

Loyola University Chicago

Master's Theses

Theses and Dissertations

2017

Phenotyping Temperature-Sensitive Coronaviruses

Amani Eddins Loyola University Chicago

Follow this and additional works at: https://ecommons.luc.edu/luc_theses

Part of the Virology Commons

Recommended Citation

Eddins, Amani, "Phenotyping Temperature-Sensitive Coronaviruses" (2017). *Master's Theses*. 3671. https://ecommons.luc.edu/luc_theses/3671

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2017 Amani Eddins

LOYOLA UNIVERSITY CHICAGO

CHARACTERIZING TEMPERATURE-SENSITIVE CORONAVIRUSES

A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF MASTER OF SCIENCE

PROGRAM IN MICROBIOLOGY AND IMMUNOLOGY

 $\mathbf{B}\mathbf{Y}$

AMANI T. EDDINS CHICAGO, ILLINOIS DECEMBER 2017 Copyright by Amani T. Eddins, 2017

All rights reserved.

ACKNOWLEDGMENTS

I would like to thank Dr. Susan Baker, PhD, for her guidance throughout this process. I would aslo like to thank Dr. Baker for pushing me to not only become a better scientist but also to remember no matter what in life you choose to do, ensure it makes you happy. Additionally, I would like to thank my lab family, Rob Mettleman, Matthew Hackbart, Armorant O'Brian, Xufang Deng, and Aaron Volk. I reference them as my lab family because they provided unwavering love and support as I went through this process, and will forever hold a special place in my heart.

I would also like to thank my committee members, Dr. Edward Campbell, and Dr. Kathrine Knight, for their enthusiasm and willingness to join my committee with such short notice.

Last but not least, I would like to thank all of my close family and friends who supported me throughout my journey at Loyola University Chicago. Most importantly, I want to thank my parents for all the love, support, and words of wisdom. Without them, none of this would have been possible.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF ABBREVIATIONS	vii
ABSTRACT	xi
CHAPTER ONE: BACKGROUND Literature Review Coronavirus History and Classification Coronavirus Structure and Replication Coronavirus Genome Bats: Coronavirus's Natural Reservoir The Emergence of Potentially Pandemic Strains of Coronaviruses Studying Coronaviruses: Animal Model Identifying Attenuating Mutations Phenotyping Coronaviruses: MHV Aims and Hypothesis Significance	1 2 3 5 7 9 10 11 12 15 16
CHAPTER TWO: MATERIALS AND METHODS Virus, Cells Lines and Media Thawing of viral stock Performing Plaque Assays Calculating Viral Titer Imaging and Quantifying Plaques Genomic Deep Sequencing and Sequencing Analysis	17 17 17 18 19 20 20
CHAPTER THREE: RESULTS Validation of Temperature Sensitive phenotype of NC2 and LA16 Assessing Temperature Sensitive of LA16 Assessing Temperature Sensitive of NC2 LA16 MHV exhibits a reduction in plaque size NC2 may contain mutations that confer a reduction in plaque size Deep Sequencing of LA16 and NC2 identifies multiple mutations in ORF1A Comparing mutations located in ORF1A from LA16 and NC2	21 21 22 24 25 27 37
CHAPTER FOUR: DISCUSSION AND FUTURE DIRECTIONS	39
APPENDIX: SUPPLEMENTAL FIGURES	44

REFERENCE LIST

VITA

80 84

LIST OF TABLES

Table 1.	Nucleotide and Amino Acid changes in the ORF1A coding sequences of LA16 and NC2	38
Table 2.	Table of TS mutants that have been catorgized based on the location of mutations within the viral genome	41

LIST OF FIGURES

Figure 1. Phylogenic Tree of Coronavirus Family	3
Figure 2. Virion structure for a Coronavirus	4
Figure 3. Coronavirus Replication Cycle	5
Figure 4. Coronaviruses contain a highly conserved gene order and function	6
Figure 5. Coronavirus have the ability to gain human tropism	8
Figure 6. Diluting viral stock for plaque assay	19
Figure 7. Murine Coronavirus LA16 and NC2 are temperature sensitive for replication	23
Figure 8. Analysis of WT and LA16 plaque size at different temperatures	24
Figure 9. Preliminary Data Quantifying NC2 plaque size	26
Figure 10. Genomic Sequence Alignment of ORF1A coding region of WT, LA16 and NC2	29

LIST OF ABBREVIATIONS

- CoV Coronavirus
- ARDS Acute Respiratory Distress Syndrome
- MHV Murine Hepatitis Virus
- TS Temperature-sensitive
- SARS Severe Acute Respiratory Syndrome
- MERS Middle Eastern Respiratory Syndrome
- PEDV Porcine Epidemic Diarrhea Virus
- NSP Nonstructural Protein
- ROS Reactive oxygen Species
- DBT Delayed Brain Tumor Cells
- FCS Fetal Calf Serum
- MEM Minimum Essential Media
- PFU Plaque Forming Unit
- ORF1A Open Reading Frame

ABSTRACT

Coronaviruses (CoVs) can cause a range of symptoms; from a mild common cold to life threatening acute respiratory distress syndrome (ARDS) upon infection. CoVs provide an example of the importance of studying emerging viruses. These emerging viruses have the ability to be highly pathogenic and detrimental to the human population. Two prime examples of CoV emergence, SARS-CoV (Severe Acute Respiratory Syndrome) and MERS-CoV, (Middle Eastern Respiratory Syndrome), which exhibits the pandemic potential of emerging CoVs that gain human tropism. This human tropism is gained through mutations that allow for cross species and zoonotic transmission. If there was an outbreak of an emerging CoV strain, not only would that be deleterious to human health but could potentially accumulate billions in health care costs to treat infected patients. Given the increasing potential of an emerging CoV outbreak, there needs to be a state of urgency to develop vaccines that will help protect the human population against current and future circulating strains. The Coronavirdae family of viruses are unique because they contain a highly conserved gene arrangement and function within its viral genome. The purpose of this study is to identify a technique that will allow the identification of attenuating mutations that are present within a functionally conserved region. By identifying conserved targets of attenuation, I can identify mutations that can be applied to the development of a CoV vaccine strain for one or more CoVs. Currently, there are many ways in which we can identify attenuating mutations, and one such way is to identify temperature-sensitive (TS) mutants. A TS mutant will be able to confer a wild type phenotype when incubated under permissive conditions and will confer an attenuated phenotype when incubated in non-permissive conditions. By

ix

chemically inducing mutations and then verifying mutations that confer a TS phenotype, I can identify mutants that contain TS mutations in their viral genome. By using genomic sequencing of these TS mutants, I am able to identify novel attenuating mutations in the CoV genome. TS phenotyping allows for the potential application of the attenuating mutation to current strains, and confer protection, but also identifies targets for mutation that may also attenuate future emerging CoVs. The results gained from this study confirm the use of TS phenotyping and sequencing as an advantageous tool to identify sites that confer attenuation. With the proof that CoVs have the capability to mutate to gain human tropism, resulting in deadly disease, we must begin to prepare for potential pandemic outbreak.

CHAPTER ONE

BACKGROUND

Literaure Review

There has been an ongoing battle between humans and viruses since both have occupied the earth. As obligate intracellular pathogens, viruses have only two main focuses: replicate and disseminate. Humans, however, have developed methods to counteract these viral infections. Our bodies as living organisms have two main focuses as well: identify the pathogen and eliminate it. Typically, our bodies' constantly adapting immune system has the ability to fight off viral infections by controlling the infection to keep them from causing major health issues. But there have been many examples in history in which viruses have won that battle causing major health issues. Within the last 100 years we have numerous documented examples of such viral success, such as the 1918 influenza outbreak resulting in millions of deaths¹, Human Immunodeficiency Virus (HIV) also killing millions², as well as SARS-CoV and MERS-CoV infections, which combined have killed thousands^{3,4}. Although these RNA viruses are different in their characteristics they harbor, there is one common factor that aided their success to cause so much harm to the human population: un-anticipated emergence. When these viruses emerged from their host species into our naïve human population it resulted in the deaths of many. How can these pandemics be avoided one may wonder? The answer is simple: by studying emerging viruses and making vaccines that can protect against current and potentially emerging strains. One viral group that deserves such attention is coronaviruses, which in the last 15 years have had two viral strains emerge into the human population with the potential to cause world-wide pandemics.

Coronavirus History and Classification.

CoVs were first isolated in 1965 from human organ cultures from the respiratory tract of an adult with a common cold. Byone and Tyrell et al. were able to determine the presence of an infectious agent by inoculating human volunteers with the media from these cultures, which resulted in colds developing in these patients⁵. Simultaneously, another group was able to grow a virus that seemed to have "unusual properties" from samples obtained from medical students who also had colds⁶. This virus was named 229E. In the late 1960's, *Tyrell et al.* began to work with not only human strains but also many animal viruses, which included 229E, Mouse Hepatitis Virus (MHV) and a gastroenteritis virus of swine, which would later be named PEDV⁵. Looking at the various strains under the electron microscope he noted that the particles were pleomorphic, membrane coated and covered with club-like projections on the surface. This new family of viruses, having a crown-like appearance, was officially named the Coronaviridae. As further studies began to look more in depth at the pathology and the epidemiology of coronaviruses, the number of identified animal CoVs grew at a rapid rate. Researchers were able to isolate CoVs that caused disease in many animal species, which include but are not limited to cats, dogs, rabbits, mice, rats, chickens, turkeys and most importantly bats⁷. Fast forward to current day, using sequence analysis, researchers have been able to identify four subfamilies of CoVs that include, alpha, beta, gamma and delta CoVs (Figure 1). Currently, there are only six CoVs that infect humans: alpha Co's 229E, NL63 and beta CoV's OC34, HKU1, SARS-CoV, and MERS-CoV (Figure 1). Of the viruses that infect humans, the latter two listed are the most pathogenic.

Figure 1. Phylogenic Tree of Coronavirus Family. Above depicts numerous strains of viruses that have currently been identified to belong to the four CoV subtypes: alpha, beta, gamma, and delta. Highlighted in the red boxes are the current strains that have been identified to infect humans. The phylogenic tree was comprised of partial nucleotide sequences of RNA-dependent polymerase. Modified from Chan et al.⁸

CoV Structure and Replication.

CoVs are spherical, enveloped viruses, which house a single-stranded, positive sense RNA genome. These enveloped virions are studded with spike proteins on the surface. The surface of CoVs are made up of membrane proteins and a host derived envelope. Some strains also contain a hemagglutinin-esterase protein that is needed for releasing the viral genome during infection. Inside this enveloped virion is the positive strand RNA genome covered in nucleocapsid protein (Figure 2).

Figure 2. Schematic diagram of the typical virion structure for a Coronavirus. CoVs produce a spherical shaped virion that contains a single stranded RNA genome that is encased in nucleocapsid protein. (S) Spike protein is a transmembrane protein that forms the spike-like projections that interacts with host's surface receptor to allow endocytosis to occur. (M) Membrane houses the viral RNA. (E) Envelope protein that is derived from the host and also serves as a barrier for protection. (R) Viral RNA genome that encodes all of the structural and non-structural proteins used during the viral lifecycle to produce and infectious virion. (N) Nucleocapsid protein covers the viral genome and protects the RNA when injected into the host cell cytoplasm⁹.

Upon viral infection, the virus enters a cell through receptor-mediated endocytosis or fuses directly at the cell membrane for entry into a host cell¹. The genomic RNA, once released into the cytoplasm, is translated into two large polyproteins termed ORF1a/b, which encode the replication machinery needed for viral replication and are processed by the virus-encoded autocatalytic non-structural proteins. The genome also encodes structural and accessory proteins at the 3' end^{10,11}. Although all of the functions of the non-structural proteins (NSPs) that CoV's genome encode have yet to be identified, it is known that some of the NSPs will interact with the host endoplasmic reticulum (ER) allowing the formation of double-membrane vesicles (DMVs).

Inside these DMVs, other NSPs combine to make replication complexes and allow for genomic replication. The structural proteins, viral genome, nucleocapsid and viral envelope are assembled at the ER-Golgi intermediate compartment. Once assembly of the new virion is complete, the newly infectious viral particle is released from the cell ^{12,13} (Figure 3).

Figure 3. Coronavirus Replication Cycle. Depicted above is the general CoV replication cycle. Replication initiates with receptor mediated endocytosis, or fusing at the cell membrane. Upon entry into the cell the viral genome is released into the cytoplasm where the positive strand genome is translated to make two large polyproteins that encode the viral replicase machinery. Following the production of the replicase machinery, viral transcription occurs in double membrane vesicles derived from the ER-Golgi complex. Virions are packaged and matured within the double membrane vesicles, as they travel towards the host membrane. These vesicles that contain the infectious virion is then released from the cell. Modified from Zhu et al.¹⁴

Coronavirus Genome.

As members of the Nidovirales order, CoVs have a unique coding strategy: a majority of

viral RNA is translated into two large polyproteins and the remainder of the viral genome is

transcribed into a nested set of subgenomic mRNAs^{10,13}. The two polyproteins encode 16 nonstructural proteins that make up the viral replicase-transciptase complex¹⁵. Containing a large viral genome is very unique, and this is able to be achieved because CoVs genome encodes an exoribonuclease that functions as a proofreading mechanism and allows for the maintenance of the large viral genome without accumulating deleterious mutations^{16,17}. This large viral genome that is characteristic of CoVs is actually highly conserved amongst the CoV's subtypes (Figure 4). The conservation of gene order and function has been key in studying emerging viruses. This highly conserved gene order and function is the key component in many successful CoV infections. It can be appreciated that it is the accessory proteins and mutations in the viral spike that aid the CoV's ability to have a large range of host tropism¹⁸. However, it is the function of the polyproteins of the viral genome that aids in the efficient replication of these viruses¹⁹. These viruses have a conserved gene order and function because they arose from a common ancestor: the bat.

Figure 4. CoVs contain a conserved genome organization. Depicted above are two CoV genomes from two different strains of the virus. MHV is able to infect mice and SARS infects humans, yet they have a very similar genome organization. These two different viruses have very different host tropism but all retain similar replication machinery needed for successful viral infection. Although the other strains of CoVs are not depicted, these are a representation of the

conserved viral genomes organization present in the non-structural protein portion of their genome. Modified from Belouzard et al.⁸

Bats: Coronavirus's Natural Reservoir.

Although CoVs are dangerous due to their pathogenicity, another very important factor that should be considered is their high rate of zoonotic transmission. A study was done to determine which animal species harbored the most novel viral sequences and bats were identified as the number one candidate²⁰. Bats are an advantageous host for viruses for a number of reasons. First, these mammals have the ability to occupy diverse niches, which allows these animals to interact with large colonies of other bats and animals^{18,21}. The interactions with other bats allow for the transmission of different CoV's to co-infect a single bat, resulting in the opportunity for multiple quasi species to maintain a low-level of infection and recombine, resulting in populations of viruses that can infect a broad range of hosts²². Secondly, as humans continue to colonize more of the earth's natural landscape, we begin to force bats to have more interactions with species (i.e. humans and other animals) they may not commonly come into contact with. These interactions aid the transmission of CoVs from bats to other mammals, in which they would not readily infect. A prime example of this gain of host tropism is the emergence of SARS CoV and MERS CoV²². Although these CoVs originated in bats, due to mutations and interactions these viruses were able to gain tropism to allow them to infect an intermediate host (civet cats and camels) and ultimately gain human tropism^{18,23,24} (Figure 5). Aside from these diverse niches, it also has to be taken into consideration that these animals are migratory in nature. This migratory behavior is very advantageous for an emerging virus, giving the virus the opportunity to have a broad geographical area in which these viruses potentially can disseminate.

Figure 5. CoVs have the ability to gain human tropism. SARS and MERS to date have been the most pathogenic CoVs resulting in hundreds of deaths combined. These viruses emerged into humans by gaining mutations that allowed the viruses to have cross species transmission and ultimately, use these secondary reservoirs as zoonotic modes of transmission. Depicted above are the routes that SARS and MERS took to become introduced into the human population. Image modified from Wit et al.¹¹

It has yet to be fully elucidated as to why bats have the ability to harbor more than one species of CoVs and result in an asymptomatic infection²⁴. There are several proposed hypotheses as to why multiple CoV infections seem to have no deleterious effects on the bats they infect. First, it is has been proposed that bats are able to produce high levels of reactive

oxygen species (ROS) which controls genes that limit oxidative stress, resulting in reduced viral replication and pathogenesis^{25,26}. Also, studies have shown that bats harbor a modified innate immune response that potentially also contributes to the diverse population of CoVs that these mammals harbor. Bats also constitutively express interferon subtypes that rationally could limit disease while permitting low-level viral infection to happen concurrently²⁷.

The Emergence of Potentially Pandemic Strains of CoVs.

In the 21st century, CoVs have proven to be a huge pathogenic threat. In November of 2002, the first known documented case of a novel CoV infection occurred in Foshan, China²⁸. The patient was admitted with symptoms of fever, dry cough, and shortness of breath. These symptoms then resulted in severe respiratory complications, which exhibited symptoms of a deep lung infection. Upon initial diagnoses, medical care workers thought the patient had a novel form of influenza but upon testing the results were negative. By February of 2003 more than 300 individuals had been admitted to the hospital for the same symptoms with and unknown cause¹¹. In March of 2003 the World Health Organization (WHO) established a network of laboratories that were able to identify the causative agent as the emergence of SARS-CoV. By the end of 2003, the SARS emergence resulted in 774 deaths⁴. The SARS CoV outbreak was contained by isolation of infected patients and their contacts.

A decade later in June of 2012 another novel CoV, MERS, was isolated from the sputum of an infected patient in Saudi Arabia²⁹. MERS-CoV continued to emerge and spread outside of the Arabian Peninsula due to infected people traveling out of the country. Since then, there has been a slow spread of infection throughout the Middle East. As of April of 2016, there have been 1,728 confirmed cases of MERS, which resulted in 624 deaths in 27 countries³. Thus, the need to find a vaccine has become of the upmost importance.

Studying CoVs: Animal Model.

In order to study CoVs in a laboratory safe environment, researchers use the model animal CoV Mouse Hepatitis Virus (MHV). MHV is a beta CoV that causes illness in mice with a high mortality rate. Although the pathogenic characteristics differ from that of SARS and MERS, the high mortality is greater in MHV. MHV has more than 25 isolates, which have may different tissue tropism, but the incidence of enteric infection of MHV strains is most common^{30,31}. Some strains of MHV can cause progressive demyelinating encephalitis in mice, which has also been used as an animal model for multiple sclerosis³². This CoV is readily found in laboratory settings and can be transmitted via fecal-oral, direct contact, aerosols and fomite transmission. Although vertical transmission has been observed in experimental infections, this does not occur in spontaneous infections^{33,34}. In immune competent mice, MHV is very subclinical in its pathology^{30,34}. Expression of disease phenotype is directly dependent upon the virus strain and host factors, which include age, genotype, and immune function³⁴. Upon studying the histopathology of infected mice, the intestinal tracts exhibit syncytia in the mucosal epithelial tissue³⁴. MHV aside from being a murine tropic virus is also a great model because it contains the highly conserved gene order and function that is characteristic of CoVs¹⁹. MHV is the most highly studied CoV in-vivo and in-vitro at the molecular level. The majority of research projects that use MHV as a model, focus on viral pathogenesis and understanding of how CoVs interact and alter host immune functions. With the development of a reverse genetics system for MHV, the isolation and study of individual mutations in certain viral genes can be assessed. I can then identify mutations that specifically effect virus-host interactions resulting in a better outcome for the host 35 .

Identifying Attenuating Mutations.

Different methods are essential for identifying critical mutations that attenuate the virus. One such method of identifying deleterious mutations, is to induce mutations in the virus and screen for TS mutations. TS mutations are unique because under permissive conditions the mutations are able to confer a normal functioning gene product. In contrast, under non-permissive conditions the mutation will result in a gene product that displays a mutated phenotype. Identifying TS mutations can tell you many things about the pathogen. This method has been used primarily as a genetic tool. In 1965, *Edgar et al.* used TS phenotyping to identify the number of genes in a novel strain of bacteriophage T4D³⁶. By using chemical mutagenesis and screening the mutant progeny for growth under different temperature conditions, this group was able to identify 37 individual genes the phage contained³⁶. These mutations classically aid in the identification of essential genes in an unknown pathogen's genome. However, with the advancement in technology these TS mutations can now be induced and identified by sequencing down to the exact residue conferring the TS phenotype.

Complementation analysis can be used to verify that the mutant progeny observed from chemically inducing TS mutations are unique. Complementation analysis is a special and critical analysis that has been used throughout research in lieu of sequencing to identify not only the unique mutants but to also aid in predicting where in the genome these mutations may be located. *Edgar et al.*, after identifying the chemically induced strains of T4D bacteriophage were TS, used complementation to verify they were unique mutants and to begin to map where these mutations were located^{36,37}. Complementation analysis involves the co-infection of two mutated phage that are grown under non-permissive conditions and assessed for successful phage production. Individually the phage are unable to grow at non-permissive conditions³⁸. Thus, if

the two strains of phage contained the same mutations, they would not be able to complement or "over-come" the attenuating mutations because they are located in the same region. However, if the phage contains different mutations these mutant phage would be able to propagate infectious progeny because the phage were able to complement each other due to the mutations being located in different locations thus allowing the phage to "over-come" the attenuating mutations each phage contains individually.

Phenotyping CoVs: MHV.

In order to design a method to develop a vaccine strain that contains mutations that may help to protect against current and future strains emergence, we first must identify areas of attenuation in conserved regions of the viral genome. As I previously stated, the one common factor that aids in CoVs success in infection is also a chink in the armor, the highly conserved gene order and functions amongst the CoV family. By using different techniques, one may be able to identify key residues that attenuate the virus in an essential gene. For example, currently in vaccine development many attenuated strains contain a mutated structure/surface protein. Although this is typically the most common method, it also has to be taken into account that surface proteins tend to undergo a high rate of mutation to evade the immune response and are typically very tolerable of mutations. In contrast, finding a mutation in a conserved region that does not tolerate mutations presents the opportunity to potentially identify sites for attenuation that are common amongst current and potentially emerging CoV strains.

TS mutants of animal viruses have been very useful for studying many critical functions of individual viral genes ^{36,39,40}. These studies have allowed researchers to understand pathogenic, biochemical and pathological characteristics of these viruses with a goal to find an attenuating mutation that can be used to produce a vaccine strain. In 1983, *Koolen et al.* sought

to understand the viral genome of MHV^{39} . Prior to his studies, not much was known about coronaviruses nor its genome, but by using this animal model, they sought to identify different viral genes and their roles in the viral life cycle³⁹. In order to decipher the contents of the viral genome, a chemical mutagenesis was performed on over 1,284 viral clones³⁹. To verify that these mutants were TS, the viruses were allowed to grow under three conditions (33, 37 or $40^{\circ}C)^{39}$. If the mutant viruses showed a defect or reduction in titer at $40^{\circ}C$, these viruses were deemed TS³⁹. Of these clones, they were able to identify 20 TS mutants, that were classified into two categories, RNA + or RNA -. If the virus was RNA-, the virus was unable to synthesize viral RNA at non-permissive temperatures ($40^{\circ}C$)³⁹. RNA+ TS mutants were documented to still grow at all three temperatures, but were shown to have a reduction in titer as the temperature increased.

In 1990, *Baric et al.* sought to understand the function of the MHV polymerase genes to better understand how MHV transcription occurs ³⁸. Taking a similar approach as Koolen ten years earlier, chemical mutagenesis was performed to identify areas in the viral genome that tolerated mutations under permissive conditions³⁸. Several chemical mutagenesis experiments were performed to induce mutations throughout the genome. 26 mutant viruses containing genetic mutations were isolated. These mutants were assessed for phenotypes that differ to that of Wild Type virus. All 26 mutant strains were reported to have reduced viral titers and defects in RNA synthesis during temperature shift experiments ³⁸. Using complementation analysis, this group determined the number of genes or genetic functions that were altered by the chemical mutagenesis. The Baric Lab identified six complementation groups, each representing a hypothesized area of mutation in the viral genome³⁸. The temperature-dependent phenotype paired with the reduction in viral titer led the Baric Lab to hypothesize that the mutations were in

the viral replication machinery. Of these mutants that were derived, LA16 and NC2 stood out as potential candidates that should receive further studies. LA16 and NC2 are both hypothesized to have mutations in the replication machinery, thus giving them their documented TS phenotype. No further analysis was performed to identify the location of these mutations. By identifying the locations of these mutations, potentially I may potenitally be able to identify a novel target of attenuation that is conserved amongst many strains of CoVs. This information will be important in the development of a vaccine strain for protection from current and future stains of CoVs.

Aims and Hypothesis

Over the past 15 years, CoVs have exhibited both rapid and highly pathogenic emergences into the human population, eluding to the potential to cause a world-wide pandemic. Prime examples of this emergence were observed by the emergence of SARS-CoV in 2003⁴, which resulted in 774 deaths, followed by the emergence of MERS-CoV, in 2012, which resulted in 624 deaths thus far³. These unanticipated zoonotic jumps into the human population highlight the need to produce common methods or identify conserved targets of attenuation that can be used for generating vaccines against diverse CoV species. Although CoVs are infamous for having diversity in host tropism, one common factor of CoVs is a highly-conserved genome order and function. It is important to identify attenuation mutations in conserved genes or residues because it allows for the development of vaccine strains or direct-acting antivirals that can act on current and future emerging CoVs. The goal of this study is to identify conserved targets of attenuation, with the intention of identifying a strategy to make vaccines that can protect against the current circulating strains but also for future coronavirus outbreaks. For my thesis, I propose to identify the TS phenotype of two previously derived TS mutants of MHV, NC2 and LA16, followed by deep genomic sequencing to identify the location of these mutations within the viral genome. I hypothesize that LA16 and NC2 harbor mutations in the viral polymerase machinery conferring their TS phenotype. In AIM 1, I will characterize LA16 and NC2 by performing plaque assays under three different conditions to verify the TS phenotype⁴⁰. In AIM 2, I will identify the mutations present in the RNA genome of NC2 and LA16 by genomic deep sequencing. By identifying the mutations in the viral genome, I can further hypothesize whether individual or collective mutations confer a TS phenotype.

Significance

By conducting this study, we will gain information on novel mutations that lead to virus attenuation. TS phenotyping has become a key method in identifying novel gene functions of many unknown pathogens ^{36,37}. By identifying the mutations that result in a TS phenotype we can begin to investigate how mutations in certain viral genes affect virus-host interactions resulting in a better outcome for the host. In this proposal, we will combine classic genetic phenotyping techniques with current genomic sequencing to identify novel attenuating mutations. By confirming the TS phenotype of these mutant strains of a model CoV MHV, we will be able to confirm the accuracy and reproducibility that chemical mutagenesis can offer as well as establish the stability of the progeny that come from this technique. With the advancement of sequencing we can pin-point mutations that are located in highly conserved regions of the viral genome with much more accuracy than that of classic complementation and gene mapping techniques. Additionally, the information obtained in this study will allow the identification of sites in conserved genes that are important for replication. In the future, this information could be applied to a variety of CoVs to determine if the mutant viruses could be used as vaccines for protection from current and more importantly future strains of CoVs.

CHAPTER TWO

MATERIALS AND METHODS

Virus and Cell lines

Delayed Brain Tumor (DBT) cells were cultured in minimal essential medium (MEM) (Fisher) supplemented with 2.2g NaHCO₃, 5% TPB, 2% Penicillin/Streptomycin, 2% L-Glutamine and 5% heat inactivated Fetal Calf Serum (FCS). Cells were incubated at 37°C in 5% CO₂ enriched environment. Media, used for plaque assays, is made of 2X MEM supplemented with NaHCO₃, 5% TPB, 2% Penicillin/Streptomycin, 2% L-Glutamine and 2% FCS. During plaque assays cells were incubated in 5% CO₂ at either 33, 37, or 40 °C. Typically, cells were passaged 1:3 using trypsin-EDTA to disperse cells from culture plates. Our laboratory stock of WT MHV-A59 has been sequenced and propogated in DBT cells³⁵. LA16 and NC2 viral stocks were graciously obtained from the Baric Lab⁴¹.

Thawing of Viral Stocks

To thaw the frozen viral stocks, vials which contained supernatant from virally infected cells were flash thawed by incubating in the 37 °C water bath until 90% thawed. During the incubation period vials were constantly swirled in bath to ensure even thawing and were placed directly on ice once 90% of contents were no longer frozen. Once fully thawed, vials were vortexed to equally distribute the virions within supernatant.

Performing Plaque Assays

Cells are plated into a six-well tissue culture dish at a 5 x 10^5 cells/well confluency. These cells are plated in complete MEM supplemented as indicated above. The cells are then placed into the 37°C incubator for at least 18 hours prior to infection to allow cells to evenly form a monolayer on the bottom of the well. A ten-fold dilution was performed as indicated in Figure 6. Dilutions were performed in incomplete MEM on ice. Culturing media was aspirated from each well and cells were washed in PBS. 300 µl of viral dilution is applied to the well. Cells were incubated at 37 °C, 5% CO₂ for one hour, rocking plates gently every 15 minutes. During the absorption step, a 1:1 ratio of 2X-MEM and 0.4% Noble Agar was mixed. After the one hour incubation period the inoculum was removed and 2 ml of the 2X-MEM and Noble agar mix was added to each well. The plates were allowed to sit for ten minutes at room temperature (RT) to solidify prior to being moved to the appropriate incubator. Plates were allowed to incubate at the determined temperature for 48 hours. After 48 hours, 2 ml of 3.7% Formaldehyde-PBS solution was added to each well and incubated for 30 minutes at RT. The Formaldehyde-PBS solution/agar solution was removed and plates were washed with tap water. 1 ml of 0.1% Crystal Violet solution is added and allowed to incubate at RT for 15 mins on a rocker. Crystal violet was removed and plates rinsed and allowed to dry overnight. Plaques were then counted by hand.

19

Figure 6. Diluting Viral stock for plaque assay. In order to accurately determine viral titer serial dilutions are performed and applied to DBT cells in sequential order. Viral titer is back calculated based on the number of plaques produced after incubation. One plaque represents the identification of a successful viral infection indicated by the appearance of plaques. Modified from Dulbecco et al^{42,43}.

Calculating Viral Titer

In order to calculate viral titer, individual plaques were hand counted and documented.

Using the following equation, the viral titer was able to be calculated using the amount of

inoculum added and the number of plaques produced (Equation 1). By multiplying the number of

plaques by the dilution they were formed by 1000ul divided by the amount of inoculum will

result in the viral titer.

(Eq 1)
$$\frac{(\# Plaques) x \frac{1}{dilution} x (1000 ul/ml)}{volume \ plated \ (ml)} = pfu/ml = Viral \ Titer$$

19

Imaging and Quantifying Plaques

Plaques were photographed after fixation. Images were taken after the indicated incubation time and temperatures using a consistent magnification with a Zeiss Stemi 2000-C dissecting microscope. Photos were then uploaded to Microsoft Photoshop. Once uploaded the lasso tool was used to outline the clear boarder of the plaques. Once the plaque was outlined the image tab was selected and from the drop-down menu the analysis option was highlighted and the record measurement tab was selected. Upon selection of this option, the number of pixels are calculated within the outlined plaque. These represent the area in which the plaque occupies and is used as the area of the plaque. Five individual plaques were assessed at random for each indicated temperature for each strain.

Genomic Deep Sequencing and Sequencing Analysis

In order to obtain viral genomic sequences, DBT cells were infected with LA16 or NC2. After 48 hours of incubation in 33°C, the cellular supernatant is harvested. Supernatant is centrifuged at 5,000g for ten minutes. The viral supernatant was then added to naïve DBT cells to assess the presence of infectious virus production, verified by plaque formation. 1 ml of the cleared viral supernatant was shipped to Kansas State University's Integrated Genomics Facility in which deep genomic sequencing was performed⁴⁴. The consensus nucleotide sequence was provided in a word processor format which was entered into a genomic sequence file in Clone Manager. Once imputed into Clone Manager, the nucleotide sequence alignment function was applied to compare the sequences of LA16, NC2 and WT MHV (MHV full genome geneID reference accession number: NC_001846). The Blossum 65 Alignment function within Clone

20

Manager was applied to compare and identify amino acid differences between LA16, NC2 and WT sequences.

CHAPTER THREE

RESULTS

Validation of Temperature-sensitive Phenotype of NC2 and LA16

To determine if the viral stocks of LA16 and NC2 obtained from the Baric lab were TS, plaque assays were performed at 33, 37 and 40°C. DBT cells were infected with serial dilutions of the viral stock. The cells were incubated at different temperatures for 48 hours prior to fixation (Figure 7). Temperature sensitivity was assessed by viral titer and plaque morphology at the different temperatures. As a positive control a WT MHV infection was performed as well. It has been well documented that WT MHV, under all three conditions, is able to maintain the same viral titer, but exhibits an increase in plaque size^{35,40,41,45}. The increase in plaque size is due to the increase in metabolic rate of the cells under these conditions, resulting in an increase in viral replication, i.e. plaque size. WT MHV at 33, 37 and 40°C exhibit normal plaque morphology with a slight increase in plaque size as the temperature increases (Figure 7A). Although the plaque size increases slightly, it can be appreciated that the number of plaques present remains constant. The viral titer was maintained at 6.5 x 10⁶ ± 0.40 pfu/ml (Figure 7B). The images of WT MHV at 33, 37 and 40°C were all taken at the 10⁵ dilution in which the plaques were able to be visualized individually.

Assessing Temperature-sensitive Phenotype of LA16

When assessing TS mutant LA16 for replication and plaque formation at 33°C, it can be noted that the plaques have the same morphology as that of WT, in which the plaques appear to be the same size and shape (Figure 7A). The representative image of LA16 at 33°C was taken of

22

a 10^5 dilution allowing the visualization of individual plaques. The viral titer at 33^9 C was 1.2×10^7 pfu/ml (Figure 7B). The titer of LA16 at 33^9 C is similar as the literature documented titer, in which *Baric et al.* documented LA16 to have a 4.9×10^7 pfu/ml titer at 33^9 C (Figure 7B)⁴¹. This conservation of viral titer speaks to the integrity of the samples. When assessing LA16 at 37^9 C the morphology of the plaques can be appreciated at a 1:1000 dilution (Figure 7A). At this temperature, the plaques have a heterogeneous morphology that appear to range from small to pin-point in size. LA16 has a viral titer of 5.3×10^4 pfu/ml at 37^9 C (Figure 7B). LA16's titer is v similar to the documented titer of 2.7×10^4 pfu/ml when shifted to 37^9 C⁴¹. A reduction in titer was observed at 37^9 C compared to the titer at 33^9 C. Upon assessing the titer of LA16 at 40^9 C, I was unable to be detect any plaques using our assay, which has the sensitivity to detect 100 pfu/ml. This lack of detection at 40^9 C as well as the reduction in viral titer further validates that LA16 has retained its TS phenotype as documented in the literature.

Assessing TS Phenotype of NC2

In order to validate that NC2 is TS, as documented in the literature, a plaque assay was performed at different temperatures in which the morphology and viral titer were assessed. At 33° C, NC2 plaque morphology is very similar to that of WT at 33° C. These plaques appeared rather round in shape and the representative image was taken at 10^{5} dilution, which was the same as LA16 and WT (Figure 7A). When assessing the viral titer of NC2 at 33° C, the titer was calculated at 1.04×10^{7} pfu/ml (Figure 7B). This titer correlates with the viral titer documented in the literature as 5.6×10^{7} pfu/ml⁴¹. Upon incubating NC2 at 37° C, the plaques maintained their size and similar titer, resembling that of WT. The representative image of NC2 at 37° C (Figure 7A) was taken at a 10^{5} dilution. Although there was a ten-fold decrease in the viral titer, the morphology of the plaques remained constant. At 37° C NC2 has a titer of 10^{6} pfu/ml. When NC2

was incubated at 40°C, the plaques uniformly changed to a pin-point morphology (Figure 7A). Upon checking the titer of NC2 at 40°C, the titer was 5.3×10^4 pfu/ml (Figure 7B). This titer was slightly higher than the documented titer which was 4.0×10^3 pfu/ml⁴¹. The reduction of viral titer and change in plaque morphology, upon the increase of incubation temperature validates the integrity of NC2 as TS, as documented in the literature.

Figure 7. Comparison of Murine Coronavirus strains LA16 and NC2 to asses for Temperature-sensitive defects in replication. (A) Visual representations of plaques that were generated by WT, LA16, and NC2 after incubation in the indicated temperatures. DBT cells were infected with WT, NC2 or LA16 incubated at the indicated temperature and stained 48 hours post infection. These images were representative data from two independent experiments. (B) Summary of the characteristics of WT, LA16, NC2 at different temperatures. Plaque assays were performed using DBT cell and were allowed to incubate at the indicated temperature (33, 37 or 40°C) for 48 hours.

Figure 8. Analysis of WT and LA16 plaque size at different temperatures. Plaque assays were performed using DBT cells. DBT cells were infected with LA16 or WT virus, incubated at the indicated temperature and fixed 48 post-infection. Five plaques were chosen at random and photographed using a fixed camera. These images were analyzed using Adobe Photoshop. Photoshop was used to quantify the number of pixels present in the plaque, which is used to quantify plaque area. Statistical analysis was performed using Student's T test. (**p:>0.005. ***p:>0.0005)

LA16 MHV Exhibits a Reduction in Plaque Size

In order to further assess the TS phenotype of LA16, the plaque areas from the plaque assay shown in Figure 7A were quantified. DBT cells were inoculated with LA16 and WT MHV, and incubated at the indicated temperature for 48 hours. After fixation, images were taken using a camera set at a fixed magnification. These images were then assessed in Adobe Photoshop. Using the lasso tool in Photoshop the outline of plaque was traced. Once the plaque was outlined, Photoshop was able to quantify the amount of pixels within the outlined area corresponding to the area that plaque occupies. Five individual plaques were chosen at random and assessed at each indicated temperature. In order to ensure the plaques were chosen at random, upon fixingthe camera at the correct setting the first five plaques that were unobstructed
were selected and assessed. Upon comparing WT and LA16 plaque sizes at 33°C, the plaques were very similar in size (Figure 8). This also correlates with the morphology shown in Figure 7A. When comparing the plaque size of WT and LA16 at 37°C, LA16 has a significant decrease in plaque size. The reduction in plaque size correlates with the change in morphology (Figure 7A) and a decrease in viral titer (Figure 7B). Due to the heterogeneous population of plaques produced during incubation, the small and entirely cleared plaque population were quantified. LA16 failed to produce plaques within the detection limit of the plaque assay when incubated at 40°C. This data further verify that LA16 is TS.

NC2 MHV May Contain Mutations That Confer a Reduction in Plaque Size

To further validate the TS phenotype of NC2, the plaque area from the plaque assay shown in Figure 7A was quantified. DBT cells were inoculated with NC2 and incubated at the indicated temperature for 48 hours. WT was incubated at 40°C for 48 hours as a positive control. These assays were fixed and images were taken using a fixed camera. These images were then assessed in Photoshop. Using the lasso tool in Photoshop the outline of plaque was traced. Once the plaque was outlined, Photoshop was able to quantify the area with the outlined area. Five individual plaques were chosen at random and assessed at each indicated temperature. The average of plaque sizes produced by NC2 are identified at different temperatures as shown in Figure 9A. When assessing the average of the plaques NC2 produces it can be appreciated that the plaque size was maintained from 33 °C to 37 °C. Upon incubating NC2 at 40°C, there was a drastic reduction in plaque size (Figure 9A). When comparing the change in plaque size at 40°C, NC2 had a significant reduction in plaque size compared to WT (Figure 9B). This also correlates with the decrease in titer and change in plaque morphology (Figure 7A). From this preliminary

data, I can further validate NC2 is TS and potentially contains different mutations than that of LA16.

Figure 9. Preliminary Data Quantifying NC2 Plaque Size. (A) Quantification of the average plaque size of five individual plaques of NC2. Plaques size was quantified using Adobe Photoshop. DBT cells were infected with NC2 or WT virus, and were incubated at the indicated temperature and fixed 48 hours post-infection. (B) Quantification of plaque size for NC2 and WT MHV at 40°C. Plaques were incubated for 48 hours prior to fixation and quantification. Statistical Analysis was performed using Students T-test. (p***0.0005)

Deep Sequencing of LA16 and NC2 Identifies Multiple Mutations in ORF1A

Previous data from the Baric lab led to the hypothesis that mutations that conferred the TS phenotype of LA16 and NC2 were located in ORF1A⁴¹. Both mutants are classified in the RNA- group, which has a defect in viral RNA synthesis^{39,41}. The data indicated the RNA synthesis defect furthers supports the hypothesis that these mutations may be located in ORF1A which contains genes essential for viral replication. Sequencing samples were obtained from the supernatant of DBT cells infected with LA16, NC2 or WT at 33°C and incubated for 48 hours prior to harvesting. These samples were harvested from the infections incubated at 33°C to avoid selecting for mutations that were not originally present in the Baric stock. Selective pressure occurs when growing the viruses at non-permissive conditions. The samples were then cleared of cellular debris by centrifugation and sent to a collaborator for genomic deep sequencing. Upon receiving the sequencing data, the results were analyzed using Clone Manager function which allowed for the alignment of the nucleotide sequence. I also used Blossum 65 to align the three genomic sequences at the amino acid level, allowing the identification of nucleotides that result in amino acid changes (Figure 10).

In analyzing the data, I found that LA16 and NC2 collectively contained 13 nucleotide changes in ORF1A. Although there were 13 changes, only eight of these mutations resulted in amino acid changes. There were two mutations conserved between both strains, which I hypothesize may have been part of the original strain of viruses that these mutants were derived from. LA16 contains two unique mutations that resulted in amino acid changes. These mutations were located in Nsp3 and Nsp10, genes which have been shown to be important in viral replication^{40,45}. The first unique mutation in LA16 was located in Nsp3, the viral protease. This mutation change was in the second position of the codon, which resulted in an "a" nucleotide

substituted for a "g". This substitution resulted in the change of the amino acid from glycine to glutamic acid. The second unique mutation was located in Nsp10, whose function has been hypothesized to be a regulator of RNA synthesis by controlling polyprotein processing⁴⁶. This mutation resulted in a nucleotide change located in the second nucleotide position for a codon that coded for a cysteine. Additionally, this mutation resulted in an amino acid that was changed from a cysteine to a tryptophan.

In analyzing the data from NC2, it was noted there were four unique mutations that resulted in amino acid changes. These mutations were located in Nsp3, Nsp4 and Nsp5. Of these four unique mutations, three were conservative, resulting in a substitution of amino acids that have conserved properties. However, there was one unique mutation that was located in Nsp3. This mutation occurred in the first position of the codon, resulting in an amino acid change from Lysine to Glutamic Acid. The sequencing data reveal that LA16 and N2 both contain mutations in ORF1A, may be responsible for the TS phenotype observed in each strain. **Figure 10. Genomic Sequence Alignment of WT, LA16 and NC2 of ORF1A.** Using the Blossum 65 (clone manager) function the amino acid sequence was determined and was used to identify amino acid changes resulting from a change in the nucleotide sequence. (Black) The WT reference strain nucleotide sequence. (Green)The corresponding amino acids associated with the WT nucleotide sequence directly beneath the WT codon. (Highlighted nucleotide codon) Represents the codon in WT that was mutated in LA16 or NC2. (Red)Represents the mutated nucleotide within the highlighted codon that was changed. (Blue) Indicates a nucleotide mutation that resulted in a silent mutation. (Purple) Nucleotide change that resulted in an amino acid change. (Purple letter) Amino acid change. The sequence starts at the first methionine in ORF1A. This corresponds to nucleotide 210 in the full genomic sequence.

WT	1	atg m	gca a	aag k	atg m	ggc g	aaa k	tac Y	ggt g	ctc l	ggc g	ttc f	aaa k	tgg W	gcc a	cca p	gaa e	ttt f	cca p	tgg W	atg m	ctt l	ccg p	aac n
	70	gca a	tcg s	gag e	aag k	ttg l	ggt g	aac n	cct p	gag e	agg r	tca s	gag e	gag e	gat d	d ddd	ttt f	tgc c	ccc p	tct s	gct a	gcg a	caa q	gaa e
	139	ccg p	aaa k	gtt v	aaa k	gga g	aaa k	act t	ttg l	gtt v	aat n	cac h	gtg v	agg r	gtg v	aat n	tgt c	agc s	cgg r	ctt l	cca p	gct a	ttg l	gaa e
	208	tgc c	tgt c	gtt v	cag q	tct s	gcc a	ata i	atc i	cgt r	gat d	att i	ttt f	gta v	gat d	gag e	gat d	ccc p	cag q	aag k	gtg v	gag e	gcc a	tca s
	277	act t	atg m	atg m	gca a	ttg l	cag q	ttc f	ggt g	agt s	gcc a	gtc v	ttg l	gtt v	aag k	cca p	tcc s	aag k	cgc r	ttg l	tct s	att i	cag q	gca a
	346	tgg W	act t	aat n	ttg l	ggt g	gtg v	ctt l	ccc p	aaa k	aca t	gct a	gcc a	atg m	d ddd	ttg l	ttc f	aag k	cgc r	gtc v	tgc c	ctg l	tgt c	aac n
	415	acc t	agg r	gag e	tgc c	tct s	tgt c	gac d	gcc a	cac h	gtg v	gcc a	ttt f	cac h	ctt l	ttt f	acg t	gtc v	caa q	ccc p	gat d	ggt g	gta v	tgc c
	484	ctg l	ggt g	aat n	ggc g	cgt r	ttt f	ata i	ggc g	tgg W	ttc f	gtt v	cca p	gtc v	aca t	gcc a	ata i	ccg p	gag e	tat Y	gcg a	aag k	cag q	tgg W
	553	ttg l	caa q	ccc p	tgg W	tcc s	atc i	ctt l	ctt l	cgt r	aag k	ggt g	ggt g	aac n	aaa k	g ggg	tct s	gtg v	aca t	tcc s	ggc g	cac h	ttc f	cgc r
	622	cgc r	gct a	gtt v	acc t	atg m	cct p	gtg v	tat Y	gac d	ttt f	aat n	gta v	gag e	gat d	gct a	tgt c	gag e	gag e	gtt v	cat h	ctt l	aac n	ccg p
	691	aag k	ggt g	aag k	tac Y	tcc s	tgc c	aag k	gcg a	tat Y	gct a	ctt l	ctt l	aag k	ggc g	tat Y	cgc r	ggt g	gtt v	aag k	ccc p	atc i	ctg l	ttt f
	760	gtg v	gac d	cag q	tat Y	ggt g	tgc c	gac d	tat Y	act t	gga g	tgt c	ctc l	gcc a	aag k	ggt g	ctt l	gag e	gac d	tat Y	ggc g	gat d	ctc l	acc t
	829	ttg l	agt s	gag e	atg m	aag k	gag e	ttg l	ttc f	cct p	gtg v	tgg W	cgt r	gac d	tcc s	ttg l	gat d	agt s	gaa e	gtc v	ctt l	gtg v	gct a	tgg W
	898	cac h	gtt v	gat d	cga r	gat d	cct p	cgg r	gct a	gct a	atg m	cgt r	ctg 1	cag q	act t	ctt 1	gct a	act t	gta v	cgt r	tgc c	att i	gat d	tat Y
	967	gtg v	ggc	caa q	ccg p	acc t	gag e	gat d	gtg v	gtg v	gat d	gga g	gat d	gtg v	gta v	gtg v	cgt r	gag e	cct p	gct a	cat h	ctt 1	ctc 1	gca a
1	.036	gcc a	aat n	gcc a	att i	gtt v	aaa k	aga r	ctc l	ccc p	cgt r	ttg 1	gtg v	gag e	act t	atg m	ctg l	tat Y	acg t	gat d	tcg	tcc	gtt v	aca t
1	105	gaa e	ttc f	tgt c	tat y	aaa k	acc t	aag k	ctg l	tgt c	gaa e	tgc c	ggt g	ttt f	atc i	acg t	cag q	ttt f	ggc g	tat y	gtg v	gat d	tgt c	tgt c
1	. 1 / 4	ggt g	gac d	acc t	tgc c	gat d	f	cgt r	ggg	tgg W	gtt v	gcc a	ggc	aat n	atg m	atg m	gat d	ggc g	f	cca p	tgt c	cca p	ggg g	tgt c
1	210	acc t	aaa k	aat n	tat Y	atg m	ccc p	tgg W	gaa e	ttg l	gag e	gcc a	cag q	tCa S	tCa s	ggt g	gtt v	ata i	cca p	gaa e	gga g	ggt g	gtt v	cta l
1	.JIZ	LCC	act	cag	agc	aCt	yat	aca	ycg	ddt	CYT	yag	LCC	LÚT	aag	CCC	LdC	ygt	Cdt	YCT	ΥĽΈ	ycg	CCT	LÚT

	f	t	q	S	t	d	t	v	n	r	е	S	f	k	1	У	g	h	a	v	v	р	f
1381	ggt g	tct s	gct a	gtg v	tat Y	tgg w	agc s	cct p	tgc c	cca p	ggt g	atg m	tgg w	ctt l	cca p	gta v	att i	tgg w	tct s	tct s	gtt v	aag k	tca s
1450	tac Y	tct s	ggt g	ttg l	act t	tat Y	aca t	gga g	gta v	gtt v	ggt g	tgt c	aag k	gca a	att i	gtt v	caa q	gag e	aca t	gac d	gct a	ata i	tgt c
1519	cgt r	tct s	ctg l	tat Y	atg m	gat d	tat Y	gtc v	cag q	cac h	aag k	tgt c	ggc g	aat n	ctc l	gag e	cag q	aga r	gct a	atc i	ctt l	gga g	ttg l
1588	gac d	gat d	gtc v	tat Y	cat h	aga r	cag q	ttg l	ctt l	gtg v	aat n	agg r	ggt g	gac d	tat Y	agt s	ctc l	ctc l	ctt l	gag e	aat n	gtg v	gat d
1657	ttg l	ttt f	gtt v	aag k	cgg r	cgc r	gct a	gaa e	ttt f	gct a	tgc c	aaa k	ttc f	gcc a	acc t	tgt c	gga g	gat d	ggt g	ctt l	gta v	ccc p	ctc l
1726	cta l	cta l	gat d	ggt g	tta l	gtg v	ccc p	cgc r	agt s	tat Y	tat Y	ttg l	att i	aag k	agt s	ggt g	caa q	gct a	ttc f	acc t	tct s	atg m	atg m
1795	gtt v	aat n	ttt f	agc s	cat h	gag e	gtg v	act t	gac d	atg m	tgt c	atg m	gac d	atg m	gct a	tta l	ttg l	ttc f	atg m	cat h	gat d	gtt v	aaa k
1864	gtg v	gcc a	act t	aag k	tat Y	gtt v	aag k	aag k	gtt v	act t	ggc g	aaa k	ctg l	gcc a	gtg v	cgc r	ttt f	aaa k	gcg a	ttg l	ggt g	gta v	gcc a
1933	gtt v	gtc v	aga r	aaa k	att i	act t	gaa e	tgg w	ttt f	gat d	tta 1	gcc a	gtg v	gac d	att i	gct a	gct a	agt s	gcc a	gct a	gga g	tgg w	ctt l
2002	tgc c	tac y	cag q	ctg l	gta v	aat n	ggc g	tta l	ttt f	gca a	gtg v	gcc a	aat n	ggt g	gtt v	ata i	acc t	ttt f	gta v	cag q	gag e	gtg v	cct p
2071	gag e	ctt l	gtc v	aag k	aat n	ttt f	gtt v	gac d	aag k	ttc f	aag k	gca a	ttt f	ttc f	aag k	gtt v	ttg l	atc i	gac d	tct s	atg m	tcg s	gtt v
2140	tct s	atc i	ttg l	tct s	gga q	ctt l	act t	gtt v	gtc v	aag k	act t	gcc a	tca s	aat n	agg r	gtg v	tgt c	ctt l	gct a	ggc q	agt s	aag k	gtt v
2209	tat v	gaa e	gtt v	gtg v	cag a	aaa k	tct	ttg 1	tct	gca a	tat v	gtt v	atg m	cct	gtg v	ggt a	tgc c	<mark>agt</mark> s	gaa e	gcc a	act t	tgt C	ttg 1
2209 LA16	tat Y	gaa e	gtt v	gtg v	cag q	aaa k	tct s	ttg l	tct s	gca a	tat Y	gtt v	atg m	cct p	gtg v	ggt g	tgc c	agt s c	gaa e	gcc a	act t	tgt c	ttg l
2209 LA16 NC2 2278	tat y gtg v	gaa e ggt g	gtt v gag e	gtg v att i	cag q gaa e	aaa k cct p	tct s gca a	ttg l gtt v	tct s ttt f	gca a gaa e	tat y gat d	gtt v gat d	atg m gtt v	cct p gtt v	gtg v gat d	ggt g gtg v	tgc c gtt v	agt s c aaa k	gaa e gcc a	gcc a cca p	act t tta l	tgt c aca t	ttg l tat y
2209 LA16 NC2 2278 2347	tat y gtg v caa q	gaa e ggt g ggc g	gtt v gag e tgt c	gtg v att i tgt c	cag q gaa e aag k	aaa k cct p cca p	tct s gca a ccc p	ttg l gtt v act	tct s ttt f tct s	gca a gaa e ttc f	tat y gat d gag e	gtt v gat d aag k	atg m gtt v att	cct p gtt v tgt	gtg v gat d att i	ggt g gtg v gtg v	tgc c gtt v gat d	agt s c aaa k aaa k	gaa e gcc a ttg l	gcc a cca p tat y	act t tta l atg m	tgt c aca t gcc a	ttg l tat y aag k
2209 LA16 NC2 2278 2347 2416	tat y gtg v caa q tgt c	gaa e ggt g ggc g ggt ggt	gtt v gag e tgt c gat d	gtg v att i tgt c caa q	cag q gaa e aag k ttt	aaa k cct p cca p tac	tct s gca a ccc p cct p	ttg l gtt v act t gtg v	tct s ttt f tct s gtt v	gca gaa e ttc f gtt v	tat y gat d gag e gat d	gtt v gat d aag k aac n	atg m gtt v att i gac d	cct p gtt v tgt c act	gtg v gat d att i gtt v	ggt g gtg v gtg v ggc g	tgc c gtt v gat d gtg v	agt s c aaa k aaa k tta 1	gaa e gcc a ttg l gat d	gcc a cca p tat y cag q	act t tta l atg m tgc c	tgt c aca t gcc a tgg w	ttg l tat y aag k agg r
2209 LA16 NC2 2347 2416 2485	tat y gtg v caa q tgt c ttt	gaa ggt g ggc g ggt g ccc p	gtt v gag e tgt c gat d tgt c	gtg v att i tgt c caa q gcg a	cag q gaa e aag k ttt f ggc g	aaa k cct p cca p tac y aag k	tct s gca a ccc p cct p aaa k	ttg l gtt v act t gtg v gtc v	tct s ttt f tct s gtt v gag e	gca gaa e ttc f gtt v ttt	tat y gat d gag e gat d aac n	gtt v gat d aag k aac n gac d	atg m gtt v att i gac d aag k	cct p gtt tgt c act t ccc p	gtg v gat d att i gtt v aaa k	ggt gtg v gtg v ggc g gtc v	tgc c gtt v gat d gtg v agg r	agt s c aaa k aaa k tta l aag k	gaa gcc a ttg l gat d ata i	gcc a cca p tat y cag q ccc p	act tta l atg m tgc c tcc s	tgt c aca t gcc a tgg w acc t	ttg l tat y aag k agg r cgt
2209 LA16 NC2 2347 2416 2485 2554	tat y gtg v caa q tgt c ttt f aag k	gaa ggt ggc ggc ggt g gt gat i	gtt v gag e tgt c gat d tgt c aag k	gtg v att i tgt c c a gcg a atc i	cag q gaa e aag k ttt f ggc g acc t	aaa k cct p cca p tac y aag k ttc	tct s gca ccc p cct p aaa k gca a	ttg l gtt v act t gtg v gtc v ctg l	tct f tct s gtt v gag e gat d	gca e ttc f gtt v ttt f gcg a	tat y gat d gag e gat d acc t	gtt v gat d aag k aac n gac d ttt	atg m gtt v att i gac d aag k gat d	cct p gtt v tgt c act t ccc p agt s	gtg v gat d att i gtt v aaa k gtt v	ggt gtg v gtg ggc g tc v ctt	tgc c gtt v gat d gtg v agg r tcg s	agt s c aaa k aaa k tta l aag k aag	gaa e gcc a ttg l gat d ata i gcg a	gcc a cca p tat y cag q ccc p tgt c	act tta l atg m tgc c tcc s tca s	tgt c aca t gcc a tgg w acc t gag e	ttg l tat y aag k agg r cgt r ttt
2209 LA16 NC2 2347 2416 2485 2554 2623	tat y gtg v caa q tgt c ttt f aag k gaa e	gaa e ggt g ggc g ggt g ccc p att i u	gtt v gag e tgt c gat d tgt c aag k gat d	gtg v att i tgt c c a c a gcg a atc i aaaa k	cag q gaa e aag k ttt f ggc g acc t gat d	aaa k cct p cca p tac y aag k ttc f gtt	tct s gca a ccc p cct p aaa k gca a aca t	ttg l gtt v act t gtg gtc v ctg l ttg l	ttt s ttt f tct s gtt v gag e gat d gat d	gca a gaa e ttc f gtt v ttt f gcg a gag e	tat y gat d gag e gat d aacc n ctg l	gtt v gat d aag k aac n gac d ttt f ctt	atg m gtt v att i gac d aag k gat d gat d	cct p gtt v tgt c act t ccc p agt s gtt v	gtg v gat d atti gtt v aaaa k gtt v gtg v	ggt gtg v gtg g ggc g c tt l ctt l	tgc c gtt v gat d gtg v agg r tcg s gac d	agt s c aaaa k aaaa k tta 1 aaag k aaag k gca a a	gaa e gcc a ttg l gat d ata i gcg a gtt v	gcc a cca p tat y cag q ccc p tgt c gag e	act tta l atg m tgc c tcc s tca s agt s	tgt c aca t gcc a tgg w acc t gag e acg t	ttg l tat y aagg r cgt r ttt f ctc l
2209 LA16 NC2 2347 2416 2485 2554 2623 2692	tatty y gtgvv caaq q tgtc ttt f aagk k gaae e agcs	gaa ggt g ggc g ggt g t i ccc p att i ccc	gtt v gag e tgt c gat d tgt c aag k gat d tgt c	gtg v att i tgt c caa q gcg a atc i aaaa k aag k	cag q gaa e aag k ttt f ggc g ggc t t gat d gag e	aaa k cct p cca p tac y aag k ttc f gtt v cat h	tct s gca a ccc p cct p aaaa k gca a aca t gat d	ttg l gtt v act t gtg v gtc v ctg l ttg l gtg v	tct s ttt f tct s gtt v gag e gat d ata i	gca a gaa e ttc f gtt f gcg a gcg a ggc ggc ggc g	tat y gat d gag e gat d aacc n ctg l aca t	gtt v gat d aag k aac n gac d ttt f ctt 1 aaa k	atg m gtt v att i gac d aag k gat d gat v v	cct p gtt v tgt c act t ccc p gtt s gtt v tgt c	gtg v gat d att i gtt v aaa k gtt v gtg v gct a	ggt g gtg v gtg g g c v ctt l tta l	tgc c gtt v gat d gtg v agg r tcg s gac d ctt l	agt s c aaaa k aaaa k tta l aag k gca a gat d	gaa e gcc a ttg 1 gat d ata i gcg a gtt v agg r	gcc a cca p tat y cag q ccc p tgt c gag e ttg 1	act tta l atg m tcc c tcc s tca s gca a a	tgt c acaat gcca tgg w acct gag e acgt gga gga g	ttg l tat y aag k agg r cgt r ttt f ctc l gat d
2209 LA16 NC2 2347 2416 2485 2554 2623 2692 2692	tat y gtg v caa q tgt c ttt f aag k gaa e agc s tat y	gaa e ggt g ggc g ggt g ggt i ccc p att v cct p gtc v v	gtt v gag e tgt c gat c aag k gat d tgt c tgt c tgt t	gtg v att i tgt c aaa gcg a atc i aaaa k aag k ctt 1	cag q qaa e aag k ttt f ggc g gac t gat d gag e tttt f	aaa k cct p cca p tac y aag k ttc f gtt v cat h gat d	tct s gca a ccc p cct p aaaa k gca a a ca t gat d gag e	ttg l gtt v act t gtg v gtc v ctg l ttg l gtg v gga gga g	ttt s ttt f tct s gtt gag e gat d gat d ata i ggc g	gca a gaa e ttc f gtt f gtt f gcg a gag e ggc g gat d	tat y gat d gag e gat d aacc n acc t ctg l aca t gaa e	gtt v gat d aag k aac n gac d ttt f ctt l aaa k gtg v	atg m gtt v att i gac d aag k gat d gat d gat v v atc i	cct p gtt v tgt c act t ccc p gtt v tgt c tgt c gcc a	gtg v gat d att i gtt v gtt v gtg v gtg v gct a ccg p	ggt g gtg v ggc g gtc v ctt l tta l agg r	tgc c gtt v gat d gtg v v tcg s gac d ctt 1 atg m	agt sc aaaa k aaaa k tta 1 aagg k gca a gat d tat	gaa e gcc a ttg l gat d ata i gcg a gtt v agg r tgt c	gcc a cca p tat y cag q ccc p tgt c gag e ttg 1 tcc s	act t tta 1 atg m tcc c tcc s tca s gca a tttt f	tgt c aca t gcc a tgg w acc t gag e gag g gga g tct s	ttg l tat y aagg k agg r cgt r ttt f ctc l gat d gct a
2209 LA16 NC2 2347 2416 2485 2554 2623 2692 2761 2830	tat y gtg v caa q tgt c ttt f aag k gaa e agc s tat y cct p	gaa e ggt g ggc g ggt ggt i ccc P att y cct P gtc v gat at	gtt v gag e tgt c gat d tgt c aag k gat d tgt c tgt c gat gat d	gtg v atti c caa gcg a atci aaa k aag k ctt l gaa e	cag q qaa e aag k ttt f ggc g acc t d gag e ttt f gac d	aaa k cct p cca p tac y aag k ttc f gtt v cat h gat d tgc c	tct s gca a ccc p cct p aaaa k gca a aca t gat d gag e gtt v	ttg l gtt v act t gtg v gtc v ctg l ttg l gtg v gga g ca a	ttt s ttt f tct s gtt v gag e gat d gat d ata i ggc g gcg a	gca a gaa e ttc f gtt f gdt gdt gdt gag e gag gdt d gat d gat d	tat y gat d gag e gat d aac n acc t ctg l aca t gaa e gat t v	gtt v gat d aag k aac n gac d ttt f ctt 1 aaa k gtg v gta v	atg m gtt v att i gac d aag k gat d gat d gtt v atc i gat d	cct p gtt v tgt c act t ccc p agt s gtt v tgt c gcc a gca a	gtg v gat d att i gtt v aaa k gtt v gtg v gct a ccg p gat d	ggt g v ggg g ggc g ctt l tta l tta ggc g c tt l ggg g g g g g g g g g g g g g g g	tgc c gtt v gat d gtg v agg r tcg s gac d ctt 1 atg m aacc n	agt sc aaaa k tta l aag k aag k gca a gat d tat y caa q	gaa e gcc a ttg l gat d ata i gcg a gtt v agg r tgt c gat d	gcc a cca p tat y cag q ccc p tgt c gag e ttg 1 tcc s gat d	act t tta 1 atg m tgc c tcc s tca s agt s gca a ttt f gat d	tgt c aca t gcc a tgg w acc t gag e acg t gga g tct s gct a	ttg l tat y aag k agg r cgt r ttt f ctc l gat d gct a gaa e
2209 LA16 NC2 2347 2416 2485 2554 2623 2692 2761 2830 2899	tat y gtg v caa q tgt c ttt f aag k gaa e agc s tat y cct p gac d	gaa e ggt ggc g ggt g gtc p att i gtt v gtc v gtc cct p gtc cct s	gtt v gag e tgt c gat d tgt c aag k gat d tgt c gat d tgt c gat d gag k gag a gag a gag a gag e a gag a g g g g	gtg v atti c caa q gcg a atc i aaa k ctti gaa e gtc v	cag q qaa e aag k ttt f ggc g acc t gat d gag e ttt f gac d ctt l	aaa k cct p cca p tac y aag k ttc f gtt v cat h gat d tgc c gtc v	tct s gca a ccc p cct p aaaa k gca a aca t gat d gag e gtt v gct a	ttg l gtt v act t gtg v gtc v ctg l ttg l gtg g gga g gca a gat d	ttt s ttt f tct s gtt v gag e gat d gat d ggc g gcg a acc t	gca a gaa e ttc f gtt f gcg a gag e ggc g gat d gat d caa o	tat y gat d aacc t ctg l aca t gaa e gtt v gaa e	gtt v gat d aag k aac n gac d ttt f ctt 1 aaa k gtg v gta v gag e	atg m gtt v att i gac d aag k gat d gat d gat i gat d gat d gat d	cct p gtt v tgt c act t ccc p agt s gtt v tgt c gcc a agca a ggcc g	gtg v v gat d att i gtt v gtg v gtg v gtg v gtg c gtg d gtg d gtt d gtt v	ggt g tg v ggc g ctt l tta agg r gaa e gcc a	tgc c gtt v gat d gtg v tcg s gac d ctt l atg m aac n aag k	agt sc aaaa k tta 1 aagg k gca a gat d tat y caa q ggg g	gaa e gcc a ttg l gat d ata i gcg a gtt v tgt c gat d cag g cag a	gcc a cca p tat y cag q ccc p tgt c gag e ttg 1 tcc s gat d gtt v	act t tta 1 atg m tgc c tcc s tca s gca a ttt f gat d gag e	tgt c acaat gcca tgg w acct gag e acgt gga g gta a gct a gcg a	ttg l tat y aagg k agg r cgt r ttt f ctc l gat d gaa e gaa d
2209 LA16 NC2 2347 2416 2485 2554 2623 2692 2761 2830 2899 2968	tat y gtg v caa q tgt c ttt f aag k gaa e agc s tat y cct p gac d tcg s	<pre>gaa e ggt g ggc g ggt ggt v ccc p att i gtt v gtc v ggt gtc g a gaa e</pre>	gtt v gag c tgt c gat d tgt c aag k gat d tgt c gat d tgt c gat aag k gat d tgt c aag k gat d aag c aag c aag c a s c aag c a s s c a s c a s c a s c a s c a s c a s c s s c a s c s s s s	gtg v att i c caa q gcg a atc i aaa k aag k ctt 1 gaa e gtc v tgc c	cag q qaa e aag k ttt f ggc g acc t d gag e ttt f gac d ctt l gat v	aaaa k cct p cca p tac y aag k ttc f gtt v cat h gat d tgc c gtc v gcg a	tct s gca a ccc p cct p aaaa k gca a t gat d gat d gat v gtt v gct a cat h	ttg l gtt v act t gtg v gtc v ctg l ttg l gtg v gga g gca a d act t	tct s ttt f tct s gtt v gag e gat d gat d ataa i ggc g gcg a acc t ggt g	gca a gaa e ttc f gtt f gcg a gag e gag gat d caa q agt s	tat y gat d gag e gat d acc t ctg l acc t gaa e gtt v gaa e caa g c	gtt v gat d aag k aac n gac d ttt f ctt l aaa k gtg v gaa e e gaa e	atg m gtt v att i gac d aag k gat d gat d gat c i gac d gac d gaa e	cct p gtt v tgt c act t ccc p agt s gtt v tgt c gcc a gcc a	gtg v v gat d att i gtt v aaa k gtt v gtg v gtg v gct a gat d gtt v gct a	ggt g v ggc g gc g ctt l tta agg r gaa e gag e	tgc c gtt v gat d gtg v agg r tcg s d ctt 1 atg m aac n aag k cct v	agt sc aaaa k tta l aag k aag k gca a gat d tat y ggg g gat d	gaa e gcc a ttg l gat d ata i gcg a gtt v agg r tgt c gat c gat c gat c g	gcc a cca p tat y cag q ccc p tgt c gag e ttg 1 tcc s gat d gtt v gtc v	act t tta 1 atg m tgc c tcc s tca s tca s gca a ttt f gat d gag e gga o	tgt c c aca t gcc a tgg w acc t gag e a cg t gga g tct s gcg a tct s s	ttg 1 tat y aag k agg r cgt r ttt f ctc 1 gat d gaa e gaa e d caa g

	t	р	i	а	S	a	е	е	t	е	v	g	е	a	S	d	r	е	g	i	a	е	a
3106	aag	gca	act	gtg	tgt	gct	gat	gct	gta	gat	gcc	tgc	ccc	gat	caa	gtg	gag	gca	ttt	gaa	att	gaa	aag
	k	a	t	v	c	a	d	a	v	d	a	c	p	d	q	v	e	a	f	e	i	e	k
3175	gtt	gaa	gac	tct	atc	ttg	gat	gag	ctt	caa	act	gaa	ctt	aat	gcg	cca	gcg	gac	aag	acc	tat	gag	gat
	v	e	d	s	i	l	d	e	l	q	t	e	l	n	a	p	a	d	k	t	Y	e	d
3244	gtc	ttg	gca	ttc	gat	gcc	gta	tgc	tca	gag	gcg	ttg	tct	gca	ttc	tat	gct	gtg	ccg	agt	gat	gag	acg
	v	l	a	f	d	a	v	c	s	e	a	l	s	a	f	Y	a	v	p	s	d	e	t
3313	cac	ttt	aaa	gtg	tgt	gga	ttc	tat	tcg	cct	gct	ata	gag	cgc	act	aat	tgt	tgg	ctg	cgt	tct	act	ttg
	h	f	k	v	c	g	f	Y	s	p	a	i	e	r	t	n	c	W	l	r	s	t	l
3382	ata	gta	atg	cag	agt	cta	cct	ttg	gaa	ttt	aaa	gac	ttg	gag	atg	caa	aag	ctc	tgg	ttg	tct	tac	aag
	i	v	m	q	s	l	p	l	e	f	k	d	l	e	m	q	k	l	W	l	s	Y	k
3451	gcc	ggc	tat	gac	caa	tgc	ttt	gtg	gac	aaa	cta	gtt	aag	agc	gtg	ccc	aag	tct	att	atc	ctt	cca	caa
	a	g	Y	d	q	c	f	v	d	k	l	v	k	s	v	p	k	s	i	i	l	p	q
3520	ggt	ggt	tat	gtg	gca	gat	ttt	gcc	tat	ttc	ttt	cta	agc	cag	tgt	agc	ttt	aaa	gct	tat	gct	aac	tgg
	g	g	Y	v	a	d	f	a	Y	f	f	l	s	q	c	s	f	k	a	Y	a	n	w
3589	cgt	tgt	tta	gag	tgt	gac	atg	gag	tta	aag	ctt	caa	ggc	ttg	gac	gcc	atg	ttt	ttc	tat	d	gac	gtt
	r	c	l	e	c	d	m	e	l	k	l	q	g	l	d	a	m	f	f	Y	ddd	d	v
3658	gtg	tct	cat	atg	tgc	aag	tgt	ggt	aat	agc	atg	acc	ttg	ttg	tct	gca	gat	ata	ccc	tac	act	ttg	cat
	v	s	h	m	c	k	c	g	n	s	m	t	l	l	s	a	d	i	p	Y	t	l	h
3727	ttt	gga	gtg	cga	gat	gat	aag	ttt	tgc	gct	ttt	tac	acg	cca	aga	aag	gtc	ttt	agg	gct	gct	tgt	gcg
	f	g	v	r	d	d	k	f	c	a	f	Y	t	p	r	k	v	f	r	a	a	c	a
3796	gta	gat	gtt	aat	gat	tgt	cac	tct	atg	gct	gta	gta	gag	ggc	aag	caa	att	gat	ggt	aaa	gtg	gtt	acc
	v	d	v	n	d	c	h	s	m	a	v	v	e	g	k	q	i	d	g	k	v	v	t
3865	aaa	ttt	att	ggt	gac	aaa	ttt	gat	ttt	atg	gtg	ggt	tac	g	atg	aca	ttt	agt	atg	tct	cct	ttt	gaa
	k	f	i	g	d	k	f	d	f	m	v	g	Y	ggg	m	t	f	s	m	s	p	f	e
3934	ctc	gcc	cag	tta	tat	ggt	tca	tgt	ata	aca	cca	aat	gtt	tgt	ttt	gtt	aaa	gga	gat	gtt	ata	aag	gtt
	l	a	q	l	Y	g	s	c	i	t	p	n	v	c	f	v	k	g	d	v	i	k	v
4003	gtt	cgc	tta	gtt	aat	gct	gaa	gtc	att	gtt	aac	cct	gct	aat	g	cgt	atg	gct	cat	ggt	gca	ggt	gtt
	v	r	l	v	n	a	e	v	i	v	n	p	a	n	ggg	r	m	a	h	g	a	g	v
4072	gca	ggt	gct	ata	gct	gaa	<mark>aag</mark>	gcg	ggc	agt	gct	ttt	att	aaa	gaa	acc	tcc	gat	atg	gtg	aag	gct	cag
	a	g	a	i	a	e	k	a	g	s	a	f	i	k	e	t	s	d	m	v	k	a	q
NC2 4141	ggc g	gtt v	tgc c	cag q	gtt v	ggt g	g gaa e	(E) tgc c	tat Y	gaa e	tct s	gcc a	ggt g	ggt g	aag k	tta l	tgt c	aaa k	aag k	gtg v	ctt l	aac n	att i
4210	gta	d	cca	gat	gcg	cga	d	cat	ggc	aag	caa	tgc	tat	tca	ctt	tta	gag	cgt	gct	tat	cag	cat	att
	v	ddd	p	d	a	r	ddd	h	g	k	q	c	y	s	l	l	e	r	a	y	q	h	i
4279	aat	aag	tgt	gac	aat	gtt	gtc	act	act	tta	att	tcg	gct	ggt	ata	ttt	agt	gtg	cct	act	gat	gtc	tcc
	n	k	c	d	n	v	v	t	t	l	i	s	a	g	i	f	s	v	p	t	d	v	s
4348	cta	act	tac	tta	ctt	ggt	gta	gtg	aca	aag	aat	gtc	att	ctt	gtc	agt	aac	aac	cag	gat	gat	ttt	gat
	l	t	Y	l	l	g	v	v	t	k	n	v	i	l	v	s	n	n	q	d	d	f	d
4417	gtg	ata	gag	aag	tgt	cag	gtg	acc	tcc	gtt	gct	ggt	acc	aaa	gcg	cta	tca	ctt	caa	ttg	gcc	aaa	aat
	v	i	e	k	c	q	v	t	s	v	a	g	t	k	a	l	s	l	q	l	a	k	n
4486	ttg	tgc	cgt	gat	gta	aag	ttt	gtg	acg	aat	gca	tgt	agt	tcg	ctt	ttt	agt	gaa	tct	tgc	ttt	gtc	tca
	l	c	r	d	v	k	f	v	t	n	a	c	s	s	1	f	s	e	s	c	f	v	s
4555	agc	tat	gat	gtg	ttg	cag	gaa	gtt	gaa	gcg	ctg	cga	cat	gat	ata	caa	ttg	gat	gat	gat	gct	cgt	gtc
	s	Y	d	v	l	q	e	v	e	a	l	r	h	d	i	q	l	d	d	d	a	r	v
4624	ttt	gtg	cag	gct	aat	atg	gac	tgt	ctg	ccc	aca	gac	tgg	cgt	ctc	gtt	aac	aaa	ttt	gat	agt	gtt	gat
	f	v	q	a	n	m	d	c	l	p	t	d	W	r	l	v	n	k	f	d	s	v	d
4693	ggt	gtt	aga	acc	att	aag	tat	ttt	gaa	tgc	ccg	ggc	d	att	ttt	gta	tcc	agc	cag	ggc	aaa	aag	ttt
	g	v	r	t	i	k	Y	f	e	c	p	g	ddd	i	f	v	s	s	q	g	k	k	f
4762	qqt	tat	gtt	caq	aat	qqt	tca	ttt	aaq	qaq	dca	agt	gtt	agc	caa	ata	aqq	qct	tta	ctc	gct	aat	aag

	g	У	v	q	n	g	s	f	k	е	a	s	v	S	q	i	r	a	1	1	a	n	k
4831	gtt	gat	gtc	ttg	tgt	act	gtt	gat	ggt	gtt	aac	ttc	cgc	tcc	tgc	tgc	gta	gca	gag	ggt	gaa	gtt	ttt
	v	d	v	l	c	t	v	d	g	v	n	f	r	s	c	c	v	a	e	g	e	v	f
4900	ggc	aag k	aca t	tta l	ggt g	tca s	gtc v	ttt f	tgt c	gat d	ggc g	ata i	aat n	gtc v	acc t	aaa k	gtt v	agg r	tgt c	agt s	gcc a	att i	tac Y
4969	aag	ggt	aag	gtt	ttc	ttt	cag	tac	agt	gat	ttg	tcc	gag	gca	gat	ctt	gtg	gct	gtt	aaa	gat	gcc	ttt
	k	g	k	v	f	f	q	Y	s	d	l	s	e	a	d	l	v	a	v	k	d	a	f
5038	ggt	ttt	gat	gaa	cca	caa	ctg	ctg	aag	tac	tac	act	atg	ctt	ggc	atg	tgt	aag	tgg	<mark>tca</mark>	gta	gtt	gtt
	a	f	d	e	p	q	l	l	k	v	v	t	m	l	a	m	c	k	W	s	v	v	v
LA16 NC2	_				Ĩ	Î				-	-				2					c	(P) (P)		
5107	tgt c	ggc	aat n	tat y	ttt f	gct a	ttc f	aag k	cag q	tca s	aat n	aat n	aat n	tgc c	tat y	ata i	aat n	gtg v	gca a	tgt c	tta l	atg m	ctg l
5176	caa	cac	ttg	agt	tta	aag	ttt	cct	aag	tgg	caa	tgg	caa	gag	gct	tgg	aac	gag	ttc	cgc	tct	ggt	aaa
	q	h	l	s	l	k	f	p	k	w	q	W	q	e	a	W	n	e	f	r	s	g	k
5245	cca	cta	agg	ttt	gtg	tcc	ttg	gta	tta	gca	aag	ggc	agc	ttt	aaa	ttt	aat	gaa	cct	tct	gat	tct	atc
	p	l	r	f	v	s	l	v	l	a	k	g	s	f	k	f	n	e	p	s	d	s	i
5314	gat	ttt	atg	cgt	gtg	gtg	cta	cgt	gaa	gca	gat	ttg	agt	ggt	gcc	acg	tgc	aat	ttg	gaa	ttt	gtt	tgt
	d	f	m	r	v	v	l	r	e	a	d	l	s	g	a	t	c	n	l	e	f	v	c
5383	aaa	tgt	ggt	gtg	aag	caa	gag	cag	cgc	aaa	ggt	gtt	gac	gct	gtt	atg	cat	ttt	ggt	acg	ttg	gat	aaa
	k	c	g	v	k	q	e	q	r	k	g	v	d	a	v	m	h	f	g	t	l	d	k
5452	ggt	gat	ctt	gtc	agg	ggt	tat	aat	atc	gca	tgt	acg	tgc	ggt	agt	aaa	ctt	gtg	cat	tgc	acc	caa	ttt
	g	d	l	v	r	g	Y	n	i	a	c	t	c	g	s	k	l	v	h	c	t	q	f
5521	aac	gta	cca	ttt	tta	att	tgc	tcc	aac	aca	cca	gag	ggt	agg	aaa	ctg	ccc	gac	gat	gtt	gtt	gca	gct
	n	v	p	f	l	i	c	s	n	t	p	e	g	r	k	l	p	d	d	v	v	a	a
5590	aat	att	ttt	act	ggt	ggt	agt	gtg	ggc	cat	tac	acg	cat	gtg	aaa	tgt	aaa	ccc	aag	tac	cag	ctt	tat
	n	i	f	t	g	g	s	v	g	h	Y	t	h	v	k	c	k	p	k	Y	q	l	Y
5659	gat	gct	tgt	aat	gtt	aat	aag	gtt	tcg	gag	gct	aag	ggt	aat	ttt	acc	gat	tgc	ctc	tac	ctt	aaa	aat
	d	a	c	n	v	n	k	v	s	e	a	k	g	n	f	t	d	c	l	Y	l	k	n
5728	tta	aag	caa	act	ttt	tcg	tct	gtg	ctg	acg	act	ttt	tat	tta	gat	gat	gta	aag	tgt	gtg	gag	tat	aag
	l	k	q	t	f	s	s	v	l	t	t	f	Y	1	d	d	v	k	c	v	e	Y	k
5797	cca	gat	tta	tcg	cag	tat	tac	tgt	gag	tct	ggt	aaa	tat	tat	aca	aaa	ccc	att	att	aag	gcc	caa	ttt
	p	d	l	s	q	Y	Y	c	e	s	g	k	Y	Y	t	k	p	i	i	k	a	q	f
5866	aga	aca	ttt	gag	aag	gtt	gat	ggt	gtc	tat	acc	aac	ttt	aaa	ttg	gtg	gga	cat	agt	att	gct	gaa	aaa
	r	t	f	e	k	v	d	g	v	Y	t	n	f	k	l	v	g	h	s	i	a	e	k
5935	ctc	aat	gct	aag	ctg	gga	ttt	gat	tgt	aat	tct	ccc	ttt	gtg	gag	tat	aaa	att	aca	gag	tgg	cca	aca
	l	n	a	k	l	g	f	d	c	n	s	p	f	v	e	Y	k	i	t	e	W	p	t
6004	gct	act	gga	gat	gtg	gtg	ttg	gct	agt	gat	gat	ttg	tat	gta	agt	cgg	tac	tca	agc	d	tgc	att	act
LA16	a	t	g	d	v	v	l	a	s	d	d	l	Y	v	s	r	y	s	s	ddd	c	i	t
NC2 6073	ttt f	ggt g	aaa k	ccg p	gtt v	gtc v	tgg w	ctt l	ggc g	cat h	gag e	gaa e	gca a	g tcg s	ctg l	aaa k	tct s	ctc l	aca t	tat Y	ttt f	aat n	aga r
6142	cct	agt	gtc	gtt	tgt	gaa	aat	aaa	ttt	aat	gtg	ttg	ccc	gtt	gat	gtc	agt	gaa	ccc	acg	gac	aag	d
	p	s	v	v	c	e	n	k	f	n	v	l	p	v	d	v	s	e	p	t	d	k	ddd
6211	cct	gtg	cct	gct	gca	gtc	ctt	gtt	acc	ggc	gtc	cct	gga	gct	gat	gcg	tca	gct	ggt	gcc	ggt	att	gcc
	p	v	p	a	a	v	l	v	t	g	v	p	g	a	d	a	s	a	g	a	g	i	a
6280	aag	gag	caa	aaa	gcc	tgt	gct	tct	gct	agt	gtg	gag	gat	cag	gtt	gtt	acg	gag	gtt	cgt	caa	gag	cca
	k	e	q	k	a	c	a	s	a	s	v	e	d	q	v	v	t	e	v	r	q	e	p
6349	tct	gtt	tca	gct	gct	gat	gtc	aaa	gag	gtt	aaa	ttg	aat	ggt	gtt	aaa	aag	cct	gtt	aag	gtg	gaa	ggt
	s	v	s	a	a	d	v	k	e	v	k	l	n	g	v	k	k	p	v	k	v	e	g
6418	agt	gtg	gtt	gtt	aat	gat	ccc	act	agc	gaa	acc	aaa	gtt	gtt	aaa	agt	ttg	tct	att	gtt	gat	gtc	tat
	s	v	v	v	n	d	p	t	s	e	t	k	v	v	k	s	l	s	i	v	d	v	v

6487	gat	atg	ttc	ctg	aca	d	tgt	aag	tat	gtg	gtt	tgg	act	gct	aat	gag	ttg	tct	cga	cta	gta	aat	tca
	d	m	f	l	t	ddd	c	k	Y	v	v	w	t	a	n	e	l	s	r	l	v	n	s
6556	ccg	act	gtt	agg	gag	tat	gtg	aag	tgg	ggt	<mark>aag</mark>	gga	aag	att	gta	aca	ccc	gct	aag	ttg	ttg	ttg	tta
	p	t	v	r	e	y	v	k	w	g	k	g	k	i	v	t	p	a	k	l	l	l	l
LAIO												(M)											
6625	aga	gat	gag	aag	caa	gag	ttc	gta	gcg	cca	aaa	gta	gtc	aag	gcg	aaa	gct	att	gcc	tgc	tat	tgt	gct
	r	d	e	k	q	e	f	v	a	p	k	v	v	k	a	k	a	i	a	c	Y	c	a
6694	gtg	aag	tgg	ttt	ctc	ctc	tat	tgt	ttt	agt	tgg	ata	aag	ttt	aat	act	gat	aat	aag	gtt	ata	tac	acc
	v	k	W	f	l	l	Y	c	f	s	w	i	k	f	n	t	d	n	k	v	i	Y	t
6763	aca	gaa	gta	gct	tca	aag	ctt	act	ttc	aag	ttg	tgc	tgt	ttg	gcc	ttt	aag	aat	gcc	tta	cag	acg	ttt
	t	e	v	a	s	k	l	t	f	k	l	c	c	l	a	f	k	n	a	l	q	t	f
6832	aat n	tgg W	agc s	gtt v	gtg v	tct s	agg r	ggc	ttt f	ttc f	cta l	gtt v	gca a	acg t	gtc v	ttt f	tta l	tta l	tgg W	ttt f	aac n	ttt f	ttg l
6901	tat Y	gct a	aat n	gtt v	att i	ttg l	agt s	gac d	ttc f	tat Y	ttg l	cct p	aat n	att i	ggg	cct p	ctc l	cct p	acg t	ttt f	gtg v	gga g	cag q
6970	ata	gtt	gcg	tgg	ttt	aag	act	aca	ttt	ggt	gtg	tca	acc	atc	tgt	gat	ttc	tac	cag	gtg	acg	gat	ttg
	i	v	a	W	f	k	t	t	f	g	v	s	t	i	c	d	f	y	q	v	t	d	l
1039 LA16 NC2	ggc	у	aga r	agt s	s	f	c c	aat n	gga g .a.	agt s (E)	atg m	gta v	c c	gaa e	cta l	tgc c	f	tca s	ggt g	f	gat d	atg m	ctg l
7108	gac	aac	tat	gat	gct	ata	aat	gtt	gtt	caa	cac	gtt	gta	gat	agg	cgt	ttg	tcc	ttt	gac	tat	att	agc
	d	n	Y	d	a	i	n	v	v	q	h	v	v	d	r	r	l	s	f	d	Y	i	s
7177	cta	ttt	aaa	tta	gta	gtt	gag	ctt	gta	atc	ggc	tac	tct	ctt	tat	act	gtg	tgc	ttc	tac	cca	ctg	ttt
	l	f	k	l	v	v	e	l	v	i	g	Y	s	l	Y	t	v	c	f	Y	p	l	f
7246	gtc	ctt	att	gga	atg	cag	ttg	ttg	acc	aca	tgg	ttg	cct	gaa	ttc	ttt	atg	ctg	gag	act	atg	cat	tgg
	v	l	i	g	m	q	l	l	t	t	W	l	p	e	f	f	m	l	e	t	m	h	W
7315	agt	gct	cgt	ttg	ttt	gtg	ttt	gtt	gcc	aat	atg	ctt	cca	gct	ttt	acg	tta	ctg	cga	ttt	tac	atc	gtg
	s	a	r	l	f	v	f	v	a	n	m	l	p	a	f	t	l	l	r	f	Y	i	v
7384	gtg	aca	gct	atg	tat	aag	gtc	tat	tgt	ctt	tgt	aga	cat	gtt	atg	tat	gga	tgt	agt	aag	cct	ggt	tgc
	v	t	a	m	y	k	v	y	c	1	c	r	h	v	m	y	g	c	s	k	p	g	c
7433	l tat	f	c	y gta	aag k atg	aga r	n	r	s	y v	r	y v	aay k	с	age s	t	v	v	ggt g	ggi g tat	s	l aat	r
7591	y aat	y tcc	d tag	v	m	a	n aat	g g aca	g g ttc	t ata	g g act	f	c c qaa	t qca	k aca	h	q q qac	w ctc	n tct	c c aaq	l gag	n ttq	c
7660	n cgc	s cct	w	k aat	p cca	g aca	n gat	t tct	f gct	i tat	t tac	h tcg	e gtc	a aca	a gag	a gtt	d aag	l cag	s gtt	k ggt	e tgt	í tcc	k atg
7729	r	p	v	n	p	t	d	s	a	У	y	s	v	t	e	v	k	q	v	g	c	s	m
	cgt	ttg	ttc	tac	gag	aga	gat	gga	cag	cgt	gtt	tat	gat	gat	gtt	aat	gct	agt	ttg	ttt	gtg	gac	atg
7798	r	l	f	y	e	r	d	g	q	r	v	y	d	d	v	n	a	s	l	f	v	d	m
	aat	ggt	ctg	ctg	cat	tct	aaa	gtt	aaa	ggt	gtg	cct	gaa	acg	cat	gtt	gtg	gtt	gtt	gag	aat	gaa	gct
7867	n	g]]	h	s	k	v	k	g	v	p	e	t	h	v	v	v	v	e	n	e	a
	gat	aaa	gct	ggt	ttt	ctc	ggc	gcc	gca	gtg	ttt	tat	gca	caa	tcg	ctc	tac	aga	cct	atg	ttg	atg	gtg
7936	d gaa	к aag	a aaa v	g tta 1	I ata	⊥ act	g acc +	a gcc	a aac	v act	I ggt	y ttg	a tct	q gtt	agt	⊥ cga	y act	r atg	p ttt f	m gac	L ctt	m tat	v gta
8005	e gat d	tca s	ttg 1	ctg l	aac n	gtc v	ctc l	gac d	gtg v	gat d	cgc r	aag k	agt s	cta l	aca t	agt s	ttt f	gta v	aat n	gct a	gcg a	y cac h	aac n
8074	tct	cta	aag	gag	ggt	gtt	cag	ctt	gaa	caa	gtt	atg	gat	acc	ttt	att	ggc	tgt	gcc	cga	cgt	aag	tgt
	s	l	k	e	g	v	q	l	e	q	v	m	d	t	f	i	g	c	a	r	r	k	c
8143	gct	ata	gat	tct	gat	gtt	gaa	acc	aag	tct	att	acc	aag	tcc	gtc	atg	tcg	gca	gta	aat	gct	ggc	gtt
	a	i	d	s	d	v	e	t	k	s	i	t	k	s	v	m	s	a	v	n	a	q	v

8212	gat	ttt	acg	gat	gag	agt	tgt	aat	aac	ttg	gtg	cct	acc	tat	gtt	aaa	agt	gac	act	atc	gtt	gca	gcc
	d	f	t	d	e	s	c	n	n	l	v	p	t	Y	v	k	s	d	t	i	v	a	a
8281	gat	ttg	ggt	gtt	ctt	att	cag	aat	aat	gct	aag	cat	gta	cag	gct	aat	gtt	gct	aaa	gcc	gct	aat	gtg
	d	l	g	v	l	i	q	n	n	a	k	h	v	q	a	n	v	a	k	a	a	n	v
8350	gct	tgc	att	tgg	tct	gtg	gat	gct	ttt	aac	cag	cta	tct	gct	gac	tta	cag	cat	agg	ctg	cga	aaa	gca
	a	c	i	w	s	v	d	a	f	n	q	l	s	a	d	l	q	h	r	l	r	k	a
8419	tgt	tca	aaa	act	ggc	ttg	aag	att	aag	ctt	act	tat	aat	aag	cag	gag	gca	aat	gtt	cct	att	tta	act
	c	s	k	t	g	1	k	i	k	1	t	Y	n	k	q	e	a	n	v	p	i	l	t
8488	aca	ccg	ttc	tct	ctt	aaa	g	ggc	gct	gtt	ttt	agt	aga	atg	tta	caa	tgg	ttg	ttt	gtt	gct	aat	ttg
	t	p	f	s	l	k	ggg	g	a	v	f	s	r	m	l	q	W	l	f	v	a	n	l
8557	att	tgt	ttc	att	gtg	ttg	tgg	gcc	ctt	atg	cca	aca	tat	gca	gtg	cac	aaa	tcg	gat	atg	cag	ttg	cct
	i	c	f	i	v	l	w	a	l	m	p	t	y	a	v	h	k	s	d	m	q	l	p
8626	tta	tat	gcc	agt	ttt	aaa	gtt	ata	gat	aat	ggt	gtg	cta	agg	gat	gtg	tct	gtt	act	gac	gca	tgc	ttc
	l	y	a	s	f	k	v	i	d	n	g	v	1	r	d	v	s	v	t	d	a	c	f
8695	gca	aac	aaa	ttt	aat	caa	ttt	gat	caa	tgg	tat	gag	tct	act	ttt	ggt	ctt	gct	tat	tac	cgc	aac	tct
	a	n	k	f	n	q	f	d	q	w	y	e	s	t	f	g	l	a	y	y	r	n	s
8764	aag	gct	tgt	cct	gtt	gtg	gtt	gct	gta	ata	gat	caa	gac	att	ggc	cat	acc	tta	ttt	aat	gtt	cct	acc
	k	a	c	p	v	v	v	a	v	i	d	q	d	i	g	h	t	1	f	n	v	p	t
8833	aca	gtt	tta	aga	tat	gga	ttt	cat	gtg	ttg	cat	ttt	ata	acc	cat	gca	ttt	gct	act	gat	agc	gtg	cag
	t	v	l	r	y	g	f	h	v	l	h	f	i	t	h	a	f	a	t	d	s	v	q
8902	tgt	tac	acg	cca	cat	atg	caa	atc	ccc	tat	gat	aat	ttc	tat	gct	agt	ggt	tgc	gtg	ttg	tca	tcc	ctc
	c	Y	t	p	h	m	q	i	p	y	d	n	f	y	a	s	g	c	v	l	s	s	l
8971	tgt c	act t	atg m	ctt 1	gcg a	cat h	gca a	gat d	gga g	acc t	ccg p	cat h	cct p	tat y	tgt c	tat y	aca t	ggg	ggt g	gtt v	atg m	cac h	aat n
9040	gcc	tct	ctg	tat	agt	tct	ttg	gct	cct	cat	gtc	cgt	tat	aac	ctg	gct	agt	tca	aat	ggt	tat	ata	cgt
	a	s	l	y	s	s	l	a	p	h	v	r	y	n	l	a	s	s	n	g	y	i	r
9109	ttt	ccc	gaa	gtg	gtt	agt	gaa	ggc	att	gtg	cgt	gtt	gtg	cgc	act	cgc	tct	atg	acc	tac	tgc	agg	gtt
	f	p	e	v	v	s	e	g	i	v	r	v	v	r	t	r	s	m	t	Y	c	r	v
9178	ggt	tta	tgt	gag	gag	gcc	gag	gag	ggt	atc	tgc	ttt	aat	ttt	aat	cgt	tca	tgg	gta	ttg	aac	aac	ccg
	g	l	c	e	e	a	e	e	g	i	c	f	n	f	n	r	s	W	v	l	n	n	p
9247	tat	tat	agg	gcc	atg	cct	gga	act	ttt	tgt	ggt	agg	aat	gct	ttt	gat	tta	ata	cat	caa	gtt	tta	gga
	y	Y	r	a	m	p	g	t	f	c	g	r	n	a	f	d	l	i	h	q	v	l	g
9316	gga	tta	gtg	cgg	cct	att	gat	ttc	ttt	gcc	tta	acg	gcg	agt	tca	gtg	gct	ggt	gct	atc	ctt	gca	att
	g	1	v	r	p	i	d	f	f	a	1	t	a	s	s	v	a	g	a	i	l	a	i
9385	att	gtc	gtt	ttg	gct	ttc	tat	tat	tta	ata	aag	ctt	aaa	cgt	gcc	ttt	ggt	gac	tac	act	agt	gtt	gtg
	i	v	v	l	a	f	y	y	1	i	k	l	k	r	a	f	g	d	y	t	s	v	v
9454	gtt	atc	aat	gta	att	gtg	tgg	tgt	ata	aat	ttt	ctg	atg	ctt	ttt	gtg	ttt	cag	gtt	tat	ccc	aca	ttg
	v	i	n	v	i	v	w	c	i	n	f	l	m	l	f	v	f	q	v	y	p	t	l
9523	tct	tgt	tta	tat	gct	tgt	ttt	tat	ttc	tac	aca	acg	ctt	tat	ttc	cct	tcg	gag	ata	agt	gtt	gtt	atg
	s	c	l	Y	a	c	f	Y	f	Y	t	t	l	Y	f	p	s	e	i	s	v	v	m
9592	cat	ttg	caa	tgg	ctt	gtc	atg	tat	ggt	gct	att	atg	ccc	ttg	tgg	ttt	tgc	att	att	tac	gtg	gca	gtc
	h	l	q	W	l	v	m	Y	g	a	i	m	p	l	w	f	c	i	i	Y	v	a	v
9661	gtt	gtt	tca	aac	cat	gca	ttg	tgg	ttg	ttc	tct	tac	tgc	cgc	aaa	att	ggt	acc	gag	gtt	cgt	agt	gac
	v	v	s	n	h	a	l	w	l	f	s	Y	c	r	k	i	g	t	e	v	r	s	d
9730	ggc	aca	ttt	gag	gaa	atg	gcc	ctt	act	acc	ttt	atg	att	<mark>act</mark>	aaa	gaa	tct	tat	tgt	aag	ttg	aaa	aat
	g	t	f	e	e	m	a	l	t	t	f	m	i	t	k	e	s	y	c	k	l	k	n
LA16														•••	(0)								
NC∠ 9799	tct	gtt	tct	gat	gtt	<mark>gct</mark>	ttt	aac	agg	tac	ttg	agt	ctt	g tat	aac	aag	tat	cgt	tat	ttt	agt	ggc	aaa
T 3 1 6	S	v	S	d	v	a	f	n	r	У	1	S	1	У	n	k	У	r	У	f	S	g	k
NC2						 .g.	(G)																
9868	atg	gat	act	gcc	gct	tat	aga	gag	gct	gcc	tgt	tca	caa	ctg	gca	aag	gca	atg	gaa	aca	ttt	aac	cat

	m	d	t	a	a	У	r	е	a	a	С	S	q	1	a	k	a	m	е	t	f	n	h
9937	aat	aat	ggt	aat	gat	gtt	ctc	tat	cag	cct	cca	acc	gcc	tct	gtt	act	aca	tca	ttt	tta	cag	tct	ggt
	n	n	g	n	d	v	l	y	q	p	p	t	a	s	v	t	t	s	f	l	q	s	g
10006	ata	gtg	aag	atg	gtg	tcg	ccc	acc	tct	aaa	gtg	gag	cct	tgt	att	gtt	agt	gtt	act	tat	ggt	aac	atg
	i	v	k	m	v	s	p	t	s	k	v	e	p	c	i	v	s	v	t	Y	g	n	m
10075	aca	ctt	aat	g	ttg	tgg	ttg	gat	gat	aaa	gtt	tat	tgc	cca	aga	cat	gtt	atc	tgt	tct	tca	gct	gac
	t	1	n	ggg	l	w	l	d	d	k	v	y	c	p	r	h	v	i	c	s	s	a	d
10144	atg	aca	gac	cct	gat	tat	cct	aat	ttg	ctt	tgt	aga	gtg	aca	tca	agt	gat	ttt	tgt	gtt	atg	tct	ggt
	m	t	d	p	d	V	p	n	l	l	c	r	v	t	s	s	d	f	c	v	m	s	q
LA16 NC2				-		-	Ť			 a	(I)												2
10213	cgt	atg	agc	ctt	act	gta	atg	tct	tat	caa	atg	cag	ggc	tgc	caa	ctt	gtt	ttg	act	gtt	aca	ctg	caa
	r	m	s	l	t	v	m	s	Y	q	m	q	g	c	q	l	v	l	t	v	t	l	q
10282	aat	cct	aac	acg	cct	aag	tat	tcc	ttc	ggt	gtt	gtt	aag	cct	ggt	gag	aca	ttt	act	gta	ctg	gct	gca
	n	p	n	t	p	k	Y	s	f	g	v	v	k	p	g	e	t	f	t	v	l	a	a
10351	tac	aat	ggc	aga	cct	caa	gga	gcc	ttc	cat	gtt	acg	ctt	cgt	agt	agc	cat	acc	ata	aag	ggc	tcc	ttt
	Y	n	g	r	p	q	g	a	f	h	v	t	1	r	s	s	h	t	i	k	g	s	f
10420	cta	tgt	gga	tcc	tgc	ggt	tct	gta	gga	tat	gtt	tta	act	ggc	gat	agt	gta	cga	ttt	gtt	tat	atg	cat
	l	c	g	s	c	g	s	v	g	Y	v	l	t	g	d	s	v	r	f	v	Y	m	h
10489	cag	cta	gag	ttg	agt	act	ggt	tgt	cat	acc	ggt	act	gac	ttt	agt	d	aac	ttt	tat	ggt	ccc	tat	aga
	q	l	e	l	s	t	g	c	h	t	g	t	d	f	s	ddd	n	f	Y	g	p	Y	r
10558	gat	gcg	caa	gtt	gta	caa	ttg	cct	gtt	cag	gat	tat	acg	cag	act	gtt	aat	gtt	gta	gct	tgg	ctt	tat
	d	a	q	v	v	q	l	p	v	q	d	Y	t	q	t	v	n	v	v	a	W	l	Y
10627	gct	gct	att	ttt	aac	aga	tgc	aac	tgg	ttt	gtg	caa	agt	gat	agt	tgt	tcc	ctg	gag	gag	ttt	aat	gtt
	a	a	i	f	n	r	c	n	W	f	v	q	s	d	s	c	s	l	e	e	f	n	v
10696	tgg	gct	atg	acc	aat	ggt	ttt	agc	tca	atc	aaa	gcc	gat	ctt	gtc	ttg	gat	gcg	ctt	gct	tct	atg	aca
	W	a	m	t	n	g	f	s	s	i	k	a	d	l	v	l	d	a	l	a	s	m	t
LA16 NC2										t													
10765	ggc	gtt v	aca t	gtt v	gaa e	cag q	gtg v	ttg l	gcc a	gct a	att i	aag k	agg r	ctg l	cat h	tct s	gga g	ttc f	cag q	ggc g	aaa k	caa q	att i
10834	tta	ggt	agt	tgt	gtg	ctt	gaa	gat	gag	ctg	aca	cca	agt	gat	gtt	tat	caa	caa	cta	gct	ggt	gtc	aag
	l	g	s	c	v	l	e	d	e	l	t	p	s	d	v	Y	q	q	l	a	g	v	k
10903	cta	cag	tca	aag	cgc	aca	aga	gtt	ata	aaa	ggt	aca	tgt	tgc	tgg	ata	ttg	gct	tca	acg	ttt	ttg	ttc
	l	q	s	k	r	t	r	v	i	k	g	t	c	c	w	i	l	a	s	t	f	l	f
10972	tgt	agc	att	atc	tca	gca	ttt	gta	aaa	tgg	act	atg	ttt	atg	tat	gtt	act	acc	cat	atg	ttg	gga	gtg
	c	s	i	i	s	a	f	v	k	w	t	m	f	m	y	v	t	t	h	m	l	g	v
11041	aca	ttg	tgt	gca	ctt	tgt	ttt	gta	agc	ttt	gct	atg	ttg	ttg	atc	aag	cat	aag	cat	ttg	tat	tta	act
	t	l	c	a	1	c	f	v	s	f	a	m	l	l	i	k	h	k	h	l	Y	l	t
11110	atg	tat	att	atg	cct	gtg	tta	tgc	aca	ctg	ttt	tac	acc	aac	tat	ttg	gtt	gtg	tac	aaa	cag	agt	ttt
	m	Y	i	m	p	v	l	c	t	l	f	Y	t	n	Y	l	v	v	Y	k	q	s	f
11179	aga	ggt	cta	gct	tat	gct	tgg	ctt	tca	cac	ttt	gtc	cct	gct	gta	gat	tat	aca	tat	atg	gat	gaa	gtt
	r	g	l	a	Y	a	W	l	s	h	f	v	p	a	v	d	Y	t	Y	m	d	e	v
11248	tta	tat	ggt	gtt	gtg	ttg	cta	gta	gct	atg	gtg	ttt	gtt	acc	atg	cgt	agc	ata	aac	cac	gac	gtc	ttt
	l	Y	g	v	v	l	l	v	a	m	v	f	v	t	m	r	s	i	n	h	d	v	f
11317	tct	att	atg	ttc	ttg	gtt	ggt	aga	ctt	gtc	agc	ctg	gta	tcc	atg	tgg	tat	ttt	gga	gcc	aat	tta	gag
	s	i	m	f	l	v	g	r	l	v	s	l	v	s	m	W	Y	f	g	a	n	l	e
11386	gaa e	gag e	gta v	cta l	ttg l	ttc f	ctc l	aca t	tcc s	cta l	ttt f	ggc	acg t	tac y	aca t	tgg w	act t	act t	atg m	ttg l	tca s	ttg l	gct a
11455	acc	gct	aag	gtt	att	gct	aaa	tgg	ttg	gct	gtg	aat	gtc	ttg	tac	ttc	aca	gac	gta	ccg	caa	att	aaa
	t	a	k	v	i	a	k	W	l	a	v	n	v	l	y	f	t	d	v	p	q	i	k
11524	tta	gtt	ctt	ttg	agc	tac	ttg	tgt	att	ggt	tat	gtg	tgt	tgt	tgt	tat	tgg	gga	atc	ttg	tca	ctc	ctt
	l	v	l	l	s	Y	l	c	i	g	Y	v	c	c	c	Y	W	g	i	l	s	l	l

11593	aat	agc	att	ttt	agg	atg	cca	ttg	ggc	gtc	tac	aat	tat	aaa	atc	tcc	gtt	cag	gag	tta	cgt	tat	atg
	n	s	i	f	r	m	p	l	g	v	Y	n	Y	k	i	s	v	q	e	l	r	Y	m
11662	aat	gct	aat	ggc	ttg	cgc	cca	cct	aga	aat	agt	ttt	gag	gcc	ctg	atg	ctt	aat	ttt	aag	ctg	ttg	gga
	n	a	n	g	l	r	p	p	r	n	s	f	e	a	l	m	l	n	f	k	l	l	g
11731	att	ggt	ggt	gtg	cca	gtc	att	gaa	gta	tct	caa	att	caa	tca	aga	ttg	acg	gat	gtt	aaa	tgt	gct	aat
	i	g	g	v	p	v	i	e	v	s	q	i	q	s	r	l	t	d	v	k	c	a	n
11800	gtt	gtg	ttg	ctt	aat	tgc	ctc	cag	cac	ttg	cat	att	gca	tct	aat	tct	aag	ttg	tgg	cag	tat	tgt	agt
	v	v	l	l	n	c	l	q	h	l	h	i	a	s	n	s	k	l	W	q	Y	c	s
11869	act	ttg	cac	aat	gaa	ata	ctg	gct	aca	tct	gat	ttg	agc	gtg	gcc	ttc	gat	aag	ttg	gct	cag	ctc	tta
	t	l	h	n	e	i	l	a	t	s	d	l	s	v	a	f	d	k	l	a	q	l	l
11938	gtt	gtt	tta	ttt	gct	aat	cca	gca	gca	gtg	gat	agc	aag	tgc	ctt	gca	agt	att	gaa	gaa	gtg	agc	gat
	v	v	l	f	a	n	p	a	a	v	d	s	k	c	l	a	s	i	e	e	v	s	d
12007	gat	tac	gtt	cgc	gac	aat	act	gtc	ttg	caa	gcc	tta	cag	agt	gaa	ttt	gtt	aat	atg	gct	agc	ttc	gtt
	d	Y	v	r	d	n	t	v	l	q	a	l	q	s	e	f	v	n	m	a	s	f	v
12076	gag e	tat Y	gaa e	ctt l	gct a	aag k	aag k	aat n	cta l	gat d	gag e	gct a	aag k	gct a	agc s	ggc	tct s	gcc a	aat n	caa q	cag q	cag q	att i
12145	aag	cag	cta	gag	aag	gcg	tgt	aat	att	gct	aag	tca	gca	tat	gag	cgc	gac	aga	gct	gtt	gct	cgt	aag
	k	q	l	e	k	a	c	n	i	a	k	s	a	Y	e	r	d	r	a	v	a	r	k
12214	ctg	gaa	cgt	atg	gct	gat	tta	gct	ctt	aca	aac	atg	tat	aaa	gaa	gct	aga	att	aat	gat	aag	aag	agt
	l	e	r	m	a	d	l	a	l	t	n	m	y	k	e	a	r	i	n	d	k	k	s
12283	aag	gta	gtg	tct	gca	ttg	caa	acc	atg	ctc	ttt	agt	atg	gtg	cgt	aag	cta	gat	aac	caa	gct	ctt	aat
	k	v	v	s	a	l	q	t	m	l	f	s	m	v	r	k	l	d	n	q	a	l	n
12352	tct	att	tta	gat	aat	gca	gtt	aag	ggt	tgt	gta	cct	ttg	aat	gca	ata	cca	tca	ttg	act	tcg	aac	act
	s	i	l	d	n	a	v	k	g	c	v	p	l	n	a	i	p	s	l	t	s	n	t
12421	ctg	act	ata	ata	gtg	cca	gat	aag	cag	gtt	ttt	gat	cag	gtt	gtg	gat	aat	gtg	tat	gtc	acc	tat	gct
	l	t	i	i	v	p	d	k	q	v	f	d	q	v	v	d	n	v	Y	v	t	y	a
12490	d	aat	gta	tgg	cat	ata	cag	ttt	att	caa	gat	gct	gat	ggt	gct	gtt	aaa	caa	ttg	aat	gag	ata	gat
	ddd	n	v	W	h	i	q	f	i	q	d	a	d	g	a	v	k	q	l	n	e	i	d
12559	gtt	aat	tca	acc	tgg	cct	cta	gtc	att	gct	gca	aat	agg	cat	aat	gaa	gtg	tct	act	gtt	gtt	ttg	cag
	v	n	s	t	W	p	l	v	i	a	a	n	r	h	n	e	v	s	t	v	v	l	q
12628	aac	aat	gag	ttg	atg	cct	cag	aag	ttg	aga	act	cag	gtt	gtc	aat	agt	ggc	tca	gat	atg	aat	tgt	aat
	n	n	e	l	m	p	q	k	l	r	t	q	v	v	n	s	g	s	d	m	n	c	n
12697	act	cct	acc	cag	tgt	tac	tat	aat	act	act	ggc	acg	ggt	aag	att	gtg	tat	gct	ata	ctt	agt	gac	tgt
	t	p	t	q	c	Y	Y	n	t	t		t	g	k	i	v	Y	a	i	l	s	d	c
12766 LA16	gat d	ggt g	ctc 1 	aag k	tac y	act t	aag k	ata i	gta v	aaa k	gaa e	gat d	gga g	aat n	tgt c	gtt v	gtt v	ttg l	gaa e	ttg l	gat d	cct p	ccc p
NC2 12835	tgt c	aag k	g ttt f	tct s	gtt v	cag q	gat d	gtg v	aag k	ggc g	ctt l	aaa k	att i	aag k	tac Y	ctt l	tac Y	ttt f	gtg v	aag k	d ddd	tgt c	aat n
12904	aca	ctg	gct	aga	ggc	tgg	gtt	gta	ggc	acc	tta	tcc	tcg	aca	gtg	aga	ttg	cag	gcg	ggt	acg	gca	act
	t	l	a	r	g	w	v	v	g	t	l	s	s	t	v	r	l	q	a	g	t	a	t
12973	gag	tat	gcc	tcc	aac	tct	gca	ata	ctg	tcg	ctg	tgt	gcg	ttt	tct	gta	gat	cct	aag	aaa	acg	tac	ttg
	e	Y	a	s	n	s	a	i	l	s	l	c	a	f	s	v	d	p	k	k	t	Y	l
13042	gat	tat	ata	aaa	cag	ggt	gga	gtt	ccc	gtt	act	aat	tgt	gtt	aag	atg	tta	tgt	gac	cat	gct	ggc	act
LA16	d	Y	i	k	q	g	g	v	p	v	t	n	c	v	k	m	l	c	d	h	a	g	t
NC2 13111	ggt	atg	gcc	att	act	att	aag	ccg	gag	gca	acc	act	aat	cag	gat	tct	tat	ggt	ggt	gct	tcc	gtt	tgt
	g	m	a	i	t	i	k	p	e	a	t	t	n	q	d	S	У	g	g	a	S	v	c
13180	ata	tat	tgc	cgc	tcg	cgt	gtt	gaa	cat	cca	gat	gtt	gat	gga	ttg	tgc	aaa	tta	cgc	ggc	aag	ttt	gtc
	i	Y	c	r	s	r	v	e	h	p	d	v	d	g	l	c	k	l	r	g	k	f	v
13249	caa	gtg	ccc	tta	ggc	ata	aaa	gat	cct	gtg	tca	tat	gtg	ttg	acg	cat	gat	gtt	tgt	cag	gtt	tgt	ggc
	q	v	p	l	g	i	k	d	p	v	s	y	v	l	t	h	d	v	c	q	v	c	g

13318	ttt	tgg	cga	gat	ggt	agc	tgt	tcc	tgt	gta	ggc	aca	ggc	tcc	cag	ttt	cag	tca	aaa	gac	acg	aac	ttt
	f	W	r	d	g	S	С	S	С	v	g	t	g	S	q	f	P	S	k	d	t	n	f
13387 LA16 NC2	tta l	aac n	<mark>ggg</mark> g a	ttc f	a aaa	gta v	caa q	gtg v	taa -														

Comparing Mutations Located in ORF1A from LA16 and NC2

To compare the mutations identified in the viral genome (Figure 10) a table was constructed (Table 1). Table 1 lists the mutated nucleotide position in the viral genome, the amino acid change and the type of mutation that resulted. The nucleotide position that was entered into the table was obtained from the sequence of ORF1A that starts with the first "atg" present in the first open reading frame. This corresponds to nucleotide number 210 in the full viral genome that is located in appendix. In assessing the location of the mutations, LA16 contains mutations in Nsp3 and Nsp10. LA16 has shown to have a more significant TS phenotype, assessed by a reduction in titer and plaque size, indicating further that these mutations in Nsp3 and Nsp10 are important (Figure 7&8). It is interesting that of the six mutations identified in NC2 that resulted in an amino acid change, three of these mutations are conservative. Conservative mutations are defined as mutations that result in an amino acid change which conserves the same amino acid charge but has a slightly different structure (Table 1). These results indicate NC2 and LA16 contain different attenuating mutations. The role of these mutations in conferring the TS phenotype could be evaluated using reverse genetics.

Virus	Nsp mutation location	Mutated Nucleotide Positon	Mutated	l Amino Acid
LA16	Nsp3	t 5090 c	S→P	Polar to Nonpolar
	Nsp3	a 6587 t	К→М	Positively Charged to Nonpolar
	Nsp3	g 7064 a	G→E	Polar to Negatively Charged
	Nsp10	g 13094 a	G→Y	Polar to Nonpolar
NC2	Nsp3	a 4090 g	K→E	Positively Charged to Negatively Charged
	Nsp3	t 5090c	S→P	Polar to Nonpolar
	Nsp3	a 6587 t	К→М	Positively Charged to Nonpolar
	Nsp4	c 9770 g	T→S	Conservative
	Nsp4	c 9815g	A→G	Conservative
	Nsp5	c 10171 a	L→I	Conservative

TABLE 1. Table of nucleotide and amino acid changes in the genomic sequences of LA16 and NC2. Genomic sequence from ORF1A was analyzed and the nucleotide changes that resulted in amino acid changes are listed. Silent mutations are documented in Figure 10. Nucleotide position, amino acid position, non-structural protein location and mutation type are classified. The location of the nucleotide changes corresponds to the nucleotide sequence of ORF1A and not to the entire genomic nucleotide sequence.

CHAPTER FOUR

DISCUSSION AND FUTURE DIRECTIONS

Using TS phenotyping has become a staple in virology to better understand many unknown pathogens. TS mutants of pathogens allow for the identification of critical genes or residues which can be identified as targets for potential vaccine development. In assessing the TS phenotype for LA16 and NC2, it was observed that at 33°C, both viruses were able to maintain a WT-like plaque size and viral titer (Figure 7A, B). Upon incubating LA16 at 37 °C, I observed a drastic change in plaque morphology (Figure 7A). When assessing the plaque morphology, I found a heterogeneous population of plaques formed. These plaques range from small to pinpoint in size. Schaad et al. hypothesized that LA16 may contain two different mutations that confer the TS phenotype documented⁴¹. This heterogeneity does seem to further support why LA16 was placed into two complementation groups indicating multiple mutations in different areas of the viral genome. This change in morphology was also associated with a reduction in viral titer which also helps to support the hypothesis that LA16 confers a TS phenotype. Upon quantifying the plaque size of LA16 at 37 °C (Figure 8), there was a significant decrease in plaque size when compared to WT, further supporting that the change in morphology may be due to the mutations identified in ORF1A. LA16 failed to produce any plaques within the detection limit of the plaque assay when incubated at 40°C. When analyzing the sequence of LA16 two unique mutations were identified. The first mutation was observed in Nsp3 which resulted in the substation of a polar amino acid to a negatively charged amino acid. This could

have an effect on the Nsp3 protein stability or structure, but further analysis is required. The second mutation found was located in Nsp10. Currently the documented function of Nsp10 is to act as a regulator that aides in the efficency of the polyprotein processing⁴⁵. The amino acid that was mutated has been identified a one of several critical residues involved in Nsp10 stability.

When assessing the TS phenotype of NC2, I saw that NC2 was able to retain WTlike plaques at both 33 °C and 37 °C (Figure 7A). This was obviously different than the morphology depicted by LA16 at 37 °C. It was only when NC2 was incubated at 40 °C was the TS phenotype able to be observed. This reduction in plaque size also correlates with the reduction in titer (Figure 7B). It can be appreciated that although NC2 did present a reduction in plaque size at 40°C, there was a homogenous morphology amongst the plaques formed. They were all pin-point sized plaques (Figure 7A). Upon the quantification of the plaques observed, I noted NC2 produced significantly smaller plaques compared to WT. The genomic sequencing analysis revealed NC2 contained four unique mutations, however, three of the four mutations were conservative. The major mutation observed was located in Nsp3, the viral protease. This mutation conferred a substitution of a positively charged amino acid to a negatively charged amino acid (Table 1). Since the conservative mutations are located around the same region, these mutations could potentially be compensating for the initial Nsp3 mutation. These changes in structure potentially could be to help counter act the deleterious mutation, thus allowing NC2 to not exhibit as drastic of TS phenotype when assessed at 37 °C (Figure 7, 8). To further support my hypothesis that NC2 may have secondary mutations that were induced to stabilize the initial attenuating mutation, it can be seen clearly that half of the mutations found in NC2 were conservative mutation changes If my hypothesis is true, it may explain why NC2 has much less of a significant TS phenotype than that of LA16.

Interestingly, my data supports the previous studies of *Schaad et al*⁴¹. Using complementation analysis *Schaad et al.* was able to categorize over 20 TS mutants based on the location of TS mutations throughout the viral genome (Table 2). Complementation groups A and B were mapped to contain mutations in ORF1A. ORF1A was the region where I identified the nucleotide changes that are predicted to be responsible for causing the TS phenotype. Over twenty years later is seems that this hypothesis was correct when assessing the genomic sequencing data. NC2 and LA16 both contained important mutations in Nsp3, supporting the rationale for grouping these two mutant strains together.

Complementation Group	Mutants
А	LA3, LA6, <mark>LA16</mark> , NC8, NC9, NC13
В	LA16, NC2, NC11
С	LA8, LA9 ,LA14 ,NC1,NC3,NC10
D	LA10
E	LA18,NC4,NC12
F	LA7,LA12,LA13,NC5,NC6

TABLE 2. Table of TS mutants that have been catorgized based on the location of their mutations within the viral genome. Over 2,000 TS mutants were produced following the chemical mtagensis of WT MHV. Using complementaiotn analysis *Schaad et al.* identified 24 mutants that contained unique mutations⁴¹. Highlighted in red are the two mutants that were further characterized in my study.

It is important to note that LA16 was the only virus that was added to two complementation groups. *Schaad et al.* hypothesized that this mutant strain actually contained two significant muations in ORF1A. This hypothesis does strongly correlate with the images that were taken of LA16 at 37°C. In assessing the images in Figure 7 you can see that there seem to be two populations of plaques that formed. These two distict populations may represent viruses that contain one of the two hypothesized mutations in ORF1A. It is important to note that although

this visual representation does seem to further support previous hypothesis, however further analysis will need to be performed.

Temparture-sensitive phenotyping has aided in identifying the function of unknown CoV Nsps. *Donaldson et al.* used TS phenotyping to identify a novel attenuating mutation in another TS mutant that *Schaad et al* identified, LA6^{41,45}. Deep sequencing of the viral genome revealed a mutation in Nsp10. In further assessing the crystal structure of Nsp10, the mutation that conferred the TS phenotype was located in an undefined region of the structure⁴⁵. The amino acids located within the undefined region are thought to be critical to maintaining protein stability⁴⁵. In comparing the location of the mutation in LA16, I found the mutation is located within this undefined region as well. Therefore, it is possible that the mutation in LA16 also affects protein stability.

The sequencing results reported in this study revealed that there are many mutations located within ORF1A of LA16 and NC2. In order to assess the phenotype of the mutations individually, these mutations can be investigated using the MHV reverse genetic system³⁵. A reverse-genetics system allows the study of individual mutations by allowing the manipulation of a RNA viral genome, using classic genetic techniques³⁵. Mutations are introduced into a cDNA version of the RNA genome and using transcription and electroporation, one can produce a "designer virus" that has the desired mutation. The production of this designer virus allows one to study the phenotype that a single mutation may confer. This same system has also been successfully used to identify TS mutation in LA6, as described above⁴⁵. Hopefully, the information obtained in this study will allow the identification of mutations in conserved genes that can be applied to a variety of CoVs resulting in protection from current and more importantly, future strains of CoVs.

APPENDIX:

SUPPLEMENTAL FIGURES

Figure S1. Full Genomic Sequence Alignment of WT, LA16 and NC2. Using Clone Manager I compared the full genomic sequence of LA16, NC2, and WT MHV. Nucleotides that are mutated from the WT reference strain are highlighted in orange. Mutations were found throughout the viral genome however in this study I focused on the mutations located in ORF1A.

MHV IC NC_001846 LA16 #39 NC2 #3	1 1 1	tataagagtgattggcgtccgtacgtaccctctcaactctaaaactcttgtagtttaaat
MHV IC NC_001846 LA16 #39 NC2 #3	61 60 60	ctaatctaaactttataaacggcacttcctgcgtgtccatgcccgcgggcctggtcttgt
MHV IC NC_001846 LA16 #39 NC2 #3	121 120 120	catagtgctgacatttgtagttccttgactttcgttctctgccagtgacgtgtccattcg
MHV IC NC_001846 LA16 #39 NC2 #3	181 180 180	gcgccagcagcccacccataggttgcataatggcaaagatgggcaaatacggtctcggct
MHV IC NC_001846 LA16 #39 NC2 #3	241 240 240	tcaaatgggccccagaatttccatggatgcttccgaacgcatcggagaagttgggtaacc
MHV IC NC_001846 LA16 #39 NC2 #3	301 300 300	ctgagaggtcagaggaggatgggttttgcccctctgctgcgcaagaaccgaaagttaaag
MHV IC NC_001846 LA16 #39 NC2 #3	361 360 360	gaaaaactttggttaatcacgtgagggtgaattgtagccggcttccagctttggaatgct
MHV IC NC_001846 LA16 #39 NC2 #3	421 420 420	gtgttcagtctgccataatccgtgatatttttgtagatgaggatccccagaaggtggagg
MHV IC NC_001846 LA16 #39 NC2 #3	481 480 480	cctcaactatgatggcattgcagttcggtagtgccgtcttggttaagccatccaagcgct
MHV IC NC_001846 LA16 #39 NC2 #3	541 540 540	tgtctattcaggcatggactaatttgggtgtgcttcccaaaacagctgccatggggttgt
MHV IC NC_001846 LA16 #39 NC2 #3	601 600 600	tcaagcgcgtctgcctgtgtaacaccagggagtgctcttgtgacgcccacgtggcctttc

MHV IC NC_001846 LA16 #39 NC2 #3	661 660 660	acctttttacggtccaacccgatggtgtatgcctgggtaatggccgttttataggctggt
MHV IC NC_001846 LA16 #39 NC2 #3	721 720 720	tcgttccagtcacagccataccggagtatgcgaagcagtggttgcaaccctggtccatcc
MHV IC NC_001846 LA16 #39 NC2 #3	781 780 780	ttettegtaagggtggtaacaaagggtetgtgacateeggeeaetteegeegetgtta
MHV IC NC_001846 LA16 #39 NC2 #3	841 840 840	ccatgcctgtgtatgactttaatgtagaggatgcttgtgaggaggttcatcttaacccga
MHV IC NC_001846 LA16 #39 NC2 #3	901 900 900	agggtaagtactcctgcaaggcgtatgctcttcttaagggctatcgcggtgttaagccca
MHV IC NC_001846 LA16 #39 NC2 #3	961 960 960	tcctgtttgtggaccagtatggttgcgactatactggatgtctcgccaagggtcttgagg
MHV IC NC_001846 LA16 #39 NC2 #3	1021 1020 1020	actatggcgatctcaccttgagtgagatgaaggagttgttccctgtgtggcgtgactcct
MHV IC NC_001846 LA16 #39 NC2 #3	1081 1080 1080	tggatagtgaagtccttgtggcttggcacgttgatcgagatcctcgggctgctatgcgtc
MHV IC NC_001846 LA16 #39 NC2 #3	1141 1140 1140	tgcagactcttgctactgtacgttgcattgattatgtgggccaaccgaccg
MHV IC NC_001846 LA16 #39 NC2 #3	1201 1200 1200	tggatggagatgtggtagtgcgtgagcctgctcatcttctcgcagccaatgccattgtta
MHV IC NC_001846 LA16 #39 NC2 #3	1261 1260 1260	aaagactcccccgtttggtggagactatgctgtatacggattcgtccgttacagaattct
MHV IC NC_001846 LA16 #39 NC2 #3	1321 1320 1320	gttataaaaccaagctgtgtgaatgcggttttatcacgcagtttggctatgtggattgtt
MHV IC NC_001846 LA16 #39 NC2 #3	1381 1380 1380	gtggtgacacctgcgattttcgtgggtgggttgccggcaatatgatggatg
MHV IC NC_001846 LA16 #39 NC2 #3	1441 1440 1440	gtccagggtgtaccaaaaattatatgccctgggaattggaggcccagtcatcaggtgtta
MHV IC NC_001846 LA16 #39 NC2 #3	1501 1500 1500	taccagaaggaggtgttctattcactcagagcactgatacagtgaatcgtgagtccttta

MHV IC NC 001846 1561 agetetacggteatgetgttgtgeettttggttetgetgtgtattggagecettgeecag 1560 LA16 #39 NC2 #3 1560 1621 gtatgtggcttccagtaatttggtcttctgttaagtcatactctggtttgacttatacag MHV IC NC 001846 LA16 #39 1620 NC2 #3 1620 MHV IC NC 001846 1681 gagtagttggttgtaaggcaattgttcaagagacagacgctatatgtcgttctctgtata 1680 LA16 #39 NC2 #3 1680 MHV IC NC 001846 1741 tggattatgtccagcacaagtgtggcaatctcgagcagagggtatccttggattggacg 1740 LA16 #39 NC2 #3 1740 1801 atgtctatcatagacagttgcttgtgaataggggtgactatagtctcctccttgagaatg MHV IC NC 001846 1800 LA16 #39 NC2 #3 1800 1861 tggatttgtttgttaagcggcgcgctgaatttgcttgcaaattcgccacctgtggagatg MHV IC NC 001846 1860 LA16 #39 1860 NC2 #3 1921 gtcttgtacccctcctactagatggtttagtgcccccgcagttattattqattaagagtg MHV IC NC 001846 LA16 #39 1920 NC2 #3 1920 1981 gtcaagetttcacetetatgatgqttaattttagecatgaggtgactgacatgtgtatgg MHV IC NC 001846 LA16 #39 1980 NC2 #3 1980 2041 acatggetttattgttcatgcatgatgttaaagtggecactaagtatgttaagaaggtta MHV IC NC 001846 LA16 #39 2040 NC2 #3 2040 2101 ctggcaaactggccgtgcgctttaaagcgttggggtgtagccgttgtcagaaaaattactg MHV IC NC 001846 LA16 #39 2100 NC2 #3 2100 2161 aatggtttgatttagccgtggacattgctgctagtgccgctggatggctttgctaccagc MHV IC NC 001846 LA16 #39 2160 NC2 #3 2160 2221 tggtaaatggcttatttgcagtggccaatggtgttataacctttgtacaggaggtgcctg MHV IC NC 001846 2220 LA16 #39 NC2 #3 2220 2281 agcttgtcaagaattttgttgacaagttcaaggcatttttcaaggttttgatcgactcta MHV IC NC 001846 2280 LA16 #39 2280 NC2 #3 2341 tgtcggtttctatcttgtctggacttactgttgtcaagactgcctcaaatagggtgtgtc MHV IC NC 001846 2340 LA16 #39 2340 NC2 #3 2401 ttgctggcagtaaqqtttatgaaqttgtgcagaaatctttgtctgcatatgttatgcctg MHV IC NC 001846 LA16 #39 2400 2400 NC2 #3

MHV IC NC_001846 LA16 #39 NC2 #3	2461 2460 2460	tgggttgcagtgaagccacttgtttggtgggtgagattgaacctgcagtttttgaagatg cc
MHV IC NC_001846 LA16 #39 NC2 #3	2521 2520 2520	atgttgttgatgtggttaaagccccattaacatatcaaggctgttgtaagccacccac
MHV IC NC_001846 LA16 #39 NC2 #3	2581 2580 2580	ctttcgagaagatttgtattgtggataaattgtatatggccaagtgtggtgatcaatttt
MHV IC NC_001846 LA16 #39 NC2 #3	2641 2640 2640	accctgtggttgttgataacgacactgttggcgtgttagatcagtgctggaggtttccct
MHV IC NC_001846 LA16 #39 NC2 #3	2701 2700 2700	gtgcgggcaagaaagtcgagtttaacgacaagcccaaagtcaggaagataccctccaccc
MHV IC NC_001846 LA16 #39 NC2 #3	2761 2760 2760	gtaagattaagatcaccttcgcactggatgcgacctttgatagtgttctttcgaaggcgt
MHV IC NC_001846 LA16 #39 NC2 #3	2821 2820 2820	gttcagagtttgaagttgataaagatgttacattggatgagctgcttgatgttgtgcttg
MHV IC NC_001846 LA16 #39 NC2 #3	2881 2880 2880	acgcagttgagagtacgctcagcccttgtaaggagcatgatgtgataggcacaaaagttt
MHV IC NC_001846 LA16 #39 NC2 #3	2941 2940 2940	gtgctttacttgataggttggcaggagattatgtctatctttttgatgagggagg
MHV IC NC_001846 LA16 #39 NC2 #3	3001 3000 3000	aagtgatcgccccgaggatgtattgttccttttctgctcctgatgatgaagactgcgttg
MHV IC NC_001846 LA16 #39 NC2 #3	3061 3060 3060	cagcggatgttgtagatgcagatgaaaaccaagatgatgatgctgaagactcagcagtcc
MHV IC NC_001846 LA16 #39 NC2 #3	3121 3120 3120	ttgtcgctgatacccaagaaggacggcgttgccaaggggcaggttgaggcggattcgg
MHV IC NC_001846 LA16 #39 NC2 #3	3181 3180 3180	aaatttgcgttgcgcatactggtagtcaagaagaattggctgagcctgatgctgtcggat
MHV IC NC_001846 LA16 #39 NC2 #3	3241 3240 3240	ctcaaactcccatcgcctctgctgaggaaaccgaagtcggagaggcaagcgacagggaag
MHV IC NC_001846 LA16 #39 NC2 #3	3301 3300 3300	ggattgctgaggcgaaggcaactgtgtgtgctgatgctgtagatgcctgcc

MHV IC NC_001846 LA16 #39 NC2 #3	3361 3360 3360	tggaggcatttgaaattgaaaaggttgaagactctatcttggatgagcttcaaactgaac
MHV IC NC_001846 LA16 #39 NC2 #3	3421 3420 3420	ttaatgcgccagcggacaagacctatgaggatgtcttggcattcgatgccgtatgctcag
MHV IC NC_001846 LA16 #39 NC2 #3	3481 3480 3480	aggcgttgtctgcattctatgctgtgccgagtgatgagacgcactttaaagtgtgtggat
MHV IC NC_001846 LA16 #39 NC2 #3	3541 3540 3540	tctattcgcctgctatagagcgcactaattgttggctgcgttctactttgatagtaatgc
MHV IC NC_001846 LA16 #39 NC2 #3	3601 3600 3600	agagtetaeetttggaatttaaagaettggagatgeaaaagetetggttgtettaeaagg
MHV IC NC_001846 LA16 #39 NC2 #3	3661 3660 3660	ccggctatgaccaatgctttgtggacaaactagttaagagcgtgcccaagtctattatcc
MHV IC NC_001846 LA16 #39 NC2 #3	3721 3720 3720	ttccacaaggtggttatgtggcagattttgcctatttctttc
MHV IC NC_001846 LA16 #39 NC2 #3	3781 3780 3780	aagcttatgctaactggcgttgtttagagtgtgacatggagttaaagcttcaaggcttgg
MHV IC NC_001846 LA16 #39 NC2 #3	3841 3840 3840	acgccatgtttttctatggggacgttgtgtctcatatgtgcaagtgtggtaatagcatga
MHV IC NC_001846 LA16 #39 NC2 #3	3901 3900 3900	ccttgttgtctgcagatataccctacactttgcattttggagtgcgagatgataagtttt
MHV IC NC_001846 LA16 #39 NC2 #3	3961 3960 3960	gcgctttttacacgccaagaaaggtctttagggctgcttgtgcggtagatgttaatgatt
MHV IC NC_001846 LA16 #39 NC2 #3	4021 4020 4020	gtcactctatggctgtagtagagggcaagcaaattgatggtaaagtggttaccaaattta
MHV IC NC_001846 LA16 #39 NC2 #3	$\begin{array}{c} 4081 \\ 4080 \\ 4080 \end{array}$	ttggtgacaaatttgattttatggtgggttacgggatgacatttagtatgtctccttttg
MHV IC NC_001846 LA16 #39 NC2 #3	4141 4140 4140	aactcgcccagttatatggttcatgtataacaccaaatgtttgtt
MHV IC NC_001846 LA16 #39 NC2 #3	4201 4200 4200	ttataaaggttgttcgcttagttaatgctgaagtcattgttaaccctgctaatgggcgta

MHV IC NC_001846 LA16 #39 NC2 #3	4261 4260 4260	tggctcatggtgcaggtgttgcaggtgctatagctgaaaaggcgggcagtgcttttatta
MHV IC NC_001846 LA16 #39 NC2 #3	4321 4320 4320	aagaaacctccgatatggtgaaggctcagggcgtttgccaggttggtgaatgctatgaat
MHV IC NC_001846 LA16 #39 NC2 #3	4381 4380 4380	ctgccggtggtaagttatgtaaaaaggtgcttaacattgtagggccagatgcgcgagggc
MHV IC NC_001846 LA16 #39 NC2 #3	$4441 \\ 4440 \\ 4440$	atggcaagcaatgctattcacttttagagcgtgcttatcagcatattaataagtgtgaca
MHV IC NC_001846 LA16 #39 NC2 #3	4501 4500 4500	atgttgtcactactttaatttcggctggtatatttagtgtgcctactgatgtctccctaa
MHV IC NC_001846 LA16 #39 NC2 #3	4561 4560 4560	cttacttacttggtgtagtgacaaagaatgtcattcttgtcagtaacaaccaggatgatt
MHV IC NC_001846 LA16 #39 NC2 #3	4621 4620 4620	ttgatgtgatagagaagtgtcaggtgacctccgttgctggtaccaaagcgctatcacttc
MHV IC NC_001846 LA16 #39 NC2 #3	4681 4680 4680	aattggccaaaaatttgtgccgtgatgtaaagtttgtgacgaatgcatgtagttcgcttt
MHV IC NC_001846 LA16 #39 NC2 #3	4741 4740 4740	ttagtgaatcttgctttgtctcaagctatgatgtgttgcaggaagttgaagcgctgcgac
MHV IC NC_001846 LA16 #39 NC2 #3	4801 4800 4800	atgatatacaattggatgatgatgctcgtgtctttgtgcaggctaatatggactgtctgc
MHV IC NC_001846 LA16 #39 NC2 #3	4861 4860 4860	ccacagactggcgtctcgttaacaaatttgatagtgttgatggtgttagaaccattaagt
MHV IC NC_001846 LA16 #39 NC2 #3	4921 4920 4920	attttgaatgcccgggcgggatttttgtatccagccagggcaaaaagtttggttatgttc
MHV IC NC_001846 LA16 #39 NC2 #3	4981 4980 4980	agaatggttcatttaaggaggcgagtgttagccaaataagggctttactcgctaataagg
MHV IC NC_001846 LA16 #39 NC2 #3	5041 5040 5040	ttgatgtcttgtgtactgttgatggtgttaacttccgctcctgctgcgtagcagagggtg
MHV IC NC_001846 LA16 #39 NC2 #3	5101 5100 5100	aagtttttggcaagacattaggttcagtcttttgtgatggcataaatgtcaccaaagtta

MHV IC NC_001846 LA16 #39 NC2 #3	5161 5160 5160	ggtgtagtgccatttacaagggtaaggttttctttcagtacagtgatttgtccgaggcag
MHV IC NC_001846 LA16 #39 NC2 #3	5221 5220 5220	atcttgtggctgttaaagatgcctttggttttgatgaaccacaactgctgaagtactaca
MHV IC NC_001846 LA16 #39 NC2 #3	5281 5280 5280	ctatgcttggcatgtgtaagtggtcagtagttgtttgtggcaattattttgctttcaagc
MHV IC NC_001846 LA16 #39 NC2 #3	5341 5340 5340	agtcaaataataattgctatataaatgtggcatgtttaatgctgcaacacttgagtttaa
MHV IC NC_001846 LA16 #39 NC2 #3	5401 5400 5400	agtttcctaagtggcaatggcaagaggcttggaacgagttccgctctggtaaaccactaa
MHV IC NC_001846 LA16 #39 NC2 #3	5461 5460 5460	ggtttgtgtccttggtattagcaaagggcagctttaaatttaatgaaccttctgattcta
MHV IC NC_001846 LA16 #39 NC2 #3	5521 5520 5520	tcgattttatgcgtgtggtgctacgtgaagcagatttgagtggtgccacgtgcaatttgg
MHV IC NC_001846 LA16 #39 NC2 #3	5581 5580 5580	aatttgtttgtaaatgtggtgtgaagcaagagcagcgcaaaggtgttgacgctgttatgc
MHV IC NC_001846 LA16 #39 NC2 #3	5641 5640 5640	attttggtacgttggataaaggtgatcttgtcaggggttataatatcgcatgtacgtgcg
MHV IC NC_001846 LA16 #39 NC2 #3	5701 5700 5700	gtagtaaacttgtgcattgcacccaatttaacgtaccatttttaatttgctccaacacac
MHV IC NC_001846 LA16 #39 NC2 #3	5761 5760 5760	cagagggtaggaaactgcccgacgatgttgttgcagctaatatttttactggtggtagtg
MHV IC NC_001846 LA16 #39 NC2 #3	5821 5820 5820	tgggccattacacgcatgtgaaatgtaaacccaagtaccagctttatgatgcttgtaatg
MHV IC NC_001846 LA16 #39 NC2 #3	5881 5880 5880	ttaataaggtttcggaggctaagggtaattttaccgattgcctctaccttaaaaatttaa
MHV IC NC_001846 LA16 #39 NC2 #3	5941 5940 5940	agcaaactttttcgtctgtgctgacgactttttatttagatgatgtaaagtgtgtggagt
MHV IC NC_001846 LA16 #39 NC2 #3	6001 6000 6000	ataagccagatttatcgcagtattactgtgagtctggtaaatattatacaaaacccatta

MHV IC NC_001846 LA16 #39 NC2 #3	6061 6060 6060	ttaaggcccaatttagaacatttgagaaggttgatggtgtctataccaactttaaattgg
MHV IC NC_001846 LA16 #39 NC2 #3	6121 6120 6120	tgggacatagtattgctgaaaaactcaatgctaagctgggatttgattgtaattctccct
MHV IC NC_001846 LA16 #39 NC2 #3	6181 6180 6180	ttgtggagtataaaattacagagtggccaacagctactggagatgtggtgttggctagtg
MHV IC NC_001846 LA16 #39 NC2 #3	6241 6240 6240	atgatttgtatgtaagtcggtactcaagcgggtgcattacttttggtaaaccggttgtct gg
MHV IC NC_001846 LA16 #39 NC2 #3	6301 6300 6300	ggcttggccatgaggaagcatcgctgaaatctctcacatattttaatagacctagtgtcg
MHV IC NC_001846 LA16 #39 NC2 #3	6361 6360 6360	tttgtgaaaataaatttaatgtgttgcccgttgatgtcagtgaacccacggacaaggggc
MHV IC NC_001846 LA16 #39 NC2 #3	6421 6420 6420	ctgtgcctgctgcagtccttgttaccggcgtccctggagctgatgcgtcagctggtgccg
MHV IC NC_001846 LA16 #39 NC2 #3	6481 6480 6480	gtattgccaaggagcaaaaagcctgtgcttctgctagtgtggaggatcaggttgttacgg
MHV IC NC_001846 LA16 #39 NC2 #3	6541 6540 6540	aggttcgtcaagagccatctgtttcagctgctgatgtcaaagaggttaaattgaatggtg
MHV IC NC_001846 LA16 #39 NC2 #3	6601 6600 6600	ttaaaaagcctgttaaggtggaaggtagtgtggttgttaatgatcccactagcgaaacca
MHV IC NC_001846 LA16 #39 NC2 #3	6661 6660 6660	aagttgttaaaagtttgtctattgttgatgtctatgatatgttcctgacagggtgtaagt
MHV IC NC_001846 LA16 #39 NC2 #3	6721 6720 6720	atgtggtttggactgctaatgagttgtctcgactagtaaattcaccgactgttagggagt
MHV IC NC_001846 LA16 #39 NC2 #3	6781 6780 6780	atgtgaagtggggtaagggaaagattgtaacacccgctaagttgttgttgttaagagatg tt
MHV IC NC_001846 LA16 #39 NC2 #3	6841 6840 6840	agaagcaagagttcgtagcgccaaaagtagtcaaggcgaaagctattgcctgctattgtg
MHV IC NC_001846 LA16 #39 NC2 #3	6901 6900 6900	ctgtgaagtggtttctcctctattgttttagttggataaagtttaatactgataataagg

MHV IC NC_001846 LA16 #39 NC2 #3	6961 6960 6960	ttatatacaccacagaagtagcttcaaagcttactttcaagttgtgctgtttggccttta
MHV IC NC_001846 LA16 #39 NC2 #3	7021 7020 7020	agaatgccttacagacgtttaattggagcgttgtgtctagggggctttttcctagttgcaa
MHV IC NC_001846 LA16 #39 NC2 #3	7081 7080 7080	cggtctttttattatggtttaactttttgtatgctaatgttattttgagtgacttctatt
MHV IC NC_001846 LA16 #39 NC2 #3	7141 7140 7140	tgcctaatattgggcctctccctacgtttgtgggacagatagttgcgtggtttaagacta
MHV IC NC_001846 LA16 #39 NC2 #3	7201 7200 7200	catttggtgtgtcaaccatctgtgatttctaccaggtgacggatttgggctatagaagtt
MHV IC NC_001846 LA16 #39 NC2 #3	7261 7260 7260	cgttttgtaatggaagtatggtatgtgaactatgcttctcaggttttgatatgctggaca aa
MHV IC NC_001846 LA16 #39 NC2 #3	7321 7320 7320	actatgatgctataaatgttgttcaacacgttgtagataggcgtttgtcctttgactata
MHV IC NC_001846 LA16 #39 NC2 #3	7381 7380 7380	ttagcctatttaaattagtagttgagcttgtaatcggctactctctttatactgtgtgct
MHV IC NC_001846 LA16 #39 NC2 #3	7441 7440 7440	tctacccactgtttgtccttattggaatgcagttgttgaccacatggttgcctgaattct
MHV IC NC_001846 LA16 #39 NC2 #3	7501 7500 7500	ttatgctggagactatgcattggagtgctcgtttgtttgt
MHV IC NC_001846 LA16 #39 NC2 #3	7561 7560 7560	cagcttttacgttactgcgattttacatcgtggtgacagctatgtataaggtctattgtc
MHV IC NC_001846 LA16 #39 NC2 #3	7621 7620 7620	tttgtagacatgttatgtatggatgtagtaagcctggttgcttgttttgttataagagaa
MHV IC NC_001846 LA16 #39 NC2 #3	7681 7680 7680	accgtagtgtccgtgttaagtgtagcaccgttgttggtggttcactacgctattacgatg
MHV IC NC_001846 LA16 #39 NC2 #3	7741 7740 7740	taatggctaacggcggcacaggtttctgtacaaagcaccagtggaactgtcttaattgca
MHV IC NC_001846 LA16 #39 NC2 #3	7801 7800 7800	atteetggaaaccaggcaatacatteataacteatgaagcageggeggaeetetetaagg

MHV IC NC_001846 LA16 #39 NC2 #3	7861 7860 7860	agttgaaacgccctgtgaatccaacagattctgcttattactcggtcacagaggttaagc
MHV IC NC_001846 LA16 #39 NC2 #3	7921 7920 7920	aggttggttgttccatgcgtttgttctacgagagagatggacagcgtgtttatgatgatg
MHV IC NC_001846 LA16 #39 NC2 #3	7981 7980 7980	ttaatgctagtttgttgtggacatgaatggtctgctgcattctaaagttaaaggtgtgc
MHV IC NC_001846 LA16 #39 NC2 #3	$ \begin{array}{r} 8041 \\ 8040 \\ 8040 \\ \end{array} $	ctgaaacgcatgttgtggttgttgagaatgaagctgataaagctggttttctcggcgccg
MHV IC NC_001846 LA16 #39 NC2 #3	8101 8100 8100	cagtgttttatgcacaatcgctctacagacctatgttgatggtggaaaagaaattaataa
MHV IC NC_001846 LA16 #39 NC2 #3	8161 8160 8160	ctaccgccaacactggtttgtctgttagtcgaactatgtttgacctttatgtagattcat
MHV IC NC_001846 LA16 #39 NC2 #3	8221 8220 8220	tgctgaacgtcctcgacgtggatcgcaagagtctaacaagttttgtaaatgctgcgcaca
MHV IC NC_001846 LA16 #39 NC2 #3	8281 8280 8280	actctctaaaggagggtgttcagcttgaacaagttatggatacctttattggctgtgccc
MHV IC NC_001846 LA16 #39 NC2 #3	8341 8340 8340	gacgtaagtgtgctatagattctgatgttgaaaccaagtctattaccaagtccgtcatgt
MHV IC NC_001846 LA16 #39 NC2 #3	8401 8400 8400	cggcagtaaatgctggcgttgattttacggatgagagttgtaataacttggtgcctacct
MHV IC NC_001846 LA16 #39 NC2 #3	8461 8460 8460	atgttaaaagtgacactatcgttgcagccgatttgggtgttcttattcagaataatgcta
MHV IC NC_001846 LA16 #39 NC2 #3	8521 8520 8520	agcatgtacaggctaatgttgctaaagccgctaatgtggcttgcatttggtctgtggatg
MHV IC NC_001846 LA16 #39 NC2 #3	8581 8580 8580	cttttaaccagctatctgctgacttacagcataggctgcgaaaagcatgttcaaaaactg
MHV IC NC_001846 LA16 #39 NC2 #3	8641 8640 8640	gcttgaagattaagcttacttataataagcaggaggcaaatgtteetattttaaetaeae
MHV IC NC_001846 LA16 #39 NC2 #3	8701 8700 8700	cgttctctcttaaaggggggcgctgtttttagtagaatgttacaatggttgtttgt

MHV IC NC_001846 LA16 #39 NC2 #3	<pre>8761 atttgatttgtttcattgtgttgtgggcccttatgccaacatatgcagtgcacaaatcgg 8760</pre>
MHV IC NC_001846 LA16 #39 NC2 #3	8821atatgcagttgcctttatatgccagttttaaagttatagataatggtgtgctaagggatg88208820
MHV IC NC_001846 LA16 #39 NC2 #3	8881tgtctgttactgacgcatgcttcgcaaacaaatttaatcaatttgatcaatggtatgagt88808880
MHV IC NC_001846 LA16 #39 NC2 #3	8941ctacttttggtcttgcttattaccgcaactctaaggcttgtcctgttgtggttgctgtaa89408940
MHV IC NC_001846 LA16 #39 NC2 #3	9001 tagatcaagacattggccataccttatttaatgttcctaccacagttttaagatatggat 9000 9000
MHV IC NC_001846 LA16 #39 NC2 #3	9061 ttcatgtgttgcattttataacccatgcatttgctactgatagcgtgcagtgttacacgc 9060
MHV IC NC_001846 LA16 #39 NC2 #3	9121cacatatgcaaatcccctatgataatttctatgctagtggttgcgtgttgtcatccctct91209120
MHV IC NC_001846 LA16 #39 NC2 #3	9181gtactatgcttgcgcatgcagatggaaccccgcatccttattgttatacagggggtgtta91809180
MHV IC NC_001846 LA16 #39 NC2 #3	9241 tgcacaatgcetetetgtatagttetttggeteeteatgteegttataacetggetagtt 9240 9240
MHV IC NC_001846 LA16 #39 NC2 #3	9301 caaatggttatatacgttttcccgaagtggttagtgaaggcattgtgcgtgttgtgcgca 9300 9300
MHV IC NC_001846 LA16 #39 NC2 #3	9361ctcgctctatgacctactgcagggttggtttatgtgaggagggccgaggggggtatctgct9360
MHV IC NC_001846 LA16 #39 NC2 #3	9421 ttaattttaatcgttcatgggtattgaacaacccgtattatagggccatgcctggaactt 9420 9420
MHV IC NC_001846 LA16 #39 NC2 #3	9481tttgtggtaggaatgcttttgatttaatacatcaagttttaggaggattagtgcggccta9480
MHV IC NC_001846 LA16 #39 NC2 #3	9541ttgatttctttgccttaacggcgagttcagtggctggtgctatccttgcaattattgtcg9540
MHV IC NC_001846 LA16 #39 NC2 #3	9601 ttttggctttctattatttaataaagcttaaacgtgcctttggtgactacactagtgttg 9600

MHV IC NC 001846 9661 tggttatcaatgtaattgtgtgtgtataaattttctgatgctttttgtgtttcaggttt LA16 #39 9660 NC2 #3 9660 MHV IC NC 001846 9721 atcccacattgtcttgtttatatgcttgtttttatttctacacaacgctttatttccctt LA16 #39 9720 NC2 #3 9720 MHV IC NC 001846 9781 cggagataagtgttgttatgcatttgcaatggcttgtcatgtatggtgctattatgccct LA16 #39 9780 NC2 #3 9780 MHV IC NC 001846 9841 tgtggttttgcattatttacgtggcagtcgttgtttcaaaccatgcattgtggttgttct LA16 #39 9840 NC2 #3 9840 MHV IC NC 001846 9901 cttactgccgcaaaattggtaccgaggttcgtagtgacggcacatttgaggaaatggccc LA16 #39 9900 NC2 #3 9900 MHV IC NC 001846 9961 ttactacctttatgattactaaagaatcttattgtaagttgaaaaattctgtttctgatg LA16 #39 9960 NC2 #3 MHV IC NC 001846 10021 ttgcttttaacaggtacttgagtctttataacaagtatcgttattttagtggcaaaatgg LA16 #39 10020 NC2 #3 MHV IC NC 001846 10081 atactgccgcttatagagaggctgcctgttcacaactggcaaaggcaatggaaacattta LA16 #39 10080 NC2 #3 10080 MHV IC NC 001846 10141 accataataatggtaatgatgttctctctatcagcctccaaccgcctctgttactacatcat LA16 #39 10140 NC2 #3 10140 MHV IC NC 001846 10201 ttttacagtctggtatagtgaagatggtgtcgcccacctctaaagtggagccttgtattg 10200 LA16 #39 NC2 #3 10200 LA16 #39 10260 NC2 #3 10260 MHV IC NC 001846 10321 gcccaagacatgttatctgttcttcagctgacatgacagaccctgattatcctaatttgc LA16 #39 10320 NC2 #3 10320a MHV IC NC 001846 10381 tttgtagagtgacatcaagtgattttttgtgttatgtctggtcgtatgagccttactgtaa LA16 #39 10380 NC2 #3 10380 MHV IC NC 001846 10441 tqtcttatcaaatgcagqqctqccaacttqttttqactqttacactqcaaaatcctaaca LA16 #39 10440 NC2 #3 10440 MHV IC NC 001846 10501 cgcctaagtatteetteggtgttgttgatgagacatttactggetgeat LA16 #39 10500 NC2 #3 10500

MHV IC NC 001846 10561 acaatggcagacctcaaggagcettecatgttacgettegtagtagecataccataaagg 10560 LA16 #39 10560 NC2 #3 MHV IC NC 001846 10621 gctcctttctatgtggatcctgcggttctgtaggatatgttttaactggcgatagtgtac 10620 LA16 #39 NC2 #3 10620 MHV IC NC 001846 10681 gatttgtttatatgcatcagctagagttgagtactggttgtcataccggtactgactta LA16 #39 10680 NC2 #3 10680 MHV IC NC 001846 10741 gtgggaacttttatggtccctatagagatgcgcaagttgtacaattgcctgttcaggatt 10740 LA16 #39 10740 NC2 #3 MHV IC NC 001846 10801 atacgcagactgttaatgttgtagcttggctttatgctgctatttttaacagatgcaact 10800 LA16 #39 NC2 #3 10800 MHV IC NC 001846 10861 ggtttgtgcaaagtgatagttgttccctggaggagtttaatgtttgggctatgaccaatg 10860 LA16 #39 10860 NC2 #3 MHV IC NC 001846 10921 gttttagetcaatcaaageegatettgtettggatgegettgettetatgacaggegtta LA16 #39 10920t.....t NC2 #3 10920t. 10980 LA16 #39 NC2 #3 10980 LA16 #39 11040 11040 NC2 #3 MHV IC NC 001846 11101 ctggtgtcaagctacagtcaaagcgcacaagagttataaaaggtacatgttgctggatat 11100 LA16 #39 11100 NC2 #3 MHV IC NC 001846 11161 tggcttcaacgtttttgttctgtagcattatctcagcatttgtaaaatggactatgttta 11160 LA16 #39 11160 NC2 #3 MHV IC NC 001846 11221 tgtatgttactacccatatgttgggagtgacattgtgtgcactttgttttgtaagctttg 11220 LA16 #39 11220 NC2 #3 MHV IC NC 001846 11281 ctatgttgttgatcaagcataagcatttgtatttaactatgtatattatgcctgtgttat 11280 LA16 #39 11280 NC2 #3 MHV IC NC 001846 11341 gcacactgttttacaccaactatttggttgtgtacaaacagagttttagaggtctagctt LA16 #39 11340 11340 NC2 #3 MHV IC NC 001846 11401 atgcttggctttcacactttgtccctgctgtagattatacatatatggatgaagttttat 11400 LA16 #39 11400 NC2 #3

LA16 #39 11460 NC2 #3 11460 MHV IC NC 001846 11521 tettttetattatgttettggttggtagaettgteageetggtateeatgtagtattttg LA16 #39 11520 NC2 #3 11520 MHV IC NC 001846 11581 gagecaatttagaggaaggggacgtactattgtteeteacatecetatttggcacgtacacat LA16 #39 11580 NC2 #3 11580 MRV IC NC 001846 11641 ggactactatgttgtcattggctaccgctaaggttattgctaaatggttggctgtgaatg 11640 LA16 #39 11640 NC2 #3 MHV IC NC 001846 11701 tcttgtacttcacagacgtaccgcaaattaaattagttcttttgagctacttgtgtattg LA16 #39 11700 NC2 #3 11700 MHV IC NC 001846 11761 gttatgtgtgttgttgttgttattgggggaatcttgtcactccttaatagcatttttaggatgc LA16 #39 11760 NC2 #3 11760 MHV IC NC 001846 11821 cattgggcgtctacaattataaaatctccqttcaggagttacqttatatgaatqctaatg 11820 LA16 #39 NC2 #3 11820 MHV IC NC 001846 11881 gcttgcgcccacctagaaatagttttgaggccctgatgcttaattttaagctgttgggaa LA16 #39 11880 NC2 #3 11880 LA16 #39 11940 NC2 #3 11940 MHV IC NC 001846 12001 gtgctaatgttgttgttgcttaattgcctccagcacttgcatattgcatctaattctaagt LA16 #39 12000 NC2 #3 12000 MHV IC NC 001846 12061 tgtggcagtattgtagtactttgcacaatgaaatactggctacatctgatttgagcgtgg 12060 LA16 #39 NC2 #3 12060 MHV IC NC 001846 12121 ccttcgataagttggctcagctcttagttgttttatttgctaatccagcagcagtggata LA16 #39 12120 NC2 #3 12120 MHV IC NC 001846 12181 gcaagtgccttgcaagtattgaagaagtgagcgatgattacgttcgcgacaatactgtct LA16 #39 12180 NC2 #3 12180 MHV IC NC 001846 12241 tgcaageettacagagtgaatttgttaatatggetagettegttgagtatgaacttgeta 12240 LA16 #39 NC2 #3 12240 MHV IC NC 001846 12301 agaagaatctagatgaggctaaggctagggctctgccaatcaacagcagattaagcagc LA16 #39 12300 NC2 #3 12300

MHV IC NC 001846 12361 taqaqaaqqcqtqtaatattqctaaqtcagcatatgagcqcqacaqagctqttgctcqta 12360 LA16 #39 NC2 #3 12360 MHV IC NC 001846 12421 agctggaacgtatggctgatttagctcttacaaacatgtataaagaagctagaattaatg 12420 LA16 #39 NC2 #3 12420 MHV IC NC 001846 12481 ataagaagagtaaggtagtgtctgcattgcaaaccatgctctttagtatggtgcgtaagc 12480 LA16 #39 12480 NC2 #3 MHV IC NC 001846 12541 tagataaccaagctcttaattctattttagataatgcagttaagggttgtgtacctttga LA16 #39 12540 NC2 #3 12540 MHV IC NC 001846 12601 atgcaataccatcattgacttcgaacactctgactataatagtgccagataagcaggttt 12600 LA16 #39 NC2 #3 12600 MHV IC NC_001846 12661 ttgatcaggttgtggataatgtgtatgtcacctatgctgggaatgtatggcatatacagt 12660 LA16 #39 NC2 #3 12660 LA16 #39 12720 NC2 #3 12720 MHV IC NC 001846 12781 ggcctctagtcattgctgcaaataggcataatgaagtgtctactgttgttttgcagaaca LA16 #39 12780 NC2 #3 12780 MHV IC NC 001846 12841 atgagttgatgcctcagaagttgagaactcaggttgtcaatagtggctcagatatgaatt 12840 LA16 #39 NC2 #3 12840 MHV IC NC 001846 12901 gtaatactcctacccagtgttactataatactactggcacgggtaagattgtgtatgcta 12900 LA16 #39 12900 NC2 #3 MHV IC NC 001846 12961 tacttagtgactgtgatggtctcaagtacactaagatagtaaaagaagatggaaattgtg 12960 LA16 #39 NC2 #3 MHV IC NC 001846 13021 ttgttttggaattggatcctccctgtaagttttctgttcaggatgtgaagggccttaaaa LA16 #39 13020 NC2 #3 13020 MHV IC NC 001846 13081 ttaagtacctttactttgtgaagggggtgtaatacactggctagaggctgggttgtaggca 13080 LA16 #39 13080 NC2 #3 MHV IC NC 001846 13141 ccttatcctcgacagtgagattgcaggcgggtacggcaactgagtatgcctccaactctg LA16 #39 13140 NC2 #3 13140 MHV IC NC 001846 13201 caatactgtcgctgtgtgcgttttctgtagatcctaagaaaacgtacttggattatataa LA16 #39 13200 13200 NC2 #3

MHV IC NC 001846 13261 aacagggtggagttcccgttactaattgtgttaagatgttatgtgaccatgctggcactg LA16 #39 13260a.....a NC2 #3 13260 MHV IC NC 001846 13321 gtatggccattactattaagccggaggcaaccactaatcaggattcttatggtggtgctt LA16 #39 13320 NC2 #3 13320 MHV IC NC 001846 13381 ccgtttgtatatattgccgctcgcgtgttgaacatccagatgttgatggattgtgcaaat LA16 #39 13380 NC2 #3 13380 MHV IC NC 001846 13441 tacgcggcaagtttgtccaagtgcccttaggcataaaagatcctgtgtcatatgtgttga LA16 #39 13440 NC2 #3 13440 MHV IC NC 001846 13501 cgcatgatgtttgtcaggtttgtggcttttggcgagatggtagctgttcctgtgtaggca LA16 #39 13500 NC2 #3 13500 MHV IC NC 001846 13561 caggeteccagtttcagtcaaaagacacgaactttttaaacgggttcggggtacaagtgt LA16 #39 13560a. NC2 #3 13560a.....a MHV IC NC 001846 13621 aaatgcccgtcttgtaccctgtgccagtggcttggacactgatgttcaattaagggcatt LA16 #39 13620 NC2 #3 13620 MHV IC NC 001846 13681 tgacatttgtaatgctaatcgagctggcattggtttgtattataaagtgaattgctgccg LA16 #39 13680 NC2 #3 13680 13741 cttccagcgtgtagatgaggacggcaacaagttggataagttctttgttgttaaaagaac MHV IC NC 001846 LA16 #39 13740 NC2 #3 13740 MHV IC NC 001846 13801 taatttagaagtgtataataaggagaaagaatgctatgagttgacaaaagaatgcggtgt LA16 #39 13800 NC2 #3 13800 13861 tqtggctgaacacqagttcttcacatttgatgtggagggaagtcgggtaccacatagt MHV IC NC 001846 LA16 #39 13860 NC2 #3 13860 MHV IC NC 001846 13921 ccgtaaagatctttcaaagtttactatgttagatctttgctatgcattgcgtcattttga LA16 #39 13920 NC2 #3 13920 MHV IC NC 001846 13981 ccgcaatgattgttcaactcttaaggaaattctccttacatatgctgagtgtgaagagtc 13980 LA16 #39 NC2 #3 13980 MHV IC NC 001846 LA16 #39 14040 NC2 #3 14040g. MHV IC NC 001846 14101 taaaaagcttggtcctatatttaatagagccctgcttaacactgccaagtttgcagacgc LA16 #39 14100 NC2 #3 14100

MHV IC NC 001846 14161 attagtggaggcaggcttagtagtgttttaacacttgataatcaagatttatatggtca 14160 LA16 #39 NC2 #3 14160 MHV IC NC 001846 14221 atggtatgactttggagattttgtcaagacagtacctggttgtggtgttgccgtggcaga 14220 LA16 #39 14220 NC2 #3 MHV IC NC 001846 14281 ctcttattattcatatatgatgccaatgctgactatgtgtcatgcgttggatagtgagtt 14280 LA16 #39 14280 NC2 #3 14341 gtttgttaatggtacttatagggagtttgaccttgttcagtatgattttactgatttcaa MHV IC NC 001846 LA16 #39 14340 NC2 #3 14340 MHV IC NC 001846 14401 gctagagctcttcactaagtattttaagcattggagtatgacctaccacccgaacacctg 14400 LA16 #39 NC2 #3 14400 MHV IC NC 001846 14461 tgagtgcgaggatgacaggtgcattattcattgcgccaattttaatatactttttagtat 14460 LA16 #39 NC2 #3 14460 MHV IC NC 001846 14521 ggtcttacctaagacctgttttggggcctcttgttaggcagatatttgtggatggtgttcc LA16 #39 14520 NC2 #3 14520 MHV IC NC 001846 14581 tttcgttgtgtcgatcggttaccattataaagaattaggtgttgttatgaatatggatgt 14580 LA16 #39 NC2 #3 14580 MHV IC NC 001846 14641 ggatacacatcgttatcgcttgtctcttaaggacttgcttttgtatgctgcagaccctgc 14640 LA16 #39 14640 NC2 #3 MHV_IC_NC_001846 14701 ccttcatgtggcgtctgctagtgcactgcttgatttgcgcacatgttgttttagcgttgc 14700 LA16 #39 14700 NC2 #3 MHV IC NC 001846 14761 agctattacaagtggcgtaaaatttcaaacagttaaacctggaaattttaatcaggattt 14760 LA16 #39 NC2 #3 14760 14820 LA16 #39 NC2 #3 14820 MHV IC NC 001846 14881 cttcttttacgcaggatggtaatgctgctattactgattataattattacaagtataa 14880 LA16 #39 NC2 #3 14880 LA16 #39 14940 14940 NC2 #3 MHV IC NC 001846 15001 ttttgagatctatgagggtgggtgtataccccgcaacacaggtcattgttaataattatga LA16 #39 15000 15000 NC2 #3
MHV IC NC 001846 15061 taagagtgctggctatccatttaataaatttggaaaggccaggctctattatgaggcatt LA16 #39 15060 NC2 #3 15060 MHV IC NC 001846 15121 atcatttgaggagcaggatgaaatttatgcgtataccaaacgcaatgtcctgccgaccct LA16 #39 15120 NC2 #3 15120 MHV IC NC 001846 15181 aactcaaatgaatcttaaatatgctattagtgctaagaatagggcccgcaccgttgctgg LA16 #39 15180 NC2 #3 15180 MHV IC NC 001846 15241 tgtctctattctcagtactatgactggcagaatgtttcatcaaaagtgtctaaagagtat LA16 #39 15240 NC2 #3 15240 MHV IC NC 001846 15301 agcagctactcgcggtgttcctgtagttataggcaccacgaagttctatggcggttggga LA16 #39 15300 NC2 #3 15300 MHV IC NC 001846 15361 tgatatgttacgccgccttattaaagatgttgatagtcctgtactcatgggttgggacta LA16 #39 15360 NC2 #3 15360 MHV IC NC 001846 15421 tcctaaatgtgatcgtgctatgccaaacatactgcgtattgttagtagtttggtgctagc LA16 #39 15420 NC2 #3 15420 MHV IC NC 001846 15481 ccgtaaacatgattcgtgctgttcgcatacggatagattctatcgtcttgcgaacgagtg LA16 #39 15480 NC2 #3 15480 MHV IC NC 001846 15541 cgcccaagttttgagtgaaattgttatgtggtggttgttattatgttaaaccaggtgg 15540 LA16 #39 NC2 #3 15540 MHV IC NC 001846 15601 cactagtagtggggatgcaaccactgcttttgctaattctgtgtttaacatttgtcaagc LA16 #39 15600 NC2 #3 15600 MHV IC NC 001846 15661 tgtttccgccaatgtatgctcgcttatggcatgcaatggacacaaaattgaagatttgag LA16 #39 15660 NC2 #3 15660 MHV IC NC 001846 15721 tatacgcgagttacaaaagcgcctatactctaatgtctatcgtgcggaccatgttgaccc LA16 #39 15720 NC2 #3 15720 MHV IC NC 001846 15781 cgcatttgttagtgagtattatgagtttttaaataagcattttagtatgatgattttgag LA16 #39 15780 NC2 #3 15780 MHV IC NC 001846 15841 tgatgatggtgttgtgtgttataattcagagtttgcgtccaagggttatattgctaatat LA16 #39 15840 NC2 #3 15840 MHV IC NC 001846 15901 aagtgcctttcaacaggtattatattatcaaaataatgtgtttatgtctgaggccaaatg LA16 #39 15900 NC2 #3 15900

MHV IC NC_001846 15961 ttgggtagaaacagacatcgaaaagggaccgcatgaattttgttctcaacatacaatgct 15960 LA16 #39 15960 NC2 #3 MHV IC NC 001846 16021 agtcaagatggtggtggtggtgatgaagtctaccttccataccctgatccttcgagaatcttagg LA16 #39 16020 NC2 #3 16020 16081 agcaggetgttttgttgatgatttattaaagactgatagegttetetettgatagagegttt MHV IC NC 001846 16080 LA16 #39 16080 NC2 #3 MHV IC NC 001846 16141 cqtaaqtcttqcaattqatqcttatcctttaqtataccatgagaacccagagtatcaaaa 16140 LA16 #39 16140 NC2 #3 16201 tgtgttccgggtatatttagaatatataaagaagctgtacaatgatctcggtaatcagat MHV IC NC 001846 16200 LA16 #39 NC2 #3 16200 MHV IC NC 001846 16261 cctggacagctacagtgttattttaagtacttgtgatggtcaaaagtttactgatgagac 16260 LA16 #39 16260 NC2 #3 MHV IC NC 001846 16321 cttttacaagaacatgtatttaagaagtgcagtgctgcaaagcgttggtgcctgcgttgt 16320 LA16 #39 16320 NC2 #3 MHV IC NC 001846 16381 ctgtagttctcaaacatcattacgttgtggcagttgcatacgcaagcctttgctgtgtg 16380 LA16 #39 16380 NC2 #3 MHV IC NC 001846 16441 caaatgcgcctatgatcatgttatgtccactgatcataaatatgtcctgagtgtgtcacc 16440 LA16 #39 NC2 #3 16440 MHV IC NC 001846 16501 atatgtgtgtaattcaccgggatgtgatgtaaatgatgttaccaaattgtatttaggtgg 16500 LA16 #39 16500 NC2 #3 16560 LA16 #39 16560 NC2 #3 MHV IC NC 001846 16621 tatggtttttggtttatataaacaatcttgtactggttcgccctacatagaggattttaa LA16 #39 16620 16620 NC2 #3 LA16 #39 16680 16680 NC2 #3 MHV IC NC 001846 16741 cqaacqccttaaattqtttqccgcagaaacqcagaaggccacagaagaggcctttaagca LA16 #39 16740 16740 NC2 #3 MHV IC NC 001846 16801 atgttatgcgtcagcaacgatccgtgagatcgtgagcgatcgggagttaattttatcttg LA16 #39 16800 16800 NC2 #3

MHV IC NC 001846 16861 ggaaattggtaaagtgagaccaccacttaataaaaattatgtttttactggctaccattt LA16 #39 16860 NC2 #3 16860 MHV IC NC 001846 LA16 #39 16920 NC2 #3 16920 MHV IC NC 001846 16981 tggtgtgtactatcgcgccacaaccacttataagttatctgtaggtgatgtgttcatttt LA16 #39 16980t....t NC2 #3 17041 aacatcacacgcagtgtctagtttaagtgctcctacattagtaccgcaggagaattatac MHV IC NC 001846 LA16 #39 17040 NC2 #3 17040 MHV IC NC 001846 17101 tagcattcgttttgctagtgtttatagtgtgcctgagacgtttcagaataatgtgcctaa 17100 LA16 #39 NC2 #3 17100 MHV IC NC 001846 17161 ttatcagcacattggaatgaagcgctattgtactgtacagggaccgcctggtactggtaa LA16 #39 17160 NC2 #3 17160 LA16 #39 17220 NC2 #3 17220 MHV IC NC 001846 17281 tgctagccatgctgcagttgacgcgctgtgtgaaaaggcacataaatttttaaatattaa LA16 #39 17280 17280 NC2 #3 MHV IC NC 001846 17341 tgactgcacgcgtattgttcctgcaaaggtgcgtgtagattgttatgataaatttaaggt LA16 #39 17340 NC2 #3 17340 MHV IC NC 001846 17401 caatgacaccactcgcaagtatgtgtttactacaataaatgcattacctgagttggtgac LA16 #39 17400 NC2 #3 17400 LA16 #39 17460 NC2 #3 17460 MHV IC NC 001846 17521 cagtcgtgttagtgctaagcattatgtgtatattggagaccctgcgcagttacctgcacc LA16 #39 17520g......g NC2 #3 MHV IC NC 001846 17581 acgtgtgctactgaataagggaactctagaacctagatattttaattccgttaccaagct LA16 #39 17580 NC2 #3 17580 MHV IC NC 001846 17641 aatgtgttgtttgggtccagatattttcttgggcacctgttatagatgccctaaggagat LA16 #39 17640 NC2 #3 17640 MHV IC NC 001846 17701 tgtggatacggtgtcagccttggtttataataataatggtgaaggctaaaaatgataatag 17700 LA16 #39 17700 NC2 #3

MHV IC NC 001846 17761 ctccatgtgctttaaggtttattataagggccagactacacatgagagttctagtgctgt 17760 LA16 #39 17760 NC2 #3 MHV IC NC 001846 17821 taatatgcagcaaatacatttaattagtaagtttttaaaggcaaaccccagttggagtaa 17820 LA16 #39 17820 NC2 #3 17881 cgccgtatttattagtccttataatagtcagaactatgttgctaagagagtcttgggatt MHV IC NC 001846 17880 LA16 #39 17880 NC2 #3 MHV IC NC 001846 17940 LA16 #39 17940 NC2 #3 18001 gactgcggaaacagcgcattctgtcaatgtaaatagattcaatgttgctattacacgtgc MHV IC NC 001846 18000 LA16 #39 NC2 #3 18000 MHV IC NC 001846 18061 taagaagggtattctctgtgtcatgagtagtatgcaattatttgagtctcttaattttac LA16 #39 18060 NC2 #3 MHV IC NC 001846 18121 tacactgacgttggataagattaacaatccacgattacagtgtactacaaatttgtttaa 18120 LA16 #39 18120 NC2 #3 MHV IC NC 001846 18181 ggattgtagcaggagctatgtaggatatcacccagcccatgcaccatcctttttggcagt 18180 LA16 #39 NC2 #3 18180 MHV IC NC 001846 18241 tgatgacaaatataaggtaggcggtgatttagccgtttgccttaatgttgctgattctgc 18240 LA16 #39 18240 NC2 #3 MHV IC NC 001846 18301 tgtcacttattcgcggcttatatcactcatgggattcaagcttgacttgaccttgatgg 18300 LA16 #39 NC2 #3 18300 MHV IC NC 001846 18361 ttattgtaagctgtttataactagagatgaagctatcaaacgtgttagagcctgggttgg 18360 LA16 #39 18360 NC2 #3 MHV IC NC 001846 18421 cttcgatgcagaaggtgcccatgcgatacgtgatagcattgggacaaatttcccattaca 18420 LA16 #39 18420 NC2 #3 MHV IC NC 001846 18481 attaggettttcgactggaattgattttgttgtcgaagccactggaatgtttgctgagag 18480 LA16 #39 18480 NC2 #3 MHV IC NC 001846 18541 agatggttatgtctttaaaaaggcagccgcacgagctcctcctggcgaacaatttaaaca 18540 LA16 #39 18540 NC2 #3 MHV IC NC 001846 18601 ccttatcccacttatgtcaagagggcagaaatgggatgtggttcgaattagaatagtaca 18600 LA16 #39 18600 NC2 #3

MHV IC NC_001846 18661 aatgttgtcagaccacctagcggatttggcagacagtgttgtacttgtgacgtgggctgc LA16 #39 NC2 #3 LA16 #39 18720 NC2 #3 18720 MHV IC NC 001846 18781 tgtctgcaccaagcgtgcgacatgttttaattctagaactggatactatggatgctggcg LA16 #39 18780 18780 NC2 #3 18841 acatagttattcctgtgattacctgtacaacccactaatagttgacattcaacagtgggg MHV IC NC 001846 18840 LA16 #39 NC2 #3 18840 MHV IC NC 001846 18901 atatacaggatctttaactagcaatcatgatcctatttgcagcgtgcataagggtgctca LA16 #39 18900 NC2 #3 18900 MHV IC NC 001846 18961 tgttgcatcatctgatgctatcatgacccggtgtctagctgttcatgattgctttgtaa LA16 #39 18960 NC2 #3 18960 MHV IC NC 001846 19021 gtctgttaattggaatttagaataccccattatttcaaatgaggtcagtgttaatacctc LA16 #39 19020 NC2 #3 19020 MHV IC NC 001846 19081 ctgcaggttattgcagcgcgtaatgtttagggctgcgatgctatgcaataggtatgatgt LA16 #39 19080 NC2 #3 19080 MHV IC NC 001846 19141 gtgttatgacattggcaaccctaaaggtcttgcctgtgtcaaaggatatgattttaagtt LA16 #39 19140 NC2 #3 19140 LA16 #39 19200 NC2 #3 19200 MHV IC NC 001846 19261 taaagatcaatttttagatggtttgtgtatgttttggaactgcaatgtggataagtatcc LA16 #39 19260 NC2 #3 19260 MHV IC NC 001846 19321 agcgaatgcagttgtgtgtgtgggtttgacacgcgtgtgttgaacaaattaaatctccctgg LA16 #39 19320 NC2 #3 19320 MHV IC NC 001846 19381 ctgtaatggtggcagtttgtatgttaacaaacatgcattccaccagtccctttacccg LA16 #39 19380 NC2 #3 19380 MHV IC NC 001846 19441 ggctgccttcgagaatttgaagcctatgcctttcttttattattcagatacgccctgtgt LA16 #39 19440 NC2 #3 19440 MHV IC NC 001846 19501 gtatatggaaggcatggaatctaagcaggtcgattatgtcccattgagaagcgctacatg LA16 #39 19500 19500 NC2 #3

MHV IC NC 001846 19561 catcacaagatgcaatttaggtggcgctgtttgtttaaaacatgctgaggagtatcgtga LA16 #39 19560 NC2 #3 19560 19621 gtaccttgagtcttacaatacggcaaccacagcgggttttactttttgggtctataagac MHV IC NC 001846 19620 LA16 #39 19620 NC2 #3 19681 ttttgatttttataacctttqgaatacttttactaggctccaaagtttagaaaatgtagt MHV IC NC 001846 19680 LA16 #39 NC2 #3 19680 MHV IC NC 001846 19740 LA16 #39 19740 NC2 #3 MHV IC NC 001846 19801 tataggtgagaaagtcattgccaagattcaaaatgaggatgtcgtggtctttaaaaataa 19800 LA16 #39 NC2 #3 19800 19861 cacgccattccccactaatgtggctgtcgaattatttgctaagcgcagtattcggcccca MHV IC NC 001846 LA16 #39 19860 NC2 #3 19860 19921 ccccgagettaagetetttagaaatttgaatattgacgtgtgetggagtcacgtcetttg MHV IC NC 001846 19920 LA16 #39 19920 NC2 #3 19981 ggattatgctaaggatagtgtgttttgcagttcgacgtataaggtctgcaaatacacaga MHV IC NC 001846 LA16 #39 19980 19980 NC2 #3 20041 tttacagtgcattgaaagcttgaatgtactttttgatggtcgtgataatggtgctcttga MHV IC NC 001846 20040 LA16 #39 20040 NC2 #3 20101 agcttttaagaagtgccggaatggcgtctacattaacacgacaaaaattaaaagtctgtc MHV IC NC 001846 20100 LA16 #39 20100 NC2 #3 20161 gatgattaaaggcccacaacgtgccgatttgaatggcgtagttgtggagaaagttggaga MHV IC NC 001846 LA16 #39 20160 NC2 #3 20160 MHV IC NC 001846 20221 ttctgatgtggaattttggtttgctgtgcgtaaagacggtgacgatgttatcttcagccg LA16 #39 20220 NC2 #3 20220 20281 tacagggagecttgaaccgagccattaccggageceacaaggtaatccgggtggtaatcg MHV IC NC 001846 20280 LA16 #39 NC2 #3 20280 20341 cgtgggtgatctcagcggtaatgaagctctagcgcgtggcactatctttactcaaagcag MHV IC NC 001846 20340 LA16 #39 NC2 #3 20340 20401 attattatcttctttcacacctcgatcagagatggagaaagattttatggatttagatga MHV IC NC 001846 20400 LA16 #39 20400 NC2 #3

MHV IC NC 001846 20461 tgatgtgttcattgcaaaatatagtttacaggactacgcgtttgaacacgttgtttatgg LA16 #39 20460 20460 NC2 #3 MHV IC NC 001846 20521 tagttttaaccagaagattattggaggtttgcatttgcttattggcttagcccgtaggca LA16 #39 20520 NC2 #3 20520 MHV IC NC 001846 20580 LA16 #39 20580 NC2 #3 MHV IC NC 001846 20641 ctttatcactgacgagaacagtggtagtagtagtagqggtgtgtgcactgttattgatttatt LA16 #39 20640 NC2 #3 20640 MHV IC NC 001846 20701 gttagatgattttgtggacattgtaaaqtcccctgaatctaaagtgtgtgagtaaggttgt LA16 #39 20700 NC2 #3 20700 MHV IC NC 001846 20761 taatgttaatgttgattttaaagatttccagtttatgttgtggtgcaatgaggagaaggt LA16 #39 20760 NC2 #3 20760 MHV IC NC 001846 20821 catgactttctatcctcgtttgcaggctgctgctgctggaaacctggttatgttatgcc LA16 #39 20820 NC2 #3 20820 MHV IC NC 001846 20881 tgtcttatataagtatttggaatcgcctctggaaagagtaaacctctggaattatggcaa 20880 LA16 #39 NC2 #3 20880 MHV IC NC 001846 20941 gccgattactttacctacaggatgtatgatgatgtatgtgctaagtatactcaattatgtca LA16 #39 20940 NC2 #3 20940 MHV IC NC 001846 21001 atatttgagcactacaacattagcagttccggctaatatgcgtgtcttacaccttggtgc LA16 #39 21000 NC2 #3 21000 MHV IC NC 001846 21061 cggttcggataagggtgttgcccctgggtctgcagttcttaggcagtggctaccagcggg LA16 #39 21060 NC2 #3 21060 MHV IC NC 001846 LA16 #39 21120 NC2 #3 21120 MHV IC NC 001846 21181 tggaaattgtataaccttaccctttgattgtcagtgggatctgataatttctgatatgta LA16 #39 21180 NC2 #3 21180 MHV IC NC 001846 21241 cgaccctcttactaagaacattggggagtacaacgtgagtaaagatggattctttactta LA16 #39 21240 NC2 #3 21240 MHV IC NC 001846 21301 cctctgtcatttaattcgtgacaagttggctctgggtggcagtgttgccataaaaataac LA16 #39 21300 NC2 #3 21300

MHV IC NC 001846 21361 agagttttcttggaacgctgagttatatagtttaatggggaagtttgcgttctggacaat 21360 LA16 #39 NC2 #3 21360 MHV IC NC 001846 21421 cttttgcaccaacgtaaacgcctcttcaagtgaaggatttttgattggcataaattggtt LA16 #39 21420 NC2 #3 21420 MHV IC NC 001846 LA16 #39 21480 NC2 #3 21480 21541 aaatagtacaatgtggaatgggggggttacagtctctttgacatgagtaagttcccttt MHV IC NC 001846 21540 LA16 #39 NC2 #3 21540 LA16 #39 21600 NC2 #3 21600 MHV IC NC 001846 21661 ctccttgattgagaagggcaagttattagtgcgtgatacacgcaaagaagtttttgttgg LA16 #39 21660 NC2 #3 21660 MHV IC NC 001846 21721 cgatagectagtaaatgteaaataaatetataettgtegtggetgtgaaaatggeetttg 21720 LA16 #39 NC2 #3 21720 MHV IC NC 001846 21781 ctgacaagectaatcatttcataaactttcccctggcccaatttagtggctttatgggta LA16 #39 21780 NC2 #3 21780 MHV IC NC 001846 21841 agtatttaaagctacagtctcaacttgtggaaatgggtttagactgtaaattacagaagg 21840 LA16 #39 NC2 #3 21840 MHV IC NC 001846 21901 caccacatgttagtattaccctgcttgatattaaagcagaccaatacaaacaggtggaat LA16 #39 21900 NC2 #3 21900 MHV IC NC 001846 21961 ttgcaatacaagaaataatagatgatctggcggcatatgagggggatattgtctttgaca LA16 #39 21960 NC2 #3 21960 22021 accetcacatgettggcagatgeettgttettgatgttagaggatttgaagagttgeatg MHV IC NC 001846 LA16 #39 22020 22020 NC2 #3 22081 aagatattgttgaaattctccccccagaaggggttgcacggcagatcaatccagacactgga MHV IC NC 001846 LA16 #39 22080 22080 NC2 #3 22141 ttccqcactqcactqtqqcccaatttqacqaaqaaaqagaaacaaaaqqaatqcaattct MHV IC NC 001846 LA16 #39 22140 22140 NC2 #3 MHV IC NC 001846 22201 atcataaagaacccttctacctcaagcataacaacctattaacggatgctgggcttgagc 22200 LA16 #39 NC2 #3 22200

22261 tcgtgaagataggttcttccaaaatagatgggttttattgtagtgaactgagtgtttggt MHV IC NC 001846 LA16 #39 22260 NC2 #3 22260 .g..... MHV IC NC 001846 22321 gtggtgagaggctttgttataagcctccaacacccaaattcagtgatatatttggctatt LA16 #39 22320 NC2 #3 22320 MHV IC NC 001846 22381 gctgcatagataaaatacgtggtgatttagaaataggagacctaccgcaggatgatgagg LA16 #39 22380 NC2 #3 22380 MHV IC NC 001846 22441 aagcgtgggccgagctaagttaccactatcaaggaagcacctacttcttcagacatgtgc LA16 #39 22440 NC2 #3 22440 **t**..... MHV IC NC 001846 22501 acgataatagcatctattttcgtaccgtgtgtagaatgaagggttgtatgtgttgattg LA16 #39 22500 NC2 #3 22500 MHV IC NC 001846 22561 tttttacactattagtgtaataagcttattattttgttgaaaagggcaggatgtgcatag LA16 #39 22560 NC2 #3 22560 MHV IC NC 001846 22621 ctatggctcctcgcacactgcttttgctgatttgatgtcagctggtgtttgggttcaatg LA16 #39 22620 NC2 #3 22620 MHV IC NC 001846 22681 aacctcttaacatcgtttcacatttaaatgatgactggtttctatttggtgacagtcgtt LA16 #39 22680 NC2 #3 22680 MHV IC NC 001846 22741 ctgactgtacctatgtagaaaataacggtcatcctaaattagattggcttgacctcgacc 22740 LA16 #39 22740 NC2 #3 MHV IC NC 001846 22801 caaagttgtgtaattcaggaaagatttccgcaaagagtggtaactctcttttaggagtt LA16 #39 22800 NC2 #3 22800 MHV IC NC 001846 22861 ttcacttcactgatttttacaattatacgggtgagggggagaccaaattgtattttatgaag LA16 #39 22860 NC2 #3 22860 MHV IC NC 001846 22921 gagttaattttagtcccagccatggctttaaatgcctggctcatggagataataaaaagat LA16 #39 22920 NC2 #3 22920 MHV IC NC 001846 22981 ggatgggcaataaagctcgattttatgcccgagtgtatgagaagatggcccaatatagga LA16 #39 22980 NC2 #3 22980 MHV IC NC 001846 23041 gcctatcgtttgttaatgtgtcttatgcctatggaggtaatgcaaagcccgcctccattt LA16 #39 23040 NC2 #3 23040 MHV IC NC 001846 23101 gcaaagacaatactttaacactcaataaccccaccttcatatcgaaggaggtctaattatg LA16 #39 23100 NC2 #3 23100g.

23161 ttgattattactatgagagtgaggctaatttcacactagaaggttgtgatgaatttat-a MHV IC NC 001846 23160g....t. 23160g.....t. LA16 #39 NC2 #3 23220 gtaccgctctgtggttttaatggccattccaagggcagctcttcggatgctgccaataaa MHV IC NC 001846 23179 LA16 #39 NC2 #3 23182 23280 tattatactgactctcagagttactataatatggatattggtgtcttatatgggttcaat MHV IC NC 001846 23239 LA16 #39 23242 NC2 #3 23340 tcgaccttggatgttggcaacactgctaaggatccgggtcttgatctcacttgcaggtat MHV IC NC 001846 23299 LA16 #39 23302 NC2 #3 23400 cttgcattgactcctggtaattataaggctgtgtccttagaatatttgttaagcttaccc MHV IC NC 001846 23359 LA16 #39 23362 NC2 #3 MHV IC NC 001846 23460 tcaaaggctatttgcctccataagacaaagcgctttatgcctgtgcaggtagttgactca 23419 LA16 #39 NC2 #3 23422 MHV IC NC 001846 23520 aggtggagtagcatccgccagtcagacaatatgaccgctgcagcctgtcagctgccatat 23479 LA16 #39 NC2 #3 23482 MHV IC NC 001846 23580 tgtttctttcgcaacacatctgcgaattatagtggtggcacacatgatgcgcaccatggt 23539 LA16 #39 NC2 #3 23542 MHV IC NC 001846 23640 gattttcatttcaggcagttattgtctggtttgttatataatgtttcctgtattgcccag 23599 LA16 #39 NC2 #3 23602 MHV IC NC 001846 23700 cagggtgcatttctttataataatgttagttcctcttggccagcctatgggtacggtcat 23659 LA16 #39 NC2 #3 23662 MHV IC NC 001846 23760 tgtccaacggcagctaacattggttatatggcacctgtttgtatctatgaccctctcccg 23719 LA16 #39 23722 NC2 #3 MHV IC NC 001846 23820 gtcatactgctaggtgtgttattgggtatagctgtgttgattattgtgtttttgatgttt 23779 LA16 #39 23782 NC2 #3 MHV IC NC 001846 23880 tattttatgacggatagcggtgttagattgcatgaggcataatctaaacatgctgttcgt 23839 LA16 #39 NC2 #3 23842 MHV IC NC 001846 23940 gtttattctatttttgccctcttgtttagggtatattggtgattttagatgtatccagct 23899 LA16 #39 NC2 #3 23902 MHV IC NC 001846 24000 tgtgaattcaaacggtgctaatgttagtgctccaagcattagcactgagaccgttgaagt 23959 LA16 #39 NC2 #3

LA16 #39 24019 NC2 #3 24022 24120 gettactggttactacccggtcgatggttetaagtttagaaacctcgetettacgggaac MHV IC NC 001846 LA16 #39 24079 NC2 #3 24082 MHV IC NC 001846 24180 taactcagttagcttgtcgtggtttcaaccaccctatttaagtcagtttaatgatggcat LA16 #39 24139 NC2 #3 24142 24240 atttgcgaaggtgcagaaccttaagacaagtacgccatcaggtgcaactgcatattttcc MHV IC NC 001846 LA16 #39 24199 NC2 #3 24202 MHV IC NC 001846 24300 tactatagttataggtagtttgtttggctatacttcctataccgttgtaatagagccata LA16 #39 24259 NC2 #3 24262 MHV IC NC 001846 24360 taatggtgttataatggcetcagtgtgccagtataccatttgtetgttaccttacactga LA16 #39 24319a.....a NC2 #3 24322a.....a MHV IC NC_001846 24420 ttgtaagectaacactaatggtaataagettatagggtttttggcacacggatgtaaaace LA16 #39 24379 NC2 #3 24382 MHV IC NC 001846 24480 cccaatttgtgtgttaaagcgaaatttcacgcttaatgttaatgctgatgcattttattt 24439 LA16 #39 NC2 #3 24442 MHV IC NC 001846 24540 tcatttttaccaacatggtggtactttttatgcgtactatgcggataaaccctccgctac LA16 #39 24499 NC2 #3 24502 MHV IC NC 001846 24600 tacgtttttgtttagtgtatatattggcgatattttaacacagtattatgtgttaccttt 24559 LA16 #39 NC2 #3 24562 MHV IC NC 001846 24660 catctgcaacccaacagctggtagcacttttgctccgcgctattgggttacacctttggt LA16 #39 24619 NC2 #3 24622 MHV IC NC 001846 24720 taagcgccaatatttgtttaatttcaaccagaagggtgtcattactagtgctgttgattg LA16 #39 24679 NC2 #3 24682 MHV IC NC 001846 24780 tgctagtagttataccagtgaaataaaatgtaagacccagagcatgttacctagcactgg 24739 LA16 #39 NC2 #3 24742 MHV IC NC 001846 24840 tgtctatgagttatccggttatacggtccaaccagttggagttgtataccggcgtgttgc LA16 #39 24799 NC2 #3 24802 MHV IC NC 001846 24900 taacctcccagcttgtaatatagaggagtggcttactgctaggtcagtcccctccccctct LA16 #39 24859 24862 NC2 #3

MHV IC NC 001846 24960 caactgggagcgtaagacttttcagaattgtaattttaatttaagcagcctgttacgtta 24919 LA16 #39 24922 NC2 #3 MHV IC NC 001846 25020 tgttcaggctgagagtttgttttgtaataatatcgatgcttccaaagtgtatggcaggtg LA16 #39 24979 NC2 #3 24982 MHV IC NC 001846 25080 ctttggtagtatttcagttgataagtttgctgtacccccgaagtagqcaagttgatttaca 25039 LA16 #39 NC2 #3 25042 25140 gcttggtaactctggatttctgcagactgctaattataagattgatacagctgccacttc MHV IC NC 001846 25099 LA16 #39 NC2 #3 25102 25200 gtgtcagctgcattacaccttgcctaagaataatgtcaccataaaccataaccacta MHV IC NC 001846 25159 LA16 #39 NC2 #3 25162 MHV IC NC 001846 25260 gtcttggaataggaggtatggctttaatgatgctggcgtctttggcaaaaaccaacatga LA16 #39 25219 NC2 #3 25320 cgttgtttacgctcagcaatgttttactgtaagatctagttattgcccgtgtgctcaacc MHV IC NC 001846 25279 LA16 #39 NC2 #3 25282 25380 ggacatagttagcccttgcactactcagactaagtctgcttttgttaatgtggg MHV IC NC 001846 LA16 #39 25339 NC2 #3 25342 MHV IC NC 001846 25440 tgaccattgtgaaggettaggtgttttagaagataattgtggcaatgetgatccacataa 25399 LA16 #39 NC2 #3 25402 MHV IC NC 001846 25500 gggttgtatctgtgccaacaattcatttattggatggtcacatgatacctgccttgttaa LA16 #39 25459 NC2 #3 25462 MHV IC NC 001846 25560 tgatcgctgccaaatttttgctaatattgttaaatggcattaatagtggtaccacatg LA16 #39 25519 NC2 #3 25522 MHV IC NC 001846 25620 ttccacagatttgcagttgcctaatactgaagtggttactggcatttgtgtcaaatatga LA16 #39 25579 NC2 #3 25582 MHV IC NC 001846 25680 cctctacggtattactggacaaggtgttttttaaagaggttaaggctgactattataatag LA16 #39 25639 NC2 #3 25642 25740 ctggcaaacccttctgtatgatgttaatggtaatttgaatggttttcgtgatcttaccac MHV IC NC 001846 LA16 #39 25699 NC2 #3 25702 MHV IC NC 001846 25800 taacaagacttatacgataagqagctgttatagtggccgtgtttctgctgcatttcataa 25759 LA16 #39 25762 NC2 #3

MHV IC NC 001846 25860 agatgcacccgaaccggctctgctctatcgtaatataaattgtagctatgtttttagcaa LA16 #39 25819aa......aa NC2 #3 MHV IC NC 001846 25920 taatatttcccgtgaggagaacccacttaattactttgatagttatttgggttgtgt LA16 #39 25879 NC2 #3 25882 MHV IC NC 001846 25980 taatgctgataaccgcacggatgaggcgcttcctaattgtgatctccgtatgggtgctgg LA16 #39 25939 NC2 #3 25942 MHV IC NC 001846 26040 cttatgcgttgattattcaaaatcacgcagggctgaccgatcagtttctactggctatcg LA16 #39 25999d NC2 #3 MHV IC NC 001846 26100 gttaactacatttgagccatacactccgatgttagttaatgatagtgtccaatccgttga LA16 #39 26059 NC2 #3 26062 MHV IC NC 001846 26160 tggattatatgagatgcaaataccaaccaattttactattgggcaccatgaggagttcat LA16 #39 26119 NC2 #3 26122 MHV IC NC 001846 26220 tcaaactagatctccaaaqqtgactatagattgtgctgcatttgtctgtggtggtgataacac LA16 #39 26179 NC2 #3 26182 26239 LA16 #39 NC2 #3 26242 MHV IC NC 001846 26340 taatgaggttaataacctcttggataatatgcaactacaagttgctagtgcattaatgca LA16 #39 26299 NC2 #3 26302 MHV IC NC 001846 26400 gggtgttactataagetegagactgccagacggcateteaggecetatagatgacattaa LA16 #39 26359 NC2 #3 26362 MHV IC NC 001846 26460 ttttagtcctctacttggatgcataggttcaacatgtgctgaagacggcaatggacctag LA16 #39 26419 NC2 #3 26422 MHV IC NC 001846 26520 tgcaatccgagggcgttctgctatagaggatttgttatttgacaaggtcaaattatctga LA16 #39 26479 NC2 #3 26482 MHV IC NC 001846 26580 tgttggctttgtcgaggcttataataattgcaccggtggtcaagaagttcgtgacctcct 26539 LA16 #39 26542 NC2 #3 MHV IC NC 001846 26640 ttgtgtacaatcttttaatggcatcaaagtattacctcctgtgttgtcagagagtcagat LA16 #39 26599 NC2 #3 26602 MHV IC NC 001846 26700 ctctggctacacaaccggtgctactgcggcagctatgttcccaccgtggtcagcagctgc LA16 #39 26659 NC2 #3 26662

MHV IC NC 001846 26760 cggtgtgccatttagtttaagtgttcaatatagaattaatggtttaggtgtcactatgaa LA16 #39 26719 NC2 #3 26722 26820 tgtgcttagtgagaaccaaaagatgattgctagtgcttttaacaatgcgctgggtgctat MHV IC NC 001846 LA16 #39 26779 26782 NC2 #3 26880 ccaggatgggtttgatgcaaccaattctgctttaggtaagatccagtccgttgttaatgc MHV IC NC 001846 LA16 #39 26839 26842 NC2 #3 MHV IC NC 001846 26940 aaatgetgaageacteaataaettaetaaateaaetttetaaeaggtttggtgetattag 26899 LA16 #39 26902 NC2 #3 MHV IC NC 001846 27000 tgcttctttacaagaaattctaactcggcttgaggctgtagaagcaaaagcccagataga 26959 LA16 #39 26962 NC2 #3 MHV IC NC 001846 27060 tcgtcttattaatggcaggttaactgcacttaatgcgtatatatccaagcaacttagtga 27019 LA16 #39 27022 NC2 #3 MHV IC NC 001846 27120 tagtacgcttattaaagttagtgctgctcaggccatagaaaaggtcaatgagtgcgttaa LA16 #39 27079 NC2 #3 27082 MHV IC NC 001846 27180 gagccaaaccacgcgtattaatttctgtggcaatggtaatcatatattatctcttgtcca 27139 LA16 #39 NC2 #3 27142 MHV IC NC 001846 27240 gaatgcgccttatggcttatattttatacacttcagctatgtgccaatatcctttacaac 27199 LA16 #39 NC2 #3 27202 MHV IC NC 001846 27300 cgcaaatgtgagtcctggactttgcatttctggtgatagaggattagcacctaaagctgg 27259 LA16 #39 27262 NC2 #3 MHV IC NC 001846 27360 atattttgttcaagatgatggagaatggagagttcacaggcagttcatattactaccctga 27319 LA16 #39 NC2 #3 27322 MHV IC NC 001846 27420 acccattacagataaaaacagtgtcattatgagtagttgcgcagtaaactacacaaaggc LA16 #39 27379 27382 NC2 #3 MHV IC NC 001846 27480 acctgaagttttcttgaacacttcaatacctaatccacccgactttaaggaggagttaga 27439 LA16·#39 27442 NC2 #3 MHV IC NC 001846 27540 taaatggtttaagaatcagacgtctattgcgcctgatttatctctcgatttcgagaagtt LA16 #39 27499 27502 NC2 #3 MHV IC NC_001846 27600 aaatgttactttgctggacctgacgtatgagatgaacaggattcaggatgcaattaagaa 27559 LA16 #39 27562 NC2 #3

LA16 #39 27619 NC2 #3 27622 MHV IC NC 001846 27720 gccttggtatgttggttgctaattggattagctggtgtagctgtttgtgtgttgttattatt LA16 #39 27679 NC2 #3 27682 MHV IC NC 001846 27780 ctttatatgttgctgcacaggttgtggctcatgttgttttaagaagtgtggaaattgttg LA16 #39 27739 NC2 #3 27742 27840 tgatgagtatggaggacaccaggacagtattgtgatacataatatttcctctcatgagga MHV IC NC 001846 LA16 #39 27799 NC2 #3 27802 MHV IC NC 001846 27900 ttgactatcacagcctctcctggaaagacagaaaatctaaacaatttatagcattctcat LA16 #39 27859 NC2 #3 27862 27960 tgctacctggccccgtaagaggcagtcatagctatggccgtgttggtcctaaggctacat MHV IC NC 001846 27919t LA16 #39 NC2 #3 27922t 28020 tggctgctgtctttattggtccatttattgtagcatgtatgctaggcattggcctagttt MHV IC NC 001846 LA16 #39 27979 NC2 #3 27982 MHV IC NC 001846 28080 atttattgcaattgcaagttcaaatttttcatgttaaggataccatacgtgtgactggca LA16 #39 28039 NC2 #3 28042 MHV IC NC 001846 28140 agecagecactgtgtettatactacaagtacaceagtaacacegagegegacgacgecteg LA16 #39 28099 NC2 #3 28102 MHV IC NC 001846 28200 atggtactacgtatactttaattagacccactagctcttatacaagagtttatcttggta LA16 #39 28159 NC2 #3 28162 MHV IC NC 001846 28260 ctccaagaggttttgattatagtacatttgggcctaagaccctagattatgttactaatc LA16 #39 28219 NC2 #3 28222 MHV IC NC 001846 28320 taaacctcatcttaattctggtcgtccatatacttttaaggcattgtccaggcatatgag LA16 #39 28279 NC2 #3 28282 MHV IC NC 001846 28380 accaacagccacatggatttggcatgtgagtgatgcatggttacgccgcgcgggactt LA16 #39 28339 NC2 #3 28342 MHV IC NC 001846 28440 tggtgtcattcgcctagaagatttttgttttcaatttaattatagccaaccccgagttgg LA16 #39 28399 NC2 #3 28402 MHV IC NC_001846 28500 ttattgtagagttcctttaaaggcttggtgtagcaaccagggtaaatttgcagcgcagtt LA16 #39 28459 NC2 #3 28462

MHV IC NC 001846 28560 taccctaaaaagttgcgaaaaaccaggtcacgaaaaatttattactaggttcacggccta LA16 #39 28519 NC2 #3 28522 28620 cggcagaactgtccaacaggccgttagcaagttagtagaagaagctgttgattttattct MHV IC NC 001846 LA16 #39 28579 NC2 #3 28582 28680 ttttagggccacgcagctcgaaagaaatgtttaatttattccttacagacacagtatggt MHV IC NC 001846 LA16 #39 28639 NC2 #3 28642 MHV IC NC 001846 28740 atgtggggcagattatttttatattcgcagtgtgtttgatggtcaccataattgtggttg 28699 LA16 #39 NC2 #3 28702 MHV IC NC 001846 28800 ccttccttgcgtctatcaaactttgtattcaactttgcggtttatgtaatactttggtgc 28759 LA16 #39 NC2 #3 28762 MHV IC NC 001846 28860 tgtccccttctatttatttgtatgataggagtaagcagctttataagtattataatgaag 28819 LA16 #39 NC2 #3 28822 MHV IC NC 001846 28920 aaatgagactgcccctattagaggtggatgatatctaatctaaacattatgagtagtact LA16 #39 28879c. NC2 #3 MHV IC NC 001846 28980 actcaggccccagagcccgtctatcaatggacggccgacgaggcagttcaattccttaag 28939 LA16 #39 28942 NC2 #3 MHV IC NC 001846 29040 gaatggaacttctcgttgggcattatactactctttattactatcatactacagttcggt LA16 #39 28999 NC2 #3 29002 MHV IC NC 001846 29100 tacacgagccgtagcatgtttatttatgttgtgaaaatgataatcttgtggttaatgtgg LA16 #39 29059 29062 NC2 #3 MHV IC NC 001846 29160 ccactgactattgttttgtgtattttcaattgcgtgtatgcgctaaataatgtgtatctt 29119 LA16 #39 29122 NC2 #3 MHV IC NC 001846 29220 ggattttctatagtgtttactatagtgtccattgtaatctggattatgtatttgttaat 29179 LA16 #39 NC2 #3 29182 LA16 #39 29239 29242 NC2 #3 MHV IC NC 001846 29340 cttatgtgtatagatatgaaaggtaccgtgtatgttagacccattattgaggattaccat LA16 #39 29299 NC2 #3 29302 MHV IC NC 001846 29400 acactaacagccactattattcgtggccacctctacatgcaaggtgttaagctaggcacc 29359 LA16 #39 29362 NC2 #3

MHV IC NC 001846 29460 ggtttctctttgtctgacttgcccgcttatgttacagttgctaaqgtgtcacacctttgc LA16 #39 29419 NC2 #3 29422 29520 acttataagcgcgcattcttagacaaggtagacggtgttagcggttttgctgtttatgtg MHV IC NC 001846 LA16 #39 29479 NC2 #3 29482 MHV IC NC 001846 LA16 #39 29539 NC2 #3 29542 29640 ttgttgagaatctaatctaaactttaaggatgtcttttgttcctgggcaagaaaatgccg MHV IC NC 001846 LA16 #39 29599c....c NC2 #3 MHV IC NC 001846 29700 gtggcagaagctcctctgtaaaccgcgctggtaatggaatcctcaagaagaccacttggg LA16 #39 29659 NC2 #3 29662 MHV IC NC 001846 29760 ctgaccaaaccgagcgtggaccaaataatcaaaatagaggcagaaggaatcagccaaagc LA16 #39 29719 NC2 #3 29722 MHV IC NC 001846 29820 agactgcaactactcaacccaactccgggagtgtggttccccattactcctggttttctg 29779 LA16 #39 NC2 #3 29782 MHV IC NC 001846 29880 gcattacccagttccaaaagggaaaaggagtttcagtttgcagaaggacaaggagtgccta LA16 #39 29839 NC2 #3 29842 MHV IC NC 001846 29940 ttgccaatggaatccccgcttcagagcaaaagggatattggtatagacacaaccgccgtt LA16 #39 29899 NC2 #3 29902 MHV IC NC 001846 30000 cttttaaaacacctgatgggcagcagaagcaattactgcccagatggtatttttactatc LA16 #39 29959 NC2 #3 29962 MHV IC NC 001846 30060 ttggcacagggccccatgctggagccagttatggagacagcattgaaggtgtcttctggg LA16 #39 30019a. NC2 #3 MHV IC NC 001846 30120 ttgcaaacagccaagcggacaccaatacccgctctgatattgtcgaaagggacccaagca LA16 #39 30079 NC2 #3 30082 MHV IC NC 001846 30180 gtcatgaggctattcctactaggtttgcgcccggcacggtattgcctcagggcttttatg LA16 #39 30139 NC2 #3 30142 MHV IC NC 001846 30240 ttgaaggetetggaaggtetgcacctgctagccgatetggttcgcggtcacaateccgtg 30199 LA16 #39 NC2 #3 30202g...... LA16 #39 30259 30262 NC2 #3

MHV IC NC 001846 30360 ctgatatggccgaagaaattgctgctcttgttttggctaagctcggtaaagatgccggcc LA16 #39 30319 NC2 #3 30322 MHV IC NC 001846 30420 agcccaagcaagtaacgaagcaaagtgccaaagaagtcaggcagaaaattttaaacaagc LA16 #39 30379 NC2 #3 30382 MHV IC NC 001846 30480 ctcgccaaaagaggactccaaacaagcagtgcccagtgcagcagtgttttggaaagagag 30439 LA16 #39 NC2 #3 30442 30540 gccccaatcagaattttggaggctctgaaatgttaaaacttggaactagtgatccacagt MHV IC NC 001846 30499 LA16 #39 NC2 #3 30502 .t.... MHV IC NC 001846 30600 tccccattcttqcaqaqttqqctccaacaqttqqtqccttcttctttqqatctaaattaq 30559 LA16 #39 NC2 #3 30562 MHV IC NC 001846 30660 aattggtcaaaaagaattctggtggtgctgatgaacccaccaaagatgtgtatgagctgc 30619 LA16 #39 NC2 #3 30622 MHV IC NC 001846 30720 aatattcaggtgcagttagatttgatagtactctacctggttttgagactatcatgaaag LA16 #39 30679 NC2 #3 30682 MHV IC NC 001846 30780 tgttgaatgagaatttgaatgcctaccagaaggatggtggtgcagatgtggtgagcccaa LA16 #39 30739 NC2 #3 30742 MHV IC NC 001846 30840 agccccaaagaaaagggcgtagacaggctcaggaaaagaagatgaagtagataatgtaa 30799 LA16 #39 NC2 #3 30802 MHV IC NC 001846 30900 gcgttgcaaagcccaaaagctctgtgcagcgaaatgtaagtagagaattaaccccagagg LA16 #39 30859 NC2 #3 30862 MHV IC NC 001846 30960 atagaagtetgttggeteagateettgatgatggegtagtgeeagatgggttagaagatg LA16 #39 30919 NC2 #3 30922 MHV IC NC 001846 31020 actctaatgtgtaaagagaatgaatcctatgtcggcgctcggtggtaacccctcgcgaga 30979 LA16 #39 NC2 #3 30982 MHV IC NC 001846 31080 aagtcgggataggacactetetatcagaatggatgtettgetgteataacagatagagaa LA16 #39 31039 NC2 #3 31042 MHV IC NC 001846 31140 ggttgtggcagaccctgtatcaattagttgaaagagattgcaaaatagagaatgtgtgag LA16 #39 31099 NC2 #3 31102 MHV IC NC 001846 31200 agaagttagcaaggtcctacgtctaaccataagaacggcgataggcgccccctgggaaga 31159 LA16 #39 NC2 #3 31162

MHV IC NC_001846 LA16 #39 NC2 #3	31260 31219 31222	gctcacatcagggtactattcctgcaatgccctagtaaatgaatg
MHV IC NC_001846 LA16 #39 NC2 #3	31320 31279 31282	aattggaaga-atcacaaaaaaaaaaaaaaaaaaaaaaaa
MHV IC NC_001846 LA16 #39 NC2 #3	31339 31342	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

REFERENCE LIST

- 1. Taubenberger, J. K. & Morens, D. M. 1918 Influenza: the Mother of All Pandemics. *Emerg. Infect. Dis.* **12**, 15–22 (2006).
- 2. WHO | Number of deaths due to HIV. *WHO* (2017).
- 3. WHO | Middle East respiratory syndrome coronavirus (MERS-CoV) Saudi Arabia. *WHO* (2016).
- 4. WHO | Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. *WHO* (2015).
- 5. Bradburne, A. F., Bynoe, M. L. & Tyrrell, D. A. Effects of a "new" human respiratory virus in volunteers. *Br. Med. J.* **3**, 767–9 (1967).
- 6. Hamre, D. & Procknow, J. J. A new virus isolated from the human respiratory tract. *Proc. Soc. Exp. Biol. Med.* **121**, 190–3 (1966).
- 7. Monto, A. S. Medical reviews. Coronaviruses. Yale J. Biol. Med. 47, 234–51 (1974).
- 8. Chan, J. F. W. *et al.* Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. *Clin. Microbiol. Rev.* **28**, 465–522 (2015).
- 9. Yang, D. & Leibowitz, J. L. The structure and functions of coronavirus genomic 3' and 5' ends. *Virus Res.* **206**, 120–33 (2015).
- 10. Pasternak, A. O., Spaan, W. J. M. & Snijder, E. J. Nidovirus transcription: how to make sense...? *J. Gen. Virol.* 87, 1403–21 (2006).
- 11. de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. *Nat. Rev. Microbiol.* **14**, 523–534 (2016).
- 12. Fehr, A. R. & Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. *Methods Mol. Biol.* **1282**, 1–23 (2015).
- 13. Perlman, S. & Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis. *Nat. Rev. Microbiol.* **7**, 439–50 (2009).
- 14. Zhu, X., Liu, Q., Du, L., Lu, L. & Jiang, S. Receptor-binding domain as a target for developing SARS vaccines. *J. Thorac. Dis.* **5** Suppl 2, S142-8 (2013).
- 15. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V & Schountz, T. Bats: important reservoir hosts of emerging viruses. *Clin. Microbiol. Rev.* **19**, 531–45 (2006).
- 16. Eckerle, L. D. et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication

is revealed by complete genome sequencing. PLoS Pathog. 6, e1000896 (2010).

- 17. Snijder, E. J. *et al.* Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. *J. Mol. Biol.* **331**, 991–1004 (2003).
- 18. Menachery, V. D., Graham, R. L. & Baric, R. S. Jumping species-a mechanism for coronavirus persistence and survival. *Curr. Opin. Virol.* **23**, 1–7 (2017).
- Fong, I. W. Emerging Animal Coronaviruses: First SARS and Now MERS. in *Emerging Zoonoses* 63–80 (Springer International Publishing, 2017). doi:10.1007/978-3-319-50890-0_4
- 20. Anthony, S. J. *et al.* A strategy to estimate unknown viral diversity in mammals. *MBio* **4**, e00598-13 (2013).
- 21. Luis, A. D. *et al.* A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? *Proc. R. Soc. B Biol. Sci.* **280**, 20122753–20122753 (2013).
- 22. Wynne, J. W., Wang, L.-F., Cui, J., Field, H. & Holmes, E. Bats and Viruses: Friend or Foe? *PLoS Pathog.* **9**, e1003651 (2013).
- 23. Mandl, J. N. *et al.* Reservoir Host Immune Responses to Emerging Zoonotic Viruses. *Cell* **160**, 20–35 (2015).
- 24. Fong, I. W. *Emerging Zoonoses*. (Springer International Publishing, 2017). doi:10.1007/978-3-319-50890-0
- 25. Reshi, M. L., Su, Y.-C. & Hong, J.-R. RNA Viruses: ROS-Mediated Cell Death. *Int. J. Cell Biol.* **2014**, 1–16 (2014).
- 26. Zhang, G. *et al.* Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. *Science (80-.).* **339,** (2013).
- 27. Zhou, P. *et al.* Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 2696–701 (2016).
- Zhong, N. S. *et al.* Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. *Lancet (London, England)* 362, 1353–8 (2003).
- Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E. & Fouchier, R. A. M. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. *N. Engl. J. Med.* 367, 1814–1820 (2012).
- 30. Mouse Hepatitis Virus.

- 31. Boot, R. & Bisgaard, M. Reclassification of 30 *Pasteurellaceae* strains isolated from rodents. *Lab. Anim.* **29**, 314–319 (1995).
- 32. Barthold, S. W. & Smith, A. L. Viremic dissemination of mouse hepatitis virus-JHM following intranasal inoculation of mice. *Arch. Virol.* **122**, 35–44 (1992).
- 33. Baker, D. G. Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. *Clin. Microbiol. Rev.* **11**, 231–66 (1998).
- University of Missouri-Comparative Medicine Program and IDEXX-BioReaeasrch. Mouse Hepatitis Virus (MHV). (2013). Available at: http://dora.missouri.edu/mouse/mouse-hepatitis-virus-mhv/. (Accessed: 17th August 2017)
- 35. Coley, S. E. *et al.* Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. *J. Virol.* **79**, 3097–106 (2005).
- 36. Edgar, R. S. & Lielausis, I. Temperature-sensitive Mutants of Bacteriophage T4D: Their Isolation and Genetic Characterization.H*Genetics* **49**, 649–62 (1964).
- 37. Edgar, R. S., Denhardt, G. H. & Epstein, R. H. A Comparative Genetic Study of Conditional Lethal Mutations of Bacteriophage T4D. *Genetics* **49**, 635–48 (1964).
- 38. Complementation and Recombination Biology LibreTexts. (2016). Available at: https://bio.libretexts.org/TextMaps/Map%3A_Working_with_Molecular_Genetics_(Hardi son)/Unit_I%3A_Genes%2C_Nucleic_Acids%2C_Genomes_and_Chromosomes/1%3A_ Fundamental_Properties_of_Genes/Complementation_and_Recombination. (Accessed: 28th August 2017)
- Koolen, M. J., Osterhaus, A. D., Van Steenis, G., Horzinek, M. C. & Van der Zeijst, B. A. Temperature-sensitive mutants of mouse hepatitis virus strain A59: isolation, characterization and neuropathogenic properties. *Virology* 125, 393–402 (1983).
- 40. Mielech, A. M. *et al.* Murine coronavirus ubiquitin-like domain is important for papainlike protease stability and viral pathogenesis. *J. Virol.* **89,** 4907–17 (2015).
- 41. Schaad, M. C. *et al.* Genetics of mouse hepatitis virus transcription: identification of cistrons which may function in positive and negative strand RNA synthesis. *Virology* **177**, 634–45 (1990).
- 42. Dulbecco, R. & Vogt, M. Some problems of animal virology as studied by the plaque technique. *Cold Spring Harb. Symp. Quant. Biol.* **18**, (1953).
- 43. Hirano, N., Murakami, T., Fujiwara, K. & Matsumoto, M. Utility of mouse cell line DBT

for propagation and assay of mouse hepatitis virus. Jpn. J. Exp. Med. 48, 71-5 (1978).

- 44. Padmanabhan, A. Genomic Deep Sequencing of LA16 and NC2. *Kansas State University Integrated Genomics Facility* (2017).
- 45. Donaldson, E. F., Graham, R. L., Sims, A. C., Denison, M. R. & Baric, R. S. Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing. *J. Virol.* **81**, 7086–98 (2007).
- 46. Smith, E. C. *et al.* Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. *J. Virol.* **89**, 6418–26 (2015).

VITA

The author, Amani T. Eddins, was born in Dekalb, IL on August 10, 1992 to Trevell and Brenda Eddins. She attended Hampton University in Hampton, Virginia where she earned her Bachelor's of Science, *cum laude*, in Cellular and Molecular Biology in May 2014. After graduation Amani participated in a post-baccalaureate program at the University of Chicago in Chicago, IL. While attending the University of Chicago, Amani worked in the virology lab of Glenn Randall, PhD. where she participated in Hepatitis C and Dengue Virus research. It was there under the mentorship of Dr. Randall and a Loyola University alumni Dr. Anna Shulla that urged Amani to pursue an advanced degree in Microbiology and Immunology.

In August of 2015, Amani matriculated into the Loyola University Chicago Graduate Program and joined the lab of Susan Baker, PhD in the department of Microbiology and Immunology. Amani's thesis work investigated the use of temperature-sensitive phenotyping of coronaviruses. After completion of her graduate studies, Amani will seek to obtain a degree in nursing to be involved with clinical vaccine studies involving human patients.