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ABSTRACT 

Falls are common and often dangerous for groups with impaired mobility, like the 

elderly or people with lower limb amputations. Finding ways of minimizing the frequency 

or impact of a fall can improve quality of life dramatically. When someone does fall, real-

time detection of the fall and a long-lie can trigger fast medical assistance. Such a 

system can also collect reliable data on the nature of real-world falls that can be used to 

better understand the circumstances, to aid in prevention efforts. This work has been to 

develop a real-time fall tracking system specifically for subjects with lower limb 

amputations. 

In this study 17 subjects (10 healthy controls and 7 amputees) were asked to 

simulate 4 types of falls (trip, slip, right and left lateral) 3 times each with a mobile phone 

placed at 3 different locations on the body (pouch, pocket, and hand). Signals were 

collected from the accelerometer, gyroscope and barometer sensors using the Android 

mobile phone application Purple Robot. We compared 5 different machine learning 

classifiers for fall detection: logistic regression (L1 and L2 norm), support vector 

machines, K-nearest neighbors, decision trees, and random forest. Logistic regression 

(L1 regularized “lasso”) and random forest yielded the best results on the test set 

(98.8% and 98.4%, respectively). There was no significant difference between amputee 

and healthy control falls in terms of classifier accuracy. When testing on real world data 

with no recorded falls, the false positive rate was only 0.07%.
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In addition to offline algorithmic development, the detection system was 

implemented for real-time application on a mobile platform. The previously-trained 

logistic regression model was implemented on the mobile platform for real-time 

detection. This platform will be used in an upcoming amputee population falls study. 

The completed system will gather data on the current conditions leading to the fall 

(weather, GPS location, etc.) and classify the type of the fall. The system will follow up 

with notifications requesting a response from the user, or automatically notify 

emergency contacts or 911 as needed. The steps taken in creating this system bring us 

closer to real-time intervention strategies to minimize the impact of falls, and enable us 

to collect accurate falls-related data to improve fall prevention strategies and prosthesis 

design.
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CHAPTER I 

INTRODUCTION 

Motivation 

Falls are a very common occurrence in the elderly and especially among those 

with lower limb amputations; around 30% of people after age 75 fall at least once per 

year (Sixsmith and Johnson, 2004).  Falls are also the primary cause of injury-related 

death in the elderly, amounting to 55% of all injury-related deaths (Fulks et al., 2002; 

Kramarow et al., 2015). Falls are more frequent in subjects with lower-limb amputations; 

in one study 52.4% of amputees fell at least once over the past year; 75% of these 

individuals fell twice or more (Miller et al., 2001). 

There are nearly 2 million people living with limb loss in the United States, and 

185,000 amputations occur each year. The leading cause of limb amputation is 

dysvascular disease such as diabetes and peripheral arterial disease (Amputee 

Coalition, 2017). Due to the rise of obesity and related illnesses, limb loss due to 

dysvascular disease is on the rise, with the number of lower-limb amputees expected to 

double in approximately 40 years (Ziegler-Graham et al., 2008). Due to the frequency of 

falls in this growing population, understanding and minimizing the impact of falls is a 

critical societal health concern. 

Aside from physical injuries that falls might cause (such as fractures, non-healing 

wounds, and bleeding disorders) psychological factors should also be taken into the
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account. In MacBride et al. 58% of subjects reported a fear of falling - the main concern 

among all the participants (McBride et al., 1980). In addition, fear of falling might lead to 

a decrease of independence, decline of mobility, lowering of one’s self-esteem and/or 

discouraging use of prosthesis (Ryynanen et al.,1992; Spice et al., 2009; Vellas et al., 

1997; Mann et al., 2006; Delbaere et al., 2004).  

 It is well known that falls and fear of falling might have serious consequences on 

one's health and overall well-being. Common risk factors of falls are balance instability, 

functional impairments, chronic disease, mental status, and use of medications (Miller et 

al., 2001). The amputee population is at high risk of falling as one or more of these 

factors might be true for them. Nevertheless, the main focus of falls research has 

primarily been the elderly population (Sixsmith and Johnson, 2004; JS, 2002; McBride 

et al., 1980; Ryynanen et al.,1992; Spice et al., 2009; Vellas et al., 1997; Mann et al., 

2006; Delbaere et al., 2004). To date, our understanding of falls in amputees is very 

limited and we strongly believe that more research needs to be conducted. 

Most information about falls in amputees that exists today is based on 

retrospective data or questionnaires which were filled some time after a fall had 

occurred. Obviously, such information relies on a patient’s memory, which might be 

imprecise or incomplete. Detecting falls automatically will allow us to collect more 

reliable data. It will give an opportunity to switch from a descriptive analysis of falls to a 

more quantitative, analytical approach that can be used for development of fall-

prevention techniques.  

Kulkarni et al. described three main categories of risk factors for falls:  prosthesis, 

personal, and environmental factors. It is believed that each category might be 
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connected to a different type of fall (trip, slip or lateral) or cause a different type of injury 

(Kulkarni et al., 1996). We believe that having a real time fall detection system which will 

collect reliable data will help to better understand the reasons and circumstances which 

lead to a fall. Better understanding can influence prosthetic design and current 

guidelines for fall-prevention strategies.  

Fall Detection Strategies 

There are many ways to detect falls. From a broad perspective fall detection 

systems could be classified as environmentally smart systems and wearable devices.  

Environmental systems use externally deployed sensors such as cameras, floor 

sensors, infrared sensors, microphones and/or pressure sensors. Wearable devices use 

sensors placed on a subject’s body, such as accelerometers or gyroscopes, on devices 

ranging from fitness wearables to mobile phones. We will focus on the wearable devices 

approach. In order to do fall detection those systems involve two main components: 

hardware (sensors) and software (algorithm) which we will not describe. 

Wearable Sensors Used for Fall Detection. 

Many fall detection studies use dedicated wearable sensors, primarily triaxial 

accelerometers (Bagala et al., 2012; Shi et al., 2012; Shany et al., 2012; Zhang et al., 

2011; Ying et al., 2011; Tolkiehn et al., 2011). Using wearable sensors is a convenient 

way to obtain reliable motion data related to falls, in contrast to the subjective recall of 

self-reports. Most wearable sensors are lightweight and small, some of them are only 

millimeters in size; they are highly portable and relatively inexpensive. Accelerometers 

provide information about subject movement through accelerations of the device during
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those movements. In addition, they can show relative orientation to the direction of 

gravity, which can be extremely useful for fall detection. 

The gyroscope is another valuable sensor for fall detection. Whereas 

accelerometers measure linear acceleration, gyroscopes measure angular acceleration. 

Given the complementary nature of these two types of motion, these two types of 

sensors are often used in conjunction. Together, they have the potential to boost 

accuracy for tasks such as fall detection. 

Current wearable devices are able to measure the number of floors climbed in an 

elevator as well as estimate elevation changes primarily from the use of barometers - 

sensors used to measure air pressure. In fact, barometers present in a current smart 

phone (iPhone 7) can reliably detect changes of up to 1 meter in height due to the slight 

variation in air pressure with small increases in elevation, providing a useful, though 

less reliable signal with smaller changes in height. Because falls commonly end with a 

change in the height of the device, this can be a useful signal for indication of a fall.  

To date, modern smartphones have accelerometers, gyroscopes, barometers, 

GPS and many more sensors built-in. This makes a phone a really convenient platform 

for activity recognition or fall detection. They are widely used and affordable for most 

people. Almost everyone is familiar with how to use a smartphone today. Compared to 

separate wearable sensors, smartphones have better data storage capabilities and 

more powerful batteries. Thus, smartphones have advantages that make them more 

suitable for real-time fall detection that can be used outside of a laboratory setting.
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Fall Detection Algorithms.   

 There are two main approaches to analyzing data from wearables sensors: 

threshold-based algorithms and machine learning techniques. We will describe the key 

points of both below.  

Threshold-based Algorithms. Fall events can be divided into 3 phases (figure 

1): pre-fall (activity done before a fall), impact (the moment of falling), and post-fall 

(activity after a fall). A fall can be detected by observing if one or more features of the 

sensor readings exceeds a predefined threshold. The most common features for these 

threshold-based algorithms are fall acceleration, fall velocity, fall impact, and orientation 

after the fall (Bagala et al., 2012).  

 

Figure 1. Phases of fall analyzed by threshold-based algorithms. The plot displays  
accelerometer readings of a side fall performed by a healthy volunteer with a phone  

placed in a pouch (waist). 

Bagala et al. compared performance of different threshold-based algorithms and 

found that most of them are tuned using simulated falls data and are therefore not 

suitable for real-world application (Bagala et al., 2012). Importantly, algorithms that had 
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better fall detection rates on the simulated falls tended to have higher false alarm rates 

when applied to real-world data. Errors of this type can be expected as these threshold-

based algorithms are simply classifying events with a maximum magnitude as falls, 

while in practice there are many more events that can meet such thresholds due to high 

acceleration. Jumping and “falling” into a bed can easily be mistaken as falls by most 

fall detection systems. Threshold-based algorithms are especially prone to these kinds 

of errors. 

Machine Learning for Fall Detection. Use of machine learning techniques can 

significantly improve fall detection as it is a more sophisticated approach compared to 

threshold-based algorithms. Instead of specifying particular features and applying a 

simple threshold, training data is provided to a model so that the model itself can 

determine the best weighted combination of features to perform the classification. While 

it may sound relatively simple to do, there are certain challenges when using machine 

learning such as determining which features to use, choosing the predictive model, 

finding the right parameters for that model, and objectively validating that model’s 

performance.   

It is important to choose the right features for a successful classification model. 

Generally speaking, features are readily computable characteristics of a given sample 

of data which can possibly improve prediction. They do not need to be highly predictive 

individually, but a series of weak features when combined can sometimes be quite 

powerful for classification. The features can be directly measured data or derived 

measures from a sample (calculated mean, standard deviation, extreme values, etc.). 
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Besides manually picking features based on intuitions of what could be helpful there are 

a few automated methods that can aid the feature selection process. For example, 

some classifiers, like logistic regression, naturally rate feature utility by assigning non-

zero coefficients to useful features and zero-valued coefficients to useless features. For 

models that don’t have a direct means for measuring the utility of features, there are 

alternate strategies available to measure the importance of features - e.g. measuring 

the improvement in prediction accuracy with/without a given feature. In any case, 

feature selection is an important process and can be done by intuition or automatically 

using machine learning classifiers that can handle high-dimensional feature sets well. 

Having too many or too few features can lead to classic modeling concerns 

including overfitting and overgeneralization. Overfitting occurs when an overly complex 

model is used, for example, fitting a straight line of points with a high-order polynomial. 

Having a model that is too complex for the given problem can lead to models that fit to 

noise in a given data set, rather than the relevant structure for the problem at hand. 

Overgeneralization, on the other hand, is when a model is too simple model - e.g. using 

a line to fit points along a curve. Both overfitting and overgeneralization are common 

concerns with fitting prediction models and either extreme would cause poor model 

performance on new data sets.    

Different models can be more suitable for certain types of problems than for 

others, that’s why model choice is also important. For example, some models are 

known to perform poorly with a relatively large number of features. Others make certain 

statistical assumptions about the problem - like naive bayes assuming the features are 

statistically independent. Support vector machines, logistic regression, naive bayes, 
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k-nearest neighbors, decision trees, and multi-layer neural networks have been 

previously used for fall detection (Albert et al., 2012; Abbate et al., 2012). Given the 

ubiquity of machine learning classification libraries, it can be relatively straightforward to 

apply multiple models to a given data set, and select the appropriate one based on 

performance.    

In order to get the best model performance, available data is usually split into at 

least two sets: one for training and the other for testing. The testing set should not be 

involved in the training process in any way to avoid overfitting. Instead of picking 

arbitrary divisions for training and test data, cross-validation can be used to automate 

the process. The most popular ways to perform cross-validation are K-fold, leave-one-

out, and subject-wise cross-validation. With K-fold cross-validation the training dataset 

is split into K parts; then the model is trained on K-1 parts and tested on the remaining 

part that was separated. The process is repeated K times with a different test set at 

each iteration. Leave-one-out cross validation is the same as K-fold where K is equal to 

number of data samples. When cross-validation is done for each subject as a separate 

fold, it is subject-wise cross-validation. Subject-wise cross-validation is used to estimate 

the behavior of a trained model on a novel subject. By using cross-validation 

appropriately, we are able to select the better features, models, and model 

hyperparameters to be applied on the untouched test data. 

Previous Work 

Our study takes advantage of previous work on fall detection and classification 

and extends the traditional approach from offline data analysis to building a fully 
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functional real-time Android based fall detection system, specifically designed for the 

amputee population.  

Albert et al. used falls data collected in a lab setting from 15 subjects for fall 

detection and classification (Albert et al., 2012). They collected data with a smartphone 

worn on a belt always in the same position such that accelerometer x, y, and z-axis 

corresponded to the up, left, and backward directions of the subject. Having a 

consistent orientation of the sensor makes different types of falls more distinguishable. 

For example, if someone trips and falls forward, the z-axis would point the same 

direction as gravity.  

In order to be classified, the falls data had to be preprocessed first. The raw 

accelerometer signal was split into 2 second clips. Then, an extended set of signal 

processing features known to work well in activity recognition were extracted from each 

clip. Five different machine learning classifiers were applied to this data set to detect the 

type of fall that occurred among slips, trips, and lateral falls: support vector machines 

(SVM), logistic regression (lasso), naїve bayes, k-nearest neighbors, and decision trees. 

They were able to achieve almost perfect classification among a set of falls types – 99% 

with SVM and logistic regression classifiers using 10-fold cross-validation which 

dropped only by 0.5% for SVM when tested using subject-wise cross-validation. 

In addition, they attempted to do fall detection to distinguish fall events from fall-

like events. Fall-like events were defined as daily activities with the highest acceleration 

changes taken from a set of 1 week recordings. Such events could be easily 

misclassified as falls, especially in threshold-based algorithms. Training with such a 

data set is likely to improve performance on real-world data compared to the use of 
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other low-impact activities of daily living used as non-fall examples. SVM and logistic 

regression had the best results out of all the classifiers - 98% with 10-fold cross-

validation and 97% when subject-wise cross-validation was used. 

 In the research presented in this thesis, we will extend the analysis and develop 

a fall detection system designed for real-time use by people with lower-limb 

amputations. A new data set was collected from both healthy controls and amputees. 

To the best of our knowledge, there are no studies that used amputee data for fall 

detection.  

In most studies the wearable device is always located in the same place and 

orientation on the body, which is an unrealistic expectation for real-world mobile phone 

use. In this study we introduced a variety of locations a phone could be used: pocket, 

pouch, and hand. Additionally, we did not instruct participants about the orientation of 

the phone during the data collection process. Clearly, this creates a more challenging 

fall detection task, but having data that is varied in the same ways that real-world 

collected data can be is more likely to lead to a model that robust enough to handle 

real-world scenarios.  

We take the feature set that has been proven to work for both activity recognition 

and fall detection/classification in previous studies (Albert et al., 2012; Albert and 

Kording, 2011; Albert et al., 2013) and build an improved machine learning fall detection 

model capable of working in real-time for the amputee population. The Android 

application that has been built will be used to collect valuable real-world amputee falls 

data - setting that stage for further research focused on fall prevention.
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This thesis work is only part of the team effort for the full NIH R01-funded project 

“Understanding Real-Life Falls in Amputees using Mobile Phone Technology” 

conducted by Max Nader Lab for Rehabilitation Technologies and Outcomes Research 

of the Rehabilitation Institute of Chicago (as of March 2017, now the Shirley Ryan 

Abilitylab), which is supervised by Arun Jayaraman (Jayaraman, 2014). 

The main idea is to develop a real-time fall detection system on the Android 

mobile platform. Such a system would be designed specifically for people with lower-

limb amputations. As modern smartphones have built-in motion sensors including 

accelerometers, gyroscopes, and barometers, their signals can be successfully used to 

detect a fall by applying machine learning techniques. The system will perform the 

following functions (Figure 2): while a subject wears a phone on the body (waist or 

pocket) or holds it in hand, the sensor data is evaluated every five seconds. If a fall 

occurs, the system will alert the user, immediately send the fall information and related 

data in a brief window of time to a server (including sensor data 15 minutes before and 

after the fall). The server will continuously process received data, classify the type of a 

fall, gather environmental information such as weather, GPS location, and activity that 

was done prior to the fall to generate a report. If there is a high likelihood of a fall being 

detected, we will ask a user to confirm on the device. If they respond positively, the 

generated report will be sent to their physician. If they don’t respond, the system is 

capable of contacting an identified emergency contact, or if neither of them respond, 

dial 911. If a user indicates that a fall did not occur after a fall event is triggered, the 

system will report a ‘false positive’ alert which can be used to continuously improve 
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future models. The scope of this thesis work is the real-time fall detection system on the 

Android device. All server-side processing is considered future efforts of the R01 team. 

 

Figure 2. The scope of NIH R01 “Understanding Real-Life Falls in Amputees using 
Mobile Phone Technology” project conducted by Max Nader Lab for Rehabilitation 

Technologies and Outcomes Research of Rehabilitation Institute of Chicago. Adapted 
from Jayaraman, A. (2014). Understanding Real-Life Falls in Amputees using Mobile 

Phone Technology. Project # 1R01EB019406-01A1.
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CHAPTER II 

METHODOLOGY 

The methods that have been used in this study will be described in the same 

sequence as they have been applied: experimental design, data preprocessing, feature 

extraction, and model selection. Additionally, we describe the platform used for the 

implementation of the real-time fall detection system. 

Experimental Design 

The overall research design was initially developed by the Max Nader 

Rehabilitation Technologies and Outcomes Research Center of the Rehabilitation 

Institute of Chicago (RT&O lab). The overarching design goals were part of a 

successfully funded National Institutes of Health (NIH) R01 grant “Understanding Real-

Life Falls in Amputees Using Mobile Phone Technology” - project number 

1R01EB019406-01A1.  

Two groups of subjects were recruited: people with lower-limb amputations (7 

individuals) and healthy controls (10 individuals). All the subjects were screened with 

appropriate inclusion and exclusion criteria and consented prior to participating in the 

study. The criteria included that a subject must be between 18 and 85 years inclusive, 

willing to carry and use a smartphone as their primary communication device, be willing 

to give written consent, and able to comply with study procedures. Additional 

expectations for the amputee population are that a subject has a unilateral amputation 
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of the lower limb above or below the knee within at least six months after first fitting of a 

lower extremity prosthesis, and they must use either a mechanical or a microprocessor-

controlled prosthesis in activities of daily living. 

 All participants were asked to simulate 4 types of falls (trips, slips, right and left 

lateral) 3 times each with a phone placed at 3 different locations (pouch, pocket and 

hand) - 36 falls per subject. Subjects were instructed to fall as closely to real-world 

scenarios as possible and use any protective strategies they would normally use. For 

example, a person walked towards a mat and then tripped over it falling forward (Figure 

3a). Similarly, they fell backwards onto the mat simulating a slip (Figure 3b). For right 

and left lateral falls subjects were pushed sideways onto a mat. Although the phone was 

placed in one of three locations on the body generally, there was some variability in 

each general location. For example, the pouch was always worn on the waist, but could 

be placed at any side of the body, or even directly in front. Similarly, participants were 

free to choose a pants pocket (side or back) based on their preference.  

 

Figure 3. A healthy control subject performs simulated falls with a phone placed  
in a pouch on the waist performing a trip (left) and slip (right).
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 To ensure safety of the participants they were asked to wear specially designed 

protective gear which was first tested on healthy volunteers. The gear is a combination 

of different pieces of protective clothing that are worn by sports players: football 

shoulder pads, neck rolls, back plates and rib protection; skateboard elbow pads, knee 

pads, wrist guards, and bumsaver shorts; soccer shin guards; hockey helmet, pants and 

jersey. The maximum coverage is achieved in this setup by safeguarding all the body 

parts that are most vulnerable during a fall including head, neck, elbows, knees, and 

wrists. 

Subjects were also asked to perform a set of activities of daily living (ADLs) such 

as sitting, standing, walking, lying, and stair climbing (up and down) with the same 

variability in the phone placement location (pouch, pocket, and hand). While holding a 

phone in the hand subjects were instructed to use it, for instance, browsing the internet 

or checking messages. In later analysis, all the ADL data, including transitions between 

them, was combined and labeled as non-falls for the purpose of fall detection.  

In addition, in order to collect data of more natural daily movements, 3 amputees 

were asked to carry a phone in a pocket for at least 2 days. No participant fell during 

this period, so all collected data represented non-falls. This data was used to evaluate 

the fall detection model’s false positive rate in real-world scenarios. 

The data was collected using Samsung Galaxy S4 phones running Android 

version 4.4.4 with the Purple Robot mobile application developed by the Center for 

Behavioral Intervention Technologies (CBITs) at Northwestern University. Purple Robot 

provides a convenient way for collecting information about the user and their immediate 

surrounding using real-time sensors data (Purple Robot, 2017).



16 

  

When collecting data two phones were used simultaneously: one for recording 

sensory signals on the subject and the other for labeling the data by the experimenter. 

The first phone was placed on the subject’s body recording accelerometer, gyroscope, 

and barometer signals at a variable sampling rate, approximately 50 Hz on average. 

The data from this phone was automatically split into 5 second clips, interpolated with a 

cubic polynomial to exactly 50 Hz, and transmitted to the server as soon as the phone 

was able to access the web. 

While a subject was performing falls and ADLs a researcher was labeling data 

using the Purple Robot labeling tool on the other phone. The labeling tool was 

specifically designed for our project allowing us to mark start and end time points of 

each activity and attach other properties to the label such as subject ID, type of the fall, 

location where phone is placed, etc. (Figure 4).  

 

Figure 4. A screenshot of the Purple Robot mobile application labeling tool. 
The red button triggers stopwatch-like functionality recording start and end time.  

Record shown on the screen are created labels. Panels on the bottom of the  
screen are properties with additional information that are attached to a label.
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The information with labels was also transmitted to the server and could be downloaded 

later for the analysis. 

In total, we collected 283 instances of amputee falls along with 2268 clips of 

amputee ADLs. Similarly, 335 instances of healthy control falls were collected along 

with 2272 clips of healthy control ADLs. 

 Data Preprocessing 

The data from both subject and experimenter phones (containing sensors 

readings and labels) are downloaded from the server as one file in text format. Each 

record in the file contains a phone id, probe name (kind of data: fall label, activity label 

or data related to a 5 second clip), timestamp when the event was logged and a payload 

in JSON format associated with it. A payload contains accelerometer (timestamp, X, Y, 

Z), gyroscope (timestamp, X, Y, Z), barometer (timestamp, altitude, pressure) readings, 

and other statistical information (e.g. minimum and maximum timestamps associated 

with sensors events) related to the 5 seconds that were evaluated (see ‘Real-Time Fall 

Detection System’ section for detailed information on the evaluation process).  

To make data processing faster we wrote a script that organizes data from a 

single data collection session into a MATLAB format for analysis. Additionally, the script 

visualizes all fall events and activities for the given session providing the ability for 

manual data quality control. 

For each fall, we formed a 10 second clip centered at the beginning of the fall. To 

represent the fact that the fall may occur anywhere within a clip, we resampled each 10 

second fall clip with a sliding 5 second window so the fall appears at different locations 

(beginning, middle, end). The resampling was done based on a uniform random 
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distribution such that the start of the fall can occur anywhere in the interval from 0 to 3 

seconds with a uniform probability. In this way, one 10 second clip would produce ten 5 

second clips from a single fall event with the fall present at different locations in each 

clip. Data clips that contain ADLs were kept in the original format without any shifting or 

resampling. 

As a result, the data preprocessing stage resulted in data ready for analysis 

containing sensors readings and labels associated with 5 seconds clips for falls (shifted 

and resampled 10 times) and ADLs. 

Feature Extraction 

Our feature set was based on a set previously proven to work in activity 

recognition and fall detection/classification problems (Albert et al., 2012; Albert and 

Kording, 2011; Albert et al., 2013). We also added other values that, in our opinion, 

might contribute useful information for distinguishing fall events from non-falls. This led 

to 5061 total features per clip (2477 extracted from the accelerometer, 2477 from the 

gyroscope, and 107 extracted from barometer readings). In order to minimize the 

amount of on-board signal processing, initial models were created to assess groups of 

features. Using an early collected subset of the data, an elastic net model (a logistic 

regression variant explained later) was used to assess the strength of features. 

Following this, the feature set was reduced to 1211 features per clip (602 

accelerometer, 602 gyroscope, and 7 barometer as shown in Tables 1 and Table 2). We 

note the potential for overfitting by performing feature selection on the same set of data 

used for testing, but given the selected features represent 24% of the original set, the 
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concern for overfitting is less likely and outweighed by the practical concern of having a 

feature set which could be calculated on the phone in real-time.  

Feature Description 
Number of 
Features 

Moments 
mean, median, standard deviation, skew, 
kurtosis: x,y,z 

15 

Correlation Coefficients  6 

Fast Fourier Transform 
of entire signal first half (lower frequencies) of 50 bins: x,y,z 

75 

Fast Fourier Transform 
of each second 5 bins per 5 seconds: x,y,z 

75 

Derivatives Moments 
mean, median, standard deviation, skew, 
kurtosis: x,y,z 

15 

Fast Fourier Transform 
of Derivatives of entire 
signal first half (lower frequencies) of 50 bins: x,y,z 

75 

Fast Fourier Transform 
of Derivatives of each 
second 5 bins per 5 seconds: x,y,z 

75 

Moments of the 
Resultant Vector 

mean, median, standard deviation, skew, 
kurtosis 

5 

Extremes 
max of absolute values: x,y,z; min and max of 
the resultant vector and its derivatives 

7 

Interquartile Range x,y,z, the resultant vector and its derivative 5 

Extremes Range x,y,z 3 

Angle Moments 
mean, IQR, standard deviation, skew, 
kurtosis of four-quadrant inverse tangent: xy, 
xz, yz 

15 

Angle Extremes 
max, min of four-quadrant inverse tangent: 
xy, xz, yz 

6 

Entropy 
x,y,z, derivatives, FFT of each axis and FFT 
of derivatives 

12 

Cross Product Statistics 
mean of absolute values, standard deviation, 
skew, kurtosis, median, IQR, max, min 

24 
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Derivatives Cross 
Product Statistics 

mean of absolute values, standard deviation, 
skew, kurtosis, median, IQR, max, min 

24 

FFT Energy 
mean, standard deviation, skew, kurtosis: 
x,y,z on 5 bins 

60 

FFT Entropy x,y,z on 5 bins 15 

Derivatives FFT Energy 
mean, standard deviation, skew, kurtosis: 
x,y,z on 5 bins 

60 

Derivatives FFT Entropy x,y,z on 5 bins 15 

Derivatives Signal 
Energy 

mean, standard deviation, skew, kurtosis, 
entropy of the resultant vector 

15 

Total 602 

Table 1. Features extracted from each accelerometer and gyroscope readings. 

Feature Number of Features 

Standard Deviation: pressure 1 

Correlation Coefficient: pressure 1 

Fast Fourier Transform of each 
second: pressure 

5 

Total 7 

Table 2. Features extracted from barometer readings. 

All features were computed on each 5 second clip creating a set of a standard 

“samples x features” matrix for training by available machine learning classifiers.  

Fall Detection Algorithm 

In this section we will briefly discuss the testing of different machine learning 

models, followed by a more thorough description of the favored model. 

Model Comparison. 

Because the data was preprocessed into a standard form for submission to 

machine learning classifiers, we were able to apply a number of classifiers to compare 

performance. The following are classifiers were considered: 

- K-nearest neighbors
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- Support vector machines (SVM) 

- Logistic regression with ridge penalty 

- Logistic regression with lasso penalty 

- Decision tree 

- Random forest 

First we separated data into a training set and a testing set. For the test set, the 

data from 4 subjects was used (2 amputees and 2 healthy); For the training set, the 

data from the remaining 13 subjects was used. The training set was used for feature 

selection and hyperparameter tuning, while the test set was only used for comparison 

between models. 

To simplify comparison we performed additional feature selection - this was done 

using importance estimates from the extra-trees classifier. Features that influenced the 

model by less than 10% were disregarded. This led to only 128 features from each 

sample, from the previously selected 1211 features. Then, for hyperparameter 

selection, we used grid search technique with a leave one subject out (LOSO) cross-

validation approach. Table 3 shows the range of hyperparameter values that were 

considered for different models. 

Favored Model. 

When different models were compared, random forest and logistic regression with the 

lasso regularization penalty (L1-norm) had the best performance (see results section). 

Since the ultimate goal is to have a real-time smartphone-based fall detection system, 

we chose logistic regression as the implementation model as it would be simpler to 

evaluate and deploy in a mobile environment; while random forest would require 
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implementing many decision trees, logistic regression requires updating only a set of 

coefficients. Because elastic net is a generalized linear model which incorporates both 

lasso (L1 norm) and ridge regression (L2 norm) at the extremes (with alpha = 0 and 

alpha = 1, respectively), it is a superior model to lasso or ridge separately (Zou and 

Hastie, 2005). For this reason, the superior performance of lasso regression led to our 

selection of the elastic net classifier in the real-time implementation. 

Classifier 
Hyper- 

parameter 
Hyperparameter Range 

K-nearest neighbors n neighbors [1, 3, 5, 7, 9, 11, 13, 15] 

SVM 
C - penalty 

parameter [1e-3, 1e-2, …, 1e+9, 1e+10] 

Ridge logistic 

regression 

C - penalty 

parameter [1e-3, 1e-2, …, 1e+9, 1e+10] 

Lasso logistic 

regression 

C - penalty 

parameter [0.001, 0.01, 0.1, 1, 10, 100] 

Decision tree 

min samples split [2, 4, 6, 8, 10] 

min samples leaf [1, 5, 10, 15, 20] 

max depth [10, 20, 30, 40, 50] 

Random forest 
n estimators 

[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 

150, 200] 

Table 3. Hyperparameters considered for different classifiers. 

The elastic net model uses a set of coefficients corresponding to each feature in 

order to calculate the probability that a given set of features is a fall event. The 

coefficients in elastic net regression are picked by minimizing the following loss function: 
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where 𝛽 is a vector of model coefficients; N - number of samples; x - input (feature) 

vector; y - response vector (yi = 0 non-falls, 1 falls); 𝜆 ≥ 0 - regularization parameter 

(larger values make regularization stronger); 0 ≤ 𝛼 ≤ 1 - coefficient that sets 

compromise between the ridge and lasso penalty with 0 being ridge regression and 1 

being lasso.  

We fit 10 values of 𝜆 (the smallest 𝜆=4.125e-05 and the largest 𝜆=0.4125) and 10 

values of 𝛼 (0.1, 0.2, …, 1) using 10 fold cross-validation on all available data. The 

models were fairly robust to changes in the hyperparameters 𝜆 and 𝛼. The values used 

for the presented results were 𝜆 = 0.015 and 𝛼 = 0.6. 

 The model performance was estimated by using either LOSO cross-validation or 

an external testing set (Figure 5). The quantitative performance indicators we chose are 

precision, recall and overall accuracy. Precision shows how many identified samples 

are correct (fraction of true positives over sum of true positives and false positives) 

while recall indicates how many true samples from a class are correctly identified 

(fraction of true positives over sum of true positives and false negatives). Overall 

accuracy can be defined as a description of systematic errors and is calculated as the 

sum of true positives and true negatives divided by the total number of all samples. 

Most of the analysis steps described above were done offline using various 

desktop development and analytics tools including Matlab 2016b (MathWorks), Python 

3.5 using the Anaconda 1.6 package (Continuum Analytics), and Java 8 (Oracle). 
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Figure 5. The workflow of estimating performance of a fall detection model. 

Real-Time Fall Detection System 

Our real-time fall detection system was implemented as a part of the Purple 

Robot application that was mentioned in the ‘Experimental Design’ section. As we 

closely worked with the CBITs research group, they developed customizations for the 

Purple Robot app to address our needs using an incremental design approach. This 

allowed us to collect and preprocess data more efficiently as some of the steps were 

implemented on a phone (See ‘Experimental Design’ and ‘Data Preprocessing’ 

sections).  

The real-time recognition system works in the following way (Figure 6): the 

accelerometer, gyroscope, and barometer signals are processed every 5 seconds. The 

raw accelerometer and gyroscope data is interpolated to 50Hz with a cubic polynomial. 

Then, the clip must pass the data quality criteria to be considered valid (the number of 

samples per clip should be not less than 200 for accelerometer and gyroscope, not less 
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than 10 for barometer, and the gap between each 2 consecutive samples in 

accelerometer and barometer readings should be no more than 200 milliseconds). If the 

data is valid, the evaluation process begins. The same set of 1211 features that was 

used during off-line analysis is extracted from the clip. The model was already trained 

offline and saved as a MATLAB file with model coefficients. The application uses the 

model coefficient file and applies the model to features extracted from the clip. The 

model yields the probability that the clip is a fall, which is compared against preset 

threshold (we used a threshold equal to 0.5) to determine whether a fall occurred. 

 

Figure 6. The workflow of the real-time fall detection system implemented as a part of  
the Purple Robot mobile application. The accelerometer, gyroscope and barometer  

signals are split into 5 second clips. Each clip must pass data quality criteria in order to  
be evaluated. If the clip passes, features are calculated on the sensors signals. Then, 
the model is applied yielding a probability that the clip represents a fall. The evaluation  
information is then sent to a server in a JSON format as a FallNet probe. If the clip fails, 

the FallNetFailure report is sent to the server. 
 

As the Purple Robot evaluates sensor recordings every 5 seconds, the 

information about valid clips (Figure 7) or clips that were not valid (Figure 8) appears on 

the main screen of application along with other probes triggered by the application that 
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are part of Purple Robot functionality, but are not related to fall detection. A user can 

click on any probe name to see the properties of the probe. For example, the successful 

evaluation of the data window (FallNetProbe) has attached information about whether it 

corresponds to a fall or non-fall, fall probability, fall coefficients, raw sensors values, 

timestamps, times spent on different evaluation stages, etc. A failure to evaluate the clip 

(FallNetProbeFailure) contains information about the failure reason, quantitative 

measurement of the value that failed data quality testing, and timestamps related to 

different evaluation stages. If fall model detects a fall, it triggers an alert with a prompt 

asking the user to confirm if fall occurred (Figure 9).  As we are still dealing with a 

relatively high false positive rate the functionality related to the user’s response has not 

been implemented yet. The user interface will also be improved as the deployment 

stage approaches. 

 

Figure 7. The screenshots of Purple Robot application showing the FallNetProbe. The  
first screenshot from the left is the main screen of the application showing FallNetProbe  

(highlighted) along with other probes that are part of Purple Robot but not the fall  
detection model. When one clicks on the probe, the information expands to the whole  
screen (middle screenshot). FallNetProbe has the date-time and raw value properties.  
When ‘Raw Values’ is clicked, the detailed information is opened on the whole screen  

(right screenshot). 
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Figure 8. The screenshots of the Purple Robot application showing a  
FallNetProbeFailure. The first screenshot from the left is a main screen of the  

application showing a FallNetProbeFailure (highlighted) along with other probes that are  
parts of Purple Robot but not the fall detection model. When a probe is clicked, it  

expands to the whole screen (right screenshot) showing its properties.  

 

Figure 9. Screenshot of the Purple Robot application showing a triggered Fall  
Detection. When a fall is detected the confirmation prompt appears on the screen.
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CHAPTER III 

RESULTS 

This chapter contains the fall detection results by stages of analysis: model 

comparison, subject population models, device location models. Comparison was also 

made with a simple threshold-based algorithm, and the resulting model was also 

evaluated using real-world data.  

Model Comparison 

As it was described in the methods section, we have tried 6 machine learning 

classifiers on the same data set. The hyperparameters were picked based on the 

results of a grid-search using the leave-one-subject-out (LOSO) cross-validation 

approach (Table 4).  

Logistic regression with the lasso penalty and random forest yielded the best 

results - 98.77% and 98.44% overall accuracy, respectively. Table 5 shows precision, 

recall, and overall accuracy for all tested classifiers. Due to the superior performance of 

lasso regression, the model selected for all later sections in this chapter was elastic net 

regression - a generalized linear model which is equivalent to lasso regression when 𝛼 

= 1. Additional explanation and reasoning behind the selection of elastic net regression 

is available in the methods section.
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Classifier 
Hyper- 

parameter 

Optimal 

Value 

K-nearest 

neighbors n neighbors 
9 

SVM 
C - penalty 

parameter 
10 000 000 

Ridge logistic 

regression 

C - penalty 

parameter 
10 000 

Lasso logistic 

regression 

C - penalty 

parameter 
1 

Decision tree 

min samples split 2 

min samples leaf 1 

max depth 10 

Random forest n estimators 20 

Table 4. Optimal hyperparameter values for different classifiers. 

Model 
Precision Recall 

Overall 

Accuracy Fall Non-Fall Fall Non-Fall 

K-nearest 

neighbors 
96.57% 98.16% 99.81%  98.17% 

96.72% 

(95.55%-97.64%) 

SVM 99.37%  73.57% 94.51%  96.26% 
94.75% 

92.95%-96.21%) 

Ridge logistic 

regression 
96.70% 98.82.0% 98.85% 78.51% 

96.93%  

(95.46%-98.02%) 

Lasso logistic 

regression 
99.44% 93.92% 99.16%  95.86% 

98.77% 

(97.98%-99.31%) 

Decision tree 98.57%  77.84% 96.55% 89.65% 
95.73%  

(94.44%-96.80%) 

Random 

forest 
99.07%  93.75% 99.16% 93.10% 

98.44% 

(97.57%-99.06%) 

Table 5. Classifier performance results. The ranges of overall accuracy were  
computed as symmetric 95% confidence intervals from the Binomial distribution.
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Subject Population Models 

We explored the effect of training data to testing data by subject population in 

each (healthy controls and amputees) on the classifier performance. Three models were 

compared: Healthy (training) to Healthy (testing), Healthy to Amputee, and Amputee to 

Amputee. The results provided for Healthy to Healthy and Amputee to Amputee models 

are based on LOSO cross-validation which wasn’t necessary on the Healthy to 

Amputee validation (Table 6). The data from all 3 phone locations were combined. The 

overall accuracy of Healthy to Amputee (98.60%-99.19%) was not significantly lower 

than from Healthy to Healthy (99.11%-99.55%) or Amputee to Amputee (98.71%-

99.27%) models. Therefore, we can conclude that the data from healthy controls could 

be used for training to detect a fall in the amputee population.    

Model 
Precision Recall 

Overall Accuracy 
Fall Non-Fall Fall Non-Fall 

Healthy-Healthy 99.08%  99.78% 99.85%  98.64% 
99.36% 

(99.11%-99.55%) 

Healthy-Amputee 98.80%  99.29% 99.26%  98.50% 
98.92% 

(98.60%-99.19%) 

Amputee-Amputee 98.53%  99.61% 99.68%  98.23% 
99.02% 

(98.71%-99.27%) 

Table 6. Summary results of subject population models. The ranges of overall  
accuracy were computed as symmetric 95% confidence intervals from the  

Binomial distribution. 

Confusion matrices for all population models are provided in Table 7.  Out of all 

falls that were not detected by the model, trips and slips were the most common - 58% 
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and 39% respectively. Figure 10 and Figure 11 display examples of accelerometer 

readings of falls and non-falls that were misclassified. 

Healthy-Healthy Healthy-Amputee Amputee-Amputee 

       Predicted 

True
   

Non- 

falls 
Falls 

       Predicted 

True
   

Non- 

falls 
Falls 

       Predicted 

True
   

Non- 

falls 
Falls 

Non-falls 2241 31 Non-falls 2234 34 Non-falls 2326 42 

Falls 5 3349 Falls 21 2811 Falls 9 2823 

Table 7. Confusion matrices for subject population models. 

 

Figure 10. Accelerometer readings of amputee falls that were misclassified as non-falls.  

 

Figure 11. Accelerometer readings of amputee activities that were misclassified as falls. 
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Device Location Models 

To estimate the effect of device location on model performance we trained the 

model on data from different locations and tested on data from all locations. In this 

experiment data from healthy controls was used for training and amputee data for 

testing, as both populations were previously shown to fall in similar ways. The highest 

accuracy was achieved when the model was trained on data from all locations (98.50%-

99.22%) while the lowest was trained using hand-only data (95.35%-96.68%) but not 

significantly different from the models trained only from the pocket or pouch data (Table 

8 and Table 9). An interesting note is that although the location-specific models all have 

similar overall accuracies, the pouch and pocket models have higher false positive rates 

while the hand model has a higher false negative rate by comparison. 

Model 
Precision Recall 

Overall Accuracy 
Fall Non-Fall Fall Non-Fall 

Pouch (Waist) 
94.60%  100.0% 100.0%  93.32% 

96.92% 
(96.29%-97.47%) 

Pocket 
94.50%  99.93% 99.95%  93.19% 

96.83% 
(96.20%-97.39%) 

Hand 
98.87%  93.11% 93.75%  98.75% 

96.06% 
(95.35%-96.68%) 

All Locations 
98.99%  98.81% 98.99%  98.81% 

98.91% 
(98.50%-99.22%) 

Table 8. Summary results of device location model performance with the  
machine learning approach. The ranges of overall accuracy were computed as  

symmetric 95% confidence intervals from the Binomial distribution.
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 Pouch (Waist) Pocket 

       Predicted 

True
   

Non- 

falls 
Falls 

       Predicted 

True
   

Non- 

falls 
Falls 

Non-falls 1494 107 Non-falls 1492 109 

Falls 0 1873 Falls 1 1872 

Hand All Locations 

       Predicted 

True
   

Non- 

falls 
Falls 

       Predicted 

True
   

Non- 

falls 
Falls 

Non-falls 1581 20 Non-falls 1582 19 

Falls 117 1756 Falls 19 1854 

Table 9. Confusion matrices for device location models with the machine learning  
approach. 

Comparison with a Threshold-Based Algorithm 

There are existing models for fall detection which do not use machine learning 

which we consider here for comparison. For this purpose, we built a simple threshold-

based classifier which counts a clip as a fall if a minimum acceleration threshold is 

reached (e.g. during freefall) and a maximum acceleration threshold is also reached 

(e.g. during impact) - a straightforward alternative to a machine learning approach with 

thousands of parameters. The lower and upper thresholds were set by measuring 

properties of the falls in the training sample; the thresholds were the highest of all 

minimum acceleration values and the lowest of all maximum acceleration values. We 

note that higher accuracies could be possible by adapting the thresholds based on 

accuracies observed in a validation set, but we chose these thresholds for convenience 

as we expected them to give a high accuracy. We used the same validation approach 

as the device location validation but applied the threshold-based algorithm for 

comparison. The threshold-based model significantly underperformed in overall 
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classification accuracy when trained on data from all locations (92.72% vs 98.91%) and 

also underperformed when compared to the machine learning classification approach 

for each individual location model (Table 10 and Table 11).  

Model 
Precision Recall 

Overall Accuracy 
Fall Non-Fall Fall Non-Fall 

Pouch (Waist) 
91.31%  97.60% 98.13%  89.07% 

93.96% 
(93.11%-94.72%) 

Pocket 
91.41%  90.62% 92.04%  89.88% 

91.05% 
(90.05%-91.98%) 

Hand 
92.93%  99.59% 99.68%  91.13% 

95.74% 
(95.01%-96.39%) 

All Locations 
88.10%  100.0% 100.0%  84.20% 

92.72% 
(91.80%-93.56%) 

Table 10. Summary results of device location models performance with  
threshold-based algorithm. The ranges of overall accuracy were computed as  

symmetric 95% confidence intervals from the Binomial distribution. 

Pouch (Waist) Pocket 

       Predicted 

True
   

Non- 

falls 
Falls 

       Predicted 

True
   

Non- 

falls 
Falls 

Non-falls 1426 175 Non-falls 1439 162 

Falls 35 1838 Falls 149 1724 

Hand All Locations 

       Predicted 

True
   

Non- 

falls 
Falls 

       Predicted 

True
   

Non- 

falls 
Falls 

Non-falls 1459 142 Non-falls 1348 253 

Falls 6 1867 Falls 0 1873 

Table 11. Confusion matrices for device location models with the threshold- 
based algorithm.
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Evaluation Using Real-World Data 

 

To evaluate how the model performs in real-world scenarios we applied device 

location models to the available home-acquired data which represents only non-falls. 

The model which was trained on data from all locations performed best with only 12 

false alarms per day (0.06%-0.09% false positive rate). Pocket and pouch models 

yielded approximately the same results with 50 and 56 false alarms per day (0.27%-

0.32% and 0.30%-0.35% false positive rate) accordingly. Hand models had the highest 

false positive rate (0.91%-1.01%) with 166 false alarms per day. False positive rates 

and average number of false alarms per day for all models are shown in Table 12.   

Model False Positive Rate 
Avg. # of False 
Alarms per Day 

Pouch (Waist) 0.32% 
(0.30%-0.35%) 

56 

Pocket 0.29% 
(0.27%-0.32%) 

50  

Hand 0.96% 
(0.91%-1.01%) 

166 

All Locations 0.07% 
(0.06%-0.09%) 

12 

Table 12. Summary results of device location model performance on  
continuously recorded data outside the lab environment. The ranges of overall  

accuracy were computed as symmetric 95% confidence intervals from the  
Binomial distribution.
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CHAPTER IV 

DISCUSSION 

Relation to Previous Work 

It has previously been shown that a mobile phone can be used for reliable data 

collection and successful activity recognition (Albert et al., 2012; Albert et al., 2013; Dai 

et al., 2010; Anderson et al., 2007; Bieber et al., 2009; Brezmes et al., 2009; Gyorbiro et 

al., 2009; Ketabdar and Polzehl, 2009; Kwapisz et al., 2011; Mellone et al., 2012; Ying 

et al., 2011; Lustrek and Kaluza, 2009). In this study we use an Android smartphone as 

a platform for real-time fall detection. While dedicated wearable sensors have been 

successfully used for fall detection (Bagala et al., 2012; Shi et al., 2012; Shany et al., 

2012; Zhang et al., 2011; Ying et al., 2011; Tolkiehn et al., 2011), the use of a mobile 

phone can provide additional advantages. Modern smartphones have various built-in 

sensors for motion (accelerometer and gyroscope), altitude and pressure (barometer), 

location (GPS), and many others for wireless data transmission. They have great 

processing power which permits limited analysis to be done locally. Almost everyone 

knows how to use a smartphone and many people already wear them daily, making 

adoption and compliance straightforward. 

Our analysis of different machine learning classifiers for fall detection led us to 

implement logistic regression with the elastic net penalty for fall detection on the phone. 

Our results align with Albert et al. which noted that logistic regression with the lasso 
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penalty had the best fall detection accuracy. One of the advantages of such regularized 

logistic regression approaches is the ability to handle large feature sets by automatically 

weighting features based on their influence on the classification accuracy and 

automatically removing features that do not aid in prediction. Because of this ability to 

handle selecting and combining large feature sets, the data-driven approach is capable 

of creating a more accurate model that one in which the features are hand-picked by a 

researcher - for example, in the use of threshold-based fall detection (Igual et al., 2013). 

It has been demonstrated that because subjects with mobility impairments move 

differently than healthy controls, accuracy of activity recognition can differ substantially 

for mobility-impaired populations (Albert, Toledo et al., 2012; Lonini et al., 2016). People 

with lower-limb amputations are especially vulnerable to falling. For this reason, we 

considered the possibility that amputee falls may differ from healthy control falls, and so 

recruited both populations under this assumption. However, the analysis has shown no 

significant effect on accuracy when the model was trained and tested on data from 

these different populations. Consequently, the data collected from healthy controls can 

be used to develop a fall detection model intended for amputee use.  

The majority of fall detection systems that exist today use a fixed location on the 

body for the wearable device, most often the waist, as fixing the location makes fall 

detection easier (Habib et al., 2014). However, in real-life scenarios it is very 

impractical, or almost impossible, to always carry a phone in a fixed position in the 

same orientation. For this reason, we analyzed data with subjects wearing the phone at 

3 different locations (pouch/waist, pocket, and hand). Additionally, we did not have a 

fixed orientation of the phone, which makes for a more challenging classification 
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problem, but is more fitting for how people wear their phones in real life. The model was 

trained on each single location separately, or the entire data set, and tested on data 

from all locations. All models had an overall classification accuracy of more than 96% 

with the model trained with all locations performing best (98.91%). The hand model had 

the lowest overall accuracy of all the models, which could be expected as ADLs with a 

phone held in hand tended to have higher accelerations than the ones with a phone 

placed in a pouch or pocket. Given our results, the model trained on all device locations 

gives the best accuracy, and the performance is best when wearing the phone in a 

pouch or pocket but still works reasonably well even in the hand. 

Many existing fall detection systems use threshold-based algorithms (Habib et 

al., 2014; Bagala et al., 2012). We compared our approach with a simple threshold 

algorithm that detects a fall when the minimum and maximum acceleration reach lower 

and upper thresholds respectively. The overall accuracy of the threshold-based 

algorithm was significantly lower than our machine learning approach. The supports the 

notion that the machine learning approach is generally more accurate than pre-selected 

features for classification in practice (Igual et al., 2013). In addition, threshold-based 

algorithms have higher false positive rates, which would make them less effective when 

applied to real-world data (Bagala et al., 2012). 

To observe how our model would perform in real-life scenarios, we applied it to 

data collected from 3 amputee subjects outside of the lab for at least 48 hours. No 

subject fell during that period, so all the data represented non-falls. All the false positive 

rates were lower than 1% with the best model indicating a fall at a rate of 0.07%, giving 



39 

  
 

only 12 false alarms per 24 hours. These results are promising and bring us one step 

closer to the real-time deployment of the fall detection system. 

Limitations 

The main limitations emerge from the chosen design of this research study. The 

data that was used for training was collected in a controlled laboratory setting, as the 

safety of our subjects was a priority. It is known that real-world falls differ from instructed 

falls (Klenk et. al., 2010) and algorithms developed using only lab data are not as 

successful when applied to real-world falls (Bagala et al., 2010). Real-world data can be 

obtained by asking subjects to carry a phone over extended period of time and report if 

they fall. However, recording all the movement data, and manually parsing the fall 

events would be massively time consuming and logistically challenging as falls don’t 

occur very often even in fall-prone populations. This is part of the reason this work has 

the goal of automating the process of recording falls-related information. 

     Although we were able to achieve high overall accuracies, the false positive 

rate in at-home use is still impractical. A production-ready real-world detection system 

should produce no more than few false alarms per day. For example, if the system’s fall 

response includes contacting emergency medical services, a high false alarm rate could 

be very costly. The false positive rate could be readily decreased by fixing position and 

orientation of the mobile phone (Bagala et al., 2012). However, requiring someone to 

carry their phone a specific way at all times is impractical and would most likely result in 

lower compliance rates among the clinical population. This is why we decided to allow 

variability in phone placement, increasing the chance for false positives, but being more
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realistic for deployment. We expect to improve the false positive rate over time by 

iteratively incorporating misclassified data during the early stages of deployment.    

Real-Time Fall Detection Challenges 

When developing a real-time fall detection system there are certain challenges 

that have to be addressed. As we chose to implement the system on a mobile platform, 

we had to consider the limitations of embedded systems such as processing power, 

battery life, storage size, and internet accessibility. 

Since sensor information has to be tested for a fall every 5 seconds, the 

evaluation process (including gathering sensor data, calculating the full set of 1211 

features, applying model coefficients, and calculating the fall probability) has to take 

less than 5 seconds. To do this in real-time, sensors readings are accumulated by a 

separate thread, then the complete data bundle is passed to the fall detection model. 

This setup allows the evaluation of a bundled 5 second clip to take only 2 seconds - fast 

enough to do in real-time with time to spare. 

One of the main concerns about the real-time fall detection system is battery life. 

We only tested battery use with the Purple Robot application running in the background 

and nothing more, and it was able to work successfully for more than 24 hours without 

recharging. However, we need to test it under more realistic conditions, including when 

making calls, texting, using internet, etc. This would have to be considered for different 

phone models that subjects may want to use. 

Currently, the Purple Robot application transmits all the data to a server in real-

time, assuming an internet connection is available. When there is no internet 

connection, the data is accumulated on the device, which is limited. If there is not 
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enough space available on the device and data cannot be transmitted due to absence 

of an internet connection, it gives a user an alert recommending to find a Wi-Fi 

connection as soon as possible; but after the storage limits are reached, the oldest data 

records would be overridden by new data. To avoid the issue of losing data regardless 

of wireless availability, we recommend that a user connects the device to the internet at 

least once per day. Of course, this is only a concern in this development version; in the 

deployed version of the fall detection system, only useful information will be transmitted. 

The storage limit is not the only possibility for losing data. As it was described in 

the methods section, the data must pass the data quality test to be further processed. In 

most cases we observed, invalid data clips occurred due to phone hardware failures 

which could be fixed by rebooting the system. However, in deployment it would be 

difficult to observe such failures; consecutive failures remain unnoticed. This would 

cause not only a loss of data, but can also lead to a missed response to a fall. To avoid 

this situation, an additional update to the Purple Robot application can be developed, so 

the application checks for hardware failures and either alerts a user asking them to 

reboot the system, or reboots the system automatically. 

We also faced language specific challenges. The initial analysis was done using 

MATLAB. However, when features were calculated from sensor data using Java (as 

would be done for the Android system) some differences in the statistical libraries were 

observed. Since it is important that the model would be trained, tested, and deployed on 

the same set of features, the Java feature set was adapted for offline analysis. 

Additionally, we found differences between the current version of Java from Oracle 

(version 8) and the early version of Java that was used on older versions of Android.
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To sum up, we were able to address most of the challenges faced, resulting in a 

successful real-time fall detection system. While additional testing and some updates 

might be helpful, overall, the fall detection system is reliable.         

Future Efforts 

Fall detection is just a single part of the plan to deploy a system that would be 

able to detect a fall, classify its type, provide environmental data analysis, and contact 

the user or others for help if needed. Below we describe the next steps that the 

Rehabilitation Technologies and Outcomes lab will do to forward this plan. 

One of the main goals is to obtain more amputee data of real-world daily 

movements and real-world falls. With that purpose we will ask a few subjects to carry a 

phone on a daily basis for an extended period of time (at least 6 months). During this 

period the data will be carefully monitored. We expect in this stage to get a few false 

alarms per day for each subject, so no medical intervention is planned. We will follow up 

with subjects once a week confirming they did not fall in that time. In this way, the real-

life falls (if they occur) and fall-like data (false positives) will be collected that will help to 

tune the detection algorithm for later deployment. 

  Additionally, analysis of pre-fall and post-fall activities will be performed. 

Activity recognition could be applied to the 15 minute period before and after the fall, 

which can help to evaluate the accuracy or severity of the detected fall event (e.g. is the 

person not moving afterward). The data about GPS location, speed, and weather can 

be collected for additional analysis. We expect that this valuable information would aid 

in understanding the reasons and circumstances behind the real-world falls in the 

amputee population, which can lead to better prevention strategies in the future.
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We also plan to develop classification models for the type of fall that will run on 

the server. Pilot efforts on fall classification have already been done (Albert et al., 2012), 

and these efforts can be extended for the deployed system. Knowing the type of the fall 

and circumstances that led to a specific type of the fall can also help in developing new 

fall-prevention strategies. 

Last but not least, the user interface will be drastically improved, so it is easy 

and intuitive to use. It is likely that a separate application will be developed that would 

communicate with the Purple Robot background process, which has many other 

functions that would be confusing to the users. Developing a user-friendly interface will 

likely be an iterative process based on user experiences, but will be critical to achieve 

the best compliance for long-term use.   

Conclusion 

In this research study we developed a smartphone-based real-time fall detection 

system using machine learning techniques designed specifically for subjects with lower-

limb amputations. We explored the effects of subject population (amputees vs healthy 

controls) and device location (pouch, pocket, hand) on the model’s accuracy. The 

results demonstrated that both amputees and healthy controls fall in similar ways, 

therefore the falls data collected from healthy volunteers was also used for models 

applied to amputee falls. The location analysis suggests that the most robust classifier 

is created by using training data from different locations on the body. In addition, we 

compared our model to a simple threshold-based approach, demonstrating as expected 

that the use of machine learning for fall detection can increase accuracy. Our best 

detection model was 98.9% accurate on lab-acquired data and still led to false positive 
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rates on real-world amputee data that are not yet ready for deployment (a 0.07% false 

positive rate equating to 12 false alarms per day).  However, this machine learning 

approach is more flexible design approach, with a clearer path to further improve fall 

detection accuracy. 

With skyrocketing rates of vascular diseases like diabetes, amputations are 

becoming more and more prevalent, with lower-limb amputations expected to double in 

40 years (Ziegler-Graham et al., 2008). Additionally, the amputee population not only 

has a higher risk of falls as the general population, but this risk further increases with 

age leading to potentially life-threatening consequences. Addressing falls in mobility-

impaired populations is a critical healthcare concern. We believe that the developed fall 

detection system can improve real-time response to falls, but can also be a boon to fall 

prevention research. Data associated with falls (e.g. how they fell and conditions 

precipitating the fall) would help to better understand the causes of falls in the amputee 

population. This would not only suggest clinical guidance on fall prevention, but also 

potentially influence prosthesis design, ultimately improving quality of life.  
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