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ABSTRACT 

Single-molecule FRET (smFRET) is a method by which dynamic conformational changes 

in a protein can be monitored microscopically and in real time. smFRET relies on the creation of 

FRET (Förster Resonance Energy Transfer) between small molecule fluorophores conjugated to 

the biomolecules of interest. FRET efficiency allows calculation of interfluorophore distances. 

Changes in FRET efficiency represent changes in protein conformation caused by parts of the 

protein shifting further apart or closer together which can inform further structural and 

molecular studies of the protein of interest. For example, in the Campbell Lab, we study the 

protein TRIM5α, an antiretroviral cellular protein which can cause premature dissociation of 

the HIV capsid core by an unknown mechanism. We can conjugate small fluorophores to 

specific sites chosen on TRIM5α or isolated TRIM5α domains and use smFRET to observe 

conformational changes in TRIM5α that may correlate to disruption of the viral core. 

Fluorophore conjugation can be done several ways, but we will focus on the use of cysteines to 

conjugate maleimide-linked fluorophores to our protein of interest. 

For my thesis, I propose to adapt and optimize a protocol for smFRET usable by the 

Campbell Lab. To do this, I will first purify, label, and characterize peptides derived from 

TRIM5α that retain their secondary structure. I will then optimize methods for smFRET 
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including instrument calibration, setting up the ability to track multiple fluorophores 

simultaneously, and analysis of smFRET data both to correctly align data and to render final 

data analyses. 
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CHAPTER I: INTRODUCTION 

Single-Molecule FRET 

Single-molecule FRET (smFRET) is a relatively new technique first developed in 1996 that 

is becoming more accessible to researchers through developments in technology1. smFRET 

allows the researcher to observe dynamic changes in single molecules over time. The technique 

can be applied to several types of molecules including nucleic acids and proteins. Much work on 

nucleic acids and proteins already completed has contributed to the understanding of 

molecular mechanisms such as the function of DNA polymerase and the unfolding of viral 

envelope proteins2,3. 

smFRET, as the name implies, relies on the principles of FRET (Förster Resonance Energy 

Transfer). FRET occurs when two fluorophores are close together and one fluorophore, the 

donor fluorophore, gets excited. Excited fluorophores emit light at a lower energy wavelength 

than that at which they are excited due to vibrational relaxation. If the two fluorophores are 

close enough together and designed so that the emission wavelength of the donor fluorophore 

overlaps with the excitation wavelength of the second fluorophore, the acceptor, then an 

energy transfer event takes place and the observed light will now be the emission from the 

acceptor fluorophore (Figure 1)4. In the case of the green/red pairing of the fluorophores Alexa 



 

 

2 
488 and Alexa 594, the green 488 fluorophore can excite the red 594 fluorophore, resulting in 

red light emission. This energy transfer phenomena is called FRET4. 

For smFRET, small fluorophores are conjugated to the molecules of interest in a site-

specific manner and the molecules are observed using microscopy5.  

 

Figure 1. FRET. Diagram of an energy transfer event in FRET. When the red fluorophore come in 
close proximity of the excited green fluorophore, energy transfers from the green fluorophore 
to the red fluorophore resulting in dimmer green light observed and a simultaneous increase in 
red light. Figure hand drawn by Margret Bradley. 
 

Molecule Adherence to Slides. 

To do smFRET and get reasonable data, the molecules need to be stationary on the 

slide1. Molecules which are not adhered to the slide may drift in and out of the plane of focus 

via diffusion, which can complicate data analysis and make resolving conformational changes 

difficult. Thus, a complicated and important process of slide adherence has been developed. 

After extensive cleaning to remove residues from old experiments or other contaminants, slides 

- either quartz or glass - are activated using a silane treatment6. The silane treatment allows 



 

 

3 
reagents such as polyethylene glycol (PEG) to stick to the slide surface7. Biotin conjugated to a 

portion of the PEG molecules provides a surface to which many molecules may be adhered 

using biotin/streptavidin binding. In our study, we created a layer of neutravidin over the 

Biotin-PEG and added another layer of biotinylated antibodies which could bind our protein, 

immobilizing it at the slide surface (Figure 2).  

 

Figure 2. Slide Adhesion. Diagram of the slide coatings used to allow for adhesion of the 
protein of interest to the slide. The slide surface is activated with 3-aminopropyltriethoxysilane 
and coated with a mixture of PEG and biotin-conjugated PEG. A layer of streptavadin is applied 
to the biotinylated PEG and, finally, biotinylated penta-His antibodies are added to bind to the 
streptavadin. Our His-tagged protein can then be layered on top to complete protein adherence 
to the slide. Figure hand drawn by Margret Bradley. 

TIRF Microscopy. 

As smFRET is highly sensitive and detects events occurring on the scale of single 

molecules, every attempt to limit background noise must be made. Using TIRF (Total Internal 

Reflection Fluorescence) microscopy limits excitation to only molecules within 100-200nm of 

the slide surface, such as those tethered there during adhesion of molecules to the slide.1 In a 
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solution where particles are not tethered to the surface, fluorescent particles can be seen 

diffusing in and out of the narrow plane of excitation. 

TIRF microscopy is achieved by shining a laser at the sample at a critical angle, wherein 

the refractive angle of light causes the laser light to be reflected at the sample surface instead 

of passing through the sample. This allows only a very narrow layer of the sample to be excited 

by evanescent waves from  the laser light and almost completely cuts out background noise 

from the rest of the sample being studied8,9. These properties make TIRF microscopy ideal for 

smFRET. TIRF microscopy can be set up in two orientations via shining the laser through a prism 

above the sample (prism TIRF)10, or shining the laser through the objective lens below the 

sample (objective TIRF)8. Objective TIRF, the method used in our lab, is shown in Figure 3.  

 

Figure 3. Total Internal Reflection Fluorescence (TIRF). The light path in objective TIRF 
microscopy. Note the orientation of the microchamber with the coverslip facing downwards. 
Figure hand drawn by Margret Bradley 
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smFRET Data Analysis. 

Raw smFRET data must go through several layers of analysis before it can be 

interpreted. The percentage of energy from the donor fluorophore transferred to the acceptor 

fluorophore is represented as the FRET efficiency. FRET efficiency is calculated using the 

following equation: 

 

where E is the FRET efficiency, ID is the donor intensity, IA is the acceptor intensity, and γ is a 

correction factor to account for differences in detection of donor and acceptor intensity. In true 

FRET, the FRET efficiency should be between 0 and 11. Fluorophore pairs typically have an R0 

value associated with them where R0 is the distance between the fluorophores when half the 

energy of the donor is transferred to the acceptor or E=0.511. R0 is calculated from the 

properties of the fluorophores including spectral overlap, quantum yield, and orientational 

factor. For example, for the fluorophores Alexa 488 and Alexa 594, R0 is 60Å. We call data 

tracking light emission intensity over time a trace. 

Once the FRET efficiency over time has been calculated for a donor and acceptor FRET 

pair, further analysis must be done to determine the states present in the trace. Molecules in 

FRET display multiple levels of FRET efficiency, called states, which translate to different 

conformations of the molecules being observed. These states can be detected and analyzed 

using Hidden Markov Modelling12. Hidden Markov Modelling is a statistical model that uses 
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observations of the data to reveal underlying probabilities. Before applying Hidden Markov 

Modelling, the general number of states observed should be estimated by the researcher based 

on the trace data collected. Hidden Markov Modelling is then applied using a program like 

HaMMY (developed by the lab of Dr. Taekjip Ha) to mathematically detect what FRET efficiency 

levels the various states observed are at, what the probability of transitioning between two 

states is, and what the probability is of starting in a particular state (Figure 4). 

 

Figure 4. HaMMY. A screenshot of the program HaMMY applying hidden markov modelling to 
data from the peptide dimer CCL2-C based on starting estimates of three FRET states at .2, .6. 
and .8. Estimates are chosen based on previous CCL2-C data and user observations from trace 
data. 
 

Human Immunodeficiency Virus 

Human immunodeficiency virus 1 (HIV-1), an RNA lentivirus in the retroviridae family, is 

the infectious agent that leads to acquired immunodeficiency syndrome (AIDS)13. AIDS emerged 

among human populations in the early 1980s. Since the identification of the virus in 1983, HIV 
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has become a major epidemic around the world14. As of 2015, 36.7 million people around the 

world were living with HIV, with 2.1 million new HIV infections and 940,000-1.3 million HIV-

related deaths occurring in 2015 alone15. Thanks to great developments in antiretroviral 

therapy and improved infection control, annual AIDS-related deaths have decreased by 28% 

since 2000, but much research remains to be done to further decrease the incidence of AIDS 

and AIDS-related mortality. 

Initial infection with HIV leads to mild and non-specific symptoms including fever, rash, 

headache, or sore throat. Over time, HIV infection leads to a depletion in CD4+ T cells, which 

are the primary target of HIV-1. Viral load measured in viral RNA copies in the blood plasma 

during this time can range from <40 copies/ml to 100,000 copies/ml16. Progression to AIDS is 

defined as the point when the patient’s CD4+ T cell count drops below 200 cells per μl of blood 

plasma16. At this point, the patient’s immune system is severely compromised. As a result, 

opportunistic infections or malignancies that the immune system could otherwise effectively 

combat can take hold in the patient. These effects from the immune deficiency cause mortality 

in AIDS cases rather than the HIV virus itself. 

Early treatment of HIV infection can drastically increase the patient’s chance of survival 

and allow them to reach survival rates comparable to uninfected populations. For the vast 

majority of HIV-infected patients, successful treatment and suppression of HIV replication can 

be achieved through combination antiretroviral therapy (cART)17. cART uses a combination of 

retroviral drugs designed to target multiple HIV pathways simultaneously to block HIV 

replication and prevent HIV from being able to mutate resistance, as is it significantly more 
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difficult for the virus to develop resistance to multiple drugs at once than it is for HIV to develop 

resistance to a single specific drug. However, cART cannot completely eradicate the virus from 

the patient as HIV persists in memory T cells, where the provirus can remain transcriptionally 

silent and relatively un-targetable for years18. 

The HIV-1 virus consists of 2 strands of positive sense RNA packaged in the viral 

nucleocapsid complex. The nucleocapsid complex is further encapsidated by 1500 capsid 

protein monomers and the RNA and capsid are further wrapped in an envelope derived from 

the plasma membrane of the host cell the virus budded out of. The virus infects target cells 

when the virus glycoprotein, gp120, interacts with the cellular receptor protein CD4. Using CD4 

and a co-receptor such as CCR5 or CXCR4, the viral envelope fuses with the host cell plasma 

membrane and releases the viral core into the cytoplasm (Figure 5A-C). The viral capsid must 

then traffic to the cell nucleus, uncoating along the way to release the viral RNA (Figure 5D). The 

viral RNA undergoes reverse transcription into a double stranded DNA product which 

translocates into the cell nucleus and integrates into the host cell genome through use of the 

viral integrase protein (Figure 5E). Once integrated into the host cell genome, the HIV genome 

becomes very difficult to accurately target and the virus can begin replication16. Understanding 

the early steps in infection is crucial to block HIV infection of target cells and for the 

development of antiviral targets. 

  



 

 

9 

 
Figure 5. HIV Replication Cycle. 
A: A mature HIV virus. 
B: Attachment of the HIV viral glycoprotein to the cellular receptor protein CD4. 
C: Fusion of the viral and cellular membranes and release of the viral core. 
D: Dissociation of the viral core. Correct regulation of the uncoating process can be interrupted 
by the cellular protein TRIM5α. 
E: Integration of the viral genome into the host genome. 
F: Replication of the viral genome. 
G: The virus budding from the host cell. 
H: An immature free virion. The virion must undergo maturation before infecting a new cell. 
Figure hand drawn by Margret Bradley 
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Tripartate Motif-Containing Proteins 

Tripartate motif-containing proteins, or TRIM proteins, are interferon-inducible proteins 

involved in defense against various types of host pathogens19–21. TRIM proteins are 

characterized by three key domains: the RING (Really Interesting New Gene) domain, one or 

two B-box domains, and a long coiled-coil domain. The RING domain contains a zinc finger that 

can play roles in ubiquitination. After these three key regions, TRIM family proteins contain a 

number of different C-terminal domains which are thought to convey specific biological activity 

to these proteins. 

TRIM5α. 

TRIM5α was first discovered in 2004 to be capable of blocking HIV infection in rhesus 

macaques by Stremlau et al22. TRIM5α possesses only one B-box domain and has a SPRY 

domain following the coiled-coil helix (Figure 6A). TRIM5α typically exists as an antiparallel 

dimer23. In TRIM5α, the B-box domain is associated with the formation of high order TRIM 

structures as shown in (Figure 6C-D) 24–27. The SPRY domain is associated with attachment to the 

HIV viral capsid28–30. While the complete TRIM5α protein is notoriously hard to purify, several 

sections of TRIM5α have been successfully purified for crystallography and other protein 

studies27,31. 

Rhesus TRIM5α is known to block viral infection of cells post viral entry. Interestingly, 

human TRIM5α does not effectively block HIV infection. Human TRIM5α does block infection 

from other lentiviruses, though, suggesting that human TRIM5α may have diverged from the 
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rhesus macaque version of the protein at some point to block a different viral threat to 

humans32. Interestingly, modification of a single amino acid in the SPRY domain of human 

TRIM5α to match the rhesus TRIM5α site does restore restriction of HIV by human TRIM5α 

suggesting that the human TRIM5α is defective in HIV capsid recognition29,33. Additionally, 

evidence has shown that, in high concentration such as that present in overexpression models 

or in the presence of stabilizing drugs, human TRIM5α does become a more potent inhibitor of 

HIV infection34. 

Possible Mechanism of Retroviral Restriction by rhTRIM5α. 

The mechanism of retroviral restriction of TRIM5α is not yet fully understood. However, 

it is known that TRIM5α binds to the viral capsid and causes the premature disassembly of the 

HIV capsid22,35. Early studies by Stremlau et. al showed that TRIM5α accomplished dissociation 

of the HIV capsid without causing a reduction in capsid protein levels, showing that TRIM5α was 

not causing direct degradation of the capsid protein despite the hypothesis that the E3 

ubiquitin ligase activity of the RING domain could lead to proteasomal degradation36. 

A second model of TRIM5α disassembly of viral capsid hypothesized that dissociation of 

the viral capsid occurred during proteasomal degradation of TRIM5α itself37,38. However, 

blocking the proteasome via MG132, a proteasome inhibitor, while it reduced restriction still 

resulted in inhibition of viral genome integration into the host genome39–43. Additionally, 

inhibition of the proteasome did not result in a buildup of TRIM5α, suggesting that TRIM5α 

degradation does not occur in a proteasome dependent manner44. 
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Our current hypothesis is that TRIM5α, through dynamic conformational changes in the 

Linker 2 (L2) region that folds back across the coiled-coil domain and links the coiled-coil to the 

SPRY domain causes strain on the viral capsid45,46. If the conformational changes in the L2 

region are great enough, then TRIM5α may be able to independently physically pull the HIV 

capsid apart via torsional strain. 
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Figure 6. TRIM5α Structure and Mechanism. 
A: Diagram of the domains of TRIM5α. 
B: Modelled structure of the coiled coil and linker 2 (CCL2) domains of TRIM5α as used in this 
thesis. The structure shown is a dimer with the coiled-coil domains in blue and the linker 2 
domains in orange. Based on the crystal structure determined by Goldstone, et al. (2014) 
C: Diagram of a TRIM5α cage around an HIV capsid. TRIM5α is depicted in blue while HIV capsid 
is depicted in orange. 
D: Structure of the B-Box mediated trimerization of TRIM5α proteins as determined by Wagner, 
et al. (2016) 
Panels A and C hand drawn by Margret Bradley 
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CHAPTER II: MATERIALS AND EXPERIMENTAL METHODS 

Recombinant DNA Constructs 

Constructs of the coiled-coil and linker 2 (CCL2) domains of Trim5α were amplified with 

PCR using full length Trim5α as a template and Phusion High-Fidelity PCR Master Mix (Thermo 

Scientific). The PCR products were then cloned into a pET-15b protein expression vector using 

the restriction enzymes NdeI and BamHI. The pET-15b protein expression vector contains an N-

terminal His-tag with a thrombin site, the lac promoter, and an ampicillin resistance cassette. 

Ligated plasmids were transformed into NEB 5-alpha competent, high efficiency E.coli 

cells and the plasmids were analyzed after miniprep by diagnostic digest using the restriction 

enzymes used to clone into the vector and running the final product on a 1% agarose gel with 

ethidium bromide. If the diagnostic digest produced bands of the correct size on the agarose 

gel, samples were sent for sequencing at the University of Chicago Center for Genomic 

Research. 

Protein Induction and Purification 

For protein induction and purification, BL-21 E.coli cells transformed with pET-15B 

plasmids containing the desired His-tagged protein sequence were grown in 5 ml overnight LB 

+carbenicillin cultures from either picking a colony off of a fresh LB +ampicillin plate or from 

frozen glycerol stocks of BL-21 bacteria containing the plasmid kept at -80qC. The next morning, 
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1-5ml of the overnight cultures were added to 250ml LB +carbenicillin and shaken at 37qC for 2-

4 hours or until the bacterial cultures reached a density with OD of 0.6-0.8. The cultures were 

then induced by the addition of IPTG to 1 uM and shaken at 37qC for 4 hours. After induction, 

the cultures were spun down at 5400rpm in a Sorvall RC 6+ centrifuge for 20min. The 

supernatant was discarded and the pellet was frozen at -20qC for storage until purification. 

When ready for purification, the pellet was thawed on ice and vortexed to break up the 

pellet. The pellet was then resuspended in 4ml Lysis buffer (50mM Sodium Phosphate buffer 

pH8, 500mM NaCl, 8M Urea, .5mg/ml lysozyme, 1% Triton X, 10 mM imidazole, and EDTA-free 

protease inhibitor cocktail) and sonicated for 1 minute in 10 second bursts. The sonicated cells 

were spun in a Beckman Coulter Optima L-90K ultracentrifuge at 10K rpm for 30min. The 

supernatant was combined with TALON Metal Affinity Resin Beads (Clontech) that had been 

equilibrated in 50mM Sodium Phosphate pH8, 500mM NaCl, 8M Urea buffer and mixed at 4qC 

for 1 hour. The pellet from ultracentrifugation was normally discarded. After mixing, the 

supernatant and beads were applied to a Clontech disposable gravity column and washed 

several times with 50mM Sodium Phosphate pH8, 500mM NaCl, 8M Urea buffer. The proteins 

were eluted by adding imidazole to 150 mM in either leftover lysis buffer or wash buffer and 

adding 1 ml elution buffer to the capped column. The column was left to sit in elution buffer for 

15 minutes at 4qC before collection in microcentrifuge tubes. For each protein, elution was 

repeated 3 times. Eluted protein could then be checked via western blot or coomassie stain for 

proper production and stored at -20qC. 
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To prepare proteins for use and analysis, they were dialyzed in decreasing 

concentrations of Urea (4M, 2M, and 0M Urea in 50mM sodium phosphate 500mM NaCl pH8 

buffer) with at least 3 hours per step or overnight. Dialysis was performed using 1-3 ml 10,000 

MWCO Slide-A-Lyzer dialysis cassettes (Thermo Scientific). Final protein concentrations were 

obtained using a Thermo Scientific Nanodrop 2000. 

Protein Analysis 

Purified proteins were analyzed by loading the proteins onto 12% polyacrylamide gels. 

Loading dye was chosen based on whether we were looking for the protein in monomeric or 

multimeric forms. For monomeric protein, we used 2x SDS glycerol dye with 1 μl β-

mercaptoethanol. For multimeric protein, we used 2x SDS glycerol dye without β-

mercaptoethanol. Proteins were incubated with dye at 100qC for 5 minutes and briefly cooled 

on ice before loading. Two main methods for protein detection were used. For rough analysis of 

sample purity and protein concentration, the gels were coomassie stained with Imperial dye 

(source) for one hour at room temperature and washed in DI water for one hour or overnight 

for better resolution. Finished coomassie gels were imaged using a Proteinsimple imager. 

For more sensitive assays detecting lower protein concentrations we used western 

blotting to detect His-tagged proteins. After protein separation, proteins were transferred onto 

a nitrocellulose membrane and detected using an anti-Histidine antibody conjugated to 

horseradish peroxidase (αHis-HRP) (Santa Cruz Biotechnology). The membrane was imaged 

using chemiluminescent substrate and a Proteinsimple imager. 
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Circular Dichroism 

Circular dichroism was performed on CCL2 proteins at the University of Illinois-Chicago 

Protein Research Laboratory (PRL) on their Jasco 710 spectrophotometer with the help of Bob 

Lee, the PRL director. Proteins were dialyzed further into low salt buffer to decrease the effect 

of salt on resultant CD measurements (50mM sodium phosphate 150 mM NaCl pH8 buffer) and 

diluted to 50μg of protein in 600μl buffer before shipping to the University of Illinois-Chicago on 

dry ice. Use of Tris or sodium phosphate buffers at the same pH and salt concentrations did not 

appear to make a difference in circular dichroism readout. Circular dichroism analysis was 

carried out at room temperature (25qC) and data were returned to us in molar ellipticity units 

in Excel files accounting for protein concentration, residue number, and dimerization. 

Percent secondary structure content of each protein was calculated using CDpro 

(http://sites.bmb.colostate.edu/sreeram/CDPro/). Data were first entered into CRDATA which 

converted the molar ellipticity units into molar absorbance (Δε) units and generated an INPUT 

file which can be read by any of the 3 analysis programs included in CDpro. We then used 

SELCON3 along with reference set 10 provided as part of the CDpro software to calculate 

secondary structure of the protein from the circular dichroism data. 

Protein Labelling 

Before protein labelling, cysteine-tagged proteins were dialyzed into phosphate buffer 

at pH7 to prevent interference of higher pH with the maleimide to cysteine conjugation 

reaction. Dialyzed proteins were then incubated with Tris(2-carboxyethyl)phosphine (TCEP) at 

4qC overnight to break up disulfide bonds existing in the proteins. TCEP does not interfere with 

http://sites.bmb.colostate.edu/sreeram/CDPro/)
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the maleimide conjugation reaction and does not need to be dialyzed away before beginning 

labelling. 

Alexa 488 and Alexa 594 maleimide conjugated fluorescent dyes were ordered from 

Invitrogen, resuspended in anhydrous dimethyl sulphoxide (DMSO), and stored at -20qC. To 

label cysteine-tagged proteins, a 3-fold molar excess of maleimide dye was added to the 

protein and the solution was incubated at room temperature for 45 minutes or overnight at 4qC 

before the reaction was halted by the addition of β-mercaptoethanol. Dye was then removed 

using .1-.5 ml 10,000 MWCO Slide-A-Lyzer dialysis cassettes (Thermo Scientific) over the couse 

of several dialysis steps performed at 4qC. To dual label dimers of CCL2-C, Alexa 488 and Alexa 

594 dyes were added simultaneously at a 1:1 ratio. 

 
Single-Molecule Förster Resonance Energy Transfer (smFRET) 

Slide Surface Preparation for smFRET. 

For Single-Molecule Förster Resonance Energy Transfer (smFRET) analysis, slides first 

need to be thoroughly cleaned to remove any old sample or contaminants and coated so the 

sample molecules can adhere to the surface of the slide. Our slides, both quartz and glass, were 

drilled with beveled holes at the ends of the area a coverslip would cover. The beveling of the 

holes allows for moderate pressure to be applied when loading assembled microfluidic 

chambers and eliminates need for tubing to load samples. The following cleaning method was 

initially developed by the Miller Lab. 
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Slides were first soaked for 24+ hours in 10% Contrad solution to remove old tape, 

sealant, and any marker notations. Any old tape, coverslips, and other waste was discarded in 

containers marked for sharps and glass disposal. Slides were rinsed in water and placed in a 

Teflon slide holder built for the lab. The slides were covered in water and boiled on a hot plate 

for 20 minutes to remove any remaining residues. Next, slides were sonicated for 40 minutes in 

10% Contrad solution, rinsed, and sonicated for 40 minutes in water using a Branson bath 

sonicator. 

Coverslips were loaded into a Teflon coverslip holder similar to the slide holder and 

included in the procedure from this point onwards. Slides and coverslips were rinsed with 

water, sonicated in 1M potassium hydroxide (KOH) for 20 min to etch the glass surface, and 

rinsed again in water. They were then rinsed with methanol, sonicated in methanol for 40 

minutes, rinsed with water and sonicated in water for 10 minutes. At this stage, slides and 

coverslips were dried with nitrogen gas to prevent oxidization. The slides and coverslips were 

then sonicated in methanol for another 5 minutes. 

To activate the glass surface, the slides and coverslips were incubated in 1% 3-

aminopropyltriethoxysinane (APTES) reaction solution (100 ml methanol, 5 ml acetic acid, 1 ml 

room temperature APTES). Slides and coverslips were incubated at room temperature for 10 

minutes in the APTES solution, sonicated for 1 minute, and incubated for another 10 minutes. 

The slides and coverslips were then rinsed first with methanol, then with water, then again with 

methanol before drying with nitrogen gas. 
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The final slide preparation stage applies a PEGylation layer to the slides and coverslips. A 

fraction of the PEG molecules are conjugated to a biotin tag that later sample reagents can 

adhere to. Fresh PEGylation buffer was prepared for each batch of slides and coverslips coated 

(84mg sodium bicarbonate in 10ml MQ-water). 80 mg m-PEG (polyethylene glycol) and 5-8 mg 

biotin-PEG equilibrated at room temperature were weighed out and dissolved in 320 μl 

PEGylation buffer. The PEG solution was briefly vortexed to mix and centrifuged to remove 

bubbles. Fresh PEG solution was made for each 5 slides coated. Slides were placed with the side 

to be coated facing up in humidification chambers constructed from 1 ml pipetter tip boxes 

with wet Kim-wipes or paper towels placed in the bottom section. 70 μl of PEGylation reaction 

solution was placed on top of the slides between the holes drilled for microfluidic chamber 

loading. Once any bubbles dissipated, a coverslip was carefully dropped on top of the 

PEGylation reaction solution and gently adjusted to remove any accidentally introduced 

bubbles. Slides and coverslips were marked with an arrow in the top left corners for easy 

identification of the PEGylated surface later on and incubated in the dark overnight at room 

temperature (no more than 16 hours). After incubation, the slides and coverslips were carefully 

separated, rinsed with MQ-water, and thoroughly dried with nitrogen gas in 50 ml conical 

tubes. The tubes containing the slides were sealed with parafilm and stored at -20qC until the 

slides were ready for use. 

Microfluidic Chamber Preparation for smFRET. 

To construct the microfluidic chamber for smFRET, cleaned and PEGylated slides and 

coverslips were taped together with double-sided scotch tape long enough to reach slightly 
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past both ends of the coverslip with a gap of a centimeter or less between the two strips of 

tape. The coverslip was placed so that the coverslip covered both of the holes drilled in the 

slide and the tape did not block the holes in the slide. This creates a microfluidic chamber no 

more than a millimeter in depth. The ends of the microfluidic chamber may be sealed with 

grease or epoxy, but epoxy creates a mess easily and grease does not hold well in response to 

any pressure in the chamber. Sealing the chamber by carefully applying hot wax to the ends 

using a large needle attached to a stick as a scoop worked very well. The assembled chamber 

should look as shown in Figure 7. 

Once the wax cooled, we prepared to load the chambers. Fresh imaging buffer was 

made (20 mM Hepes/Tris-Cl, 150 mM NaCl, 0.1 mg/ml BSA, 2 mM Trolox) each day we did 

smFRET. A stock of 100 mM propyl gallate was prepared in ethanol beforehand and stored in 

100 μl aliquots at -80qC. The microfluidic chamber was first loaded and incubated with 50 μl of 

0.2 ml/ml neutravidin in imaging buffer for 5 minutes. After a wash with 100 μl imaging buffer, 

the chamber was loaded with 70 μl 10 nM penta-his biotin-conjugated antibody (Qiagen) in 

imaging buffer and incubated for 10 minutes. After a third wash with 100 μl imaging buffer, the 

chambers were loaded with 90 μl 1nM labelled sample protein mixed with propyl gallate added 

to 1 mM. The sample was incubated in the chamber for 20 minutes in the dark and flushed with 

100 μl imaging buffer before imaging. If the chambers would not be imaged shortly after they 

were made, the chambers were stored in a Styrofoam box containing small amounts of ice.  
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Figure 7. Microfluidic Chamber Construction. Microfluidic chambers are constructed using 
highly cleaned quartz or glass slides and coverslips that are assembled using double-sided tape 
and sealed using epoxy, wax, or grease. Figure drawn by Margret Bradley using the program 
GIMP. 

smFRET Using Objective TIRF. 

smFRET using objective total internal reflection fluorescence (TIRF) microscopy was 

developed for the Campbell Lab at Loyola University Chicago with the use of a TIRF microscope 

belonging to the lab of Dr. Seth Robia. The microscope was fitted with a Optosplit II Image 

Splitter from Cairn Research and a custom ordered splitter filter cube (ET 535/70, ET 645/75, 

T600lpxr-UF2=400, UF1=300). The laser on the microscope was set to 488nm for excitation of 

Alexa 488 using filters and no other filters were used on the excitation laser. Prior to collecting 

any data, images were taken of a calibration slide using minimally cleaned, undrilled slides and 

coverslips to create a completely sealed microfluidic chamber containing 0.2μm orange 

(540/560) FluoSheres Fluorescent Microspheres (Invitrogen). All data were obtained from 

microfluidic chambers where the glass coverslip was facing downwards towards an 100x oil 
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immersion objective. Image focus was maintained throughout data acquisition using the 

perfect focus system on the microscope. 

Data were collected on both calibration bead slides and sample slides using the program 

Single developed by the lab of Dr. Taekjip Ha (available open source on the lab website). Simple 

must be run in administrative mode and cannot control filters on the microscope but is used to 

control the camera and adjust rotation of the image. As data files for smFRET can be very large 

(typically between 8-30GB of data produced per run) data were recorded on the computer 

associated with the microscope and transferred to an external hard drive for backup and 

transport to other computers for analysis. 

smFRET Data Mapping. 

Data analysis for smFRET data takes several stages to produce a final product. Programs 

for data analysis were developed by the lab of Dr. Taekjip Ha. Immediately post acquisition, 

data were mapped and converted to .trace files which could be read by the Matlab programs 

using IDL. A mapping file to generate a coordinate map to match molecules in the left and right 

acquisition windows created by the splitter was first generated from the images taken of the 

beads slides. Generating the mapping file involves running data sequentially through the IDL 

programs Maketiff, Calc_mapping2, and Nxgn1_cm. For each program, the correct file path for 

the beads files can be set by manually modifying the program code. All active IDL programs 

were re-compiled each time a file path modification was made. Maketiff first converts the 

collected data into a file IDL can work with more easily. Calc_mapping2 allows the user to 

choose matching three points from the left and right windows of the image and align the 
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program (Figure 8A-B). Nxgm1_cm detects all peaks of light in the image and attempts to match 

all peaks on the left to peaks on the right (Figure 8C). Nxgm1_cm will also output both how 

many peaks were found and how many successful pairs were mapped. By multiplying the pair 

count by 2 and dividing by the total number of peaks, a quantitative quality of the mapping file 

can be determined. The higher the percent of mapped pairs in the file, the better the quality of 

the file. Ideally, about 90% of the peaks or more should be matched to a pair. 

Once a mapping file of acceptable quality has been generated, the sample data can be 

mapped as a batch using the IDL programs Ana_all, P_nxgn1_ap, and P_nxgn1_ffp. Manually set 

the file path in P_nxgn_ffp to the chosen beads file and set the file path in Ana_all to a folder 

containing subfolders of data. If the folder structure for Ana_all is incorrect (e.g. leading directly 

to a folder containing data), the program will produce an error message. Once the correct file 

paths are set in the programs, simply running Ana_all will begin the analysis of all the data. 
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Figure 8. Creation of a Mapping File in IDL. 
A: The raw image compiled from a smFRET bead file calibration movie. Note the visible bright 
points corresponding to the beads. (Maketiff program) 
B: Selection of three points in a triangle around the sample on the left and right. This is done by 
hand and is pest done with the three points spread out to provide better coordinates. 
(Calc_mapping2 program) 
C: Software detection of the remaining correlating peaks in the beads file. (Nxgn1_cm program) 

smFRET Data Analysis. 

Once the data have been mapped and converted to trace files using IDL, analysis of 

individual traces and compiled data could be performed in Matlab using TirfLite 2.0, a program 

package developed by Raymond Pauszek in the lab of Dr. David Millar of the Scripps Research 

Institute. Traces were first selected for quality in the tirf_movieprocessing subprogram. A high 

quality trace shows at least one or two FRET transitions, a high anticorrelation coefficient 

wherein the individual fluorophore traces behave in an opposite manner, a single-step 
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photobleaching, and baseline fluorophore intensity after the photobleach step. Flashes of 

fluorophore intensity may be observed after the photobleaching step, but are disregarded as 

the trace is cropped after the photobleach. Bleedthrough of the donor (488) fluorophore into 

the acceptor (594) channel can also be calculated using sample labelled only with the Alexa 488 

fluorophore. While selecting traces, non-linear smoothing was applied to the traces for ease of 

use in distinguishing transition events. Smoothing, however, can oversimplify data and alter 

how it appears in later steps so selected traces were exported and saved as unsmoothed data. 

The .mat files of the traces from the previous step were next combined into a single 

folder, either manually or using the combinemoviefolders helper script in Matlab. The TirfLite 

subprogram, vfit, was then used to reexamine the traces selected in tirf_movieprocessing. Any 

traces deemed to be of suboptimal quality were filtered out of the data set. In vfit, the selected 

data also output a histogram to which curves outlining the expected stable states could be fit. 

The program calculates the probability of the dimer being in a specific FRET conformation and 

the probability of transition between different FRET conformations as well as providing an 

initial estimate for Hidden Markov Modelling (HMM) of the FRET states using viterbii fitting. 

Once the traces had been trimmed and filtered, they were exported for analysis in HaMMY, a 

software package developed by the lab of Dr. Taekjip Ha available open source on the lab 

website. HaMMY fits selected FRET states to the FRET trace data and maps transitions using 

Hidden Markov Modelling and outputting files in a .hmm file format. 
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Finalized HaMMY files are loaded into viewhammy2, a TirfLite 2.0 subprogram which 

then compiles the HaMMY data into a TDP plot which show a heat map of the different FRET 

states and the probability of transition between states. 

Optosplit Calibration. 

During the course of use, the Optosplitter used for splitting the emission wavelengths of 

smFRET can come out of calibration which can cause downstream problems in data analysis, 

namely because the IDL program used to create initial mapping files of the data is extremely 

finicky if the image isn’t split exactly in half or has too few bright peaks. Therefore, the 

Optosplitter must occasionally be calibrated. Poorly done calibration can make the situation 

infinitely worse, so careful reading of the Optosplit manual is recommended. For calibration of 

a splitter that has come extremely out of alignment, however, additional steps not listed in the 

manual must be taken. 

If calibration of the cube does not seem to correct using the calibration instructions in 

the manual, remove the splitter cube so that only a single channel is visible in brightfield 

illumination. Narrow the aperture using the sliding tabs near the microscope end of the 

Optosplit box so that all sides of the opening are visible in Single. Next move the channel to the 

center using the V2 (vertical) and split control (horizontal). Once the channel is in the center, re-

insert a cube and align the two channels so that they are superimposed using the V1 vertical 

knob and a combination of the horizontal (H2) and split controls to keep the superimposed 

images in the center. These steps may need to be repeated several times depending on how 
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out of calibration the Optosplitter has gotten. Finally, reduce the width of the aperture and split 

the two channels using the split control knob so that you see two channels side by side. 



 
 
 

 30 

CHAPTER III: RESULTS 

Generation of Recombinant, Fluorophore-Conjugated Protein Suitable for 

Single-Molecule FRET 

Purify CCL2 Peptides with Cysteines to Allow for Fluorophore Labelling. 

To generate a peptide for fluorophore labelling from TRIM5α, we first isolated the 

Coiled-Coil and Linker 2 domains of TRIM5α. The Linker 2 region has previously been shown to 

have dynamic regions by crystal structure which may correlate to spring-like flexibility down the 

more stable Coiled-Coil helix (Figure 9)31,46. The SPRY, RING, and BBox domains were excluded 

both to simplify the system and due to difficulty in purification. Because there were no native 

cysteines in the Coiled-Coil or Linker2 domains, we were able to introduce cysteines in positions 

we chose and take advantage of maleimide chemistry to link maleimide-tagged fluorophores to 

the thiol of the cysteine residue to achieve site-specific labelling on the peptide5. For single 

molecule FRET, we choose to place the cysteine at the C-terminal end of the peptide, which is 

the end of the Linker 2 domain. 

After cloning into the pET-15b plasmid vector, which is designed for protein purification, 

we confirmed both that the CC and L2 domains were intact and that the C-terminal cysteine 

was present via sequencing. Since the TRIM5α dimer is fairly soluble, the peptide, which we 

named CCL2-C, did not require extraction from the pellet of bacterial debris during purification. 
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Sonication in lysis buffer followed by ultracentifugation was sufficient to release the CCL2-C 

protein from the E. coli cells (Figure 10). To attempt to get the peptides back into their native 

conformation post purification, we used dialysis to remove urea from the protein buffer.  

 

Figure 9. Design of CCL2-C for Protein Purification. 
A: Diagram of the pET-15b vector for purification of the CCL2-C protein. Important plasmid 
features include ampicillin resistance and a His-tag for protein purification. 
B: The proposed molecular model of a CCL2-C dimer. One subunit of the dimer is entirely in 
black. On the other dimer subunit, the Coiled-coil (CC) domain is shown in yellow and the 
Linker-2 (L2) domain is shown in purple. 
Figure hand drawn by Margret Bradley. 

A 

B 
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Figure 10. Protein Purification Protocol. Pictorial representation of the method for purification 
of the CCL2-C protein. Figure hand drawn by Margret Bradley.  
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Design a Method to Efficiently Label CCL2-C with Fluorophores that can 

Produce FRET Without Disrupting the Secondary Structure of the Protein. 

For single-molecule FRET analysis, proteins must be labelled with fluorophores that are 

small to prevent disruption of secondary structures and increase specificity1. The fluorophores 

must also have overlapping excitation and emission wavelengths so that FRET can occur. For 

our experiments, we chose Alexa 488 and Alexa 594 as our donor and acceptor, respectively, 

which FRET with an R0 of 60Å, meaning FRET is 50% efficient when the fluorophores are 60Å 

apart (Figure 11A-D)47. We used maleimide conjugation to link the CCL2-C proteins to maleimide 

derivatives of the Alexa 488 and 594 fluorophores (Figure 11E). The proteins first needed to be 

dialyzed into a pH7 buffer to optimize the maleimide chemistry before they are combined with 

commercial dyes re-suspended in DMSO. 

We tried two different labelling methods for CCL2-C. The first method involves labelling 

CCL2-C in separate batches of Alexa 488 and Alexa 594. The labelled proteins are then 

denatured using 8M urea. The separately labelled proteins are combined while denatured and 

dialyzed over the course of several days into buffer without urea to allow the proteins to fold 

back into their native shape. While we have achieved smFRET using proteins labelled this way, 

the labelling process is both long and runs the risk of permanently denaturing the proteins. 

To avoid potential pitfalls of our initial labelling method, we attempted to label the 

proteins using both dyes at once. Our hypothesis was that the proteins would be labelled one 

quarter Alexa 488 dimers, one quarter Alexa 594 dimers, and one half dimers with both Alexa 

488 and 594. Theoretically, the ratios should be similar to those seen when the proteins are 
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denatured and combined after labelling. We found that we were indeed able to observe FRET 

using a method combining both dyes at once. 

In summary, we developed a method that does not require denaturing the proteins to 

combine the two fluorophores and found that we could still observe smFRET in the proteins 

after excess dye had been removed. 
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Figure 11. The Alexa 488 and Alexa 594 Fluorophores. 
A: Maleimide conjugated Alexa 488 molecular structure. 
B: Maleimide conjugated Alexa 594 molecular structure. 
C: Excitation and emission spectra for Alexa 488. 
D: Excitation and emission spectra for Alexa 594. 
E: Maleimide-cysteine conjugation reaction. 
Molecular structures and spectra obtained from the Thermo Fisher product website. Alexa 488: 
https://www.thermofisher.com/order/catalog/product/A10254. Alexa 594: 
https://www.thermofisher.com/order/catalog/product/A10256. Maleimide conjugation 
Reaction hand drawn by Margret Bradley.  
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Characterize the Purified and Labelled Proteins via Western Blotting and 

Circular Dichroism. 

To characterize the purified proteins, we primarily used western blot. Since freshly 

purified CCL2-C will naturally make a stable dimer due to disulfide bonds that can be disrupted 

with a denaturing agent such as β-mercaptoethanol, we could use a combination of denaturing 

and non-denaturing acrylamide gels to determine both how pure a fresh protein purification 

was and whether the protein was generally behaving as expected. While we typically used 

coomassie gels, we also used western blots against the 6-His tag on the proteins for greater 

sensitivity. Denaturing gels show a single heavy band at 22kDa while non-denaturing gels run 

without β-mercaptoethanol show both the 22kDa monomer band in addition to an 

approximately 44kDa dimeric band (Figure 12A-B). We also found that more sensitive western 

blot gels also occasionally showed higher molecular weight bands potentially representing 

higher order aggregates of CCL2-C. 

Characterization of protein labelling was done via typhoon imaging which takes 

fluorescent images of fluorescently-tagged proteins run on a standard acrylamide protein gel. 

We found that successfully labelled proteins were detected in both the 610 and 523 emission 

detection channels corresponding to the Alexa 594 and 488 fluorophores (Figure 12C-E)45. 

Further characterization of the protein secondary structure was done using circular 

dichroism48. We found that purified CCL2-C had a very similar secondary structure to CCL2 

without the C-terminal cysteine and that the secondary structure percentages were close to 

those predicted by published crystal structures of CCL2 (Figure 13B). Additionally, while buffer 
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can potentially affect secondary structure and detection by circular dichroism 

spectropolarimeters, keeping CCL2 in phosphate or TRIS buffers did not appear to affect 

secondary structure (Figure 13A and C)48.

 

Figure 12. Protein Gel Analysis of CCL2C. 
A: Unreduced protein purification acrylamide gel with three elutions each of Rhesus and 
Human CCL2-C showing the monomer and dimer bands. The lower band is junk protein that is 
removed via subsequent dialysis. 
B: Reduced (+βME) protein purification acrylamide gel with three elutions each of Rhesus and 
Human CCL2-C showing only the monomeric band. 
Typhoon image of labelled human CCL2-C showing the C: Alexa 594 emission, D: Alexa 488 
emission, and E: merge. 
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Figure 13. Circular Dichroism Analysis of CCL2-C. 
A: Circular dichroism spectra of human and rhesus CCL2-C in phosphate and TRIS buffers run in 
duplicate. 
B: Percent secondary structures detected in CCL2-C proteins derived from human, rhesus, and a 
G249D mutant of human TRIM5α. Data were averaged from three replicates. 
C: Secondary structure detected in human and rhesus CCL2-C peptides in phosphate and TRIS 
buffers. 
 

Optimizing Methods for smFRET 

Develop a Method to Allow the Simultaneous Tracking of Two Fluorophores 

Using a Single EMCCD Digital Camera. 

To successfully perform smFRET, we required a system that could track the intensity of 

two different fluorophores emitting in two different channels of wavelength simultaneously. 
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Data were recorded using the program Single, developed by the lab of Dr. Taekjip Ha. Single 

must be run in Administrative Mode however for it to function. We performed TIRF microscopy 

using the Nikkon microscope belonging to the lab of Dr. Seth Robia allowing us to use protocols 

already established at Loyola. However, for smFRET we required the ability to track multiple 

fluorophores simultaneously. Typical fluorophore emission measurements are done by taking a 

photo with a filter detecting a single fluorophore, changing filters, and then taking a photo with 

filters detecting the second fluorophore. As the delay inherent in both taking multiple images 

and swapping filters between images makes tracking FRET in real time impossible, we used an 

Optosplit II image splitter. This microscope attachment allows detection of the emission 

channels from both Alexa 488 and 594 simultaneously. Simultaneous fluorophore emission 

detection means that we can draw conclusions about dynamic protein conformational changes 

during data analysis. 

However, we encountered multiple issues using the Optosplit II that needed 

optimization. First, to analyze smFRET data, we require a calibration done prior to each 

experiment using fluorescent beads. The fluorescent beads must be detected in both detection 

channels for creation of a successful calibration file which was a problem with our initial bead 

choices. Secondly, as the downstream software used to analyze smFRET data requires data in a 

very specific format, having the cube out of calibration resulted in unusable data. 

Fluorescent Bead Choice. 

We initially used Yellow-green FluoSphere Fluorescent Microspheres from Thermo 

Fisher which resulted in very bright signal in the green emission channel while being barely 
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detectable in the red channel. To troubleshoot this issue, we tried multiple approaches. First, 

we tried red FluoSpheres already owned by the lab which simply reversed the issue by causing 

extremely bright signal in the red channel and were nearly undetectable in the green channel. 

Second, we tried a FluoSphere mixture borrowed from the Robia lab containing a variety of 

bead colors throughout the spectrum. At first, this mixture appeared to work to create a 

correlation between the two channels, but, as the mix contained beads that may only appear in 

one channel and the percentage of beads that appeared in both channels was quite low, the 

downstream software was unable to detect enough bright peaks in the sample to correctly 

create a mapping file.  

While using the bead mixture, however, I noticed that the beads that regularly appeared 

equally in both channels were visibly orange under the microscope eyepiece (Figure 14). Based 

on this observation, we ordered orange FluoSpheres from Thermo which emit at 560nm which 

can be detected in both channels. The orange beads finally did result in a beads mapping file 

with a satisfactory number of peaks in both channels49. 

We also had problems caused by clumping of beads under some conditions leading to 

situations where distinct peaks were not easily distinguishable by software (Figure 15D-E). I 

pursued two hypotheses for why the beads may be clumping. In the first hypothesis, clumping 

could be caused by sealing the microfluidic chamber, a process most effectively done using hot 

wax which could potentially partially melt the latex beads and cause them to stick together. In 

my second hypothesis, clumping could be caused by buffer choice if certain salt ions caused the 

beads to aggregate. I found that chamber sealing method had no effect on bead clumping. No 
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differences were observed when sealing using wax versus leaving off any sealant. However, 

changing the buffer from the recommended .25M MgCl2 solution to PBS only completely 

stopped aggregation. MgCl2 is generally recommended in creation of bead calibration slides 

because the ions should help the beads adhere to the glass slide surface and reduce the 

frequency of beads diffusing in and out of the plane of TIRF focus. In slides using plain PBS, we 

did see beads moving in and out of the plane of focus more often, but generally enough beads 

were present in the plane of focus to create a calibration file.  

 

 

Figure 14. Fluorescent Bead Emission Spectra. Emission spectra of Thermo-Fisher FluoSphere 
beads. Of note for this document are 3: yellow-green (505/515), 4: orange (540/560), and 6: red 
(580/605). Spectra obtained from the Thermo-Fisher product website: 
https://tools.thermofisher.com/content/sfs/manuals/mp05000.pdf 
 
Cube Calibration. 

Splitting the emitted light into the two specific wavelengths we wanted to observe for 

smFRET required use of a device called an Optosplit II which must be kept in good calibration. 

The Optosplit II uses a setup of a dichroic mirror contained in a custom ordered cube from Cairn 

https://tools.thermofisher.com/content/sfs/manuals/mp05000.pdf
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Research combined with several other mirrors to split the collected light from the sample into 

the emission wavelengths from the donor and acceptor fluorophores (Figure 15A). For proper 

downstream analysis, the two channels should appear as two side-by-side rectangles on the 

output image that fill most of the image and split down the image center (Figure 15B-C). If the 

rectangles are tilted or off center, then downstream analysis will mostly turn out junk data or 

software errors (Figure 16). 

Early on, we found that the Optosplit II does fairly quickly get out of correct alignment 

and that it is very easy to cause further alignment discrepancies while trying to fix the 

calibration. Once the matter of the fluorescent beads had been sorted out, it was necessary to 

properly calibrate the Optosplit mirrors. Initially, the Optosplit was far enough out of alignment 

that the rectangular output frames were concentrated only on one side of the image, a 

conformation the downstream software refused to even recognize. It also became apparent 

that the calibration instructions included with the Optosplitter were insufficient to properly 

perform calibration. After consultation with technicians at Cairn Research, the Optosplitter 

manufacturers, we learned that severe calibration issues could be addressed by removing the 

dichroic mirror cube, centering the output image, replacing the cube, and trying to shift the 

rectangles back into their correct positions. Because of how severely the Optosplitter was 

misaligned, we required multiple rounds of calibration before the Optosplitter was ready for 

use in smFRET. 
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Figure 15. Optosplitter Calibration. 
A: Diagram of the Optosplit II internal mirror setup and light paths. 
B: Output of a seriously mis-calibrated Optosplit II with both emission windows on the left of 
the image. 
C: Output of a properly calibrated Optosplit II with the emission windows split neatly down the 
middle and taking up most of their respective sides. 
D: IDL attempt to align two emission windows. Note the clumping of the visible beads (not 
advisable) and the image shearing present on the left side. More difficult to see in this 
screenshot, one of the emission windows has been twisted like a spider web and is no longer 
remotely rectangular. 
E: Matlab analysis resulting from the bead data collected in D. Note how the selection circles in 
the right window do not match up to the same location in the image. 
Panel A drawn by Margret Bradley using the program GIMP. 

 



 

 

44 

 
Figure 16. Optosplitter Calibration 2. IDL software attempting to align the two output windows 
and create a mapping file. Note here how the software is selecting spots in part of the image 
that contains no data at all and ignores many actually good matches. In the bottom right 
window, IDL attempted to place the two images on top of each other which resulted in severe 
image shearing and torqueing. 

Establish a Workflow in IDL to Correctly Correlate the Two Wavelengths of 

Light Data Acquired from smFRET. 

Once the data have been acquired, raw data must be converted into trace files for 

analysis. Conversion of raw data into trace files utilizes IDL software included with Single from 

the lab of Dr. Taekjip Ha. IDL, or Interactive Data Language, is a programming language used 

specifically for data analysis and must be licensed for use in the lab. The program set contains 

multiple subprograms. We used six of the subprograms for data analysis and found that 

properly using the programs required a level of comfort with code as IDL can be extremely 
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sensitive to input and easily produces program errors. IDL usage is discussed in detail in the 

smFRET Data Mapping section of the Methods. 

The first IDL problem encountered by the lab was the file setup input requirements. 

While saving files, we typically saved experiments by having a main folder for the day 

containing multiple subfolders for the calibration and experimental slides examined during the 

day of experiments. Then, when trying to analyze the data in IDL, we could create a calibration 

file and get caught on the step where IDL attempts to analyze all the files in the folder. After 

reading the code, we discovered that the IDL program required a second layer of folders such 

that all data folders were contained in another folder which had all the data. IDL also produced 

errors if there were not enough bright peaks in the beads file or if the channel windows were 

not in the correct positions as discussed in the previous section. 

Finally, IDL programs can be modified during data analysis to facilitate the analysis 

workflow such as entering new file paths into the program coding to direct the code at a new 

day’s experiment. While this process largely acted as a method to ease analysis, failure to 

compile all the active programs could result in failure of the program. IDL was also extremely 

sensitive in terms of active window choice, largely during mapping file creation. If the incorrect 

window was selected while giving input commands, then the entire program would crash and 

need to be restarted.  

In conclusion, correct choice of beads and spending the time to learn to calibrate the 

Optosplit II cube finally resulted in data that could be processed and analyzed. 
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Use Matlab to Render Acquired Data into Individual smFRET Traces and 

Graphs of Compiled smFRET Data. 

Once the trace files had been generated, we could begin analysis of the data looking for 

meaningful patterns correlating to dynamic conformational protein changes observed. Trace 

files were loaded into Matlab programs developed by Raymond Pauszek in the lab of Dr. David 

Millar of the Scripps Research Institute. 

Trace files were first filtered to select for several inclusion criteria. I chose traces that 

came from individual molecules as visible on the right side of the program, avoiding traces 

coming from more clumped areas. The traces were sorted by anti-correlation constant. The 

anti-correlation constant describes the behavior of the two light intensities on a scale of 0-1 

with a score of 0 meaning the two fluorophores are behaving in an opposite manner wile a 

score of 1 means the fluorophores are acting in the same manner. We chose traces with anti-

correlation constants closer to 0. We also chose traces with a distinct single-step 

photobleaching event. The photobleaching event helps support the hypothesis that you are 

looking at only one molecule as traces belonging to multiple molecules will display a curve 

downwards to the end of the trace due to multiple photobleaching events (Figure 17). Typically, 

10-15 trace files were taken per sample and each trace file would contain several hundred 

molecule traces to sort through with only about 5% of the traces resulting in real data (Figure 

18A). However, any improper setup in previous steps or poor conditions in the sample 

detection chamber could result in bad data that would only become apparent at this step, 

when we were finally able to look at the traces. 
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Once the good traces have been selected they can be exported and all traces from a 

single experiment combined. The traces must then be cropped to remove all data post 

photobleaching which should not be included in the final analysis1. Matlab can also draw 

histograms of FRET efficiencies from the data and fit curves to the histograms based on the 

number of peaks observed by the user (Figure 18B). HaMMY, another program from the lab of 

Dr. Taekjip Ha, can then be used to perform mass Hidden Markov modelling analysis to find the 

FRET efficiency levels in each trace12. These HaMMY files then are loaded into a final Matlab 

program which creates transition density plots (Figure 18C). Transition density plots allow 

examination of transfer between states. For example, if the sample is in a .2 FRET efficiency 

state and the other states available are .6 and .8, the sample has a percent chance to transfer 

to either the .6 or .8 states. The probability of moving from one state to another is shown on 

transition density plots. 

In conclusion, Matlab analysis of smFRET data outputs meaningful graphs and figures 

that can be used to draw conclusions about the protein under study. 
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Figure 17. Rhesus CCL2-C Trace. One of the first successful trace files obtained independently 
by the Campbell 
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Figure 18. Matlab Analysis of smFRET Data. 
A: Screenshot of the tirf_movieprocessing program where traces are first selected for quality. 
Notice the strong anti-correlation in the trace image shown with a distinct photobleach event. 
Data after the photobleaching event has been cropped which is shown where the FRET 
efficiency graph ends and the Intensity graph lines turn from green and red to black. 
B: Screenshot of the vfit program where traces are compiled. The top left window shows 
preliminary Hidden Markov Modelling analysis which will be finalized in HaMMY. This program 
also show a histogram of the FRET efficiencies of the compiled data with curves fit to the 
observed peaks. 
C: Screenshot of the viewhammy2 program which compiles the traces which have been 
analyzed in HaMMY into a transition density plot. 
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CHAPTER IV: DISCUSSION 

Single-molecule FRET is a relatively new method used in only a handful of labs to study 

dynamic interactions on the scale of single proteins1. Using FRET between small fluorophores 

conjugated to specific sites on proteins, smFRET can reveal conformational changes occurring in 

real time at high specificity47. We in the Campbell Lab sought to adapt smFRET methods for use 

at Loyola to study a variety of proteins. To analyze proteins via smFRET, we first needed to 

create, purify, and label proteins suitable for smFRET. We then needed to optimize several new 

protocols for smFRET that had never been used before in the Campbell Lab. 

We first tackled creating a peptide for smFRET study using the CC and L2 domains of the 

protein TRIM5α. We tagged a cysteine onto the peptide C-terminus for site-specific fluorophore 

conjugation. We found that purification of the CCL2-C protein required only purification of the 

soluble protein from the lysed bacterial cell supernatant via the 6-His tag. We then optimized 

and simplified the method for conjugation of maleimide-linked small fluorophores to the 

purified CCL2-C proteins by combining the fluorophores when conjugating them to the proteins 

and removing several days of dialysis. Our improved protocol also limits risk of misfolding the 

proteins during re-naturation. We analyzed our purified proteins using a combination of 

coomassie, typhoon imaging, and circular dichroism. These analyses showed that the protein 

largely existed as monomers or denaturable dimers after purification, that fluorescent labelling 

was successful, and that the purified proteins generally had the expected secondary structure. 
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We then addressed adapting smFRET specific methods for our lab. While TIRF was 

already established using the microscope from the lab of Dr. Seth Robia, several methods for 

smFRET were not. One of the chief problems we needed to handle was creating data 

acceptable for use by downstream software. The Optosplit II device, which allows us to observe 

two light emission channels simultaneously, became an obstacle to overcome due to the 

technical difficulty of getting the Optosplit II unit into calibration. We also needed to choose a 

fluorescent bead type for mapping the images generated by the two channels onto each other 

which was resolved by selecting orange beads. The orange beads have an emission peak 

between the two channels detected by the Optosplit II dichroic mirror we used. Since 

fluorescent beads are very bright, their emission appeared at relatively even levels in both the 

red and green light detection channels. 

Analysis of smFRET data requires use of software acquired from labs where smFRET is 

already established, but, to get the programs to work for our lab and our project, the data 

needed to be set up to input into the programs correctly and the programs needed to be 

modified to produce the desired output. IDL, the program used to process the raw data files, 

required very specific input file formats which were not always made clear in the supporting 

material. Therefore, some software language knowledge from the user was required to read 

the IDL code and determine where errors were occurring and correct them. Finally, we 

established a workflow in Matlab to filter the large quantities of data generated in an 

experiment and compile the data into meaningful graphs and charts so that conclusions about 

the protein could be drawn. 
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Conclusion 

In conclusion, we developed a protocol to use single-molecule FRET (smFRET) in the 

Campbell Lab at Loyola University Chicago. smFRET is a complex method that allows scientists 

to examine conformational changes occurring in single biological macromolecules in real time. 

While we used two domains or the protein TRIM5α, this protocol can now be used at Loyola 

University Chicago to study any protein, DNA, or RNA complex that can be adhered to a glass 

slide and conjugated to fluorescent proteins. Thus the results of this thesis will help scientific 

research in a continuing manner in the Campbell Lab. 
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Figure 19. Performing Single-Molecule FRET. 
Hand drawn by Margret Bradley  
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