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ABSTRACT 

Wearable devices enable us to objectively measure the activities of people. 

However, wearables are commonly designed for adult subjects. Toddlers behave 

differently than adults, to say the least. It is valuable to accurately measure the specific 

types and amount of physical activity (PA) in toddlers; such information can be analyzed 

to inform, predict, and affect future health prospects in relation to conditions like 

obesity that are associated with differing amounts of activity. 

In this study, we attached ActiGraph accelerometers to the wrist and waist of 24 

toddlers and recorded PAs with minimal guidance. Freely behaving toddlers present 

unique challenges for activity recognition due to quick, spontaneous transitions between 

activities and a greater variety of movements. Toddlers were videotaped, and their 

movements were later annotated as 20 specific activities including "run", "walk", 

"crawl", "stand", "sit", "lie", "carried", "climb up and down", "stand still", "stand move", 

and "transit to stand". These activities were further classified into a set of summary 

activity intensities including sedentary, light intensity PA (LPA), and moderate to 

vigorous intensity PA (MVPA). 

Automated activity recognition proceeded through a series of standard machine 

learning signal processing stages.  The video-based activity annotation log was synced to 

the wearable accelerometer values; two second clips of sensor data were extracted and 

associated with the annotated activities the toddlers were performing in that interval. 
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To train the activity classifier 81 standard signal processing features were extracted for 

each clip. The following classifiers were trained: Random Forest (RF), Logistic 

Regression, Support Vector Machine (SVM), Decision Tree, and K Nearest Neighbors. 

When training directly on these 20 activities, the overall accuracy was 63.8%. When the 

activities were grouped into 3 intensity levels, the highest accuracy was 73.6%, also 

using the RF classifier. Notably, the precision of the original annotations had a dramatic 

impact on accuracy; for example, by simply removing one mixed activity class (e.g. 

"stand-move") the accuracy jumps to 83.7%. Such data-driven observations have led to 

suggestions for further refinement of the activity annotation.  

This work is done to improve activity recognition in order to provide better 

objective measures of toddler activity; this will help us to better understand the link 

between the lifestyle and behavior of toddlers and their future health outcomes. 
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CHAPTER I 
 

INTRODUCTION TO WEARABLE BASED ACTIVITY RECOGNITION USING 
  

MACHINE LEARNING 
 

Introduction to Activity Recognition 
 

A system capable of identifying the activities performed by human subjects is 

applicable to a wide variety of domains including individual healthcare, healthcare 

research, and personal consumer fitness. The information obtained from activity 

recognition is valuable in the long-term assessments of physiological states like obesity, 

diabetes, or heart disease [1]. This has appealing value in healthcare especially in 

eldercare for monitoring daily activities to assess current health and the impact of 

interventions [2]. Technology driven healthcare in assisting independent living is 

another area where activity recognition is heavily applied [3]. 

 Activity recognition systems are built to detect the physical activities carried out 

by the person given collected sensor data. These sensor values are captured by wearable 

devices attached to the subject's body. The challenge of activity recognition is to 

translate complex, continuous sensor signals into human interpretable activities that are 

useful for personal or clinical understanding. Additionally, accurate recognition of real 

time activities is further complicated by the unique ways in which people move and the 

ill-defined nature of what movements fall under an activity label.   
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Wearable Devices and Accelerometer  

 Wearable devices, such as pedometers and activity trackers, are comprised of 

electronic sensors which track motions of the body and additional elements for analytics 

and storage. Advances in microelectronics have shrunk sensors and computing elements 

and improved analytics in data science have dramatically improved the usability of 

wearable devices. Wearable devices are now an integral part of digital health monitoring 

systems. Long term health monitoring using wearable devices is an active area of 

research [5]. 

 Wearable devices rely on a variety of motion tracking sensors. Accelerometers, 

gyroscopes, magnetometers, and global positioning systems (GPS) are examples of 

motion tracking sensors. As these sensors can be made small and relatively cheaply, 

they are popular for tracking activities [6]. Additionally, low power requirements and 

wireless technology make these devices more widely used. Wearable sensors are 

available as dedicated devices but are also found in smartphones and mobile 

applications [7]. 

Accelerometers 

 Accelerometers are used to detect the linear acceleration – the change in velocity 

over time. They are electromechanical devices which measure these changes which 

occur during movement, vibration, or from forces due to gravity. Accelerometers 

measure acceleration in meters per second squared (m/s2) or in G forces (g) where 1 g = 

9.8 m/s2. They are capable of measuring acceleration in up to three axes. Along with 



 
 
 

 
 

 
 

3 
tracking altered motion, accelerometers also allow measuring the orientation of the 

device relative to gravity. 

 Accelerometers are commonly used in both research and consumer platforms. 

ActiGraph (ActiGraph Inc FL), Xsens (Xsens North America Inc CA), and Shimmer 

(Shimmer Research MA) are common research grade accelerometers used in activity 

recognition studies. Popular consumer grade accelerometers such as Fitbit are also used 

for physical activity measurements, but are limited in precision, battery, or memory. 

Accelerometers were originally used in smartphones to provide image orientation on 

screens but have found a use in everything from video games to fitness tracking on the 

phone itself.  

Machine Learning  

 Machine learning is a branch in computer science where machines analyze data 

and make inferences without being explicitly programmed. These results can assist in 

decision making by a person, or sometimes can lead to decisions being made by the 

machine directly from the data. Machine learning has existed for quite some time but 

the ability to perform complex mathematical calculations with large amounts of data is a 

relatively recent development which has led to the rapid increase in the applications of 

machine learning in various fields. Data mining, predictive analytics, big data, artificial 

intelligence, and statistical analytics are all related and overlapping concepts to machine 

learning.  

Supervised and Unsupervised Learning 

 Supervised and Unsupervised learning algorithms are the two common 

categorizations of problems in machine learning. In supervised learning a machine 



 
 
 

 
 

 
 

4 
learns by mapping an input (e.g. a picture) with its output (e.g. what is in the picture) 

based on example input-output pairs called training data. The machine learning model 

analyses the training data so that any given input in the right form can be mapped to a 

desired output. The model is further generalized so that output can be predicted from 

any input data. Often additional input data is provided to the model and the predicted 

output is compared with what is known of the input – this is referred to as test data and 

is commonly used to validate a model. The data engineer or analyst determines which 

features of the input should be used for the learning in mapping input-output pairs.  

Many supervised learning algorithms are readily available, and each has its own 

applications and strengths (e.g. random forest, decision tree, k-nearest neighbor, 

support vector machine, and logistic regression are just a few) [4]. 

 Unsupervised learning occurs by inferring patterns in the data without any 

knowledge of the expected outcomes. The inferred patterns and associations from 

unsupervised learning are often very useful to improve inferences, including supervised 

learning scenarios. Though unsupervised learning is often less thoroughly studied, 

substantial knowledge can be gathered this way. Clustering and dimensionality 

reduction are two general means of "making sense" of high dimensional data.  

Accelerometer based Activity Recognition 

 Accelerometers detect the magnitude and direction of acceleration and record the 

values. Most accelerometers estimate acceleration in x, y, and z axes. These 

accelerometers are incorporated into electronic devices and can be worn on the waist or 

wrist. The ActiGraph accelerometer is a research grade wearable device commonly used 



 
 
 

 
 

 
 

5 
to monitor subject movements and has been validated for a variety of clinical uses [8]. 

Figure 1 shows the GT3X ActiGraph accelerometer used in this study 

 

 

 

 
 

 
 
 

 
FIGURE 1. ActiGraph GT3X accelerometer used in the study. 

(ActiGraph, Pensacola, FL, USA) 
 

 There are several strategies to infer human activities from accelerometer signals, 

and here we will briefly outline the general machine learning-based approach, assuming 

we are only training and testing a single model.  

Signal data from an accelerometer is collected when the subject is performing the 

known activities (e.g. running, walking, standing, sitting). At the same time, the activity 

the subject is performing is annotated along with a start time, an end time, and any 

other relevant information of the activity. The sensor data is later mapped to the 

annotation for each activity. 

Training and Test Data.  

The accelerometer signal is split into data clips of equal width to generate 

separate data samples for model training. In the simplest case, these samples are 

divided into two sets – training and test. The training set is used by the classifiers to 

construct the model, whereas the test set is used to evaluate the model performance.  

 



 
 
 

 
 

 
 

6 
Feature Extraction.  

The raw sensor data from the accelerometer is usually not applied directly to 

machine learning classifiers. Classifiers generally perform best when features that are 

likely to aid classification are extracted from raw sensor data. During this step, the raw 

signal for each clip of sensor data is converted into a feature vector for later learning. 

Minimally, basic statistical features (e.g. mean, standard deviation, maximum, 

and minimum values) can be extracted from the linear acceleration value for each axis. 

Such features can be computed both in the time domain and in the frequency domain.  

Additional features can be computed from the magnitude of the signal. Depending upon 

the complexity of the activities, it may be necessary to engineer many different features 

from the original signal to improve classification performance. 

Model Training.  

The classifiers are trained with the training data features and activity labels and 

follow a standard supervised learning approach. Random forest, decision tree, support 

vector machine, and logistic regression are some of the classifiers shown to work well 

with large amounts of data, including with activity recognition studies. The model learns 

to infer the activity label for any given clip of sensor data. 

Hyperparameters Tuning.  

Most machine learning models are altered at a basic level by a handful of so-

called hyperparameters. In general, most hyperparameters alter the complexity of a 

model (e.g. the "degree" hyperparameter in polynomial regression varies from values 

n = 1 – linear, to n = 20 – highly complex and irregular). Models with too much 

complexity often overfit to noise in the training data, while models that are too simple 



 
 
 

 
 

 
 

7 
can't fit the complex nature of the learning problem at hand. Good hyperparameter 

choice finds the optimal point between these two sources of error for a model.  

Model evaluation.  

A list of candidate values for the hyperparameters of the classifiers are tested. 

This is often done using cross validation on the training set. There are various cross 

validation techniques available and k-fold cross validation is popular among them. In k-

fold cross validation, the original samples are partitioned into k subsamples. A single 

subsample is retained for testing the model, and the remaining subsamples are used for 

training the model. The cross validation process is then repeated k times, with each of 

the k subsamples used exactly once as the test data. The results are averaged to produce 

a single estimate [14]. There are other cross validation techniques (e.g. subject-wise 

cross validation, block-wise cross validation) which become more important depending 

on the intended application of the model. 

Model Selection.  

Evaluations of trained models are based on the performance metrics – accuracy, 

precision, recall and F1-score. A confusion matrix is a tabular description of the 

performance of the classification model on test data where the true classes are along one 

axis and the predicted classes are along the other axis – e.g. ideally confusion matrices 

should then be diagonal matrices. Many performance metrics can be derived based on 

the numbers in a confusion matrix. 

Accuracy is the number of correct predictions over all the predictions made by 

the model. Accuracy is a good measurement for selecting the model when the data are 

balanced across all the classes. When imbalanced, F1 score is a good alternative 



 
 
 

 
 

 
 

8 
measurement. It is a computed score from the precision and recall values. Recall is a 

measurement of correct predictions of a single class divided by the number of true 

instances of that class. Alternately, precision is the number of correct predictions of a 

single class divided by the number of predicted instances of that class. 

The activity classifier model is then selected based on the chosen performance 

metrics. Figure 2 shows the processes involved in creating an activity recognition model. 

FIGURE 2. Steps involved in generating an activity recognition model 
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CHAPTER II 
 

THE TODDLER ACTIVITY RECOGNITION EXPERIMENT 
 

Background and Motivation 
 

 Obesity is a major health risk affecting a substantial proportion of people in the 

Unites States. Obesity among children is a bigger concern, since studies have proven 

that childhood obesity leads to increased health risk in adolescence. Figure 3 shows the 

growth of obesity over the years in the United Stated among young children and adults. 

 

FIGURE 3: Line graph showing the growth in obesity in young children and adults over 
the years (National Health and Nutritional Examination Survey) 

 
 Physical inactivity contributes to obesity [9]. Studies conducted with children 5 

years of age showed that physically inactive children tend to follow the same physically 

inactive trajectory later in life. Hence it is imperative to measure, understand, and affect  

physical inactivity during childhood [10, 11]
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 Physical activity (PA) for children under 3 years of age is rarely studied. The 

objective of this project is to describe the development of PA behavior during 

toddlerhood by means of machine learning on wearable sensor signals. Machine 

learning-based activity recognition tends to show higher accuracy in activity recognition 

compared to more traditional techniques.  

Data Preparation for the Pilot Study  

Data was collected from 24 toddlers aged between 13 to 35 months. They were 

recruited among the users of a private indoor kid playroom located in Chicago. The age 

(13 to 35 months) and the ability to walk independently were the two criterion used 

while recruiting the toddlers. Data collection was conducted by the research staff of Ann 

& Robert H. Lurie Children's Hospital of Chicago.  

Toddlers were recruited with the intention of a representative sample of different 

sexes and races (Figure 4). 

 
 

FIGURE 4: Distribution of participants by race and sex 
 

Participants were fitted with two ActiGraph GT3X-BT accelerometers (30 Hz), 

one on the waist and the other on a wrist. Participants were encouraged by their 

caregivers to engage 10 different activities at least three times per activity, however 20 

different activities were annotated based on the observed behaviors. These activities 

included "lying down", "sitting", "standing", "crawling", "riding a ride-on toy car", 



 
 

 
 

11 
"walking", "climbing up and down", "running", "being carried by an adult", and "riding a 

stroller/wagon". The activities were video-recorded for later annotation. 

Accelerometer Data Collection 

 Toddlers wore the accelerometers on the waist and the wrist. Data from wrist 

worn and waist worn accelerometers were extracted and processed separately for final 

comparison. The accelerometer sensor captured acceleration at a rate of 30 Hz along 3 

axes. 

Toddler Activities 

 20 distinct activities (Table 1) were recorded. These activity types were grouped 

into three activity intensity categories – sedentary, light physical activity (LPA), and 

moderate to vigorous physical activity (MVPA) based on the anticipated intensity of the 

activity given the specific activity label. These three intensity levels are further grouped 

into active and inactive. Figure 5 shows the activity annotation hierarchy followed. 

 

FIGURE 5: Activity annotation hierarchy 
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Annotation of toddler activities 

 The physical activities of the toddlers were videotaped for later annotation by 

human observers. Each prescribed activity is annotated in the annotation file as a 

numeric code corresponding to the name of the activity. The annotation file contains the 

ID of the participant, start and end time of each activity, numeric code of the activity, 

and other useful information. The annotation file maps sensor signals to the physical 

activity completed by the toddler. Along with the numeric code of the activity performed 

by the toddler, the 3-level and 2-level groupings (explained in detail in Chapter 3) are 

also coded in separate columns. Figure 6 shows a sample of the annotation file compiled 

by the human coders. The entries in Table 1 show the numeric codes used to represent 

each activity in the annotation sheet. 

 
 

FIGURE 6: Annotation sheet for mapping the accelerometer signal data with the activity 
 

 

 

 

 

 
 
 
 
 

TABLE 1: The list of physical activities toddlers performed along with their numeric 
annotation codes 

 
 

Toddler Activities 
101-Run 
102-Walk 
103-Crawl 
104-Climb up 
105-Climb down 
106-Ride a ride-on toy 
107-Bouncing up and down 
201-Stand still 
202-Stand and move 
203-Transition from stand- walk 

204-Transition from walk-stand 
205-Transition from stand-sit 
206-Transition from stand-sit 
301-Sit 
302-Lie down 
303-Carried by adult 
304-Ride on a stroller 
305-Transition from lie-sit 
306-Transition from sit-lie 
307-Side down slide 
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Creation of Activity Recognition Model 

The first step in creating the activity recognition model is to convert the raw 

signal into an appropriate form for training the classifier through feature extraction. The 

accelerometer signal is comprised of a data in which the annotation file indicates a 

known activity, data when the annotation file indicates an unknown miscellaneous 

activity, and data which is not represented in the annotation file, such as during the 

placement or removal of the accelerometer.  

The annotation sheet is processed using a Python script to check for any manual 

coding errors during activity annotation. The invalid activity codes are ignored (e.g. 999, 

the code representing accelerometer shake time). Any activity codes that do not follow 

the annotation hierarchy are also ignored (e.g. when "running" is coded as a sedentary 

activity in the annotation sheet). 

Feature Extraction  

Accelerometer signal data is segmented into two second windows to generate 

enough samples for training the classifiers. Time domain and frequency domain features 

were extracted from the segmented clips.  

Twenty distinct activities are performed by the toddlers, and some of the 

activities annotated are transition activities (e.g. "transition from sit to stand", "sit to 

lie", "lie to sit", "sit to stand"). The transition activities are quick and are often complete 

in a few seconds. Samples taken from the accelerometer are only used for training if the 

entirety of the window falls in the same activity; therefore, to capture the signals 

corresponding to each activity, including the transition activities, the duration of the 

segmented clips was reduced to two seconds (i.e. 60 samples or a 2 second window) 
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Time domain features  

Statistical attributes are extracted from each axis (x, y, and z) and the magnitude 

of the signal. Statistical features from the cross correlation of axis x, y, and z (xy, yz, xz) 

are also generated to see any patterns in the binary combination of motion axes. A 

moving average of the signal in the x, y, and z axes is computed to smooth the signal to 

reduce the effect of noise in each axis.  Table 2 lists the 33 features extracted from the 

time domain. 

Description Features Variable Count 

Central tendency mean, median, standard deviation x, y, z 9 

Symmetry features skew, kurtosis x, y, z 6 

Range maximum, minimum x, y, z 6 

Magnitude derivate values skew, kurtosis, mean, median, 

maximum, minimum 

√(x2+y2+z2) 6 

Cross Correlation mean xy, yz, xz 3 

Noise noise x, y, z 3 

 
TABLE 2: Time domain features extracted from the signal 

 
Frequency domain features 

The fast Fourier transform (FFT) was used to convert the data into frequency 

domain. This is useful for quantifying the amount and frequency of periodic motion in 

the signal. Mean, median, standard deviation, maximum and minimum values are 

extracted from each axis in frequency domain. Table 3 lists all the 48 frequency domain 

features. 
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Description Frequency Features Variable Count 

Central tendency mean, median, standard deviation, 

weighted mean 

x, y, z 12 

Range maximum, minimum x, y, z 6 

FFT derivative value first 10 bins x, y, z 30 

 
TABLE 3: Frequency domain features extracted from the signal 

 
Model Training 

Each two second data clip is converted to the 81 features previously mentioned. 

The two second data samples were split into two data sets – training and test set in a 

70:30 ratio. The training set is used to build the models and select hyperparameters, 

and the test set is used to evaluate the trained model. 

81 features are extracted from each signal clip. The features most relevant for 

model construction were determined by feature selection. Random forest feature 

importance is used to rank features. Only the features which carried more than 25% 

importance are used for later model training. 

Model performance is improved by selecting the right choice of model 

hyperparameters. The optimized hyperparameters are selected using grid search cross 

validation within the training set. Once the optimal hyperparameters are chosen, the full 

training set is used with that hyperparameter choice for final training. The models were 

then evaluated using the remaining 30% of the test data set. 

Model Selection 

The performance of a classifier can be readily observed in the confusion matrix, 

which can be summarized with metrics such as accuracy. Note, metrics such as accuracy 



 
 

 
 

16 
can be misleading when there are a large number of classes, at it is more likely to 

mistake an activity when there are 20 alternatives rather than just 3 or 4. Random forest 

and decision tree had the highest accuracy. Hence random forest is used for most of the 

results presented later in this chapter. 

Hyperparameter tuning 

Classifier Hyperparameter Values 
K-nearest neighbors number of neighbors 1, 3, 5, 7, 9, 11, 13, 15 

SVM 
regularization parameter 1e-6, 1e-5, …, 1, …, 1e+3, 1e+4 
kernel coefficient 1e-6, 1e-5, …, 1e-1, …, 1e+3, 1e+4 

Logistic regression inverse of regularization 
strength  1e-5, 1e-4, …, 1e-1, …, 1e+3, 1e+4 

Decision tree 

min samples split 2, 4, 6, 8, 10 

min samples leaf 1, 5, 10, 15, 20 

max depth 10, 20, 30, 40, 50 

Random forest 
number of estimators 

10, 20, 30, 40, 50, 60, 70, 80, 
90, 100, 150, 
200,250,300,350,400 

    
TABLE 4: Hyperparameter grid searched values and (bold) values chosen for the final 

model 
 

Hyperparameters are selected for each classifier through grid search cross 

validation. The grids used and selected values for each of the classifier are listed in Table 

4. 10-fold cross validation within the training set was used to select the optimal 

hyperparameters. 

The logistic regression classifier was tuned with ridge penalty (l2 regularization). 

The SVM classifier optimum values for gamma and C were selected to avoid possible 

misclassification. The number of estimators provided a stable accuracy for the RF 
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classifier. Optimizing the three parameters for the decision tree classifier (max_depth, 

min_samples_leaf, min_samples_split) helped to prevent overfitting. 

Results 

Twenty separate activities were trained with the 5 classifiers – random forest, 

support vector machine, logistic regression, decision tree, and k nearest neighbors using 

the 81 features extracted from the signal data. The highest accuracy of 63.8% is achieved 

with the random forest classifier. Table 5 shows the accuracy achieved by all the 

classifiers; the classification was run separately on data from waist and wrist worn 

accelerometers.  

  
  

Random 
Forest 

SVM Logistic 
Regression 

Decision 
Tree 

K 
Nearest 

Waist 
Worn 

63.8% 58.8% 50.6% 58.6% 54.7% 

Wrist 
Worn 

41.2% 36.8% 30.5% 31.7% 30.6% 

 
TABLE 5: Overall accuracy of the activity recognition classification with 20 activities 

 
The confusion matrix in Figure 7 shows the predicted activity labels in the test 

data. The activities "bouncing up and down" and "slide down" do not appear on the 

confusion matrix due to the very short durations and thus lack of data for these 

activities.  

The waist worn accelerometer analysis performed consistently better than the 

wrist worn accelerometer, as has been observed in similar studies [12, 13]. As the waist 

worn accuracy was consistently higher, all later analyses are performed on the waist 

worn signal for clarity 
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FIGURE 7: Confusion matrix generated from the random forest classifier for the waist 
worn accelerometer 

 
Discussion 

The prediction accuracy is highly dependent on the number of classes, and their 

inherent similarities. There were activities which were similar in nature that led to 

misclassification and greatly affected the overall accuracy. The activity pairs like 

"transition from sit to stand" vs "transition from stand to sit", "carried by an adult" vs 

"ride on stroller", "stand move" vs "standing" were very similar activities in nature 

which in some other studies are grouped. Having these activities split can disadvantage 

this model with respect to overall accuracy. 
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FIGURE 8: The distinct activities plotted against time. The linear acceleration of the 
activities is shown in three different colors. 

 
Additionally, there are activities which intuition would suggest are very 

dissimilar, but on observation of the accelerometer signal we can expect they would be 

difficult to distinguish. Figure 8 shows the accelerometer data of different activities. In 

general, we observe clear differences between many activities, however, at the smaller 

timescales in 2 second windows, one can observe much more similarity than the labels 

suggest. Figure 9 adds markers to provide an alternate view on how the activities may be 

more similar at these smaller timescales. The activities "running", "walking", and "climb 

up" are generally more active movements compared to "sitting", "lie down", and "carried 

by adult"; however, when comparing across groups, we are able to mark similar signals 
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across all these activities. This similarity can lead to poor activity classification affecting 

the overall accuracy of the model. 

 

FIGURE 9: The distinct activities highlighting similar (2 purple and 7 gray) 2-second 
clips 

 
Stand-move: an ambiguous class 

 "Stand move" is an activity which strongly affects accuracy. The "stand move" 

activity from the name itself suggests components both active and inactive. When 

looking into the confusion matrix on Figure 10, it is clear that the activity "stand move" 

is confused with "walking", "standstill", and "sitting". Notably, when "stand move" is 

removed, the accuracy increases from 63.8% to 83.7% – in other words, a nearly 50% 

reduction in errors.  
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FIGURE 10: Confusion matrix derived from random forest classifier highlighting how 
"stand move" is misclassified 

 
Clustering 

This experiment has been conducted without grouping similar activities as is 

commonly done in activity recognition research – especially when researchers are 

seeking higher-accuracy results to report. However, with these many activities, finding a 

natural grouping is difficult, as intuitions may suggest one set of groupings, while the 

sensor data and accuracies may suggest another. To provide some insight into this next 

step, a clustering of the 20 distinct activities was performed. This was done by 

measuring the mean of each feature for each activity and generating a table. This table 

was used for hierarchical clustering, as shown in Figure 11. Additional unsupervised 
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learning approaches could be used to pursue a data-driven approach for selecting 

activity labels to be used in practice. 

 

FIGURE 11: Hierarchical clustering dendrogram from the feature values (mean) of the 

twenty activities 
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CHAPTER III 

ACTIVITY LEVEL CLASSIFICATION 
 

3-level classification: sedentary, light, and moderate 

The physical activities performed by the toddlers are summarized into various 

categories based on the perceived intensity level. The three levels studied here are 

sedentary, light physical activity (LPA), and moderate to vigorous physical activity 

(MVPA). MVPA activities generally require more oxygen consumption compared to the 

other activities. Activities which generally require very little effort are labeled into LPA. 

The below table categorized the 20 activities performed by the toddlers based on the 

intensity levels. Note, this 3-level classification is strictly determined by the observed 

activity label, and not as a separate judgement. For example, MVPA "riding on a ride-on 

toy" may be less active than some sedentary activities but given that label is it strictly 

MVPA here by definition. Similarly, "transitions from lie-sit" may involve a lot of 

movement but are considered sedentary in this labeling.  

 
TABLE 6: List of activities under each intensity category 

MVPA LPA Sedentary 

Run 
Walk 
Crawl 
Climb up  
Climb down 
Ride a ride-on toy 
Bouncing up and 
down 

Stand still 
Stand and move 
Transition from stand-walk 
Transition from walk-stand 
Transition from stand-sit 
Transition from stand-sit 

Sit 
Lie down 
Carried by adult 
Ride on a stroller 
Transition from lie-sit 
Transition from sit-lie 
Side down slide 
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The extracted sensor signal clips are matched to the intensity levels as defined by 

Table 6. A total of 8319 two second clips were generated for training the model. The 

model is then applied on the 3566 clips used for testing. The same 81 features for the 

activity classification were used for the activity level classification here. Figure 12 shows 

example accelerometer signals for each activity level. MVPA activities have larger 

magnitudes and faster changes in acceleration compared to LPA and sedentary.  

 
 
FIGURE 12: Activity level accelerometer signal examples for 3 levels – Sedentary, LPA, 

and MVPA 
 

Grouping of similar activities generally improved overall accuracy as there are 

fewer classes in which the classifier can mislabel. That is observed here with an 

improved accuracy over the 20 activity classifier, however, the improvement was 

modest. The random forest classifier performed best with an accuracy of 73.6% on the 

waist worn signal. The confusion matrix for the test data is shown in Figure 13. 

Moderate activities are misclassified as light physical activities more than sedentary. 

Sedentary activities were misclassified into light activities more often than moderate 

ones.  
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Random 
Forest 

SVM Logistic 
Regression 

Decision 
Tree 

K 
Nearest 

Waist 
Worn 

73.6% 69.0% 58.9% 69.2% 67.7% 

Wrist 
Worn 

56.7% 54.1% 47.7% 51.3% 50.1% 

 
TABLE 7: 3-level activity level classification accuracy 

 
FIGURE 13: Confusion matrix for the 3-level activity level classification 

 
This accuracy is lower than expected. One potential reason is the precision of the 

activity labels relative to the size of clips. Some labeled activities may be composed of 

sensor signals which can easily be confused on smaller timescales. This can be visually 

observed in Figure 14. The highlighted areas show similar fluctuations across activity 

levels. Even though all the activities are attributed correctly at longer timescales by a 

human observer, the sensor signals appear to indicate that within these labels, the 

intensity of motion may not match the intensity level based directly attributed to each 

activity type. Anecdotally, 4 seconds clips were tested instead of the 2 second clips 
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throughout this study. Accuracy did not show significant improvement, so altering clip 

size was not further studied, though this is a likely area of potential future work as larger 

clips sizes may be more appropriate for such high-level activity level summaries. 

 

FIGURE 14: 3-level activity level examples highlighting similarity 
 

2-level classification (inactive and active) 
 

The 2-level activity level classification grouped the activities into active and 

inactive. Table 8 lists all the activities under each grouping. The moderate and light 

intensity physical activities are classified as the "active" activity level and sedentary 

activities are grouped into the "inactive" activity level. 

 
TABLE 8: 2-level classification and the activities under each level 

Active Inactive 

MVPA LPA Sedentary 

Run 
Walk 
Crawl 
Climb up  
Climb down 
Ride a ride-on toy 
Bouncing up and 
down 

Stand still 
Stand and move 
Transition from stand-walk 
Transition from walk-stand 
Transition from stand-sit 
Transition from sit-stand 

Sit 
Lie down 
Carried by adult 
Ride on a stroller 
Transition from lie-sit 
Transition from sit-lie 
Side down slide 
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  The classifiers are trained with two second data clips. A total of 9731 clips were 

created for training the 5 classifier models. The model accuracy was 85.2% using 

random forest. As expected, all five classifiers had higher accuracies in this binary 

classification task compared to classification of more activities or activity levels. As with 

all the experiments conducted the waist worn accelerometer consistently performed 

better.  

Figure 15 shows example signals in both classification levels. The active class has 

observable bouts of vigorous and light movements because MVPA and LPA both fall 

under the active classification. Note however, a portion of the "active" example also has 

a window of little movement which would lead a clip-based activity recognition system 

to likely misclassify that portion of the signal as sedentary. The seemingly inaction 

portion of the clip is marked in gray colored lines 

 
FIGURE 15:  2-level activity level examples highlighting similarity 

 
The confusion matrix in the Figure 16 is generated by random forest classifier 

and as expected from the plot analysis we could see that some of the active clips are 

misclassified as inactive and vice versa. The Table 9 shows the accuracy of each 

classifier.  
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FIGURE 16: Confusion matrix for the 2-level activity level classification 

 

  
  

Random 
Forest 

SVM Logistic 
Regression 

Decision 
Tree 

K 
Nearest 

Waist 
Worn 

85.2% 83.2% 66.7% 83.1% 83.6% 

Wrist 
Worn 

78.2% 77.2% 74.2% 74.2% 73.3% 

 
TABLE 9: 2-level activity level classification accuracy



 
 

 
  

 

29 

  CHAPTER IV 
 

DISCUSSION: LIMITATIONS AND FUTURE WORK  
 

Limitations 

The large number of unique annotated activities studied here, and the variability 

of freely behaving toddlers created challenges in analysis. In comparison to instructed 

behaviors, natural freely-behaving activities of toddlers are very quick making it difficult 

to annotate and automatically categorize the activities accurately. To capture such short-

timescale activities the clip size was kept small, which led to difficulties in recognizing 

activities composed of multiple natural segments. Also, certain specific activities with 

mixed component signals (e.g. "stand move") significantly affect the accuracy of the 

model. These limitations are explained in detail as follows. 

Quick transitions in freely-behaving toddlers: Twenty labelled activities 

were performed by the toddlers, but many activities were very abrupt sometimes lasting 

only one second. This led to many times in which there was not sufficient time to create 

a clip for analysis. Quick transitions also led to difficulties in accurate timing in the 

annotation file and accurate syncing between the annotation file and the sensor signal 

data, likely contributing to error. Training the model with activities labeled incorrectly 

or mismatch in the timestamps captured by the device likely affects the overall 

performance of the model. Potential solutions are addressed in the next section – future 

work.
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Comparing models with different numbers of classes: Models with 

multi-class classifications performs poorer when compared to binary classifications, as 

there are more potential ways to misclassify an observation. It is challenging to compare 

accuracies between our models and other work as the number of activity classes varies 

widely. Also, the duration of the activities is not equally distributed in the data which 

changes the impact of each class on overall matrix. 

Separate classes that should be grouped: Some classes are inherently 

difficult to accurately classify due to the limitations of the accelerometer signal. For 

instance, the features of the activities "walk" and "stand-move" are similar and this leads 

to the misclassification of the walking activity. Similar to how "stairs up" and "stairs 

down" may simply be grouped as "stairs", it is sometimes beneficial to select activity 

groups based on perceived similarity according to the accelerometer readings. 

Ambiguous classes leading to poor performance: Additionally, ambiguity 

in the class definitions themselves can lead to more challenging activity recognition. For 

example, "stand-move" is one of the most miscategorized activities, in part because it is 

a combination of activities in smaller timescales. This leads to a persistent challenge for 

activity classification. For example, by removing "stand-move" the accuracy of the 

activity classifier (with now 17 activities) increases dramatically from 63.8% to 83.7% –

roughly half of the errors came from this single activity. Future efforts may involve 

redefining this activity during labeling. 

Clip size limitations: The models are trained with 2 second width data clips. 

The features present in such short clips likely do not well represent the signal over the 

entirety of an activity. This likely led to a great deal of the observed misclassification. 
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Future efforts would benefit from either using techniques which take into account 

information in neighboring clips, or from original activity labels which are more directly 

tied to movements of the device (e.g. never let "walking" have 2 second bouts of no 

movement). 

Syncing/shifting between annotation file and sensor signal: The 

annotation files labels each of the activities performed by the toddlers. The activities are 

videotaped and labeling of the activities are done manually by analyzing the video 

recorded. Any shift in the video clock will affect the timestamp of the data captured by 

the accelerometer. In this scenario, an activity labeled might not be the actual activity 

performed by the toddler. A small shift in the video start time will be reflected 

throughout the activities labeled using the same video clip. Although there were efforts 

to synchronize the clocks between the video and sensors during recording, there was no 

correction to the synchronization later during analysis, and this would likely result in 

improved accuracy, especially for activities with very short durations.  

Future Work 

A number of future improvements are possible – some are relatively 

straightforward choices that have been informed by this work, others are more extensive 

and reserved as future projects. Fixing the synchronization issues between the 

annotation file and accelerometer signal can increase the performance of the recognition 

model. Subject-wise cross validation is also expected for proper validation, and such 

analysis could also provide more information on which individuals may not have proper 

time synchronization between the annotation file and sensor data. Finally, we will 

discuss how much of activity recognition, being a sequential signal, is moving toward 
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using techniques which handle dependencies between segments of the signal; this 

suggests that dynamic state estimation techniques, such as hidden Markov models 

(HMM), would be the next reasonable direction to this research. 

Properly sync annotation file and sensor signals: The annotation file is 

used as the ground truth for labeling the toddler activity, and for the best accuracy it is 

critical to have proper clip labels. By having the annotation file clock differ from the 

sensor clock, even by one second, much of the analysis is tainted with impure data 

leading to inflated errors. This can be addressed in multiple ways. First, segmentation 

techniques could be used to estimate borders between activities in the sensor signals, 

and the matching between those borders and the annotation file could be done manually 

or programmatically. Second, data visualizations could be used to observe the 

timestamps of annotation compared to the sensor data to verify any shift in the 

timestamp in accordance with the annotation file. Third, average sensor features 

could be observed for each annotated activity, and with the proper shift the assumption 

is that sensor features would be more distinct for clearly disparate activities (e.g. 

"walking" vs "sitting"). Such sensor features could be plotted relative to shifts and used 

to establish the shift visually or programmatically. 

Combine appropriate activities: By combining similar activities and labeling 

them appropriately accuracy could be greatly improved. Activities such as "walk" and 

"stand-move", "moving in the stroller" and "carried by an adult", "stand-walk transition" 

and "walk-stand transition" are pairs of activities which should be combined and labeled 

as composite activities due to their similarity of features.
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Subject-wise cross validation: The accuracies obtained earlier are from 

pooled data from all 24 toddlers. However, this led to a single toddler having part of 

their movement data in the training set, and part in the test set. A more valid test of 

activity recognition in a practical sense would be to have separate subjects in training 

and testing – a subject-wise cross validation of the model. This way, the accuracy score 

obtained are more likely what is to be observed when a developed model is applied to a 

new toddler (as opposed to a toddler for which training data was previously collected). 

Test alternate clip sizes: Clip size was not thoroughly tested; 2-second clips 

were chosen due to opposing constraints, though many activity recognition studies use 

clips of 10 or even 15 seconds. Clips needed length of have sufficient variation in the 

signal for classification, however, if clips were too long entire movement classes (like sit-

to-stand) would not be adequately extracted for testing. This is partly due to the random 

movement of the toddler and partly due to the overall amount of data collected. 

Alternate clip sizes could be selected from the data pool and use for training the model 

instead, which may have dramatic impacts, especially in the case of activity level 

classification. 

Use dynamic state estimation models (e.g. HMMs): One major limitation 

of this approach is the clip-based classification strategy. When there is not enough 

information in a clip to make an accurate classification, it is beneficial to use 

neighboring classifications to improve accuracy. The techniques used here treat each 

clip in isolation, but this is clearly not the case. For example, it is more likely to see a 

"walking" clip after a "walking" clip rather than a "lie down" clip. And it is especially 

more likely to see a "sit" clip after a "transition from stand-sit" clip, but this model does 
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not take that into account. Future work would involve incorporating dynamic state 

estimation models, such as hidden Markov models, to more accurately capture the 

temporal nature of the data.   
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