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CHAPTER ONE 
 

OVERVIEW AND HYPOTHESIS 

Many diseases are a result of the impairment of autophagy, an intracellular 

degradative process [1-3]. A crucial function of autophagic mechanisms is the 

degradation and recycling of cellular materials by the lysosome, an acidic organelle 

containing degradative enzymes [4]. Impaired lysosomal degradation leads to a class of 

diseases termed lysosomal storage disorders (LSDs) [1, 2]. 

There is evidence that impaired carbohydrate, aka glycan, degradation is the most 

common precipitate of these disorders [2]. Glycans are known to have various biological 

functions including modulating protein interactions, acting as specific intermediaries for 

cell-cell interactions, and regulating protein folding and trafficking [5, 6]. 

Similar to lysosomal dysfunction, another autophagic mechanism, extracellular 

vesicle (EV) secretion, has been implicated in a wide array of disease due to their ability 

to exchange materials intercellularly [7-14]. In our lab we are particularly interested in the 

role of extracellular vesicles in the spread of neurodegenerative diseases such as 

Parkinson’s Disease (PD).  

Given the correlation of autophagic impairment and glycan degradation with LSDs 

[1, 2] and EVs ability to exchange materials intercellularly [7-14] we predicted that 

changes in EV glycans—which are altered throughout the autophagic process 

sequentially [2, 15, 16] —play a vital role in EV trafficking and cargo selection. 
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The goal of this research is to elucidate mechanisms of both secretory and 

degradative autophagy. This will be accomplished through identifying changes in EV 

glycans upon perturbation of autophagic processes. Specifically, autophagy will be 

perturbed in two differing manners: induction of autophagy and disruption of Lysosomal 

degradation. Identifying changes in EV glycans may help to better understand autophagic 

mechanisms and EV trafficking. Improving the understanding of autophagic secretion 

may improve future diagnostic and therapeutic methods for treatment of LSDs such as 

PD. 

The first aim of this research is to identify the presence and description of EV 

glycans. Additionally, we aimed to identify changes in EV glycans upon induction of 

autophagy as well as disruption of lysosomal degradation. Observed differences can be 

used to identify specific changes in glycans of autophagically secreted vesicles. These 

findings will contribute to the knowledge of glycobiology and autophagic function that can 

be applied to various cases of lysosomal disfunction such as PD. 
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CHAPTER TWO 

REVIEW OF THE LITERATURE 

Lysosomal Storage Disorders 

LSDs are a class of disorders that involve an impairment in lysosomal degradative 

function [1, 17]. LSDs typical involve mutations in genes of hydrolytic enzymes but are 

also commonly caused by mutations in genes encoding lysosomal membrane proteins 

[3]. Elizabeth Neufeld demonstrated that cells lacking lysosomal enzymes were unable to 

degrade cellular components, leading to their accumulation in lysosomes [18]. She also 

demonstrated that exogenous lysosomal enzymes could restore lysosomal function when 

added to the cultures of cells with impaired lysosomal function [19].  

There are currently over 50 identified inherited diseases that exhibit impaired 

lysosomal degradation of various macromolecules. More than half of these share a 

common feature; the substrate of the defective enzyme is a glycan species e.g. a 

glycoprotein, glycosaminoglycan, or glycolipid [17]. The frequent correlation of impaired 

glycan degradation and LSDs may be due to the need for an abundant number of 

specialized degradative enzymes specific to the many possible formations of glycan 

structures due to the multitude of glycan combinations and branching possibilities. This 

will be discussed further in following sections regarding glycobiology.

Symptoms of LSDs vary but are frequently caused by neurological impairment, 

which can include seizures, movement disorders, dementia, and loss of vision and 
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hearing [3]. There are also common peripheral symptoms in LSDs including 

hepatomegaly and splenomegaly [3]. The severity and progression of the symptoms of 

LSDs depend on the impaired enzyme and its substrate [17]. Development of LSD 

symptoms are typically inversely related to the age at which symptoms appear i.e. 

infantile LSD symptoms develop rapidly while adult LSD symptoms develop slowly [3].  

While there are currently no cures for LSDs there are an increasing number of 

treatments being developed based upon two approaches: first, improving the availability 

of the deficient enzyme via methods such as bone marrow transplant, enzyme 

replacement therapy (ERT), small molecule pharmacological chaperones, and gene 

therapy and second, reducing the lysosomal load of the accumulating substrate via 

substrate reduction therapy [20-22]. 

Gaucher’s Disease. 

Gaucher’s Disease (GD) is the most common LSD [23], caused by loss-of-function 

mutations in the glucocerebrosidase (GCase) gene, GBA, which encodes the GCase 

enzyme, a lysosomal enzyme that cleaves the -glucosyl linkage of glucosylceramide 

(GlcCer) [24, 25]. Symptoms of GD are caused by accumulation of the GCase substrates 

GlcCer and glucosylsphingosine [26]. GD is divided into three subgroups according to the 

rate of disease progression and involvement with the central nervous system (CNS) [26, 

27]. Type I is non-neurodegenerative and is characterized by hepatosplenomegaly, 

skeletal and hematopoietic system abnormalities [26]. Type II is neurodegenerative and 

progresses rapidly while type III is also neurodegenerative but progresses slowly [28]. 

ERT using methods such as a recombinant GCase targeting macrophage uptake 

receptors has proven effective for GD [23, 29] 



 

 

5 
 

 

Parkinson’s Disease. 

PD is the second most common neurogenerative disorder and the most common 

movement disorder [30]. It is a slowly progressing disorder which causes impaired motor 

and autonomic function [31-33]. Inherited forms of PD are caused by mutations in the 

gene which encodes the protein α-synuclein [30], which will be discussed further later. 

Clinical symptoms of PD are usually defined by motor disturbances, but there may be 

disturbances in several other functions of the nervous system [31-34].  

The primary cause of PD symptoms is the degeneration of dopaminergic neurons 

due to neurotoxicity as a result of the aggregation of α-synuclein [31-34]. α-synuclein is a 

protein found abundantly in presynaptic nerve terminals [35]. While the role of α-synuclein 

is poorly understood it is suspected to play a role in maintaining synaptic vesicles in 

presynaptic nerves, regulating the release of dopamine, and synaptic membrane 

remodeling [36-38].  

α-synuclein can spread from cell-to-cell in a prion-like manner, involving “seeding” 

by mutated or abnormally folded forms of the protein which then serve as a template for 

aggregation. The aggregation of α-synuclein forms cytoplasmic inclusions containing 

misfolded proteins, which are termed Lewy bodies [30, 39-42]. The mechanism by which 

α-synuclein is secreted by cells is not fully understood. There is growing evidence that it 

is secreted via unconventional secretion mechanisms [12, 43]. Not only is α-synuclein 

released from cells in EVs, but α-synuclein containing EVs are taken into recipient cells, 

leading to aggregation and neurotoxicity in those cells [12, 42]. In fact, evidence indicates 

that the uptake of α-synuclein within EVs occurs preferentially over non-vesicular α-

synuclein [12]. Additionally, α-synuclein has been purified from EVs isolated from the 
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cerebrospinal fluid of PD patients [44], further supporting the model for cell-to-cell transfer 

of α-synuclein via EVs. These indications demonstrate that intercellular EV exchange is 

crucial to the pathogenicity and progression of PD. The mechanisms of EV biogenesis 

and secretion will be discussed in following sections [39]. 

There is evidence that mutant α-synuclein impairs intracellular degradation via 

inhibition of the autophagy-lysosome pathway (ALP) by binding to lysosomal receptors 

required for autophagic degradation [39]. ALP impairment has recently gained recognition 

as a major pathogenic event in neurodegenerative diseases, especially PD [45]. 

Mutations in the genes that are the most common causes of PD, such as leucine-rich 

repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced 

putative kinase 1 (PINK1), are known to impair the ALP [45]. Another common PD 

mutation is in the ATP132 gene, which is an essential lysosomal membrane protein. 

Mutations in this gene lead to impaired lysosomal membrane stability and acidification, 

reducing lysosomal degradation [45]. The ALP will be discussed, in depth, in later 

sections. 

There are currently no treatments that will stop the progression of PD. Treatment 

with dopaminergic drugs can treat symptomatic motor dysfunctions with varying success 

[31, 32, 34]. As PD progresses, the effect of drugs, such as the dopamine prodrug 

Levodopa, have decreased effectiveness due to the loss of the cellular ability to store 

dopamine [31]. 

Given the high frequency of impaired glycan degradation when lysosomal function 

is compromised it is logical to expect that glycans will be altered by PD since PD is caused 

by impaired degradation of α-synuclein [45]. Indeed, exploratory studies have shown 



 

 

7 
 

 

changes in N-linked glycans in murine PD models [46]. In these studies researchers 

observed time-dependent changes in glycans which clustered in structurally-related 

groups, indicating that the observed changes were not random [46]. 

Link Between Gaucher’s Disease and Parkinson’s Disease. 

As previously stated a hallmark of both GD and PD is impaired lysosomal function 

[47, 48]. Persons with GD are more likely to have PD than others due to a pathogenic 

loop between α-synuclein accumulation and the aforementioned GCase enzyme 

disfunction [47, 48]. In fact, mutations of GCase are the most frequent risk factor for PD 

in the general population [24]. Furthermore, there is evidence that altered metabolism of 

glycosphingolipids, such as GlcCer, contributes to synucleinopathies and 

neurodegeneration [49-51]. The link between impairments in the degradation of the -

glucosyl linkage within GlcCer and α-synuclein accumulation further supports the 

importance of glycans, glycosidases, and their role in protein quality control and 

intracellular degradation. 

Glycobiology 

Biological Functions of Glycans. 

Glycans are known to have roles in a variety of eukaryotic biological functions 

including modulating protein interactions, acting as specific ligands for cell-cell 

interactions, and regulating protein folding and trafficking [5]. Glycans have significant 

roles within the nervous system with regards to development, regeneration and synaptic 

plasticity [6]. Also, glycans form a complex network of molecular communication by 

mediating interactions between recognition molecules at the cell surface and in the 

extracellular matrix (ECM) [6]. There is also growing evidence that glycans function in 
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vesicular cargo selection and trafficking [52, 53], indicating mechanistic roles in 

intracellular exchanges. As previously mentioned there is wide diversity of glycan 

structures due to various carbohydrates and branching diversity. This structural diversity 

provides a mechanism by which each glycan can have a very specific function based 

upon its unique structure  [6].  

N-linked Glycans. 

Asparagine-linked glycans (N-glycans) are of particular interest for this research 

due to their importance in the regulation of the nervous system [54]. N-glycans were found 

to affect the function of synaptic proteins involved in the synaptic transmission as well as 

regulate multiple channel proteins [54]. Research has also shown that the structural 

features of glycans are key to their function [54]. They are glycans which are covalently 

attached to proteins at an asparagine (Asn) residue by an N-glycosidic bond. A common 

feature of all N-glycans is that they link to Asn via the acetylglucosamine carbohydrate, 

GlcNac1 [55]. The terminal epitopes of glycans are predominantly determined by N-

glycan diversity [55] and N-glycans are crucial to the glycosylation-mediated mechanism 

of protein folding quality and control [56]. As previously mentioned N-glycans are also 

pivotal to processes by which lysosomal hydrolases are targeted for transit to the 

lysosome [57]. Research has shown that N-linked glycans play role in nervous system 

development via neural cell adhesion and axonal targeting functions [54]. Defects in N-

glycan biosynthesis and degradation are commonly associated with nervous system, 

hepatic visual and immune system disfunction and congenital disorders [17].  

Lysosomal degradation of glycoproteins with complex N-glycans is a sequential 

process that occurs in a specific order and in tandem with the degradation of the 
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proteinaceous portion of the glycoprotein [17]. During this process each glycan subunit is 

degraded by a specific glycosidase. The majority of glycans that enter the lysosome 

consist of only six carbohydrates linked in one or two anomeric conformations [17]. Most 

of what is known about the lysosomal degradation of glycans is based upon analysis of 

the accumulation of carbohydrates in tissues from persons with LSDs [17].  

Lectins and Galectins. 

The presence of cellular and nuclear membrane glycans which are orientated to 

the cytoplasm suggests that there are glycan binding proteins which participate in the 

intracellular function of glycans [58]. Indeed, there are various studies that have found 

intracellular processes mediated by glycan binding proteins [58, 59].These proteins have 

been designated as lectins [60]. 

Galectins are a type of lectin that have been termed S-type lectins due to their 

dependency on disulphide bonds for stability and their glycan binding ability [58, 59]. 

Galectins have been found to function in various biological roles but, specifically, 

galectins-3 and 8 have been proven to be part of autophagic mechanisms [61-63] . 

Glycan Synthesis and Degradation. 

Intracellular degradative and recycling mechanisms are required for the efficient 

catabolism of glycans [15]. Glycans are primarily degraded in lysosomes by glycan 

degrading enzymes, endoglycosidases and exoglycosidases [17]. Even though 

lysosomal degradation of glycans is not always complete, both partially and fully 

degraded glycan species can be returned to the Golgi compartment where the glycans 

can be elongated via glycan attaching enzymes such as glycosyltransferases and 

sialytransferases [17]. For example, if the protein portion of an endocytosed glycoprotein 
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was not degraded in the lysosome the protein may be returned to the Golgi complex to 

have the glycan portion reattached then returned to the cell surface [17]. A similar 

mechanism occurs in the case of partial glycan degradation of glycosphingolipids, 

producing glucosylceramide, and the complete glycan degradation of glycosphingolipids, 

producing sphingosine [17]. As previously mentioned, the ALP is pivotal to the 

degradation and recycling of glycans [16]. 

Impaired glucose metabolism has been linked to many neurodegenerative 

disorders [64-66]. A common feature between these disorders is the impaired O-

GlcNAcylation of proteins [62, 67]. The impaired activity of the glycan modifying enzymes, 

O-Linked N-Acetylglucosamine Transferase (OGT) and O-GlcNAcase (OGA), has been 

linked to neurodegenerative disorders such as PD and Alzheimer’s Disease (AD) [68], 

indicating further that impaired glycan degradation can contribute to neurodegeneration 

[67, 68]. This is additionally supported by evidence that decreasing O-GlcNAcylation 

increases side effects of neurodegeneration while increasing O-GlcNAc levels reduces 

plaque formation as well as cognition in murine model [69]. It has also been shown that 

O-GlcNAc modification blocks the aggregation and toxicity of α-synuclein [68] 

Autophagy-Lysosome Pathway  

The ALP is the eukaryotic intracellular process of degradation in which cytosolic 

materials are isolated then delivered to lysosomes for degradation [70]. The functions of 

degradative autophagy can be split into two groups: First, the recycling of nutrients during 

starvation; Second, maintaining cellular homeostasis by degrading damaged organelles, 

pathogens, and misfolded proteins [71]. The ALP is divided into three different pathways 

based upon their unique methods of cargo entrance into the lysosome [39]. Chaperone 
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mediated autophagy (CMA), microautophagy, and macroautophagy [72]. CMA is 

dependent upon the recognition and targeting of specific cargos to the lysosome by 

chaperon proteins [73]. Microautophagy is the process of direct invagination of 

nonspecific cytosolic cargo by an endosome or lysosome [74]. Lastly, there is 

macroautophagy, referred hereafter as autophagy, which involves the nonspecific 

engulfment of cytosolic components by autophagosomes which then fuse with lysosomes 

[72]. A simplified cartoon representing these mechanisms is shown in Figure 1 below. 

 
 
Figure 1. Different Types of Degradative Autophagy [77]. The three types of 
autophagy - macroautophagy, microautophagy, and chaperone-mediated autophagy – 
use different mechanisms to deliver cargo to lysosomes but all result in degradation of 
cargo for reuse within the cell. 

 

As previously mentioned altered lysosomal function, and thereby autophagic 

function, have been implicated in various neurodegenerative diseases [75, 76]. In relation 

to PD, alterations in autophagy have been shown to affect the secretion of α-synuclein. 

This has been shown by various studies that have shown that promotion of autophagy 
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and inhibition of autophagosome-lysosome fusion increases α-synuclein secretion, 

impairment of autophagosome formation causes a decrease in α-synuclein secretion 

leading to intracellular α-synuclein accumulation [43]. 

Autophagosome Formation. 

Autophagosome initiation begins with the formation of a double membraned, cup-

shaped phagophore mediated by the scaffolding protein complexes ULK and Beclin-1 

[77-80]. Each of these complexes serve an important purpose in the formation of the 

autophagosome: the ULK complex associates with membranes while the Beclin-1 

complex induces the formation of a class of phosphorylating enzymes specific to 

autophagy, phosphatidylinositol-3-kinase class three (PI3KC3). [80]. After initiation, the 

phagophore is elongated by the ATG12-ATG5-ATG16 and ATG-LC3 complexes. During 

this process of elongation, the cytosolic contents that will be degraded are engulfed by 

the growing phagophore. Elongation is completed once the ends of the phagophore join, 

forming the double membraned autophagosome. The autophagosome is then able to fuse 

with an endosome to form an amphisome and/or a lysosome to form an autolysosome 

[80]. A detailed depiction of this molecular process can been seen in Figure 18 [70] in 

Appendix A. 

Lysosomes. 

Lysosomes are intracellular membrane-bound organelles that degrade 

cytoplasmic macromolecules using hydrolytic enzymes [4]. Lysosomes have a luminal pH 

of 4.5-5.0 which is produced and maintained by V-Type ATPase proton pump [81] and is 

required for the for the function of the hydrolytic enzymes within them [82]. Like many 

other enzymes, the lysosomal hydrolytic enzymes are glycoproteins that are synthesized 
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in the endoplasmic reticulum (ER) and traverse the ER-Golgi pathway [57]. Once in the 

Golgi compartment the hydrolytic enzymes are selectively trafficked to lysosomes, 

primarily via recognition of N-glycans containing mannose 6-phosphate (M6P) by P-type 

lectins, a class of glycan binding molecules which act as M6P receptors (MPR) [57]. Study 

of these MPRs has found two distinct transmembrane glycoproteins, the cation-

independent MPR (CI-MPR) and cation-dependent MPR (CD-MPR), which are both 

required for efficient targeting of lysosomal enzymes [83].  

Endosomes. 

Endosomes are membranous organelles involved in the ALP [84] which originate 

from the trans-Golgi membrane [85]. Their role in the ALP has been shown to link 

endocytic, secretory and degradative pathways [86]. Endosomes are separated into three 

categories: Early endosomes, late endosomes, and recycling endosomes [44]. Both late 

and recycling endosomes begin as early endosomes however, they are differentiated by 

the fate of their cargo [87, 88]. The cargo of late endosomes is secreted or degraded 

while the cargo of recycling endosomes is not, so that the cargo can be reused within the 

cell [44, 87, 88]. 

Early endosomes mature into late endosomes before fusion with lysosomes [87, 

89, 90] and are the major site for the entry of lysosomal hydrolases via the aforementioned 

CI-MPR, which leads to the fusion with, as well as the maintenance of degradative 

function of lysosomes [87]. A subgroup of late endosomes develops into multivesicular 

bodies (MVBs) which are formed by the inward invagination of the endosomal membrane 

[91]. The formation of MVBs is mediated by the well-defined mechanisms of the 
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endosomal sorting complexes required for transport (ESCRT), which facilitate membrane 

bending and scission reactions away from the cytoplasm and into the endosome [91]. 

Unconventional Secretion: Secretory Autophagy. 

Although autophagy has been traditionally viewed as a degradative process, 

recent studies have shown that autophagic machinery is used in the unconventional 

secretion of leaderless cytosolic proteins, such as IL-1β [92-94], as well as RNA [8], 

cytokines [95], immune mediators [96], prion-like proteins [97], and, most pertinent to this 

body of research, EVs [98].  

This unconventional secretion using autophagic machinery, secretory autophagy, 

occurs when an autophagosome or amphisome fuses with the plasma membrane to 

release their contents into the extracellular space rather than fusing with a lysosome and 

leading to degradation [96]. A cartoon of these divergent pathways is depicted in Figure 

2 [95] below. 

Extracellular Vesicles 

EVs are a heterogenous family of membrane-limited vesicles originating from the 

endosome or plasma membrane [99]. They are found in biological fluids such as stool, 

urine, breast milk, saliva, and cerebrospinal fluid [13]. EVs are not only important 

mediators of cell-to-cell communication in normal physiological processes but also a wide 

range of disease states such as inflammatory diseases [100], viral infections [7], breast 

cancer progression [9] and neurodegenerative diseases [11, 101]. EVs are separated into 

two subgroups based upon the origin of their membranes [14, 102]. 

Exosomes are EVs which are produced by the inward budding of an endosome, 

which produces an MVB, or multivesicular endosome (MVE), and are approximately 
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between 30nm and 150nm in diameter [14, 99, 102, 103]. Microvesicles are produced by 

the outward budding of the plasma membrane and are larger than exosomes, reaching 

diameters up to 1000 nm [14, 102, 103]. A simplified depiction of the difference between 

these processes is shown in Figure 3 [14] below. Research has indicated that EVs are 

linked to PD due to their role in the aggregation, secretion, and intercellular transfer of α-

synuclein [104, 105]. Additionally, mutations associated with PD have been identified in 

proteins involved in EV biogenesis, trafficking, and fusion, such as LRRK2, SPS35, and 

ATP 13A2 [101, 106-110], supporting previously stated evidence that PD and autophagic 

mechanisms are intertwined. 

Conclusion 

Glycans are crucial to cellular processes due to their roles in vital mechanisms 

such as the trafficking and localization of glycans, protein quality control, intercellular 

communication, intracellular degradation, protein-protein interactions, and neural 

development. They have been found to be important in not only overall cellular 

homeostasis, but specifically in neurodegenerative diseases and LSDs. Likewise, the 

intercellular transfer of cargo in EVs has been implicated in various prion and 

neurodegenerative diseases. Many questions remain regarding the role of glycans in EV 

secretion and intercellular targeting and the relationship between impaired glycan 

degradation, secretory autophagy, and neurodegeneration. 

The follow chapters will focus upon EV glycans, how these glycans change upon 

perturbation of autophagic processes, and the glycan definition of α-synuclein containing 

EVs. 
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Figure 2. The Proposed Model For The Divergent Points Of Degradative Versus 
Secretory Autophagy [95]. Degradative amphisomes fuse with lysosomes while 
secretory amphisomes fuse with the plasma membrane to release their contents. 
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Figure 3 [14]. EV Biogenesis and Secretion. Microvesicles bud directly from the 
plasma membrane, whereas exosomes are represented by small vesicles of different 
sizes that are formed as the ILV by budding into early endosomes and MVEs and are 
released by fusion of MVEs with the plasma membrane. 
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CHAPTER 3 

MATERIALS AND METHODS 

The Novel Description of Extracellular Vesicle Glycans at The Individual Vesicle 
Level 

 
Cell Culture. 

The human monocyte cell-line THP-1 was acquired from the American Type 

Culture Collection (ATCC). Cells were cultured in an incubator at 37°C and 5% CO2 in 

Roswell Park Memorial Institute (RPMI) 1640 media, supplemented with the addition of 

EV depleted 10% fetal bovine serum (FBS) (Hyclone), 10 g/ml ciprofloxacin 

hydrochloride, 100 IU/ml penicillin, and 100 g/ml streptomycin.  

Expression of S15 mCherry Membrane Protein. 

THP-1 cells were transfected to stably over-express S15-mCherry using a lentiviral 

viral vector (pLVX) containing our S15-mCherry construct and driven by a 

cytomegalovirus (CMV) promoter. Lentivirus was generated for transduction in human 

embryonic kidney (HEK) 293T cells transfected using the transfection reagent 

polyethylenimine (PEI) with equal parts concentration of VSV-g, ΔNRF or psPax2, and 

pLVX-CMV-S15-mCherry plasmid. 48 hours post-transfection lenti-viral particles were 

collected and purified from the 293T cells cultured media using a 0.45m millipore 

syringe. The purified lenti-viral particles were then used to treat THP-1 cells. The treated 

THP-1 cells were then selected for those positive for the resulting S15 mCherry by 

supplementing the previously mention RPMI with 5 g/ml puromycin (Hyclone).
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Differentiation. 

THP-1 cells were differentiated into monocyte derived macrophages by treatment 

with 100 nM phorbol myristate acetate (PMA) (Sigma) for 24 hours. 

Media Collection. 

 After 24h PMA treatment media was changed with fresh, EV depleted, RPMI. After 

24 hours of incubation at 37°C and 5% CO2 media was collected and centrifuged to isolate 

the cell-free supernatant (CSF). 

Immunofluorescent Staining and Preparation for THP-1 mCherry Extracellular 
Vesicles.  
 

For the EV visualization, 2mL of CSF was spinoculated at 13°C for 2 hours at 1200 

x g onto glass coverslips and subsequently fixed with a solution of 0.1 M PIPES with 3.7% 

formaldehyde (Polysciences) for 30 minutes. Immediately after fixation, vesicles were 

treated with 0.01% Saponin (Sigma-Aldrich) in a PBS block solution supplemented with 

10% normal donkey serum (NDS), and 0.01% NaN3 for 5 min. The coverslips were then 

individually subjected to 5 g/ml of various biotinylated lectins (Vector Laboratories) (see 

Table 2 in appendix A for list) and incubated at 37°C for one hour. The coverslips were 

then treated with streptavidin conjugated to a fluorescein isothiocyanate (FITC) 

fluorophore (BD Pharmingen) diluted in phosphate-buffered saline (PBS), at a 

concentration of 1:400, for one hour at room temperature (RT). Finally, the coverslips 

were mounted on slides and allowed to dry for 24 hours. 
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 Microscopic Observation and Analysis of mCherry Extracellular Vesicles at the 

Single Vesicle Level.  
 

EV images were taken on a DeltaVision wide field fluorescent microscope (Applied 

Precision, GE) outfitted with a digital camera (CoolSNAP HQ; Photometrics), while using 

a 1.4 numerical aperture, and 60× objective lens. 10-15 images were taken from different 

locations on the cover-slip to create a representative population. The resulting collected 

images were deconvolved after their acquisition with the SoftWoRx deconvolution 

software (Applied Precision). The deconvolved images were then analyzed on Bitplane: 

Imaris software version 7.6.4, where the spots algorithm was built around the mCherry 

S15 signal (see Figure 4) and the maximum fluorescence intensity of FITC found within 

these spots was then analyzed. All acquired images were subjected to the same spots 

signal algorithm via the Batch Coordinator tool (Bitplane) to each respective signal. 

Images with statistical outlying levels of signal were subjected to individual analysis and 

excluded if deemed non-representative. 

 
 
Figure 4. Representative image of spot algorithm built around the S15 construct. The S15 
mCherry construct (red) while the gray indicates where a spot is made around the S15 signal. 
The left image shows a S15 mCherry channel alone. The right image shows a merge of the S15 
mCherry channel with the S15 Spots algorithm. 
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 Induction of Autophagic Mechanisms Increases Specific Extracellular Vesicle 

Glycans 
 

Cell Culture. 

The human monocyte cell-line THP-1 was acquired from the ATCC. Cells were 

cultured in an incubator at 37°C and 5% CO2 in RPMI 1640 media, supplemented with 

the addition of exosome depleted 10% FBS (Hyclone), 10 g/ml ciprofloxacin 

hydrochloride, 100 IU/ml penicillin, and 100 g/ml streptomycin.  

Expression of S15 mCherry Membrane Protein. 

THP-1 cells were transfected to stably over-express S15-mCherry using pLVX 

containing our S15-mCherry construct and driven by a CMV promoter. Lentivirus was 

generated for transduction in HEK 293T cells transfected using the transfection reagent 

PEI with equal parts concentration of VSV-g, ΔNRF or psPax2, and pLVX-CMV-S15-

mCherry plasmid. 48 hours post-transfection lenti-viral particles were collected and 

purified from the 293T cells cultured media using a 0.45um Millipore syringe. The purified 

lenti-viral particles were then used to treat THP-1 cells. The treated THP-1 cells were then 

selected for those positive for the resulting S15 mCherry by supplementing the previously 

mention RPMI with 5 g/ml puromycin (Hyclone). 

Differentiation. 

THP-1 cells were differentiated into monocyte derived macrophages by treatment 

with 100 ng PMA (Sigma) for 24 hours. 

Autophagy-Inducing Drug Treatment. 

After 24 hours of PMA treatment media was changed with fresh, EV depleted, 

RPMI with 100 M rapamycin (ApexBio), a drug which inhibits the function of the 
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 autophagy repressor mammalian target of rapamycin (mTOR), leading to increased 

autophagy function [111-113]. After an additional 24 hours of incubation at 37°C and 5% 

CO2 media was collected and centrifuged to isolate the CSF. 

Immunofluorescent Staining and Preparation for THP-1 mCherry Extracellular 
Vesicles.  
 

For the EV visualization, 2mL of CSF was spinoculated at 13°C for 2 hours at 1200 

x g onto glass coverslips and subsequently fixed with a solution of 0.1 M PIPES with 3.7% 

formaldehyde (Polysciences) for 30 minutes. Immediately after fixation, coverslips were 

treated with 0.01% Saponin (Sigma-Aldrich) in a PBS block solution supplemented with 

10% NDS, and 0.01% NaN3 for 5 min. The cover slips were then individually subjected to 

5 g/ml of various biotinylated lectins (Vector Laboratories) and incubated at 37°C for 1 

hour. The coverslips were then treated with streptavidin conjugated to a FITC fluorophore 

(BD Pharmingen) diluted in PBS, at a concentration of 1:400, for 1 hour at RT. Finally, 

the coverslips were mounted on slides and allowed to dry for 24 hours. 

Microscopic Observation and Analysis of mCherry Extracellular Vesicles at the 
Single Vesicle Level. 
  

EV images were taken on a DeltaVision wide field fluorescent microscope (Applied 

Precision, GE) outfitted with a digital camera (CoolSNAP HQ; Photometrics), while using 

a 1.4 numerical aperture, and 60× objective lens. 10-15 images were taken from different 

locations on the cover-slip to create a representative population. The resulting collected 

images were deconvolved after their acquisition with the SoftWoRx deconvolution 

software (Applied Precision). The deconvolved images were then analyzed on Bitplane: 

Imaris software version 7.6.4, where the spots algorithm was built around the mCherry 
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 S15 signal (see Figure 5) and the maximum fluorescence intensity of FITC found within 

these spots was then analyzed. All acquired images were subjected to the same spots 

signal algorithm via the Batch Coordinator tool (Bitplane) to each respective signal. 

Images with statistical outlying levels of signal were subjected to individual analysis and 

thrown out if deemed non-representative. 

Impairment of Autopaghic Degradation Decreases Specific Extracellular 
Vesical Glycans 

 
Cell Culture. 

The human monocyte cell-line THP-1 was acquired from the ATCC. Cells were 

cultured in an incubator at 37°C and 5% CO2 in RPMI 1640 media, supplemented with 

the addition of EV depleted 10% FBS (Hyclone), 10 g/ml ciprofloxacin hydrochloride, 

100 IU/ml penicillin, and 100 g/ml streptomycin.  

Expression of S15 mCherry Membrane Protein. 

THP-1 cells were transfected to stably over-express S15-mCherry using pLVX 

containing our S15-mCherry construct and driven by a CMV promoter. Lentivirus was 

generated for transduction in HEK 293T cells transfected using the transfection reagent 

PEI with equal parts concentration of VSV-g, ΔNRF or psPax2, and pLVX-CMV-S15-

mCherry plasmid. 48 hours post-transfection lenti-viral particles were collected and 

purified from the 293T cells cultured media using a 0.45m Millipore syringe. The purified 

lenti-viral particles were then used to treat THP-1 cells. The treated THP-1 cells were then 

selected for those positive for the resulting S15 mCherry by supplementing the previously 

mention RPMI with 5 g/ml puromycin (Hyclone). 
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 Differentiation. 

THP-1 cells were differentiated into monocyte derived macrophages by treatment 

with 100 nM PMA (Sigma) for 24 hours. 

Lysosome-impairing Drug Treatment. 

After 24 hours of PMA treatment media was changed with fresh, EV depleted, 

RPMI with 100 nM bafilomycin-A1 (Cayman Chemical Company), a drug which inhibits 

lysosomal degradation by preventing lysosomal acidification via impairment of the 

previously mentioned lysosome ATP proton pump, ATPase [114, 115]. After 24 hours 

incubation at 37°C and 5% CO2 media was collected and centrifuged to isolate the CSF. 

Immunofluorescent Staining and Preparation for THP-1 mCherry Extracellular 
Vesicles.  
 

For the EV visualization, 2mL of cultured medium was spinoculated at 13°C for 2 

hours at 1200 x g onto glass coverslips and subsequently fixed with a solution of 0.1 M 

PIPES with 3.7% formaldehyde (Polysciences) for 30 minutes. Immediately after fixation, 

vesicles were treated with 0.01% Saponin (Sigma-Aldrich) in a PBS block solution 

supplemented with 10% NDS, and 0.01% NaN3 for 5 min. The cover slips were then 

individually subjected to 5 g/ml of various biotinylated lectins (Vector Laboratories) and 

incubated at 37°C for 1 hour. The coverslips were then treated with streptavidin 

conjugated to a FITC fluorophore (BD Pharmingen) diluted in PBS, at a concentration of 

1:400, for 1 hour at RT. Finally, the coverslips were mounted on slides and allowed to dry 

for 24 hours. 
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 Microscopic Observation and Analysis of Extracellular Vesicles at the Single 

Vesicle Level.  
 

EV images were taken on a DeltaVision wide field fluorescent microscope (Applied 

Precision, GE) outfitted with a digital camera (CoolSNAP HQ; Photometrics), while using 

a 1.4 numerical aperture, and 60× objective lens. 10-15 images were taken from different 

locations on the cover-slip to create a representative population. The resulting collected 

images were deconvolved after their acquisition with the SoftWoRx deconvolution 

software (Applied Precision). The deconvolved images were then analyzed on Bitplane: 

Imaris software version 7.6.4, where the spots algorithm was built around the mCherry 

S15 signal (see Figure 5) and the maximum fluorescence intensity of FITC found within 

these spots was then analyzed. All acquired images were subjected to the same spots 

signal algorithm via the Batch Coordinator tool (Bitplane) to each respective signal. 

Images with statistical outlying levels of signal were subjected to individual analysis and 

thrown out if deemed non-representative. 

 
Trends in Extracellular Vesicle Glycan Changes Are Similar in α-synuclein EVs 

 
Cell Culture.  

The SH-SY5Y human neuroblastoma cell-line was acquired from the ATCC. Cells 

were cultured in an incubator at 37C and 5% CO2 in Dulbecco's modified Eagle's Medium 

(DMEM) containing phenol red (Invitrogen), supplemented with the addition of 10% FBS 

(Hyclone), 10 /ml ciprofloxacin hydrochloride, 100 IU/ml penicillin, and 100 g/ml 

streptomycin.  
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 Expression of α-Synuclein Dual Split Protein Construct.  

SH-SY5Y cells were dually transduced by Kevin Burbidge M.S. to stably over-

express both complements of our α-synuclein dual split protein construct (DSP) using two 

individual pLVXs containing either α-synuclein-DSP-A or α-synuclein-DSP-B, each driven 

by a CMV promoter, that combine to create green fluorescent protein (GFP). Lentivirus 

was generated for transduction in HEK 293T cells transfected using the transfection 

reagent PEI with equal parts concentration of VSV-g, ΔNRF or psPax2, and pLVX-CMV-

Alpha-synuclein-DSP-A or pLVX-CMV-Alpha-synuclein-DSP-B plasmid. 24 hours post-

transfection lenti-viral particles were collected and purified from the 293T cells cultured 

media using a 0.45m millipore syringe. The purified lenti-viral particles were then used 

to treat SH-SY5Y cells and spinoculated at 13°C for 2 hours at 1200 x g. The treated cells 

were then selected for those positive for the resulting DSP constructs by supplementing 

the previously mention DMEM with 5 ug/ml puromycin. Cells were then sorted for green 

GFP intensity by flow cytometry for further selection, to ensure the cells were dually 

expressing both complements of the α-synuclein DSP. 

Autophagy-altering Drug Treatments. 

α-synuclein DSP expressing cells were grown in 15cm plates to approximately 

80% confluence at which point plates were individually incubated for 24 hours in fresh 

RPMI and 100 M rapamycin (ApexBio), 100nM bafilomycin-A1, or 0.1% DMSO.  

Immunofluorescent staining and Preparation of SH-SY5Y Extracellular Vesicles. 
 

For the EV visualization, 1mL of CFS was spinoculated at 13°C for 2 hours at 1200 

x g onto glass coverslips and subsequently fixed with a solution of 0.1 M PIPES with 3.7% 
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 formaldehyde (Polysciences) for 30 minutes. Immediately after fixation, vesicles were 

treated with 0.01% Saponin (Sigma-Aldrich) in a PBS block solution supplemented with 

10% NDS, and 0.01% NaN3 for 5 min. The cover slips were then individually subjected to 

5 g/ml of various biotinylated lectins (Vector Laboratories) and incubated at 37°C for 1 

hour. The coverslips were then treated with streptavidin conjugated to a Cy3 fluorophore 

(BioLegend) diluted in PBS, at a concentration of 1:400, for 1 hour at RT. Finally, the 

coverslips were mounted on slides and allowed to dry for 24 hours. 

Microscopic Observation and Analysis of α-synuclein Extracellular Vesicles at the 
Single Vesicle Level.  
 

Extracellular vesicle images were taken on a DeltaVision wide field fluorescent 

microscope (Applied Precision, GE) outfitted with a digital camera (CoolSNAP HQ; 

Photometrics), while using a 1.4 numerical aperture, and 60× objective lens. 10-15 

images were taken from different locations on the cover-slip to create a representative 

population. The resulting collected images were deconvolved after their acquisition with 

the SoftWoRx deconvolution software (Applied Precision). The deconvolved images were 

then analyzed on Bitplane: Imaris software version 7.6.4, where the spots algorithm was 

built around either the lectin signal or α-synuclein signal and the maximum fluorescence 

intensity found within these spots was then analyzed. All acquired images were subjected 

to the same spots signal algorithm via the Batch Coordinator tool (Bitplane) to each 

respective signal. Images with statistical outlying levels of signal were subjected to 

individual analysis and discarded if deemed non-representative. 

 

 



 

 

28 
 Statistical Analysis 

All graphs were generated and statistical analysis performed using GraphPad 

Prism version 7 (GraphPad Software, Inc.). All data shown was analyzed using two-way 

analysis of variance (ANOVA) with Sidak’s multiple comparisons test and depicts the 

standard error of the mean unless otherwise specified.
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CHAPTER FOUR 

RESULTS 

The Novel Description of Extracellular Vesicle Glycans 

Due to the presence of membrane glycans [58] and the known roles of glycans in 

biological processes [5, 16, 52, 53, 56], we predicted that EVs would have a various 

membrane anchored and cargo glycans. In order to identify the presence of these glycans 

a lectin binding assay (LBA) was applied to EVs collected from the human cell line THP-

1 monocyte derived macrophages (MDMs), which stably expressed an S15 mCherry 

membrane marker. Differing lectins bind to various glycan epitopes, allowing them to be 

used to indicate the presence of various glycans [116, 117]. Descriptions of lectin 

abbreviations and their suspected glycan specificities can be found in Table 2 (Vector 

Labs) in Appendix A. mCherry positive EVs were observed at the individual vesicle level 

via microscopy. A representative microscopic image of lectin binding is shown in Figure 

5. 

If EVs have various membrane anchored and cargo glycans, we expected to 

observe differential binding between the various lectins, indicated by differences in the 

intensity of the conjugated fluorophore. Indeed, we observed a range in the mean lectin 

intensities of THP-1 mCherry EVs (Figure 6). Not only did we observe high lectin 

intensities for some lectins and low intensities for others, but differences between the 

lectin intensities of mCherry EVs labeled with the same lectin (Figure 6). 



 

 

LEL, RCA1, and WGA bound to mCherry EVs with a wide range of intensity but 

bound to nearly all EVs. Contrary to the lectins that bound nearly all mCherry EVs, the 

lectins DBA, GSL1, PNA, SJA, UEA1, and sWGA appeared to label very few mCherry 

EVs and, those that were labeled had similar intensities (Figure 6). 

 
 
Figure 5. Representative Image of Lectin Staining and mCherry Marker. These 
microscopic images, taken at 60X magnification, demonstrate the membrane marker 
and lectin binding. The fluorescence of the mCherry membrane marker (top left), 
staining with the lectin WGA (top right), and a merge of the two channels (bottom) are 
depicted. Arrows indicate vesicles in which is mCherry and WGA colocalize. 

 

To investigate these differences further we evaluated the percentage of mCherry 

EVs that were spositive for lectin binding (Figure 7). All mCherry negative EVs were 

excluded from our evaluation in order to avoid analysis of bovine derived EVs contained 

in the EV depleted FBS. Additionally, an LBA on fresh EV depleted media was performed 

as a negative control and no lectin binding was observed. There were some lectins, ConA, 

mCherry WGA

Merge



 

 

31 
 WGA, RCA1 and LEL, which bound to nearly 100% of EVs. While there were other lectins, 

DBA, sWGA, GLS1, PNA, SJA and UEA1, which bound to less than 5% of EVs (Figure 

7). 

 

Figure 6. Lectin Binding of THP-1 mCherry Positive Extracellular Vesicles. Results 
from an LBA performed on THP-1 EVs. Each black dot represents an individually 
analyzed EV. The y-axis represents the intensity of the lectins listed on the x-axis. Error 
bars represent mean and standard deviation. The dotted horizontal line represents a 
negative lectin signal based up the background intensity of the negative control, which 
was EVs that had not been incubated with a lectin (-Lec). This graph is a individual 
representation of multiple experiments. 
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Figure 7. The Percentage of Lectin Positive THP-1 mCherry EVs. Lectin positive 
EVs were quantified by dividing the number of lectin positive mCherry vesicles by the 
overall number of mCherry vesicles found in the images from that condition, then 
multiplying that result by 100 to obtain a percentage of mCherry vesicles that were dual 
positive for the lectin and the mCherry S15 marker. Data shown depicts the means and 
SEM of multiple experiments.  

 
Induction of Autophagic Mechanisms Increases Specific Extracellular Vesicles 

Glycans 
 

Due to the aforementioned impact of autophagic mechanisms on glycan 

degradation, it is reasonable to predict that EV glycans, which are subjected to 

degradative processes, are altered through the autophagic process. Because of this we 

anticipated that EV glycans would change when autophagy is induced. When LBAs were 

N
o

L
e

c

C
o

n
A

D
B

A

D
S

L

E
C

L

G
S

L
1

G
S

L
2

L
C

A

L
E

L

P
H

A
-L

P
N

A

P
S

A

R
C

A
1

S
B

A

S
J
A

S
T

L

U
E

A
1

V
V

A

W
G

A

s
W

G
A

0

25

50

75

100

P
e
rc

e
n

t 
L

e
c
ti

n
+

THP-1 mCherry Extracellular Vesicles



 

 

33 
 conducted on EVs secreted by THP-1 cells treated with the autophagy inducing drug 

rapamycin, we observed a general trend of increases in the percentage of glycan positive 

EVs (Figure 8). The lectins LCA, PNA, STL, and VVA exhibited significant changes of 

their EV presence upon induction of autophagy when compared to the EVs from untreated 

cell and there was notable increase in the presence of ECL, GSL1, SJA, and UEA1 as 

well (Figure 8).  

Since autophagic mechanism can lead to the secretion of EVs [98] we predicted 

that induction of autophagy would lead to an increase in EV secretion. To investigate we 

quantified basal EV secretion and compared it to EV secretion when autophagy was 

induced using rapamycin (Figure 9). We observed a three to four-fold increase in EV 

secretion when autophagy was induced (Figure 9).  

 



 

 

34 
 

 
 

Figure 8. Changes in Lectin Positive Vesicles Upon Induction of Autophagy. 
Comparison of LBAs performed on EVs collected from untreated and rapamycin treated 
THP-1 cells. As in previous LBAs Lectin positive EVs were quantified by dividing the 
number of lectin positive vesicles by the overall number of S15 positive vesicles found 
in the images from that condition, then multiplying that result by 100 to obtain a 
percentage of S15 vesicles that were dual positive for the lectin and the S15 marker. 
Data shown depicts the means and SEM of multiple experiments. 
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Figure 9. Comparison of Basal Extracellular Vesicle Secretion to Secretion Upon 
Induction of Autophagy. Comparison of basal EV secretion to EV secretion upon 
induction of autophagy via rapamycin.  Graph represents the mean vesicles per image 
and SEM of multiple experiments. Statistics were analyzed using a two-tailed t-test with 
Welch’s correction. 

 
Impairment of Lysosomal Degradation Decreases Specific Extracellular Vesicle 

Glycans 
 

We have shown that EV glycans increase when autophagy is induced. Knowing 

this, we wanted to investigate the impact that impairing lysosomal function would have on 

EV glycans. Since glycan degradation occurs in the lysosome [2] we predicted that 

disruption of lysosomal function would reduce EV glycans by either reducing glycan 

degradation or impairing glycan localization to EVs. When LBAs were conducted on EVs 

secreted by THP-1 cells treated with the lysosomal impairing drug bafilomycin-A1, we 

observed a general trend of decreases in the percentage of glycan positive EVs (Figure 
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 10). The lectins LEL, PHA-L, and PSA demonstrated the most significant changes of their 

EV presence when compared to the untreated EVs.  

 

Figure 10. Changes of Extracellular Vesicle Glycans Upon Impairment of 
Lysosomal Degradation. Comparison of LBAs performed on EVs collected from 
untreated and bafilomycin-A1 treated THP-1 cells. As in previous LBAs Lectin positive 
EVs were quantified by dividing the number of lectin positive vesicles by the overall 
number of S15 positive vesicles found in the images from that condition, then 
multiplying that result by 100 to obtain a percentage of S15 vesicles that were dual 
positive for the lectin and the S15 marker. Data shown depicts the means and SEM of 
multiple experiments. 
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 degradation. We quantified EV secretion upon disruption of lysosomal function. We found 

a three to four-fold increase in EV secretion upon treatment with bafilomycin-A1. 

 

 
 

Figure 11. Changes in EV Secretion Upon Impairment of Lysosomal Degradation. 
Comparison of basal EV secretion to EV secretion upon impairment of lysosomal 
function via bafilomycin-A1.  Graph represents the mean vesicles per image and SEM 
of multiple experiments. Statistics were analyzed using a two-tailed t-test with Welch’s 
correction. 
 

Trends in Extracellular Vesicle Glycans Changes Are Similar in Differing Cell 
Types 

 
Knowing that EV glycans increase when autophagy is induced and decrease when 

lysosomal function is impaired in THP-1 cells, we wanted to investigate these 

mechanisms in an LSD model. We used the human neuroblastoma cell line SH-SY5Y 

which was transfected to express a DSP α-synuclein. With this model we were able to 
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 identify and characterize individual EVs containing α-synuclein. We quantified the basal 

percentage of glycan positive α-synuclein EVs (Figure 12&13) and the basal secretion of 

α-synuclein EVs (Figure 14&15) upon perturbation of autophagy using rapamycin and 

bafilomycin-A1. We found similar trends in increases of glycan positive α-synuclein EVs 

upon the induction of autophagy (Figure 12) as well as the three to four-fold increase of 

α-synuclein EV secretion (Figure 14) as previously observed. Likewise, impairment of 

lysosomal function resulted in a general reduction in glycan positive α-synuclein EVs 

(Figure 13) and a three to four-fold increase in α-synuclein EV secretion (Figure 15). 

Specifically, induction of autophagy lead to a significant increase of PHA-L and STL and 

a notable increase of ECL binding to EVs (Figure 12) while impairment of lysosomal 

function caused significant decreases in LCA, LAL, PHA-L, PSA, and STL positive α-

synuclein EVs (Figure 13). Interestingly, the lectin ECL did not follow the trend of 

decreased presence upon impairment of lysosomal function but, instead, increased to a 

similar level to that of α-synuclein EVs from rapamycin treated cells (Figure 13).  

While comparing basal α-synuclein EV secretion to the secretion of α-synuclein 

EVs upon impairment of lysosomal function it was discovered that the quantity of WGA 

EVs, which is typically used as a pan-EV marker, did not follow the trend of increasing 

three to four-fold (Figure 15). This lead us to investigate changes in the number of lectin 

positive EVs from both rapamycin and bafilomycin treated SH-SY5Y cells (Figure 16&17). 

We observed expected increases in the quantity of lectin positive vesicles from rapamycin 

treated cells except for STL, which was equivalent to the EVs from DMSO treated cells 

(Figure 16). Additionally, we observed slight increases in the quantity of lectin positive 
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 vesicles for most lectins except for PHA-L, STL, and WGA, which had a decrease in the 

amount of lectin positive EVs when treated with bafilomycin (Figure 17). 

 

Figure 12. Glycan Changes of α-synuclein EVs Upon Induction of Autophagy. 
Comparison of LBAs performed on EVs collected from DMSO and rapamycin treated 
SH-SY5Y cells. As in previous LBAs Lectin positive EVs were quantified by dividing the 
number of lectin positive vesicles by the overall number of α-synuclein positive vesicles 
found in the images from that condition, then multiplying that result by 100 to obtain a 
percentage of α-synuclein vesicles that were dual positive for the lectin and the α-
synuclein marker. Data shown depicts the means and SEM of multiple experiments. 
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Figure 13. Glycan Changes of α-synuclein EVs Upon Disruption of Degradative 
Autophagy. Comparison of LBAs performed on EVs collected from DMSO and 
bafilomycin-A1 treated SH-SY5Y cells. As in previous LBAs Lectin positive EVs were 
quantified by dividing the number of lectin positive vesicles by the overall number of α-
synuclein positive vesicles found in the images from that condition, then multiplying that 
result by 100 to obtain a percentage of α-synuclein vesicles that were dual positive for 
the lectin and the α-synuclein marker. Data shown depicts the means and SEM of 
multiple experiments. 
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Figure 14. Changes in α-synuclein EV secretion Upon Induction of Autophagy. 
Comparison of basal α-synuclein EV secretion to α-synuclein EV secretion upon 
induction of autophagy via rapamycin.  α-synuclein EV secretion was compared to the 
secretion of WGA positive EVs in order to demonstrate that the increase of α-synuclein 
EVs is due to a general increase in autophagic secretion. Graph represents the mean 
vesicles per image and SEM of multiple experiments. Statistics were analyzed using a 
two-tailed t-test with Welch’s correction. 
 



 

 

42 
 

 
 
Figure 15. Changes in α-synuclein EV secretion Upon Disruption of Degradative 
of Autophagy. Comparison of basal α-synuclein EV secretion to α-synuclein EV 
secretion upon impairment of lysosomal function via bafilomycin-A1.  α-synuclein EV 
secretion was compared to the secretion of WGA positive EVs in order to demonstrate 
that the increase of α-synuclein EVs is due to a general increase in autophagic 
secretion (discussed further in the results and discussion sections). Graph represents 
the mean vesicles per image and SEM of multiple experiments. Statistics were analyzed 
using a two-tailed t-test with Welch’s correction. 
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Figure 16. Changes in Lectin Positive EV Secretion Upon Induction of Autophagy. 
Comparison of LBAs performed on EVs collected from DMSO and rapamycin treated 
SH-SY5Y cells. Graph represents the mean of lectin positive vesicles per image and 
SEM of multiple experiments. 
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Figure 17. Changes in Lectin Positive EV secretion Upon Disruption of 
Degradative Autophagy. Comparison of LBAs performed on EVs collected from 
DMSO and bafilomycin-A1 treated SH-SY5Y cells. Graph represents the mean of lectin 
positive vesicles per image and SEM of multiple experiments. 
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CHAPTER FIVE 

DISCUSSION 

Evidence indicates that the cell-to-cell spread of neurodegenerative diseases, 

such as PD, are mediated by EVs [11, 101]. We have shown that alterations of autophagy 

cause similar glycobiological effects in different human cell lines We have identified 

changes in MDM EV glycans upon perturbation of autophagy that indicate mechanistic 

connections between degradative and secretory autophagy, EV biogenesis and 

secretion, and glycan synthesis and degradation. We propose that EV glycans serve as 

a signaling mechanism for EV cargo selection, EV secretion, and intercellular trafficking 

of EVs.  

We found that some glycans are present on all EV populations while other glycans 

are present on some or no EV populations. When autophagy was induced we saw a 

general increase in the percentage of glycan positive EVs. This could be due to many 

different cellular mechanisms but we propose two different possibilities. First, that 

increasing autophagy increases the targeting and localization of certain glycans to EVs, 

potential as a signal for EV secretion. Second, that increased autophagy increases glycan 

processing, via exposure to degradative lysosomal enzymes, to produce a greater 

amount of glycan structures. The possible mechanistic role of EV glycans will discussed 

further below. We also observed an increase in vesicle secretion upon induction of 

autophagy supporting previous evidence that autophagic mechanisms lead to the
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 secretion of EVs [98]. When we disrupted lysosomal degradation, we saw a decrease in 

the percentage of glycan positive EVs. Similar to the autophagic induction results, we 

propose two differing possibilities. First, the decrease of EV glycans is a result of 

increased secretion of EVs that have not had the opportunity for glycans to be trafficked 

to the EVs ass an effect of the impairment of lysosomal degradation. Second, the 

decrease in EV glycans occurred because the EVs and their glycans were not exposed 

to the lysosomal degradative enzymes, resulting in EVs with unprocessed glycans.  

Both proposals rely on a compensatory secretory mechanism that maintains 

cellular homeostasis when lysosomal degradation is impaired. The connections between 

the autophagic induction and impairment of lysosomal degradation proposals will be 

discussed later. We also observed an increase in EV secretion upon disruption of 

lysosomal degradation supporting the aforementioned secretory response to failed 

autophagic degradation, adding to evidence of the secretory autophagic pathway [95, 

118], and indicating a link between LSDs and the cell-to-cell spread of pathogenic 

materials.  

We have proposed two sets of potential explanations for the changes in EV 

glycans upon perturbation of autophagy. One explanation suggests that the trafficking of 

glycans to EVs increases upon induction of autophagy and decreases upon impairment 

of lysosomal function. The other explanation suggests that EV glycans increase or 

decrease due to the change of EV glycan exposure to degradative lysosomal enzymes. 

Again, both mechanism support evidence that secretory autophagy can maintain cellular 

homeostasis when degradative autophagy is impaired. 
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 When experimenting on an LSD model, we found similar trends in changes of EV 

glycosylation however, the glycans that changed in each cell line were not identical. Table 

1 shows the differences and commonalities of lectin binding changes between the 

examined THP-1 MDMs and SH-SY5Y neuroblastoma EVs. These similarities indicate a 

conserved mechanism of glycan processing while the differences may indicate cell type-

specific mechanisms of glycan processing and EV cargo selection and trafficking.  

When experimenting on neuroblastomas we found that the number of lectin 

positive vesicles generally increased upon induction of autophagy, except for STL, which 

remained constant. The homeostasis of the glycan that STL binds to may indicate a 

glycan that is pivotal to these mechanisms and is tightly regulated. Additionally, when we 

impaired lysosomal degradation in neuroblastomas we found that the amount of lectin 

positive vesicles increased slightly for most lectins. However, this was not due to a larger 

percentage of lectin positive EVs but was a result of overall increase in the autophagic 

secretion of EVs. Surprisingly though, there was a decrease in lectin positive EVs for 

some lectins. These lectins may indicate glycans that have mechanistic actions in 

lysosomal degradative mechanisms. 

Given the known roles of glycans in protein folding, oligomerization, quality control, 

and trafficking [53], we predict that EV glycans also act in EV cargo selection and release. 

Additionally, we suspect that, among other glycans, the glycans which the lectins STL 

and PHA-L bind to are significant to autophagic secretion processes due to the recurrent 

and significant changes observed in those lectins’ binding when autophagy was 
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 perturbed. Significant changes in LCA, LEL, and PSA were also frequently observed in 

different cell lines (Table 1). 

Overall, these findings lead us to insinuate a role of glycans in autophagic 

mechanisms, specifically EV cargo selection, secretion, and trafficking. Understanding 

autophagic mechanisms is crucial to the care of LSDs. Furthermore, we suspect that 

people with LSDs have differing glycans in their EV populations than unaffected persons. 

Given this we propose that EV glycan identification could be used as a biomarker of 

autophagic dysfunction.  Similarly, if glycans are pivotal to autophagic secretion, the 

understanding of EV biogenesis, cargo selection, and trafficking, and the cell-to-cell 

spread of toxic materials can be greatly improved. All of which will also improve the 

understanding of cellular homeostasis and intracellular communication. 

 

 
 
Table 1. Comparison of Changes in Lectin Binding Between Differing Cell Types. 
Upon perturbation of autophagy differences and similarities in the lectin binding 
between cell types were observed. 
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 Future Directions. 

We have found that certain glycans are commonly altered by autophagic 

processes and we propose that those glycans influence EV cargo selection, targeting, 

and secretion. We have demonstrated that EV glycans can be evaluated at the individual 

EV level and that there are EV populations with differing glycans. Evidence indicates that 

autophagically derived EVs can be identified via autophagic markers such as LC3-II, 

SQSTM1, and FLOT1 [119]. We suspect that autophagically secreted EVs will exhibit 

glycans, which we refer to as a glycotype or glycome, specific to EVs produced via 

autophagic mechanisms. Given this information we suspect that there is an opportunity 

to identify glycans specific to EV populations based upon their cellular derivation. 

Additionally, we predict that EVs with glycans differing from the general EV population will 

have differing cargo as well as a colocalization with other glycans which we found to be 

commonly altered.  

Future research also aims at the identification of the specific glycans that have 

been implicated by lectin binding. We are currently using spectrometric analysis to identify 

the EV glycans present upon each treatment. Furthermore, we will investigate mechanism 

by which glycans may have a functional role in EV cargo selection and trafficking. We 

plan to examine this via the introduction of varying glycosidases, with known enzymatic 

functions, to EVs prior to LBAs. We will then analyze the altered EVs for their content and 

ability for intercellular transfer. 

Lastly, a comparison between the protein masses and volumes of EVs from the 

different treatments could further the understanding of EV cargo loading, EV biogenesis, 
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 and secretory processes. We predict that EVs produced upon induction of autophagy will 

have a lower protein mass while EVs produced when lysosomal degradation is impaired 

will have a higher protein mass.
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APPENDIX A 
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Figure 18.[70] Molecular Mechanisms of Autophagosome Formation. Depiction of 
the complex molecular mechanisms which lead to the formation of an autophagosome. 
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Lectin Binding Specificity 

ConA α Man, α Glc 

DBA αGalNAc 

DSL (GlcNAc)2-4 

ECL Galβ4GlcNAc 

GSL-1 αGal 

GSL-2 α or BGlcNAc 

LCA αMan, αGlc 

LEL (GlcNAc)2-4 

PHA-L Galβ4GlcNAcβ6(GlcNAcB2Manα3)Manα3 

PNA Galβ3GalNAc 

PSA αMan, αGlc 

RCA-1 Gal 

SBA αβGalNAc 

SJA βGalNAc 

STL (GlcNAc)2-4 

sWGA GlcNAc 

UEA-1 αFuc 

VVA GalNAc 

WGA GlcNAc 

 

Table 2. Specificities. List of Lectins.
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