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ABSTRACT 

Regulatory T cells (Tregs) are required to suppress inflammation and prevent 

autoimmunity.  During fetal development Tregs are crucial to maintain tolerance between mother 

and child.  After birth, neonates require tolerance to avoid harmful immune responses to foreign 

antigens in food and allow colonization with commensal microbes.  We demonstrate a propensity 

for T cells in human umbilical cord blood to differentiate into Tregs in response to antigen 

receptor stimulation ex vivo.  Cord blood-derived Tregs potently suppress T cell proliferation, 

but also produce pro-inflammatory cytokines known to activate innate immune responses.  These 

results suggest that antigen exposure during early life results in development of T cells with both 

regulatory and effector functions.  Surprisingly, we observe expression of tumor necrosis factor 

(TNF) by cord blood and adult Tregs.  We show a role for autocrine TNF signaling in survival of 

Tregs, suggesting an important function for TNF in immune tolerance and homeostasis. 
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CHAPTER ONE 

 
 INTRODUCTION 

 
Immune Tolerance 

 The concept of immune tolerance was first demonstrated in 1945 by Ray Owen, who 

observed that dizygotic twin cattle shared red blood cells in the placenta which persisted into 

adult life1.  The absence of immune response to the foreign red blood cells in the blood of cattle 

suggested that immune tolerance could be generated in response to foreign cells acquired before 

birth.  In 1953 Billingham, Brent, and Medawar demonstrated that mice inoculated in utero with 

cells from a different strain of mouse were tolerant to skin grafts from the same strain in adult 

life2.  Importantly, this study found that induction of tolerance for foreign tissues was dependent 

on the timing of exposure.  Mice that were injected with foreign cells after birth demonstrated a 

lack of tolerance to skin grafts, suggesting that the developing immune system was somehow 

biased toward the acquisition of tolerance.  These studies laid the groundwork for the concept of 

acquired immunological tolerance, for which Burnet and Medawar won the 1960 Nobel Prize in 

Physiology or Medicine3.  In 1961, Miller discovered the role of the thymus in generation of 

immune tolerance4, which led Burnet to hypothesize that immune tolerance was maintained via 

the elimination of self-reactive lymphocytes3.   

 In the late 1980s, Marrack and colleagues demonstrated that tolerance to self-antigens 

was the result of removal of autoreactive T cells during thymic selection, a process now called 

clonal deletion5.  Removal of autoreactive T cells in the thymus is now known to be mediated by 
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the transcription factor AIRE, or autoimmune regulator, which is expressed in the thymus6.  

AIRE drives medullary thymic epithelial cells (mTECs) to express self-antigens from peripheral 

tissues, resulting in apoptosis of T cells that bind to these proteins and thus preventing T cell 

responses to self-antigens in the periphery7. 

A second mechanism for immune tolerance was described by Nossal, who discovered the 

presence of mature, autoreactive B lymphocytes in circulation which failed to respond to antigen 

stimulation8.  Clonal anergy, as this new mechanism came to be called, was similarly described 

in T cells by Jenkins and Schwartz, who observed that the absence of costimulatory signals 

during antigen stimulation resulted in unresponsiveness upon subsequent stimulation9.  These 

studies demonstrate anergy as another means by which tolerance can be maintained during 

thymocyte development in the thymus. 

Clonal deletion and anergy maintain tolerance by preventing peripheral immune 

responses by autoreactive lymphocytes.  However, until 1970 an active mechanism for peripheral 

tolerance had not been identified10.  Gershon and Kondo discovered that T cells were able to 

suppress immune responses in addition to mediating them, identifying a distinct population of T 

cells initially referred to as suppressor T cells11.  However, due to difficulty in definitive 

identification of this new cell population and a lack of evidence of their role in disease, studies of 

suppressor T cells waned during the 1980s10.  Despite this, however, studies of autoimmune 

disease revealed a population of T cells that were responsible for maintenance of self-tolerance12. 

Regulatory T Cells 

 Beginning in 1969, a series of experiments revealed a population of T cells that inhibited 

the development and progression of autoimmune disease in mice and rats10.  Nishizuka and 
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Sakakura demonstrated that thymectomized neonatal mice developed autoimmune destruction of 

ovaries13.  Further, other groups showed that thymectomy of adult rats in conjunction with 

radiation resulted in autoimmune thyroiditis and type 1 diabetes14, 15.  Importantly, syngeneic 

transfer of T cells, in particular CD4+ T cells, from normal animals abrogated disease15.  These 

studies provided evidence for the hypothesis that the thymus produces CD4+ T cells with the 

ability to suppress T-cell mediated autoimmune disease, prompting investigations aimed at 

determining a way to identify these suppressive T cells10.  In 1995, Sakaguchi et al. discovered 

that the suppressive population of CD4+ T cells expressed the IL-2 receptor CD2516.  Depletion 

of CD4+CD25+ T cells resulted in the development of organ-specific autoimmune disease and 

reconstitution of this group of cells prevented the onset of symptoms, suggesting that expression 

of CD25 could be used to identify suppressive T cells16-18.   Furthermore, several studies 

demonstrated the functional importance of CD25 expression as a receptor for IL-2.  IL-2-

deficient mice developed autoimmunity and exhibited a paucity of CD4+CD25+ cells while 

maintaining a normal composition and number of T cells19.  IL-2 was also identified as a growth 

factor for CD4+CD25+ suppressive T cells, as antibody-mediated neutralization of endogenous 

IL-2 reduced CD4+CD25+ T cell numbers and resulted in onset of autoimmune disease20.   

Foxp3.  

Identification of the transcription factor forkhead box P3, or Foxp3, in 2001 provided a 

crucial phenotypic and functional marker for regulatory T cells (Tregs), as they came to be 

called21.  The discovery came from investigations into the cause of the fatal lymphoproliferative 

disorder of scurfy mice, and identified a single gene mutation in the X-chromosome responsible 

for a loss of Foxp3 expression22.  Subsequently, a mutation in Foxp3 was also identified as the 
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cause of the human disease IPEX (immune dysregulation, polyendocrinopathy, enterophathy, X-

linked syndrome), a fatal disease characterized by excessive inflammation and multi-system 

autoimmunity23.  The symptoms observed in scurfy mice and IPEX patients closely resembled 

those of mice deficient in CD4+CD25+ T cells, giving rise to the hypothesis that mutations in 

Foxp3 depleted Tregs and resulted in excessive lymphoproliferation and inflammation24.  By 

2003, several studies supported the role of Foxp3 in generation and suppressive function of 

Tregs.  Foxp3 expression was confirmed in CD4+CD25+ T cells with suppressive function, and 

retroviral transduction of Foxp3 induced suppressive function and Treg phenotype in naïve T 

cells25.  Furthermore, experiments in mice demonstrated the requirement of Foxp3 in Treg 

development, solidifying Foxp3 as the regulatory T cell lineage-specifying transcription factor26, 

27.  While the precise function of Foxp3 in suppressive activity of Tregs remains poorly 

understood, whole genome analyses in mice indicate Foxp3 acts as both a transcriptional 

activator and repressor, acting in concert with other transcription factors to influence expression 

of hundreds of genes28.  Specifically, Foxp3 is known to form complexes with NFAT, repressing 

expression of IL-2 and upregulating Treg surface markers CD25 and cytotoxic T-lymphocyte-

associated antigen-4 (CTLA-4)29, 30.  Interaction of Foxp3 with AML1 (acute myeloid leukemia 

1 or Runx1) has also been tied to suppression of IL-2 and interferon-gamma production while 

activating suppressive activity of Tregs and upregulating glucocorticoid-induced TNF-receptor-

family-related protein (GITR) 31.  Importantly, while Foxp3 expression in mice is limited to 

Tregs, human T cells transiently express low levels of Foxp3 during T cell receptor (TCR) 

stimulation in contrast to stable expression in Tregs32.   
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Mechanisms of Suppression.  

Despite extensive studies on the function of Tregs in vivo and in vitro, the mechanisms of 

by which Tregs suppress effector T cell proliferation and inflammation remain poorly 

understood.  Furthermore, several studies suggest Tregs not only directly suppress T cell 

responses, but also alter the activity of antigen-presenting cells (APCs) as an indirect means of 

modulating immune responses33.  To date, many mechanisms of Treg-mediated suppression have 

been proposed, falling broadly into two classes: contact-dependent and contact-independent34.  

Importantly, while Treg suppression requires antigen stimulation via TCR activation, activated 

Tregs can suppress in an antigen-nonspecific manner referred to as bystander suppression33.  

Therefore, Tregs can modulate immune responses by T cells independent of TCR specificity.  

Initial investigations into Treg suppression revealed that in vivo CTLA-4 blockade resulted in 

development of autoimmune disease in mice and abrogated in vitro suppression of T cell 

proliferation35, 36.  Subsequent studies revealed that CTLA-4 on Tregs inhibited T cell activation 

by competitively binding B7 molecules on APCs, preventing costimulatory signal transduction 

via CD28 on T cells37, 38.  Thus, Tregs can prevent activation and proliferation of conventional T 

cells in a contact-dependent manner.  Direct cytotoxicity by Tregs has also been observed, 

demonstrating that under some conditions Tregs are capable of killing a variety of target cells to 

control immune responses by expression of granzyme A and perforin39.  Production of cyclic 

adenosine monophosphate (cAMP) by Tregs is implicated in contact-dependent suppression, 

particularly in vitro35.  A potent inhibitor of proliferation and IL-2 production, cAMP has been 

shown to transport across cell membranes through gap junctions formed between Tregs and 

conventional T cells40.  Moreover, the suppressive activity of Tregs is abrogated in the presence 
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of a cAMP antagonist as well as by the use of a gap junction inhibitor40.  While in vitro studies 

suggest contact-dependent mechanisms are the dominant form of Treg suppression, several 

disease models implicate the production of immunosuppressive cytokines are important for Treg 

function in vivo.  Studies of inflammation in rodents demonstrate the requirement of interleukin 

10 (IL-10) and transforming growth factor beta (TGF-β) production by Tregs in control of 

immune pathology41, 42.  Tregs produce both soluble and membrane-bound TGF-β, and notably 

blockade of TGF-β in vitro mildly reduces suppression of both human and mouse T cell 

proliferation43, 44.  Control of intestinal inflammation also requires IL-10 and TGF-β production 

by Tregs45.  Taken together, these studies demonstrate the complex nature of Treg suppression.  

Tregs employ a variety of mechanisms to maintain tolerance and downregulate inflammation, 

and the exact manner of suppression is likely dependent on many factors including the type of 

immune response, tissue site, and cell types involved.  Furthermore, recent evidence reveals that 

Tregs are not a homogeneous population, but rather a complex group of distinct subsets with 

specific functions. 

Regulatory T cell subsets. 

 The majority of Tregs are produced in the thymus (nTregs/tTregs), however Tregs can 

also be generated in peripheral tissues (pTregs) and induced in vitro from naïve T cells 

(iTregs)46.  During development in the thymus, T cells reactive against self-antigens expressed 

on mTECs are either deleted by apoptosis, become anergic, or become Foxp3+ Tregs, which 

leave the thymus and enter peripheral tissues to maintain self-tolerance17, 47.  Additionally, 

mature, naïve T cells in the periphery can become Foxp3+ Tregs when stimulated with high 

affinity cognate antigen in the presence of TGF-β and IL-248, 49.  Similarly, naïve T cells can be 
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induced to express Foxp3 and acquire suppressive function in cell culture by TCR stimulation in 

the presence of TGF-β and IL-249.  Recent studies in mice and humans elucidated a 

heterogeneous population of CD8+CD25+Foxp3+ T cells with functional suppressive activity50, 

51.  While the role of CD8+ Tregs in immune homeostasis remains unclear, patients with asthma 

and inflammatory bowel disease display a paucity of CD8+ Tregs52, 53.  Therefore, CD8+ Tregs 

may play distinct roles in maintenance of immune homeostasis, perhaps preferentially 

controlling specific types of immune responses.  CD4+ T cells with suppressive activity in the 

absence of Foxp3 expression have been identified in mice, including IL-10-producing Tr1 cells 

and TGF-β-secreting Th3 cells54-56.  However, the suppressive activity of Foxp3- Treg subsets is 

limited to immunosuppressive cytokine secretion, and in the case of Th3 cells, driving peripheral 

Foxp3+ Treg induction through the expression of TGF-β56.  Due to the wide variety of immune 

responses required to defend against pathogens, the diversity of Treg function and phenotype is 

not surprising.  Indeed, recent reports indicate that Foxp3+ Tregs exist in distinct populations 

with precise anti-inflammatory roles57.   

Naïve T cells differentiate into effector subsets based on TCR stimulation in the presence 

of a specific cytokine environment and can be distinguished based on the cytokines and 

transcription factors they express58.  Interleukin 12 (IL-12) drives Th1 differentiation, resulting 

in interferon-gamma (IFN-γ) production and expression of the transcription factor T-bet59-61.  

Similarly, Th2 cells require interleukin 4 (IL-4) and express IL-4 and GATA-3, while Th17 cells 

are induced by TGF-β and interleukin 6 (IL-6) and express interleukin 17 (IL-17) and RAR-

related orphan receptor gamma (RORγt)62-67.  Several studies in mice and humans describe 

upregulation or activation of Th-associated transcription factors in Foxp3+ Tregs during 
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regulation of Th1, Th2, or Th17 immune responses, suggesting that Tregs differentiate into 

specialized subsets to modulate these responses57, 68-70.  Furthermore, pro-inflammatory cytokine 

production is associated with Th-like Treg subsets, despite the maintenance of suppressive 

activity and stable Foxp3 expression57, 71-73.  To describe these subsets of Foxp3+ Tregs in 

humans and mice, the terms Th1-like, Th2-like, and Th17-like have been posited to refer to 

Tregs with Th-associated phenotype or function57.  An ongoing difficulty in the study of Treg 

biology, particularly in vivo, is the lack of known surface markers to distinguish between subsets.  

However, recent studies of human Tregs demonstrate that the surface phenotype of Treg subsets 

corresponds to their effector counterparts, providing a means by which to identify and isolate 

specific populations57, 73. 

Chemokine Receptors and T cell Trafficking 

 In addition to the expression of cytokines and transcription factors, effector T cell subsets 

express different chemokine receptors which, along with adhesion molecules, mediate the ability 

to migrate to peripheral tissues and sites of inflammation74.  Mature, naïve T cells exit the 

thymus and primarily migrate to the blood and secondary lymphoid tissues, where they 

encounter antigen presented by APCs and become activated75.  Subsequently, effector T cells are 

generated which mount a short-lived immune response in peripheral tissues while long-lived 

memory T cells migrate to tissues to participate in immune surveillance74.  Differential 

expression of chemokine receptors on T cell subsets mediate migration to inflamed tissues as 

well as trafficking to lymph nodes76  In this way, chemokine receptor expression directs specific 

types of T cells to appropriate tissues and controls the type of immune response mounted against 

a particular pathogen.  For this reason, expression of chemokine receptors can be used not only 
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to distinguish types of T cells, but also which tissues they localize to.  Th1 cells, for example, 

preferentially express CXC chemokine receptor 3 (CXCR3) in contrast to Th2 cells which 

express CC chemokine receptor 3 (CCR3) and CCR477, 78.  Th17 cells, on the other hand, express 

CCR4 and CCR6 which mediate migration to sites of Th17 inflammation and, in particular, entry 

into the central nervous system (CNS) in animal models of immune-mediated 

neuroinflammation79, 80.  CCR10, in combination with CCR4 and CCR6 is associated with skin-

homing T cells, illustrating the importance of complex chemokine receptor signaling in 

determining the migratory ability of T cells81.  Finally, CCR7 confers the ability to migrate to 

secondary lymphoid tissue and its expression is associated with naïve and central memory T 

cells74.  Like conventional T cells, Tregs express chemokine receptors which control tissue 

localization and migration in response to inflammation82.  Maintenance of immune homeostasis 

in peripheral tissues is dependent upon colocalization of Tregs with effector T cells, meaning 

that Tregs respond to chemokines in the same manner as conventional T cells83, 84.  Furthermore, 

ex vivo analysis of chemokine receptor expression by human Foxp3+ Tregs reveals the existence 

of distinct subsets which closely resemble effector T cell subsets despite in vitro suppressive 

activity57.  Together, these studies suggest Tregs are functionally specialized to regulate immune 

responses by localizing with effector T cells in vivo.   

Fetal Tolerance and Neonatal Immunity 

 For humans and other placental mammals, pregnancy presents a significant 

immunological challenge for both the maternal immune system and the developing fetus.  The 

maternal immune system must tolerate foreign antigens the fetus inherits from the paternal 

genome while the developing fetus must remain tolerant to maternal antigens that cross the 
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placenta85, 86.  While development of T cells in mice is delayed, in the human fetus T cells can be 

detected in peripheral lymphoid tissue by 10 weeks of gestation, necessitating tolerance early in 

pregnancy87.  Tregs are critical to maintaining tolerance at the fetomaternal interface, as antigens 

are exchanged between mother and fetus throughout pregnancy88.  In the mother, T cells do not 

differentiate to pathogenic effector cells, but rather preferentially differentiate to Tregs and 

expand in response to fetal antigens89-91.  Notably, maternal Tregs specific for fetal antigen 

persist after delivery and rapidly expand upon subsequent pregnancy89.  The importance of Tregs 

during pregnancy is illustrated by cases of deficient Treg expansion, which result in spontaneous 

abortion and preecalmpsia92-94.  The fetus also depends upon Tregs to maintain tolerance in 

response to maternal antigens and cells that cross the fetomaternal interface86.  Although T cells 

are present in fetal lymphoid tissues early during development, the fetal adaptive immune system 

was long considered immature, and therefore unresponsive to antigen95, 96.  However, as early as 

1945, seminal experiments demonstrated that antigens encountered in utero induced long-lasting 

tolerance, suggesting an active immunosuppressive response1, 2.  Furthermore, the fetal immune 

system is highly responsive to stimulation under some conditions, and mounts adaptive immune 

responses in response to certain pathogens97, 98.  Recent studies demonstrate that a high frequency 

of Tregs in fetal lymphoid tissues are responsible for dominant, tolerant responses observed 

during antigen exposure in utero86, 99.   

By the time of birth, frequencies of peripheral blood Tregs are comparable to adult, 

however naïve T cells in neonates and infants display an enhanced propensity to differentiate to 

Tregs rather than conventional T cells100.  In agreement, studies of human umbilical cord blood 

demonstrate elevated Treg generation in response to antigen stimulation, suggesting an intrinsic 
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bias toward tolerance that persists into early life101.  Birth presents an immense challenge to the 

newborn, requiring maintenance of tolerance to avoid damaging responses to environmental 

antigens and commensals while also necessitating protective immune responses against 

pathogens102.  For this reason, neonatal immunity is dependent upon plasticity to adapt to the 

complex demands of early life102.  In addition, newborns mount immune responses differently 

from adults, including the well-documented bias toward Th2 responses and absence of Th1 

responses103, 104.  Despite a downregulation of antibacterial Th1 responses, newborns display 

enhanced production of interleukin 8 (IL-8) by CD4+ and CD8+ T cells, a cytokine known to 

potently activate and recruit antimicrobial neutrophils105.  In contrast, IL-8 production by T cells 

in adults is rare, perhaps representing a unique adaptation of the neonatal immune system to 

early life105.  Infectious disease remains a significant threat to newborns and neonatal infection 

results in high morbidity and mortality even in the developed world106.  Despite this, neonatal 

immunity remains poorly understood.  Understanding the balance between tolerance and 

inflammation is critical to preventing newborn mortality and improving outcomes of vaccination 

in early life102. 

Tumor Necrosis Factor Biology 

 Tumor necrosis factor (TNF) was first discovered in 1975 and named for its ability to 

induce necrosis of tumors in vitro107.  Not long after, studies in mice demonstrated efficacy 

against both human and murine tumors in vivo108.  Expression of TNF was identified in 

monocytes, macrophages, and activated T cells109, 110.  Recombinant TNF was quickly moved 

into clinical trials, where minimal anti-tumor effects were far outweighed by massive side effects 

and toxicity111.  Subsequently, studies in mice led to the observation that immunization against 
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TNF protected mice from lethal effects of endotoxin, demonstrating for the first time that TNF 

mediated inflammation112.  Over the past 30 years, a wide range of activities have been attributed 

to TNF, revealing diverse functions and solidifying TNF as perhaps the most pleiotropic 

cytokine known today111. 

TNF signaling. 

 TNF is produced as a 26 kDa type II transmembrane protein by macrophages, monocytes, 

microglia, and activated NK and T cells113.  The membrane form of TNF (mTNF) arranges in 

homotrimers and is released to the soluble form (sTNF) via proteolytic cleavage by the 

metalloprotease TNF alpha converting enzyme (TACE)114, 115.  Soluble TNF circulates in blood 

and elicits potent responses at distant sites while mTNF signals locally through cell-cell 

contact111.  Both forms of TNF bind two transmembrane receptors with distinct functions; TNF 

receptor 1 (TNFR1 or CD120a) contains a death domain and induces cell cycle arrest and 

apoptosis while TNF receptor 2 (TNFR2 or CD120b) promotes cell growth and survival116.  

Importantly, the membrane form of TNF signals more potently than sTNF via TNFR2117.  

Expression of TNFR1 is ubiquitous, expressed at low levels in most cell types and tissues, while 

TNFR2 expression is limited to lymphoid and myeloid cells118.  mTNF can also signal back to 

the TNF-expressing cell when ligated with TNFR, resulting in phosphorylation of intracellular 

domains and activating nuclear factor-kB (NF-κB) to modulate cytokine responses in a process 

called reverse signaling119, 120.    

TNF in human disease. 

 The role of TNF in inflammation is well established, and inhibition of TNF in treatment 

of inflammatory diseases is common and efficacious121.  Monoclonal antibodies or soluble 
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receptors against TNF are particularly effective in patients with rheumatoid arthritis (RA) and 

inflammatory bowel disease122, 123.  However, some patients treated with TNF inhibitors 

experience the onset or exacerbation of inflammatory diseases including psoriasis, uveitis, and 

Crohn’s disease124.  In addition, studies of inflammatory bowel disease in mice demonstrate that 

colonic inflammation is paradoxically enhanced in TNF knockout animals125.  Furthermore, 

treatment of multiple sclerosis (MS) patients with anti-TNF therapy resulted in exacerbation of 

disease symptoms126.  These unexpected complications suggest that TNF mediates anti-

inflammatory effects as well as promoting inflammation.   

 TNF is reported to inhibit the function of Foxp3, thus reducing suppressive function of 

Tregs isolated from RA patients127, 128.  However, another study reports that suppressive activity 

of Tregs is not affected by TNF129.  In addition, TNF promotes proliferation of Tregs and 

enhances Treg differentiation by suppressing Th17 generation130, 131.  These contradictory results 

suggest that TNF signaling in Tregs is complex and probably dependent upon experimental 

approach.  Tregs express TNFR2 and require TNFR2 signaling for stability of Foxp3 expression 

and suppressive activity132-135.  Furthmore, mTNF preferentially signals via TNFR2, indicating 

that contract-dependent TNF signaling may be crucial to immunosuppressive responses117.  The 

impact of TNF on Treg function and stability remains controversial.  Therefore, the role of 

mTNF on Treg biology must be elucidated in order to understand paradoxical responses to anti-

TNF therapeutics in human disease. 
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CHAPTER TWO 
 

 MATERIALS AND METHODS 

Mononuclear Cell Isolation and Cell Purification 

Umbilical cord blood samples were collected from healthy volunteer donors into citrate 

phosphate dextrose solution.  Adult samples were collected from healthy volunteer donors into 

heparin solution.  Mononuclear cells were isolated by density gradient centrifugation using 

Lymphocyte Separation Medium (Corning).  Red blood cells were lysed using ACK lysis buffer 

(Gibco).  Adult Tregs and CD4+CD25- T cells were isolated from mononuclear cells using 

EasySep Human CD4+CD127lowCD25+ Regulatory T Cell Isolation Kit (Stem Cell 

Technologies).  For mouse experiments, T cells were isolated from spleens of C57BL/6 mice and 

enriched for CD4+ cells using mouse CD4+ T cell enrichment kit (Stem Cell).  Naïve T cells for 

suppression assay were obtained by FACS sorting for CD3+CD45RA+ and APCs by sorting for 

CD3- cells. 

Treg Induction  

Umbilical cord blood mononuclear cells were stimulated with α-CD3 (200 ng/ml unless 

otherwise stated) in the presence of IL-2 (10 ng/ml) in RPMI 1640 (Hyclone) supplemented with 

10% fetal calf serum.  Cells were cultured for 14 days with change of media every 2-3 days, 

maintaining IL-2 concentration throughout culture duration.  Tregs were analyzed on day 14 
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after stimulation.  For Th1 polarization cultures, IL-12 (20 ng/ml) was maintained in culture 

medium.  For Th17 polarization cultures, IL-1β (20 ng/ml) and IL-6 (20 ng/ml) were maintained 

in culture medium.  Recombinant human cytokines were obtained from Peprotech. 

Antibodies 

Antibodies used for flow cytometry were anti-CD4, CD8, CD25, Foxp3, CCR4, CCR6, 

CCR7, CCR10, CXCR3, TNFR2, TIM-3, CD27, CD26, OX40, CD31, IL-2, GM-CSF, IFN-γ, 

TNF-α, and IL-8 from Biolegend.  Anti-TNFR1 was from Bio-Rad.  Functional antibodies for 

cell culture were anti-CD3 (OKT3), TNF-α (Mab11), IL-2, and CD28 from Biolegend.  

Antibodies against mouse CD4, CD25, Foxp3, and TNF were obtained from Biolegend. 

Flow Cytometry 

Single cell suspensions were prepared in phosphate buffered saline with 0.5% fetal calf 

serum and 0.01% sodium azide.  Staining was performed according to standard protocols.  Prior 

to surface staining, cells were blocked with Human TruStain FcX blocking solution (Biolegend).  

Foxp3 staining was performed using Foxp3 Fix/Perm buffer set (Biolegend).  For cytokine 

staining, cells were restimulated for 4 hours using phorbol myristate acetate (PMA; 50 ng/ml) 

and ionomycin (1 µM; Sigma Aldrich) in the presence of monensin (1 µM; Biolegend) in RPMI 

1640 (Hyclone) supplemented with 10% fetal calf serum.  For surface TNF-α analysis, 

stimulation was performed without monensin.  Data were collected on FACS Canto II and LSR 

Fortessa (BD Biosciences) and analyzed by Flowjo software (Tree Star). 

Suppression Assay 

 Adult Treg cells were enriched by magnetic sorting as described above . Naïve T cells 

and APCs were FACS sorted as previously described.  Cord blood assays used total cord blood 
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from Treg induction cultures.  Prior to stimulation, Tregs were labeled with Cell Trace Violet 

(Thermo Fisher) and naïve T cells labeled with CFSE (Thermo Fisher).  100,000 Tregs, 100,000 

naïve T cells, and 50,000 APCs were added to a 96-well tissue culture-treated plate and 

stimulated with 5 µg/ml anti-CD3 for 5 days.  Data collected on FACS Canto II. 

Survival Assay 

 Adult Tregs were isolated from peripheral blood and isolated by magnetic sorting as 

previously described.  Cells were labeled with CFSE and 100,000 cells added to each well of 96-

well non-tissue culture-treated plate coated with anti-CD3.  Costimulation was provided by 5 

µg/ml anti-CD28.  IL-2 (10 ng/ml) was provided to control wells only and all other conditions 

were treated with low endotoxin azide-free (LEAF) grade anti-IL-2 antibody (2 µg/ml).  LEAF 

grade anti-TNF or isotype control LEAF mIgG1 (25 µg/ml) were added as indicated.  After 5 

days, cells were counted in triplicate in 0.1% trypan blue solution in PBS.  Average cell number 

was calculated from triplicate values and divided by cell number of untreated control to generate 

plotted data.  Apoptosis was assessed by staining with annexin V (BD Biosciences) and 

measured by flow cytometry. 

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software.  For TNF and IFN-y 

expression were analyzed by student’s t-test (p<0.05).  Treg survival assay was analyzed by 

paired t-test (p<0.05).   
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CHAPTER THREE 

 PROPENSITY FOR TREG GENERATION BY CORD BLOOD NAÏVE T CELLS 

Introduction 

Umbilical cord blood and adult blood display a similar frequency of Tregs, however 

naïve T cells from cord blood display an enhanced propensity for Treg differentiation when 

stimulated ex vivo in the presence of IL-2 (Lee et al., manuscript in preparation).  Tregs can be 

generated from naïve T cells in peripheral tissues or in cell culture through TCR stimulation in 

the presence of TGF-β and IL-246.  Previous work demonstrates that CD14+CD36hi monocytes 

in cord blood provide TGF-β and retinoic acid to naïve T cells, resulting in the majority of CD4 

and CD8 T cells differentiating to Foxp3+ Tregs when stimulated in the presence of exogenous 

IL-2 (Lee et al., manuscript in preparation).   

Recognition of cognate antigen in the context of MHC is critical for T cell activation and 

differentiation.  Furthermore, many factors determine the fate of T cells during activation 

including affinity of TCR for antigen in the context of MHC, the extent of TCR ligation, 

costimulatory signals provided by antigen presenting cells (APCs), and the local cytokine 

environment58, 136.  In order to understand the in vivo role of cord blood Tregs, it is first 

important to gain an understanding for the factors that influence differentiation of naïve T cells 

from cord blood. For these reasons, we tested the impact of TCR stimulation strength and T 

lineage-polarizing cytokines on the differentiation of naïve T cells from cord blood. 
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The Role of TCR Signaling in Treg Generation 

Outside the thymus, TCR ligation is required for differentiation of Tregs46.  Numerous 

studies indicate affinity of antigen is an important determinant for T cell differentiation, and low 

dose, high affinity antigen is recognized as a potent driver of Treg generation in vivo137, 138.  

Furthermore, the extent of TCR ligation is known to determine differentiation of naïve T cells 

into specific lineages of effector T cells136.  However, the precise role of TCR ligation in Treg 

differentiation remains poorly understood.   

To avoid the requirement for specific antigen, naïve T cells in cord blood were stimulated 

with monoclonal antibodies against CD3, the signaling domain of TCR.  In this manner, APCs to 

provide costimulatory signals and cytokines as would occur in vivo.  However, the extent of TCR 

ligation as modeled by binding of anti-CD3 presented by APCs may impact the fate of T cells.  

Specifically, we aimed to address whether the extent of TCR ligation in ex vivo stimulated T 

cells in cord blood affects their differentiation into Tregs.  To determine this, several doses of 

anti-CD3 were tested and differentiation of cord blood T cells measured by flow cytometry.  

Human T cells transiently express low levels of Foxp3 upon antigen stimulation, so cells were 

expanded with change of media for 14 days to ensure that cells staining positive for Foxp3 were 

stable Tregs32.  We found that decreasing concentrations of anti-CD3 antibody reduced total 

Foxp3 expression in both CD4 and CD8 subsets, indicating that less TCR stimulation decreases 

T cell differentiation to Foxp3+ cells (Fig. 1).   

To ensure that changes in Foxp3 expression were not due to lack of TCR stimulation at 

low concentrations of anti-CD3, total cell numbers were calculated at the end of 14 day culture 

period.  Below 200 ng/ml anti-CD3, a two-fold reduction in cell number was found (Fig. 2).  
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Together, these data indicate that higher doses of TCR stimulation promote Foxp3 expression.  

Notably, even at low doses of stimulation the majority of CD4 and CD8 T cells express Foxp3. 

 
Figure 1. Decreasing anti-CD3 reduces Foxp3 expression.  Cord blood T cells stimulated with 
decreasing concentrations of anti-CD3 and stained for Foxp3 after 14 days.  Data plotted are 
means of Foxp3+ frequency from 11 donors.  Error bars indicate standard error of the mean. 
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Figure 2.  Effect of anti-CD3 concentration on T cell proliferation.  Total cell number 
calculated 14 days after anti-CD3 stimulation of naïve T cells from cord blood.  Data are means 
of 11 donors.  Error bars indicate standard deviation. 
 

Plasticity of Cord Blood Naïve T Cells in Response to Polarizing Cytokines 

 Differentiation of naïve T cells into effector lineages is dependent upon local cytokine 

milieu during activation58.  In the presence of IL-2, naïve T cells from cord blood upregulate 

Foxp3 and differentiate to functionally suppressive Tregs.  Previous work demonstrates that the 

addition of exogenous IL-4 potently blocks Treg differentiation by cord blood T cells (Lee et al., 

manuscript in preparation).  However, the plasticity of naïve T cells from cord blood in response 

to other lineage-polarizing cytokines remains unresolved.  For this reason, we investigated the 

impact of Th1 and Th17 polarizing conditions on cord blood Treg differentiation. 
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 Cord blood T cells readily upregulate Foxp3 and become Tregs in response to ex vivo 

stimulation, a propensity that is maintained in the infant throughout the first year of life139.  Like 

Treg differentiation, generation of inflammatory Th17 cells is dependent on TGF-β140.  However, 

while IL-2 promotes Foxp3 expression, Th17 differentiation is driven by the presence of 

inflammatory cytokines.  Specifically, IL-6 and IL-1β are known to drive RORγt and IL-17 

expression, which are key identifiers of inflammatory Th17 cells141, 142.  Cord blood T cells fail 

to proliferate in the absence of IL-2 (data not shown), so the capacity for Th17 differentiation 

was tested by adding recombinant IL-6 and IL-1β to naïve T cells in the presence of exogenous 

IL-2.  If Th17 differentiation occurred, we expected to see a decrease in Foxp3+CD25+ cells.  

After 14 days, Treg phenotype was assessed by flow cytometry after staining for Foxp3 and 

CD25.  Addition of Th17-polarizing cytokines had no effect on the expression of these markers 

by CD4+ or CD8+ cells, indicating that Treg differentiation was not affected in either subset 

(Fig. 3).  Furthmore, Th17 differentiation was assessed by intracellular staining for RORγt, 

revealing no difference between Treg-induced (IL-2 alone) and Th17-induced (IL-2+IL-1β+IL-

6) conditions (data not shown).  To test for IL-17 expression, Treg and Th17-induced cells were 

restimulated with PMA/ionomycin and culture supernatants assessed for soluble IL-17 by 

cytometric bead array.  IL-17 was not detected in either condition, confirming the absence of 

Th17 differentiation by cord blood T cells (data not shown). 
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Figure 3. Treg differentiation in response to Th17 and Th1 polarizing cytokines.  Cord 
blood mononuclear cells stimulated with anti-CD3 in the presence of indicated cytokines for 14 
days.  Data shown are representative of 3 donors.  Data generated by size gating on live cells, 
then gating on CD4+ and CD8+ groups.   

 To test the plasticity of cord blood naïve T cells in response to Th1 polarizing conditions 

in vitro, recombinant human IL-12 and IL-2 were added to cord blood mononuclear cells at the 

time of stimulation and maintained throughout culture duration.  Differentiation of Tregs was 

assessed by the expression of Foxp3 and CD25 using flow cytometry.  After 10 days in culture, 

cessation of growth became evident in cells treated with IL-12, and by day 14 after stimulation 

cells exhibited widespread death.  Flow cytometric analysis revealed markedly reduced 

expression of Foxp3 and CD25 in both CD4+ and CD8+ populations, indicating a reduction in 
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Treg differentiation in IL-12-treated samples (Fig. 3).  Alternatively, reduction in Foxp3 

expression in live-gated cell groups may be due to loss of expression by apoptotic cells.   

Discussion 

Th1 helper cells are critical for immune responses against intracellular bacteria.  IL-12 

and IL-2 drive Th1 differentiation, upregulating T-bet expression and the signature cytokine 

IFN-γ, which activates macrophages to kill intracellular bacteria58, 60.  Appropriate immune 

responses to intracellular bacteria require differentiation of naïve T cells in response to 

polarizing cytokines, thus inducing expansion of Th1 effector cells in response to infection.  

Studies in mice and human cord blood naïve T cells demonstrate reduced Th1 differentiation 

compared with adult naïve T cells and a bias towards production of IL-4, IL-5, and IL-13 rather 

than IFN-γ143-145.  A bias toward Th2 immunity combined with a deficiency in cell-mediated 

immunity make newborns susceptible to viral and bacterial infections and limit efficacy of 

vaccination against intracellular pathogens146.  Furthermore, differentiation of Tregs rather than 

effector T cells may contribute to impaired immune responses to pathogens and vaccines.  For 

these reasons, understanding the extent to which cord blood naïve T cells differentiate to Tregs in 

the presence of T helper-polarizing cytokines is crucial to improving outcomes for neonates in 

response to infectious disease.  We demonstrate that Th1-polarizing conditions reduce Foxp3 

expression and Treg development in vitro.  Furthermore, Th1-polarizing cytokines resulted in 

cell death and reduced expansion in response to TCR stimulation.  Th1 cytokines may promote 

cell death or attenuation of proliferation in newborns, contributing to the paucity of Th1 

immunity in early life.  This possibility, however has not been directly tested.  Future work will 
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determine whether reduction in Foxp3 during Th1-polarization is associated with upregulation in 

Th1 cytokines and T-bet expression.   

In contrast, Th17-polarization had no effect on Treg generation.  IL-2 is shown to block 

Th17 differentiation, so the possibility remains that IL-2 addition inhibited Th17 generation147.  

Without IL-2, however, cord blood T cells fail to proliferate.  In agreement with our results, 

Th17 cells are not readily detected in the peripheral blood of infants and only begin to 

differentiate after the first few months of life139.  The propensity for Treg generation observed in 

cord blood and neonates may block Th17 differentiation, resulting in a tolerant, rather than pro-

inflammatory, immune status.   

The effect of antigen dose was modeled by stimulation with variable concentrations of 

anti-CD3, revealing a relationship between antigen dose and Treg differentiation.  We observe a 

correlation between concentration of anti-CD3 and frequency of cells expressing Foxp3, 

suggesting that the extent of TCR ligations impacts cell fate during stimulation.  Interestingly, 

even the lowest doses of anti-CD3 resulted in Foxp3 expression in a large fraction of cells, 

demonstrating the propensity for Treg generation by cord blood T cells.  The role of antigen 

affinity on Treg generation, however, was not tested.  Anti-CD3 stimulates TCR signaling, and 

therefore concentration of anti-CD3 affects the amount of TCR complexes activated, but does 

not directly provide any information about antigen affinity in Treg generation. 

 Together, these results demonstrate a propensity for Treg generation in cord blood that is 

at least partially affected by extent of TCR ligation.  Furthermore, we demonstrate a failure to 

reduce Treg differentiation in response to inflammatory cytokines reported to induce Th17 cells.  

Therefore, in agreement with other studies, Treg differentiation may predominate neonatal 
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responses to antigen while Th17 inflammatory responses are absent.  Th1-polarizing conditions, 

however, reduced Foxp3 expression and resulted in reduced growth and subsequent cell death.  

While the mechanism by which IL-12 attenuates growth and induces cell death was not tested, 

this phenomenon may represent a means by which the neonatal immune system avoids Th1 

responses. 
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CHAPTER FOUR 
 

PHENOTYPE OF CORD BLOOD TREGS IN COMPARISON TO ADULT PERIPHERAL 

BLOOD TREGS  

Introduction 

 Cord blood naïve T cells readily differentiate to regulatory T cells after ex vivo 

stimulation and exhibit in vitro suppressive activity comparable to adult peripheral blood Tregs.  

However, recent studies demonstrate the existence of several distinct subsets of Foxp3+ Tregs 

with distinct functions in controlling immune responses57.  Tregs suppress T cell proliferation 

primarily by direct contact, and therefore tissue localization is critical to Treg function in vivo 43.  

Therefore, analysis of chemokine receptor expression by cord blood Tregs is pivotal to 

predicting compartmentalization to peripheral tissues during immune responses in neonates.  

Furthermore, subsets of Tregs in adult peripheral blood have been identified and distinguished by 

differential expression of chemokine receptors57.  These subsets display surface phenotypes 

similar to effector T cell subsets and even share expression of characteristic pro-inflammatory 

cytokines when stimulated ex vivo 57.  Cell surface molecules are important not only to the 

phenotypic classification of cell types and subsets, but also to a multitude of important cellular 

functions.  Specific molecular interactions between immune cells during cell-cell contact is 

crucial for many aspects of immune cell function, and T cells express various costimulatory and 

immune checkpoint molecules to regulate activation, proliferation, and survival148.  While adult 

peripheral blood Tregs have been investigated extensively, little is known about Tregs in fetal or 
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neonatal immunity.  To understand the function of cord blood Tregs in neonatal immunity, the 

surface phenotype and cytokine profile must first be determined.   

Cord Blood Tregs Express Chemokine Receptors and are Distinct from Adult tTregs 

 To characterize the phenotype of umbilical cord blood-derived Tregs, we compared 

chemokine receptor expression to Tregs isolated from adult peripheral blood (tTregs).  Adult 

tTregs expressed high amounts of CCR4 and CCR6 and the majority were 

CCR4+CCR6+CCR7loCXCR3+/- (Fig. 4).  In contrast, cord blood CD4+ Tregs expressed lower 

amounts of CCR4 and CCR6, but exhibited elevated CCR7 expression in comparison to adult.  

The phenotype CCR4loCCR6loCCR7+CXCR3+ was shared between CD4+ and CD8+ UCB Tregs, 

although CD8+ Tregs expressed less CCR4.  Furthermore, while only a subset of adult Tregs 

expressed CXCR3, the majority of cord blood CD4+ and CD8+ Tregs expressed CXCR3.   

Finally, low CCR10 expression was only observed in CD8+ cord blood Tregs.   
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Figure 4.  Chemokine receptor expression by cord blood and adult Tregs.  Flow cytometric 
analysis of Tregs from adult peripheral blood and umbilical cord blood.  Data shown are 
representative of 5 independent experiments.  Dashed lines indicate isotype controls. 

 

Cord Blood Tregs Express Distinct Surface Antigens 

 To investigate functional differences between cord blood-derived Tregs and adult tTregs, 

we compared expression of surface antigens associated with T cell function.  In particular, we 

tested the expression of surface molecules involved in T cell activation or contact-dependent 

interactions with other immune cells.  We found that cord blood and adult Tregs shared high 

expression of CD27, a costimulatory surface receptor known to be critical for T cell expansion 

and formation of immunological memory149, 150 (Fig. 5).  To further analyze surface antigen 

expression, CD4+ and CD8+ populations were further gated on Foxp3+CD27+ groups.  Strikingly, 

we found high expression of CD26 on both CD4+ and CD8+ Tregs from cord blood, but in 
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contrast adult Tregs were all CD26-.  We also tested the expression of surface receptors involved 

in T cell activation and immune regulation.  We found that a fraction of CD8+ Tregs from cord 

blood express TIM-3 (~60%) in addition to a smaller fraction of CD4+ Tregs (~15%).  In 

contrast, adult Tregs showed no expression of TIM-3.  Additionally, expression of the TNF 

receptor superfamily molecule OX40 was detected on a group of CD4+ cord blood Tregs 

(~40%), but not on CD8+ cord blood Tregs or adult tTregs.  Finally, nearly all CD8+ Tregs from 

cord blood expressed the platelet adhesion molecule CD31, in addition to a subset (~30%) of 

cord blood CD4+ Tregs.  CD31 was not detected on adult Tregs.  Together, these results 

demonstrate a surface antigen phenotype in cord blood Tregs that contrasts with adult CD4+ 

Tregs, suggesting cord blood Tregs possess distinct functions not observed in adults.  

Furthermore, phenotypes differed between CD4+ and CD8+ Tregs in cord blood, providing 

further evidence for functional specialization of these subsets. 
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Figure 5.  Surface antigen expression by cord blood and adult Tregs.  Cord blood-derived 
Tregs and adult peripheral blood Tregs stained for surface antigen expression.  Samples gated on 
total CD4+ or CD8+ populations prior to gating on Foxp3+CD27+ for further analysis. 
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Cord Blood Tregs Express Distinct Cytokine Profile 

 Recent reports demonstrate inflammatory cytokine production by subsets of human 

Tregs57.  To assess possible functions for cord blood-derived Tregs in vivo, we tested the ability 

of these cells to produce cytokine.  Naïve T cells were induced to generate Tregs as previously 

described, then restimulated with PMA and ionomycin in the presence of monensin to induce 

activation and cytokine expression while blocking golgi transport to prevent secretion of 

cytokines.  Subsequently, cytokines were detected by intracellular staining along with Foxp3 co-

staining and analyzed by flow cytometry.  We found that cord blood Tregs express a distinctive 

profile of cytokines (Fig. 6A).  Foxp3+ CD4+ cells produced TNF (>80%), IL-2 (~30%), GM-

CSF (~50%), and IL-8 (~30%).  Similarly, Foxp3+CD8+ Tregs from cord blood expressed TNF 

(>80%), GM-CSF (~70%), and IL-8 (~20%).  CD8+ Tregs did not express IL-2, but expressed 

IFN-γ (25%).  Expression of IL-10 and IL-17 were not detected (data not shown).  The majority 

of CD8+ Tregs from cord blood expressed both IL-8 and GM-CSF, while a fraction (~20%) of 

cord blood CD4+ Tregs expressed both cytokines (Fig. 6B).  In contrast, conventional adult T 

cells (CD4+CD25-Foxp3-) display subsets of IL-8 or GM-CSF producing cells (~10%), however 

the production of these cytokines were mutually exclusive.  Furthermore, Foxp3+ Tregs from 

adult blood did not express the cytokine profile of cord blood Tregs.  Unexpectedly, however, 

TNF expression was observed in the majority of adult Foxp3+ Tregs (>70%).  These data 

demonstrate distinct cytokine profile differences for cord blood Tregs in comparison to adult 

Tregs.  Furthermore, cytokine expression by cord blood Tregs supports functional differences for 

cord blood Tregs, suggesting Tregs in cord blood are able to mediate both anti-inflammatory and 

pro-inflammatory immune responses. 



32 
 

  

 
 

 

 



33 
 

  

 



34 
 

  

Figure 6.  Distinct cytokine profile of cord blood Tregs. Cord blood and adult Tregs 
stimulated with PMA and ionomycin for 4 hours in the presence of monensin. (A) Cytokine 
profile of cord blood and adult Tregs (B) Co-expression of IL-8 and GM-CSF by cord blood 
Tregs in contrast to adult Tregs (CD4+CD25+Foxp3+) and conventional T cells (CD4+CD25-
Foxp3-). Representative data from 6 donors for cord blood Tregs, and 3 donors for adult 
samples. (C) Frequency of cells staining positive for cytokines.  Cells gated on CD4 or CD8 as 
indicated, followed by gating on Foxp3+ and Foxp3- populations prior to cytokine analysis.  For 
adult samples, Foxp3+ were also gated on CD25+ and Foxp3- are gated on CD25-.  Bars 
represent means of each sample. 

 

Discussion 

Chemokine receptor expression. 

 Cord blood Tregs express a distinct phenotype of chemokine receptor expression in 

comparison to adult Tregs, suggesting differential roles in tissue localization and trafficking 

ability.  Expression of CXCR3 is limited predominantly to Th1 cells and mediates migration to 

sites of inflammation in response to CXCR3 ligands CXCL9, CXCL10, and CXCL11151.  

Recently, a subset of Th1-like CXCR3+Foxp3+ Tregs have been identified in adult peripheral 

blood with the ability to express IFN-γ and suppress Th1-mediated immune responses57.  In 

support of this, we observe a small population of CXCR3+ Tregs in adult peripheral blood.  In 

contrast, however, the majority of CD4+ and CD8+ Tregs in cord blood express CXCR3, 

suggesting a role for these cells in suppressing Th1 immune responses and localizing to sites of 

Th1-mediated inflammation.  During fetal development and early life, Th1 responses are mostly 

absent with the exception of responses to specific pathogens146.  In utero, Th1 responses are 

toxic to the placenta and may result in termination of pregnancy152.  Therefore, expression of 

CXCR3 by Tregs during fetal development may be important to control Th1 responses by 

trafficking to sites of Th1 inflammation and suppressing T cell proliferation and cytokine 

production.   
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 Elevated CCR7 expression distinguishes cord blood Tregs from adult.  CCR7 is required 

for T cell trafficking from peripheral tissues to lymphoid tissue in response to CCL19, the ligand 

for CCR7153.  CCL19 is expressed in T-cell zones in lymphoid tissue, suggesting a role for 

CCR7+ Tregs in modulation of T cell activation in germinal centers154.   

 While adult peripheral blood Tregs are known to express high levels of CCR4 and CCR6, 

expression of these receptors was reduced in cord blood Tregs155.  CCR4+ Tregs are associated 

with residence in epithelial tissue, and in mice the loss of CCR4 in Tregs results in lymphocyte 

infiltration and inflammation in skin and lungs84.  Expression of CCR6 mediates migration of 

both Th17 and Treg cells to areas of inflammation, suggesting a role of CCR6+ Tregs in 

suppressing Th17-mediated inflammation156.  Decreased expression of CCR4 and CCR6 on cord 

blood Tregs in comparison to adult suggests a diminished ability to migrate to epithelial tissue 

and sites of Th17-mediated inflammation, however this hypothesis has not been tested.   

 Together, these data demonstrate a distinct phenotype of cord blood Tregs in comparison 

to adult and suggest that cord blood-derived Tregs would migrate differently than tTregs during 

immune responses and inflammation. 

Surface antigen phenotype. 

CD26, also known as dipeptidyl peptidase 4 (DPPIV), is a surface antigen associated 

with T cell activation and possesses enzymatic activity157.  CD26 can cleave a variety of 

hormones, growth factors, and chemokines which share proline or alanine residues at the N-

terminus, thus modulating many physiologic processes including immune regulation and 

responses to infection157.  In particular, adenosine deaminase (ADA) is a known substrate for 

CD26158.  ADA is involved in purine metabolism and immune homeostasis, and genetic 
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deficiencies in ADA result in severe combined immune deficiency (SCID) and eventually 

death159.  As our data corroborate, CD26 is not expressed on adult Tregs, but in contrast we 

demonstrate high expression on cord blood Tregs, suggesting an important role for this enzyme 

in fetal or neonatal immune regulation or development160.  Future work will determine whether 

CD26 expression by cord blood Tregs modulates fetal or neonatal immune responses.   

Expression of TIM-3 is associated with Th1 cells in humans and regulates Th1 cytokine 

production as well as maintenance of tolerance in vivo 161.  Specifically, interaction of TIM-3 

with TIM-3 ligand is shown to inhibit Th1 responses in mice, thus maintaining peripheral 

tolerance162.  In humans, a paucity of TIM-3 expression is observed in multiple sclerosis (MS) 

patients compared with healthy controls and blockade of TIM-3 increases IFN-γ secretion by 

CD4+ T cells163.  Furthermore, expression of TIM-3 on cytotoxic CD8+ T cells is associated with 

anti-atherogenic cytokine production in human patients with atherosclerosis and blockade of 

TIM-3 in this context aggravates inflammation164. Studies of tumor-bearing mice implicate 

tumor-resident TIM-3+ Tregs in tumor progression, identifying TIM-3+ Tregs as highly 

suppressive of effector T cell responses165.  Together, these studies demonstrate the importance 

of TIM-3 in the maintenance of tolerance in both human and murine disease.  Expression of 

TIM-3 on cord blood Tregs, particularly CD8+ Tregs, suggests an important immunoregulatory 

role for this receptor.  Future work will determine the function of TIM-3 in immune homeostasis 

in early life. 

TNF receptor superfamily members are highly conserved and control a wide variety of 

immune responses166.  One of these members, OX40, is important to regulation of CD4 and CD8 

T cells responses as well as the differentiation and activity of regulatory T cells167.  OX40 is 



37 
 

  

expressed on activated T cells, where interaction with OX40 ligand (OX40L) on APCs induces 

NF-κB activation, enhancing T cell survival and proliferation168.  Ligation of OX40 with OX40L 

has been shown to reduce Foxp3 upregulation to block Treg differentiation and inhibit 

production of IL-10169, 170.  An interesting, but untested, possibility is that expression of OX40 on 

a subset of cord blood CD4+ Tregs may be a mechanism to limit Treg differentiation in neonates. 

CD31, or platelet endothelial cell adhesion molecule-1, is a transmembrane receptor 

expressed on a variety of immune cells, endothelial cells, and platelets171.  While the precise role 

of CD31 in Treg function has not been elucidated, some studies link CD31 expression to 

reduction in T cell activation and proliferation and others demonstrate a loss of Treg-mediated 

suppression following loss of CD31 in vivo 172, 173.  In addition, CD31 signaling is suggested to 

limit clonal expansion by negatively regulating proliferation and inhibiting apoptosis171.  

Expression of CD31 by cord blood Tregs, but not adult tTregs suggests that cord blood Tregs 

may be responsive to signaling which adult Tregs are not.  However, the function of CD31 in 

neonatal immune homeostasis and Treg function remains unresolved.   

Cytokine profile. 

Cord blood Tregs exhibit potent suppressive activity in vitro but also produce 

inflammatory cytokines known to activate innate immune responses.  Granulocyte macrophage 

colony-stimulating factor (GM-CSF) activates monocytes/macrophages and induces 

differentiation to modulate immune responses in peripheral tissues174.  Importantly, GM-CSF 

induces monocytes to differentiate into inflammatory M1 macrophages rather than anti-

inflammatory M2 macrophages175.  GM-CSF is produced by a variety of immune cells including 

B and T cells, macrophages, neutrophils, and eosinophils176.  Production of GM-CSF by T cells 
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is associated with pathology in several human diseases and their mouse models.  In MS and the 

mouse model experimental autoimmune encephalomyelitis (EAE) CD4+ T cells drive 

inflammation and tissue destruction, and specifically Th17 cells have been tied to pathology of 

neuroinflammation176.  However, studies in mice demonstrate IL-17 is not required for 

development of EAE, but rather GM-CSF inhibition ameliorates progression of disease177.  In 

addition, production of GM-CSF by pathogenic T cells is associated with Th1 inflammation in 

rheumatoid arthritis and Th2-mediated allergic lung disease176.  Therefore, GM-CSF not only 

regulates immune homeostasis, but also exacerbates inflammation.  GM-CSF production by T 

cells in cord blood may be important to differentiation of myeloid cells in responses to infection, 

although this possibility has not been tested.  Expression of GM-CSF by Tregs suggests a 

multifunctional role for these cells, possibly negatively regulating adaptive immune responses 

while simultaneously driving innate immune responses and inflammation.  Future work will test 

the ability of cord blood Tregs to induce M1 macrophage differentiation from monocytes.  

Furthermore, previous work demonstrates the requirement for monocytes in the differentiation of 

Tregs in cord blood (Lee et al., manuscript in preparation).  Therefore, GM-CSF may induce 

differentiation of monocytes and reduce Treg differentiation in favor of effector T cell generation 

in a negative feedback loop to control Treg homeostasis in neonates. 

IL-8 also mediates innate immunity, resulting in recruitment and activation of neutrophils 

during immune responses178.  Neutrophils serve as the first line of defense against many 

pathogens, making IL-8 expression an essential aspect of initiation of immune responses during 

infection179.  In newborns, T cells readily produce IL-8 upon antigen encounter and infection, 

however production of IL-8 by T cells is rare in adults105.  Infants do not readily mount Th1 
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immune responses, so IL-8 production may be a compensatory mechanism to recruit neutrophils 

during bacterial infections.  IL-8 production by Tregs has been identified in humans, and is 

hypothesized to modulate the recruitment of immune cells to inflamed tissues180.  Together, these 

data suggest IL-8 production by Tregs may be important for effective defense against bacterial 

infections in early life, recruiting neutrophils to peripheral tissues and activating innate 

immunity.   

Interferon gamma (IFN-γ) is produced by activated T helper and CD8+ cytotoxic T cells 

in response to viral and bacterial infections181.  Along with TNF, IFN-γ is considered a 

prototypic Th1 cytokine and contributes to pathogen recognition while initiating antiviral 

responses by inhibiting cell proliferation and inducing apoptosis181.  Regulatory T cells are 

generally considered unable to produce IFN-γ, however recently a subset of Th1-like Tregs have 

been described by expression of IFN-γ during ex vivo stimulation57.  We observe IFN-γ 

expression by CD8+Foxp3+ Tregs from cord blood, suggesting these cells mediate immune 

homeostasis in response to intracellular pathogens.  Viral infections are particularly dangerous 

during fetal development and in early life, with recent cases of Zika virus infections 

demonstrating a paucity of antiviral immune responses in the fetus182.  An interesting, but 

untested possibility is that CD8+ Tregs suppress adaptive immune responses to prevent damaging 

inflammation while modulating antiviral immunity by secreting IFN-γ during infection.   

Both cord blood and adult Tregs robustly express TNF in response to stimulation.  The 

pro-inflammatory effects of TNF are well-described, however recent studies provide clear 

evidence of anti-inflammatory roles for this pleiotropic cytokine.  In mice, TNF is important to 

development of inflammatory bowel disease.  Paradoxically, however, TNF gene knockout 
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results in more severe intestinal inflammation rather than reducing pathology.  Similarly, in 

humans inhibition of TNF in RA and Crohn’s disease patients results in onset of autoimmune 

inflammation in some cases124.  These results suggest an important role for TNF in immune 

homeostasis that remains poorly understood.  Expression of TNF by Tregs from both cord blood 

and adult peripheral blood raises the possibility of an important function for TNF in Treg 

homeostasis.   

Together, these results suggest a multifunctional role for Tregs in fetal and neonatal 

immunity.  Expression of cytokines known to recruit and activate innate immune cells to sites of 

inflammation, along with distinct chemokine receptor expression may allow Tregs to migrate to 

peripheral tissues to control immune responses to pathogens.  Tregs may be important to control 

adaptive immune responses during development while simultaneously protecting the newborn 

from infection by recruiting and activating macrophages and neutrophils.   
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CHAPTER FIVE 

FUNCTION OF TUMOR NECROSIS FACTOR SIGNALING IN TREGS 

Introduction 

The observation of robust TNF expression by both cord blood and adult Tregs suggests 

an important function for this cytokine.  Recent reports disagree about the role of TNF-α 

signaling on Tregs; some reports suggest that TNF-α selectively activates and expands Tregs via 

tumor necrosis factor receptor 2 (TNFR2) while others indicate that TNF-α inhibits the 

suppressive function of human Tregs127, 130.  Furthermore, inhibition of TNF results in the onset 

or exacerbation of autoimmunity in some patients124.  However, expression of TNF by human 

Tregs has not been reported.  For these reasons we decided to investigate the function of TNF 

produced by Tregs. 

Effect of TNF on Treg Differentiation 

 TNF is reported to inhibit phosphorylation of Foxp3, therefore reducing suppressive 

function of Tregs in rheumatoid arthritis (RA)127.  However, other reports demonstrate a 

requirement for TNF signaling via TNFR2 on Tregs for maintenance of highly suppressive Tregs 

during inflammation134.  TNFR2+ Tregs reportedly upregulate Foxp3 and proliferate in response 

to TNF, suggesting a role of TNF in activation and expansion of Foxp3+ Tregs135.  Furthermore, 

interaction of transmembrane TNF (mTNF) with TNFR2 has been shown to block differentiation 

of Th17 cells in favor of Treg differentiation131.  To test the impact of TNF on  
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Figure 7.  Effect of TNF inhibition on cord blood Treg generation.  Cord blood Tregs were 
induced as previously described in the presence of anti-TNF, isotype control, or left untreated.  
At day 14, Treg phenotype was assess by flow cytometry.  Representative data from 4 
experiments.   
 

differentiation of Tregs, we used a neutralizing antibody against TNF to block TNF signaling 

during differentiation of cord blood Tregs, expecting to see a reduction of Foxp3+CD25+ Tregs in 

cultures treated with anti-TNF if TNF is important to Treg generation.  However, we observed 

no difference in differentiation of CD4+ or CD8+ Tregs from cord blood treated with anti-TNF, 

and isotype control antibody (mIgG1), or those left untreated (Fig. 7).  Although only one 

concentration of anti-CD3 is shown above, concentrations as high as 25 µg/ml and as low as 40 

ng/ml also had no effect on frequency of Tregs generated in vitro.  Specifically, no change in 
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total Foxp3 frequency was observed in CD4+ or CD8+ Tregs between conditions.  Furthermore, 

no change in Foxp3+CD25+ phenotype was observed.  These results suggest TNF does not affect 

cord blood Treg differentiation during induction in vitro.   

Effect of TNF on Suppressive Activity of Tregs 

 TNF signaling has been linked to alterations in suppressive activity of Tregs, however 

discordant results prompted us to investigate the impact of TNF inhibition on in vitro suppressive 

activity of human Tregs127, 129.  We tested the effect of TNF neutralization on suppression of 

naïve T cell proliferation using a standard suppression assay.  Induced Tregs from cord blood or 

adult Tregs isolated from adult peripheral blood were mixed (1:1) with naïve T cells (adult 

CD3+CD45RA+ FACS sorted after collection from peripheral blood) labeled with CFSE to track 

cell division.  Cells were stimulated by anti-CD3 antibody and APCs (CD3- FACS sorted after 

isolation from peripheral blood), and after 5 days proliferation of naïve T cells was determined 

by flow cytometric analysis of CFSE dilution.  Naïve T cells and APCs were isolated from the 

same donor as Tregs in experiments with adult Tregs.  To discern between Tregs and naïve T 

cells, Tregs were labeled with Cell Trace Violet (CTV) and removed from analysis by gating out 

CTV+ cells.  As a control for viability of naïve T cells, naïve T cells were stimulated with anti-

CD3 and APCs in the absence of Tregs.  Both cord blood derived Tregs and adult peripheral 

blood Tregs potently suppressed proliferation of naïve T cells, however no difference was 

observed between cells treated with anti-TNF antibody and those treated with the isotype control 

(Fig. 8).  Neither cord blood nor adult Tregs exhibited a decrease in suppressive activity when 

TNF was inhibited, however a slight increase in suppression was observed.  This small increase 

in suppression may be due to reverse signaling of mTNF when bound to anti-TNF, thus 
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activating Tregs and mildly increasing suppression.  Together these results suggest that in vitro 

suppression of naïve T cell proliferation is not decreased by TNF inhibition.   

 

Figure 8.  Effect of TNF inhibition on suppressive activity of cord blood and adult Tregs.  
Whole cord blood derived Tregs or adult Tregs isolated from peripheral blood were tested for 
suppressive activity in the presence or absence of anti-TNF antibody.  CFSE dilution in labeled 
naïve T cells was determined by flow cytometry after 5 days.   
 

Adult Foxp3+ Tregs Express Membrane TNF 

 TNF is expressed as a type II transmembrane protein and must be cleaved by TACE to 

produce the soluble form113.  Both membrane and soluble forms of TNF are active and can signal 

via TNF receptors, however each form exhibits specific activity.  Soluble TNF signals more 

readily via TNFR1, while mTNF has a greater affinity for TNFR2117.  TNFR1 contains an 

intracellular death domain and signals for cell cycle arrest and apoptosis, while TNFR2 lacks a 

death domain and activates NF-κB to promote growth and proliferation116.  Due to the different 

effects mediated by the two different forms of TNF, we investigated which cells in adult 

peripheral blood express mTNF.   
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 Total adult PBMCs were collected and stimulated in vitro with PMA and ionomycin.  

Expression of mTNF was detected by surface staining followed by analysis by flow cytometry.  

We found that expression of mTNF was limited to CD4+CD25+ cells (Fig. 9A).  In contrast, 

CD4+CD25- cells did not express mTNF.  Human T cells transiently express CD25 when 

activated, but Tregs constitutively express high amounts of CD2536.  To test whether Tregs 

express mTNF, Tregs were isolated from PBMCs by magnetic sorting and stimulated.  

Expression of mTNF on conventional T cells was compared by magnetic sorting for CD4+CD25- 

cells followed by stimulation.  To ensure mTNF expression by Foxp3+ cells, both enriched 

populations were stained for TNF along with co-staining for CD4, CD25, and Foxp3 and 

analyzed by flow cytometry.  We found that mTNF expression was indeed limited to a group of 

CD4+CD25+Foxp3+ cells, and found no mTNF expression on stimulated CD4+CD25-Foxp3- cells 

(Fig. 9B).  Although expression was low, greater than 50% of Foxp3+ T cells express detectable 

mTNF. These results demonstrate mTNF is preferentially expressed by Tregs in comparison to 

conventional T cells.   

 TNF is traditionally considered a Th1 cytokine, so as a control we assessed production of 

the signature Th1 cytokine IFN-γ by Tregs.  Total expression of TNF and IFN-γ were assessed 

by intracellular staining with Foxp3 costaining.  We found that Foxp3+ Tregs expressed TNF 

when stimulated but did not express any IFN-γ (Fig. 9C).  We also compared expression of TNF 

and IFN-γ between Foxp3+ Tregs and conventional T cells.  Total CD4+CD25-Foxp3- T cells 

expressed IFN-γ and TNF, however Foxp3+ T cells did not express IFN-γ (Fig. 9D).   
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Figure 9.  Expression of TNF by human Foxp3+ Tregs 
Adult peripheral blood T cells were stimulated by PMA plus ionomycin for 4 hrs in the presence 
of monensin (details described in methods).  The expression of cytokines was determined by 
intracellular staining or surface staining and analysis by flow cytometry. (A) Expression of the 
membrane form of TNF (mTNF) by CD4+CD25+ (right) and CD4+CD25- T cells (left).  
Representative data from 4 donors. Dashed lines indicate unstimulated samples and solid lines 
indicate stimulated samples (B) Expression of mTNF by CD4+CD25+Foxp3+ Tregs (left) or by 
CD4+CD25-Foxp3- conventional T cells (right).  A representative data set from three donors. (C) 
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Expression of total TNF (upper panels) and IFN-y (lower panels) by unstimulated (left panels) or 
stimulated (right panels) Foxp3+ Tregs by intracellular staining.  A representative data set from 
three samples.   (D) Frequencies of TNF (left) or IFN-y(right) expressing cells among 
CD4+CD25+Foxp3+ (Foxp3+) cells and CD4+CD25-Foxp3- (Foxp3-) cells.  TNF (n=6), IFN-y 
(n=3).  * p<0.05 (student t test). (E) Expression of TNFR1 and TNFR2 on human Tregs by flow 
cytometry.  (F) Expression of mTNF (n=3) and total (intracellular) TNF (n=5) by mouse CD4+ 
T cells.  Representative data sets from 2 experiments. Foxp3+ Tregs (left) were gated first on live 
CD4+CD25+ cells, while Foxp3- T cells (right) were gated first on live CD4+CD25- cells.  
Dashed lines indicate unstimulated samples and solid lines represent stimulated samples. 

 

The anti-inflammatory effect of TNF has been described in mice as well as humans, so 

we investigated whether TNF is expressed on mouse Tregs126.  We isolated total splenic CD4+ T 

cells from C57BL/6 mice and stimulated as previously described.  Total TNF expression was 

assessed by intracellular staining after stimulation in the presence of monensin while mTNF 

expression was assessed by surface staining after stimulation without monensin.  We found 

similar expression of total TNF by Foxp3+ and Foxp3- T cells, however Foxp3+ T cells expressed 

a greater amount of mTNF (Fig. 9F).  Some Foxp3- T cells expressed detectable mTNF as well, 

however expression was lower than in Foxp3+ cells.  These data demonstrate that Foxp3+ Tregs 

preferentially express the membrane form of TNF in both mice and humans, suggesting that anti-

inflammatory roles for TNF described in mouse and man may be related to mTNF expression by 

Tregs. 

 Membrane TNF signals preferentially through TNFR2 and promotes survival and growth 

rather than death.  To investigate the possible outcomes of TNF signaling by Tregs, we assessed 

the expression of TNF receptors by adult peripheral blood Tregs.  In agreement with literature, 

we found that Foxp3+ T cells express TNFR2 but not TNFR1 (Fig. 9E).  These data suggest that 

mTNF may signal Tregs for survival and proliferation via TNFR2 in an autocrine manner.    
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Function of Treg-derived TNF 

To test the hypothesis that mTNF signals Tregs for survival and proliferation in an 

autocrine manner, we developed an assay to test survival of adult Tregs in response to TNF 

inhibition.  Tregs were isolated from peripheral blood, labeled with CFSE and stimulated ex vivo 

with plate-bound anti-CD3 and soluble CD28 in the presence of anti-TNF neutralizing antibody 

or isotype control.  Importantly, IL-2 is considered a powerful growth factor for Tregs and is 

required for their survival in vitro 20.  Therefore, to test the impact of TNF on Treg survival 

independent of IL-2, we did not add exogenous IL-2.  Furthermore, we added a neutralizing 

antibody against IL-2 to block any endogenous IL-2 production.  As a control for cell viability 

we included Tregs stimulated in the presence of IL-2.  After 5 days, survival was assessed by 

counting live cells.  In the presence of TNF inhibition, survival was significantly reduced 

compared to untreated cells (Fig. 10).  Furthermore, increasing concentration of anti-TNF 

reduced survival of Tregs.  Specifically, 5 µg/ml and 25 µg/ml anti-TNF significantly reduced 

survival in comparison to untreated control in a concentration-dependent manner.  While reduced 

survival of Tregs treated with 1 µg/ml anti-TNF did not achieve significance, 2 donors exhibited 

a reduction in survival, suggesting that this concentration is the threshold for effect in this assay.  

Importantly, the isotype control did not affect cell survival in comparison to untreated cells.   

To confirm the role of cell proliferation and apoptosis in overall cell number after 5 days 

of stimulation, we analyzed CFSE dilution by flow cytometry and stained with annexin V to 

detect phosphatidyl inositol, a marker of apoptosis when exposed on outer leaflet of cell 

membranes.  In the untreated and isotype controls, annexin V staining was positive in a small 

fraction of cells (~20%), indicating few cells undergoing apoptosis (Fig. 11, upper panel).  
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However, addition of 1 µg/ml anti-TNF increased annexin V+ cells (~50%) and higher 

concentrations resulted in the majority of cells exhibiting an apoptotic phenotype (~80%).  Cells 

treated with IL-2 did not bind annexin V and increased in size (data not shown).  These data 

demonstrate that inhibition of TNF increases apoptosis, suggesting a role for TNF in survival of 

Tregs in the absence of IL-2.   

 To test the role of TNF in Treg proliferation in vitro, CFSE dilution was measured by 

flow cytometry (Fig. 11, lower panel).  About half of all untreated and isotype control-treated 

cells proliferated in response to stimulation (~50%) as indicated by dilution of CFSE.  In 

contrast, fewer cells proliferated in anti-TNF-treated conditions, with almost total abrogation of 

cell division in the highest concentration of anti-TNF (~7% cells divided).  Together, these data 

demonstrate that Tregs fail to proliferate and undergo apoptosis during ex vivo stimulation in the 

presence of TNF inhibition. 
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Figure 10. Treg survival in response to TNF inhibition.  Tregs isolated from peripheral blood 
were stimulated by plate-bound anti-CD3 and soluble anti-CD28 in the presence of anti-TNF for 
isotype control antibody for 5 days.  Cell survival was calculated by comparing cell number of 
treated samples to untreated control.  Statistical analysis by paired T-test (*p<0.05, ***p<0.001) 
with bars representing mean and standard deviation.   
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Figure 11. Effect of TNF neutralization on apoptosis and cell proliferation.  Tregs were 
labeled with CFSE (bottom) prior to stimulation to track proliferation.  After 5 days culture with 
anti-TNF, cells were stained with Annexin V (top) to detect apoptotic cells.  Data representative 
of 3 independent experiments with 5 donors total. 
 

Discussion 

 TNF drives inflammation but also contributes to anti-inflammatory immune responses.  

Studies in humans and mice demonstrate TNF mediates autoimmune inflammation, but 

inhibition of TNF also results in onset or exacerbation of autoimmunity124.  Multiple cells types 

can produce TNF and the pleiotropic effects of this cytokine are dependent upon the type of cell 

and receptor engaged.  Discordant studies of TNF function on immune homeostasis, along with 

the identification of TNF expression by cord blood and adult Tregs prompted us to investigate 

the function of Treg-derived TNF. 

 Several studies implicate TNF signaling in the differentiation of Tregs, however we did 

not observe any effect of TNF inhibition during cord blood Treg induction.  The conditions used 

for ex vivo Treg induction in our lab may override any impact of TNF on Foxp3 expression.  We 

provide exogenous IL-2 to drive Treg differentiation, raising the possibility that IL-2 potently 



52 
 

  

induces Tregs and negates any effect of TNF signaling.  Furthermore, TNFR2 signaling is 

implicated in expansion of Foxp3+ cells, and Tregs induced from cord blood do not express 

TNFR2 (data not shown).  Therefore, expression of TNFR2 may be important to mouse and 

adult human Treg generation.  However, we have not directly tested this possibility.  

Contradictory studies also report the effects of TNF on suppressive activity of Tregs, however 

we did not observe any effect on suppression of naïve T cell proliferation when TNF was 

blocked in vitro 127, 129.   

 Our data demonstrate that Tregs express the membrane form of TNF, which is reported to 

selectively signal via TNFR2 and results in growth and survival rather than apoptosis116.  To test 

the possibility that mTNF promotes survival and proliferation by autocrine signaling, we purified 

Tregs from adult peripheral blood and stimulated them in the absence of IL-2 but in the presence 

or absence of TNF inhibition.  Strikingly, we found that TNF inhibition reduces survival of 

Tregs in the absence of IL-2 in vitro and demonstrated an increase in apoptotic phenotype along 

with abrogation of proliferation.  These results support the hypothesis that mTNF provides 

autocrine signals to Tregs to promote survival.  However, the impact of TNFR2 in this 

phenomenon is correlative.  Lack of commercially-available blocking antibodies against TNFR2 

necessitate the use of genetic approaches to determine the role of TNFR2 in pro-survival mTNF 

signaling.  In the future, we aim to knock out or knock down TNFR2 in primary human Tregs in 

order to test the involvement of this receptor.  In addition, the expression of TNFR2 and mTNF 

by mice provides a possible in vivo model system to test TNF signaling in Tregs.  While TNFR2 

and TNF knockouts exist in mice, the pleiotropic nature of this cytokine necessitates a Treg-
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specific knockout.  Future work will aim to knock out TNF or TNFR2 in Foxp3+ T cells in mice 

to assess the importance of Treg-derived TNF signaling in vivo.  

 The presence of the membrane form of TNF on adult Tregs suggests decreased shedding 

of soluble TNF, which may account for the differences in the form of TNF expressed by Tregs in 

comparison to conventional T cells.  The membrane form of TNF must be cleaved by the 

metalloprotease TNF alpha converting enzyme (TACE) in order to produce the soluble form115.  

Therefore, decreased TACE activity may account for the increased expression of mTNF on 

Tregs.  TACE forms dimers in cell membranes under resting conditions and is inhibited by the 

tissue inhibitor of metalloproteinase 3 (TIMP-3) by direct association with the cytoplasmic 

domain of TACE183.  Activation of ERK or the p38 MAP kinase pathway results in a shift from 

TACE dimers to monomers, relieving inhibition by TIMP-3 and resulting in activation of 

TACE183.  Tregs exhibit decreased ERK activation after TCR signaling and therefore may 

exhibit decreased active TACE and increased TACE dimers associated with TIMP-3184.  

Decreased active TACE may account for the increase in the membrane form of TNF, as active 

TACE is required to cleave TNF to the soluble form.  Inhibition of TACE may prove effective in 

controlling inflammation by reducing shedding of soluble TNF.  Specifically, modulation of 

TIMP-3 activity in macrophages or T cells may be an alternative to TNF inhibition in the 

treatment of inflammatory diseases.  Future work will aim to modulate shedding of TNF by T 

cells through modulation of TACE activation. 
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CHAPTER SIX 

 
 GENERAL DISCUSSION  

 Our data demonstrate that antigen receptor stimulation of cord blood T cells results in 

differentiation of Tregs with distinct phenotype.  Cord blood-derived Tregs express a pattern of 

chemokine receptors and surface antigens that is distinct from adult peripheral blood Tregs.  

Furthermore, production of pro-inflammatory cytokines demonstrates functional differences 

between cord blood-derived Tregs and adult tTregs.  These data suggest unique roles for fetal 

and neonatal Tregs in contrast to adult.  Fetal and neonatal immune responses are initiated and 

regulated much differently than in adults, raising the possibility that Tregs regulate both 

tolerance and inflammation during development and early life and represent an adaptation to the 

challenges faced by newborns185. 

 Distinct chemokine receptor expression by cord blood Tregs suggests that they migrate 

differently in response to chemokines.  While adult Tregs express high levels of CCR4 and 

CCR6 and low levels of CCR7 and CXCR3, we observe the opposite in cord blood-derived 

Tregs.  In contrast, we observed low CCR4 and CCR6 expression and elevated CCR7 and 

CXCR3.  These data suggest that cord blood Tregs preferentially traffic to sites of Th1 

inflammation and secondary lymphoid tissues rather than taking up residence in skin or other 

epithelial tissues186.  Furthermore, cord blood-derived Tregs express a profile of surface antigens 

that contrasts with adult Tregs.  Expression of surface receptors which modulate T cell activation 

and tolerance provide further evidence for multifunctionality of cord blood Tregs.  In particular, 
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CD26 expression distinguishes cord blood from adult Tregs.  While this enzyme facilitates a 

wide variety of functions, genetic deficiency of one substrate, adenosine deaminase, results in 

severe combined immune deficiency (SCID) and death159.  Therefore, CD26 function on Tregs 

may be crucial to maintenance of immune homeostasis in neonates but not adults.  Future work 

will seek to determine the role of CD26 activity in neonatal and fetal immune homeostasis. 

 Despite stable expression of Foxp3 and potent suppressive activity, cord blood Tregs 

express multiple pro-inflammatory cytokines.  Strikingly, we observe production of IL-8 and 

GM-CSF in response to stimulation.  IL-8 potently recruits and activates neutrophils to sites of 

infection and GM-CSF induces activation and differentiation of monocytes and macrophages174, 

178.  IL-8 is considered a prototypic cytokine during infection in neonates, raising the possibility 

that cord blood Tregs initiate immune responses in peripheral tissues by recruiting neutrophils to 

the site of infection105.  GM-CSF production by Th17 cells is linked to neuroinflammation in 

MS, however we do not observe IL-17 expression in cord blood Tregs177.  Instead, we observe a 

group of Foxp3+ cells that express IL-8 and GM-CSF, along with TNF.  These data provide 

evidence that cord blood Tregs may be able to activate innate immune responses while 

suppressing adaptive immunity. 

 The tolerogenic immune status of infants in dependent upon multiple mechanisms, and 

not solely due to Treg-mediated suppression.  Th1 responses are harmful to placental 

development, and during fetal and neonatal life a bias exists toward Th2 immunity rather than 

Th1185.  While the precise mechanisms of this phenomenon remain poorly understood, we 

demonstrate that the Th1-polarizing cytokine IL-12 reduces proliferation in response to antigen 

stimulation, ultimately resulting in cell death.  This response may be a means to control 
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expansion of Th1 cells and prevent complications during pregnancy, however this hypothesis has 

not been tested. In addition, we observe expression of TIM-3 on Tregs, a receptor linked to 

inhibition of Th1 immune responses in mice162.  These data suggest a role for cord blood Tregs 

in maintenance of tolerance via inhibition of Th1 T cell immunity. Furthermore, the induction of 

highly inflammatory Th17 cells is reported to develop months after birth139.  In agreement, we 

observe no difference in Treg generation in Th17-polarizing conditions in vitro, along with a 

lack of Th17 generation.  The differences in T cell differentiation in cord blood suggest markedly 

different adaptive immune responses during pregnancy and early life compared with adult 

immunity.   

   Suppression of T cell proliferation by cord blood Tregs is comparable to adult Tregs, 

however unlike tTregs, cord blood-derived Tregs express pro-inflammatory cytokines known to 

potently activate innate immunity.  Furthermore, chemokine receptor expression suggest cord 

blood-derived Tregs migrate to peripheral tissues and lymph nodes to control Th1 inflammation. 

Together, these results demonstrate the possibility that multifunctional Tregs from cord blood 

suppress adaptive immune responses while regulating innate immunity in peripheral tissues. 

 Surprisingly, both cord blood and adult Tregs express TNF when stimulated.  The pro-

inflammatory functions of TNF are well described, however recently the anti-inflammatory 

functions of this pleiotropic cytokine are beginning to be elucidated.  Inhibition of TNF is 

effective in reducing inflammation in patients with RA and Crohn’s disease, however some 

patients display onset or exacerbation of autoimmune inflammation after treatment124.  TNF is 

also reported to impact suppressive activity of Tregs and induce proliferation of Tregs via 

TNFR2127, 134.  We did not observe any impact of TNF inhibition on suppressive activity or 
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differentiation of Tregs.  However, in the absence of IL-2, inhibition of TNF reduced survival of 

Tregs and reduced proliferation.  Furthermore, increasing concentration of anti-TNF antibody 

upregulated apoptosis as indicated by increased phosphatidylserine on the outer leaflet of cell 

membranes.  We demonstrate that a similar frequency of Tregs and conventional T cells express 

TNF, however Foxp3+ T cells preferentially express the membrane form of TNF.  TNF is 

reported to promote Treg expansion and survival via TNFR2, indicating that autocrine TNF 

signaling may be blocked during inhibition of TNF134.  Our data support the hypothesis that 

Tregs require TNF signaling for survival in the absence of IL-2.  In peripheral tissues, where IL-

2 concentrations are low, Tregs may depend on autocrine TNF to maintain stability and survival.  

Therefore, inhibition of TNF in patients may result in inadvertent reduction in Treg frequency in 

peripheral tissues.  Subsequently, lymphocyte infiltration and proliferation may drive 

inflammation observed in some patients due to a paucity of Tregs.  In the future, we aim to 

investigate the impact of TNF inhibition on Treg homeostasis in the periphery.  Furthermore, 

modulation of TACE activity may be efficacious in controlling inflammation as an alternative to 

TNF inhibition.  Future work will investigate the effect of TACE activity modulation in 

inflammation. 
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