
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Master's Theses Theses and Dissertations 

2018 

Characterizing the Requirement of the Cmi/Trr COMPASS-Like Characterizing the Requirement of the Cmi/Trr COMPASS-Like 

Complex During Drosophila Development Complex During Drosophila Development 

Timothy Nickels 
Loyola University Chicago 

Follow this and additional works at: https://ecommons.luc.edu/luc_theses 

 Part of the Molecular Biology Commons 

Recommended Citation Recommended Citation 
Nickels, Timothy, "Characterizing the Requirement of the Cmi/Trr COMPASS-Like Complex During 
Drosophila Development" (2018). Master's Theses. 3697. 
https://ecommons.luc.edu/luc_theses/3697 

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It 
has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more 
information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 2018 Timothy Nickels 

https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_theses
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_theses?utm_source=ecommons.luc.edu%2Fluc_theses%2F3697&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=ecommons.luc.edu%2Fluc_theses%2F3697&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_theses/3697?utm_source=ecommons.luc.edu%2Fluc_theses%2F3697&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


 
  

 

 

LOYOLA UNIVERSITY CHICAGO 

 

CHARACTERIZING THE REQUIREMENT OF THE CMI/TRR COMPASS-LIKE 

COMPLEX DURING DROSOPHILA DEVELOPMENT 

 

A THESIS SUBMITTED TO  

THE FACULTY OF THE GRADUATE SCHOOL  

IN CANDIDACY FOR THE DEGREE OF  

MASTER OF SCIENCE 

 

PROGRAM IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 

 

BY 

TIMOTHY J. NICKELS 

CHICAGO, IL 

AUGUST 2018



 
  

  

 

ACKNOWLEDGEMENTS 

 My mentor Andrew Dingwall, Ph.D. has been instrumental in my success in this 

program.  He has kindled my passion for scientific research through expert knowledge, patient 

guidance, and contagious excitement.  He also challenged me to think critically and understand 

the implications of my research and how it relates to and expands upon current knowledge.  I 

owe the continuation of my scientific career to him and I hope to mentor and inspire students as 

well as he does.   

 My committee members Dr. Manuel Diaz, M.D. and Dr. Nancy Zeleznik-le, Ph.D. have 

also played a large role in my education.  They offered valuable insights and suggestions to my 

project and taught me about new techniques and biological processes that strengthened my 

understanding of the field.  They also encouraged and assisted with my decision to pursue a 

Ph.D.  I would also like to thank the members of my lab Claudia Zraly, Ph.D. and David Ford for 

teaching me the techniques and skills required to complete my project as well as offering their 

expertise and advice to the gathering and interpretation of my data.  Without them, I would not 

have been able to generate the amount or quality of data necessary for this thesis.   

 I would like to acknowledge the Loyola University Chicago Biochemistry and Molecular 

Biology program for organizing challenging coursework, opportunities to present my research 

both locally and at a national conference, and scheduling a diverse group of guest speakers.  

Finally, I would like to thank my family and friends for supporting and believing in me.  I would 

not be where I am today without them.    

ii 



 
  

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS                                                                                                             ii 
 
LIST OF TABLES                                                                                                                          iv 
 
LIST OF FIGURES                                                                                                                         v 
 
ABSTRACT                                                                                                                                   vi 
 
CHAPTER 1: LITERATURE REVIEW                                                                                         1 
   MLR Complexes                                                                                                                            1 
   MLR Complex Functional Domains                                                                                              3 
   Requirement of MLR Complex During Development                                                            4 
   Drosophila Oogenesis and Early Embryogenesis                                                                                     6                                                             
 
CHAPTER 2: METHODS                                                                                                               8 
   Generation of Germline Clones                                                                                                     8 
   Immunostaining of Ovary Tissue                                                                                                   9 
   Egg Laying and Hatching Assay                                                                                                    9 
   Immunostaining of Embryos                                                                                                          10 
   Cuticle Analysis                                                                                                                           11 
   qRT-PCR                                                                                                                                     11 
   Image Processing                                                                                                                         12 
   Statistics                                                                                                                                       12 
 
CHAPTER 3: RESULTS                                                                                                               13 
   Aim 1: Characterize the Requirement of Cmi in the Germline                                                   13 
      Cmi is Required for Oogenesis                                                                                                  13 
      Cmi Knockdown in Germline Cells Leads to Oogenesis Defects                                             16 
   Aim 2: Characterize the Requirement of Cmi in Embryogenesis                                                22 
      Cmi Knockdown in the Early Embryo Leads to Arrested Development                                   22 
      Paternal Contribution of Cmi Null Allele Worsens Phenotype of Cmi Depleted Embryos      30 
 
CHAPTER 4: DISCUSSION                                                                                                          31 
 
REFERENCE LIST                                                                                                                              37 
 
VITA                                                                                                                                               42 

  

 

iii 



 
  

 

 

LIST OF TABLES 

Table 1. Germline Clone Egg Laying Analysis                                                                                     16 

Table 2. List of Gal4 Drivers Used in Knockdown                                                                          18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
iv 



 
  

 

 

LIST OF FIGURES 

Figure 1. MLR Complexes Activate Enhancers                                                                                         2 

Figure 2. Generation of Germline Clones                                                                                            14 

Figure 3. Germline Clone Phenotypes                                                                                                     15 

Figure 4. Cmi Localizes in the Developing Oocyte                                                                               17 

Figure 5. Using the Gal4 System to Express shRNA Inverted Repeats                                         18 

Figure 6. Knockdown of Cmi and Trr in Germline and Somatic Cells Within the Adult Ovary   20 

Figure 7. Effects of Cmi or Trr Knockdown on Ovary Function                                                    25 

Figure 8. Cmi or Trr Knockdown Effects on Embryo Development                                             26 

Figure 9. Cmi Expression During Embryo Development                                                                27 

Figure 10. Cmi or Trr Knockdown in the Early Embryo                                                               28 

Figure 11. Zygotic Rescue of Cmi                                                                                                  30 

 

 

 

 

 
v 



 
  

 

 

ABSTRACT 

The MLR family of COMPASS-like complexes are histone methyltransferase complexes 

that are associated with the activation of gene enhancers.  In D. melanogaster, Cara mitad (Cmi, 

also known as Lpt) and Trithorax related (Trr) are central subunits of a complex orthologous to 

mammalian Lysine methyltransferase 2 C and D (KMT2C and KMT2D, also known as MLL3 

and MLL2/4) that catalyze H3K4 monomethylation.  Previous studies have demonstrated that 

mutations in these genes are associated with cancer and developmental disorders, but the 

mechanisms by which these alterations contribute to disease states are unknown. The Cmi-

containing COMPASS-like complex and orthologous vertebrate complexes have been identified 

as necessary co-regulators of multiple critical developmental signaling pathways, and knockout 

experiments have demonstrated that these complexes are necessary for development and 

viability.  My research shows that Cmi has a distinct expression pattern in developing tissues, 

and the knockdown abrogates normal developmental patterns in both the embryo and ovary.  

Ubiquitous shRNA mediated knockdown of Cmi in the embryo results in early embryonic 

lethality, and shRNA expressed in certain ovary tissues results in reduced egg-laying efficiency 

and incomplete ovary development.  By elucidating the embryogenesis stage at which the 

COMPASS-like complex performs its function as well as its requirement in the female germline, 

future experiments aimed at revealing gene targets can be narrowed to these key developmental 

periods. 

 

vi 



 
  

 

 

CHAPTER ONE 

LITERATURE REVIEW 

MLR Complexes 

COMPASS (Complex of proteins associated with Set1) -like complexes are epigenetic 

regulators that are associated with the activation of gene enhancers, and they are highly 

conserved from yeast to mammals (Shilatifard, 2012).  In Drosophila melanogaster, Cara mitad 

(Cmi, also known as Lpt) and Trithorax related (Trr) are gene products produced from separate 

loci that come together to form the enzymatic core of a complex that closely resembles the 

mammalian orthologs Lysine Methyltransferase 2 C and D (KMT2C and KMT2C) also known 

as Mixed Lineage Leukemia 3 (MLL3) and Mixed Lineage Leukemia 2/4 (MLL2/4) (Chauhan et 

al., 2012).  This family of complexes (hereafter referred to as MLR) recognize and bind histone 

tails within transcription enhancer regions and catalyze the addition of a single methyl group 

onto the fourth lysine of histone 3 (H3K4).  Cmi contains the plant homeodomain (PHD) fingers 

involved in histone interactions and Trr contains the Su(var)3-9, Enhancer-of-zeste and Trithorax 

(SET) domain which carries out the methyltransferase catalytic activity.  The separation of 

critical functions in histone regulation allows for the study of the requirement of the domains 

independently, which can provide valuable insights into possible different functions of Cmi and 

Trr.  Other elements of the complex have been implicated in recruitment, stability, and activity of 

the complex including a histone lysine demethylase Utx (Kdm6A) which catalyzes the removal 

of the transcription-repressing H3K27 trimethyl modification (Reviewed in Ford and Dingwall, 

2015).  MLR complexes have also been shown to recruit other proteins such as histone 
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acetyltransferases capable of adding the activating H3K27 acetyl modification (Wang et al. 

2017) and promote RNA polymerase II loading (Lee et al., 2013; Wang et al., 2016) (Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1. MLR Complexes Activate Enhancers.  (A) A schematic of relevant protein 
domains in Cmi and Trr which are transcribed from different loci but come together to form 
the enzymatic core of the MLR complex in Drosophila.  Cmi contains the histone reading and 
binding domains (red) and the high mobility group (HMG) nucleic acid binding domain 
(purple) while Trr contains the methyltransferase catalytic activity (blue) (adapted from 
Chauhan et al. 2012).  (B)  The MLR complex consisting of the Cmi/Trr enzymatic core as 
well as COMPASS-Like protein complex components is able to recognize and bind to the 
histone tails of inactive enhancers, catalyze the addition of the activating H3K4 monomethyl 
mark, and remove the inhibitory H3K27 trimethyl mark.  The complex is also able to recruit 
histone acetyl transferases (HAT) that can add an activating H3K27 acetyl mark (adapted 
from Heinz et al., 2015) 
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MLR Complex Functional Domains 

 The cores of the MLR complexes contain several protein domains that can account for 

their known activities.  The PHD clusters are made up of groups of zinc fingers that are capable 

of recognizing and binding to modified histone tails in nucleosomes.  The conserved PHD 

domains contained within COMPASS complex components KMT2A-D have been shown to be 

involved in domain contacts to facilitate interactions between distant portions of the proteins 

(e.g., KMT2A), contribute to heterotypic protein interactions with the cyclophilin proline 

isomerase CYP33 (KMT2A, 2C), contain E3 ubiquitin ligase activity (KMT2A, 2B), as well as 

recognize several histone modifications including H3K4me3, H3K4me0, H3K14ac, H3R2me2, 

and H3R2me0 (Ali et al., 2014).  Proteins that contain multiple clusters of PHD domains have 

been shown to have a more complex recognition pattern with varying binding affinities (Sanchez 

and Zhou, 2011).  Recent evidence suggests that the PHD domains are involved in the 

recruitment of other protein complexes, namely an H2A deubiquitinase BAP1 (Wang et al., 

2018).  The SET domain is responsible for the catalysis of methyl groups onto H3K4 (Qian and 

Zhou, 2006).  However, catalytically dead mutant KMT2C and KMT2D were still able to 

facilitate RNA polymerase II activity at enhancer regions indicating that MLR complexes may 

have separate mechanisms of enhancer activation (Dorighi et al., 2017).  MLR complexes also 

contain FY-rich domain N-terminal (FYRN) and FY-rich domain C-terminal (FYRC) motifs of 

unknown function that are found in some proteins involved in chromatin stability (García-Alai et 

al., 2010).  Proteins containing a high mobility group (HMG) box similar to the one found in 

MLR complexes are able to bind to DNA or RNA and have been implicated in a wide range of 

cellular processes including DNA bending in a sequence specific or non-specific way, 

recruitment of other proteins to DNA (transcription factors, DNA repair proteins, and silencing 

3 



 
  

complexes), and piwi-interacting RNA (piRNA) processing   (Malarkey and Churchill, 

2012; Štros et al., 2007; Genzor and Bortvin, 2015).  

Requirement of MLR Complex During Development 

Although the histone marks that are indicative of chromatin organization and 

transcriptional status have been extensively studied, much remains to be determined about the 

protein complexes that place or remove histone modifications.  While KMT2C/D likely act as 

co-regulators at a large number of transcriptional targets, evidence suggests they are critical for 

development and influence cell fate transition.  Because KMT2C/D are the enzymatic cores of 

histone modifying complexes, their reduction in a cell leads to a depletion of H3K4 

monomethylation—a mark of active enhancers—at enhancer sites (Hu et al., 2013).  However, 

recent evidence suggests that H3K4me1 is not required for MLR complexes to promote 

transcriptional activation indicating they have functions independent of their catalytic activity 

(Dorighi et al., 2017; Rickels et al., 2017).  MLR complexes are also developmentally essential 

which makes studying the effects of embryonic depletion difficult (Chauhan et al., 2012, Lee et 

al., 2013).  Embryonic development is a complex and highly-regulated process that involves 

activation and repression of many enhancers in a cell-type specific and temporal manner, and 

elucidating the functions and regulatory targets of MLR complexes during development is a 

daunting task.        

Studies performed in several organisms demonstrate the involvement of these complexes 

in developmental processes.  For example, Kleefstra and Kabuki syndromes are human 

developmental disorders characterized by maxillofacial and brain development defects that result 

from heterozygous inactivating germline mutations in KMT2C and KMT2D respectively 

(Kleefstra et al., 2012;  Hannibal et al., 2011).  A similar phenotype was observed in zebrafish 
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where knockdown of Kmt2D leads to defects in craniofacial structure and brain 

development (Van Laarhoven et al., 2015).  A possible mechanism that could explain these 

phenotypes is the inability of neuronal precursor cells to fully differentiate when KMT2D is 

knocked down (Dhar et al., 2012).  However, in these cases wild type protein is still made so the 

phenotypic effects of the absence of MLR complexes during development may be more severe. 

Although the role of the MLR complex in the germline has not been extensively studied, 

researching these proteins in stem cells has led to important insights into the possible 

mechanisms by which they act.  In C. elegans germline stem cells, components of the MLR 

complex wdr-5.1 and rbbp-5 are essential for proper cell development while other components of 

the complex that are required for embryogenesis were not essential in germline cells (Li and 

Kelly, 2011).  This discovery provides evidence that the MLR complex might have different 

functions during embryonic development and adult stem cell maintenance.  It has also been 

shown that Kmt2C is likely required for zygotic gene activation in the mouse paternal pronucleus 

(Aoshima et al., 2015) providing more evidence that this complex likely plays a role in the 

germline.  Currently, the role of MLR complexes in oocyte formation remains unknown.   

In planarians, knockdown of the MLR complex leads to defects in neoblast (adult stem 

cell) differentiation into several cell types; most notably neuronal and epithelial tissue 

(Mihaylova et al., 2017).  In human epithelial cell precursors, KMT2D knockdown leads to a 

disorganized epithelium and an inability to properly activate lineage-specific enhancers which 

mirrors the results seen in planarians (Lin-Shao et al., 2018).  Kmt2D is also required for mouse 

fibroblast reprogramming into a pluripotent state using the Yamanaka (Oct3/4, Sox2, Klf4, c-

Myc) transcription factors (Wang et al., 2016).  These studies demonstrate that the MLR 
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complexes play a key role in activating enhancers during cell lineage determination and 

stem cell activity and maintenance.   

Drosophila Oogenesis and Early Embryogenesis 

 Each female Drosophila has two ovaries containing approximately 15-20 ovarioles that 

can each function separately to give rise to a mature egg.  The germarium is a structure located at 

the anterior tip of each ovariole that houses the germline and somatic stem cells that give rise to 

the nurse cells, the oocyte, and the somatic follicle cells that surround the egg chamber.  

Oogenesis begins when a germline stem cell asymmetrically divides to self-renew and produce a 

daughter cell capable of mitosis with incomplete cytokinesis.  These daughter cells give rise to a 

16-cell cyst, one of which will become the oocyte while the others will become nurse cells.  The 

oocyte undergoes meiosis while the nurse cells become polyploid and pump mRNA and protein 

into the developing oocyte through ring canals.  The egg chambers bud off from the germarium 

and progress towards the posterior end of the ovary as they develop over 14 stages into a mature 

egg (Bastock and St Johnston et. al 2008).  

 The mature oocyte is fertilized as it exits the female oviduct and the two pronuclei fuse 

into a single zygote nucleus in the embryo.  This nucleus then divides eight times to rapidly 

produce 256 nuclei in about 64 minutes that all share a common cytoplasm.  Then, the nuclei 

move to the periphery as they continue to divide six more times at a slower rate.  In this stage, 

prior to cellularization, the embryo is referred to as a syncytial blastoderm.  At this moment, 

immediately prior to the 14th nuclear division, zygotic transcription begins in a process known as 

the maternal to zygotic transition.  Once all of the nuclei have migrated (about 2 hours after 

fertilization), the plasma membrane begins to surround each one to create a spherical group of 

individual cells creating the cellular blastoderm.  Each future cell division is now asynchronous 
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as the endoderm, mesoderm, and ectoderm begin to form and the embryo progresses 

through well-defined developmental stages (Gilbert and Singer 2000).  During this critical time 

of zygotic gene activation, enhancers are established de novo as changes in the epigenetic 

landscape lead to an increased number of nucleosome-free regions associated with sites that are 

bound by maternally deposited transcription factors (Li et al. 2014).  This suggests that maternal 

factors are essential for early enhancer activation and epigenetic modifying complexes may 

interact with transcription factors during de novo activation.         

Our lab has previously generated a null allele of the Drosophila cmi gene and 

demonstrated that cmi mutant homozygotes do not survive past the second instar larval stage 

(Chauhan et al., 2012).  However, it is known that maternal cmi mRNA and protein are provided 

to the developing oocyte and the transition to zygotic transcription does not occur until the 

embryonic blastoderm stage (about 2 hours after fertilization) so it is possible that the maternal 

contribution of Cmi to the developing embryo may allow for the establishment of early 

developmental enhancer activation.  In this study, we aimed to remove the maternal Cmi 

component to determine if the MLR complex is contributing to early embryonic enhancer 

activation and determine the stage at which development is arrested.  However, we determined 

that Cmi is required for the process of oogenesis because cmi null germline clones are unable to 

produce embryos.  This led to an attempt to characterize the requirement of the MLR complex in 

the adult ovary through shRNAi-mediated knockdown in specific cell types.  To examine the 

effects of cmi or trr depletion in the embryo without the ability to generate a null embryo, we 

once again used shRNAi controlled by a ubiquitous promoter that is activated early during 

embryogenesis. Our results show that the MLR complex is required in germline cells in the 

ovary and prior to gastrulation in developing embryos. 
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CHAPTER TWO 

METHODS 

Generation of Germline Clones 

 The chromosome 2 construct containing the cmi1 allele at 60A9 previously generated in 

our lab (Chauhan et al., 2012) was recombined to contain an FRT site at 42B (Chauhan 

unpublished data).  This genetic construct was added to a stock containing a heat-shock inducible 

FLP recombinase on chromosome 1 (Bloomington Stock Center #1929).  Virgin females of this 

genotype were mated with males containing the OvoD1 dominant female sterile allele and an FRT 

site at 42B on chromosome 2 (Bloomington Stock Center #4434) and offspring were aged at 

25°C.  On day 5 and day 6 AEL, larvae were subjected to a 37°C heat shock for one hour to 

induce germline recombination or kept at 25°C as a no heat-shock control.  The animals were 

allowed to develop normally at 25°C, and adult females aged 3-5 days after pupal eclosion were 

dissected.  Ovaries were fixed with 4% formaldehyde in 0.1M PIPES, 2mM MgSO4, and 1mM 

EGTA (PEM) for 15-20 minutes, washed with phosphate buffered saline containing 0.1% tween-

20 (PBT) twice for 2 minutes and then twice for 30 minutes,  and mounted in ThermoFisher 

ProLongTM Gold Antifade Mountant with DAPI (catalog #P36931) and imaged using a 

fluorescent microscope.  A similar procedure was performed using a chromosome 2 construct 

containing the wild type cmi allele at 60A9 and an FRT site at 42B (Chauhan, unpublished data) 

and a chromosome 2 construct containing a mutant named cmiA16-9 obtained from a collaborator 

which contains an early termination codon in the cmi gene within the HMG domain prior to the 
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HMG box (Daniel St Johnston, University of Cambridge; Claudia Zraly, Loyola 

University Chciago personal communication).    

Immunostaining of Ovary Tissue 

 Three GAL4 drivers reported to be expressed in the adult ovary (Figure 2B) were used to 

drive the expression of shRNA inverted repeats targeting cmi (Chauhan et al., 2012), trr 

(Chauhan et al., 2012), vas (Bloomington Stock Center #38924), or orb (Bloomington Stock 

Center #43143).  Virgin females containing UAS-IR transgenes were mated to GAL4 males and 

offspring were aged at 25°C.  Females aged 3-5 days after pupal eclosion were dissected and 

ovaries were fixed with 4% formaldehyde in PEM for 15-20 minutes.  Fixed ovaries were 

washed with PBT twice for 2 minutes and then twice for 30 minutes and incubated overnight 

with anti-Cmi guinea pig primary antibody (Chauhan et al., 2012) in 50 mM Tris HCl pH 7.5, 

150 mM NaCl, 0.1% BSA, and 0.1% Triton X-100 (TNBT) at a 1:1000 dilution.  Non-specific 

staining was blocked with 2% normal goat serum (Life Technologies Ref. PCN5000) in PBT, 

washed in TNBT twice for one hour, and incubated for two hours with Alexa Fluor® 488 goat 

anti-guinea pig secondary antibody (Life Technologies Ref. A11073).  Ovaries were washed in 

PBT three times for 15 minutes, mounted in ThermoFisher ProLongTM Gold Antifade Mountant 

with DAPI (catalog #P36931), and imaged using a fluorescent microscope. 

Egg Laying and Hatching Assay 

 Male flies containing the GAL4 drivers described above were mated with virgin females 

containing either cmi or trr inverted repeat transgenes (Chauhan et al., 2012).  Ten virgin F1 

females were collected and mated with wild type males in an embryo collection container with a 

molasses-agar cap.  Flies were given three days to incubate and then embryos were collected 
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over a 24 hour period.  The number of embryos on each cap was recorded and the cap was 

aged another 24 hours before counting the number of hatched larvae.  The process was repeated 

three times, averaged across the three days, and divided by the number of females in the bottle to 

obtain the average number of eggs one female can lay in one day. Data shown is an average of 

two separate experiments.   

Immunostaining of Embryos 

 A GAL4 transgene controlled by the alphaTub84B promoter (Bloomington Stock Center 

#5138) re-balanced over a TM3 chromosome containing GFP-tagged actin (Bloomington Stock 

Center #) was used to drive ubiquitous expression of shRNA inverted repeats targeting either cmi 

or trr (Chauhan et al., 2012).  F1 embryos from this cross were collected from 0-2 hours AEL 

and aged at 25°C.  Embryos were dechorionated in 50% bleach, fixed with 1:1 heptane to 4% 

formaldehyde in PEM for 20-25 minutes, shaken in 1:1 heptane to methanol to remove vitelline, 

and rinsed and stored in methanol at -20°C.  Fixed and frozen embryos were gradually 

rehydrated with PBT and incubated overnight with one or more of the following primary 

antibodies in PBS containing 0.1% BSA and 0.1% Triton X-100 (PBSBT): guinea pig anti-Cmi 

1:1000 dilution (Chauhan et al., 2012), rabbit anti-GFP 1:1000 dilution (GenScript Cat. 

A01704), mouse anti-Eve 1:20 dilution (DSHB registry ID AB_528230), mouse anti-En 1:20 

dilution (DSHB registry ID AB_528224), mouse anti-Wg 1:20 dilution (DSHB registry ID 

AB_528512), mouse anti-Antp 1:20 dilution (DSHB registry ID AB_528083), mouse anti-Ubx 

1:20 dilution (DSHB registry ID AB_10805300).  Embryos were blocked with 2% normal goat 

serum (Life Technologies Ref. PCN5000) in PBT, washed in TNBT twice for one hour, and 

incubated for two hours with one or more of the following secondary antibodies: Alexa Fluor® 

568 goat anti-guinea pig (Life Technologies Ref. A11075), Alexa Fluor® 488 goat anti-guinea 
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pig (Life Technologies Ref. A11073), Alexa Fluor® 568 goat anti-mouse IgG (Life 

Technologies Ref. A11004), Alexa Fluor® 488 goat anti-rabbit (Life Technologies Ref. 

A11034).  Embryos were washed in PBT three times for 15 minutes, mounted in ThermoFisher 

ProLongTM Gold Antifade Mountant with DAPI (catalog #P36931) and imaged using a 

fluorescent microscope.  The Eve antibody developed by Zinn, K. at the California Institute of 

Technology; the En antibody developed by Goodman, C. at the University of California, 

Berkeley; the Wg antibody developed by Cohen, S.M. at the European Molecular Biology 

Laboratory; the Antp antibody developed by Brower, D. at the University of Arizona; and the 

Ubx antibody developed by White, R. at the University of Cambridge were obtained from the 

Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at 

The University of Iowa, Department of Biology, Iowa City, IA 52242.  

Cuticle Analysis 

 Embryos were collected from the cmi knockdown cross described above.  The collection 

cap was removed after 8 hours and aged at 25°C for 12 more hours before embryos were sorted 

by GFP signal.  Embryos were dechorionated in 50% bleach, shaken in 1:1 heptane to methanol 

to remove the vitelline membrane, rinsed in methanol, transferred to a microscope slide, and the 

methanol was removed. A mixture of 9:1 lactic acid to methanol was added to the slide, a cover 

slip was placed over the embryos, and the slide was incubated overnight at 60°C before 

observing under a microscope.   

qRT-PCR 

 Procedure was performed as described by Chauhan et al., 2012 using the following cmi 

primers:  Forward— CTGATCCTCGAGAGCTTTACG, Reverse— 

ACACATGATCAGCTTGGACAG.  Briefly, embryos of the proper genotypes were selected 
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and RNA was prepared.  RNA was reverse-transcribed and cmi transcripts were 

qualitatively measured by PCR using the comparative Ct method.   

Image Processing 

Fluorescent microscopy images were processed using the ImageJ Fiji project version 

1.51n (Schindelin et al., 2012).  Plugins used: subtract background.  Images taken with the Zeiss 

LSM 880 with AiryScan microscope were processed using ZEN software version 2.3 AiryScan 

processing script.  Figures were arranged in Adobe Photoshop version 19.0. 

Statistics 

 Statistical analysis to compare the difference of means was conducted using a standard 

student’s t-test.  Statistical analysis to compare the sample population percentage to the control 

was conducted using a general z-test.  The alpha level used in both cases is 0.05.   
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CHAPTER THREE 

RESULTS 

Aim 1: Characterize the Requirement of Cmi in the Germline 

Cmi is Required for Oogenesis. 

 In an effort to eliminate the maternal contribution of cmi mRNA and protein to the egg, 

we generated germline clones with two different alleles (Figure 2): a cmi null mutation that 

eliminates protein expression (cmi1) and an early termination codon mutation obtained from D. 

St Johnston and A. Plygawko, University of Cambridge (cmiA16-9).  Homozygosity for both 

alleles resulted in failure of cmi mutant recombinants to produce eggs while the wild type allele 

restored egg-laying ability indicating the requirement of cmi for proper germline development.  

Ovaries dissected from both cmi mutant recombinants revealed defects in the progression of 

oogenesis (Figure 3A, Table 1).  Without a heat shock induction of FLP recombinase, no 

recombination was able to occur and the dominant female sterile OvoD1 phenotype was observed.  

Upon heat shock, cmi1 clones looked very similar to the OvoD1 phenotype, so the cmi1 

homozygous ovarioles exhibited an early stage oogenesis block.  In rare cases, cmi1 ovarioles are 

able to develop to a later stage, but the oocytes are malformed and unable to be deposited 

indicating that the heat shock recombination is occurring (Figure 3B).  Clones containing the 

cmiA16-9 allele, which contains an early termination codon prior to the high mobility group 

(HMG) box within the HMG domain, contain ovarioles that are able to develop to a later stage 

than the cmi1 clones providing evidence that the cmiA16-9 allele may be partially functional.  

These data indicate that functional cmi is necessary for proper germline development.      
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Figure 2. Generation of Germline Clones.  Schematic of the dominant female sterile 
technique used to generate germline clones.  FRT42B (red band) indicates an FRT site at 
position 42B on the right arm of the second chromosome.  OvoD1 (yellow band) indicates the 
ovoD1 dominant female sterile transgene gene.  Cmi1 (blue band) indicates the location of the 
cmi1 null allele at 60A9 on the right arm of the second chromosome (adapted from Prudêncio 
and Guilgur, 2015).  
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Figure 3. Germline Clone Phenotypes.  (A) Germline clone analysis performed as described 
in Figure 2 using a wild type (WT) allele as a control and two cmi null alleles Cmi1 and 
CmiA16-9.  Ovaries were fixed and stained with DAPI to visualize DNA. (B) In rare cases, 
cmi1 clones produce later stage oocytes that are not deposited.  Ovaries were fixed and stained 
with DAPI to visualize DNA.  Scale bar indicates 100µm. 
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Cmi Knockdown in Germline Cells Leads to Oogenesis Defects. 

 Immunostaining wild type ovary tissue revealed Cmi localization in the developing 

oocyte (Figure 4).  Cmi protein is observed in germline stem cells at the anterior tip of the 

germarium, and in both the cytoplasm and nuclei of nurse cells.  At later stages of oogenesis, 

Cmi is still seen in the nurse cells but begins to localize in the cytoplasm of the oocyte in large 

quantities.  Throughout oogenesis, Cmi levels seem to be relatively constant throughout the 

nuclei and cytoplasm of the somatic follicle cells.  To characterize further the function of the 

MLR complex in oocyte development, we used shRNAi to knock down cmi and trr in different 

cell types within the adult ovary.  We included a trr knockdown based on evidence that 

catalytically dead MLR complexes can still activate enhancers during development and we 

wanted to assess a possible differential function of cmi and trr during oogenesis (Dorighi et al., 

2017).  GAL4 expressed under the control of tissue-specific enhancers reported to be expressed 

in the ovary (Hudson and Cooley, 2014) were used to drive the knockdown of cmi, trr, vas, and 

orb in both germline and somatically derived cells (Figure 5, Table 2).  The GAL4 expression 

pattern of three drivers was verified with a UAS-GFP transgene; the maternal tubulin (mat-tub) 

Table 1. Germline Clone Egg Laying Analysis.  Germline clone analysis performed as 
described in Figure 2 using a wild type (WT) allele as a control and two cmi null alleles Cmi1 
and CmiA16-9.  Heat-shock (recombinant) and non heat shock (non-recombinant) animals 
were mated with WT males and placed in embryo collection containers.  Egg laying 
efficiency is reported as the average number of eggs one female can lay in a 24 hour period.  
n refers to the number of females assayed.  
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driver is highly expressed in the germline with some somatic expression, the first follicle 

cell driver (GawB-GR1) is only expressed in the somatic follicle cells, and the second follicle 

cell driver (GawB-Cb16) is also expressed exclusively in the somatic follicle with a stronger 

expression within the germarium (Figure 6A).  Two other knockdown constructs against vasa 

(vas) and orb were included as controls because they are required in germline cells but not 

somatic cells during oogenesis (Kai et al., 2005).  Knocking down cmi or trr in the germline 

derived cells using the mat-tub driver resulted in both structural and functional phenotypes in the 

ovary.   

 

 

 

Figure 4. Cmi Localizes in the Developing Oocyte.  (A) Schematic of an ovariole indicating 
developmental stages.  Cmi localization pattern is shown in green.  (adapted from Robinson et 
al., 1997).  (B)  Wild type Drosophila ovariole showing native expression pattern of Cmi. 
Blue indicates DNA, and green indicates Cmi protein.  Ovaries were fixed and incubated  
with anti-Cmi primary polyclonal antibody, detected using a fluorescent secondary antibody, 
and mounted in a solution containing DAPI.  Scale bar indicates 10µm.     
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Figure 5. Using the Gal4  System to Express shRNA Inverted Repeats.  GAL4 is a yeast 
transcription factor that binds to an upstream activating sequence (UAS) and induces 
transcriptional activation of the target gene.  The expression of GAL4 is regulated by a 
genomic enhancer so it can be cell-type specific.  Fly on the left is male and on the right is 
female (adapted from St Johnston, 2002). 
 

Table 2. List of Gal4 Drivers Used in Knockdown.  Gal4 drivers obtained from the 
Bloomington Drosophila Stock Center were utilized in knockdown experiments.   
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We observed fewer late stage oocytes per ovary (Figure 6B), a reduction of Cmi 

protein, an increase in the number of early stage chambers (Figure 6C), and a decrease in both 

egg laying and hatching rate (Figure 7A).  Knocking down cmi in somatic cells using either of 

the two drivers within the ovary did not result in a phenotype indicating that cmi is not required 

in the somatic follicle cells.  However, trr knockdown in follicle cells produced a strong 

phenotype and abrogated egg-laying ability indicating a possible cmi independent function 

(Figure 6, Figure 7B-C).      
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Figure 6. Knockdown of Cmi and Trr in Germline and Somatic Cells Within the Adult Ovary.  (A) Immunostaining of Gal4 
driving expression of GFP in the ovary for three drivers reported to be expressed in the adult ovary: mat-tub, GawB-GR1, and 
GawB-Cb16 (Hudson and Cooley 2014).  Tissues were fixed and stained with anti-GFP antibody (green), and DAPI (blue).  Scale 
bar indicates 50 µm. (B) Gal4 lines driving the expression of shRNAi inverted repeat (IR) targeting vasa, orb, cmi or trr in the 
ovary.  Tissues were fixed and stained with DAPI.  Scale bar indicates 100 µm. (C) Representative images of ovarioles in 
knockdown animals fixed and stained with DAPI (blue) and anti-Cmi antibody (green).  Scale bar indicates 100µm. Knockdown 
of trr using the GawB-Cb16 Gal4 line was female lethal.  Scale bar indicates 50 µm. 
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Aim 2:  Characterize the Requirement of Cmi in Embryogenesis 

Cmi Knockdown in the Early Embryo Leads to Arrested Development. 

 According to the modENCODE database, there are relatively high amounts of cmi 

mRNA in the adult female and early embryo compared to other developmental stages (data not 

shown) which indicates there may be a large amount of maternal cmi mRNA in the embryo.  

Since cmi null germline clones did not produce embryos, we theorized that using a ubiquitous 

GAL4 driver in the early embryo might remove enough of the maternal mRNA to cause 

embryonic lethality and allow us to visualize phenotypes associated with loss of the MLR 

complex during embryonic development.  We discovered that driving the knockdown of cmi 

under the control of the tubulin promoter (tub-GAL4) led to a decreased hatch rate (Figure 8A).  

However, the tub-GAL4 construct is a homozygous lethal insertion and needs to be kept 

heterozygous over a balancer chromosome so the hatch rate is artificially high due to 50% of the 

progeny containing the balancer which restores wild type gene expression (Figure 8B).  Utilizing 

a balancer containing a GFP allele, we sorted the GFP-positive larvae (those without GAL4) 

from the GFP-negative larvae (those with GAL4 driving knockdown) and performed a lethal 

phase experiment (Figure 8C-E).  Knockdown animals that complete embryogenesis exhibit 

delayed development and die prior to reaching adulthood.  While there is death at every stage, a 

small proportion of cmi knockdown animals are able to pupate while trr knockdown animals are 

unable to.  The mRNA reduction in the embryo was verified by qRT-PCR showing less than 0.5-

fold expression in knockdown embryos aged 8-14 hours compared to the similarly aged GFP-

positive sibling control (Figure 8F). 
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 In order to learn the stage at which the portion of cmi and trr knockdown embryos 

that die stop developing, we designed a series of experiments to utilize key developmental 

milestones to determine if embryonic development is progressing.  First, we characterized the 

expression of Cmi in wild type animals using well-studied patterning genes to stage them (Figure 

9).  Gap genes such as even-skipped (eve), engrailed (eng), wingless (wg), antennapedia (antp), 

and ultrabithorax (ubx) display a recognizable pattern at specific stages during embryogenesis 

and disruptions in this pattern are indicative of developmental abnormalities.  Cmi protein is 

present in all cells in the blastoderm stage, and after gastrulation is highly expressed in the 

ventral nerve cord and epithelial cells.  Another developmental milestone is cuticle production, 

and wild type animals produce cuticle during stage 16 of development from 13-16 hours after 

egg laying (AEL) (Ostrowski et al., 2002).  Cmi knockdown embryos that failed to hatch did not 

produce a cuticle indicating lethality prior to the point of cuticle production (Figure 10A).  The 

germ band in the Drosophila embryo is another easily visible structure that forms after 3 hours of 

embryogenesis (Tyler, 2000).  Embryos aged 4-6 hours AEL were fixed and immunostained to 

visualize DNA, verify that Cmi protein content was lower, and ensure they were GFP negative.  

The results show that the knockdown embryos were fertilized but failed to exhibit proper cellular 

organization based on DAPI signal, Cmi protein was depleted, and the germ band did not form 

based on DIC imaging while the GFP-positive sibling control exhibited wild type morphology 

(Figure 10B).  Next, we decided to check for proper localization of Eve which is a well-studied 

early patterning protein in the embryo that is produced shortly after the maternal to zygotic 

transition and is activated in seven distinct parasegments to affect gene expression in those 

regions (Manoukian and Krause, 1992).  Embryos aged 2-4 hours AEL were fixed and 

immunostained to detect Eve protein in the nuclei during cellularization of the blastoderm.  
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Knockdown embryos verified by GFP antibody (data not shown) failed to activate eve in a 

segmented pattern when compared to the GFP positive sibling control (Figure 10C).  

Additionally, DAPI staining revealed that the knockdown embryos have fewer nuclei in the 

blastoderm, and the nuclei are larger with fragments of DNA surrounding the condensed 

chromatin.  These results indicate that the MLR complex is required early on during 

embryogenesis and knockdown of cmi or trr leads to arrested development, early patterning 

defects, and genomic instability.  The portion of knockdown animals that are able to hatch have 

reduced body size compared to similarly aged wild type animals (data not shown) and are unable 

to reach adulthood (Figure 8D-E) indicating possible variation in knockdown efficiency at 

different developmental stages.   
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Figure 7. Effects of Cmi or Trr Knockdown on Ovary Function.  Egg laying (blue) and 
hatching (orange) rates for knockdown animals.  mat-tub (A) GawB-GR1 (B) and GawB-cb16 
(C) drivers were crossed with IR lines to knock down vas, orb, cmi, and trr within the adult 
ovary. F1 females were mated with WT males.  P<0.05*, p<0.01**, p<0.001***   
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Figure 8. Cmi or Trr Knockdown Effects on Embryo Development.  (A) Hatch rate of 
tubulin-Gal4 driver compared to tubulin-Gal4 driven knockdown of Cmi at 25°C and 29°C.  
(B) Diagram describing the mating scheme in which the expected ratio of WT embryos is 
50%.  WT embryos were included in the data. Embryos collected from three crosses—tubulin-
Gal4 mated with WT (C), tubulin-Gal4 driven knockdown of Cmi (D), and tubulin-Gal4 
driven knockdown of Trr (E)—were kept at 25°C and the number of animals at each stage of 
development was recorded each day in order to determine the lethal phase of Cmi and Trr 
knockdown.  (F) qRT-PCR data comparing cmi transcript levels in GFP-positive TM3 / cmi-
IR control to GFP-negative Tub-Gal4 / cmi-IR knockdown embryos.  p<0.001***      
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Figure 9. Cmi Expression During Embryo Development.  Wild type Drosophila embryos 
showing native expression pattern of Cmi and developmental markers; even skipped (Eve), 
engrailed (Eng), antennapedia (Antp), wingless (Wg), and ultrabithorax (Ubx).  Marker 
antibodies are monoclonal and Cmi antibodies are polyclonal.  DAPI nuclear stain included 
for staging.  Embryos oriented with anterior to the left, dorsal on top (lateral view).  Schematic 
of developmental stage indicated on the left (adapted from Hartenstein, 1993).  Scale bar 
indicates 100 µm. 
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Figure 10. Cmi or Trr Knockdown in the Early Embryo.  (A) Cuticle analysis of TM3 / 
Cmi-IR sibling control compared to tub-GAL4 / Cmi-IR knockdown embryo indicating 
knockdown embryos do not produce a cuticle. Scale bar indicates 100 µm. (B) Analysis of 
unhatched knockdown embryos from Figure 10 (verified by lack of GFP balancer) revealed 
that embryos aged 4-6 hours after egg laying (AEL) failed to form key structures, such as the 
germ band, when compared to the GFP positive sibling control. Scale bar indicates 100 µm. 
(C) Embryos aged 2-4 hours AEL were fixed and stained with anti-Eve antibody (red) and 
DAPI (blue).  GFP balancer positive sibling control (GFP not shown) displayed a WT Eve 
expression pattern while Cmi knockdown embryo was unable to express Eve in a segmented 
pattern. Scale bar indicates 50 µm.    
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Paternal Contribution of Cmi Null Allele Worsens Phenotype of Cmi Depleted 

Embryos. 

 Certain alleles that lead to maternal-effect lethality can be rescued by paternal 

contribution of a wild type allele (Tomkiel et al. 1991).  To assess whether or not zygotic rescue 

is occurring, we tested the hatch rate of embryos produced from cmi or trr knockdown ovaries 

that were fertilized with the cmi1 allele.  Virgin F1 females containing mat-tub GAL4 driven 

knockdown of cmi or trr were mated to males carrying the cmi1 allele over a balancer 

chromosome so the expected ratio of embryos containing the cmi null chromosome is 1:1.  

Introducing the cmi1 allele significantly lowered the hatch rate of embryos produced from both 

cmi and trr knockdown ovaries compared to introducing the wild type allele (Figure 11) 

indicating zygotic rescue is partially restoring embryonic viability when the MLR complex is 

depleted during oogenesis. 

 

 

 

Figure 11. Zygotic Rescue of Cmi.  Virgin F1 females from the cross described in Figure 7A 
with ubiquitous knockdown of cmi or trr via mat-tub Gal4 were mated with either WT males 
or cmi1/SM6A males (cmi null allele over a balancer).  The expected ratio of balancer (WT) 
to knockdown is 50% and embryos were not sorted.  Fertilizing the embryos with the null 
allele lowered the hatch rate of both the cmi and trr knockdown.  p<0.001***   
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CHAPTER FOUR 

DISCUSSION 

 The mechanisms of chromatin remodeling and enhancer activation during development 

have remained elusive.  The complex patterns of gene activation and repression that are critical 

for cell fate transitions and tissue patterning are regulated by numerous activities such as 

transcription factor binding, cell signaling pathways, and histone modification, but it is unclear 

how COMPASS-like complexes interact with and contribute to these mechanisms.  With a 

growing number of disease states associated with mutations in chromatin remodeling and 

modifying complexes, it is crucial that we expand our understanding of how these complexes 

function in order to screen for or prevent developmental diseases and cancer.  While it is known 

that the MLR family complexes mediate enhancer specific histone modifications and regulate the 

transition of inactive or poised enhancers to the active state, little is known about how the 

complexes recognize specific enhancers in a temporal and cell-type specific way.  Because 

inactivating mutations in the MLR complexes are developmentally lethal and haplo-insufficient 

for normal development, they likely have broad roles throughout the genome and are required in 

many cell types.   

Our studies have revealed an essential role of the Drosophila MLR complex for ovary 

development and extended the observation of embryonic lethality in other organisms.  

Importantly, we were only able to achieve partial lethality with an embryonic knockdown and an 

incomplete penetrance of phenotype characterized by some but not all of the ovarioles failing to 

produce late stage oocytes upon ovary-specific knockdown.  This indicates that a minimal 
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threshold level of the MLR complex may be required to exert an effect because the 

knockdown animals are still able to produce functional protein at a lower concentration, and 

there may be variation in the knockdown efficiency in different cells within the ovary.  

Immunostaining of wild type ovary tissue revealed that Cmi is present in the cytoplasm of the 

oocyte and not associated with chromatin in the nucleus, while Cmi can be seen in both the 

cytoplasm and the nucleus of the nurse cells.  It is possible that the maternal Cmi is required in 

high amounts so that it can be rapidly transported to the nucleus in response to early signaling 

events in the developing embryo during cell differentiation.   

Since MLR complexes have been shown to be downstream components of hormone-

responsive signaling pathways (Chauhan et al., 2013), it is likely they are involved in regulation 

of developmental progression.  Ecdysone is a steroid hormone in flies that regulates 

developmental transitions during both oogenesis and embryogenesis (Reviewed in Yamanaka et 

al., 2013), and the Cmi/Trr complex has been shown to directly interact with the activated 

ecdysone receptor (Sedkov et al., 2003; Chauhan et al. 2012).  During oogenesis, ecdysone is 

required at multiple stages.  It is involved in germline stem cell maintenance and differentiation, 

somatic follicle cell development and cyst formation, and late stage nutrient sensing and border 

cell migration (Reviewed in Belles and Piulachs 2015).  In the absence of functional MLR 

complexes, these hormonal signaling events during oogenesis may not be activated which would 

affect egg development and deposition similar to the phenotypic effects of cmi or trr knockdown.  

During embryogenesis, ecdysone is required for germ band retraction, head involution, dorsal 

closure, organ development, and certain transcription factor expression (Chavoshi and Moussian 

2010).  It is also required during larval and pupal stages for molting and metamorphosis 

(reviewed in Yamanaka et al., 2013).  The depletion of MLR in the embryo may lead to a 
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decreased ability for the animals to progress through ecdysone-mediated developmental 

transitions which accounts for the decreased survival over time during the lethal phase analysis.   

The A16-9 mutant of Cmi (cmiA16-9), which lacks the HMG box, was identified in a 

screen for mutations that affect the localization of Staufen: a protein that is required in the 

germline to localize mRNA required for oocyte anterior-posterior polarity (St Johnston et al., 

1991).  This mutant led to the inability for Staufen to localize in the posterior of the developing 

oocyte (St. Johnston, University of Cambridge personal communication).  Since germline clones 

containing this mutation failed to deposit eggs, it is possible this phenotype is related to the 

inability to properly polarize the egg through Staufen mRNA localization.  Furthermore, other 

proteins containing an HMG domain such as DssRP (Hsu et al., 1993) and DSP1 (Decoville et 

al., 2000) localize in the nurse cells of the ovary, and DSP1 localizes in the ventral nerve cord 

during embryonic development mimicking the expression pattern of Cmi.  The MLR complex 

may influence oogenesis through the process of mRNA localization either by directly interacting 

with RNA localization machinery or by influencing the expression of proteins that are involved 

in the process.  

Another class of RNA that influences both oogenesis and embryogenesis is Piwi-

interacting RNA (piRNA).  These small RNAs are involved in the silencing of transposable 

elements through the recognition and targeting of RNA for cleavage or DNA for methylation, 

and are heritable through the maternal germline (Shpiz and Kalmykova 2009).  In this way, 

piRNAs are able to prevent catastrophic germline mutations caused by mobilization of 

transposable elements.  Furthermore, piRNAs and interacting proteins are critical for continuous 

epigenetic repression throughout germline development and localize in the germplasm (Marie et 

al. 2016; Megosh et al. 2006).  The generation of piRNAs involves a protein called Maelstrom 
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(Mael) which can selectively convert retrotransposon RNA into piRNA in the germline, 

and Mael contains an HMG box domain (Genzor and Bortvin 2015) similar to the one found in 

Cmi.  Problems with retrotransposon regulation and piRNA activity lead to DNA damage, 

meiotic errors, embryonic lethality, and defects in chromosome segregation (Genzor and Bortvin 

2015; Malki et al. 2014).  It is possible that the embryonic lethality and apparent chromosomal 

abnormalities observed in Cmi or Trr depleted embryos are due to the disruption of the piRNA 

associated proteins.  In support of this hypothesis, RNA-seq data taken from cmi depleted larval 

fat bodies revealed that multiple proteins involved in piRNA generation and processing are 

dysregulated (D. Ford, Loyola University Chicago personal communication). 

Our results show that early embryonic knockdown of Cmi or Trr leads to possible DNA 

fragmentation and defects in chromatin condensation.  A similar phenotype along with apoptotic 

cell death was observed in various tumor types upon MLL4 knockdown (Ansari et al., 2012).  

Because histone modification readers are involved in the double-strand DNA damage response, 

it is likely that this phenotype is the result of the cell’s inability to recruit DNA repair proteins to 

sites of DNA breakage (Reviewed in Gong and Miller, 2017).  In addition, knockdown of 

proteins that are critical for piRNA function leads to DNA fragmentation through multiple 

centriole formation during mitosis and destabilization of the telomere protection complex in the 

early syncytial blastoderm (Orsi et al. 2010; Khurana et al. 2010).  These studies provide two 

possible mechanisms for the contribution of the MLR complex to DNA damage; either MLR 

knockdown affects the cell’s ability to repair DNA damage induced by general genomic stress 

during periods of rapid, synchronous cell divisions, or the knockdown leads to reduced piRNA 

function causing chromosome fragmentation and defects in maternal transposon silencing in the 

early embryo.   
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We also showed that embryonic death associated with cmi or trr knockdown 

occurred prior to gastrulation indicating that the MLR complex is required early during 

embryogenesis.  The epigenetic landscape during this early period is dynamic, and the activation 

of enhancers is an intricately regulated process involving gradients of activating and repressing 

factors.  For example, Eve expression is regulated by several different enhancers that respond to 

a balance of broad activators and localized repressors to form a pattern of seven distinct 

segments in the blastoderm (reviewed in Levine 2010).  The activation of these enhancers is 

contingent on the JAK-STAT signaling pathway as well as the transcription factor Zelda (Struffi 

et al., 2011).  Interestingly, ChIP-seq data previously generated in our lab shows strong Cmi 

binding peaks at the enhancers bound by pioneer transcription factors such as Zelda and 

Grainyhead.  Pioneer factors are able to bind to inactive chromatin and begin to affect gene 

expression of key regulatory elements such as those required for cellularization and pattern 

formation (Iwafuchi-Doi and Zaret, 2016; Liang, 2008).  Since cmi and trr knockdown both 

affect cellularization and disrupt the Eve expression pattern, it is possible that the MLR complex 

regulates early zygotic enhancer activation by either directly modifying histones at the enhancers 

of these genes or regulating the activity of pioneer transcription factors.   

Another mechanism that may explain the observed phenotypes in both the ovaries and 

embryos is the involvement of MLR complexes in chromatin structure.  Recent evidence 

suggests that catalytically dead MLR complexes are still able to contribute to the loading of 

RNA polymerase II at enhancers (Dorighi et al., 2017), and wild type complexes lead to the 

recruitment of other proteins such as CBP/p300 which is a transcriptional activator (Lai et al., 

2017) and the cohesin complex which is involved in chromatin looping (Yan et al., 2017).  The 

difference in phenotype observed between somatic knockdown of cmi and trr in the ovary may 
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be due to the formation of a relatively stable MLR complex in the absence of Cmi. This 

partial complex may still be able to recruit other proteins and participate in chromatin structural 

changes while trr knockdown destabilizes the entire complex and abrogates this function. 

 While these experiments do not provide much insight in relation to the mechanism by 

which the MLR complex influences development, they begin to characterize the phenotypes 

associated with its loss and elucidate the time window in which it is required.  Future endeavors 

into understanding the specificity and activity of MLR complexes during development can be 

focused on the time between the maternal to zygotic transition and gastrulation.  Gene expression 

profiles during this time in knockdown animals may provide valuable insights into which 

enhancers the MLR complex is activating and how loss of function can lead to developmental 

abnormalities.  To better understand the functions in the adult ovary, in-situ hybridization to test 

for delocalization of mRNAs in the context of Cmi or Trr loss will determine if this is the 

mechanism of action in the oocyte.  To determine if MLR complexes are involved in DNA repair 

within the embryo, genetic interaction studies with damage response proteins and 

immunostaining for indicators of apoptotic cell death and cell cycle arrest can be performed.  

With so many possible functions of MLR complexes in the germline and embryonic 

development, it will take considerable effort to elucidate their role.  However, it is important to 

understand their native functions so we can learn more about the process of development and 

how mutations might contribute to various disease states.  
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