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ABSTRACT

Two coronaviruses (CoVs)—severe acute respiratory syndrome (SARS) virus and 

Middle East respiratory syndrome (MERS) virus—have emerged in the 21st century from animal 

reservoirs into the human population, each causing an epidemic associated with significant 

disease and mortality. CoV epidemics are currently only controllable by rigorous public health 

measures; no targeted therapeutics or vaccines exist to treat or prevent any human CoV infection. 

One method of generating attenuated CoV strains to be studied as vaccine candidates involves 

specifically disrupting CoV-encoded interferon (IFN) antagonists, thereby rendering the virus 

vulnerable to host innate antiviral immunity. Deubiquitinating (DUB) activity encoded within 

CoV nonstructural protein (nsp) 3 and endoribonuclease (EndoU) activity encoded within nsp15 

are both reported to suppress IFN-mediated antiviral immunity during infection. Using murine 

hepatitis virus (MHV) as a model CoV, we generated viruses that encode enzymatically deficient 

forms of these proteins and have shown that EndoU-mutant- and DUB-mutant-MHV elicit 

significantly increased type I IFN responses relative to the parental wild type (WT) strain. 

However, despite similar patterns of IFN induction by both mutant viruses, we previously found 

that only the EndoU-mut virus is attenuated and does not cause detectable disease in mice, 

whereas DUB-mut-MHV is not attenuated in vivo and causes disease similar to WT-MHV. The 

purpose of this project was to investigate the host transcriptional response to infection with 

EndoU-mut-, DUB-mut-, and WT-MHV in primary murine macrophages using RNA-sequencing 

 (RNA-seq) technology to examine the cellular dynamics that underlie the remarkably distinct 

phenotypes of EndoU-mut- and DUB-mut-MHV infections in mice.
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The results of our RNA-seq experiments and subsequent bioinformatic analyses 

demonstrate that WT-MHV infection led to profound transcriptional dysregulation of hundreds 

of host genes, many of which encode proteins that are involved in inflammation, antiviral 

defense, signaling pathways, and transcription regulation. DUB-mut-MHV elicited a statistically 

indistinguishable transcriptional response of all but a select few genes relative to WT-MHV. In 

stark contrast, EndoU-mut-MHV-infected cells exhibited markedly diminished transcription of 

the vast majority of genes that were induced by DUB-mut- and WT-MHV, leading to a 

profoundly distinct transcriptional response overall. Both EndoU-mut- and DUB-mut-MHV 

induced significantly higher expression of multiple type I IFN isoforms relative to the WT virus, 

with the EndoU-mut strain prompting a dramatically higher IFN response than even the DUB-

mut virus. Together, the results of this work suggest that the induction of IFN alone is not a 

sufficient marker for mutant CoV attenuation or of widespread dysregulation of host gene 

expression in the context of studying interferon antagonist-deficient coronavirus strains; rather, 

the magnitude and timing of IFN expression are critical. We conclude that there is a threshold of 

interferon expression that must be crossed before a host macrophage mounts a differential 

response to an IFN antagonist-deficient coronavirus that is capable of limiting the infection. 

Furthermore, we propose that MHV encodes a hierarchy of IFN antagonists that suppress and/or 

evade the host immune response in different ways and to different degrees. The results of this 

project advance what is known about how coronavirus-encoded IFN antagonists fine-tune the 

host response to viral infection and we hope that this work will guide future studies involving 

interferon antagonist-deficient coronaviruses being evaluated as vaccine candidates.
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CHAPTER I

BACKGROUND

Coronaviruses Are Important and Diverse Pathogens

Recent outbreaks of the Middle East respiratory syndrome (MERS) virus (2012-present) 

and the severe acute respiratory syndrome (SARS) virus (2002-2004) demonstrated that 

coronaviruses (CoVs) can emerge from animal reservoirs to pose significant threats to human 

populations worldwide. Four other CoVs—HCoV-229E, -OC43, -NL63, and -HKU1—are 

known to infect the human population and generally cause relatively mild, self-limiting cold 

symptoms in immunocompetent individuals but can lead to lethal disease in children and 

immunocompromised or immunosuppressed patients (Dijkman and van der Hoek 2009; Gaunt et 

al. 2010). Both SARS-CoV and MERS-CoV cause highly lethal respiratory disease in their 

hosts: about 35-40% of patients infected with MERS-CoV, and about 10% of patients infected 

with SARS-CoV, died during the course of each respective outbreak (Hui et al. 2014). 

Importantly, these epidemics were controlled only by virtue of public health initiatives and strict 

quarantine protocols. At present, no vaccines or specific antivirals are available for the 

prevention or treatment of any CoV infection, which is cause for concern given the possibility of 

a novel, lethal CoV akin to SARS-CoV or MERS-CoV emerging into the human population in 

the future. Without such therapies, the human immune system alone seems to be inherently 

inefficient in staving off CoV replication and pathogenesis, rendering the host vulnerable to 

severe coronaviral disease (Perlman and Netland 2009; de Wit et al. 2016).



17

Depicted in Figure 1 is a phylogenetic tree of 50 CoVs within the Coronavirinae 

subfamily of the Coronaviridae order. All of these viruses assemble into virions that share the 

same basic structural morphology, which features a “corona” (halo) of spike (S) proteins for 

which the family is named (Figure 2) (Almeida and Tyrrell 1967; Virology: Coronaviruses 

1968). The Coronaviridae subfamily includes, in addition to human-tropic viruses, a host of 

other CoVs that infect and cause disease in a variety of animal species, including cattle, swine, 

mice, cats, and others. Several of these animal CoVs, such as bovine coronavirus (BCV) and 

porcine epidemic diarrhea virus (PEDV), wreak economic havoc on the agriculture industries of 

developed nations like China and the United States by causing infections and fatalities among 

millions of calves and piglets (Cho and Yoon 2014; Lee 2015; Sunniva Oma et al. 2016). Other 

animal CoVs—feline infectious peritonitis virus (FIPV), for example—are important veterinary 

viruses because they cause untreatable and often lethal infections in animals that are kept as pets 

(Pedersen 2014). Murine hepatitis coronavirus (MHV), which is in the same genus as SARS- and 

MERS-CoV and is commonly used in biomedical research as a mouse model for human CoV 

infections, is used in the study described herein. Collectively, several members of the 

Coronaviridae subfamily pose serious threats to human populations due to their abilities to act as 

direct human pathogens (SARS-CoV, MERS-CoV, etc.), impact our food supply by devastating 

the agriculture industry (BCV, PEDV, etc.), and even cause disease in our domesticated pets 

(FIPV). It is critical, therefore, that we study how these viruses interact with their hosts and 

identify the factors that make them such successful pathogens throughout the animal kingdom. 

The ultimate goal of such research is to develop vaccines and targeted antivirals that we can use 

to protect ourselves from current CoV strains as well as from novel strains that may emerge in 

the future.
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Figure 1. Phylogenetic Tree of the Coronaviridae Subamily. Phylogenetic tree depicting 50 
CoVs, organized by genus (-, -, -, and -CoVs) and lineage (-CoV A, B, C, and D). This 
tree was constructed by Chan et al. (2015) based on partial nucleotide sequences of the RNA-
dependent RNA polymerase encoded by each virus. The scale bar represents the degree of 
sequence identity—via the estimated number of substitutions within the RdRp per 20 
nucleotides—as a measure of relationship between viruses. Red arrows denote the 6 CoVs that 
infect humans; black arrow denotes the murine hepatitis virus (MHV) that was used as a model 
CoV in the experiments described herein. Modified with permission from Chan et al. (2015).
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Figure 2. Typical Structure of a Coronavirus Virion. Coronaviruses form spherical, 
enveloped virions, each of which encloses a single copy of the positive-sense single-stranded 
RNA (ssRNA) viral genome. Encapsulating and protecting the viral genome are nucleocapsid 
(N) proteins. Viral envelope (E), membrane (M), and spike (S) proteins integrate into the host-
derived envelope. S proteins form a “crown” around each virion that is readily discernible by 
electron microscopy. Used with permission from Perlman and Netland (2009).

The Type I Interferon Response

One key factor that contributes to the inefficient human immune response to CoV 

infections, and therefore to the success of coronaviruses as pathogens, is the impressive ability of 

these viruses to evade and/or antagonize the type I interferon (IFN) response, an antiviral process 

that falls under the umbrella of innate immunity (Perlman and Netland 2009; Zhou et al. 2014; 

de Wit et al. 2016). Type I IFNs, which include IFN- and IFN-, are signaling molecules that 
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act as a first line of defense against viral pathogens and some non-viral intracellular infections 

(Bogdan et al. 2004; Ivashkiv and Donlin 2014). These cytokines are expressed by a variety of 

cell types in response to the detection of pathogen-associated molecular patterns (PAMPs) by 

cellular pathogen recognition receptors (PRRs), as illustrated in Figure 3. For the recognition of 

viruses, relevant PRRs include Toll-like receptors (TLRs) 3, 7/8, and 9; RIG-I-like receptors 

(RLRs) RIG-I and MDA-5; and the protein kinase R (PKR) and 2′-5′ oligoadenylate synthetase 

(OAS)/RNase L systems (Hsu et al. 2004; Thompson et al. 2011). These receptors, which are 

shared between mice and humans, recognize 3 main types of viral PAMPs: double-stranded 

RNA (dsRNA), single-stranded RNA (ssRNA) in endosomes, and cytoplasmic DNA. Upon 

activation by PAMPs, many PRRs initiate signaling pathways that culminate in the induction of 

IFN and other genes. Shown in Figure 3, once IFNs are translated, cleaved, and secreted, they act 

in an autocrine and paracrine manner to induce an antiviral state within infected and neighboring 

cells through signaling pathways that terminate in the expression of antiviral IFN-stimulated 

genes (ISGs) (Haller et al. 2006; Ivashkiv and Donlin 2014). The canonical signaling pathway 

for the type I IFNs through the interferon- receptor (IFNAR) is depicted in Figure 4. Many of 

the ISGs and inflammatory genes that are expressed as a consequence of IFN signaling restrict 

the virus by impeding the replication and expression of the viral genome, halting translation, 

inducing apoptosis, initiating inflammation, and a number of other processes that collectively 

combat the viral infection (Haller et al. 2006; Schoggins and Rice 2011; Schneider et al. 2014). 

Type I IFNs are also crucial activators of innate immune cells like macrophages and natural 

killer cells, which participate in coordinating the immune response, phagocytosing apoptotic 

virus-infected cells, and killing virus-infected cells (Fujimoto et al. 2000; Paolini et al. 2015). 
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Finally, type I IFNs can enhance the adaptive immune response to viral infections by augmenting 

the functions of B and T cells (Ivashkiv and Donlin 2014).

Figure 3. The type I IFN Response to Viral Infection. The IFN response is initiated when viral 
pathogen-associated patterns (PAMPs) are detected by host pattern recognition receptors (PRRs) 
(red arrows) in infected cells. Upon activation of PRRs, non-immune cells such as epithelial cells 
and fibroblasts (top left) express and secrete type I IFN- (yellow circles), which act as signaling 
molecules in a paracrine and autocrine fashion to induce an antiviral state within infected and 
uninfected host cells. This antiviral state is achieved as a consequence of IFN signaling, which 
induces the expression of IFN-stimulated genes (ISGs) that act in a variety of ways to counteract 
the viral life cycle. Additionally, immune cells such as macrophages and dendritic cells (DCs) 
(bottom) secrete large amounts of type I IFN- and IFN- (orange and yellow circles, 
respectively) upon PRR activation, which contribute to the innate and adaptive antiviral response 
by inducing the expression of ISGs in host cells, increasing the production of chemokines to 
attract antiviral immune cells including macrophages and natural killer cells, and enhancing the 
activities of B and T cells. Modified with permission from Ivashkiv and Donlin (2014).



22

Figure 4. Canonical Type I IFN Signaling Pathway through the IFN- Receptor. Type I 
IFN- and IFN- bind the type I IFN- receptor (IFNAR) on infected and uninfected cells and 
initiate signaling cascades that terminate in the expression of ISGs (OAS, MX1, IRF1, etc.), 
inflammatory molecules (CXCL9, etc.), and regulators of the inflammatory response. Shown are 
the 3 primary signaling cascades that comprise the canonical type I IFN signaling pathway. Used 
with permission from Ivashkiv and Donlin (2014).

In summary, the type I IFN response lies at the foundation of our bodies’ ability to 

combat a viral infection. It is therefore no surprise that many viruses, including CoVs, have 

evolved a variety of means to escape, dysregulate, and/or antagonize the IFN induction and 
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signaling pathways at various points in order to ensure that their replication and dissemination 

within the host remain unchecked (Schulz and Mossman 2016). Figure 5 illustrates a number of 

known strategies, many of which are achieved by CoV proteins (indicated with red arrows), that 

viruses employ to counteract the induction of IFN expression. It is critical that we study the 

diverse mechanisms through which CoVs disrupt the antiviral innate immune response so that 

we might guide the development therapeutics and vaccines that can be used to enhance the 

ability of our immune system to successfully clear a coronaviral infection.
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Figure 5. Viral Strategies for Evading and Antagonizing IFN Induction. Most viruses 
encode at least one factor that acts to antagonize and/or evade the activation of the signaling 
pathways that initiate the expression of type I IFN (grey circles) during infection. Shown are 
some of these viruses, including several coronaviruses and CoV-encoded factors (indicated with 
red arrows), and the respective step(s) at which they act to suppress the induction of IFN. 
Modified with permission from Schulz and Mossman (2016).

CoV-encoded IFN Antagonists

Coronaviruses are particularly successful at potently dysregulating the IFN and 

subsequent ISG responses during infection, thereby enabling these viruses to evade clearance by 

the host’s immune system (Cheung et al. 2005; Frieman et al. 2009; Menachery et al. 2014; 

Deng et al. 2017; Kindler et al. 2017). In particular, it is increasingly clear that CoVs delay the 

IFN and ISG responses during infection, which ultimately contributes to unchecked viral 
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replication and the development of disease (Menachery et al. 2014; Channappanavar et al. 2016). 

In their study using a mouse-adapted strain of human SARS-CoV, Channappanavar et al. (2016) 

found that treating SARS-CoV-infected mice with exogenous type I IFN early during infection at 

6 hpi completely protected the mice from weight loss and clinical disease, whereas infected mice 

treated with type I IFN at 24 hpi experienced weight loss and succumbed to clinical disease at 

the same rate as untreated infected mice. These results, which are depicted schematically in 

Figure 6, demonstrated that the timing of the IFN response is critical in determining the outcome 

of a CoV infection and suggest that CoVs are capable of delaying IFN expression until a point in 

time when it is no longer sufficient to curb viral replication or clinical disease. Therefore, 

understanding the mechanism(s) by which CoVs achieve this delay in the IFN response might 

reveal strategies for combatting coronaviral disease.
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Figure 6. CoVs Delay the Type I IFN Response. (Bottom) Mice infected with a mouse-adapted 
strain of SARS-CoV exhibited a delay in the induction of the type I IFN response (blue curves) 
during infection, which contributed to high viral titer (green curves) and lethal disease (orange 
curves). (Top) Treatment of SARS-CoV-infected mice with type I IFN early during infection led 
to an earlier type I IFN response, which in turn was associated with moderately reduced viral 
titer, significant reduction in clinical disease, and mouse survival. This experiment suggests that 
CoVs delay the type I IFN response during infection, thereby identifying coronavirus-mediated 
IFN antagonism as a target for the development of vaccines and antiviral therapeutics. Modified 
with permission from Channappanavar et al. (2016).

Coronaviruses possess the largest genomes of all RNA viruses (ranging from 

approximately 27-32 kilobases, depending on the particular virus), which encode many structural 

and nonstructural proteins (nsps), as illustrated for MHV in Figure 7 (Gorbalenya et al. 2006). 

Many CoV-nsps are known to participate in the replication process of the virus, depicted in 

Figure 8, as components of viral replication complexes within virus-induced double-membrane 

vesicles (DMVs) (Gosert et al. 2002; Knoops et al. 2008). Previous studies from our lab and 

Moderately reduced viral titer

Reduced disease

High viral titer

Lethal disease
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other groups revealed that several murine and human coronavirus structural and nonstructural 

proteins, albeit encoding markedly different enzymatic and structural properties, also participate 

in IFN antagonism during infection (Frieman et al. 2009; Schulz and Mossman 2016; Deng et al. 

2017; Kindler et al. 2017). Two of these proteins—nsp3 and nsp15—were the focus of the 

project herein using MHV-A59 as a model coronavirus.

Figure 7. Schematic diagram of EndoU-mut, DUB-mut, and WT-MHV genomes. Illustration 
of the annotated genomes for WT-MHV A59 parental strain (Top), EndoU-mut- (Middle), and 
DUB-mut-MHV (Bottom). Structural, nonstructural, and accessory proteins are colored salmon, 
green, and blue, respectively. Mutations in EndoU-mut- and DUB-mut-MHV are listed below 
the target nsps (red boxes). Modified with permission from Deng et al. (2017).
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Figure 8. Life Cycle of a Typical CoV. Coronaviruses bind their respective cellular receptors 
via their S proteins (pink, top left). Upon entering the host cell by endocytosis, the viral envelope 
fuses with the membrane of the host endosome, releasing the viral genome. The genome is 
subsequently translated by host machinery into viral polyproteins pp1a and pp1ab, which are 
then cleaved into their constituent nsps by viral proteases (center left). The nsps comprise the 
viral replicase machinery (in the form of replication complexes), which is housed in host-derived 
DMVs (center bottom). Replication complexes coordinate transcription of the positive-sense 
viral genome into negative-sense RNAs, which are then either replicated and packaged into 
virions to be released as infectious particles (right), or reverse-transcribed into a nested set of 
subgenomic mRNAs (a unique hallmark of nidovirus replication for which the Nidovirales order 
is named) to be translated into viral structural proteins (center). Note that the positioning of the 
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viral membrane proteins in the ER should be inverted, such that the ectodomains of the proteins 
should protrude into the ER lumen. Used with permission from de Wit et al. (2016).

Nsp3-DUB.

The nsp3 of MHV contains multiple functional domains with different enzymatic 

properties, including two papain-like protease (PLP) domains that are known to be critical for 

viral replication by cleaving the viral polyprotein into some of its constituent nsps (Ziebuhr et al. 

2000; Mielech, Chen, et al. 2014; Chen et al. 2015; Lei et al. 2018). Other coronaviruses like 

PEDV and HCoV-NL63 also contain two PLPs (PLP1 and PLP2) within their nsp3s, whereas 

SARS-CoV and MERS-CoV only encode a single PLP domain (PLpro) in their respective nsp3 

genes (Mielech, Chen, et al. 2014). In 2005 Sulea et al. published sequence homology data 

revealing that, in addition to its known protease activity, SARS-PLpro exhibited striking 

resemblance to known cellular deubiquitinase (DUB) herpesvirus-associated ubiquitin-specific 

protease (HAUSP, aka USP18). Shortly thereafter, two groups independently demonstrated that 

SARS-PLpro was indeed capable of deubiquitinating K48- and K63-linked polyubiquitin chains 

and showed that this DUB activity was dependent on catalytic residues within the protease 

domain (Barretto et al. 2005; Lindner et al. 2005). Deubiquitinating and deISGylating activities 

have since been reported in PEDV, HCoV-NL63, MERS-CoV, MHV, and other coronaviruses 

(Zheng et al. 2008; Frieman et al. 2009; Clementz et al. 2010; Xing et al. 2013; Mielech, 

Kilianski, et al. 2014). It is well-established that ubiquitination and deubiquitination of many 

proteins are critical post-translational modifications involved in the regulation of multiple innate 

immune pathways, including IFN induction and signaling pathways (Bibeau-Poirier and Servant 

2008; Bhoj and Chen 2009; Fuchs 2012; Heaton et al. 2016). As such, an intriguing possibility is 

that the DUB activity of MHV-PLP2 deubiquitinates host factors in one or more of these 

pathways to disrupt the IFN response during infection.
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That a coronavirus-encoded DUB might disrupt innate immune signaling pathways is not 

without precedent in nature; PLPs from several arteriviruses (which, along with CoVs, 

mesoniviruses, and roniviruses, comprise the Nidovirales order) have also been shown to 

antagonize the IFN response (Frias-Staheli et al. 2007; Sun et al. 2010; van Kasteren et al. 

2012). However, whether or not CoV-encoded DUB activity contributes to suppression and/or 

evasion of antiviral immunity during infection remains unclear. For example, Wang et al. (2011) 

reported that MHV-PLP2 deubiquitinates TBK1, an important kinase involved in IRF3-mediated 

IFN induction, and Xing et al. (2013) demonstrated that PEDV-PLP2 deubiquitinates RIG-I and 

STING, two classic antiviral sensors that induce the expression of type I IFN. These studies 

point to a clear role for CoV-encoded DUBs as IFN antagonists. In contrast, Clementz et al. 

(2010) demonstrated that HCoV-NL63-PLP2 inhibits RIG-I- and TLR3-dependent induction of 

IFN even in the absence of catalytic activity and that SARS-PLpro does not require catalytic 

activity to inhibit IRF3- or NF-B-dependent reporters. Mielech and Kilianski et al. (2014), on 

the other hand, concluded that catalytic activity is required for MERS-PLpro-mediated inhibition 

of a MAVS-induced IFN reporter and a nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-B) reporter and that SARS- and MERS-PLpro both inhibit the expression of other 

pro-inflammatory cytokines. These seemingly contradictory reports could indicate that there 

exist strain-specific differences between coronavirus DUBs; they might also be explained at least 

in part by the distinct experimental procedures used by each group. Nevertheless, this evolving 

body of work strongly suggests that at least some CoV-PLPs antagonize innate immunity and 

implicates DUB activity as a potential IFN antagonist, invoking the need for additional research 

to further investigate this possibility.
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Nsp15-EndoU.

Recent work involving another coronavirus IFN antagonist, nsp15, has shown that it is 

associated with viral replication complexes during infection but, unlike nsp3, is not strictly 

required for the production of virus progeny (Deng et al. 2017; Kindler et al. 2017). Structural 

data and in vitro studies first indicated that nsp15 is an endoribonuclease that forms oligomers 

that recognize and cleave ss- and dsRNA species, with particular affinity for the 3’-ends of 

uridylates (Ivanov et al. 2004; Bhardwaj et al. 2006; Ricagno et al. 2006; Kang et al. 2007). 

Notably, the presence of an endoribonuclease (EndoU) domain is a genetic marker that is 

uniquely conserved among the vertebrate-infecting members of the Nidovirales order (but is 

apparently absent in several recently-characterized arthropod nidoviruses), potentially rendering 

it an excellent target for broad-spectrum rational vaccine design and antiviral therapies (Ivanov 

et al. 2004; Nga et al. 2011; Deng and Baker 2018). However, like nsp3-DUB activity, the role, 

mechanism(s), and specific target(s) of nsp15-EndoU activity during coronavirus infection are 

unclear. Some groups have reported that the preferred target of EndoU is ssRNA, while others 

demonstrated a preference for dsRNA (Bhardwaj et al. 2004; Ivanov et al. 2004). Recently, we 

and others showed that MHV-EndoU co-localizes with dsRNA within replication complexes and 

that infection with a mutant MHV strain encoding a catalytically-inactive EndoU resulted in 

increased accumulation of cytosolic dsRNA, collectively implicating dsRNAs—obligate 

intermediates in the replication of positive-sense RNA viruses—as the primary targets of EndoU 

(Deng et al. 2017; Kindler et al. 2017). These studies also provided compelling data to suggest 

that at least one role for EndoU activity during infection is to suppress the type I IFN response 

and limit apoptosis in macrophages in a manner that involves evasion and/or antagonism of host 

sensing by RIG-I, MDA-5, and the PKR and OAS/RNase L systems (Deng et al. 2017; Kindler 
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et al. 2017). Thus, nsp15-EndoU is one of the newest additions to the ever-growing list of CoV-

encoded IFN antagonists. 

IFN Antagonists Are Compelling Targets for Rational Vaccine Design

Due to its critical roles in initiating and mediating the innate antiviral response and even 

priming adaptive antiviral immunity, IFN induction and signaling must be antagonized and/or 

evaded by viruses in order for them to replicate and spread efficiently, a requirement that has led 

to the evolution of numerous strategies for IFN suppression in most viruses (Figure 5) (Haller et 

al. 2006; Schoggins and Rice 2011; Ivashkiv and Donlin 2014; Schulz and Mossman 2016). 

Because of this relationship between host immunity and viral antagonism, virus-encoded IFN 

antagonists like nsp3-DUB and nsp15-EndoU are appealing targets for the rational design of 

CoV vaccine strains. In addition to their roles as IFN antagonists, nsp3-DUB and nsp15-EndoU 

activities are ideal candidates for targeted vaccine design because they are conserved among 

most known nidoviruses, including the highly pathogenic SARS- and MERS-CoVs (Ivanov et al. 

2004; Mielech, Chen, et al. 2014). A universal approach to generating live-attenuated versions of 

current and future CoVs might therefore be achieved by specifically disrupting conserved viral 

proteins like nsp3-DUB and nsp15-EndoU, thereby allowing for the rapid development of 

vaccines to protect against novel emergent strains. Conceptually, if the ability of a virus to evade 

and/or suppress the antiviral response can be disrupted without abrogating virus replication in 

vitro—an important requirement for vaccine production—perhaps such a live-attenuated virus 

will elicit a sufficient and appropriate immune response that will restrict its replication in vivo 

without causing disease and spur the induction of immunological memory that is protective 

against infection by the wild type strain. Notably, the logic of this strategy is supported by the 

results of the study shown in Figure 6, which suggested that manipulating the IFN response such 
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that IFN signaling occurs earlier during SARS-CoV infection might be sufficient to attenuate the 

virus without causing clinical disease (Channappanavar et al. 2016). The possibility of 

generating live-attenuated virus strains by deleting or disrupting virus-encoded IFN antagonists 

is currently being studied for a number of viruses, including MHV, MERS-CoV, SARS-CoV, 

Nipah virus, measles virus, Sindbis virus, West Nile virus, respiratory syncytial virus, and 

influenza A virus (Talon et al. 2000; Laurent-Rolle et al. 2010; Simmons et al. 2010; Yoneda et 

al. 2010; Devaux et al. 2011; Teng 2012; Deng et al. 2017; Menachery, Gralinski, et al. 2017; 

Du et al. 2018; Menachery et al. 2018). Indeed, recent studies involving IFN antagonist-deficient 

strains of influenza A virus are in the proof-of-concept stage and have shown remarkable 

promise in the lab, demonstrating the potential for IFN antagonist-deficient viruses as live-

attenuated vaccines in vivo (Du et al. 2018).

EndoU-mut- and DUB-mut-MHV Vaccine Candidates.

Using a mutant strain of MHV that encodes a histidine to alanine substitution (H262A) in 

the catalytic triad of nsp15-EndoU, illustrated in Figure 7, we recently demonstrated the utility of 

EndoU activity as a target for vaccine design. The replication of EndoU-mut-MHV was 

profoundly attenuated in vitro in normal murine BMDMs but exhibited WT-like replication 

kinetics in macrophages that were deficient in type I IFN signaling; accordingly, we also found 

that this strain elicited robust expression of type I IFN during infection of wild type macrophages 

(Deng et al. 2017). Furthermore, EndoU-mut-MHV was strikingly attenuated in vivo (Figure 9) 

and inoculated mice were protected from disease upon subsequent challenge with the parental 

strain (Deng et al. 2017). In unpublished data from a manuscript in preparation, we also found 

that a different mutant strain of MHV encoding an aspartate to alanine substitution (D250A, 

Figure 7) that impairs the DUB—but not the protease—activity of MHV-PLP2 also induced 

earlier and more robust expression of type I IFN than the parental strain. We were surprised, 
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therefore, when subsequent in vivo studies using this DUB-mutant-MHV reproducibly resulted in 

no statistically significant difference in mortality or clinical pathology in mice compared with 

infection using the WT parental strain (Deng et al. manuscript in preparation) (Figure 9). That 

two distinct MHV mutants, each encoding a different catalytic mutation in a different IFN 

antagonist, both amplified IFN expression during infection but were associated with dramatically 

different responses in vivo suggests that the mere induction of type I IFN during infection is not a 

sufficient marker for an effective live-attenuated coronavirus vaccine strain. Additionally, these 

data preliminarily indicate that nsp15 is capable of dysregulating the host response to a greater 

extent than nsp3, suggesting that CoVs encode a hierarchy of IFN antagonists that work in 

concert to modulate antiviral immunity at multiple steps. In the work described herein, we sought 

to determine how a host cell responds differently to EndoU-mut- and DUB-mut-MHV infections 

at the level of transcription in order to better understand the dynamics that might explain the 

distinct outcomes of infection with these mutant strains that we observed in vivo.

Figure 9. Infection with DUB-mut- or EndoU-mut-MHV Leads to Distinct Responses in 
Mice. (Left) Mice inoculated intracranially with 600 pfu of DUB-mut- or WT-MHV all 
succumbed to infection by 9 days-post infection. Used with permission from Deng et al., 
manuscript in preparation. (Right) Mice inoculated intracranially with 600 pfu of EndoU-mut-
MHV all survived infection compared with WT-MHV-infected mice. Modified with permission 
from Deng et al. (2017). (Both panels) Mouse numbers for each group are indicated in 
parentheses. Data are representative of at least two independent experiments.
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Utilizing RNA-sequencing to Study CoV-infected Cells and Tissues

To investigate the factors that might contribute to the differential outcomes of in vivo 

infection with EndoU-mut- and DUB-mut-MHV (Figure 9), we applied RNA-sequencing (RNA-

seq) to primary murine bone marrow-derived macrophages (BMDMs) infected with EndoU- 

mut-, DUB-mut, or WT-MHV to obtain a profile of the transcriptional responses elicited by each 

virus. Other groups have sequenced the transcriptomes of non-immune CoV-infected cell types 

infected using microarrays or RNA-seq, obtaining results that collectively suggest that the cell 

type and identity of the infecting virus largely dictate the transcriptional response to coronavirus 

infections. Table 1 outlines the major findings from a number of these published studies in 

various cell and tissue types. Given that the 6 known human CoVs most commonly cause 

respiratory disease in their hosts, RNA-seq or microarray experiments involving coronaviruses 

are most commonly performed in cells derived from lung and airway tissues such as Calu-3 cells, 

A549 cells, LA-4 cells, HAE cells, lung tissue homogenates, trachea tissue homogenates, among 

others (see Table 1 for references). Another common cell type used in transcriptomic studies of 

CoV infections is the fibroblast (17Cl-1 cells, MEFs, L cells, etc.) (Table 1). Notably, in 2005 

Cheung et al. published the only paper of which we are aware in which full transcriptome 

sequencing (using microarray technology) was applied to CoV-infected macrophages (see Table 

1); however, this publication only contains the microarray data for 35 genes at a single, early 

timepoint (3 hpi). The authors revealed that, although SARS-CoV did not induce the expression 

of any type I IFN gene by 3 hpi, the infected macrophages expressed appreciable amounts of 

several chemokines that are known to be important in the context of inflammatory disease, 

thereby implicating macrophage activity in SARS-CoV pathogenesis. Despite the important 

contributions that these studies have made toward our understanding of CoV-induced 
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transcriptional changes, the striking lack of transcriptomic data from CoV-infected primary 

macrophages over multiple timepoints renders a large gap in what is known about how the innate 

immune system responds to these infections. What are the consequences of coronavirus-

mediated IFN antagonism in the very cells that represent a first line of cellular defense against 

the viral infection?



Cell or Tissue 
Type(s) Coronavirus(es) Major Finding(s) Reference

17Cl-1 (mouse 
fibroblast) cells

MHV-A59 MHV induced an unfolded protein response (UPR) and host 
translation shutoff within the first 8 hours post-infection (hpi).

Irigoyen et al., 
preprint (2018)

mouse lung tissue 
homogenates

SARS-CoV WT-SARS-CoV and a mutant SARS-CoV lacking its nsp16 
(Δnsp16) induced similar global transcriptional responses thru 2 
dpi. By 6 dpi, the host response to Δnsp16-SARS-CoV was 
markedly diminished relative to the WT parental strain.

Menachery et al., J 
Virol (2018)

chicken kidney tissue 
homogenates

IBV-SCDY2; 
IBV-SCK2; 

IBV-LDT3-A

Virulent IBV upregulated the expression of apoptosis genes and 
downregulated the expression of innate immune response and 
cellular metabolism genes by 5 and 6 dpi.

Liu et al., Microb 
Pathog (2017)

Calu-3 (human lung 
epithelium) cells; 
human airway 
epithelial (HAE) cells 

MERS-CoV MERS-CoV lacking ORFs 3-5 dysregulated host responses by 24 
hpi, marked by the induction of IFN and robust inflammation.

Menachery et al., 
mBio (2017)

Calu-3 cells MERS-CoV; 
SARS-CoV

The absence of SARS- and MERS-CoV-encoded 2’-O-
methyltransferase (2’O-MTase) activity during infection yielded 
significant transcriptional changes thru 24 and 72 hpi, 
respectively, relative to WT infections.

Menachery et al., 
mSphere (2017)

A59 (human 
adenocarcinomic 
alveolar basal 
epithelium) cells; 
HuH7 (hepatocellular 
carcinoma) cells

HCoV-229E HCoV-229E fine-tuned NF-κB signaling, inducing NF-κB-
dependent and independent gene expression, and reprogrammed 
the host’s chromatin landscape thru 2 dpi.

Poppe et al., PLOS 
Pathog (2017)
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Cell or Tissue 
Type(s) Coronavirus(es) Major Finding(s) Reference

LA-4 (murine lung 
epithelium) cells

MHV-1 MHV infection had a limited impact overall on the host 
transcriptome and only minimally upregulated the expression of 
IFNs and ISGs by 24 hpi.

VanLeuven et al., 
PLOS ONE (2017)

mouse lung tissue 
homogenates

SARS-CoV By 9 dpi, several genes associated with wound healing and 
fibrosis were differentially expressed in the lungs of STAT1-/- 
mice and mice in which EGFR (epidermal growth factor receptor) 
is constitutively active.

Venkataraman et 
al., J Virol (2017)

mouse lung tissue 
homogenates

MERS-CoV MERS-CoV profoundly perturbed the expression of thousands of 
host genes by 7 dpi, impacting the immune response in a way that 
implicated T cell and macrophage recruitment during infection.

Coleman et al., J 
Virol (2017)

17Cl-1 cells MHV-A59 RNA-seq allowed for detailed profiling of the replication and 
translation kinetics of the MHV genome during the first 8 hpi.

Irigoyen et al.,  
PLOS Pathog 

(2016)

mouse lung tissue 
homogenates

SARS-CoV A number of immune response genes were differentially 
expressed upon SARS-CoV infection; the effects of Kepi and 
TNF expression were found to be of particular importance and 
were shown to oppositely impact pathogenesis.

McDermott et al., 
BMC Syst Biol 

(2016)

swine testis (ST) cells TGEV > 50 microRNAs, a number of which are immune-related, were 
found to be differentially expressed during infection.

Liu et al., PLOS 
ONE (2015)

marmoset lung tissue 
homogenates

MERS-CoV Pathways associated with chemotaxis, cell proliferation, 
fibrogenesis, inflammation, vascularization, endothelial 
activation, tissue repair, and others were upregulated thru 3-6 dpi 
in individual animals. No expression of type I IFN was observed.

Falzarano et al., 
PLOS Pathog 

(2014)
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Cell or Tissue 
Type(s) Coronavirus(es) Major Finding(s) Reference

mouse embryonic 
fibroblast (MEF) cells; 
mouse lung tissue 
homogenates

SARS-CoV Significant differential expression of > 5,000 lncRNAs occurred 
by 4 dpi upon infection of multiple strains of mice.

Josset et al., RNA 
Biol (2014)

Calu-3 cells MERS-CoV; 
SARS-CoV

Both MERS- and SARS-CoV delayed type I IFN and subsequent 
ISG responses.

Menachery et al., 
mBio (2014)

mouse lung tissue 
homogenates

SARS-CoV Thousands of novel transcripts were induced during SARS-CoV 
infection by 2 dpi; the induction of most of these transcripts was 
markedly diminished by 4 dpi.

Xiong et al., G3 
(Bethesda) (2014)

chicken kidney tissue 
homogenates

IBV Upon analysis 5 or 6 dpi, tissues exhibited significant differential 
expression of genes in multiple pathways. Regulation of > 100 
genes associated with inflammation was found to be particularly 
important during the response to infection.

Cong et al., BMC 
Genomics (2013)

ST cells TGEV TGEV lacking its gene 7 upregulated host genes involved in the 
immune response, the interferon response, and inflammation by 
12 hpi.

Cruz et al., J Virol 
(2013)

mouse spinal cord 
tissue homogenates

MHV-A59 Expression of several genes involved in osteoclast or bone-
resident macrophage function, as well as genes characterizing a 
Th1-biased cytokine/chemokine response, accompanied persistent 
MHV infection by 33 dpi.

Elliott et al., PLOS 
ONE (2013)

Crandell Rees feline 
kidney (CRFK) cells

FIPV FIPV infection significantly upregulated a handful of genes by 3 
hpi, the majority of which were associated with macrophage and 
Th1 cell functions and the regulation of apoptosis.

Harun et al., Virol 
J (2013)

39



Cell or Tissue 
Type(s) Coronavirus(es) Major Finding(s) Reference

Calu-3 cells MERS-CoV; 
SARS-CoV

MERS- and SARS-CoVs induced both overlapping and distinct 
transcriptional responses, especially after 12 hpi.

Josset et al. mBio 
(2013)

ferret lung tissue 
homogenates

SARS-CoV Initial infection with SARS-CoV upregulated the expression of 
genes in innate immune and IFN signaling pathways thru 14 dpi 
and genes involved in adaptive immunity by 28 dpi. Reinfection 
did not stimulate IFN-responsive gene expression.

Cameron et al., 
PLOS ONE (2012)

Vero-E6 (monkey 
kidney epithelial) 
cells; MA-104 
(monkey kidney 
epithelial) cells

SARS-CoV SARS-CoV without its E protein upregulated the expression of a 
handful of genes, most of which are involved in the stress 
response, compared with WT-SARS-CoV infection thru 15 and 
65 hpi, depending on the cell type.

DeDiego et al., 
PLOS Pathog 

(2011)

mouse lung tissue 
homogenates

SARS-CoV SARS-CoV induced differential expression of more than 200 
small RNAs by 2 dpi, revealing a role for non-protein-coding 
transcripts in coronavirus infections.

Peng et al., mBio 
(2011)

L cells (fibroblast-like) MHV-A59 Very few transcriptional changes occurred by 3 hpi; by 6 hpi a 
chemokine response was induced along with changes in RNA and 
protein metabolism, the cell cycle, and apoptosis. IFN was not 
triggered during infection.

Versteeg et al., J 
Gen Virol (2006)

chicken trachea tissue 
homogenates

IBV Innate immune and Th1-biased adaptive immune responses were 
induced by 3 dpi in response to IBV infection.

Wang et al., Viral 
Immunol (2006)

human monocyte-
derived macrophages

SARS-CoV By 3 hpi, SARS-CoV-infected macrophages expressed no 
detectable type I IFN but did express several chemokines.

Cheung et al., J 
Virol (2005)

Table 1. Summary of Transcriptional Profiling Studies Involving Coronavirus-infected Cells and Tissues. Entries are 
arranged first by date of publication and second, when necessary, by first author’s last name. 40
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The Importance of Macrophages in CoV Infections.

For this project, we elected to utilize primary BMDMs, which are known to produce a 

substantial portion of secreted type I IFN during infection and are also potently IFN-responsive, 

relying on IFN signaling to dictate the induction and execution of an antiviral response (Ivashkiv 

and Donlin 2014). Given that the goal of this work was to investigate a host cell’s transcriptional 

response to IFN antagonist-deficient mutant CoVs, it was important that we use an IFN-

responsive cell type. Additionally, many CoVs—including MHV, SARS-CoV, MERS-CoV, 

HCoV-229E, IBV, FIPV, among others—have been shown to naturally and productively infect 

macrophages (Bang and Warwick 1960; Virelizier and Allison 1976; Collins 2002; Yilla et al. 

2005; Zhou et al. 2014; Amarasinghe et al. 2017; Shirato et al. 2018). The IFN-responsiveness 

of macrophages (via signaling through the type I IFN-α receptor) has even been shown to be 

critical for controlling MHV infection, implicating macrophages and type I IFN signaling as key 

players in the anti-coronaviral immune response (Cervantes-Barragán et al. 2009). Likewise, 

depletion of macrophages has been shown to exacerbate MERS-CoV pathology in mice 

expressing the human MERS-CoV receptor (Coleman et al. 2017). On the other hand, 

Channappanavar et al. (2016) demonstrated that at least one type of macrophages—termed 

inflammatory monocyte-macrophages (IMMs)—accumulated during SARS-CoV infection and 

contributed to the development and worsening of severe disease. In a similar vein, Hartwig et al. 

(2014) showed that depletion of alveolar macrophages reduced MHV-induced morbidity and 

mortality in intranasally-infected mice. The work of Zhou et al. (2014) proposed that secretion of 

pro-inflammatory cytokines by macrophages exacerbates the development of severe pneumonia 

and respiratory dysfunction in patients infected with MERS-CoV. Taken together, the results of 

these studies indicate that IFN-responsive macrophages play a central role in the host’s response 
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to CoV infections and that dysregulated accumulation and/or transcriptional responses of certain 

types of macrophages may even contribute to the severity of coronavirus-induced disease.

A recent paper by Savarin et al. (2018) described the expression profiles of 754 genes in 

mouse BMDMs in response to an in vivo infection with a neurotropic strain of MHV (strain 

JHM) between 5-14 dpi using a gene expression panel technology called “nCounter.” Although 

the method of expression profiling used by the authors did not involve global transcriptomic 

profiling, to our knowledge this is nevertheless the only published report that contains extensive 

gene expression profiling data from coronavirus-infected macrophages. The results of this study, 

which most notably revealed a mix of upregulated M1- and M2-associated gene expression in 

MHV-infected BMDMs, provide a partial view of a macrophage’s transcriptional response to 

coronavirus infection. The authors concluded, in agreement with previous reports, that BMDMs 

likely do not play an essential role in the overall pathogenesis of MHV-JHM in their murine 

model of multiple sclerosis-like demyelination (Savarin et al. 2018). However, we speculate that 

the lack of data prior to 5 dpi leaves open the possibility of BMDM involvement in the early 

innate immune response to infection. Additionally, since gene expression was assessed in 

BMDMs that were isolated from the spinal milieu of infected mice, it is unclear whether or not 

the BMDMs were themselves infected by the virus. In order to investigate the full scope of the 

transcriptional response to CoV infection in macrophages, we determined that the use of 

microarray or RNA-seq technology is required. Using RNA-seq, we therefore sought to explore 

the dynamics of the transcriptional response that occurs in BMDMs upon MHV infection in the 

presence and absence of MHV-encoded IFN antagonists. The results of our work point to 

profound transcriptional dysregulation of nearly 2,900 host genes during MHV infection of 
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murine BMDMs, including a staggering majority of which that were differentially regulated by 

our IFN antagonist-deficient mutants.
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CHAPTER II

MATERIALS AND METHODS

Viruses

EndoU-mut- and DUB-mut-MHV strains were derived from parental WT-MHV A59 

strain (GenBank accession # AY910861) (Figure 7), all of which were generated by Dr. Xufang 

Deng, Loyola University Chicago, Maywood IL, by process of reverse genetics as described by 

Yount et al. (2002). All viruses were subjected to whole-genome sequencing to confirm the 

results of reverse genetics.

Generation and Culture of Murine Bone Marrow-derived Macrophages

Extraction of Bone Marrow from Mice.

To obtain BMDMs, total bone marrow was first extracted from the femurs of C57BL/6J 

mice (#000664, The Jackson Laboratory). Mice were euthanized by use of CO2, their femurs 

removed, and the contents of the femoral marrow cavities were flushed out using Dulbecco’s 

Modified Eagle’s Medium (DMEM, #10-017-CV, Corning). The mixture of bone marrow + 

DMEM was centrifuged at 500 rpm for 1 min at 4 ºC, the supernatant transferred to a new tube 

and centrifuged again at 1500 rpm for 5 min at 4 ºC. The cell pellet from the second 

centrifugation was resuspended in 10 mL of DMEM, cells were counted, and 5 x 106 cells were 

plated in 15 mL of “bone marrow/macrophage medium” (BMM) medium supplemented with 

0.1% 5 x 10-2M β-mercaptoethanol (βME) in 100 x 26 mm Petri dishes (25387-030, VWR).
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Bone Marrow/Macrophage Medium.

The recipe for BMM medium is as follows: DMEM supplemented with 30% L929 cell 

supernatant (obtained as described below); 20% fetal bovine serum (FBS); 1% 0.2M L-

glutamine; and 1% 0.1M sodium pyruvate. When differentiating bone marrow into BMDMs, 

BMM medium was also supplemented with 0.1% 5 x 10-2M (βME).

L929 Cell Medium and Conditioned Supernatant.

L929 cells, which secrete macrophage colony-stimulating factor (M-CSF), were a gift 

from Dr. Francis Alonzo, Loyola University Chicago, Maywood IL. To generate L929 cell 

conditioned supernatant for use in BMM medium as described above, L929 cells were cultured 

in the following medium: DMEM supplemented with 10% FBS; 1% 0.2M L-glutamine; 1% 

0.1M sodium pyruvate; 1% nonessential amino acids; 1% penicillin/streptomycin. Specifically, 

3.75 x 105 cells were plated in 75 mL L292 medium in a T150 flask (#10-126-34, Thermo 

Fisher) and incubated for 6 d at 37 ºC and 5% CO2, after which point the supernatant was 

collected, filtered, and frozen in 50 mL aliquots at -20 ºC for later use in making BMM medium.

Differentiating Bone Marrow into Macrophages.

Upon plating bone marrow in BMM medium supplemented with 0.1% 5 x 10-2M βME, 

cells were incubated at 37 ºC and 5% CO2. After 72 hr, 10 mL fresh BMM medium (without 

βME) was added to each plate and cells were incubated for an additional 72 hr, after which point 

the bone marrow cells had differentiated into macrophages (BMDMs). Media was removed from 

plates and cells—now macrophages—were washed with 1x cold PBS, after which point an 

additional 1x PBS was added to each plate and cells were incubated at 4 ºC for 30 min. This 

refrigerated incubation aided in gently detaching macrophages from the plates. After 30 min, 

macrophages were washed off the plates by repeatedly and gently pipetting the cold PBS over 
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the cell monolayer. The resultant PBS + macrophage mixture was centrifuged for 5 min at 1500 

rpm, the supernatant removed, and cells resuspended in BMM medium (without βME) for use in 

experiments as described below. Alternatively, 1 x 107 cells/mL were suspended in BMM 

medium with 10% DMSO and stored in liquid nitrogen until later use.

Infection of BMDMs

BMDMs were obtained as described above and 24 hr prior to infection, 6 x 105 BMDMs 

were plated in 1 mL BMM medium per well in a 12-well plate. Alternatively, frozen BMDMs 

were first reconstituted by incubation in 100 x 26 mm Petri dishes in BMM media for 3 days at 

37 °C and 5% CO2. After 3 days, 6 x 105 BMDMs were plated onto 12-well plates and grown for 

24 hr before use in infection experiments. After 24 hr, media was removed from the wells and 

cells were washed once with PBS. 400 µL infectious media (comprising EndoU-mut-, DUB-

mut-, or WT-MHV virus at MOI = 1.0, aka 6 x 105 pfu per well, in fresh DMEM) was added to 

BMDMs; alternatively, for mock-infected controls, 400 µL fresh DMEM was added in lieu of 

inoculum. Wells were infected in quadruplicate for each infection condition in each timepoint 

(e.g., a total of 16 wells were incubated with infectious medium containing 6 x 105 pfu EndoU-

mut-MHV, 4 of which were infected for a total of 3 hr, another 4 of which were infected for a 

total of 6 hr, etc.). After 1 hr of incubation—tilting the plates every 15 min to ensure even 

coverage—inocula were removed and 1 mL fresh BMM medium without βME was added to 

each well. EndoU-mut-, DUB-mut, and WT-MHV-infected cells were then cultured for an 

additional 2, 5, 8, or 11 hr (for 3, 6, 9, and 12 hr total, respectively), whereas mock-infected cells 

were only cultured for 3 hr total. After these timepoints, media was removed from wells and 350 

µL RLT buffer (79216, Qiagen) was added. BMDMs were scraped off the bottom of the wells 

and the RLT + BMDM lysate mixtures were frozen at -80 ºC until subsequent RNA isolation.
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RNA Isolation, cDNA Synthesis, and qRT-PCR

RNA isolation.

Total RNA was isolated from all RLT + BMDM lysate samples—obtained from virus- 

and mock-infected cells as described above—using an RNeasy Mini Kit (74104, Qiagen) per the 

manufacturer’s instructions. The concentration of isolated RNA per sample was determined 

using NanoDrop technology. An average of 6,950 ng of total RNA was isolated from each well.

cDNA Synthesis.

To determine the expression of Ifna11, 18S rRNA, and MHV N gene, an equal amount of 

total isolated RNA (733 ng) was used as the template for cDNA synthesis using an RT2 HT First 

Strand Kit (330401, Qiagen) per the manufacturer’s instructions.

qRT-PCR.

Upon obtaining cDNA for all samples in this manner, qRT-PCR was performed using 

specific primers for murine Ifna11 (PPM03050B-200, Qiagen), murine 18S rRNA (PPM57735E, 

Qiagen), and MHV N gene (FWD: 

5’-AGCAGACTGCAACTACTCAACCCAACTC-3’; REV: 

5’-GCAATAGGCACTCCTTGTCCTTCTGCA-3’). RT2 SYBR Green qPCR Mastermix 

(330502, Qiagen) was used per the manufacturer’s instructions in the Bio-Rad CFX96 

thermocycler system, in which the qRT-PCR experiments were set up as follows: one step at 95 

ºC for 10 min; 40 cycles of 95 ºC for 15 sec each followed by 60 ºC for 1 min and subsequent 

plate read; one step at 95 ºC for 10 sec; and a melt curve step obtained from 65 to 95 ºC at 

increments of 0.5 ºC/5 sec. All samples were evaluated in this manner in technical triplicate and 

the data shown in Figures 11 and 12 are representative of at least 3 independent experiments. 

The levels of mRNA of the genes of interest (Ifna11 and N gene) were normalized to the 
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expression of 18S rRNA and reported as fold-change relative to mock- or WT-MHV-infected 

cells, respectively. Fold induction values were calculated using the 2-∆∆Ct method with the 

following formula: 2-∆∆Ct [∆Ct = (Ct(gene of interest) − Ct(18s rRNA)) ; ∆∆Ct = (∆Ct(test sample) – 

∆Ct(calibrator group))].

RNA-seq and Subsequent Data Processing, Visualization, and Analysis

RNA-seq.

At least 12 µL of total RNA at a concentration of at least 100 ng/µL—isolated from 

EndoU-mut, DUB-mut, WT-MHV-, and mock-infected BMDMs as described above—was 

submitted to the University of Chicago Genomics Facility (UCGF) for RNA-sequencing. 

Although BMDMs were initially infected in quadruplicate, only 3 replicate samples from each 

infection group in each timepoint were submitted for sequencing, for a total of 39 samples (3 

mock-infected samples at 3 hpi; 3 EndoU-mut-MHV-infected samples at 3, 6, 9, and 12 hpi; 3 

DUB-mut-MHV-infected samples at 3, 6, 9, and 12 hpi; and 3 WT-MHV-infected samples at 3, 

6, 9, and 12 hpi). Prior to initiating library preparation, the UCGF first applied quality control 

analyses to all RNA samples, the results of which are shown in Table 2 in the Results chapter of 

this document. After passing quality control, samples were subjected to poly-A selection (to 

enrich mRNAs) and subsequent single-read, 50 bp (SR50) sequencing using Illumina HiSeq 

4000 technology. Per our request that an approximately equal number of total reads (~4.0 x 106) 

be generated per sample, approximately 1.6 x 109 total reads were obtained in this manner across 

all samples. Raw (unprocessed) reads were downloaded in the form of 7 FASTQ files per sample 

and were subjected to analysis and processing as described below.
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Processing and Analysis of RNA-seq Data Using Galaxy.

We utilized the public server of an online bioinformatic data manipulation platform 

called Galaxy (https://usegalaxy.org/) to process and analyze the raw reads obtained from the 

UCGF in order to derive differential gene expression information from the raw data (Afgan et al. 

2016). The process by which we analyzed the raw reads using Galaxy is outlined schematically 

in Figure 13 in the Results chapter. Raw reads (in the form of FASTQ files) were uploaded 

directly to Galaxy. The sequence and annotation files of the GRCm38 Ensembl build of the 

C57BL/6J mouse genome were downloaded from Illumina’s iGenomes website 

(https://support.illumina.com/sequencing/ sequencing_software/igenome.html). These files were 

too large to be uploaded directly to Galaxy and were instead uploaded by way of FileZilla, which 

is a free FTP client that is readily downloadable from the internet (https://filezilla-project.org/). 

Once all files were successfully uploaded into Galaxy, we first clipped all FASTQ files to 

remove any residual unique barcode sequences (the vast majority of which had been removed 

already by the UCGF prior to making the raw read data available to us) using the “Clip adapter 

sequences” (Galaxy version 1.0.2) tool. The default options were kept, with the exception of the 

following: “discard sequences with unknown (N) bases” was changed to “no;” and “output 

options” was changed to “output both clipped and non-clipped sequences” to ensure that reads 

that had already been clipped by the UCGF were not eliminated from the outputs. Once clipped, 

FASTQ files were then concatenated (combined) such that a single FASTQ file pertained to each 

sample. This was achieved using the “Concatenate datasets tail-to-head (cat)” (Galaxy version 

0.1.0) tool. There were no changeable parameters associated with this tool. Next, concatenated 

files were “groomed” using the “FASTQ Groomer” (Galaxy version 1.1.1) tool to ensure that all 

reads were in the appropriate Sanger FASTQ format (all files and reads should have already been 
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in FASTQ format upon receipt from the UCGF, such that this step was merely an opportunity for 

us to double-check the format of the data that we had downloaded from the UCGF). No defaults 

were changed at this step. After grooming, all files were appropriately clipped, combined, and in 

the required FASTQ format.

We next sought to align the reads in all samples to the mouse genome. Notably, all virus-

infected samples were expected to contain reads that originated from mouse RNA and reads that 

originated from viral RNA, since both species of RNA would have been present in the original 

samples that we submitted for sequencing. As such, we performed two alignment steps, the first 

of which was intended to weed out any non-murine (i.e., viral) reads in order to reduce file sizes 

since the public domain of Galaxy only allows for a relatively small amount of data storage at 

one time. Thus, we first aligned all reads to the mouse genome using the “HISAT2” (Galaxy 

version 2.1.0) alignment tool (Kim et al. 2015). Instead of using a built-in genome, we used the 

version of the C57BL/6J sequence that we previously uploaded into Galaxy. Other default 

options were left unchanged with the following exception: under “Advanced Options > Output 

options” the option to “write aligned reads (in fastq format) to separate file(s)” was changed to 

“yes” since we wanted to keep only those reads that corresponded to the murine genome. After 

obtaining aligned (i.e., murine-only) reads as an output from this first alignment step in the form 

of a FASTQ file, those reads were again submitted to HISAT2 to obtain the alignment 

information in the form of a single BAM file for each sample. For this second alignment step, 

default options were left unchanged except that we again used the C57BL/6J sequence as a 

reference genome instead of a built-in genome.

After removing non-murine reads from all samples and aligning the remaining murine-

only reads to the mouse genome, we next counted the number of reads that pertained to each 
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annotated gene in the genome using the “featureCounts” (Galaxy version 1.6.0.6) tool (Liao et 

al. 2014). Using as inputs into featureCounts the BAM files that were generated as a result of the 

second HISAT2 alignment step, we did not change any default options except for the following: 

“gene annotation file” was changed to “in your history” in order to utilize the annotation file for 

the C57BL/6J genome that we previously uploaded into Galaxy. After applying featureCounts in 

this manner to the single BAM file associated with each sample, the final step we employed was 

to determine differential gene expression using “DESeq2” (Galaxy version 2.11.40.2) (Love et 

al. 2014). Using as inputs into DESeq2 the tabular outputs that were generated as a result of the 

featureCounts step, we ran DESeq2 separately for each timepoint (3, 6, 9, and 12 hpi). We 

specified the factor name as “Virus_Infection” and 4 factor levels for each timepoint as “Mock,” 

“WT,” “EndoU-mut,” and “DUB-mut” and uploaded the appropriate tabular files from 

featureCounts into each factor level (i.e., the tabular files associated with EndoU-mut-MHV-

infected BMDMs—in triplicate—were uploaded into the respective timepoint, and so on). Note 

that the same 3 tabular files associated with mock-infected cells at 3 hpi (in triplicate) were used 

in the DESeq2 analysis of all 4 timepoints. The following options were changed from their 

defaults: “output normalized counts table” was changed to “yes;” and “output all levels vs all 

levels of primary factor” was changed to “yes.” Using these parameters, DESeq2 generated as 

outputs 7 total files for each timepoint: 6 tabular files containing the differential expression 

analyses for each gene in the mouse genome each containing a different comparison (Mock vs 

WT, Mock vs DUB-mut, Mock vs EndoU-mut, DUB-mut vs WT, EndoU-mut vs WT, and DUB-

mut vs EndoU-mut) and a 7th tabular file containing the normalized count information for all 

genes across all replicate samples. Importantly, these DESeq2-generated “normalized” counts are 

distinct from the “raw” counts from which they were derived. In order to account for differences 
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in sequencing depths between libraries (aka samples), DESeq2 automatically normalizes raw 

count data to scale up or down those counts for each gene according to the number of total 

counts in each sample relative to the others. This process of normalization is described in depth 

by Love et al. (2014). The normalization of raw reads was particularly important for our datasets 

since our mock-infected samples contained a substantially larger number of total murine reads 

than did virus-infected samples (especially as the infection developed over time, as transcription 

of the viral genome begins to overwhelm expression of host genes as infection progresses). 

These normalized counts are then used by DESeq2 to calculate differential expression in the 

form of fold-change; we also used these normalized count values to generate Figures 14, 16-19, 

and 21 in the Results and Discussion chapters of this document.

Method for Independent Confirmation of DESeq2-generated Normalized Counts.

We sought to independently confirm that the process by which DESeq2 produces 

normalized reads from raw counts did not inappropriately skew our data. Therefore, in addition 

to creating Figures 14 and 16-19 using the DESeq2-generated normalized counts for each 

timepoint, we utilized the raw count data (which was produced as the output of the featureCounts 

tool) to generate similar heatmaps and line graphs. If the normalized counts were appropriately 

derived from the raw counts without skewing the data, then the general patterns displayed in a 

heatmap produced using normalized counts should be visually similar to one produced using the 

values obtained by dividing the number of raw counts for each gene by the total number of raw 

reads in each sample. The same should also be true of line graphs constructed using the two 

different kinds of count data. Indeed, as shown in Figure 10 below, that is what we found. Figure 

10A shows two heatmaps containing the gene expression data for only the 12 hpi timepoint 

(using the same gene list as in Figure 14 in the Results chapter of this document) in the form of 
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either row z-score-standardized normalized counts or row z-score-standardized raw counts. 

Notably, the colors (and therefore the row z-scores) are often not the same for each gene between 

the two heatmaps, which is not unexpected given that the actual values of the normalized and 

raw gene counts divided by the total raw counts are not the same; however, the overall patterns 

of differential gene expression are conserved between the two heatmaps. Similarly, Figure 10B 

displays line graphs for 3 different genes—Ifna11, Ifih1, and Csf1—using either raw reads for 

each gene divided by the total number of raw reads in each sample or DESeq2-generated 

normalized reads. These line graphs, like the heatmaps, demonstrate that the overall patterns of 

gene expression observed between samples over time were conserved regardless of which type 

of count data is used. Thus, having confirmed the validity of the DESeq2-generated normalized 

counts by an independent means of data analysis and presentation, we were confident that the 

normalized count data were appropriate for use in our analyses shown in multiple figures and 

tables in the Results chapter.
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Figure 10. Method for Independent Confirmation of DESeq2-generated Normalized 
Counts. (A) Heatmaps showing gene expression data for the same 2,879 genes as in Figure 14 at 
12 hpi only. On the left, DESeq2-generated normalized counts were plotted as row z-scores; on 
the right, raw counts for each gene were divided by the total number of raw counts in each 
sample and the resulting values were plotted as row z-scores. Color keys indicate the colors that 
correspond to each z-score value, with warmer colors indicating higher relative expression in 
each row and cooler colors corresponding to lower relative expression. (B) Line graphs showing 
gene expression data as non-z-score-standardized counts over time for 3 genes. The graphs in the 
top row were produced by plotting the values that were obtained by dividing the raw read counts 
for each gene by the total number of raw reads in each sample (as determined from data analysis 
using featureCounts). The graphs in the bottom row display DESeq2-generated normalized 
counts for the same 3 genes. Data are presented as means ± SD.

A

B

3 6 9 12
0.000000
0.000002
0.000004
0.000006
0.000008

0.00003

0.00004

0.00005

0.00006

hpi

ra
w

re
ad

s/
to

ta
lr

aw
re

ad
s

Ifna11 featurects

Mock
WT
EndoU-mut
DUB-mut

3 6 9 12
0.000

0.001

0.002

0.003

0.004

0.005

Ifih1/Mda5 featurects

hpi

ra
w

re
ad

s/
to

ta
lr

aw
re

ad
s Mock

WT
EndoU-mut
DUB-mut

3 6 9 12
0.000

0.001

0.002

0.003

0.004

Csf1 featurects

hpi

ra
w

re
ad

s/
to

ta
lr

aw
re

ad
s Mock

WT
EndoU-mut
DUB-mut

3 6 9 12
0

50

100

150
500

750

1000

hpi

no
rm

al
ize

d
co

un
ts

Ifna11 normalized cts

Mock
WT
EndoU-mut
DUB-mut

3 6 9 12
0

50000

100000

150000

Ifih1/Mda5 normalized cts

hpi

no
rm

al
iz

ed
co

un
ts

Mock
WT
EndoU-mut
DUB-mut

3 6 9 12
0

20000

40000

60000

80000

100000

Csf1

hpi

no
rm

al
iz

ed
co

un
ts

Mock
WT
EndoU-mut
DUB-mut

3 6 9 12
0

20000

40000

60000

80000

100000

Csf1 normalized cts

hpi

no
rm

al
iz

ed
co

un
ts

Mock
WT
EndoU-mut
DUB-mut

row z-score row z-score

Mock WT DUB-mut EndoU-mut Mock WT DUB-mut EndoU-mut

normalized counts
raw counts per gene/total raw 

counts per sample



55

Selecting the Most Highly Differentially-expressed Genes.

After obtaining differential expression data for all genes across all samples and 

timepoints using Galaxy, we next generated a list of the most highly upregulated genes that we 

would use in subsequent analyses. To do this, we analyzed the differential expression data—

generated as an output of DESeq2 analysis—between WT-MHV-infected BMDMs at 12 hpi and 

mock-infected cells and selected only those genes whose differential upregulation in WT-MHV-

infected cells (as determined by DESeq2) was statistically significant by eliminating genes 

associated with a q-value (adjusted p-value, calculated by DESeq2 using the Benjamini-

Hochberg procedure) of > 0.05 (Love et al. 2014). We applied an additional parameter using a 

fold-change magnitude cutoff, such that genes that were not differentially upregulated by at least 

4-fold (aka a log2 fold-change value > 2) in WT-MHV-infected- compared with mock-infected 

BMDMs were excluded. After applying these cutoffs, 2,879 genes remained.

Visualizing Gene Expression Data.

Upon identifying the top 2,879 genes that were most differentially expressed between 

WT-MHV-infected- and mock-infected BMDMs, we next sought to visualize the expression data 

for these genes in heatmap form. To do this, we averaged the normalized counts for each of the 

2,879 genes—obtained from DESeq2 as described above—from the triplicates, ordered the list of 

genes from most- to least-highly differentially expressed between WT-MHV-infected- and 

mock-infected BMDMs, and imported the z-score-standardized log2-trasformed mean 

normalized count values into Cluster 3.0 software. Cluster 3.0 allows for hierarchical 

arrangement of gene lists using expression data by clustering together genes whose expression 

patterns are similar to each other (de Hoon et al. 2004).  Specifically, we used the default 

settings—the similarity metric “Pearson correlation (uncentered)” and the clustering method 
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“centroid linkage”—in order to mathematically arrange the genes based on expression 

similarities. Note that this is not the same as functional clustering/arrangement in that Cluster 3.0 

only utilizes expression data, and not gene-encoded functional information, in order to 

hierarchically arrange genes. In order to visualize the result of this clustering, the output file of 

Cluster 3.0 processing was imported into Java TreeView software, which generates heatmaps 

from Cluster 3.0 outputs (Saldanha 2004). The outcome of this clustering and visualization 

process is shown as a heatmap in Figure 14 in the Results chapter. By studying this heatmap, we 

identified 6 groups of genes—which had been arranged as such by Cluster 3.0—whose gene 

expression profiles between infection cohorts and over time warranted additional analysis. We 

used Java TreeView to extract the list of gene names that corresponded to each of these 6 groups, 

which are indicated with brackets in the heatmap in Figure 14.

Functional Clustering Analyses Using DAVID

In order to determine the general biological functions of the differentially-expressed 

genes identified from our experiments that are shown in Figure 14, we utilized DAVID 

(Database for Annotation, Visualization and Integrated Discovery; https://david.ncifcrf.gov/ 

gene2gene.jsp), which is a free online tool that allows for functional clustering (aka gene 

ontology) analyses of lists of genes (Huang et al. 2009a; Huang et al. 2009b). We submitted the 

list of gene names (obtained from Java TreeView) from each of the 6 groups indicated in Figure 

14 to DAVID and converted the gene names to Ensembl IDs, the latter of which are better suited 

for DAVID analyses. Not all genes corresponded to an Ensembl ID, which is not surprising 

given that many of the genes within the heatmap in Figure 14 are putative and/or have not yet 

been assigned any function. The lists of Ensembl IDs—one list per each of the 6 groups—were 

then submitted to DAVID for functional clustering analyses. Specifically, under the “Gene 
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Ontology” category, the chart associated with the “GOTERM_BP_DIRECT” result (which is 

always conspicuously highlighted in red, as it is one of the DAVID-defined defaults) was used 

for all 6 groups.

For each term in its output (a term corresponds to a functional cluster into which a given 

number of one’s input genes were clustered by DAVID), DAVID assigns a q-value that is 

determined based on the relative enrichment profiles of the genes from one’s input list of genes. 

For example, whether or not a list of input genes contains a statistically significant 

overrepresentation of “immune response” genes will be reflected in the q-value associated with 

the “immune response” term in the DAVID results page. Using these q-values, we excluded all 

functional cluster terms that were not statistically significant using a cutoff of q < 0.05. We then 

further organized the remaining terms into even fewer clusters based on general relationships 

between terms (i.e., “immune response,” “inflammation,” and other semantically similar 

DAVID-generated terms were organized together under the blanket term “immune response”). 

By creating a “sublist” in DAVID that included only the statistically significant functional 

clusters within each of the 6 groups, we determined the number of unique genes within each 

group that appeared in at least one functional cluster of statistical significance. The row z-score-

standardized log2-transformed normalized counts for these “unique genes in statistically 

significant functional clusters” were then plotted over time in heatmaps using the gplots package 

in RStudio, a free downloadable package and program, respectively, that together allow for the 

visualization and manipulation of data in various forms (RStudio Team 2015; Warnes et al. 

2016).
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CHAPTER III

RESULTS

Evaluating Expression of Type I IFN in BMDMs during Infection with EndoU-mut-,    

DUB-mut-, and WT-MHV

Given the data from our lab and other groups demonstrating that nsp15-EndoU and nsp3-

DUB contain type I IFN antagonism activity, mutant viruses encoding catalytically deficient 

(EndoU-mut) or catalytically impaired (DUB-mut) versions of these proteins, shown in Figure 7, 

should elicit greater IFN responses during infection compared to the WT parental strain 

(Clementz et al. 2010; Mielech, Kilianski, et al. 2014; Deng et al. 2017; Kindler et al. 2017; 

Deng et al. manuscript in preparation). Indeed, published and unpublished data in which each 

mutant virus was used in separate experiments demonstrated that both EndoU-mut- and DUB-

mut-MHV-infected cells exhibited enhanced IFN production during infection relative to WT-

MHV infection (Deng et al. 2017; Kindler et al. 2017; Deng et al. manuscript in preparation). 

Importantly, however, the effects on the IFN response that are elicited by the two mutant strains 

have not been directly compared. Thus, we first evaluated the expression of type I IFN in the 

context of a timecourse infection with these 3 different viruses. Briefly, BMDMs were infected 

with   WT-, EndoU-mut-, or DUB-mut-MHV (MOI = 1.0) for 3, 6, 9, or 12 hr, after which 

timepoints total RNA was collected for subsequent analysis by quantitative reverse transcription 

polymerase chain reaction (qRT-PCR) (see Materials and Methods for primer information). RNA 

was also collected from mock-infected cells at 3 hpi and was used as a negative control for
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analyses of all timepoints. In Figure 11, the expression of Ifna11 is reported as fold-change 

relative to mock-infected cells (using the 2-∆∆Ct method) and is normalized to the expression of 

18S ribosomal RNA (18S rRNA) as an internal control. Statistical significance between infection 

groups was determined using two-tailed Student’s t-tests.

We found that BMDMs infected with either mutant virus expressed significantly higher 

(p < 0.05) amounts of a type I IFN—Ifna11— compared to BMDMs infected with WT-MHV at 

6, 9, and 12 hpi. No significant difference was found between groups at 3 hpi. Notably, while 

cells infected with either mutant virus exhibited significantly earlier and more robust IFN 

expression compared to WT-infected cells, these effects were most potent in the EndoU-mut-

infected groups at all timepoints (except 3 hpi). Thus, in addition to demonstrating the impaired 

ability of EndoU-mut- and DUB-mut-MHV to suppress IFN expression during infection, these 

experiments provided an initial indication that both mutant viruses being studied (Endo-mut- and 

DUB-mut-MHV), although similar in that each encodes a catalytically-deficient or impaired viral 

IFN antagonist, elicit distinct host responses during infection.



60

Figure 11. EndoU-mut- and DUB-mut-MHV Induce Significantly Higher Expression of 
Ifna11 during Infection of BMDMs. BMDMs were infected with EndoU-mut, DUB-mut, and 
WT-MHV at MOI = 1.0. Cells were lysed and total RNA was extracted at 3, 6, 9, and 12 hpi. 
RNA from mock-infected cells at 3 hpi was included in analyses of all timepoints as a negative 
control. Total RNA from each sample was converted to cDNA, which was then evaluated for 
expression of Ifna11 and 18S rRNA, the latter of which served as an internal control. Expression 
of Ifna11 is reported as fold-change relative to mock-infected cells (normalized to 18S rRNA 
expression) and was calculated via the 2-∆∆Ct method using the following equation: 2-[(Ct(Ifna11) − 

Ct(18S rRNA))test sample – (Ct(Ifna11) − Ct(18S rRNA))mock group]. Statistical significance between infection groups 
within each timepoint was determined using two-tailed Student’s t-tests. ** p < 0.01; *** p < 
0.001; **** p < 0.0001; ns, not significant. Data are presented as means ± SD. 
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Evaluating Expression of Nucleocapsid Gene in BMDMs during Infection with EndoU-

mut-, DUB-mut-, and WT-MHV

To determine if the mutant viruses exhibited any differences in viral gene expression, we 

evaluated the expression of nucleocapsid (N) gene in the context of a timecourse infection with 

these different viruses (Figure 12). Evaluating the levels of N gene transcript over time is a 

method of indirectly assessing CoV replication kinetics since N gene mRNA levels increase as 

wild type viral infection progresses and nucleocapsid protein is essential for the packaging of 

coronaviral genetic material into assembling virions (Irigoyen et al. 2016; Kuo et al. 2016). The 

same RNA samples from the experiment described in Figure 11 were also used to evaluate N 

gene expression by qRT-PCR. In Figure 12, the expression of N gene is reported as fold-change 

relative to WT-MHV-infected cells (since there was no detectable expression of N gene in mock-

infected samples) and is normalized to the expression of 18S rRNA. Fold induction was 

calculated using the following equation: 2-[Ct(N gene) − Ct(18S rRNA)]. Statistical significance between 

infection groups was determined using two-tailed Student’s t-tests.

We found no significant difference between relative expression levels of N gene in WT- 

and DUB-mut-MHV-infected BMDMs at any timepoint, indicating that the IFN induction 

observed in the context of DUB-mut-MHV infection (Figure 11) was not sufficient to interfere 

with replication of DUB-mut-MHV. In contrast, levels of N gene transcript were significantly 

lower in EndoU-mut-MHV-infected BMDMs than in WT- or DUB-mut-MHV-infected cells at 

6, 9, and 12 hpi. Notably, the timing of this decreased N gene expression in EndoU-mut-MHV-

infected BMDMs inversely mirrored the timing of the Ifna11 expression profile that was elicited 

during infection with the EndoU-mut virus (Figure 11). This relationship suggests that the 

inability of mutant EndoU to antagonize the IFN response during infection contributed to the 
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observed attenuated expression of N gene during infection of WT-BMDMs with EndoU-mut-

MHV. No significant difference in the expression of N gene between infection groups was 

observed at 3 hpi.

Figure 12. Expression of Viral Nucleocapsid Gene is Attenuated during Infection of 
BMDMs with EndoU-mut- but not DUB-mut-MHV. BMDMs were infected and RNA was 
collected for qRT-PCR as described in Figure 11. Expression of viral nucleocapsid (N) gene is 
reported as fold-change relative to WT-MHV-infected cells (normalized to 18S rRNA 
expression) and was calculated via the 2-∆∆Ct method using the following equation: 2-[(Ct(Ifna11) − 

Ct(18S rRNA))test sample – (Ct(Ifna11) − Ct(18S rRNA))WT group]. Statistical significance between infection groups 
within each timepoint was determined using two-tailed Student’s t-tests. ** p < 0.01; *** p < 
0.001; **** p < 0.0001; ns, not significant; nd, not detected. Data are presented as means ± SD. 
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Taken together, the qRT-PCR timecourse experiments in Figures 11 and 12 demonstrate 

that EndoU-mut- and DUB-mut-MHV triggered an earlier and more robust type I IFN response 

in WT-BMDMs compared to WT-MHV, indicating that the wild type versions of EndoU and 

DUB proteins both function as IFN antagonists. Additionally, the observed differences in the 

expression of Ifna11 and N gene between EndoU-mut- and DUB-mut-MHV suggest that the 

endoribonuclease activity of nsp15 is a more potent suppressor of the IFN response than the 

deubiquitinase activity of nsp3, given that a catalytic mutation in nsp15-EndoU dramatically 

impaired the expression of at least one viral gene, while a catalytically impaired nsp3-DUB 

exhibited WT-like viral gene expression kinetics. These results provided rationale for subsequent 

RNA-seq experiments, the goal of which was to determine the global transcriptional effects—

with particular interest in the transcription of genes whose protein products are involved in innate 

antiviral immunity—that are elicited during infection with these different strains of MHV.

Global Gene Expression Induced by EndoU-mut-, DUB-mut-, and WT-MHV in BMDMs

To obtain a comprehensive, global view of how WT-, EndoU-mut-, and DUB-mut-MHV 

shape the antiviral innate immune response during infection, RNA-seq was applied to RNA 

samples from virus-infected BMDMs at multiple timepoints. Specifically, BMDMs were 

infected with WT-, EndoU-mut-, or DUB-mut-MHV (MOI = 1.0) in quadruplicate and total 

RNA was isolated from whole cell lysates at 3, 6, 9, and 12 hpi. As above, RNA was also 

collected from mock-infected cells at 3 hpi to be used as a negative control for analyses of all 

timepoints. RNA samples—which included both host and viral RNAs—were then submitted in 

triplicate to the University of Chicago Genomics Facility, where samples first underwent poly-A 

selection to separate mRNAs from rRNAs. Total mRNA from each sample was then subjected to 

quality control (QC) analysis by Bioanalyzer technology. Results of QC tests on all samples are 
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reported as RNA integrity numbers (RINs) in Table 2, with a maximum RIN value of 10 

corresponding to the highest obtainable RNA quality (Schroeder et al. 2006). All samples were 

of sufficient quality for RNA-seq; however, we note that the RNA from each of the EndoU-mut-

MHV-infected replicates at 12 hpi were of lower quality than all other groups, possibly 

indicating that BMDMs infected with EndoU-mut-MHV—but not DUB-mut- or WT-MHV—

endured some level of RNA degradation by 12 hpi. After passing quality control, cDNA libraries 

were generated from total mRNA from each sample and libraries were subsequently subjected to 

next-generation single-read 50 base pair (SR50) sequencing by Illumina technology. 

Approximately 4 x 107 total reads—which, in virus-infected samples, included reads of both host 

and viral origin—were generated from each sample (3 replicates per infection condition per 

timepoint) for a total of approximately 1.6 x 109 reads across all samples from all timepoints.
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RIN Value
Replicate 1 Replicate 2 Replicate 3

Mock 10 10 10
WT 10 10 10

3 hpi DUB-mut 10 10 9.5
EndoU-mut 10 10 10

WT 10 10 10
6 hpi DUB-mut 10 10 10

EndoU-mut 10 10 10

WT 10 10 10
9 hpi DUB-mut 10 10 10

EndoU-mut 9.8 9.9 9.6

WT 10 8.2 10
12 hpi DUB-mut 10 10 10

EndoU-mut 8.5 8.4 8.2

Table 2. RIN Values of Samples Submitted for RNA-seq. Prior to applying RNA-seq to 
submitted samples, QC analyses were performed using Bioanalyzer technology to determine the 
quality of the RNA in each sample. Shown are the results of these QC analyses, reported as RIN 
values that are a relative indication of RNA quality, for each of the 3 replicates for each infection 
group across all 4 timepoints. A value of 10 represents the highest quality RNA.

To extract biologically-relevant information from the sequencing information that was 

generated from each RNA sample, the total reads were then analyzed using an established RNA-

seq bioinformatic analysis pipeline through an online platform called Galaxy (Afgan et al. 2016). 

This pipeline is outlined schematically in Figure 13 (see Materials and Methods for an in-depth 

explanation of each step). Briefly, residual barcode sequences—unique to each sample—were 

clipped from all reads and clipped reads originating from the same sample were then 

concatenated into a single file per sample. Next, each concatenated file containing clipped reads 

was “groomed” to ensure that all reads were in the appropriate Sanger FASTQ format that is 

required for downstream analyses. Groomed reads were then aligned to the C57BL/6J murine 
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genome using the tool HISAT2 (Kim et al. 2015). The sequence and annotation files of the 

GRCm38 Ensembl build of the mouse genome were downloaded from Illumina’s iGenomes 

website. After using HISAT2, all reads that did not successfully align to the reference genome 

were discarded; for virus-infected samples, this step was important to eliminate those reads that 

originated from viral mRNAs. The reads in each sample that aligned with the sequence of an 

annotated gene in the reference genome were then counted by featureCounts and those “raw” 

counts were used along with the tool DESeq2 to calculate differential expression values for each 

gene between each of the 4 treatment groups (WT-MHV-, EndoU-mut-MHV-, DUB-mut-MHV-, 

and mock-infected BMDMs) (Liao et al. 2014; Love et al. 2014). Importantly, DESeq2 

transforms “raw” counts for each gene in each sample into “normalized” count values, the latter 

of which it then uses to calculate fold-change in expression between groups. Raw count values 

are normalized by DESeq2 to take into account size differences between samples; for example, if 

2 x 106 reads from one sample aligned to the reference genome, but 3 x 106 reads from another 

sample aligned to the same genome, then DESeq2 takes those differences into account by scaling 

the raw reads for a given gene across all compared samples (Love et al. 2014).
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Figure 13. RNA-seq Data Analysis Pipeline. Raw RNA-seq data in the form of reads (strings 
of nucleotide sequences) were processed using Galaxy’s online platform in order to generate 
differential gene expression data between infection groups. Reads were first clipped to remove 
any residual unique barcode sequences that were originally added during preparation of each 
RNA sample for sequencing. Reads were then concatenated to combine multiple files per sample 
into a single file for each sample. Combined files were then groomed to ensure that all reads 
were in Sanger FASTQ format. Next, reads were aligned to the GRCm38 Ensembl build of the 
C57BL/6J mouse genome using HISAT2 aligner, which locates the region of the genome to 
which each read corresponds. Because most samples contained both viral and mouse RNA, the 
first alignment step was used to weed out all reads that did not correspond to any location along 
the mouse genome. All reads not aligning to the mouse genome (i.e., reads that originated from 
viral RNA) were discarded to reduce file sizes. The remaining murine-only reads were re-aligned 
to the mouse genome to obtain an output BAM file for each sample. BAM files contained the 
alignment information for each read in that sample and were used as inputs into featureCounts, 
which counts the number of reads in each sample that corresponds to each gene in the mouse 
genome. Finally, the outputted count data from featureCounts was used as the input for DESeq2 
to calculate differential expression for each gene across all samples and treatment groups. In 
addition to differential gene expression and fold-change data, DESeq2 generated normalized 
count values for each gene in all samples. These normalized counts are intended to correct for 
size differences between samples that might otherwise skew differential expression calculations 
if some samples contain substantially more or fewer total reads than the others. These values are 
plotted and visualized in a variety of ways, as shown in Figures 14, 16-19, and 21.

After applying this pipeline to our raw reads and obtaining as an output expression 

information for each gene across all samples, we next sought to identify and analyze 

differentially-expressed genes (DEGs) between infection groups. We used as a starting point the 

list of DEGs between mock and WT-MHV-infected BMDMs at 12 hpi that was generated as an 
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output by DESeq2. We filtered this list of genes based on the statistical significance associated 

with the fold-change differential expression value. A q-value (aka adjusted p-value, calculated by 

DESeq2 for each gene in each comparison using the Benjamini-Hochberg procedure) of < 0.05 

was chosen as the cutoff for statistical significance; genes whose differential upregulation values 

did not meet this cutoff in WT-MHV-infected BMDMs at 12 hpi compared with mock-infected 

cells were removed from the list (Love et al. 2014). Next, a differential expression magnitude 

cutoff of > 4 was applied to the remaining genes; genes that were not more highly expressed by 

at least 4-fold in WT-MHV-infected cells at 12 hpi compared to mock were removed from the 

list. After applying these cutoffs, 2,879 genes remained and were arranged in order of most- to 

least-highly upregulated in WT-MHV-infected cells at 12 hpi compared to mock. Cluster 3.0 

software was then used to apply mathematical clustering to the z-score-standardized log2-

normalized mean normalized count values associated with each gene in each timepoint and 

infection group (de Hoon et al. 2004). Specifically, the default settings—the similarity metric 

“Pearson correlation (uncentered),” and the clustering method “centroid linkage”—were applied 

to the list of 2,879 genes and the corresponding expression values for each gene across all 

samples to produce a hierarchically-clustered gene list based on how similar or different the 

expression patterns were between groups of genes across all samples. This new list of clustered 

genes and their associated expression values was then visualized as a heatmap using Java 

TreeView software, which is shown in Figure 14 (Saldanha 2004). Figure 14 depicts global 

differences in gene expression between WT-, EndoU-mut-, and DUB-mut-MHV-infected 

BMDMs. Plotted are row z-score-standardized log2-transformed normalized counts for each of 

the 2,879 different murine genes across all timepoints and infection groups. The normalized 

counts represent the average of the replicates for a given timepoint and infection group. The 
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names of all 2,879 genes in Figure 14 are listed, in the same order in which they are clustered in 

the heatmap, in Table S1 in the Appendix of this document.

Figure 14. Global Expression Profiles of EndoU-mut-, DUB-mut-, WT-MHV, and Mock-
infected BMDMs. Total RNA was extracted from EndoU-mut-, DUB-mut-, and WT-MHV-
infected BMDMs at 3, 6, 9, and 12 hpi. Samples were poly-A-selected to enrich mRNAs 
(without eliminating viral RNAs, which resemble host mRNAs) and subjected to SR50 
sequencing by Illumina technology. Raw reads were processed as described in Figure 13 to 
generate differential expression data and normalized counts for each gene in each sample. Next, 
the expression data from WT-MHV-infected BMDMs at 12 hpi was compared with mock-
infected cells; a statistical significance cutoff of q < 0.05 and a fold-change cutoff of > 4 were 
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applied to select only the most highly differentially-expressed genes. The normalized counts for 
the 2,879 genes that met these cutoffs were averaged across replicates and converted to log2-
transformed z-scores, which were then imported into Cluster 3.0 software to mathematically 
arrange the gene list based on similarity in expression patterns between samples via the Pearson 
correlation (uncentered) and centroid linkage metrics. Finally, Java TreeView software was used 
to visualize the output from Cluster 3.0, the outcome of which is shown here. Plotted are row z-
score-standardized log2-transformed values for each gene across all samples and timepoints. The 
color bar indicates the approximate row z-score that is associated with each color, with warmer 
colors corresponding to higher relative expression values in each row and cooler colors 
corresponding to lower relative expression values. Bracketed on the right are 6 groups of genes 
that we selected for subsequent analyses.

The global patterns of gene expression over time that are illustrated in Figure 14 indicate 

that the transcription of these 2,879 genes in response to WT- and DUB-mut-MHV infection in 

BMDMs was remarkably similar over time, whereas the response to EndoU-mut-MHV infection 

was profoundly distinct. In other words, the absence of an enzymatically active EndoU protein—

but not the absence of a fully functional DUB protein—was sufficient to elicit dramatic 

differences in the transcriptional response to infection compared to WT-MHV infection. These 

results therefore suggest that the enzymatic activity of the WT-EndoU protein broadly regulates 

the cellular response to infection, whereas the WT-DUB protein participates in a much narrower 

range of regulatory processes. To further differentiate between the transcriptional profiles of the 

different infection groups, we next individually analyzed several groups of genes from the 

heatmap in Figure 14.

Functional Clustering/Gene Ontological Analyses of Differentially-Expressed Genes

We bracketed several distinct groups of genes within the heatmap in Figure 14 and 

numbered them 1-6. We sought to determine if these groups of genes, which had already been 

mathematically clustered together in Figure 14 based on similarities in their expression patterns, 

encode proteins that also have similar functions. Figure 15 shows a schematic of the pipeline that 

we employed to analyze these groups of genes denoted in Figure 14. Briefly, the list of gene 
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names within each group was converted to the corresponding Ensembl IDs, and those IDs were 

subjected to gene ontological (aka functional clustering) analyses using an online tool called 

DAVID (Database for Annotation, Visualization and Integrated Discovery) (Huang et al. 2009a; 

Huang et al. 2009b). DAVID is a valuable tool for clustering lists of genes based on functional 

similarities of the proteins that they encode; for example, if a list of genes contains multiple 

known pro-inflammatory genes, they will be clustered together under a blanket term like 

“inflammation” or “inflammatory response.” Additionally, each functional cluster is associated 

with a q-value that is indicative of the false-discovery rate (FDR, via the Benjamini-Hochberg 

Procedure) and represents the statistical significance of a given cluster. A cluster generated by 

DAVID will meet statistical significance (which we defined as q < 0.05) if it contains a sufficient 

number of genes to be considered a non-random enrichment of the functional group in the 

context of the full list of genes that was originally submitted to DAVID for analysis. Table 3 

shows the results of these DAVID analyses for each of the 6 groups of genes denoted in Figure 

14. The column labeled “Total genes in group” refers to the total number of genes in each group 

that were submitted to DAVID for gene name conversion and subsequent clustering; notably, not 

all of these genes correspond to Ensembl IDs and not all Ensembl IDs were ultimately clustered 

by DAVID into clusters of statistical significance. The column titled “Statistically significant 

functional clusters within group” shows the functional clusters within each group that were 

statistically significant. As there was substantial redundancy among many of the clusters, we 

further organized the functional clusters into groups of essentially redundant terms (e.g., 

“immune response” represents functional cluster terms such as “immune response,” 

“inflammatory response,” “inflammation,” etc.). “Unique genes in statistically significant 

clusters” refers to the total number of genes in each group that were clustered into at least one of 
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the functional clusters that met statistical significance in that group. A gene that appears in 

multiple clusters of statistical significance is counted as one unique gene. In this way, as outlined 

in Figure 15, we extracted all of the unique, statistically significant functionally-clustered genes 

from the groups in Figure 14. As shown in Table 3, genes in Groups 5 and 6 were not clustered 

by DAVID into any clusters of statistical significance, indicating that the genes within those 

groups are not highly functionally similar despite having been grouped together based on similar 

expression patterns. Therefore, Groups 5 and 6 were not further analyzed. We next generated 

heatmaps of the expression profiles of the unique genes in statistically significant functional 

clusters from each of the remaining 4 groups, which are shown in Figures 16-19. The names of 

the genes whose expression profiles are displayed in the heatmaps Figures 16-19 are listed, in 

order, in Tables S2-S5 in the Appendix of this document. Finally, the unique, functionally-

clustered genes within each group were ordered from most- to least-highly upregulated in terms 

of their expression levels in WT-MHV-infected BMDMs at 12 hpi compared to mock-infected 

BMDMs, and the normalized counts for the top 12 genes from each group whose expression was 

associated with at least 100 normalized counts in any sample were plotted over time. These line 

graphs are displayed in Figures 16-19.
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Figure 15. Schematic of Analysis and Data Presentation Methods Applied to Genes in 
Groups 1-6. After generating the heatmap in Figure 14 (top bubble), 6 groups of genes of 
interest (labeled Groups 1-6) were identified from the heatmap based on noteworthy patterns of 

heatmap of global gene expression
(Figure 14)

 Heatmap contains expression data for the most highly upregulated genes in 12 hpi WT-
MHV-infected cells compared with mock-infected cells.

o fold-change minimum cutoff: 4
o q-value cutoff: 0.05
o 2,879 genes total
o Genes are arranged based on expression pattern similarities using Cluster 3.0.

6 groups of genes of interest
(Figure 14)

• identified from heatmap in Figure 14

functional clustering/gene ontology
(Table 3)

• The gene names from each group were first converted to Ensembl IDs 
using DAVID.

• Ensembl IDs from each group were then submitted to DAVID for 
functional clustering.

heatmaps of unique genes in statistically significant functional clusters
(Figures 16A-19A)

• Statistically significant clusters of genes were identified within Groups 1-4 using 
DAVID analyses.

• Heatmaps contain the expression data for these genes, broken down by group into 
separate figures (log

2
-transformed, z-score-standardized normalized counts).

line graphs of top statistically significant functionally-clustered genes
(Figures 16B-19B)

• Unique genes within statistically significant functional clusters for Groups 1-4 were ordered from 
most to least upregulation in WT-MHV-infected cells at 12 hpi compared to mock-infected cells.

• The normalized counts of the top 12 genes from each group that met the normalized count 
minimum of 100 were then plotted in line graphs over time.
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expression across infection groups (second bubble). The gene names in each group were 
converted to Ensembl IDs using DAVID and the resulting lists of Ensembl IDs were submitted 
to DAVID for functional clustering analyses (third bubble). The results of these analyses are 
shown and described in Table 3. The expression patterns of each of the unique genes from 
statistically significant functional clusters within each group were then plotted in a separate 
heatmap for each group, shown in Figures 16A-19A (fourth bubble). Finally, the top 12 unique 
genes from statistically significant functional clusters within each group were then selected based 
on highest degree of upregulation in WT-MHV-infected cells at 12 hpi compared with mock-
infected cells with a minimum normalized count cutoff of at least 100 counts; the normalized 
counts of these genes (48 total) were then plotted over time in Figures 16B-19B (bottom bubble).

Group

Total 
genes in 
group

Statistically significant functional 
clusters within group

Unique genes in 
statistically 
significant 

functional clusters

1 231
immune response (11)
signaling cascades (1) 30

2 520

transcription (2)
protein ubiquitination (2)

embryonic hemopoiesis (1)
phosphorylation (1)

151

3 466

immune response (60)
signaling cascades (14)

transcription and cell proliferation (6)
apoptosis (5)

response to non-microbial stimuli (5)
host/symbiont biology (2)

203

4 623
transcription (3)

immune response (3)
signaling cascades (2)

149

5 491 none N/A

6 91 none N/A

Table 3. Functional Clustering Analyses of Gene Groups 1-6 Using DAVID. Genes from 
each of the 6 groups bracketed in Figure 14 were submitted to DAVID for functional clustering, 
as described in Figure 15. Shown here are the results of these analyses, including the total genes 
in each group that were originally submitted to DAVID for clustering (second column), the 
number of statistically significant functional clusters within each of the 6 groups as determined 
by DAVID (third column), and the number of unique genes that appear in at least one of the 
statistically significant functional clusters within each group (last column). Because DAVID 
reported many functional clusters that were semantically redundant, we further condensed the 
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results of these DAVID analyses into the clusters shown in the third column. The number in 
parentheses after each of the terms listed in the third column indicates the number of statistically 
significant DAVID-generated clusters that we condensed into each larger cluster (i.e., we binned 
60 statistically significant functional clusters within Group 3 into the “immune response” term 
shown in the third column). Groups 5 and 6 were not associated with any functional clusters of 
statistical significance. N/A, not applicable.

Note that the reads from the same 3 hpi mock-infected BMDMs were included as a 

negative control during analyses of all timepoints and are also plotted in all panels in Figures 16-

19. Due to the process by which DESeq2 normalizes counts across samples, which corrects for 

differences in the total number of mapped reads between samples, it may appear in some 

individual line graphs within Figures 16-19 as though the number of reads from the same mock-

infected samples are somehow decreasing over time. However, this trend is merely an artifact of 

the read normalization process and is due in this case to the fact that the total number of reads 

mapping to the murine host genome decreased in MHV-infected samples as infection progressed. 

In other words, the total number of murine reads in an MHV-infected sample at 12 hpi was 

significantly lower than the number of murine reads in a mock-infected sample at 3 hpi because 

expression of the viral genome dominates cellular transcription machinery in MHV-infected cells 

by 9-12 hpi. DESeq2 accounts for these differences in sequencing depth by scaling up or down 

the number of raw counts that were mapped to each gene in each sample according to a “scaling 

factor” that is calculated from the average of the number of reads pertaining to that gene across 

all samples included in the analysis. The authors of the DESeq2 package describe this process in 

detail in their 2014 paper (Love et al. 2014). It is therefore best to compare the normalized 

counts pertaining to each sample against the other samples in that same timepoint (i.e., compare 

the normalized counts for a particular gene in WT-MHV-infected samples at 12 hpi with the 

normalized counts for that same gene in EndoU-mut-MHV-, DUB-mut-MHV-, or mock-infected 

cells at 12 hpi).
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The data in Table 3 indicate that genes involved in the immune response, transcription, 

and various signaling cascades appear in multiple groups in the heatmap in Figure 14. This 

scattering of functionally similar genes throughout the heatmap is a consequence of the method 

of clustering that was used to generate Figure 14, which involved ordering the genes based on 

their expression patterns and not based on their functions. Additionally, it is notable that Group 3 

contained the highest number of functional clusters of statistical significance (95) despite having 

the third-lowest number of total genes of all 6 groups. However, most of these clusters within 

Group 3 were essentially redundant (60 clusters were various iterations of “immune response” 

genes, for example) and most of the 203 unique genes in Group 3 were clustered by DAVID into 

more than one functional cluster.

Group 1.

The 4 groups containing genes that were organized by DAVID into statistically 

significant functional clusters (Groups 1-4) can be classified in terms of the gene expression 

profile associated with EndoU-mut-MHV-infected BMDMs in each group. Thus, Group 1 

contains genes that were most highly expressed in EndoU-mut-MHV-infected cells; Group 2, on 

the other hand, includes genes that were least highly expressed in EndoU-mut-MHV-infected 

cells; and Groups 3 and 4 comprise genes that were associated with an intermediate expression 

phenotype induced by EndoU-mut-MHV relative to the other two groups. Notably, the unique 

genes in statistically significant functional clusters within Group 1—all of which were most 

highly expressed during EndoU-mut-MHV infection—include a number of type I IFN genes 

(Figure 16A). Indeed, 17 of these 30 genes are type I IFN isoforms. Because the top 12 most 

upregulated unique genes from Group 1 in WT-MHV-infected cells at 12 hpi compared with 

mock-infected cells were all type I IFN isoforms with virtually indistinguishable expression 
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profiles, we elected to show only 9 of these isoforms and selected 3 other genes from the Group 

1 list—Lta, Oas1b, and Isg15—to display in line graphs Figure 16B. All of the genes in Figure 

16B encode proteins that are known to participate in the antiviral response. Importantly, these 

data indicate that EndoU-mut-MHV elicited a substantially higher type I IFN response than the 

other two viruses while simultaneously pointing to a similar—yet much subtler—increase in 

expression of the same type I IFN genes during DUB-mut-MHV infection compared to WT-

MHV infection. Our RNA-seq data therefore corroborate the results of qRT-PCR experiments in 

Figure 11. 

Group 1 Heatmap

Mock 3 6 9 12 3 6 9 12 3 6 9 12

WT DUB-mut EndoU-mut
hpi

A
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Group 1 Line Graphs

Figure 16. Expression Profiles of Unique Genes in Statistically Significant Functional 
Clusters within Group 1. After applying DAVID functional clustering to Groups 1-6 from 
Figure 14, the expression profiles of the unique genes in statistically significant functional 
clusters within Group 1 were plotted as heatmaps and line graphs to emphasize differences in 
patterns of expression between EndoU-mut-, DUB-mut-, and WT-MHV-infected BMDMs over 
time (see Table 3). (A) Plotted are row z-score-standardized log2-transformed means of 
replicates for all samples. Color bar shows the row z-sore value associated with each color shade, 
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with warmer colors representing higher relative expression values within a row and cooler colors 
corresponding to lower relative expression values. See Table S2 in the Appendix for a list of 
gene names in the order in which they appear in this heatmap. (B) The normalized count values 
for the top 12 unique genes in statistically significant functional clusters within Group 1 are 
plotted as line graphs. These genes were chosen by ordering the list of unique genes in 
statistically significant functional clusters within each group from most- to least-highly 
upregulated in WT-MHV-infected cells at 12 hpi compared with mock-infected cells. The top 12 
genes from each of those lists that was associated with at least 100 normalized counts in any 
sample were selected. For this group only (and not for Groups 2-4), since the top 12 genes were 
all type I IFN isoforms with nearly identical expression patterns, we elected to show only 9 of 
these isoforms and selected 3 other genes from the Group 1 list—Lta, Oas1b, and Isg15—to 
display here. Plotted are the average normalized counts for each gene in EndoU-mut- (green), 
DUB-mut- (blue), WT-MHV- (lilac), and mock-infected (black) BMDMs infection groups over 
all 4 timepoints. The normalized counts from each infection group at 12 hpi were subjected to 
statistical testing using two-tailed Student’s t-tests. * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001; ns, not significant. Data are presented as means ± SD.

Group 2.

Unlike in Group 1, the unique genes in statistically significant functional clusters within 

Group 2, whose expression profiles are shown in a heatmap in Figure 17A, were least highly 

expressed in EndoU-mut-MHV-infected cells compared with DUB-mut- and WT-MHV-infected 

cells. The majority of these genes encode proteins that act in transcription (Table 3), a few of 

which appear to have been differentially expressed between DUB-mut- and WT-MHV-infected 

cells. The normalized counts for some of these genes are plotted in line graphs in Figure 17B.
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Group 2 Heatmap
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Group 2 Line Graphs

Figure 17. Expression Profiles of Unique Genes in Statistically Significant Functional 
Clusters within Group 2. See Figure 16 for figure legend. See Table S2 for a list of gene names 
in the order in which they appear in this heatmap.
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Group 3.

The unique genes in statistically significant functional clusters within Groups 3 and 

Groups 4 were, in general, least highly expressed in EndoU-mut-MHV-infected cells (albeit still 

more highly expressed in these cells than were the genes in Group 2). Group 3 most notably 

contains a number of canonical pro-inflammatory cytokines and chemokines (Tnf, Il1a/Il1b, Il6, 

Il12a/Il12b, Csf1, Cxcl10, Cxcl11, among others), a host of known antiviral defense genes and 

sensors of viral infection (including Ifit1/Isg56, Ifit2, Ifit3, Ddx58/RIG-I, and Eif2ak2/PKR), as 

well as genes involved in the regulation of NF-κB activation and signaling (including Rel/NF-

κB, IκBα, IκBδ, and Ikbke). The expression profiles of these genes are shown in a heatmap and 

line graphs in Figures 18A and 18B, respectively. Unlike the genes in Groups 1 and 2, the genes 

in Group 3 generally were not associated with a statistically significant differential expression 

profile in DUB-mut-MHV-infected cells compared with WT-MHV-infected cells. Together, the 

data in Figure 18 strongly suggest that the macrophages infected with EndoU-mut-MHV were in 

a significantly less pro-inflammatory state than were the cells infected with either DUB-mut- or 

WT-MHV. The data also indicate that DUB-mut- and WT-MHV appear to have elicited 

inflammatory and antiviral responses of similar magnitude, as evidenced by the overwhelming 

lack of statistically significant differences in gene expression between the DUB-mut- and WT-

MHV infection groups. 



83

Group 3 Heatmap
f

Mock 3 6 9 12 3 6 9 12 3 6 9 12

WT DUB-mut EndoU-mut
hpi

A



84

Group 3 Line Graphs

Figure 18. Expression Profiles of Unique Genes in Statistically Significant Functional 
Clusters within Group 3. See Figure 16 for figure legend. See Table S4 for a list of gene names 
in the order in which they appear in this heatmap.
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Group 4.

Finally, similar to Group 2, the majority of the unique genes in statistically significant 

functional clusters within Group 4 encode proteins that are involved in transcription, most 

commonly by acting as transcription factors or molecules that participate in signaling cascades 

that terminate in large-scale transcriptional changes (Table 3). The expression profiles of these 

genes are shown in a heatmap and line graphs in Figure 19. Interestingly, in addition to being 

significantly less highly expressed in EndoU-mut-MHV-infected cells, many of the in Group 4 

were also associated with statistically significant differential expression between DUB-mut- and 

WT-MHV infection groups, demonstrated by the line graphs in Figure 19B. We note that several 

of these genes—including Plagl1, Kalm, Zfhx4, Asap3, and others—were in fact most highly 

induced by DUB-mutant-MHV infection. A few other genes were not differentially expressed at 

all between virus-infected groups. The data in Figures 17-19 (which display the expression data 

from the genes in Groups 2-4, respectively) indicate that the macrophages infected with EndoU-

mut-MHV were much less transcriptionally active than were the cells infected with DUB-mut- or 

WT-MHV. Taken together, the results of our RNA-seq experiments, including the functional 

clustering analyses that we applied to groups of DEGs, provide compelling data to suggest that 

DUB-mut-MHV elicited matching expression patterns of all but a select few genes compared 

with WT-MHV, whereas EndoU-mut-MHV induced a profoundly distinct transcriptional 

response that differentially impacted the expression of more than 2,800 genes. Potential 

mechanisms that may contribute to the dysregulation of genes in Groups 1-6 are described in the 

Discussion chapter of this document.
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Group 4 Line Graphs

Figure 19. Expression Profiles of Unique Genes in Statistically Significant Functional 
Clusters within Group 4. See Figure 16 for figure legend. See Table S5 for a list of gene names 
in the order in which they appear in this heatmap.

3 6 9 12
0

20
40
60

200
250
300
350
400

hpi

no
rm

al
iz

ed
co

un
ts

Krt16

EndoU-mut
DUB-mut
WT
Mock***

3 6 9 12
0

20
40
60
80

100
800

1000
1200
1400

hpi
no

rm
al

iz
ed

co
un

ts

Inhba

EndoU-mut
DUB-mut
WT
Mock***

3 6 9 12
0

10
20
30
40

100
200
300
400
500
600
700
800
900

1000

hpi

no
rm

al
iz

ed
co

un
ts

Ccl22

EndoU-mut
DUB-mut
WT
Mock

*

**

**

3 6 9 12
0
5

10
15
20

100

200

300

hpi

no
rm

al
iz

ed
co

un
ts

Nr3c2

EndoU-mut
DUB-mut
WT
Mock

**

**

**

3 6 9 12
0

500

1000

1500

Plagl1

hpi

no
rm

al
iz

ed
co

un
ts

EndoU-mut
DUB-mut
WT
Mock

*

**

3 6 9 12
0

100

200

300

400

500

hpi

no
rm

al
iz

ed
co

un
ts

Kalrn

EndoU-mut
DUB-mut
WT
Mock

**

**

3 6 9 12
0

50

100

150

200

hpi

no
rm

al
iz

ed
co

un
ts

Zfhx4

EndoU-mut
DUB-mut
WT
Mock*

*

3 6 9 12
0

1000

2000

3000

4000

Asap3

hpi

no
rm

al
iz

ed
co

un
ts

EndoU-mut
DUB-mut
WT
Mock

*

***

3 6 9 12
0

20
40
60

80
100
120

140
160
180
200

hpi

no
rm

al
iz

ed
co

un
ts

Ciita

EndoU-mut
DUB-mut
WT
Mock

**

****

**

3 6 9 12
0

50

100

150

200

Med12l

hpi

no
rm

al
iz

ed
co

un
ts

EndoU-mut
DUB-mut
WT
Mock

ns

*
ns

3 6 9 12
0

50

100

150

200

hpi

no
rm

al
iz

ed
co

un
ts

Fst

EndoU-mut
DUB-mut
WT
Mock

*

ns

3 6 9 12
0

50

100

150

hpi

no
rm

al
iz

ed
co

un
ts

Cfb

EndoU-mut
DUB-mut
WT
Mock

ns

3 6 9 12
0

1000
2000
3000
4000
5000

20000

25000

30000

35000

hpi

no
rm

al
iz

ed
co

un
ts

Il6

Mock
WT
EndoU-mut
DUB-mut

***

B



88

CHAPTER IV

DISCUSSION

Overview of Results

The work described herein is, to the best of our knowledge, the first report of applying 

global transcriptome profiling to an immune cell type infected with a mutant coronavirus or the 

WT parental strain. Using virus-infected primary murine BMDMs, we report that both EndoU-

mut- and DUB-mut-MHV induced significantly elevated expression of multiple type I IFN 

isoforms relative to WT-MHV as early as 6 hpi, with EndoU-mut-MHV-infected BMDMs 

expressing the highest levels of these transcripts (Figures 11 and 16). Interestingly, aside from 

these type I IFN genes and a handful of other genes that were most highly expressed during 

EndoU-mut-MHV infection, the vast majority of the 2,879 genes that were most highly 

upregulated during WT-MHV infection at 12 hpi relative to mock were, by comparison, least 

highly expressed in EndoU-mut-MHV-infected cells (Figure 14). Functional clustering analyses 

revealed that these genes comprised a host of canonical pro-inflammatory cytokines (including 

Tnf, Il6, Il1, and Il2, along with multiple chemokines), antiviral defense genes and sensors of 

viral infection, regulators of NF-κB activity, as well as a number of other genes that are known 

to be involved in the induction and/or regulation of transcription (Figures 17-19). These findings 

are in line with a recent report describing the expression profiles of 754 genes in BMDMs 5-14 

dpi with a gliatropic strain of MHV, in which the authors describe the upregulation of a large 

cluster of pro-inflammatory genes (Savarin et al. 2018). Interestingly, Cheung et al. (2005) also 
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demonstrated upregulation of several chemokines by 3 hpi in SARS-CoV-infected primary 

human monocyte-derived macrophages, whereas we did not observe any differential expression 

at all until 6 hpi. We speculate that this disparity is a product of temporally distinct responses 

elicited by SARS-CoV and MHV.

Despite containing a marked increase in type I IFN mRNAs during DUB-mut-MHV 

infection, BMDMs infected with this strain exhibited a transcriptional response that was 

statistically indistinguishable from that induced by WT-MHV at all timepoints with few 

exceptions. It is noteworthy that the widespread transcriptional changes associated with EndoU-

mut-MHV infection, for which but a single amino acid change in nsp15 was responsible, were 

accompanied by attenuation of the virus, whereas neither DUB-mut- nor WT-MHV was 

attenuated (Figure 12). These results indicate that the mere induction of type I IFN in the context 

of an IFN antagonist-deficient coronavirus is not a sufficient marker for attenuation of the virus 

or for substantial transcriptional dysregulation of host genes in response to the infection; instead, 

the magnitude of type I IFN expression is key. That EndoU-mut-MHV induced a profoundly 

higher type I IFN response than even the DUB-mut virus suggests that there is a threshold of IFN 

expression that must be crossed before a host macrophage mounts a differential response to an 

IFN antagonist-deficient coronavirus that is capable of mitigating the infection.

Impact of IFN Expression and Signaling.

Our data indicate that substantial expression of type I IFNs occurred early during 

infection (by 6 hpi) with each of the 3 viruses used in this study, albeit to profoundly different 

degrees depending on the particular virus (Figures 11 and 16). However, it is important to note 

that the expression of IFN isoforms that we observed during our experiments may not have 

prompted substantial IFN signaling or IFN-induced gene expression within the temporal 
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constraints of the timecourse. We previously reported that IFN-α is first detectable in the 

supernatants of EndoU-mut- and WT-MHV-infected BMDMs between 8 and 12 hpi; in order to 

influence gene expression, that secreted IFN must then interact with its receptor (IFNAR) on the 

surfaces of cells in a paracrine or autocrine manner, triggering a signaling cascade that 

eventually terminates in altered gene expression (Ivashkiv and Donlin 2014; Deng et al. 2017). 

Thus, it is unclear if the enhanced expression of type I IFN that we observed in the context of 

EndoU-mut- and DUB-mut-MHV infection of BMDMs ultimately influenced the global 

transcriptional profiles of those cells. Although a handful of groups have published the 

expression data for a select few genes upon treatment with type I IFN, to our knowledge there 

exist no published data illuminating the transcriptional profiles of type I IFN-treated 

macrophages with which we could compare the data that we obtained in this study (Zhou et al. 

2010; Pertsovskaya et al. 2013; Kroetz et al. 2015; Labzin et al. 2015). We aim to investigate the 

global transcriptional changes induced in macrophages by type I IFN alone in the near future. 

From the current study, we conclude that the magnitude and timing of the expression of type I 

IFN represent a useful marker for virus attenuation when studying IFN antagonist-deficient 

coronaviruses, but whether or not the attenuation of such mutant viruses is due to the induction 

and downstream signaling of type I IFN remains to be elucidated.

Mechanisms of Extensive Transcriptional Changes during CoV Infection

Apoptosis.

Why was global transcription in EndoU-mut-MHV-infected cells dramatically 

diminished relative to the other two infection groups and why did these cells appear to be 

significantly less pro-inflammatory in their gene expression profiles despite expressing the 

highest levels of type I IFNs? One possibility stems from the observation that the replication of 
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EndoU-mut-MHV is rapidly attenuated during infection of BMDMs compared with DUB-mut- 

and WT-MHV infection (Figure 12). This early attenuation of EndoU-mut-MHV replication 

might ultimately mean that macrophages infected with EndoU-mut-MHV, but not DUB-mut- or 

WT-MHV, were not sufficiently activated to increase the transcription of the pro-inflammatory 

genes. But what is responsible for disrupting the replication of EndoU-mut-MHV as early as 6 

hpi? We and others previously demonstrated that nsp15-EndoU limits apoptosis in macrophages 

during infection; therefore, it might be the case that BMDMs infected with EndoU-mut-MHV 

sensed the mutant virus (via the PKR and OAS/RNase L pathways, as we have shown) and 

subsequently began the process of apoptosis so early during infection that the infected cells 

simply did not have a chance to initiate a broad pro-inflammatory state before dying (Lei et al. 

2013; Deng et al. 2017). Additional work is required to clarify the intriguing and apparently 

inverse relationship between type I IFN expression and the expression of pro-inflammatory 

genes in the context of WT- and IFN antagonist-deficient coronavirus infections. The 

mechanisms that contribute to the early attenuation of EndoU-mut-MHV replication and gene 

expression, including the role of apoptosis, also warrant further investigation.

ER Stress.

If early apoptosis might have contributed to the unique transcriptional profile that we 

obtained from EndoU-mut-MHV-infected BMDMs, what mechanism(s) could explain the 

markedly enhanced transcriptional activation of host genes that we observed in DUB-mut- and 

WT-MHV-infected cells? Why did DUB-mut- and WT-MHV-infected BMDMs exhibit the 

highest pro-inflammatory responses? Indeed, why did WT-MHV elicit such markedly amplified 

expression of so many genes in general? WT-MHV encodes multiple IFN antagonists, including 

a functional EndoU that, as we and others recently showed, is required for the evasion of 
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multiple cellular dsRNA sensors (Deng et al. 2017; Kindler et al. 2017). Therefore, we expected 

that impaired sensing of viral dsRNA in the context of WT-MHV infection would correspond to 

a limited host transcriptional response overall, but found precisely the opposite to be true. 

Having completed a literature search to address these questions, we now speculate that cellular 

stressors including mitochondrial oxidative stress and endoplasmic reticulum (ER) stress may 

have played a role in shaping the observed transcriptional responses to the viruses used in this 

study. Several groups have published compelling data demonstrating that coronaviruses induce 

substantial oxidative and ER stress during infection, which can have a number of outcomes, 

including the induction of pro-inflammatory cytokines, translation attenuation, and if left 

unresolved, eventual apoptosis (Mogensen et al. 2003; DeDiego et al. 2011; Fung and Liu 2014; 

Siu et al. 2014; Smith 2014; Reineke et al. 2015; Fung et al. 2016). In particular, it is 

increasingly clear that coronavirus-induced ER stress and the unfolded protein response that cells 

mount to alleviate such stress may activate NF-κB-mediated inflammation through multiple 

pathways, thereby possibly contributing to the transcriptomic profiles that we observed in this 

study.

ER stress is primarily caused by an accumulation of unfolded proteins within the ER (Xu 

et al. 2005; Smith 2014). Virus infections represent just one of several possible root causes of 

unfolded protein accumulation since the mass-production of virions using viral proteins places 

enormous strain on a host cell’s protein folding machinery (Xu et al. 2005; Smith 2014). Upon 

detecting ER stress through special sensing pathways within the ER, the cell initiates an unfolded 

protein response (UPR) in an effort to resolve the source of the stress; this UPR, in turn, can 

activate a pro-inflammatory response in a process that was recently referred to in one paper as “a 
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new paradigm” of innate immune sensing of viruses (Fung and Liu 2014; Smith 2014; Fung et 

al. 2016). The UPR comprises 3 known pathways, depicted in Figure 20. 

Figure 20. The Unfolded Protein Response. The UPR comprises 3 signaling pathways. In 
unstressed cells, the initiating members of these pathways—IRE1, ATF6, and PERK—are held 
in an inactive state by BiP, a folding chaperone protein. Each pathway is activated upon the 
release of BiP. (Left) IRE1 oligomerizes after releasing BiP, initiating a signaling cascade 
involving JNK and XBP1. (Middle) BiP release from ATF6 reveals a Golgi localization signal 
(GLS) in ATF6. Upon trafficking to the Golgi, ATF6 is cleaved to produce an active 
transcription factor. (Right) Once released from BiP, PERK attenuates most translation by 
phosphorylating eIF2α. In boxes are cellular processes regulated by the UPR, including 
apoptosis, ERAD (ER associated degradation), lipid synthesis, the expression of ER chaperones, 
etc. Used with permission from Smith (2014).

An evolving view of the 3 UPR pathways involves the addition of NF-κB and the 

expression of NF-κB-induced pro-inflammatory genes as a downstream consequence of UPR 

initiation. For example, PERK-mediated translation attenuation has been shown to activate NF-
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κB by reducing the protein levels of NF-κB inhibitor IκBα; it has also been proposed that PERK-

induced modulation of JNK and p38 (initiated by phosphorylation of eIF2α) may also regulate 

the expression of pro-inflammatory cytokines (Deng et al. 2004; Tam et al. 2012; Fung and Liu 

2014; Smith 2014). In a similar vein, several labs have published data collectively indicating that 

IRE1 activation synergistically augments the innate immune response by increasing the 

activation of NF-κB (Hu et al. 2011; Tam et al. 2012; Fung and Liu 2014; Smith 2014). 

Together, these findings point to a role for the ER stress-induced UPR in innate immunity.

Coronavirus infections may be particularly potent sources of ER stress and activators of 

the UPR due to the expression of their extremely large genomes and the subsequent folding of 

massive quantities of viral proteins, CoV-induced reorganization of ER membranes to generate 

the DMVs in which CoV replication complexes are assembled, and depletion of ER membranes 

during the budding of nascent virions (Fung and Liu 2014; Fung et al. 2016). Indeed, multiple 

groups have reported increased detection of ER stress and UPRs in cells infected with 

coronaviruses including MHV, SARS-CoV, HCoV-HKU1, MERS-CoV, and IBV (Raaben et al. 

2007; Bechill et al. 2008; DeDiego et al. 2011; Fung et al. 2014; Siu et al. 2014; Rabouw et al. 

2016; Irigoyen et al. 2018). Notably, MHV has been shown to activate all 3 UPR pathways 

during infection (Raaben et al. 2007; Bechill et al. 2008; Irigoyen et al. 2018). In the current 

study, using our RNA-seq data, we also detected activation of the UPR by 12 hpi based on 

increased expression of at least 9 genes that are known to be transcriptional targets of the PERK 

(Atf4, GADD153/CHOP/Ddit3, and Dusp1), IRE1 (Erdj4/Dnajb9, Edem1, and p58IPK/Dnajc3), 

and ATF6 (GRP78/BiP/Hspa5, GRP94/Hsp90b1, and Herpud1) pathways (Wu et al. 2007; Fung 

and Liu 2014; Smith 2014; Irigoyen et al. 2018). These results are illustrated in Figure 21.
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Figure 21. Expression of Genes Targeted by UPR Pathways in EndoU-mut-, DUB-mut-, 
and WT-MHV-infected BMDMs at 12 hpi. The normalized count values for 9 UPR-induced 
genes at 12 hpi are plotted. Genes are grouped into 3 panels according to whether their 
expression is triggered by (A) PERK, (B) IRE1, or (C) ATF6 pathway signaling. Data were 
subjected to statistical analysis by two-tailed Student’s t-tests. * p < 0.05; ** p < 0.01; *** p < 
0.001; **** p < 0.0001; ns, not significant. Data are presented as means ± SD.

The data in Figure 21 indicate that all 3 UPR pathways were substantially activated in 

DUB-mut- and WT-MHV-infected cells but relatively minimally activated in EndoU-mut-

infected cells relative to mock at 12 hpi. Two genes—Edem1 and GRP94/Hsp90b1—were not 

statistically significantly upregulated at all in EndoU-mut-infected cells relative to mock, 

suggesting an overall reduced activation of the UPR pathways by the EndoU-mut-MHV virus 

compared with the other two viruses. As other groups have previously shown, the apparent 

activation of these pathways in DUB-mut- and WT-MHV-infected cells was not associated with 

impaired replication of the viruses, as illustrated in Figure 11, suggesting that MHV—and 

perhaps other CoVs—has evolved to evade and/or suppress UPR-mediated antiviral activity, 

including UPR-induced apoptosis (Raaben et al. 2007; Bechill et al. 2008; Irigoyen et al. 2018). 

Indeed, it has been reported that several SARS-CoV-encoded proteins and at least one MERS-

CoV-encoded protein antagonize the ER stress response during infection, indicating that 

coronaviruses are capable of shaping the UPR to their own benefit (DeDiego et al. 2011; 

Rabouw et al. 2016).

It is an intriguing possibility that the results of our RNA-seq experiments in DUB-mut- 

and WT-MHV-infected BMDMs, which revealed robust expression of nearly 2,900 host genes in 

response to infection, might be explained at least in part by the ER stress-triggered UPR. If, for 

example, the infection prompted the UPR, as has been well documented, it is possible that the 

outcome of UPR pathway signaling led to the activation of NF-κB and the downstream 

expression of NF-κB-induced inflammatory genes all while evading the initiation of apoptosis, 
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as has also been demonstrated during CoV infections. In light of the results of our qRT-PCR 

experiments in Figure 12, which revealed that massive amounts of viral N gene transcript 

accumulated as early as 6 hpi during DUB-mut- and WT-MHV infection, a virus-induced wave 

of ER stress and the subsequent activation of the UPR would not be unusual. By activating the 

UPR, the cell’s response to this ER stress would have the potential to produce potently pro-

inflammatory macrophages via NF-κB-mediated gene expression. Prevented from undergoing 

apoptosis due to virus-encoded antagonists like nsp15-EndoU, these inflammatory macrophages 

might then contribute to the development of severe inflammatory coronaviral disease, in line 

with what has been reported in the literature (Cheung et al. 2005; Zhou et al. 2014; 

Channappanavar et al. 2016). Such a scenario could explain why the DUB-mut- and WT-MHV-

infected cells in this study exhibited unimpeded viral replication coupled with dramatically 

increased expression of pro-inflammatory genes compared to mock-infected cells. Conversely, 

we hypothesize that the EndoU-mut-MHV-infected cells were rapidly driven toward an apoptotic 

phenotype early during infection due to the inability of the mutant virus to evade detection by the 

PKR and OAS/RNase L pathways. Early initiation of apoptosis would, in turn, preclude the 

buildup of significant ER stress and the subsequent activation of a broad inflammatory response 

to EndoU-mut-MHV infection akin to what was observed in DUB-mut- or WT-MHV-infected 

cells. This proposed dichotomy is illustrated in Figure 22. The extensive increase in expression 

of thousands of genes that our RNA-seq experiments revealed in DUB-mut- and WT-MHV-

infected BMDMs likely cannot be attributed to ER stress-induced gene expression alone, but we 

speculate that the UPR played an important role in shaping at least part of the transcriptional 

profiles that we report here. At any rate, although additional work is required to fully elucidate 

the mechanism(s) that underlie the patterns of gene expression that we observed in this study, it 
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is remarkable that a single amino acid change in nsp15-EndoU—but not in nsp3-DUB—was 

sufficient to profoundly alter the fate of the virus and of EndoU-mut-MHV-infected BMDMs. 

Figure 22. Proposed Model of the Consequences of EndoU-mut-, DUB-mut-, and WT-MHV 
Infection in BMDMs. Upon infection of a BMDM with EndoU-mut-MHV, host dsRNA sensors 
(including RIG-I, MDA5, PKR, and OAS/RNase L) are activated, resulting in robust 
transcription of type I IFN genes and rapid induction of apoptosis, the latter of which precludes 
the development of a potent inflammatory response. Viral replication is severely restricted in 
these apoptotic macrophages (shriveled grey/black cell) as early as 6 hpi. Although DUB-mut-
MHV induces significantly higher type I IFN during infection than WT-MHV, infection with 
either DUB-mut- or WT-MHV results in the same outcome: accumulation of ER stress and 
subsequent activation of the UPR, which then likely contributes to the establishment of a robust 
NF-κB-mediated pro-inflammatory response. BMDMs infected with either of these viruses 
acquire a potently activated, inflammatory phenotype (orange cell), are unable to attenuate viral 
replication, and likely contribute to severe immunopathology in vivo.
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Targeting CoV-encoded IFN Antagonists for Rational Vaccine Design 

Including nsp3-DUB and nsp15-EndoU, multiple coronavirus proteins—including both 

structural and nonstructural proteins—are reported to antagonize the innate immune response in 

vitro and/or in vivo. These include: nsp16-2’O MTase, nsp14-ExoN, nsp1, nsp7, E protein, N 

protein, M protein, SARS-CoV-ORF6, MERS-CoV-ORF3-5, MERS-CoV-4a, and others 

(Frieman et al. 2007; Frieman et al. 2009; DeDiego et al. 2014; Rabouw et al. 2016; Menachery, 

Galinski, et al. 2017; Menachery, Mitchell, et al. 2017; Menachery et al. 2018). The very nature 

of this ever-growing list suggests that CoVs might encode a hierarchy of innate immune 

antagonists that collectively target both shared and unique factors and pathways during infection. 

The data from this study and our previous work strongly indicate that nsp15-EndoU activity 

might sit at the top, or near the top, of such a hierarchy since it is evidently indispensable for 

successful infection both in vitro and in vivo, while nsp3-DUB might sit near the bottom rung of 

the ladder given that its activity does not appear to be similarly required (Deng et al. 2017; Deng 

et al. manuscript in preparation). Additionally, it is clear from the results of our RNA-seq 

experiments that the absence of nsp15-EndoU activity induced widespread changes in host gene 

expression relative to WT-MHV infection, whereas DUB-mut-MHV-infected cells elicited only 

a slightly altered transcriptional response compared to WT-MHV. These data also support the 

notion that nsp15-EndoU is a “master” regulator of the host response, whereas nsp3-DUB 

activity likely acts on a select number of targets to supplement nsp15-EndoU-mediated 

antagonism. Although additional work is required to clarify the roles of the many CoV-encoded 

innate immune antagonists relative to each other in the context of infection, that these viral 

proteins might work together in a hierarchical manner to achieve potent suppression of the 

antiviral response opens the door to new strategies for live-attenuated vaccine development.
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Combinatorial Approach to Generating IFN Antagonist-deficient CoV Vaccines.

Targeting viral IFN antagonists for the rational design of live-attenuated vaccines is an 

increasingly popular idea among virologists. In some cases, it is no longer merely an idea: 

recently-published reports have demonstrated remarkable efficacy of IFN antagonist-deficient 

MHV, MERS-CoV, SARS-CoV, and influenza A viruses as vaccine candidates (Deng et al. 

2017; Menachery, Galinski, et al. 2017; Du et al. 2018; Menachery et al. 2018). Two of these 

studies reported using a combinatorial approach to generating live-attenuated, IFN-sensitive 

vaccine strains by disrupting multiple IFN antagonists within the same strain. Using a mouse-

adapted SARS-CoV strain, Menachery et al. (2018) demonstrated that combining a mutation in 

nsp16-2’O MTase with an additional mutation in nsp14-ExoN resulted in robust protection from 

subsequent challenge with WT-SARS-CoV in mice without causing demonstrable pathogenesis. 

Similarly, Du et al. (2018) reported that combining 8 total “IFN-sensitive” mutations across the 

genome of the influenza A virus yielded a “hyper-IFN-sensitive (HIS)” vaccine strain that could 

be replicated to high titers in vitro but was markedly attenuated and induced appreciable humoral 

and cellular immune responses in mice (Du et al. 2018). Importantly, a combinatorial approach 

to rational vaccine design offers the advantage of reducing the likelihood of reversion to WT-like 

virulence, which is of particular concern when generating live-attenuated vaccine candidates.

The results of this study indicate that nsp15-EndoU and nsp3-DUB are attractive targets 

for the generation of a combination vaccine candidate. We observed that EndoU-mut-MHV was 

remarkably attenuated in macrophages, in line with our previously-published work in vitro and in 

vivo, and elicited a significantly diminished transcriptional response overall, including among 

groups of genes encoding potently pro-inflammatory and chemotactic proteins whose 

overexpression in the context of WT infection is thought to contribute to the severity of 
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coronaviral disease pathology (Deng et al. 2017). On the other hand, replication of DUB-mut-

MHV was not attenuated, despite inducing a considerably increased type I IFN response relative 

to WT-MHV infection, and differentially impacted the expression of only a few genes relative to 

the parental strain. Therefore, we intend to combine these two mutations in the near future to 

produce a vaccine candidate that, deficient in two of its IFN antagonism activities, is both safe 

and even more effective in vivo than the EndoU-mutant strain. Very preliminary data from our 

lab indicate that this approach might hold considerable promise, although substantial work 

remains to be completed. In conclusion, the work that we report here strongly suggests that 

combining mutations in nsp3-DUB and nsp15-EndoU with additional mutations in still other 

conserved CoV-encoded innate immune antagonists—perhaps nsp14-ExoN and nsp16-2’O-

MTase, for example—might represent the most promising and universally-effective strategy yet 

for the generation of live-attenuated coronavirus vaccines. 
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Table S1. List of Gene Names in Order of Appearance in Figure 14. Listed are the names of 
the 2,879 genes whose expression profiles are plotted in the heatmap in Figure 14. To preserve 
the order of the genes as they appear from top to bottom in Figure 14, this list should be read left 
to right, one row after another. In bold type after each gene name is the DESeq2-generated log2 
fold-change value associated with the increase in expression of each gene in WT-MHV-infected 
BMDMs at 12 hpi compared with mock-infected cells.

Gene Name_Log2 Fold-change
Enthd1_7.12 Lysmd2_7.04 Adamts13_4.45
Gm21370_5.76 Stmn4_7.11 Adm_7.34
1600002D24Rik_5.04 Apol9b_9.66 Cxcl9_10.5
8030451A03Rik_7.16 Ifit3b_9.85 Ifit3_8.73
Tgtp2_9.26 Cxcl10_11.33 Ifit1_8.01
Mx2_8.32 Gm26667_11.1 Mxd1_7.64
Iigp1_9.58 Pydc3_8.85 Gm4955_7.81
Pydc4_7.35 Oasl1_8.58 Slfn4_8.47
Olfr56_6.59 Pyhin1_6.59 2010002M12Rik_6.73
A530040E14Rik_8.65 Cxcl11_12.87 Cd69_12.71
Irg1_11.13 Ifit2_9.47 Gbp5_9.66
Tnfsf10_9.03 Cmpk2_8.82 Rsad2_8.05
Igtp_6.74 Gm12250_6.29 Ccl3_10.12
Irgm1_6 Ppm1k_5.56 Dll1_11.52
Tgtp1_10.35 Gm12185_8.27 Gm5431_5.38
Mx1_9.12 Irgm2_6.57 Slfn8_5.58
Trim21_5.65 BC147527_7.94 Usp18_6.93
Mitd1_4.28 Ppp1r15a_7.83 Themis2_5.02
Ifi205_9.14 Trim30d_4.35 Gm14446_8.17
Gm4951_8.18 Slfn1_7.84 Parp11_4.1
Ccl4_6.93 Ch25h_6.26 Nfxl1_3.74
4930512H18Rik_5.74 AW011738_5.97 Xcr1_5.59
5031414D18Rik_3.88 Gm10552_7.02 RP24-166N8.9_6.97
Ccl12_8.09 BC094916_7.11 Ifi47_6.37
Tpst1_4 RP23-364E18.2_6.84 Ppm1n_4.71
Nupr1_3.77 Bambi-ps1_3.76 Trex1_4.56
Gpr84_5.03 2500002B13Rik_3.03 Gm11772_5.81
Rtp4_4.98 Sap30_4.35 Tlr11_6.22
Olfr1396_5.43 Chic1_7.29 Gstt4_6.47
Spta1_7.16 Hsh2d_6.69 Apol9a_10.05
Misp_7.8 AW112010_8.59 Fpr2_7.59
Socs1_9.41 Serpina3f_9.72 Gbp6_10.29
Enpp4_7.63 Ccl5_10.9 Gbp3_8.19
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Gbp2_7.67 Il27_10.91 Il15_6.94
Il6_13.15 Tor3a_5.01 Nod1_6.86
Kcnh7_7.42 Ifi44_7.64 Tlr3_6.23
Ddx60_6.28 Gbp7_6.75 Gm16340_6.38
Klrk1_9.17 G530011O06Rik_6.59 Ms4a4c_9.05
Isg20_7.43 Zbp1_5.97 Mnda_5.24
Hdc_7.87 Parp10_5.14 Trim30b_5.67
Slc25a22_4.87 Xaf1_4.68 Gm15340_6.26
Ifi203_5.04 Gm11998_5.71 BC023105_8.73
E130102H24Rik_5.48 Apod_6.6 Gm4841_6.96
Plekha4_6.49 2010110E17Rik_6.74 Gm32200_6.76
Irf7_5.72 Ccl8_7.15 Batf2_5.95
Trim30c_8.29 Zeb1_5.51 Oas1g_4.54
Gpr18_5.97 Gm26797_5.2 RP24-328P2.5_4.94
Slfn5_4.04 Oasl2_3.82 Trim30a_3.82
Saa3_7.35 Mmp14_7.96 Hcar2_7.81
Rasgrp1_11.42 H2-Q7_4.57 H2-Q6_4.74
H2-Q5_4.23 Vcan_6.84 Bmp10_6.93
Olfr231_6.72 Gm38048_8.47 Trp53i11_6.47
Gm14569_8.37 Cp_6.71 Fgl2_7.98
Il18bp_5.74 Phf11a_6.45 Phf11b_5.76
Mov10_4.48 Dnase1l3_8.19 Lipg_11.96
Fbn1_9.49 Kif5c_6.16 Il23r_9.63
Slco3a1_9.81 Gm28347_9.34 Slc6a4_8.57
Phf11d_5.9 Pml_4.74 Oprd1_8.52
Tmem67_5.43 Tmem229b_3.44 Gm13348_6.15
Tnfaip8l3_7.39 Cyp26c1_6.15 Igsf9_5.58
Gm6904_4.99 Dnah12_5.84 Uba7_4.04
Gm16094_5.45 Il10_6.68 Foxf1_7.69
1600014C10Rik_4.76 Pdcd1_7.09 Rnf135_4.16
Gm15156_4.15 Mycl_11.54 F3_8.2
Nos2_13.25 C3_8.97 Traf1_8
Abtb2_7.98 Lpar1_7.75 Il12b_13.73
Gm18853_6.74 Acoxl_6.04 Cd40_9.11
Gm43164_5.01 Lrrc63_6.49 Unc80_9.78
Ptgs2_10.46 Gbp11_10.4 Gca_7.47
Gbp9_6.85 Whamm_5.41 Cd274_9.32
Ifih1_7.1 Ddx58_5.08 Parp9_4.56
Peli1_6.23 Trafd1_5.58 Lhx2_10.86
Herc6_5.73 Sp140_5.3 Parp12_5.09
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Il15ra_7.08 Apobec3_4.15 Gm13889_10.82
Tnfsf4_11.62 Nox1_8.59 Mafk_5.29
Csf1_9.79 Arhgef3_7.13 Fscn1_8.94
Foxl2os_7.49 Rapgef2_6.05 Tiparp_5.95
P2ry13_7 Aim2_4.44 Plcl2_4.79
3110001I22Rik_5.29 Snx10_3.45 Cd200_9.27
Fndc3a_4.62 Trim12a_4.72 Katna1_3.66
Cxcl16_4.15 Aftph_3.58 Rnf114_3.48
Trmt61b_3.98 A1cf_5.92 4933430I17Rik_5.09
Ripk2_5.04 Tnn_5.27 Gm37191_4.83
Neb_7.82 Golga3_3.07 Gm13822_6.91
Gm18752_6.78 Itgb8_6.3 Fam26f_8.51
Nt5c3_4.83 Mndal_4.1 Tmem171_4.76
Ifi35_4.02 Ifi204_4.38 Ube2l6_3.67
Myd88_3.58 Ogfr_3.86 Bco2_3.64
Ddx4_6.02 Serpina3g_7.92 Lck_3.1
Ptprg_6.99 Gm18852_7.29 Atf3_5.49
Il1a_10.5 Sele_11.33 H2-M2_8.87
Ccrl2_9.31 Vcam1_10.63 Gem_9.6
Gm11843_7.51 Clec4e_5.95 Gadd45b_9.04
Csrnp1_8.4 Nfkbie_6.28 Tnfaip3_7.66
Icam1_6.84 Pim1_7.68 Birc3_4.92
Edn1_10.61 Nod2_5.93 Stat1_5.5
H2-K2_6.7 5730508B09Rik_4.9 Slfn2_4.61
Shisa3_11.33 Csf2_10.96 Fnbp1l_4.04
Gfi1_9.39 Arl5c_6.21 Dusp2_6.8
Otor_5.59 C130026I21Rik_6.57 Gm8641_4.61
mt-Rnr2_3.91 mt-Rnr1_3.24 Adora2a_10.72
Socs3_6.21 Fas_5.05 Rgs16_4.85
Dusp8_5.92 Zc3h12c_5.6 Nlrp3_5.57
Pde4b_5.43 Junb_6.13 Tlr2_4.81
Tnfsf18_7.36 Six1_6.37 Bmp2_7.6
Pou3f1_10.64 Gbp4_12.17 Otud1_8.07
Zufsp_6.42 Daxx_6.79 Mthfr_5.49
Ccnj_3.88 Gm8995_6.07 Dtx3l_5.86
Stat2_5.66 Znfx1_5.02 Setdb2_6.12
Parp14_6.03 Ncoa7_4.61 Cers6_5.61
Rnf213_5.32 Gm1966_6.19 Tnfsf15_10.36
Txlnb_3.52 Gm4070_5.67 Gvin1_5.62
Cited2_6.79 Tagap_5.54 Il10ra_3.46
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Nxpe3_8.19 Hmgb1-ps5_5.73 Ier5_5.41
Zbtb5_6.09 2810474O19Rik_5.87 Rasgef1b_5.95
Ikzf1_4.98 Slfn3_5.26 Plk2_8.2
Icosl_6.29 Rel_6.12 Birc2_5.01
Ccnl1_3.85 Eif2ak2_4.66 Helz2_6.2
Samd9l_5.42 Adar_3.83 Oas2_4.18
Ccng2_5.43 Fam46a_5.84 Fam53c_4.6
Sgk1_4.4 Dcp2_4.28 Papd7_4.85
AI607873_4.44 Etnk1_4.69 N4bp1_4.14
Vcpip1_3.9 9930111J21Rik1_5.33 9930111J21Rik2_4.72
Zmynd15_5.64 Tlr1_4.07 Lrch1_3.83
Gm17017_4.95 Hs3st3a1_5.22 4930405A21Rik_4.48
Gm2065_6.05 Gm4759_4.5 Gm15990_5.26
6530409C15Rik_3.97 Ikbke_2.71 Amica1_4.58
Gm10522_3.81 4933417C20Rik_5.22 Adamts4_5.26
Gm12764_5.22 Ms4a4d_4.13 Gm7019_5.12
Gm14963_4.35 Gm11419_2.65 BC034090_4.16
A930024N18Rik_6.37 Gm11216_6.1 Rnf152_6.63
Phf11c_5.71 Pla2g4c_5.19 Rin2_3.16
Fam84b_4.16 Trim34a_4.25 Irf2_3.55
Gsap_3.56 Lipe_3.36 Cacna2d1_4.64
Cdkl5_3.53 Bcl2a1a_8.37 Rnd3_6.98
Rgs2_3.85 Amn1_3.36 Irf9_3.53
Fam110b_3.49 Crlf3_3.07 Trim14_3.31
Iqsec2_3.17 Ankle2_2.57 4930486L24Rik_3.07
Il1b_9.39 Map3k8_7.12 Cxcl1_10.21
Zfp36_5.75 Cxcl2_9.95 Irf1_8.11
Clec2d_6.29 5430427O19Rik_5.48 Tnf_9.35
Nfkbiz_9.06 Nfkbia_4.61 Pnrc1_5.55
Tifa_4.52 Tnfsf9_5.94 Prdm1_4.97
Gm5970_8.39 Gm12188_6.32 Gdap10_6.16
Slfn9_4.7 RP23-253G12.9_5.23 Art2a-ps_5.07
Rrad_3.57 Dusp1_3.93 Nfkbid_4.05
Slc25a25_3.28 Gm16161_5.04 Gm20470_4.29
Vaultrc5_5.05 RP23-353L10.2_4.66 Gm20496_4.36
Igsf6_3.28 AC117682.1_5.51 Gm26648_4.39
Gm3086_3.74 RP23-50I16.3_2.88 Dhx58os_3.9
Zfp819_4.54 Flt4_5.65 Gm7804_4.53
RP23-23C4.4_4.05 RP23-454P8.3_4.87 Cxcl3_7.33
Kcna4_3.86 Gm9089_5.84 Marcksl1_5.09
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Il23a_4.93 Gm26885_3.48 Gm18342_4.9
Slc2a6_4.13 Tslp_4.9 Sod2_2.93
Egr2_4.49 E230013L22Rik_3.21 Rab20_3.72
Efna2_3.47 Elovl2_4.41 Pde10a_5.27
Efcab3_7.33 Slc1a3_6.49 Col27a1_5.19
Ank3_3.86 Med12l_6.52 Alpk2_7.13
Ttll2_5.58 Gm37131_5.2 2310031A07Rik_5.63
Gm16589_3.85 Spats2l_7.84 Macc1_6.77
Pla1a_5.11 Col19a1_4.96 Zfhx4_6.74
Gm14086_4.92 Kalrn_7.32 Plagl1_7.55
Kcnab1_6.35 Gm14490_7.16 Pnpt1_3.11
Slc17a8_6.49 Axl_4.08 Ocln_7.87
Pappa2_5.65 Gata3_6.34 Kynu_7.22
Cysltr2_4.27 Arel1_3.51 Nsmaf_2.79
Bcl9_4.17 A230050P20Rik_3.74 Gbp8_4.63
Zfp811_6.62 Rnf31_4.47 1810019N24Rik_5.17
Ccnd2_4.74 Xkr8_3.74 Grm5_3.96
Agrn_3.88 Hrh2_4.63 Atp13a4_8.85
Fat4_7.29 Adamts6_6.3 Ehd3_5.84
Ptgs2os2_6.09 Gbp10_6.5 Mfsd7a_5.36
En2_7.55 Asap3_7.17 Il33_6.5
Bend7_6.77 Slc28a2_6.33 Mtmr7_5.18
Trim72_6.52 Parp8_5.05 Tmcc3_4.46
Atp10a_5.09 Apol10b_7.51 Zic5_4.82
Fam208b_4.38 Usp12_4.5 Dennd1b_3.78
Nfil3_4.42 Mier3_4.2 Azi2_4.21
Tlk2_4.41 Il13ra1_5.03 Fbxw17_3.56
Dnaja2_4.31 Tdrd7_3.95 Gcnt2_4.18
Plekhf2_3.98 1110032F04Rik_8.13 Lad1_9.55
Acsl1_6.31 Dcbld2_5.87 Etv3_4.38
Usp42_4.09 Zfp319_4.05 Fzd5_5.27
Socs7_4.47 Rnf139_3.68 Arrdc4_5.08
Apaf1_3.68 Whsc1l1_3.54 Sema6a_6.31
Mtus1_5.06 Ascc3_4.45 Mgat4a_4.67
Morc3_3.52 Hinfp_4.2 Phip_4.76
Usp25_4.04 Vps54_4.1 Larp1_3.63
Zcchc2_3.77 Sdr39u1_3.29 D16Ertd472e_5.94
Nfkb1_4.18 Zfp281_4.07 Ptpn2_3.83
Zc3h7a_4.22 Tle4_3.49 Wdr43_2.99
4930453N24Rik_3.35 Tmem132e_6.75 Itga4_3.67
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Naa25_3.11 Slc7a2_5.78 Ptchd1_4.6
Zfp513_2.93 Adrbk2_3.57 Zfp691_2.66
Gm12928_4.25 Sesn3_4.64 Jdp2_5.53
Slc15a2_4.09 Tanc2_5.39 Phlpp1_4.64
Ext1_4.32 Flnb_4.74 Kdr_4.5
Jarid2_4.35 Sirt1_5.34 Slc15a3_3.25
Aida_3.58 Cpeb3_4.57 Stxbp3_3.96
Cds1_3.56 Tox4_3.01 Rufy3_3.27
Rhoh_4.09 Minpp1_3.26 Tlr6_3.03
Gm5345_3.65 Sema4d_2.48 Krt16_9.99
Gm38297_8.49 Inhba_8.15 Enah_5.86
Klf8_5.79 Mb21d2_5.22 Tcp11x2_5.98
Ido2_4.71 Sgk3_2.92 Traf2_3.81
Vrk2_3.71 Sco1_4.12 Cenpj_3
Tcp10b_3.45 F11r_2.85 Stard5_2.75
Stx16_2.49 RP23-114F4.1_5.07 Gm20125_4.99
Gm11999_6.39 Trpm6_6.1 Pigv_3.99
Nudt13_2.61 Fam46d_7.55 Stard3_2.92
Ppa1_4.02 Hmgn3_3.94 Klra2_3.57
Omp_3.67 Bfar_3.07 Olfr99_4.04
RP23-167C5.1_6.3 Htra1_5.51 Clca1_7.57
Ifnlr1_5.28 Nr3c2_7.59 Tet2_5.35
Trim36_5.19 Zfp382_5.46 Skil_4.61
Serpine1_6.71 Swap70_5.08 Dusp16_5.53
Stk38l_4.7 3110043O21Rik_4.88 Tgif1_3.85
Ppap2b_4.77 Dse_3.55 Gm3555_4.75
Eda2r_4.36 Etv6_3.75 Spred1_3.08
Slc25a37_3.17 Rras2_4.94 Lcp2_3.83
Dusp10_4.03 Scube2_5.01 Zfp263_3.42
Ppp4r2_4.04 Dyrk2_4.1 Nova1_3.82
Ciita_6.85 Gm5530_4.72 Rab11fip1_5.06
Gm26809_4.78 Foxp4_4.09 Car2_7.74
Tpbg_7.25 Cish_6.71 Lnx1_6.46
Fam89a_9.45 Jak2_5.96 Adhfe1_4.83
Klf6_5.53 Tank_4.8 Rgs1_5.64
Nfkbib_4.5 Plscr1_4.97 Snn_5.63
Gm6377_5.15 Zfp800_4.92 Irak2_3.63
Rab30_4.88 Nfkb2_3.74 Clic4_3.95
Kpna3_4.05 Cflar_4.5 Zc3hav1_3.6
Trim26_3.3 Lrch3_2.85 Rab9_3.55
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Sav1_3.35 Cd83_6.4 Tnfaip2_5.11
H3f3b_3.29 Cilp2_5.08 Mob3c_3.92
Cdkn1a_3.82 Nck1_3.68 Relb_4.44
Oser1_3.42 Gpr132_4.27 Cdk5r1_5.07
Mcl1_3.22 Rasip1_3.76 Bcl2a1d_4.74
Prr5l_3.95 Taf7_3.07 Gm6485_3.66
RP23-250D22.2_5.68 Gm5828_3.6 Ier3_5.43
Marcks_4.13 D1Ertd622e_3.77 Gm13584_5.75
Arid5b_5.92 Gm11842_4.46 Srgap2_2.78
Lamc2_4.16 Gm7967_4.05 Creb5_4.59
Zhx2_4.7 Mdm2_4.8 Malt1_5.34
Adam17_3.06 Hivep1_4.09 Prrg4_4.05
Fam102b_3.97 Bach1_3.53 Frmd4a_2.36
Gm8388_3.5 Gm8902_3.79 Gm26584_4.24
Synpo2_3.31 Gm12664_3.73 Usp17le_3.74
Gm14208_2.73 Fndc7_4.32 Il17rd_7.38
Ly75_5.13 Mycbp2_4.23 Med13_4.18
Ep400_4.07 Ubr4_3.7 Dync1h1_3.33
Nup98_4.12 Dock4_3.85 Chd1_3.93
Dock10_3.42 Zcchc11_3.64 Ralgapa2_3.36
Xrn1_3.3 Ranbp2_3.26 Wdr37_3.95
Fnbp4_3.4 Rbm7_3.18 Tcf4_3.47
Plagl2_3.46 Ankrd17_3.76 Mier1_3.86
Tmem170b_3.41 Atxn7l1_3.61 Tgs1_3.54
Smg7_3.27 Khnyn_3.56 Synj1_2.97
Ccnl2_2.94 Chd2_4.43 Trps1_3.13
Med13l_3.18 Smyd1_4.01 Bcl2a1c_4.88
Ccl22_7.85 5930403N24Rik_3.64 H2-Eb1_4
Col11a2_3.82 Psd_3.24 Vasp_2.85
Gm4992_4.09 Alox12_2.51 Shd_5.46
Gm614_5.25 Gm7357_4.97 Il20rb_3.59
Adgre4_3.35 Piwil4_4.67 Chst15_5.98
Mefv_3.55 Asprv1_5.28 4930509G22Rik_4.45
RP23-41J13.2_3.57 Gm16181_5.14 Tex12_4.44
1700055D18Rik_3.86 Gm12216_4.43 Cldn23_3.99
Arid5a_5.6 Stx11_5.62 Rnf19b_4.03
4930430E12Rik_4.51 Ccl7_4.09 Ccl2_3.81
Casp4_3.86 Nampt_3.11 Gm16026_5.06
Klrg2_3.88 Fst_6.22 Slc39a2_5.19
Siglecg_4.99 Nap1l2_4.09 Pik3ip1_5.51
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Gm9869_5.95 F830016B08Rik_6.15 Amotl2_4.23
Cfb_6.01 Tnfsf8_3.55 Nlrc5_3.97
AA467197_5.42 Tap1_4.63 Angpt1_7.34
A530032D15Rik_6.14 Akap12_5.81 Mmp25_7.35
Pvrl4_4.07 Asb13_4.21 Usb1_4.19
Tapbp_3.81 Dhx58_3.94 Kmo_5.78
Dram1_3.64 Samhd1_3.86 Zbtb10_5.15
Clic5_9.26 Tapbpl_4.46 Slamf7_5.34
Lacc1_4.42 Fzd1_4.04 Mtmr14_4.52
Car13_4.05 Tor1aip1_3.25 Tor1aip2_2.94
Pcgf5_5.12 Gnb4_4.97 Gch1_4.1
Prpf38a_4.3 Max_3.18 Il1rn_4.61
Mlkl_3.97 Rmdn3_3.5 2310001H17Rik_3.48
Rbm43_3.56 Trim12c_3.77 Ccdc25_3.33
Ythdf1_2.98 Tmem178_5.86 Il2rg_3.42
Dlx1_5.88 P2ry14_3.91 Rap2c_2.69
Gm37787_4.31 Sh2d6_4.36 Nmi_3.87
Oas1a_3.41 Sp110_3.64 Epsti1_3.46
Insl6_3.55 Slc31a2_2.67 Ccdc88b_2.72
Gm15337_4.31 Cdhr4_5.51 Gm5424_4.26
Ass1_4.25 Ms4a6c_2.75 AI118078_3.71
Slamf8_4.36 Hmcn2_5.17 Gm4117_3.46
Ms4a4b_3.86 Tap2_3.75 Scimp_4.65
Slamf9_3.26 Sp100_3.23 Il12rb1_5.99
Keap1_2.44 Sepw1_3.53 Ccdc173_3.7
Casp1_3.1 1110038F14Rik_3.04 Dusp28_3.2
Treml2_3.35 Ogfrl1_2.83 Lrrc4_3.19
Il18_3.38 Prdx5_3.21 Psme2_3.04
Psme2b_3.16 Rtn1_3.78 Gdf11_5.76
Gm16464_3.02 Pla2r1_3.57 Cnksr1_3.8
Pla2g16_3.07 Dck_2.58 Fcgr4_2.69
Oas3_2.43 Il7_2.6 Ptpro_2.33
H2-Q2_2.35 AI837181_2.51 Mroh8_4.83
Yipf7_2.94 Abcc8_5.54 Slc13a1_4.48
Gm13495_3.58 Ankmy1_4.56 Gm20661_4.3
Gm6264_2.23 Mid1_3.39 Gm15726_3.59
Cndp1_4.52 Gm7160_2.6 Tra2a_3.16
Gm16425_3.69 Gm11626_2.94 4930440I19Rik_3.89
Enam_4.22 Orm3_3.17 Rgs4_2.73
RP23-454P8.1_4.44 Grhl2_5.06 Mfsd2a_4.71
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Sh3d21_4.64 Bcl2a1b_3.8 Gm12902_3.42
Gm15694_3.6 Cd247_5.43 Exoc3l4_4.6
Gm21188_4.27 Gm14023_3.22 Pilra_2.57
Adamts1_3.68 9430034N14Rik_3.86 Tmem200b_6.34
Spry1_4.77 Gm21378_4.09 Trim13_2.8
Hivep3_3.2 Arg2_4.53 Gm9845_3.57
Ppp2r5a_2.53 Jam2_2.5 Gm13414_3.19
Dnajb6_2.68 Gm8221_3.71 Zfp429_2.77
4930594C11Rik_3.67 Gm11874_2.81 Tcea1_2.11
Jag1_2.47 A630072M18Rik_3.74 Gm21857_2.94
A3galt2_4.75 Tssk3_3.59 Gm15753_3.26
Gpr141_2.19 Mark1_2.88 1700065D16Rik_2.81
Pde6b_2.31 Sh2d4a_5.13 Mthfr-ps1_3.75
Gm10425_3.53 1110002J07Rik_2.34 RP24-543J12.4_4.97
Spic_4.13 Gm12818_3.02 Txk_4.31
Nbea_4.19 Gm1123_3.84 Gm12551_2.82
Clec9a_3.17 Plat_2.81 Flrt3_2.39
Zfp456_2.34 Mocs1_2.31 RP23-316M11.10_3.18
Gm11274_2.97 Unc93a_5.48 Gm13571_6.24
Trac_4.6 H2-Eb2_3.19 Hoxd1_6.49
Crp_4.87 Akap2_4.08 Slamf1_5.04
RP23-213N8.1_2.83 Ccr7_2.83 Gm36933_2.6
Gm27019_3.99 Dscaml1_4.42 Ncan_3.01
Atp5l-ps2_3.33 Gm10851_3.01 Clca2_3.12
Kdm6bos_2.73 Tfap2a_4.04 Gm6039_4.04
Gm28373_3.7 Map1b_3.65 Cep85l_3.92
Gm17193_3.96 Gm38375_3.43 RP23-153H17.5_2.59
Gm15821_4.96 Spata5l1_3.88 Pilrb1_3.49
Gm12039_4.22 Tmem88_2.94 Gm13833_3.77
Ptger4_4.19 Pim3_3.94 Gm16973_3.9
Cep350_4.06 Mb21d1_3.57 Unk_3.09
Gm37285_4.97 Gm5117_3.46 Bmper_4.34
Phf21a_3.84 Dapp1_3.64 Gm16712_3.8
Slx4ip_2.71 Zc3h12a_4.2 B630005N14Rik_3.66
Frmd4b_2.92 Atp10d_3.3 Zfp949_2.79
Nrip1_2.74 Susd6_2.82 Pikfyve_2.59
Gm6679_3.46 Mob3b_3.02 Kansl1_2.99
Lcor_3.83 Zbtb39_3.29 Epc1_3.59
Zfp62_3.18 Ppfibp1_2.8 Ccnt2_2.85
Pik3r3_2.79 Zfp654_2.67 Zfp260_2.54
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Luzp1_2.51 Zeb2_2.52 Gm6206_2.96
Rfwd2_2.77 Ints12_2.31 D130040H23Rik_3.88
4932442E05Rik_3.34 Rassf4_2.35 WI1-1749A12.1_3.25
Zfp507_2.77 Filip1l_2.72 Ell2_2.36
Mdm4-ps_3 Plekho2_2.98 Gm25405_2.82
Gm37718_2.79 Fmnl2_5.85 Lrrc16a_3.37
Arid4a_3.03 Trmt1l_2.93 Zscan29_2.6
Maml2_3.06 Ikzf2_2.93 A530072M11Rik_2.58
Gm29438_2.6 Gm5815_2.32 Gm37534_2.83
Olfr755-ps1_3.35 mmu-mir-7682_4.99 Nfib_4.51
RP23-461P7.1_3.23 Gm27167_2.39 Gm12737_3.21
Mir7679_3.37 RP23-162P5.1_2.89 Il1f9_2.87
AC084073.1_2.91 Gm27197_2.84 C1s1_2.79
Pth2r_3.5 Sema3a_3.28 RP23-387P23.7_2.99
Gm2541_3.7 Dtwd1_2.46 Rgs13_3.23
Irx5_2.59 Gm4852_2.63 RP23-173N16.5_3.6
Iglon5_3.62 Lrrc32_4.24 Gm17200_3.83
Ptpn13_5.92 Gm10717_3.34 Pls1_3.42
Slc23a3_2.94 Gbgt1_3.77 Tepp_2.49
Gm38130_2.84 Gm27676_2.83 Gm15728_4.18
RP24-445F15.1_5.61 Pdzd2_3.38 Kctd19_3.71
Tfcp2l1_4.24 Dnah7a_5.28 Stox2_4.84
Atxn7l1os2_3.88 Ubd_4.32 Gpr50_4.17
Abcb11_3.83 Gm13986_3 Ms4a8a_5.37
Coch_5.77 Zswim5_7.71 Inhbb_6.69
Flt1_3.78 Col6a1_4.56 Adgrv1_7.29
Cacnb2_7.3 Asb11_6.28 Nkx3-2_5.71
Nrxn3_5.79 Tacr2_6.81 RP23-194K16.1_5.29
Gnrhr_6.2 Bambi_4.33 Ak9_7.09
Chrm3_6.68 Gm15433_4.03 C9_5.18
Mttp_3.43 Adgrb1_5.66 Gm13713_6.35
Slc27a2_3.97 Gm6899_3.73 Dnah5_6.99
Itk_5.4 Gm609_5.16 Ptx3_3.64
Gm11992_5.66 Map2_5.37 Lcn2_5.15
Gm16038_5.37 Prm1_4.98 Meikin_6.13
Gm37417_6.68 Itga2_4.75 Gm17473_4.8
Gad2_4.64 A630012P03Rik_7.55 Dmrtc1a_6.86
Prom1_6.46 1700011M02Rik_4.02 Aplnr_5.16
1700017D01Rik_5.12 Tead4_5.57 Pcp4_3.41
Fam184a_4.46 Spry4_3.18 Tspan15_7.09
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Frmd5_5.92 Gm15987_4.53 Gm14199_5.69
Gm37711_5.89 Apol6_3.97 Slc1a1_4.87
Enpp3_5.02 Gm15056_4.02 Pcdh17_5.05
Csrnp3_6.56 Gm37560_4.68 Lman1l_3.73
Dcn_4.03 Pax4_7.89 Gm24944_4.19
Unc5c_3.84 Gm37181_3.55 Nav3_3.29
Hrasls5_2.74 4930579C12Rik_4.24 Gm3764_4
Gm8369_4.13 Tmem86b_3.46 Pou4f1_6.03
Tnc_4.93 Gm8979_4.13 Col5a3_4.32
Prss56_3.85 Myo18b_3.1 Gm7135_2.66
B230307C23Rik_3.05 Fam19a2_3.73 Dthd1_3.41
Fam71d_3.75 4931429I11Rik_3.24 Gm11414_3.25
Lrrc55_3.22 Gm8773_4.42 Gm38386_3.59
Mustn1_5.07 Ghr_5.07 Ccdc149_4.76
Slc3a2_2.87 Gm9847_4.9 Ido1_6.18
Il12a_7.21 Cldn1_3.68 Gm16578_3.52
Afap1l2_6.32 Cnr1_5.92 Il5ra_4.32
Olfr461_5.12 Dtna_4.71 Gm9992_4.74
Tbx20_4.24 C230034O21Rik_4.16 Gm2396_5.2
Gpc5_4.3 Maob_4.2 Gm37432_3.01
4930412F09Rik_2.98 Etnk2_4.58 2810404F17Rik_4.05
Wt1_4.64 Mkx_3.68 Csn1s1_2.8
Gm2389_2.97 Oxct2b_6.02 Lypd6_5.7
Dlgap2_4.91 Clvs1_6.07 Galnt13_2.73
Dsp_4.8 Pou3f2_4.6 Tdgf1-ps1_4.53
Gm10634_4.43 Gxylt2_3.79 Foxa2_4.02
Mroh2b_3.94 Lrrc6_3.9 Slc6a1_3.54
9230109A22Rik_5.26 Steap4_4.66 Gm2617_4.45
Htr7_3.1 Arhgef28_3.57 Gm10271_3.68
P3h2_4.62 Mme_4.3 Zfp521_2.95
Grid2_2.99 Olfr1372-ps1_3.05 Pdzrn3_3.59
Ptgs2os_6.74 4930435H24Rik_5.64 Gata4_5.61
4930512M02Rik_4.62 Epb4.1l4b_3.9 Gm28114_6.16
Gabrb2_4.52 Phf6_2.82 Elf1_3.32
Spop_2.69 Asf1a_2.99 Etohd2_2.78
Prpf4_2.59 Gm5406_2.95 Sdcbp2_5.09
A930035D04Rik_2.87 1700025C18Rik_3.38 Arf4os_3.18
Diras2_5.58 Slc6a19_6.6 Pcsk1_5.93
Rnf225_4.18 Tyk2_2.78 Abcb1a_3.03
Tceb3_2.09 Asgr2_3.63 Sfmbt2_4.4
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Htra4_5.37 Grap2_5.9 Akap7_5.47
Serpinb9_3.77 Sec24b_4.09 Ttc39c_4.25
Zfp212_3.82 Mcm9_4.23 Inpp1_3.82
Cdyl2_3.67 Mtcp1_2.74 Gtpbp2_3.05
Ppp6r1_2.67 Rcn1_3.76 Cnn3_4.25
Crim1_3.8 Sgcb_2.88 Rab3ip_3.15
G3bp2_2.81 Ppap2a_3.07 Rab21_2.31
Pdss1_3.1 Gypc_3.08 Zc2hc1a_2.52
Tjp1_4.56 Nlrp10_4.19 Armc8_3.01
Usp15_3.16 Cul2_2.94 Rbl1_2.86
Tmem209_2.58 Uaca_2.49 Asah2_2.89
Crbn_2.73 Coa5_2.43 Kremen1_2.35
Casp8_2.37 Diap2_2.72 Pcsk7_2.32
Tmem140_2.68 Osmr_3.88 Ace_3.98
Shf_2.46 Abcg4_4.71 Tmie_4.33
Gm17040_3.43 Ache_3.71 Crtam_3.92
RP24-142B15.8_3.28 C4b_2.55 Cmtr1_2.4
Polr2g_3.03 Caml_2.38 Gp6_3.4
Gm7609_2.91 Tdrp_3.36 Btla_3.24
Irx2_3.13 Frmd3_3.1 Klrc1_2.85
Nlrp4d_2.72 2810407A14Rik_2.78 Gm10298_2.73
Tekt3_2.36 Letm2_2.4 Atp8b1_2.23
B3gnt2_2.26 4930539E08Rik_3.24 Ptafr_3.47
Ralgds_2.66 Cobll1_2.76 Tex15_4.58
Rasa4_3.11 Upp1_6.89 Itpr1_4.32
Cd47_2.69 Glipr2_3.26 Aim1_2.98
Carhsp1_3.43 Lmo4_3.06 Socs2_5.28
Cd200r4_3.5 Nub1_2.83 Lilrb4_2.52
Tmem184b_2.7 D17Wsu92e_2.51 Cd86_3.84
Abcg1_3.85 Triobp_3.15 Klf4_4.43
Nfix_2.7 Otud5_2.51 Prkx_2.83
Cybb_2.81 Clcn7_3.22 Tagln_2.34
Ube2e2_3.08 Lif_3.89 B3gnt5_5.37
Clcf1_6.06 Mapkapk2_3.22 Rgl1_3.41
Sat1_2.77 Src_3.59 Schip1_3.99
Pde7b_3.16 H2-Q4_2.69 Spryd7_2.46
Gm14005_2.33 Ets2_2.98 Ifrd1_2.72
Phc2_3.21 Tmem243_3.2 Gm14057_3.14
Pdcd10_2.75 Papd4_2.83 Gm14253_2.82
Sumo1_2.57 Psmd10_2.3 Gm38228_3.64
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Kdm6b_4.14 Hivep2_2.65 Cpeb4_2.99
Slc11a2_3.38 Stx3_3.12 Optn_3.03
Gp49a_2.66 Stk40_3.22 Nr4a3_3.99
Itpkb_2.49 Aff1_2.46 Trim25_2.41
Sorl1_2.54 Fam46c_4.24 Rhbdf2_2.76
Dirc2_2.87 Rab12_2.34 Arl4a_2.68
Arf4_2.48 Chd7_2.88 Rabgef1_2.55
Fam49a_2.32 Btg1_2.31 Ankrd33b_2.69
Rela_2.15 Irf4_2.23 4930523C07Rik_2.63
Ebi3_2.51 Gm15975_2.33 Gm37570_2.26
Arnt2_3.53 Ryr1_2.65 Ddit3_2.15
Abi3bp_3.09 Cd38_3.97 Lgals9_2.74
H2-Ab1_3.08 Gm9791_3.09 Ildr1_3.1
Armcx6_2.63 Gstt1_2.82 Mvp_2.05
H2-M3_2.4 Mgat1_2.1 Tmem219_2.08
Gm11613_2.46 F10_2.38 Gm13768_4.54
Nppb_2.61 Slc4a11_2.84 Phactr1_4.38
Ppm1l_3.9 Casp3_3.25 Rilpl1_2.56
Dbr1_2.14 Rgs14_2.28 Dmtn_3.7
Plekhn1_2.67 Nxf1_2.45 Atp13a1_2.17
Ppp1r10_2.09 Cd300e_2.34 Arhgap28_2.71
Plekhg1_2.48 Gm19589_2.9 Nlgn2_2.28
Eng_2.21 Csf3r_2.62 Lrp4_2.29
Tlr9_2.06 Pgap2_2.1 Fbrsl1_2.24
Dync1i2_2 Ctgf_2.05 Myh10_3.59
Mllt3_2.91 Slc25a12_2.58 Sppl2a_2.48
Hook2_2.64 Isoc1_2.39 Cd180_2.13
Stau1_2.03 Sh3bp4_3.63 Esr1_2.69
Stat3_2.64 Cask_2.19 Dennd1a_2.04
Urgcp_2.34 Nck2_2.31 Lgals8_2.04
Casz1_2.8 Batf_3.31 Larp1b_3.31
Acot9_2.52 2610002M06Rik_2.51 Selt_2.34
Atad1_2.48 Fbxo7_2.26 Cmtm6_2.47
Ltv1_2.2 Rfc3_2.66 Capza2_2.26
Pdgfc_3.23 Zfp821_2.22 Lmo2_2.28
Ctsh_2.82 Fbxo4_2.14 Wars_2.31
Gphn_2.39 Rbms1_2.04 Igf2bp2_2.03
Tmem132a_2.31 Trip10_2.23 Mgam_2.18
Ehd4_2.07 Hbegf_2.02 Rap1b_2.03
Crem_2.01 Greb1l_2.67 Gm14085_4.88
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Tgfb1i1_2.27 Ncoa1_2.47 Axdnd1_2.38
Sass6_2.01 Sema7a_2.54 Rbm11_2.26
Adap2_2.13 Ddr2_2.06 Pgam2_2.58
Mecp2_2.03 Cd200r2_2.24 Slain1_2.88
Mir7026_2.85 Gm17111_2.44 Gm26788_3.88
Tmcc3os_3.71 Ptprd_2.82 Gm13147_2.43
Gm37261_2.37 Gm5398_2.33 Tbx15_2.16
Gm26606_2.43 Rtn2_3.03 Il19_4.04
Zcwpw2_3.24 5430405H02Rik_3.12 Sox3_4.98
Bcl2l15_3.14 Gm16118_3.19 1700026D08Rik_2.54
Gm17046_2.67 Idnk_2.63 Plxna4os1_2.33
Vegfc_3.94 Peg10_3.04 Gng11_2.96
Chmp4b_2.7 Dbnl_2.44 Stoml1_2.12
Fez2_2.28 Polb_2.26 Shox2_2.88
2010109I03Rik_2.68 Gja6_2.75 Muc1_2.77
Gm8394_2.04 Gm15223_4.46 RP23-173N16.8_5.35
Slc1a2_3.18 RP24-374B14.4_3.88 Ephx3_3.06
Gm8818_5.31 Kcnd1_4.3 Mrc2_4.04
Ifnb1_10.54 Ifna4_9.73 Ifna2_10.22
Ifna1_8.48 Ifna5_8.59 Ifna9_8.57
Ifna6_8.13 Tulp2_4.39 Gm9694_4.94
Gm29340_2.92 Fam71a_4.56 1500012F01Rik_3.33
Ifna13_5.89 4930432E11Rik_5.15 1700016G22Rik_5.43
Isg15_4.63 Pnp2_4.69 Hspa1b_3.74
Hspa1a_3.38 Dhh_4.12 Gm18445_3.91
1700041G16Rik_3.55 Plac8_3.61 Lta_6.14
Arhgef37_4.51 Gm26603_5.09 Vgf_4.7
Fam3b_7.11 Tarm1_4.55 Ccdc146_6.23
Rasl11b_6.6 Noxred1_4.57 Serpinb2_5.02
Serping1_5.51 0610043K17Rik_5.87 Pla2g4e_5.01
Hck_3.23 Ly6i_5.09 Fap_5.3
Tuba8_5.55 Trim69_5.15 Gm9574_5.45
Ifna11_7.97 Ifnab_8.29 Ifna14_8.06
Tmprss2_6.97 Ifna15_7.4 Ifna12_7.1
Ifna16_6.21 Apobec4_8.93 Heatr9_9.39
Gm14010_7.38 Sectm1a_7.64 Art3_6.51
Olfr433_6.71 Gm15856_6.18 RP23-23C4.6_4.17
Oas1b_5.73 BE692007_2.98 H2-T10_3.69
Gm5511_4.31 Cpne9_4.57 Cyp26a1_6.43
Fpr1_6.39 Matn4_5.23 Srms_4.33
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Plscr2_5.17 Oas1d_4.37 Gm11131_3.64
Phlda1_4 Fam43a_4.18 Ms4a6b_3.4
Plekha6_5.72 Dyrk4_4.99 St8sia1_3.42
Tbc1d13_2.22 Col9a3_4.9 Hap1_3.93
H2-T24_2.87 4930599N23Rik_3.05 Rnf34_2.95
Vwa3b_3.4 Icam5_3.94 Gm17435_3.03
Gm16022_4.94 Ptges_4.43 Gm20394_3.31
Gm15229_3.91 A330074K22Rik_2.47 Fbxo39_4.26
Ddc_4.72 Gm15754_5.65 Nrxn2_5.55
Chrna5_5.55 Pamr1_5.68 Gpr55_3.94
Rsph4a_2.92 Gm8801_4.99 Gm38050_3.68
RP23-267O21.5_3.92 Maats1_3.53 Gcg_5.06
Ptk6_3.8 Gm16028_3.77 Usp17ld_4.01
Aldh1b1_3.24 Carlr_3.3 RP23-253G12.8_3.33
Trim17_3.35 Rbpjl_4.57 Adcy4_3.7
Rec8_3.41 Adra2b_3.01 Gm11292_2.96
Nr1h5_5.1 Cdh22_3.15 Faah_3.55
Gm10134_3.76 Fam163a_4.26 Ifna7_3.99
Hhatl_4.04 4921523L03Rik_3.73 Gm10287_3.3
Col24a1_4.91 Insrr_5.78 Dennd6b_3.89
Cyp3a13_4.98 Gm12979_4.28 Rp31-ps19_3.69
Klri1_3.32 Tmem184a_4.9 Rasgef1c_4.16
Ccdc162_3.55 Gm37519_3.49 Wdr86_4.35
Olfr518_3.09 Gm15527_3.62 4930444G20Rik_3.1
Slc6a19os_4.23 Cldn11_2.35 Gm10344_3.08
Slc6a18_4 Adtrp_3.94 1600029O15Rik_3.98
Ppp1r1b_3.45 Scn10a_3.8 Gm6537_3.41
Fitm1_2.87 Robo3_2.71 Gm12631_2.43
Gm525_3.36 Art2b_2.86 Gpr87_2.72
Lpcat2_2.41 Ssc5d_3.35 Dnaaf3_2.86
9230104M06Rik_2.89 Pacsin1_4.71 Olfr432_4.66
Slc5a5_3.5 Reep2_3.24 Lag3_5.84
Gm6548_2.31 Gm5692_4.05 Gm13535_4.53
Gm8810_4.05 Smtnl1_3.78 Obscn_4.1
Oas1e_3.81 L3mbtl1_3.63 Igf2_2.93
Ifnz_3.24 E330021D16Rik_2.83 Ly6a_2.69
Nlgn3_3.52 Sema4f_2.88 Slc44a3_3.52
Gm17705_2.86 Trim10_4.18 Gna14_2.42
Pdgfrl_3.46 Ctrl_4.34 Tcap_3.58
Islr2_4.11 Scarf1_2.6 Psmb10_3.04
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Psmb9_2.79 H2-T22_2.46 I830077J02Rik_2.63
Cst7_2.83 Clec1b_2.9 Armc3_2.79
Sema5b_3.19 Fam83a_2.9 Ampd1_2.81
Rasd1_3.06 Gm19684_3.16 Cdh5_2.34
Ccdc64b_4.05 Tex14_2.76 Gm26902_2.4
A930011G23Rik_3.2 Vnn3_2.73 9130230L23Rik_2.65
Inca1_2.35 Cox18_2.08 Gm1110_3.24
Tcaf2_2.79 Ccdc154_5.83 Gm16685_4.81
Ltbp1_4.22 Rasgrf1_5.93 Dnah10_4.53
Acvr1c_4.48 RP24-547J21.4_5.08 Gm37498_2.86
Tespa1_3.9 Gm15478_3.5 Gm3912_3.68
Pcdh10_2.66 Tnfrsf14_3.16 Pip5kl1_2.18
Antxr1_3.44 Lox_2.67 Gbp2b_5.49
Tnni3_3.36 Gm37387_3.72 Sidt1_2.74
Gm5581_3.13 Gm4832_2.29 Prph_2.16
Gm26592_4.24 Car4_4.18 Tcfl5_3.77
RP24-404P10.2_2.9 Angptl1_2.84 Homer2_2.73
Tet1_3.69 Gm19412_4.32 Enpp2_4.34
Gm13284_4.12 Tmem151b_4.13 4930535L15Rik_3.7
Gm10555_3.13 Oas1f_3.34 RP24-333H9.2_3.7
Slc27a5_3.3 Gm37563_3.47 Fcrl5_4.46
Gm16133_3.22 Jsrp1_2.42 Col3a1_2.63
Col4a2_2.36 Rsrp1_2.15 Ttc9b_2.99
Olfr431-ps1_2.98 Gm884_2.91 Cend1_2.89
Gm24671_2.94 Asgr1_2.95 4930488B22Rik_2.92
Snai1_3.39 Dazl_2.57 Gm17396_3.04
Grm1_3.05 Gast_2.82 Olfr549_2.94
Slc8a2_2.84 Ebf4_2.85 Chdh_2.82
Ptgdr2_2.38 Cbx4_2.05 Gm26707_3.41
Gm17034_3.25 Clcn1_2.13 Lama5_2.04
Serpinf2_2.27 Rnase10_3.91 Gm28177_3.37
Gm7582_3.29 Rmrp_2.56 Olfml2a_2.35
Nhlh1_4.46 Gm7599_3.1 Etv2_3.65
Rnu5g_3.01 Ccno_2.8 Egr1_3.52
Gm13288_3.46 Popdc2_3.38 Gm28707_2.21
Gm22710_3.03 BC051226_2.04 Gm15488_2.84
Gm26917_2.65 Rpph1_2.21 Gm26656_2.18
B930036N10Rik_2.58 Ltb_2.16 RP23-1A12.2_4.66
RP23-23C4.5_4.28 RP23-422D12.3_3.85 Clec12b_3.33
9330175E14Rik_3.28 RP24-547J21.3_2.78 Oas1h_3.28
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Gm6034_2.79 Ppm1e_2.04 Adgrg7_2.05
Tldc2_2.73 Dpysl3_2.74 Gm16675_2.55
Prrx1_2.54 Dnm3_3.16 Sh2d5_2.33
Espn_2.59 Gm21738_2.4 Srpx2_2.27
Serpinh1_2.5 Atp1b2_2.16 Col6a3_2.07
Hist4h4_3.58 Timd4_4.32 Apon_2.44
Bbc3_3.09 Gm37084_3 A130071D04Rik_3
Gm26847_2.37 Gm38227_2.17 Hist2h4_2.04
Hist1h4j_2.5 Myo15b_2.84 Espnl_2.49
Gm4952_2.47 Rprml_4.22 Slit2_3.3
Bcat1_2.85 Ttc16_2.91 Cfap54_4.09
Chst2_3.59 Stk39_3.41 Bmpr1b_2.85
Jph2_2.75 RP24-317M4.2_2.49 Dlgap1_2.34
Cdh24_3.29 RP23-114P22.5_2.79 Gm12735_2.43
Vil1_2.45 Igfbp7_2.33 Masp1_3.01
Ccbe1_3.09 Mcmdc2_2.81 Gm4761_4.2
Dst_3.13 Dock8_2.13 Ms4a14_2.75
Cdh11_2.36 Gm9959_2.45 Pxdn_2.16
Foxl2_4.02 Neurod4_3.07 A430078I02Rik_3.01
Gm23247_2.75 Fcrlb_4.15 RP24-142B15.6_2.68
Gm5532_2.31 Aanat_4.05 Gm8909_3
Gm13450_3.47 Rapgef4_3.17 BX510318.1_2.43
Gm15701_2.52 Gm37419_2.98 Gm10053_2.77
Gm26582_3.25 Gm1070_2.47 RP23-199B2.8_2.41
Slco2a1_2.1 RP23-182M12.4_2.99 Spint2_2.95
Hist1h4d_2.73 RP23-182M12.3_2.26 Ccdc50-ps_2.1
Gm10800_2.86 Gm10801_2.23 Ccr9_2.65
Gm38162_2.04 B4galt2_3.48 1700123I01Rik_3.13
Bmp8b_3.21 1700001P01Rik_3.01 Xirp1_2.68
Nat14_2.78 Gm38275_2.41 Nrg1_4.34
Gm29083_4.15 Olfr760-ps1_4.33 Gm28563_3.03
4933416M07Rik_3.21 Gm28169_3.27 Gm29284_3.84
Gpr171_4 Gm28321_6.02 Gm29461_4.76
Pax5_4.39 Ptchd2_3.4 Gm10125_3.89
Lmo7_3.05 RP24-377E5.1_4.27 Tmprss4_5.34
Ly6c2_3.92 Gabra4_5.26 Ano4_4.72
Gm2619_3 Tm4sf20_3.21 Rhbg_3.34
Gm11212_3.42 Gm2238_4.99 Sox5os3_2.92
8030442B05Rik_2.83 Ccl17_4.84 Fbn2_2.84
Gpr31b_5.2 Klra17_5.05 Setbp1_4.06
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Serpina3e-ps_4.66 Hamp_2.83 Cfap58_3.28
Gm16213_2.83 Kncn_2.77 Gm17244_4.47
Crb2_3.64 Smoc2_3.97 Ttll9_3.06
Ly6c1_3.09 4922502D21Rik_3.03 Cachd1_2.85
Gm5468_3.38 Sall1_5.51 H2-M6-ps_3.4
RP24-418J2.4_4.2 Gm12752_3.87 Oxct2a_4.01
Emx2_3.6 Gm11784_3.59 Foxa1_3.29
Scn2a1_5.86 Gm27008_2.92 Pdzph1_3.44
Pramef6_2.97 Hist1h2bl_3.31 Gm11722_3.36
Hc_3.45 Igfbp3_3.34 Klhl29_4.39
Gm5152_5.14 Sfrp1_3.99 Olig3_3.11
Nt5c1a_3.09 Myt1l_2.95 Gm4954_2.95
Egr4_2.87 1700019E08Rik_2.84 Mep1a_2.78
Ptchd3_2.7 Mir7213_2.99 Gm17207_2.78
Hist1h2ab_2.72 Gm15425_2.64 Nphs2_2.56
Ebf1_3.07 Gm13500_3.95 Pldi_3.26
Nmnat2_2.81 RP24-421E18.7_3.02 H2-T3_3.47
Clec2e_4.6 Gm9830_2.74 Gm12858_3.3
Cidec_3.12 Akr1c14_3.09 Mospd4_3.04
Gm10030_3.48 Gm13400_2.94 RP24-224N3.9_2.21
Gm11425_2.17 Wdr20rt_2.23 Fbxl22_2.13
Gm11857_2.1 Gm12984_4.86 Mpo_4.91
Ccl11_3.56 Fkbp10_3.17 Baiap3_3.34
Gm37820_3.75 Nts_3.08 Gm37115_2.91
Gm24265_3.03 Rasl11a_2.75 Hist1h4c_2.33
RP23-338P12.2_3.36 Cdc42ep2_3.07 Gm7281_2.82
Cycs_3.09 Snx20_2.38 Gm12989_2.41
Nfkbil1_2.24 A4galt_2.99 RP24-224N3.8_3.14
RP23-50I16.2_2.58 Pnp_2.86 Chst7_2.61
Ggct_2.15 Ctsc_2.18 Psma5_2.32
H2-T23_2.33 Gadd45g_2.31 Pttg1_2.35
Psmb8_2.26 Ccdc23_2.24 Sertad3_2.51
Slpi_2.14 Gm20627_2.07 Gm37045_2.39
Gm17673_3 Gm6225_2.49 Platr6_2.71
Gm16156_2.28 Arhgap8_4.38 Gabbr1_3.13
6820402A03Rik_2.91 Adam32_2.47 Plekhh1_3.29
Fth-ps2_2.67 Platr17_2.89 Siglece_2.66
Serpinb1b_2.62 Gm14537_2.46 Bmp1_2.94
Susd2_2.62 Plekhg4_2.28 Gm14140_2.23
2410006H16Rik_2.03 Fam229a_3.54 Syt7_2.81
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Dnaic2_2.44 4933433G15Rik_3.59 Elovl4_3.43
Pcdh19_2.37 Gm6335_2.98 Col6a2_2.85
Vgll3_2.51 Gpc4_2.65 Mybpc3_2.46
Abcc5_2.01 2900089D17Rik_2.37 Riiad1_2.07
Trp53cor1_2.88 Cxcl12_2.47 Has1_2.39
Mmp13_2.03 RP24-326F21.2_3.94 Gm25594_4.02
Gm13283_3.16 0610039K10Rik_2.68 Skor1_3.06
Mill2_2.34 Ms4a4a_2.46 Gm15133_2.24
Ms4a6d_2.01 A730011C13Rik_2.18 Grem1_3.09
Sparc_2.67 Col1a1_2.26 Col1a2_2.22
Col5a1_2.52 Bgn_2.01 Plcd4_2.35
Pecam1_2 Fstl1_2.26 Perm1_2.08
Npr1_2.23 Zc3h6_2.1 Mmp9_2.13
Hes1_2.23 Acyp2_2.04 F8_2.05
Ttc21a_2.28 Pygm_2.43 Tead1_3.01
BC049352_2.07 Col8a1_2.37 Icam4_2.29
Rgs20_3.07 Gm18953_2.26 Gm22079_2.64
Pdgfra_2.28 Scube3_2.78 Glcci1_3.04
n-R5s29_2.85 Ifi202b_3.05 8430408G22Rik_2.1
Gm26910_2.5 Btg2_5.86 Gm17334_5.37
Fos_3.31 Gykl1_3.65 Pcdh18_3.73
Gm26522_2.76 Cacng8_3.3 Npnt_3.16
Gm7115_2.9 Rnd1_2.77 Gm18301_3.24
Mitf_2.22 Gm14636_3.11 Capns2_2.38
Gm15366_2.42 Mir221_2.81 Hist1h2be_2.59
Gm20612_2.55 2310043L19Rik_2.89 Cd70_2.86
Orai2_2.3 Treml4_2.14 Gm20655_2.67
Tal2_3.4 Id3_3.9 Gm27017_2.86
Kcnj2_2.88 Mettl21b_2.49 Zfp119b_2.03
Tgif2_2.78 Gm37472_2.55 RP23-376H8.2_2.7
Gm38002_2.44 Gm37296_4.61 Gm8989_3.66
E430024P14Rik_3.31 Cmya5_3.02 RP23-465M13.2_3.06
Wnt5a_2.5 Gm5106_2.22 Tmem47_3.11
Ccdc116_2.89 Ptprk_2.87 4930469K13Rik_2.19
Btnl7-ps_3.4 Cyp1b1_2.9 Lct_2.28
Gm43160_2.43 Gm8856_2.7 Gm12345_2.49
Met_2.13 Gm11025_4.75 RP24-314I8.3_3.96
Il1bos_4.53 Mir3074-1_2.85 Gm6736_3.15
Gm14269_3.4 Bcam_3.02 Gm11865_2.05
Sdc4_2.98 Prr7_2.89 Cacnb3_3.95



122

Rffl_3.14 Sgms1_2.75 Vps37c_2.58
Fam133b_2.46 Gadd45a_3.3 Ehd1_2.19
Tnip1_2 RP23-395B13.2_3.2 Gm37674_3.93
Gm15601_3.41 Herpud1_4.21 Gimap6_3.13
Klhl25_2.39 Ifngr1_2.37 Rnf19a_2.99
Tsc22d1_2.55 Snx18_2.51 Gm37783_2.48
Acvr2a_2.51 Dusp4_2.46 Plxna2_2.02
Stard7_2.83 Siah1b_2.16 Mdm4_2.64
Zfp619_2.33 Mir27b_2.08 Gm17024_2.52
RP23-434H17.3_2.41 Olr1_2.02 Gm8850_2.5
Gm12598_2.75 Bcar1_2.7 RP23-326O2.2_2.57
Cdkn2b_2.37 Tra2b_2.08 Gm28050_3.75
Acot10_3.41 Gm26652_4.1 Gm15785_3.78
Gm12511_3.62 4930551O13Rik_3.06 Hmcn1_3.5
Gm16301_2.82 Gm38327_2.79 Dpf3_2.93
Gm12905_3.91 Neurl3_2.27 Irf8_3.26
Chac2_2.54 Bmp8a_2.44 Prkcq_2.26
Tenm4_5.01 Prdm9_3.86 Akt3_3.79
Myo16_3.77 Fhod3_4.26 Intu_4.08
Numb_2.62 Ccr5_2.61 Atg16l1_2.55
Atm_2.84 Fryl_3 Birc6_2.81
Cntrl_2.8 Camsap1_3.74 Snw1_2.33
Plcb3_2.12 Marf1_3.1 Brwd3_2.86
Hmbox1_2.52 Gm15800_3.27 Ttc9c_2.36
Rnf214_2.58 Klhl18_2.26 Sema3c_3.41
Pla2g4a_2.51 Plag1_2.54 Mertk_2.46
Abca13_2.18 Col20a1_2.21 Zfp324_2.12
Ap3m2_2.09 Cox20_3.35 Nrip3_3.92
Cpm_3.77 Chac1_3.7 Klf3_3.63
Gm6226_3.92 Fnip1_3.27 Fbxo30_2.97
Atf4_2.85 Lemd3_4.22 Rbpms_3.35
Gmeb2_4.38 Fbxw11_3.98 Ppp1r15b_3.23
Tbk1_3.38 Rnf14_3.04 Rbbp8_3.47
Tmem2_3.6 Rnf115_3.18 Zcchc6_3.23
Stxbp3-ps_3.82 Fbxw7_2.81 Mtm1_2.68
Nr3c1_3.23 Scyl2_2.96 A230046K03Rik_2.89
Rnf24_3.57 Ppfibp2_4.45 Wdfy1_3.03
Cul1_3.03 Nab1_2.8 Pfkfb3_4.2
Cnksr3_3.4 Mdfic_2.87 Fmr1_2.82
Rnf145_2.48 Tmod3_2.84 Cldnd1_2.73



123

Basp1_3.18 Stim2_2.5 Rpe_2.58
Dr1_2.58 Ppp2r2a_2.44 Irf5_2.94
Fndc9_4.14 Slc7a11_4.17 Slc23a2_3.09
Cdk12_3.11 Neto2_2.93 Arl5b_3.37
Uvrag_2.59 Kansl1l_2.78 Zbtb21_2.68
Smcr8_2.6 Nktr_2.62 Lpin2_2.48
Rictor_2.38 Ptprj_2.76 Brd2_2.54
Slfn10-ps_2.5 Ccdc63_4.57 Osm_3.83
Zfp719_3.29 Aebp2_3.48 Ncoa5_3.09
Spty2d1_3.33 Sestd1_2.81 Sertad2_3.13
Erbb2ip_2.82 Cdk6_2.55 Osgin2_3.6
Fem1c_3.02 Ugcg_3.33 Ccdc50_2.64
Tbc1d1_2.87 Pik3r5_2.59 Fam129a_2.36
Msantd2_3.09 Ddx24_2.51 Elmod2_2.29
Acer3_2.22 Zfp455_2.21 Myo10_3.67
Tma16_3.35 Card6_2.91 Gripap1_2.33
Prkaa2_4 Fbrs_3.31 Zfp952_3.88
Atxn7_3.43 Cnot4_3.38 Gpbp1_3.14
Adnp2_3.22 Kpna4_3.33 Sh3bp2_3.3
Ubap1_3.01 Mob1b_3.2 Tab2_3.13
Tmem110_3.86 Lsm14a_2.54 Tmem68_2.43
Itpkc_3.26 Zfp868_2.95 Zfp160_2.47
Mlxip_3.01 Taf4b_3.43 Dnajc1_3.09
Kit_3.64 Btaf1_3.06 Frs2_2.84
Dcp1a_2.95 Pias1_3.05 Clk1_2.82
Inppl1_2.78 Mapkbp1_2.88 Dnm1l_2.92
Cyld_2.48 Zfyve26_2.48 Akap13_3.31
Dio2_3.06 Atp11b_2.87 Ttc39b_2.67
Seh1l_3.3 Cggbp1_2.51 Ankfy1_2.45
Avl9_2.98 Rsbn1l_2.85 Phf20l1_2.76
Ino80_2.68 Dmtf1_2.6 Pde7a_2.68
Casp2_2.94 Zfp213_2.4 A430106G13Rik_2.62
Neu3_2.32 Herc1_3.1 Lnpep_2.62
4932438A13Rik_2.35 Bbx_2.47 Gm13719_3.74
Arntl_2.77 Kbtbd2_2.67 Ikzf5_2.52
Dcun1d3_3.03 Ddhd1_3.33 Gramd3_3.76
Mtdh_2.51 Nup54_2.66 Cx3cl1_3.04
Slc44a1_2.2 Traf6_2.78 Zfp628_2.43
Spata5_2.68 Tmem39a_2.68 Trit1_2.18
Ccdc71l_2.11 Grap_2.52 WI1-1010L24.1_3.44
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1700109H08Rik_3.35 Plekhm3_2.5 Mllt6_2.78
Gm15717_2.74 Tmed8_2.16 Alpk1_2.01
RP23-293K21.1_2.31 Slc8a1_2.26 Dclre1c_2.09
Tcea1-ps1_2.08 Rfx5_2.31 Dlc1_3.82
Ulbp1_3.57 Zfp407_2.29 Prdm2_2.57
Gm6483_2.25 Atad2b_2.33 Gm19026_3.16
Ppp1r12a_2.63 Tnks_2.47 Nrp2_2.04
Crkl_2.01 Gm37893_2.44 Gm20689_2.07
RP23-425I8.2_3.28 Gm336_2.85 Fam167a_3.93
Pdp1_3.11 Rusc2_2.85 Cyp4f18_3.11
Ccne1_3.43 Fut8_2.64 Kitl_2.21
Mylip_3.08 Ktn1_3.4 Pkn2_2.77
Notch1_3.44 Rnf4_2.59 Phlpp2_2.69
Fbxo42_2.61 Notch2_2.55 Atp8a1_2.68
Gm13391_2.8 Dcaf6_2.11 Sik3_2.56
Slc9a1_2.23 Net1_2.87 St3gal5_2.53
Inpp5b_2.59 Scfd1_2.81 Utrn_3.17
Dock11_2.35 Hps3_2.09 Ankib1_2.36
Efcab6_3.49 Kdm4a_2.61 Mark2_2.33
Kmt2c_2.65 Usp31_2.96 Ambra1_2.33
Usp47_2.84 Stag1_2.8 Krit1_2.37
Galnt7_2.14 Gcc1_2.15 AI314180_2.2
Itpripl2_2.4 R3hcc1l_2.25 Cpsf2_2.04
Dnajc13_2.59 Ap3b1_2.38 Psme4_2.35
Hipk2_2.41 Npepps_2.25 Msi2_2.32
Parp4_2.24 Sipa1l1_2.22 Arfgef1_2.12
Mtmr11_2.29 Wrn_2.23 Dgkh_2.39
BC030336_2.02 Pphln1_2.11 Trip12_2.02
Tlr4_2.04 Trnt1_2.15 Acvr1_2.14
Ctnnal1_2.54 Arap2_2.96 Pi4k2b_2.39
Stag2_2.05 Adgrg6_2.79 Pacs2_2.48
Htr2a_2.69 Kctd10_2.19 Eif4e3_2.09
Mcur1_2.04 Pfkp_2.22 Abhd16a_2.19
Raf1_2.06 Cblb_2.86 Mtmr12_2.81
Ptpn23_2.4 AW549877_2.38 Lyst_2.3
RP23-164N7.3_2.19 Ric1_2.17 Hectd2_2.21
Ino80d_2.37 Kmt2a_2.37 Med1_2.1
Sema4b_2.68 Gab2_2.43 Atp2b1_2.5
Stam2_2.09 Arl4c_2.19 Rab8b_2.39
Rragc_2.52 Elk4_2.43 Tmem168_2.17



125

Map4k3_2.53 Ahr_2.67 Tsc22d2_2.49
Kctd3_2.13 Twsg1_2.41 Iqgap1_2.29
Pkp4_2.44 Fbxo11_2.58 Riok3_2.19
Foxp1_2.26 Gfpt1_2.04 Rcbtb1_2.35
Cdyl_2.2 Rnpc3_2.18 Ptbp2_2.31
Golph3_2.17 Ppp2r3a_2.37 Slc30a4_2.16
Reps1_2.14 Akna_2.06 Zbtb18_2.11
Gucd1_2.33 Bsdc1_2.03 Gm43166_2.14
Eif5_2.11 Grhl1_2.37 Ndst3_2.64
Ints8_2.55 4930402H24Rik_2.25 Arid2_2.13
Prmt10_2.23 2810403A07Rik_2.07 Vash1_2.91
Osbpl3_2.36 Arhgap26_2.51 Crtc2_2.43
Ing3_2.08 Micu3_2.25 Dip2c_2.27
Pwwp2a_2.29 Pan3_2.15 Zfp39_2.25
Slc38a2_2.53 Rbm39_2.2 Plcxd2_2.31
U2surp_2.08 Wac_2.39 Suco_2.35
Epc2_2.32 Crybg3_2.61 Fbxo38_2.08
Pum2_2.06 Zkscan6_2.22 Ubr5_2.26
Btbd7_2.07 Ccdc186_2.01 Ttc17_2.37
Setd2_2.09 Kdm3a_2.5 Rc3h1_2.16
Ncoa3_2.1 Lrig2_2.07 Arhgap22_2.19
Gm21092_2.07 Bmp2k_2.6 E2f5_2.38
Rab28_2.02 Ythdc1_2.05 Iba57_2.01
Cep192_2.15 Arhgap10_2.07 Mcts2_2.61
Irs2_2.22 Wee1_2.14 Xpo6_2.04
Kansl3_2.03 Unkl_2.02 Pbx1_2
Gm11739_2.12 Zbtb46_2.45 Gm37874_2.76
Gm15512_2.1 Mreg_3.09 Kctd6_2.46
Lzts2_2.28 Pbx4_2.1 St3gal3_2.21
Zfp827_2.42 Sde2_2.1 Gm16907_2.01
Bcor_2.02 Plau_2.72 Slc25a19_2.22
Gdf15_3.15 Siah1a_2.39 Rap2b_2
Fdxacb1_2 Slc25a33_2.26 Gm7224_2.08
Sik1_2.44 Sema6d_2.38 Zbtb17_2.21
Traf3_2.19 Prkab2_2.04 Pik3c2a_2.14
Zfp655_2.25 Tanc1_2.03 Dmxl1_2.03
Gm12263_2.09 Gm6776_2.21 RP23-356K2.5_3.32
Zbtb8a_2.32 Zfpm2_2.98 Spata21_2.67
Epha4_2.42 Gm527_2.28 RP23-171F16.5_3.35
Adap1_2.33 Slc35f5_2.23 Ccdc94_2
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Psip1_2.16 Mbip_2.01 Dnajc21_2.06
Aig1_2.26 Prpsap1_2.36 Tiprl_2.03
Gpatch3_2.11 Siah2_2.31 Sycp2_2.68
Gm9396_2.58 Med28_2.25 Ece2_2.04
Ankrd24_2.06 Lrrd1_2.2 Gm37621_2.04
Egfr_2.49 Klk1b11_2.03 1700058P15Rik_2.59
Klf11_3.29 RP23-357D17.4_2.76 Mab21l3_3.09
Bahcc1_2.1 Olfr111_2.32 Gm6162_2.18
Gm10254_2.4 Akap6_3.22 AU020206_2.2
Efr3b_2.2 Pilrb2_2.07 Msl2_2.57
Col15a1_2.92 Cdc14a_2.04 Zfp438_2.08
Tm4sf5_2.44 Spin3-ps_2.06 Gm5920_2.06
Rcor2_2.17 Paqr3_2.1 Gm8261_2.05
Tnfrsf11b_2.68 1110035H17Rik_2.36 Nyap2_2.07
Stap2_2.01 Gm23468_2.92 Tmem200a_2.94
Gm21859_2.64 Gm2539_3.04 Foxc1_2.61
Slc12a5_2.39 9130230N09Rik_3.09 Sertad1_2.59
Gm4997_2.45 Nudt9_2.16 Gm15793_2.07
Gm15236_2.44 Mfsd6l_2.01 D330050G23Rik_2.23
1810011O10Rik_2.83 Gm11455_2.73 Gm15773_2.57
Dnajb3_3.08 Ccl20_4.68 Shbg_3.93
Gm8000_3.61 Trpc4_3.35 Naip3_2.31
Rps4l-ps_3.39 A930019D19Rik_2.64 Lgr6_2.34
Dnmt3a-ps1_3.69 Gm20531_2.32 Mir23b_2.4
Ablim2_2.18 Gm6695_2.13 Rbm6-ps2_4
Gm17087_4.07 Gm12115_2.75 Gm12221_2.66
Gm15238_2.78 Gm11945_2.32 Gm4149_2.08
Gm38329_2.33 Gm4799_2.01 Gm11620_3.23
Gm8185_2.27 Gpr182_2.58 Gm6119_3.49
Gm38091_2.13 Gm5946_2.03 Gm2756_2.59
Gm7104_2.62 Kcna7_2.6 Gm13359_2.56
Msantd1_2.39 Gm25026_3.1 Gm23205_2.31
Dnah3_2.53 Gabbr2_2.46 Gm37689_2.25
Grem2_2.44 Dnaja1-ps_3.88 RP23-358O22.1_3.03
Pex13-ps_2.89 Gm12791_2.41 Gm22516_2.33
Gm14292_2.05 Gm29488_2.71 Gm17160_2.99
Gm3052_2.23 Gm8141_2.29 Yes1_3.21
Gm12057_2.49 Arntl2_2.42 Hk2_2.15
Leng1_2.06 Tmem170_2.06 Orc1_2.06
Gm6872_2.15 Ovol1_2.13 Fbxl15_2.11
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2010300C02Rik_2.09 Gm13361_2.34 Gm36638_2.25
Igf2bp1_2.28 Gm10499_2.9 H2-Bl_2.44
Tuba3b_2.99 Cdo1_2.04 Gm6305_2.28
4930518I15Rik_2.19 Gm37760_2.12 Npff_2.16
5830444B04Rik_2.1 RP23-370G17.4_2.75 Gm16731_2.38
Mcc_2.3 Apom_2.03 RP23-409I5.2_2.03
Cebpd_2.39 Tnip3_2.18

Table S2. List of 30 Unique Genes in Statistically Significant Functional Clusters within 
Group 1. See Table S1 for table legend.

Gene Name_Log2 Fold-change
Ifna2_10.22 Ifnb1_10.54 Ifna4_9.73
Ifna5_8.59 Ifna1_8.48 Ifna9_8.57
Ifnab_8.29 Ifna6_8.13 Ifna14_8.06
Ifna11_7.97 Ifna15_7.4 Ifna12_7.1
Ifna16_6.21 Lta_6.14 Oas1b_5.73
Ifna13_5.89 Serping1_5.51 Srms_4.33
Oas1d_4.37 Isg15_4.63 Ptk6_3.8
Trim10_4.18 Oas1h_3.28 Ssc5d_3.35
Ifna7_3.99 Hck_3.23 Ifnz_3.24
Oas1e_3.81 Oas1f_3.34 Gm13288_3.46

Table S3. List of 151 Unique Genes in Statistically Significant Functional Clusters within 
Group 2. See Table S1 for table legend.

Gene Name_Log2 Fold-change

Gmeb2_4.38 Prkaa2_4 Fbxw11_3.98
Zfp952_3.88 Prdm9_3.86 Kit_3.64
Akt3_3.79 Efcab6_3.49 Klf3_3.63
Rnf24_3.57 Aebp2_3.48 Dpf3_2.93
Taf4b_3.43 Notch1_3.44 Atxn7_3.43
Tbk1_3.38 Cnot4_3.38 Zfpm2_2.98
Rbpms_3.35 Spty2d1_3.33 Klf11_3.29
Zfp719_3.29 Gm15800_3.27 Itpkc_3.26
Irf8_3.26 Nr3c1_3.23 Adnp2_3.22
Rnf115_3.18 Gpbp1_3.14 Sertad2_3.13
Cdk12_3.11 Ncoa5_3.09 Mylip_3.08
Pias1_3.05 Rnf14_3.04 Cul1_3.03
Fem1c_3.02 Mlxip_3.01 Rnf19a_2.99
Fbxo30_2.97 Zfp868_2.95 Irf5_2.94
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Mdfic_2.87 Cblb_2.86 Atm_2.84
Epha4_2.42 Atf4_2.85 Clk1_2.82
Birc6_2.81 Fbxw7_2.81 Nab1_2.8
Traf6_2.78 Arntl_2.77 Pkn2_2.77
Phf20l1_2.76 Sgms1_2.75 Mcts2_2.61
Ino80_2.68 Ahr_2.67 Kbtbd2_2.67
Kmt2c_2.65 Kdm4a_2.61 Zfp827_2.42
Dmtf1_2.6 Egfr_2.49 Bmp2k_2.6
Rnf4_2.59 Fbxo11_2.58 Dr1_2.58
Prdm2_2.57 Zbtb46_2.45 Sik3_2.56
Notch2_2.55 Cdk6_2.55 Tsc22d1_2.55
Plag1_2.54 Brd2_2.54 Map4k3_2.53
Ikzf5_2.52 Hmbox1_2.52 Acvr2a_2.51
Cggbp1_2.51 Kdm3a_2.5 Rnf145_2.48
Lpin2_2.48 Prkcq_2.26 Bbx_2.47
Zfp160_2.47 Mertk_2.46 Sik1_2.44
Zfp628_2.43 Elk4_2.43 Crtc2_2.43
Hipk2_2.41 Zfp213_2.4 Siah1a_2.39
Pi4k2b_2.39 Wac_2.39 Klhl25_2.39
Grhl1_2.37 E2f5_2.38 Kmt2a_2.37
Ino80d_2.37 Ankib1_2.36 Rcbtb1_2.35
Zfp619_2.33 Snw1_2.33 Zbtb8a_2.32
Mark2_2.33 Siah2_2.31 Epc2_2.32
Rfx5_2.31 Neurl3_2.27 Ubr5_2.26
Foxp1_2.26 Med28_2.25 Zfp655_2.25
Zfp39_2.25 Hectd2_2.21 Zkscan6_2.22
Pfkp_2.22 Zfp455_2.21 Rcor2_2.17
Kitl_2.21 Zbtb17_2.21 Cdyl_2.2
Rbm39_2.2 Arhgap22_2.19 Riok3_2.19
Kctd10_2.19 Traf3_2.19 Siah1b_2.16
Psip1_2.16 Wee1_2.14 Pik3c2a_2.14
Acvr1_2.14 Pbx4_2.1 Zfp324_2.12
Zbtb18_2.11 Pphln1_2.11 Dcaf6_2.11
Med1_2.1 Ncoa3_2.1 Setd2_2.09
Ing3_2.08 Akna_2.06 Raf1_2.06
Trip12_2.02 Bcor_2.02 Alpk1_2.01
Pbx1_2
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Table S4. List of 203 Unique Genes in Statistically Significant Functional Clusters within 
Group 3. See Table S1 for table legend.

Gene Name_Log2 Fold-change
Il12b_13.73 Nos2_13.25 Il6_13.15
Cxcl11_12.87 Cd69_12.71 Gbp4_12.17
Rasgrp1_11.42 Sele_11.33 Tnfsf4_11.62
Dll1_11.52 Edn1_10.61 Cxcl10_11.33
Irg1_11.13 Lhx2_10.86 Adora2a_10.72
Il27_10.91 Ccl5_10.9 Tgtp1_10.35
Csf2_10.96 Pou3f1_10.64 Cxcl9_10.5
Vcam1_10.63 Tnfsf15_10.36 Il1a_10.5
Ptgs2_10.46 Serpina3f_9.72 Gbp6_10.29
Cxcl1_10.21 Ccl3_10.12 Gfi1_9.39
Cxcl2_9.95 Ifit3b_9.85 Csf1_9.79
Klrk1_9.17 Gbp5_9.66 Il23r_9.63
Iigp1_9.58 Socs1_9.41 Ifit2_9.47
Il1b_9.39 Tnf_9.35 Cd274_9.32
Ccrl2_9.31 Tgtp2_9.26 Ifi205_9.14
Mx1_9.12 Cd40_9.11 Nfkbiz_9.06
Tnfsf10_9.03 Gadd45b_9.04 C3_8.97
Nox1_8.59 Cmpk2_8.82 Ifit3_8.73
Dnase1l3_8.19 Oasl1_8.58 Bcl2a1a_8.37
Csrnp1_8.4 Slc6a4_8.57 F3_8.2
Gm12185_8.27 Mx2_8.32 Gm4951_8.18
Plk2_8.2 Gbp3_8.19 Gm14446_8.17
Irf1_8.11 Ccl12_8.09 Rsad2_8.05
Ifit1_8.01 Mmp14_7.96 Traf1_8
Foxf1_7.69 Tnfaip8l3_7.39 Slfn1_7.84
Hcar2_7.81 Ppp1r15a_7.83 Adm_7.34
Lpar1_7.75 Pim1_7.68 Gbp2_7.67
Fpr2_7.59 Tnfaip3_7.66 Bmp2_7.6
Spta1_7.16 Tnfsf18_7.36 Gm4841_6.96
Cxcl3_7.33 Isg20_7.43 Saa3_7.35
Ccl8_7.15 Map3k8_7.12 Ifih1_7.1
Il15ra_7.08 Rnf152_6.63 P2ry13_7
Itgb8_6.3 Il15_6.94 Ccl4_6.93
Nod1_6.86 Gbp9_6.85 Icam1_6.84
2010002M12Rik_6.73 Daxx_6.79 Cited2_6.79
Gbp7_6.75 Igtp_6.74 Tlr11_6.22
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Il10_6.68 Six1_6.37 Pdcd1_7.09
Bmp10_6.93 Pyhin1_6.59 Irgm2_6.57
Ifi47_6.37 Icosl_6.29 Ddx60_6.28
Tlr3_6.23 Peli1_6.23 Socs3_6.21
Helz2_6.2 Junb_6.13 Rel_6.12
Rapgef2_6.05 Irgm1_6 Zbp1_5.97
Batf2_5.95 Tiparp_5.95 Clec4e_5.95
Tnfsf9_5.94 Nod2_5.93 Flt4_5.65
Zfp36_5.75 Herc6_5.73 Irf7_5.72
Stat2_5.66 Trim21_5.65 Xcr1_5.59
Slfn8_5.58 Nlrp3_5.57 Tagap_5.54
Zeb1_5.51 Atf3_5.49 Stat1_5.5
Mthfr_5.49 Pde4b_5.43 Gm5431_5.38
9930111J21Rik1_5.33 Il23a_4.93 3110001I22Rik_5.29
Slfn3_5.26 Parp10_5.14 Ddx58_5.08
Amica1_4.58 Fas_5.05 Ripk2_5.04
Ifi203_5.04 Themis2_5.02 Birc2_5.01
Ikzf1_4.98 Prdm1_4.97 Zfp819_4.54
Birc3_4.92 Rgs16_4.85 Tlr2_4.81
Adamts13_4.45 1600014C10Rik_4.76 Pml_4.74
Slfn9_4.7 Xaf1_4.68 Eif2ak2_4.66
Slfn2_4.61 Ncoa7_4.61 Nfkbia_4.61
H2-Q7_4.57 Trex1_4.56 Oas1g_4.54
Egr2_4.49 Aim2_4.44 Sgk1_4.4
Ifi204_4.38 Trim34a_4.25 Oas2_4.18
Cxcl16_4.15 Rnf135_4.16 Apobec3_4.15
Tlr1_4.07 Nfkbid_4.05 Dusp1_3.93
Rgs2_3.85 Ccnl1_3.85 Adar_3.83
Oasl2_3.82 Nupr1_3.77 Myd88_3.58
Irf2_3.55 Cdkl5_3.53 Il10ra_3.46
Trim14_3.31 Lck_3.1 Crlf3_3.07
Sod2_2.93 Ikbke_2.71

Table S5. List of 149 Unique Genes in Statistically Significant Functional Clusters Within 
Group 4. See Table S1 for table legend.

Gene Name_Log2 Fold-change
Krt16_9.99 Inhba_8.15 Ccl22_7.85
Nr3c2_7.59 Plagl1_7.55 Kalrn_7.32
Zfhx4_6.74 Asap3_7.17 En2_7.55
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Ciita_6.85 Med12l_6.52 Il33_6.5
Fst_6.22 Gata3_6.34 Cfb_6.01
Dlx1_5.88 Cd247_5.43 Jak2_5.96
Arid5b_5.92 Enah_5.86 Hoxd1_6.49
Klf8_5.79 Rgs1_5.64 Arid5a_5.6
Jdp2_5.53 Klf6_5.53 Slamf1_5.04
Zfp382_5.46 Tet2_5.35 Sirt1_5.34
Malt1_5.34 Slamf7_5.34 Grhl2_5.06
Fzd5_5.27 Zbtb10_5.15 Pcgf5_5.12
Plscr1_4.97 Zfp800_4.92 Bcl2a1d_4.74
Mdm2_4.8 Tank_4.8 Phip_4.76
Ido2_4.71 Zhx2_4.7 Tap1_4.63
Skil_4.61 Creb5_4.59 Cpeb3_4.57
Spic_4.13 Txk_4.31 Rnf31_4.47
Tapbpl_4.46 Ascc3_4.45 Relb_4.44
Chd2_4.43 Nfil3_4.42 Etv3_4.38
Jarid2_4.35 Tfap2a_4.04 Mycbp2_4.23
Smyd1_4.01 Azi2_4.21 Hinfp_4.2
Zc3h12a_4.2 Mier3_4.2 Med13_4.18
Nfkb1_4.18 Bcl9_4.17 Ccl7_4.09
Hivep1_4.09 Foxp4_4.09 Axl_4.08
Zfp281_4.07 Zfp319_4.05 Rnf19b_4.03
H2-Eb1_4 Nfib_4.51 Nlrc5_3.97
Hmgn3_3.94 Dhx58_3.94 Chd1_3.93
Lcor_3.83 Agrn_3.88 Mier1_3.86
Casp4_3.86 Samhd1_3.86 Tgif1_3.85
Phf21a_3.84 Lcp2_3.83 Ptpn2_3.83
Ccl2_3.81 Dennd1b_3.78 Ankrd17_3.76
Etv6_3.75 Tap2_3.75 Nfkb2_3.74
Nck1_3.68 Sp110_3.64 Irak2_3.63
Mefv_3.55 Zc3hav1_3.6 Usp17le_3.74
Epc1_3.59 Mb21d1_3.57 Tnfsf8_3.55
Whsc1l1_3.54 Tgs1_3.54 Bach1_3.53
Tle4_3.49 Tcf4_3.47 Plagl2_3.46
Zfp263_3.42 Oas1a_3.41 Il18_3.38
Trim26_3.3 Zfp507_2.77 Sp100_3.23
Hivep3_3.2 Max_3.18 Zfp62_3.18
Med13l_3.18 Trps1_3.13 Nampt_3.11
Taf7_3.07 Maml2_3.06 Arid4a_3.03
Tlr6_3.03 Ikzf2_2.93 Ccnl2_2.94
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Zfp513_2.93 Ccnt2_2.85 Vasp_2.85
F11r_2.85 Trim13_2.8 Srgap2_2.78
Nrip1_2.74 Zfp654_2.67 Zfp691_2.66
Rgs4_2.73 Zscan29_2.6 Ccr7_2.83
Zfp260_2.54 Zeb2_2.52 Sema4d_2.48
Jag1_2.47 Keap1_2.44 Oas3_2.43
Ell2_2.36 Tcea1_2.11
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