested aid from another subject. Need states were manipulated to reflect experimenter error (external cause) or the subject "taking it easy" (internal cause). Outcomes of the study revealed that more aid was given when the need for aid was attributed to external (experimental error) rather than internal causes ("taking it easy").

The research of Barnes, Ickes, and Kidd (1979) a decade after the Berkowitz study applied a more complete attributional analysis than the locus only approach. In the Barnes et al. study, college students were called on the telephone by an alleged classmate in order to request class notes. The reason for need for class notes was varied to reflect low ability (uncontrollable) or lack of effort (controllable). It was also reported by the alleged classmate that this was either a stable or unstable condition. Barnes et al. found that more helping requests were granted given a low ability attribution than when an effort ascription was given. Also, help was increased given a stable rather than unstable ascription. In the Barnes
study (1979), unlike the study by Berkowitz (1969), the locus of causality was held constant in that ability and effort are both internal ascriptions. Berkowitz (1969) contended in his study that aid was given due to locus only causes. Locus and control were inseparable in his study and therefore confounded. The differences in aid giving as noted by Barnes et al. may have been due to controllability rather than (or in addition to) the locus of cause.

Weiner (1980) investigated a more complete sampling of causes in that both external and internal causes, controllable and uncontrollable factors, as well as stable and unstable attributions were explored. In this study, Weiner employed the same scenario as was used in the Barnes study involving class notes. Weiner indicated that notes were needed because of low ability (internal, stable, uncontrollable), or because the teacher was unable to give clear lectures (external, stable, uncontrollable). The results revealed that help was reported unlikely only when the cause was internal to the subject and controllable (lack of effort). In all other conditions in which the person was unable to control the reason for need, help was offered. Thus, the importance of the controllability factor was replicated. Stability factors did not influence helping judgments in this study.

Brophy and Rohrkeemper (1981) applied attributional principles to a school related context. A series of
vignettes were presented to elementary school teachers describing classroom problems. Problems described were labeled as "teacher-owned" or "student-owned". The teacher owned problems, such as defiance and hyperactivity, were perceived as controllable by students. Conversely, problems considered as student owned, such as shyness and perfectionism, were perceived by teachers as not controllable by students. As part of the study, teachers generated strategies to address both types of problems. Teacher owned problems generated strategies reflecting punishment and threatening actions. On the other hand, student owned problems (uncontrollable) translated into strategies designed to give nurturance and assistance. In other words, uncontrollable problems yielded strategies from teachers reflecting teaching commitments to help students.

Conclusions drawn from the studies conducted by Pillavin et al. (1969), Barnes et al. (1979), Weiner (1980), and Brophy and Rohrkemper (1981) indicate an association related to the dimension of controllability and a behavioral consequence resulting in help or neglect.

Process and Temporal Sequence

Weiner maintains that a temporal relationship exists between controllability and affective reactions. According to Weiner, the reason we neglect those with controllable needs may be that the perception that individuals are able to respond to their own needs may elicit anger. Conversely,
we may help those with uncontrollable needs because this perception elicits pity (sympathy), which in turn elicits approach behavior and help. The general sequence depicts a linear approach starting with a causal controllability sequence that leads to an emotional response and resulting in response of help or neglect.

Weiner (1980) undertook five investigations to examine the relationship between controllability, affective reasons, and help giving. In order to examine the role of affect in helping behavior, Weiner repeated the experiments conducted by Pillavin (1969) and Barnes et al. (1979) in a simulational context. The scenario presented to subjects, as depicted in the previous studies, presented a drunk person on a subway who collapses and falls (Alternate form: person with a cane who is apparently ill). Subjects then rated the degree to which the cause was perceived as personally controllable, their feelings of sympathy and disgust, and their judged likelihood of helping. Results of the study indicated that in general, the drink was responded to with disgust and neglect, and the ill person with sympathy and help.

Weiner conducted further analysis relating controllability to help giving with affective reactions partialed out, and relating affect to help giving with the effects of perceived controllability partialed out. The logic of the partial correlation approach is to test the
magnitude of controllability and affective reactions as a mediating variable. Results indicate that when controllability was partialled out from the affect-help linkage that the correlation remain substantial. However, when affect was partialled out the association between control and helping was reduced to zero. Thus, the pattern of data suggests a controllability-affective reaction-help (neglect) temporal order in the motivational sequence.

A conceptual replication was undertaken by Weiner (1980) in the same year with a different help-giving scenario. In his second study, an alleged classmate indicated to fellow college classmates that he was in need of class notes that he missed because he went to the beach (Alternate form: difficulty attending class due to eye ailment). As in the previous study, subjects were asked to rate the degree to which causes were perceived as personally controllable, their feelings of sympathy and anger and their likelihood of giving help. Findings from this study yielded the same results as the previous study by Weiner. The controllability, affective, helping linkages were replicated.

Subsequent studies (Betancourt, 1983; Meyer & Mulherin, 1980; Reisenzein, 1986) support the causal relationship between controllability, affect, and help-giving. Perceived controllable causes give rise to neglect, whereas uncontrollable causes of need promote help-giving.
Moreover, controllable causes elicit anger, whereas uncontrollable causes generate sympathy, and affects exert a direct influence on helping. An attributional model of motivation and emotion takes the following form:

Situation -- causal ascription -- causal controllability -- anger or sympathy -- help

In this proposed model, according to Weiner, perceived controllability indirectly influences helping through the mediating affective variables, and a direct path between control and help is included. He further states that the amount of variance in helping behavior that is directly accounted for by thought attributions as opposed to emotions will in part depend on the emotion-arousing properties of the situation. It is hypothesized by Weiner that, as one becomes increasingly involved in a situation, perceptions of controllability will have a lessening direct influence on the decision to help or neglect. On the other hand, Weiner supposes as situations become increasingly remote or trivial to an actor, "cold thoughts" will play a large, direct part in helping, with emotions relegated to a less important role.

In sum, Weiner views affect rather than causal perceptions, as immediate motivators of behavior. Thought gives rise to feelings, and feelings guide behavior. Affects, according to Weiner, are also indirect motivators of behavior because they are salient antecedents of causal
thinking. Weiner (1984) cites the affect of pity, for example, in communicating to the recipient that the cause of his or her problem is stable and uncontrollable. The recipient of this message, therefore, is likely to infer that there is nothing that can be done about his/her current condition. Anger, on the other hand, was found to communicate that causes are under volitional control and that something can be done about current conditions. Thus, affects are important cues that guide the attribution process and therefore have indirect motivational significance (Graham, 1982; Weiner et al., 1982).

Expectancy and Help-Giving

One shortcoming of the theory related to the attributional analysis of help-giving is the role that expectancy plays. Although explored extensively in the literature related to achievement motivation, expectancy has been relatively ignored within the helping domain. Weiner intuitively reasons that if one does not perceive that an instrumental action will have an effect, or a low expectancy that the person will require help in the future, then it is likely that help will be minimized.

Evaluative Cues and Recipients Reactions

In academic settings, there are many sources of attributional information inferred by students. Information conveyed by antecedents can be very straightforward and direct. Kelley and Michela (1980), for example, cite one’s
own performance and the performance of others as likely antecedents of personal competence. In contrast, information conveyed can be very subtle and indirect. The less direct cues are often generated by well-intentioned individuals seeking to promote student motivation and achievement. Many of these cues serve paradoxical effects in that they result in low ability self-ascriptions by students (Graham & Barker, 1990).

A series of studies by Meyer et al. (1979) sought to document the role of affective cues by teachers on students' self-perceptions of ability. In a series of six experiments Meyer et al. investigated the degree to which praise and blame cued students' ability, given success and failure scenarios. Subjects ranged in age from eight to 60.

The basic assumption was that in certain situations the individual who is praised or blamed for his performance (success, failure) will be provided information about how the other person is estimating his ability. In turn, these assumed other perceptions will influence self-perception of ability as well as subsequent behavior. Two major findings resulted from the Meyer et al. studies: (1) praise after success and neutral feedback after failure resulted in a perception that the acting person was of low-ability; (2) neutral feedback after success and criticism after failure led to the perception of high-ability. In sum, findings suggested that the absence of blame like the conveying of
praise functioned as a low ability cue. Meyer et al. (1979) offered a conceptual analysis that draws on attribution principles. First, evaluative feedback such as praise and blame is known to be related to causes of success and failure. Second, ability and effort often are perceived as compensatory causes of achievement.

Almost a decade later Barker and Graham (1987) modified the Meyer et al. study to examine the developmental differences in the use of praise and blame as attributional cues. In their study, unlike the study by Meyer et al., effort attributions as well as ability attributions were employed. Children ages four to 12 were presented with videotape scenarios depicting students who either failed or were successful at an achievement task. Participants then judged the effort and ability attributions of each target student. Findings indicate a developmental pattern in which older children infer lower ability given praise and the absence of blame. Younger children gave higher ability attributions given praise and lower ability given blame. Barker and Graham's findings integrated children's emerging understanding of the relationship between ability and effort with affective cues.

In a subsequent study by Graham and Barker (1990), the cue function of unsolicited help was examined from a developmental perspective. Graham and Barker projected, from an attributional analysis of helping behavior
perspective, that information about others' perceptions of one's ability can be made from whether donor's give or withhold help. They reasoned that the process begins with the donor's perception of the target person's behavior. If, a teacher, for example, perceives a student to lack ability in a given area, help may be offered. The student then uses that behavior to infer the teacher's underlying attribution. Next, the inferred attribution of the teacher influences self-perception of ability. Finally, self-perceptions of low ability have particular psychological consequences related to affect and expectancy.

In the first of a two part study conducted by Graham and Barker (1990), children attending a university affiliated elementary school ranging in ages from five to 12 served as subjects. Subjects rated students on amount of ability and effort after viewing two videotapes. In each of the two videotapes, the subjects saw one student receiving math assistance along with another student who was unassisted. The videotapes differed in that a teacher served as a donor in one of the videotapes and a student-peer in the second videotape. It was predicted, in the first study, that students who received unsolicited help from a teacher or peer would be perceived as lower in ability than their nonhelped peers. Also, developmental differences were expected in understanding of the cue function of unsolicited help.
Results of the study were consistent with predictions for the most part. Subjects judged students receiving unsolicited help to be lower in ability than their nonhelped counterparts despite age of students and whether or not donor was a teacher or peer. The one exception was the donor by age condition in which ability ratings of five and size year olds did not significantly differ between the helped and nonhelped student.

Effort ratings were a function of age group, help conditions, and help giver. Children 11 and 12 inferred greater effort (but less ability) on the part of the helped student, whereas the other three age groups inferred less ability on the part of the same student. In the peer-help scenario, differences in effort ratings between help conditions were not significant for the oldest age group.

A comparison of the relationship between ability-effort attributions were consistent with prior research by Nicholls and Miller (1984), indicating a developmental shift at the middle grades, when children come to perceive higher ability implying less effort when performance is equal. In the Graham and Barker study (1990), the two youngest age groups positively covaried on their ability-effort attributions. Conversely, the oldest age groups inferred that the nonhelped student was higher in ability and required less effort to get the same results. This pattern was apparent only within the teacher donor condition. The negative
ability-effort was not evident in the oldest age group (11 and 12) in the peer help scenario. In sum, findings indicate that unsolicited help can function as a low ability cue even among children as young as five and six years old. Changing the donor condition, however, seemed to lessen the effects on ability perceptions for the youngest groups. Furthermore, the more differentiated conception of ability-effort among older groups in the teacher-help scenario was not evident in the peer scenario. This suggests, according to Graham and Barker, that situations involving peer help are not such salient sources of attributional information as are contexts involving teacher help.

In the second part of the study a different group of subjects (n=90) were selected from the same university-affiliated elementary school. Given the developmental interest of the researchers a younger group of students (ages four to five), was included. In the second study, only the teacher-help videotape was shown. The focus on this second part was on psychological consequences of causal attributions (i.e., expectancy of future success, affects, choice). Researchers set out to explore the linkages between unsolicited help, expectancies, affect attributions and choice of student as a work partner (Would you prefer to work with the helped or the nonhelped student?).

In sum, the two oldest groups of children (7-8 and 11-12) perceived the helped student as less smart, less proud
of success, more grateful, less likely to be successful in the future, and less preferable as a workmate. In addition, the children 7-8 years old perceived the helped student as less happy, more sad, and more worried about the outcome. The youngest group of children (4-5 years old), on the other hand, did not view the helped student as lower in ability than his nonhelped counterpart, and their subsequent judgements (affects, expectancy, choice) were consistent with these perceptions of no difference in helped conditions.

Attribution Style of African American Children

Early attribution studies (Friend & Neale, 1972; Murray & Mednick, 1975) suggested that African Americans tended to rate the external factors of luck or task difficulty as the most important determinants of success and failure. African Americans were viewed in the motivation literature (Battle & Rotter, 1963) as more externally oriented than whites and less sensitive to the value of effort as a cause of achievement (Katz, 1969). More recent research (Willig, Harnisch, Hill, & Maehr, 1983) has noted a shift in the findings by documenting no differences in causal preferences or differences suggesting a more adaptive attributional pattern among African Americans (Graham, 1984).

Sandra Graham is one of the chief researchers with respect to attribution theory and African American children. In a comparative racial study of causal preferences, Graham
(1986) investigated the attributional reasoning of black and white seventh grades designated as middle or low social economic status (SES). Using a free-response format, self-perceptions of success and failure on school exams was ascertained. In sum, the children in this investigation demonstrated few differences in their ascriptions for success and failure across race and class. A pattern of ascribing the importance of effort for success and lack of effort for failure was prevalent across all demographic groups. Similar findings resulted from a comparative racial study (Graham, 1984) investigating the cue function of sympathy and anger on students' perceptions of their abilities. Subjects in this study were exposed to repeated failure trials. A female experimenter, posing as a teacher, conveyed either sympathy or anger to each failing child. Children then reported their self-attribution for failure in response to the question, "Why do you think you did poorly?" Results from the study indicated no race and class interactions. As predicted, the findings revealed that children's attributions for failure to low ability were greatest when sympathy was conveyed. On the other hand, recipients of the anger cue attributed their failure to lack of effort.

A different picture emerged, however, in another comparative racial study (Graham & Long, 1986, Experiment 2). Upper elementary students who differed in SES were
asked to rate their performance as a success or failure after receiving the same feedback on an important math exam. The majority of white students (62%) and most of the middle-class black students (82%) perceived themselves as successful. In contrast, only six percent of the low-SES blacks perceived themselves as successful. Graham attributed the response of the low-SES black students to the motivational reality of economically disadvantaged African American children who in many cases are overrepresented in the ranks of those experiencing school failure. These two studies suggest that although blacks and whites do not differ across race and class with respect to how they view causes of success and failure, low-SES blacks may be cued in unique ways suggested low ability due to their overrepresentation in "school failure categories". Graham reminds those interested in motivational issues related to disadvantaged black children that these youngsters are three times more likely than whites to be in classes for cognitively delayed children but only half as likely to be in programs for the gifted or talented children and that one of every five black students drops out before the end of high school, whereas those who remain are anywhere from two to three years behind grade level in the basic subjects. The intriguing question for blacks, according to Graham, is whether their own history of academic failure makes them more likely to be the targets of low-ability cues. For this
reason, Graham maintains that attribution theorist interested in motivation of black school age youngsters must be particularly attentive to how individuals think, feel, and act in response to nonattainment of goals in achievement situations.

Attribution theorists believe, as noted previously in this review, in a motivational sequence that proceeds from causes and their antecedents to the consequences of particular self-ascriptions (i.e., affect and expectation of future success). Thus far, the comparative racial research with respect to causes and their antecedents has been explored. In this section research related to the consequences of causal attributions within a comparative racial framework is explored.

Causal dimensions include locus (whether a cause is perceived as internal or external), stability (which entails the perception of a cause as enduring over time or fluctuating from moment to moment), and controllability (whether a cause is subject to one's own volitional influence). Each of these dimensions is uniquely related to a particular psychological consequence. The locus of a cause is linked to esteem related affect. For example, more pride is experienced by the individual when success is attributed to an internal cause such as effort rather than to an external cause such as good luck. The stability dimension influences expectancy for success. When failure
occurs, for instance, attributions made to unstable causes such as bad luck doesn't leave the individual with the belief that failure will necessarily occur again. Attributions made to low ability, however, tend to leave the individual with the feeling that future failure is inevitable. If the causes of the events are likely to remain unchanged (stable), then one is more certain that those events will be repeated than if the causes are subject to change. Finally, the controllability dimension influences interpersonal evaluation. Individuals anticipate the most blame, for example, when failure is attributed to personally controllable cause such as lack of effort. Controllability suggests assignment of responsibility for whatever has occurred.

Graham and Long (1986, Experiment 1) examined, in a comparative racial study, conceptions of attributions and their consequences of black and white seventh grade students who differed in social class. Using a role playing methodology, participants were told to imagine a situation in which they failed an important test. Possible causes for failure were given to the students (e.g., lack of effort, bad luck). A corresponding set of causes and scenarios for success were given as well. The subjects rated each of the causes for success and failure on the three dimensions of locus, stability, and controllability. They then indicated their expectancy for success and an estimate of how much the
Almost complete agreement was found across race and SES for the locus dimension. In other words, causes such as high ability, trying hard, and using the right strategy were perceived by all groups as internal, stable, and controllable for success. In contrast, good luck, extra help or an easy test, were viewed as external, unstable, and uncontrollable. In general the dominant attributes for success and failure had the same underlying meaning for black and white students who differed in social class.

A systematic pattern of race and class effects emerged, however, in the psychological consequence (i.e., expectancies, affect) of these dimensions. For this analysis, Graham and Long (1986) combined the three causes rated as the most stable by each demographic group and the three causes rated as most unstable by each group. The data for success revealed that expectancy varied as predicted as stable. The two black groups, however, did not revise their expectancies downward as much when the causes of success were unstable. This finding is taken to mean that even when, for example, black children saw their success was due to an external-unstable cause (e.g., good luck) they were more confident than their white counterparts that they would succeed again. Results from the data of subjects' expectations for future failure indicated that low SES blacks did not adjust their ratings downward as much as the
other three groups when causes were indicated to be unstable. Low SES blacks were generally more optimistic after failure than the other three groups, and this optimism prevailed regardless of the stability of the perceived causes of failure.

Graham acknowledges that what she would term optimism on the part of black youngsters, with respect to expectation of future success, other researchers (Entwisle & Hayduk, 1978; Spenner & Featherman, 1978) view as unrealistic expectations. In Graham's opinion, realistic academic expectations have certain cognitive antecedents, one of which is the perceived stability of causes of achievement. As previously noted, black and white youngsters demonstrated almost complete agreement across race and SES in their view of dimensional placement of causes. For example, high ability, trying hard, and using the right strategy all were perceived as internal, stable, and controllable causes for success. Conversely, good luck, extra help, or an easy test were perceived as external, unstable, and uncontrollable. The dominant attributions for success and failure had the same underlying meaning for success and failure for black and white youngsters who differed in social class. If, as some might suggest, black youngsters were operating unrealistically in their expectation of future success it would appear that cognitive biases such as luck instead of effort as a causal factor of success would have been
evident. Graham suggests that other motivations may undermine the stability-expectancy linkage for black youngsters (e.g., public self-image).

The controllability-evaluation linkages investigated in the Graham and Long study indicated no differences by demographic groups across ascriptions of controllable and uncontrollable causes. Among all participants, failure due to controllable causes led to greater anticipated blame from one's teacher than did the uncontrollable factors. But unlike the other three groups, in which praise was anticipated following success, low SES blacks expected some degree of positive feedback whether the causes of success were controllable (e.g., high ability) or uncontrollable (e.g., easy test). Findings from other studies (Barker & Graham, 1987; Meyer et al., 1979) suggest that praise can function as an attributional cue. Graham interprets the response of low SES children to mean that praise may be too undifferentiated as to the causes of successful performance to be a source of information on which minority children can draw to infer personal competence.

In summary, comparative racial studies from an attributional perspective suggest no differences in locus of causality across race and class. Differences are suggested, however, in the way blacks and whites view stability and controllability of causes as well as how low SES blacks responded to affective cues. While the four groups were
similar in their beliefs about what leads to success and failure in academic settings, the two black groups demonstrated a more resilient motivational response in their expectancies for future success. Middle and low SES blacks expected themselves to be more successful than their white counterparts on subsequent tests. This pattern prevailed for causes viewed as stable and unstable. Also, with respect to their responses to affective cues, low SES blacks expected some degree of positive feedback from their teacher whether the causes of success were controllable or uncontrollable. The other three groups' anticipation of praise varied with perceived controllability. In other words, middle SES blacks and whites as well as low SES whites anticipated more praise from their teacher when the causes for their success were seen by them as under their volitional control.

Individualistic/Cooperative Instruction and Attribution Style

Comparative studies of instructional approaches (Johnson et al., 1981; Sharan & Shaulov, 1990) cite evidence for the superiority of cooperative methods of instruction over traditional methods in promoting achievement and productivity. A meta-analysis (D. Johnson, Maruyama, Johnson, Nelson, & Skon, 1981) of all the studies between 1924 and 1981 comparing cooperative, competitive, and individualistic (i.e., traditional) efforts in promoting
achievement and productivity yielded 286 findings. The results indicated that cooperative learning experiences tend to promote higher achievement than do competitive and individualistic methods. According to the review by Johnson et al., the average person working within a cooperative situation achieves at about the 80th percentile of the students working within a competitive and individualistic situation. These results held for all age levels, for all subject areas, and for tasks involving concept attainment, verbal problem solving, categorizing, spatial-problem, retention and memory, motor performance, and guessing-predicting.

Cooperative instructional methods have been found to promote better race relations among students (Slavin & Oickle, 1981), improved academic achievement among at risk students (Slavin & Madden, 1991), greater certainty and enjoyment of academic outcomes (Garibaldi, 1981) as well as greater motivation to learn (Sharan & Shaulov, 1990). Cooperative methods are said to be most effective when students clearly perceive positive interdependence, the task is structured so that the efforts of all members are needed for group success, face to face interaction in small groups is present, and students have the necessary collaborative skills.

Results of research on instructional approach (Ames & Felker, 1979) indicate that children working together on
classroom assignments perceive themselves as similar in ability despite individual differences. The presence of a team relationship in cooperative structures may contribute to a perception of similarity, thus creating a norm of equality (Lerner, 1974). Conversely, in individualistic instructional settings students tend to compare their work with that of others or an external standard. Ames and Felker (1979) maintain that these comparisons accentuate the salience of differences in ability and promote competition.

Current research suggests that there is a relationship between instructional approach and student's achievement related attributions (Johnson & Johnson, 1985). In achievement situations, when students receive feedback about their degree of success and failure, students attribute the results to causal dimensions including locus of causality, controllability, and stability factors (Weiner, Graham, Taylor, & Meyer, 1983).

Within cooperative learning situations students tend to attribute success to personal, recurring, and controllable causes (Johnson & Johnson, 1985). Collaborators view their successful performance as indication that both their work and that of those working with them is due to their high ability and efforts (Garibaldi, 1979). Members of unsuccessful groups tend to attribute failure to task difficulty, bad luck, and lack of effort by group members (Bird & Brame, 1978; Gill, 1980). Insufficient effort is
perceived to be a controllable cause that can be overcome through greater persistence on future tasks (Anderson & Jennings, 1980). There is evidence that cooperators feel less responsible for their outcome when the group fails (Iso-Ahola, 1977).

Conversely, success and failure experiences are viewed differently by students in individualistic settings. Students in individualistic learning situations tend to make similar attributions as those in competitive situations (Ames & Felker, 1979; Nicholls, 1975) in which a social comparison model is employed. Success is often attributed to a sense of superior ability (Ames, 1984) and the failure of others to limited ability (Stephan et al., 1978). Students tend to attribute failure to external factors such as luck (Covington & Beery, 1976). If failure cannot be reasonably attributed to external factors, however, students tend to view their failure as being caused by lack of ability (Ames & Ames, 1981). One’s perception of ability and achievement history orients amount of effort as well as expectations of future outcomes. Failure experiences are often attributed to personal, stable, and uncontrollable causes.

Cooperative Learning and African American Students

Cooperative learning provides a good cognitive fit for African American students due to cultural and historical factors that orient toward a relational-people approach to
information gathering. According to Willis (1989), cooperation is a behavior pattern that can be considered a survival strategy developed in America, where working together and sharing is necessary for blacks in order to succeed in a society with racial discrimination. Or, as noted by Wober (1974), it can be considered a carryover from African culture where communal life is the social norm. The practical and concrete nature of the communal and cooperative aspects on intelligence and learning processes, according to Wober, is captured in a proverb from Uganda which states that, "Intelligence is like fire, when it goes out you can get it from your fellow man."

Shade and Edwards (1987) contend that African American children, because of the urban environment and social milieu in which they live and because of the various mediating experiences to which they are exposed, develop a preference for the social, people-oriented aspects of the environment rather than inanimate aspects of their environment which influence their school behavior. This view is supported by comparative racial studies examining social versus inanimate object preference (Litt, 1981), extroversion versus introversion orientation (Shade, 1983), exposure to visual symbols in the home (Edwards, 1986), and family interaction patterns (Clark, 1983).

African American youngsters participate in a coherent culture that shapes their cognitive development and affects
the way in which they approach academic tasks and the way they behave in traditional academic settings. The cultural socialization experiences of African American orient them toward a learning process that makes use of the social environment. Cooperation is an important dimension in African American youngster's learning style. Results from research (Garibaldi, 1979; Slavin & Oickle, 1981) on cooperative learning with African American youngsters indicate the effectiveness of this approach in promoting enjoyment of subject matter as well as overall improvement in academic achievements.

Motivation Orientation and Individual Differences

The motivation orientation scales was developed by Nicholls (1988) to assess the degree of task orientation, ego orientation, and degree of work avoidance individuals employ in achievement related contexts. Nicholls et al. (1989) maintain that the more committed students are to perform better than their counterparts the more they should see superior ability and attempts to beat others as causes of success in school. Conversely, the more task-oriented an individual, the more she or he should think that success in school depends on effort, interest, and attempts to understand subject matter. In an analysis of factors associated with causes of school success, Nicholls (1985) found that interest, effort, attempts to understand (instead of memorize) and cooperation with classmates loaded heavily
on what was later to be termed "task orientation." Factors such as luck, knowing how to impress teachers and having teachers think they will do well, special ability, test taking skill, and attempting to beat others loaded heavily on an extrinsic dimension which was later to be called the ego orientation. A third factor analyzed dimension focused on "work avoidance" motivational tendencies in which the goal was to beat the system, to have easy assignments, no homework, and to "put one over" on the teachers. These factorial patterns were present in samples including ninth and twelfth graders (Nicholls, et al., 1988), as well as second, fifth, and junior high students (Nicholls & Thorkildsen, 1987).

Individuals bring to the learning environment views about what leads to successful school experiences for themselves and their classmates. A chief concern in academic achievement settings is the ability and effort required to achieve desired results. For some, one’s standing in relation to peers becomes a preoccupation. For others, the task itself is of primary concern and serves the function of orienting efforts and focus. Ego involved individuals tend to employ a social comparison model in which performance is viewed positively only if it indicates that one’s ability is superior to that of others. Such situations tend to undermine intrinsic motivation in learning (Butler, 1987; Deci & Ryan, 1985). Evidence also
exists of negative effects on performance in the face of failure (Nicholls, 1984). On the other hand, individuals whose focus is on understanding materials and on the task itself have been found to be more satisfied with learning and tend to respond in a resilient manner in the face of failure (Maehr & Braskamp, 1986). In this case, the goal is to understand something previously not understood, accomplish something of value and to feel competent.

Support for the Motivation Orientation Scale (Nicholls, 1988) as an individual difference measure was obtained through correlation procedures involving public self-awareness measures (Carver & Scheier, 1981; Nicholls, 1984). Nicholls assumed that ego oriented scales more than task oriented should be associated with indices of public awareness in academic settings. Correlations of .45 (N = 72, p < .001) were found between public self-consciousness of math ability and the ego orientation scale with undergraduate psychology students (Nicholls, 1984). Correlations of public self-consciousness in math ability were not significant in relationship to the task orientation scale. In another study by Nicholls, the same undergraduate group was used to examine the convergent and discriminant validity of the Task and Ego Orientation scales. In this second study correlations between the Task and Ego Orientation scales were examined with an academic ego-oriented scale devised by Miller and Klein (1987). The
latter scale focused on students' concerns about scoring well on tests, avoiding low scores, and being academically able relative to others. This scale correlated .53 (p < .001) with Ego Orientation, .46 (p < .001) with public self-consciousness about ability, and .13 (n.s.) with Task Orientation. The above data indicate the convergent and discriminant validity of the Task and Ego-Orientation scales.

Research Related to the Motivation Orientation Scales

Several researchers (Butler, 1987; Duda, 1985; Nolen, 1988) have used the Motivation Orientation Scale as a predictive measure. Duda (1985) found that task orientation more than ego orientation was associated with practicing in free time. In other words, task orientation more than ego orientation involves a tendency to participate where outside pressure from a coach was not salient. Butler (1987), in a study involving junior high students, found that feedback conditions predicted task and ego involved attributions. Ego involved attributions were highest after receipt of grades and praise. Task involved attributions were highest after receipt of detailed comments about classwork. Nolen (1988) used the motivation orientation scale to predict use of deep processing strategies when reading science passages. Deep processing strategies include trying to ascertain how new information fits with what is already known and monitoring one's comprehension. Use of this strategy was
predicted by Task Orientation ($r = .32, p < .01$) but not Ego Orientation ($r = .00$).

Motivation Orientation and Instructional Approach

According to Nicholls, the distinction between competitive, cooperative, and individualistic goal structures might suggest that task orientation would be a form of individualism; however, cooperative learning can be compatible with intrinsic motivation or task orientation (Johnson & Johnson, 1985). Beliefs that collaboration with other students will help one succeed goes with beliefs that success depends on interest, attempts to understand, and with task orientation. This finding, which has been replicated with second and fifth graders (Nicholls et al., 1988; Nicholls & Thorkildsen, 1987), indicates that task orientation is compatible with cooperative learning. In the cited studies, Nicholls et al. controlled for class effects as well as motivation orientation. Classes high in task orientation tended to be high in beliefs that collaboration and effort would lead to academic success. Ego-oriented classes, on the other hand, were inclined to see success as resulting from competitiveness with others.

Conclusions from the research suggest that students' motivation orientation is influenced by variations in classroom environments. Ego-involving teaching methods could, for example, communicate and justify the belief that success depends on possession of superior ability and
attempts to beat one's peers. Collaborative instructional approaches, on the other hand, may serve the function of influencing beliefs that working with others as well as putting forth effort leads to academic success. Taken together, studies by Nicholls et al. support the notion that individual differences as well as classroom effects must be considered in understanding student motivation.

Summary

The overall purpose of this review was to bring together the essential literature related to understanding the effects of unsolicited help as a low ability cue. In what has been presented, an attempt has been made to detail the important research related to the analysis of helping behavior, cooperative and individualistic approaches to instruction, and individual differences in motivation orientation within an attribution perspective. Special consideration has been given, where applicable, to the attribution style of African American children.

First, a discussion of concepts underlying attributional thinking as it relates to student motivation and emotion was presented. An attribution theory of motivation stresses the belief that individuals search for answers to questions such as "Why did the person help me?" or "Why did I get a poor mark?". Individuals look for information cues (i.e., causal antecedents) such as their own abilities as well as their own history of failure and
success (i.e., perceived causes) to explain phenomenon. Causal antecedents as well as perceived causes for why things occurred as they did give rise to development of the causal dimensions of locus, stability, and controllability. Attribution theorists posit the causal dimensions of locus (i.e., internal vs. external causes), stability (stable vs. unstable factors), and controllability (controllable vs. uncontrollable ascriptions) as essential properties of causal thinking. Each causal dimension is uniquely related to particular psychological consequences. The locus of cause is linked to esteem related affect. Less shame, for example, is attributed to external rather than internal causes. The stability dimension determines expectancy for success. The same outcome is expected when success and failure are attributed to stable rather than unstable factors. Finally, the controllability of causes influences interpersonal evaluation. Individuals anticipate more punishment from others when failure is attributed to personally controllable causes. Psychological consequences, in turn, influence the behavioral consequences of persistence, choice, and intensity.

Secondly, theoretical perspectives related to the attributional analysis of helping behavior (Schmidt & Weiner, 1988; Weiner, 1986) was presented. In short, according to this theoretical perspective, whether help is offered is in part determined by the perceived cause of
another’s need. Help is more likely to be extended when another’s need is perceived as being caused by uncontrollable factors such as low ability. On the other hand, a state of need perceived as caused by controllable factors such as lack of effort leads to relative neglect. Graham and Barker (1990), building on the research of Weiner et al. (1988), reasoned that if a potential help giver’s attributions determine the likelihood of help, then it might also be the case that the action’s of the helper are used by the recipient to infer underlying attributions. In other words, information about other’s perceptions of one’s ability may be gained from whether assistance is offered or withheld. Graham and Barker’s prediction was supported by a two part developmental study of children’s attributions of helping behavior. In brief, all subjects participating in the first part of the study (ages 5-12) attributed lower ability to children receiving unsolicited math assistance from a teacher. In the second part of the study, all subjects except 4-5 year-olds inferred that the helped student was lower in ability than his non-helped counterpart. In addition, judgments about expectancy of future academic success as well as affect-related ratings were influenced by whether help was given or denied. Thus, the view that self-perceptions are influenced by what other’s think and their subsequent actions was supported.

Thirdly, comparative racial studies highlighting the
attribution style of African American children have been presented. Comparative racial studies, primarily conducted by Sandra Graham and her colleagues, revealed for the most part, few differences in blacks and whites attributions for success and failure. That is to say that blacks and whites, when asked to identify causes of success and failure in achievement context, cited effort as the most important variable. Investigations revealed, however, a tendency for low-SES blacks to view themselves as failures when compared to other participants in the study (mid-low SES whites and mid-SES blacks) when given the same feedback following a test. Graham attributes this response to the low ability cues received by low SES blacks who are often overrepresented in "failure categories." Another difference noted involved expectancy of future success. Middle and low SES blacks demonstrated greater expectancy for future success when compared to their white counterparts. Expectancy of future success is considered to be directly related to perceptions of stability of outcomes. Still another difference involved low SES blacks' response to affective cues (i.e., praise and blame). Low SES blacks expected some degree of positive feedback whether the causes of success were controllable factors such as high ability or uncontrollable factors such as extra help from the teacher.

Fourthly, a summary of findings comparing students' beliefs within diverse instructional contexts has been
presented. Success and failure attributions, according to studies previously cited, were shown to be related in part to instructional context. Academic success in cooperative settings tends to be attributed to personal, recurring, and controllable causes (Johnson & Johnson, 1985). On the other hand, failure in cooperative context is a shared experience attributed to task difficulty, bad luck, and effort (Bird & Brame, 1978; Gill, 1980). For cooperators, failure is considered to be related to insufficient effort. Effort is perceived to be a controllable cause that can be overcome through persistence on future tasks (Iso-Ahola, 1977). Conversely, students within individualistic settings tend to use a social comparison model in which success is attributed to superior ability (Ames, 1984) and the failure of others to limited ability (Stephan et al., 1978). Failure experiences are often attributed to personal, stable, and uncontrollable causes (Ames & Ames, 1981). This seems to be particularly apparent when failure cannot be attributed to external causes such as difficulty of the task. Attributions of failure due to internal, recurring, and uncontrollable causes has potential for self-perceptions of low-ability as well as doubts about ability to succeed on future tasks (Dweck & Elliott, 1983).

Finally, individual difference measures as described by the Motivation Orientation Scale (Nicholls et al., 1989) were presented. The three dimensions of ego-orientation,
task-orientation, and work avoidance are, according to research by Nicholls, positively related to students' beliefs about what leads to academic success. As previously noted, ego-oriented individuals tend to attribute academic success to out-performing others, superior ability, and impressing the teacher. On the other hand, the more task-oriented an individual, the more she or he tends to attribute academic success to effort, interest, and attempts to understand subject matter. The third dimension involves a measure of avoidant motivational tendencies, Work Avoidance, wherein individuals seek to avoid work, to have easy assignments, no homework, beat the system, and "put one over" teachers.
CHAPTER III

METHOD

Hypotheses

The following null hypotheses were tested:

1. There will be no significant differences in attribution, affect, and expectation of future success ratings across help conditions (X2a and X2b).

2. There will no significant differences in attribution, affect, and expectation of future success ratings across instructional conditions (X1a and X1b).

3. There will be no significant differences in attribution, affect, and expectation of future success ratings across motivation orientation (X3c, X3b, X3c).

4. There will be no significant interactions between instructional approaches and help conditions with respect to attribution, affect, and expectations of future success ratings.

Subjects

Subjects consisted of 150 male African-American Chicago public elementary school students enrolled in the eighth grade. The subjects ranged in age from 13 to 14 (mean age = 13.5). Participation in the study was based on consent provided by a parent or legal guardian. The schools’
student body is made up of African-American students of low
socioeconomic status.

Procedure

The procedural part of the study consisted of two
phases: (X1 & X2):

Phase 1: Pre-testing

Prior to intervention, the investigator administered
the Motivation Orientation Questionnaire (Nicholls, 1985) to
participating students (see Appendix A). The Motivation
Orientation Questionnaire has been found to be logically
related to students’ views about how to achieve success in
school as well as to their views of the purposes of
schooling. Twenty-two items reflect three different
motivational orientations: Task orientation, Ego
orientation, and Work avoidance. The respective Cronbach
alphas for these three scales were found to be .79, .76 and
.80 in a previous study of upper elementary students (Nolen,
1986).

The general question put to all the respondents for all
the items on the questionnaire is: "What makes you feel
really pleased about math?." The response scale corresponds
to a five point Likert scale. An introductory discussion is
included in the administration of the scale where the point
is made that different people are pleased by different
things and that the overall purpose of the questionnaire is
to find out a person’s preferences in math related areas.
Examples of different preferences in foods, games, and other events were discussed, with examples being elicited from students to make sure that they understood that the task resembles voting or answering an opinion poll.

Phase 2: Intervention

Two videotapes, modeled from those used in a previous study conducted by Graham and Barker (1990), were constructed. Unlike the study by Graham and Barker that depicted students being given unsolicited help in a traditional teaching setting only, one of the videotapes in the present study depicted students interacting in a cooperative learning setting. The arrangement of students' seating as well as the type of interactions among classmates was adapted from a videotape on Team Accelerated Instruction (Slavin, 1989). An attempt was made to control for race and gender by using an African-American male help-giver in both videotapes.

Each videotape was approximately three minutes long. Fifteen students were depicted solving a set of ten math problems. In one videotape, the teacher instructed students to complete a worksheet consisting of ten problems. As the students worked, the teacher circulated around their desks as much as he might do in a regular classroom, stopping unobtrusively to glance at the student papers. With one of the problem solvers, (the nonhelped student), the teacher casually looked over his shoulder and then moved on without
comment. With the other problem solver, (the helped student), the teacher stopped, causally looked over his shoulder and without apparent knowledge of the student’s immediate performance, leaned down to offer help. The teacher offered unsolicited help by saying, "Let me give you a hint. Don’t forget to bring this number down."

The help manipulation videotape therefore coincides with the early stages of problem solving in which the outcome is unknown and it is unclear whether the student could have solved the problems successfully on his own. A short time later the teacher collected the papers and appeared to score each boy’s worksheet. Both students were informed that they had done well, having solved eight of ten problems correctly. Thus, it was emphasized that the helped and the nonhelped student attained the same score.

The second videotape differed from the first tape only in that students were depicted in groups of three. They were given the same task of solving ten problems. Their instructions, however, included directions commonly used in Team Accelerated Instruction (TAI) focusing on working together as a group (Slavin, 1989). One student received unsolicited assistance just as in the previous videotape. All individual procedures used in the first videotape were applied to reflect working with groups in the second videotape. It should be noted that the same teacher/mentor as well as the same students were used in both videotapes.
The adult and student actors followed an established script and rehearsed prior to the taping.

After viewing the two videotapes, the subjects rated the cooperative (helped vs. non-helped) and individual students (helped vs. non-helped) on the dimensions of ability, effort and affect, as well as expectation of future success (see Appendices B & C). The attribution rating scales consisted of seven progressively smaller boxes extending across a response sheet. The scales were anchored at Super Smart and Super Dumb for ability judgments and at Tried Super Hard and Didn't Try at All for effort inferences. Affect ratings were recorded on 7-point scales as well, but were anchored at Felt Super Proud and No Pride at All. The expectation of success scale consisted of numbers from one to ten.

Finally, it should be noted that the study was conducted in a screening room outside of the subjects' regular classrooms. Subjects were tested in groups of ten. The researcher provided examples to make sure students were adequately trained in the use of the rating scales. The order of presentation of the tapes was counterbalanced. Half of the subjects saw the cooperative learning scenario first followed by the traditional scenario. The other half of the subjects viewed the individualistic scenario first followed by the cooperative scenario.
Manipulation Check

Videotape recordings of each teaching condition were rated by upper elementary African American subjects who were unaware of the study's purpose. Ratings consisted of a bipolar scale specific to the dimensions of cooperative and individualistic learning conditions. Participants were instructed to rate helped and nonhelped students within each instructional scenario on a 7-point rating scale. Dependent measures for both learning conditions were designed to assess subjects' perceptions of students' ability, effort, pride, and expectation of future success. The bipolar scale ratings for the two instructional conditions were analyzed utilizing t Test. All t-ratios for the individualistic learning condition were found to be significant (p < .01). Significant t-ratios were not found for cooperative learning conditions. Also, preference for work mate, identification of helped student, attractability of students and teacher (i.e., Were there physical differences in individuals between tape scenarios that would affect subject ratings?), identification of similarities and differences in learning conditions, as well as preference for learning condition were assessed through use of a specially constructed questionnaire (see Appendix D for results).

Design

A two-group counterbalanced analogue design was used. Each subject was exposed to both procedures. Half of the
subjects viewed the cooperative scenario first and then the individual scenario. For the remaining subjects, this order was reversed. The order in which groups were assigned treatments was determined by flipping a coin.

Independent Variables

Procedures

- X1a Videotape of individualistic instructional approach
- X1b Videotape of cooperative instructional approach
- X2a Help Condition - student receives help from teacher
- X2b No-Help Condition - student does not receive help from teacher

Motivation Orientation (Task X3a, Ego X3b, Work X3c)

Phases

- X4a Pretest (Motivation Orientation Scale)
- X4b Intervention (traditional and cooperative videotape scenario) - Counterbalanced

Dependent Variables

<table>
<thead>
<tr>
<th>Attribution ratings</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1 Ability</td>
<td>2</td>
</tr>
<tr>
<td>Y2 Effort</td>
<td></td>
</tr>
<tr>
<td>Y3 Pride</td>
<td></td>
</tr>
<tr>
<td>Y4 Expectation of Future Success</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER IV
RESULTS

As previously noted, this study was designed to integrate knowledge about what is known about instructional methods, student motivation, and teacher-student interactions. In addition to replicating the effects of unsolicited help on students' perceptions of achievement related variables, the main purpose of this study was to determine if students' views of unsolicited help would differ across instructional approaches (i.e., individualistic & cooperative). A secondary purpose of this study was to see if students' motivation orientation would predict responses to unsolicited help across instructional approaches.

A repeated measures design was used across two methods of instruction (i.e., individualistic & cooperative). The dependent variables used in this study were attribution and expectation of future success ratings. Possible scores on attribution measures could range from 7 to 1. The expectation of success score could range from 10 to 1. The means, standard deviation, and sample sizes for the repeated measures design are presented in Table 1.
Table 1

Means, Standard Deviations, and Sample Sizes of Attribution Ratings and Expectancy Scores Across Instructional Methods

<table>
<thead>
<tr>
<th>Group</th>
<th>Individualistic Help</th>
<th>Individualistic No-Help</th>
<th>Cooperative Help</th>
<th>Cooperative No-Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>A</td>
<td>4.41</td>
<td>.753</td>
<td>5.13</td>
<td>.720</td>
</tr>
<tr>
<td>Eff</td>
<td>4.60</td>
<td>1.18</td>
<td>5.31</td>
<td>.928</td>
</tr>
<tr>
<td>P</td>
<td>4.50</td>
<td>1.32</td>
<td>5.11</td>
<td>1.07</td>
</tr>
<tr>
<td>Exp</td>
<td>7.42</td>
<td>1.84</td>
<td>8.77</td>
<td>.984</td>
</tr>
</tbody>
</table>

A = Ability, Eff = Effort, P = Pride, Exp = Expectation of Future Success

The independent variables used in this study were the two methods of instruction (individualistic, cooperative), help conditions (helped, no-help), and the motivation orientation dimensions (Task, Ego, Work Avoidance). Subject's motivation orientation score was used as an individual difference control measure for all participants.

To test the first and second null hypotheses, a 2 (method of instruction) X 2 (help condition) doubly multivariate repeated measures analysis of variance (MANOVA) procedure was performed on the dependent measures (attribution ratings and expectation of success scores). To test the third and fourth null hypotheses, an analysis of covariance (ANCOVA) was run on the attribution ratings and
Results Related to Testing Null Hypothesis One

The first null hypothesis states that there will be no significant differences in attribution and expectation of future success ratings across the help conditions (i.e., helped & no-help). The first null hypothesis was rejected. The analysis indicated a significant main effect for the help condition $F(1, 593) = 34.78, p < .0001$. When comparing students within the respective instructional conditions, subjects judged the student receiving unsolicited help to be lower in ability, effort, pride, and expectation of future success.

Results Related to Testing Null Hypothesis Two

The second null hypothesis states that there will be no significant differences in attribution, affect, and the expectation of future success across instructional approaches (i.e., individualistic & cooperative). A repeated measures MANOVA analysis indicated no significant main effect for approach to instruction $F(1, 593) = 1.31, p < .25$. In other words, subjects' attributions of ability, effort, and pride as well as their ratings of expectation of future success did not significantly differ due to instructional conditions alone. Given these findings null hypothesis two was not rejected.

Results Related to Testing Null Hypothesis Three

The third null hypothesis states that there will be no
significant difference in attribution and expectation of success ratings across the motivation orientation dimensions. The third null hypothesis was rejected. Significant covariate results were found between scores on the Motivation Orientation Scale and ability ratings $F(3,593) = 2.96, p < .05$ and the expectation of future success ratings $F(3,593) = 4.45, p < .01$.

Results Related to Testing Null Hypothesis Four

The fourth null hypothesis states that there will be no significant interactions between help conditions and instructional approaches across attributions and expectation of future success ratings. The fourth null hypothesis was rejected. A significant multivariate effect was found between help condition and instructional approach $F(4,590) = 3.61, p < .01$. Significant univariate effects were found for ability ratings $F(1,593) = 7.38, p < .01$ and expectation of future success $F(1,593) = 9.85, p < .01$.

In other words, subjects viewed the helped students when instructed with individualistic methods as having less ability than their counterparts who received help under cooperative conditions (see Figure 1). Also, helped students when instructed with individualistic methods were viewed as being lower in expectations for future success than students receiving help in the cooperative setting (see Figure 2).
Figure 1: Interaction of ability ratings for help and instructional conditions.
Figure 2: Interaction of expectation of future success ratings for help and instructional conditions.
CHAPTER V
DISCUSSION

The final chapter presents a discussion of the results related to testing each of the four null hypotheses. The chapter is designed to integrate the findings of this study with those reported in Chapter II. Suggestions for future research are also presented.

The present study was designed to test the influence of cooperative learning instructional techniques as well as subject's motivation orientation on perceptions of unsolicited help. The focus of the study was directed at examining whether variations in instructional methods (i.e., cooperative learning) would result in a resilient response to unsolicited help.

Discussion Related to Null Hypothesis One

Examination of findings related to this hypothesis indicated a significant main effect for help condition. Subjects perceived the student who received help to have less ability, put forth less effort, feel less proud, and to have lower expectations of future success when compared to his non-helped counterpart. These results lend support to an earlier study (Graham & Barker, 1990) which indicated that unsolicited help serves as a low ability cue.
As mentioned earlier, the current study is anchored in past research conducted by Graham and Barker related to the realm of the attributional analysis of helping behavior. The methods utilized in this study were deliberately chosen to be similar to those of the previous study. Even so, the current study differed from the study by Graham and Barker in that subjects' perceptions were assessed in both individualistic as well as cooperative learning contexts. Also, in the study reported by Graham and Barker, the subjects were elementary age students (kindergarten through eighth grade) from various racial backgrounds. In the study reported here, the subjects were eighth grade African American males. The significant main effect of help condition supports the notion of the function of unsolicited help as a low ability cue.

Discussion Related to Null Hypothesis Two

Null hypothesis two was not rejected (i.e., the repeated measure analyses showed no significant main effect on attribution measures or expectation of future success ratings). These findings taken in combination may be due in part to subjects' lack of exposure to cooperative learning techniques. Cooperative learning, although supported by research as a productive approach to instruction for African American students, was not employed as a teaching strategy in the schools from which the subjects were drawn. Thus, viewing of the videotape would not stimulate recall, in the
subjects, of motivational elements demonstrated in research (Johnson & Johnson, 1985; Sharan & Shaulov, 1990; Slavin & Madden, 1991) to result from cooperative learning.

Discussion Related to Null Hypothesis Three

Examination of the results of the statistical analyses related to testing this hypothesis indicated that there were significant covariate relationships between measures of motivation orientation and attribution ratings. The Motivation Orientation scores appeared to control for individual differences among the respondents on measures of ability and expectation of future success. Looking at the Motivation Orientation subscales, it can be seen that the main effect and interaction are due to respondents who believe that success in school is due to interest, effort and collaboration with one's peers (Task Orientation). In other words, the view that helped students had less ability and were less likely to succeed on future tasks than their non-helped counterparts could be predicted from subjects who perceived themselves as task oriented (i.e., learning for learning sake). In addition, task orientation was predictive of interaction effects indicating that helped students under cooperative learning conditions were higher in ability and more likely to succeed on future tasks than helped students under individualistic learning conditions. Distinctions made by task oriented subjects, who were high in beliefs that collaboration and effort leads to academic
success and that learning for learning sake is important, may suggest a more analytical view of what it takes to gain ability and succeed on future tasks in academic settings than subjects whose beliefs that doing better than others (ego orientation) and "getting over" by doing as little as possible (work avoidance).

The findings support previous studies by (Nicholls et al., 1988; Nicholls & Thorkildsen, 1987) indicating that the Motivation Orientation Scale is a useful individual difference measure. The Motivation Orientation Scales, according to Nicholls, refer to the definition of success or academic goals of individual students. Yet they also assess classroom effects and provide a reliable description of motivational dimensions of classroom experiences.

Discussion Related to Null Hypothesis Four

Examination of the results of the statistical analyses related to testing this null hypothesis indicated a significant two-way interaction between help and instructional conditions. Respondents viewed the helped student in the cooperative learning setting to be higher in ability than his counterpart who received help in the individualistic learning setting. Conversely, subjects rated the non-helped student in the individualistic learning setting to be higher in ability than his counterpart in the cooperative scenario.

The help by instruction interactions found in this
study suggest that the adverse effects of unsolicited help on students' ability are lessened under cooperative learning conditions. One explanation could be that subjects feel empowered by the collective efforts and abilities of collaborators (Ames & Felker, 1979; Johnson & Johnson, 1985). Another possible explanation could be a perception that cooperative learning enhances abilities of those learners who are in need of assistance and that independent learners (no help; individualistic scenario) may not benefit as much from the procedure. Results indicating that students who did not receive help in the individualistic learning setting were higher in ability than no help students in the cooperative setting support this view in part.

The results for expectation of future success are somewhat clear in that help by instruction interactions did not result in significant differences for the no help student with respect to instructional conditions (ordinal interaction). The helped student, however, under cooperative learning conditions was perceived by subjects to be more stable with respect to performance on future tasks than the helped student under individualistic instructional conditions. In other words, if given ten additional problems the helped student under cooperative learning conditions was expected by subjects to continue previous successes in math. Conversely, the helped student under
individualistic instructional conditions was not perceived as being able to get at least eight of the ten problems correct. This finding is consistent with earlier notions by Johnson and Johnson (1985) indicating that cooperative learning under successful conditions promotes beliefs among collaborators that outcomes are internal, stable, and controllable. Cooperative learning procedures may have an added influence on what Graham and Long (1986) describe as a resilient motivational pattern among African American youngsters with respect to expectancy of future success.

Summary and Suggestions for Further Research

In sum, the results of the study support earlier findings by Graham and Barker (1990) citing unsolicited help as a low ability cue. Further, the results provide additional support for the use of the Motivation Orientation Scale (Nicholls, 1988) as an individual difference measure. The findings of this study support the need for further research into instructional practices that reduce the effects of low ability cues as they relate to student achievement. More specifically, findings, though not consistent throughout the study, encourage further research on the efficacy of cooperative learning as an expectancy change program for African American male students considered to be frequent recipients of low ability information (Cottle, 1975; Garibaldi, 1989; Gibbs, 1988; Graham, 1988; Kunjufu, 1984; Parham & McDavis, 1987; Patton, 1981).
One major shortcoming of the present study was the subjects' lack of exposure to cooperative learning techniques prior to participation in the investigation. In spite of research supporting cooperative learning as an effective strategy for promoting greater motivation and better achievement among African American students, this strategy is not employed by schools from which the subjects were drawn. It would be interesting to systematically replicate this study after exposing subjects to cooperative learning over various time intervals. In a study of this nature, subjects' perceptions of the effectiveness of cooperative methods could be used as an individual difference measure. Subjects could be trichotomized into high, middle, and low groups. This approach would allow investigators to control for individual differences in subjects' attribution and expectancy ratings while gaining insight into the amount of class time period required to effect change in subjects' perceptions. Conducting a study of this nature should include intact groups of youngsters within the regular classroom setting. This approach, if found to be significant, would increase the ecological validity of cooperative learning as an attributional change program.

Another approach for further study in this area would be to assess the effects of varied achievement outcomes on students' attributions. The present study involved
subjects' perceptions of students who were successful in their class work (i.e., each of the participants achieved a score of eight out of ten on math problems). It would be interesting in a replication of the study to see if subjects' attributions would differ under failure as well as success conditions. A study of this nature would involve three-way interactions of help by instruction by achievement outcome.

The results of this study provide support for unsolicited help as a low ability cue, and for the use of cooperative learning as an attribution change program. Findings also give support for the use of the Motivation Orientation Scale as an individual difference measure. Several shortcomings, however, should be addressed in subsequent studies. Future research should include subjects previously exposed to cooperative learning over various time periods. This approach would allow researchers to assess the amount of class time required to effect change in subjects attributions. Also, as a way to improve the ecological validity as an attribution change program, future studies should include intact groups of youngsters in naturalistic classroom settings.
REFERENCES

Wober, M. (1979). Towards an understanding of the Kiganda concept of intelligence. In J.W. Berry, & P.R. Dasen (Eds.), *Culture and cognition: Reading in cross-cultural psychology* (pp. 261-280).
APPENDIX A
WHEN DO YOU FEEL REALLY PLEASED ABOUT MATH?

1. I feel really pleased in math when it is easy to get the answers right.
 YES yes ? no NO

2. I feel really pleased in math when something I learned makes me want to find out more.
 YES yes ? no NO

3. I feel really pleased in math when I find a new way to solve a problem.
 YES yes ? no NO

4. I feel really pleased in math when I solve a problem by working hard.
 YES yes ? no NO

5. I feel really pleased in math when something I figure out really makes sense.
 YES yes ? no NO

6. I feel really pleased in math when something I figure out makes me want to keep doing more problems.
 YES yes ? no NO

7. I feel really pleased in math when the problems make me think hard.
 YES yes ? no NO

8. I feel really pleased in math when what the teacher says makes me think hard.
 YES yes ? no NO

9. I feel really pleased in math when I keep busy.
 YES yes ? no NO

10. I feel really pleased in math when I work hard all the time.
 YES yes ? no NO
11. I feel really pleased in math when I don't have to work hard.

YES yes ? no NO

12. I feel really pleased in math when all the work is easy.

YES yes ? no NO

13. I feel really pleased in math when the teacher doesn't ask hard questions.

YES yes ? no NO

14. I feel really pleased in math when I do more work than the other students.

YES yes ? no NO

15. I feel really pleased in math when I know more than the others.

YES yes ? no NO

16. I feel really pleased in math when I finish before my friends.

YES yes ? no NO

17. I feel really pleased in math when I get more answers right than my friends.

YES yes ? no NO

18. I feel really pleased in math when I am the only one who can answer a question.

YES yes ? no NO

19. I feel really pleased in math when everyone understands the work.

YES yes ? no NO

20. I feel really pleased in math when we help each other figure things out.

YES yes ? no NO
21. I feel really pleased in math when other students understand my ideas.

YES yes ? no NO

NAME ___________________________

DIVISION ________ GRADE ________

AGE ________________

MOTHER'S NAME ___________________________
APPENDIX B
INDIVIDUALISTIC RATING SHEET

Directions: Put an "X" in the box which best describes the students in the videotape you just saw.

<table>
<thead>
<tr>
<th></th>
<th>Super Smart</th>
<th>Real Smart</th>
<th>Super Smart</th>
<th>Real Smart</th>
<th>Super Smart</th>
<th>Real Smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tried Hard</th>
<th>Tried Hard</th>
<th>Tried Hard</th>
<th>Tried Hard</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Felt Proud</th>
<th>Felt Proud</th>
<th>Felt Proud</th>
<th>Felt Proud</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RICK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If given ten more problems, how many would each student get right?

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOHN</td>
<td></td>
</tr>
<tr>
<td>RICK</td>
<td></td>
</tr>
</tbody>
</table>

Subject's Name________________________
APPENDIX C
COOPERATIVE RATING SHEET

Directions: Put an "X" in the box which best describes the students in the videotape you just saw.

<table>
<thead>
<tr>
<th></th>
<th>Super Smart</th>
<th>Real Smart</th>
<th>Smart</th>
<th>Average</th>
<th>Dumb</th>
<th>Real Dumb</th>
<th>Super Dumb</th>
</tr>
</thead>
<tbody>
<tr>
<td>TONY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tried</th>
<th>Tried</th>
<th>Tried</th>
<th>Tried</th>
<th>Hardly Try</th>
<th>Didn't Try at All</th>
</tr>
</thead>
<tbody>
<tr>
<td>TONY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Felt</th>
<th>Felt</th>
<th>Felt</th>
<th>Felt</th>
<th>Some Pride</th>
<th>Almost No Pride</th>
</tr>
</thead>
<tbody>
<tr>
<td>TONY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If given ten more problems, how many would each student get right?

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TONY</td>
<td></td>
</tr>
<tr>
<td>FRED</td>
<td></td>
</tr>
</tbody>
</table>

Subject’s Name ________________________________
APPENDIX D
Results of Pilot Study: Unsolicited-Help as a Low-Ability Cue (First four measures to be used in actual study)

Evaluative Measure	Individualistic		Cooperative	
	H	NH	H	NH
Ability M	4.23	5.20***	4.75	4.75
Ability SD	.68	.71	.65	.89
Effort M	4.40	5.60***	4.86	4.93
Effort SD	1.35	.89	1.04	.94
Pride M	4.23	5.37**	3.93	4.29
Pride SD	1.36	1.50	1.51	1.41
Expectancy of Future Success M	7.10	9.00***	7.96	8.04
Expectancy of Future Success SD	2.07	1.14	1.29	1.45
Likeability M	5.00	4.97	4.87	5.40
Likeability SD	1.41	1.50	1.43	1.43
Attractibility M	4.47	4.37	4.83	5.00
Attractibility SD	1.48	1.65	1.80	1.76

Note. Rating scales range from 1-7; N=30: H=helped condition; NH=nonhelped condition
*p < .05
**p < .01
***p < .001
Miscellaneous Measures

Which student received help? (open response)

<table>
<thead>
<tr>
<th></th>
<th>Individualistic</th>
<th>Cooperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>94%</td>
<td>86%</td>
</tr>
<tr>
<td>Incorrect</td>
<td>6%</td>
<td>14%</td>
</tr>
</tbody>
</table>

Which student would you prefer to work with?

<table>
<thead>
<tr>
<th></th>
<th>Helped</th>
<th>Nonhelped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14%</td>
<td>86%</td>
</tr>
</tbody>
</table>

Which type of instructional context do you prefer?

| | 6% | 94% |

Between Instructional Conditions Measures

<table>
<thead>
<tr>
<th></th>
<th>H (I)</th>
<th>H (C)</th>
<th>NH (I)</th>
<th>NH (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likeability (students)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>5.00</td>
<td>4.87</td>
<td>4.97</td>
<td>5.40</td>
</tr>
<tr>
<td>SD</td>
<td>1.41</td>
<td>1.43</td>
<td>1.50</td>
<td>1.43</td>
</tr>
<tr>
<td>Attractibility (students)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>4.47</td>
<td>4.83</td>
<td>4.37</td>
<td>5.00</td>
</tr>
<tr>
<td>SD</td>
<td>1.48</td>
<td>1.80</td>
<td>1.65</td>
<td>1.99</td>
</tr>
<tr>
<td>Individualistic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>5.03</td>
<td>5.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1.47</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What were the differences in the two tapes?
Most common response was that in one tape students worked alone in the other tape students worked together.

What were the similarities in the two tapes?
Responses:
Same classroom
Same students
Same teacher
Students received the same grades
One student got help in each tape
The dissertation submitted by Reginald Wade Williams has been read and approved by the following committee:

Dr. Martha Ellen Wynne, Director
Associate Professor, Counseling and Educational Psychology, Loyola

Dr. Ronald R. Morgan
Associate Professor, Counseling and Educational Psychology, Loyola

Dr. Suzette L. Speight
Assistant Professor, Counseling and Educational Psychology, Loyola

The final copies have been examined by the director of the dissertation and the signature which appears below verifies the fact that any necessary changes have been incorporated and that the dissertation is now given final approval by the Committee with reference to content and form.

The dissertation is therefore accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

July 22, 1993
Date

Martha Ellen Wynne
Director's Signature