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CHAPTER 1

INTRODUCTION

The generation of anions from activated carbons has
been used extensively by synthetic organic chemists as a means
of carbon-carbon bond formation and as a way of introducing
unique functional groups into molecules through electrophilic
condensation reactions.] Depending on the source of
activation, the conditions needed for abstraction of a proton
from the activated carbon could range from mildly basic to
strongly basic with the possible use of co-solvents such a
DABCO (1.4-Diazabicyclo[2.2.2]octane) (Figure 1) or DMPU
(1,3-Dimethyl-3,4.5.6-tetrahydro-2(1H)-pyrimidinone) (Figure

2) to help stabilize the incipient anion.2.3

Figure 1

DABCO



Although these reactions generally resulted in minimal side
product formation and moderate to good yields, the method was
limited to simple molecules that possessed little diverse
functionality. From a synthetic standpoint, it was desirable to
develop methods that would incorporate the favorable
attributes of anion chemistry but be able to extend this to

polyfunctional, biologically important precursors.

Figure 2

A
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Fortuitously, in 1958, Harris et al4 published a
paper detailing the isolation of a terminally alkylated
compound from the dipotassium salt of benzylacetone. Since
that publication, the use of dianions as means of carbon-carbon
bond formation and regioselective condensation in
polyfunctional molecules has become increasingly popular.5-6s7
In particular, the use of O,C prochiral sulfur dianions (Figure
3) in condensation reactions has been widely cited in the

literature as a tool for carbon-carbon bond formation,



stereoselective generation of chiral centers and as a source of

building blocks for natural product synthesis.8~9~10

Figure 3
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Of all the O,C sulfur dianions cited in the literature,
the resonance-stabilized, sulfone dianion is one of the most
widely investigated. Beta-hydroxy sulfone dianions have been
successfully reacted with alkyl halides, aldehydes and
ketones.8.9.10  The stereochemistry of the prochiral chiral
centers was established by the degree of chelation of the metal
cation with the oxyanion and oxygen sulfonyl group. The
stereochemistry of the product also was found to be dependent
on the choice of solvent and electrophile. The use of THF as a
solvent coupled with a bulky electrophile favored the formation
of erythro isomers in the major product.lo~11 Beta-hydroxy
sulfone dianions have been successfully utilized to produce
natural product building blocks such as 2(5H)-furanones and
optically active lactones (1).8.12 Beta-hydroxy sulfoxide
dianions also have been generated and reacted with D20, alkyl

halides and aldehydes.9‘13 The stereochemical outcomes of



these prochiral additions varied with the reaction time as well
as the degree of chelation of metal cation with the sulfinyl
group and oxyanion.l3 Finally, a beta-hydroxy sulfide dianion
has been postulated as the reactive intermediate in the
conversion of 2-hydroxy-1.3-bis-(phenylthio)-propane to the
corresponding cyclopropanol (2).14  The dearth of literature
precedent in this area suggests the degree of difficulty
associated with the generation of a non-resonance stabilized

carbanion beta to an oxyanion.



CHAPTER I

STATEMENT OF PURPOSE

The work presented in this thesis represents the
first attempt at combining a chiral building block structure
within an O,C sulfur stabilized dianion framework to make a
pro-sugar building block. In particular., we investigated the
selective coupling of a chiral beta-hydroxy sulfoxide dianion
with carbonyl electrophiles in order to generate novel, chain
extended building blocks that possess four chiral centers.
Synthetic schemes illustrating these reactions are found in
Chapter IV. Tables summarizing the results of all experiments

are found in Chapter III.



CHAPTER 111

RESULTS

The synthesis of 1,2-O-isopropylidene-2-(R)-
glyceraldehyde (3) was initiated using D-mannitol as the
starting material, protecting this with two isopropylidene
groups followed by oxidative cleavage of the protected, chiral,
R-glyceraldehyde. The epimer S-glyceraldehyde was prepared
using L-ascorbic acid as the starting material. L-Ascorbic acid
was then protected similarily and was oxidatively cleaved to
form the 1,2-O-isopropylidene-2-(S)-glyceraldehyde (6)
derivative (Table 1).

Thioanisole and methyl phenyl sulfoxide were
successfully condensed with 1,2-O-isopropylidene-2-(R)-
glyceraldehyde (3) to form 1,2-O-isopropylidene-2-(R)-3-
(R.S)-trihydroxy-4-phenylsulfenyl butane (9) and 1,2-O-
isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-phenylsulfinyl
butane (11). We were unable to form 1,2-O-isopropylidene-2-
(S)-3-(R.S)-trihydroxy-4-phenylsulfenyl butane (10) using 1.2-
O-isopropylidene-2-(S)-glyceraldehyde (6) as the electrophile.
Both (9) and (11) were oxidized to give the sulfone derivative,
1,2-O-isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-
phenylsulfonyl butane (12) (Table 2).

6



Table 1. -- Oxidative cleavage reactions to obtain

chiral glyceraldehydes (3) and (6).

0 0

/—‘.)L” /_l)L“

O\ ‘O O\ (o]

/\ A

(3) (6)

Scheme substrate product %yielda. b
1 (1) (2) 952
1 (2) (3) 30-402
2 (4) (5) 9g8a
2 (5) (6) 2-3a.,b
3 (7) (8) 502
3 (8) (6) 3.5a.b

4 yields after purification, b poor yields, ¢ side reactions
major products, 4 recovered unreacted starting material



Table 2.

Scheme

Formation of sulfur stabilized dianions

HO (ﬁ)x
/_/\/S‘Q
s

N x=0; (9)

x=1; (11)

x=2; (12)
substrate product
(3) (9)
(3) (11)
(3) (12)

%yieldd

30-404
154
4042

a vyields after purification, D poor yields, ¢ side reactions
major products, d recovered unreacted starting material



The dianion of 1.2-O-isopropylidene-2-(R)-3-(R.S)-
trihydroxy-4-phenylsulfonyl butane (12) was successfully
formed and trapped using methyl iodide and deuterated acetone.
Likewise, the dianion of 1,2-O-isopropylidene-2-(R)-3-(R.S)-
trihydroxy-4-phenylsulfinyl butane (11) was formed and
trapped with allyl bromide, methyl iodide and deuterated
acetone. The dianion of (11) was successfully condensed with
acetaldehyde, butyraldehyde and benzaldehyde. The results
from the condensation reactions resulting from the use of
acetone and 3-pentanone as the electrophiles were not as
sucessful as the reactions using aldehydes as the electrophiles
(Table 3).

The dianion of 1,2-O-isopropylidene-2-(R)-3-(R,S)-
trihydroxy-4-phenylsuifenyl butane (9) was not formed and no
trapped derivatives were observed. The silyl ether and acetate
of (9) were formed in an effort to separate the diastereomers
as well as to explore resonance versus inductive effects in
blocked beta-hydroxy sulfide derivatives. Silica gel
chromatographic separations of these ester derivatives were
not successful. Preparative hplc was performed on the parent
compounds (9) and (12) in order to separate the diastereomers
and determine the absolute configurations at the 2-hydroxy
position. The diastereomers of (9) and (12) were separated and
an attempt was made to deprotect the compounds to give the

chiral isopropylidene glycerols. The deprotection reaction
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Table 3. -- Dianion reactions with (11)

HO (ﬂ)x HO (ﬁ)x

r/\/S—< > /_/'\<S@
- — ~
0]
yO O\/O R
N\ N\

x=1; (11) (14); R=D (18); R=CH(OH)CH2CH2CH3
x=2: (12) (15); R=allyl (19); R=CH(OH)Ph

(16); R=methyl (20); R=CH(OH)(CH3)2
(17): R=CH(OH)CH3  (21); R=CH(OH)(Et)?

Scheme substrate product %yieldd, b
8 (12) (13) 15a

9 (11) (14) 50

9 (11) (15) 152

9 (11) (16) 15

9 (11) (17) 102

9 (11) (18) 13a

9 (11) (19) 7a

9 (11) (20) 3a
10 (11) (21) b

a yields after purification, P poor yields, ¢ side reactions
major products, d recovered unreacted starting material



Table 4.

Ps
>~

Scheme

10
11
12
13
14
15
16
17
18

--  Reactions of compound (9) and (26)

o

(9)

substrate

9)
9)
9)
(9)
(9)
(26)
(26)
(26)
(26)

P

O o

N
AN
(26)

product %yielda, b, d
(22) d
(23) 264
(24) 708
(25) b
(26) 302
(27) 102
(28) 208
(29) 15a
(30) a

a yields after purification, b poor yields, ¢ side reactions
major products, d recovered unreacted starting material

11
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went much better with the sulfide derivative than with the
sulfone. An optical rotation was performed on the separated, -
chiral glycerols and was comparable with the literature values.
The diastereofacial selectivity was found to be in favor of the
syn diastereomer in a ratio of 6:4 (Table 4).

The secondary hydroxyl of 1.2-O-isopropylidene-2-
(R)-3-(R,S)-trihydroxy-phenylsulfenyl butane (9) was oxidized
using a standard procedure to give 1,2-O-isopropylidene-2-(R)-
3-oxo0-4-phenylsulfenyl butanone (26). The anion of (26) was
formed and was trapped using methyl iodide. Acetaldehyde was
successfully condensed with the anion of (26) to form 1.2-O-
isopropylidene-2-(R)-3-oxo0-4-phenylsulfenyl-5-(R,S)-hydroxy
butanone (28). The anion of (26) was also condensed with
benzaldehyde to give directly the dehydration product rather
than the alcohol (29). We also attempted to add acetone and 3-
pentanone to this anion. However, the desired products were
not isolated. With acetone as the electrophile, dehydration
products were again directly observed. When the acetone
condensation reaction was quenched using acetic anhydride, the
2-acetate ester of the enol ether was formed.

Unprotected prochiral Michael electrophiles
acrolein, methacrolein and o-methyl-trans-cinnamaldehyde
were reacted with the anion of (11) to form the desired
unsaturated beta-hydroxy sulfoxide derivatives (31), (32), and

(33) (Table 5). The condensation reaction was found to occur



Table 5. -- Reactions of Michael acceptors with
methvl phenyl sulfoxide

OH O

R'\:X\/g@

R

(31); R'=H, R=H (32): R'=H, R=CHj3
(33); R'=Ph, R=CH3

Scheme  substrate product %yieldd
16 acrolein (31) 45a
17 methacrolein (32) 702
18 oa-methyl-  (33) g0a

trans-

cinnam-

aldehyde
19 (31) (34) 704
Table 6. -- Separation of the diastereomers of (9),(12)
and
(37),(38)
Scheme  substrate product %yielda
20 (12) (35), (36) 504
21 (9) (37), (38) 463
22 (37). (38)  (39). (40) 208

a vyields after purification, P poor yields, ¢ side reactions

major products, d recovered unreacted starting material

13



in a 1,2 fashion rather than in a 1.4 fashion. The dianion of the
methacrolein derivative was formed and trapped with allyl
promide. This experiment showed that dianion chemistry could
be extended to non-traditional prochiral building block
substrates. These Michael adducts could be stereoselectively
functionalized at the olefin to form chiral, polyhydroxylated
building blocks

The results of the HPLC separations of the
diastereomers of (9) and (12) are tabulated in Table 6.

Finally, pilot experiments were performed on the
parent (11) and condensation adduct (18) to try to establish
limits on the degree of required protection prior to
oxidation/cyclization steps to form unnatural sugars. An
acetonide migration reaction was performed on (11) and was
found to give mixed products. The adduct (18) was treated
with acetic anhydride and was found to be highly selective
although resistant to acetylation conditions. The adduct (18)
was also deprotected using Amberlyst 18 and a Corey-Kim
oxidation was attemped on this material in the hope of
isolating a cyclization product. The results from this

experiment were inconclusive (Table 7).

14



Table 7. -- Attempted formation of an unnatural sugar
from (18)
HO ﬁ
Y
C ~~OH
>
N\ o
(18)
Scheme substrate product %yieldd b, ¢, d
23 (11) (41) 40a
24 (18) (42) b.d
25 (42) (43) b.d
26 (43) (44) c

a yields after purification, b poor yields, € side reactions
major products, 4 recovered unreacted starting material

15



CHAPTER IV

DISCUSSION

PART 1. Synthesis of 1,2-O-isopropylidene-2-(R)-
glyceraldehyde (3) and 1,2-O-isopropylidene-2-(S)-
glyceraldehyde (6) (Schemes 1, 2, 3)

A.  Synthesis of 1.2,5.6-bis-O-isopropylidene-D-mannitol
(2).

The synthesis of 1.,2,5,6-bis-O-isopropylidene-D-
mannitol (2) was attempted using two literature
procedures.15~16 D-mannitol was dissolved in anhydrous
acetone and ZnCl2 was added to the slurry with stirring at RT
for 24 hours.15 The reaction mixture was analyzed by tlc and
found to be 85% complete giving two new product spots. When
compared with authentic sample (available from Aldrich), the
major product co-spotted with authentic sample. However, 25-
30% of crude product was found to be the triisopropylidene D-
mannitol compound (Figure 4). The Baer paper,!9 also noted
the production of the triisopropylidene derivative. An
alternative method was then sought that would give (2)
without this side product. The best method for the exclusive
production of (2) was found to be that cited by Kierstead and

16
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Co-workers.16 Here D-mannitol was dissolved in DMSO in the
presence of 2.2-dimethoxypropane with a catalytic amount of"

tosic acid under N2 at RT for 24 hours.

Figure 4

Tlc analysis of the crude reaction mixture showed near
complete reaction to the desired compound (2). The reaction
mixture was easily worked up using successive ethyl acetate
washes. The organic phase was evaporated to a white solid
that was recrystallized with hot hexane to give 95% yield of
white, needle-like crystals. Because of the mild reaction
conditions and high yields of crystalline material, this
procedure was considered the method of choice for subsequent
preparations of (2).

B.  Synthesis of 2,3-O-isopropylidene-2-(R)-

glyceraldehyde (3).

The oxidation of (2) to (3) was first carried out

using a modified procedure described by Kierstead and co-



18
workers.16 The bis-isopropylidene derivative (2) was
dissolved in anhydrous toluene and reacted with Pb(OAc)4 at
RT. After 20 minutes, the reaction was shown to be complete
via tic. The white slurry was filtered and the filtrate was
neutralized with anhydrous K2CO3 and refiltered. However,
after evaporation in vacuo, it was found that the product co-

evaporated with the toluene into the receiving trap.

Scheme 1

In order to avoid this problem, anhydrous methylene chloride
was used as a lower boiling reaction solvent.17 The use of
methylene chloride was found to give minimal co-evaporation
and distillation of the resulting solution gave 35-40% yield of
the desired aldehyde (3). Although this method gave the
desired aldehyde in fair yields. the toxicity of Pb(OAc)4

coupled with the carcinogenic properties of alkyl halides made



this method very undesirable as a preparative method of
obtaining (3). An alternative method was reported by
Kuszmarm18 where NalO4 was used as the oxidizing agent
resulting in an aqueous solution of (3). For our purposes,
however. it was necessary to maintain anhydrous conditions to
ensure successful reactions. Even though this method was mild
and relatively free from toxicants, the aqueous aldehyde
solution would not be useful to us from a synthetic standpoint.
Recently, Schmid and collegue519 reported a new preparative
method for the synthesis of both (2) and (3).

C. Synthesis of 1.2-isopropylidene L-ascorbic acid (5§).

Since the series of reactions described in this

thesis required the production of chiral building blocks of
glyceraldehyde, it was of interest to prepare the optical
antipode of (3). This goal was initiated using L-ascorbic acid
as the chiral building block starting material. Using a
procedure described by Jackson and Jones,20 L-ascorbic acid
was dissolved in acetone and acetyl chloride was gradually
added to the slurry. After stirring this slurry at RT for 24
hours, the reaction was found to be complete. Simple suction
filtration furnished the product (5) as white crystalline
needles. The procedure was free from side reactions and was

readily amenable to scale-up synthesis giving 98% yield.
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D. The synthesis of 2.3-O-isopropylidene-2-(S)-
glyceraldehyde (6) from (§).

The synthesis of 1.2-O-isopropylidene-2-(S)-
glyceraldehyde (6) followed a literature procedure described by
Jung and Shaw.2]l  The small scale synthesis of (6) involved
first reducing the double bond of (5) followed by oxidative
cleavage of this protected lactone with Pb(OAc)4 in ethyl
acetate. The first step was pH dependent and had to be
followed for four hours. The slurry was then stirred overnight
and azeotroped to a white powder with absolute ethanol. The
spectral data obtained for this intermediate suggested a great
deal of salt formation. The oxidative cleavage was performed

using the powder in ethyl acetate and Pb(OAc)4 as the oxidizing

20



agent. The reaction was found to be complete via tlc analysis
within 2 hours. After neutralization and several suction
filtrations and rinses, the filtrate was evaporated, in vacuo. to
a clear, oily solution. The oil was fractionally distilled at
room pressure giving a major fraction at 139-143 OC. The oil
was stored at -25 OC under N9p. The analytical data obtained on
this oil suggested the desired aldehyde had formed, however,
the yields were poor (10-15%).

Scale up experiments were attempted using 40 g of
substrate (5). The results were even more discouraging than
that found at the 4 g scale. Besides the hazards of this
experiment (120 g Pb(OAc)4), the product yield was estimated
to be around 5% yield via tlc. It was suggested in several
publications22 that the desired aldehyde (6) was not only
unstable in organic solvents and subject to racemization but
that the procedure as proposed by Jung and Shaw2! was not
amenable to scale up because of the tendency of the aldehyde to
undergo overreaction in the reduction step.

An alternate procedure also was attempted using
LiAlH4 as the reducing agent and NalO4 as the oxidant.23 The
procedure called for dissolving substrate in THF over N2 and
cooling this mixture to 0 ©C. The LiAlH4/THF solution was
added to substrate and the mixture was stirred at 0 9C for 1
hour followed by heating to reflux temperature for 0.5 hour.

After 10 minutes of heating, the solution turned to an

21
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preparative scale.  Alternate literature methods using other
prochiral starting materials would perhaps help solve some of
the problems associated with working on a preparative
scale.24> 25, 26 Aldehyde instability could perhaps be
reconciled by trapping the aldehyde in situ 27 with the
subsequent use of the derivitized aldehyde as a prochiral
substrate.

E. Synthesis of 1,2-isopropylidene-L-gulonic-y-lactone

(8).

One of the possible factors cited for the poorer than
expected yields of (6) from the Jung and Shaw procedure could
be overreaction in the reduction of the double bond of 1,2-
isopropylidene L-ascorbic acid (5).22  Since this was a possible
source of the synthetic problems we had been having in the
synthesis of (6), we decided it was of interest to find a
procedure that used both a reduced and protected derivative of
L-ascorbic acid as the substrate.

A procedure that involved the protection of the
reduced form of L-ascorbic acid (7) was found in the literature
and the synthesis was attempted.22 The protection of the
substrate was conducted with 2-methoxy propene, tosic acid
and DMF at 10-25 ©C. After 24 hours, the reaction was judged
complete via tic and was worked up. The remaining DMF was
removed either by repeated ethyl acetate washes or

concentrating the solution under reduced pressure at RT. The
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resulting yellow-orange solid was repeatedly washed with a
hexane/ethanol mixture and was suction filtered. The resulting
residue resembled off-white, plate-like crystals. The

procedure gave 50% yield of >98% pure (8).

Scheme 3

OH 0

° o — o o
HO O HO O N
<
(7) (8) (6)

F. The synthesis of 1,2-O-isopropylidene-2-(S)-
glyceraldehyde (6) from (8).

The substrate (8) was suspended in water and
cooled to 5 O©C. The oxidant, NalO4, was added portion-wise to
the substrate solution while the pH was kept at 5.5 with 2N
NaOH. The reaction was judged complete via tlc in 3.5-4 hours.
Although the literature synthesis proposed to isolate the
aldehyde in aqueous solution, we needed to isolate the aldehyde
in as near as anhydrous conditions as we could in the synthesis
for subsequent anion additions. The work-up procedure was
modified so that the aqueous aldehyde solution was rinsed 3

times with 10 mL portions of ethyl acetate. The ethyl acetate
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golution was fractionally distilled at room pressure to give an
aldehyde enriched ethyl acetate solution. The solution of (6)
was stored at -25 OC under N2. The product yields using this
modified method were comparable to the Jung and Shaw
procedure. Overall for the two steps, the yields of (6) from the
Hubschwelen22 procedure ranged from 3-5% yield. The only
apparent advantage of this method over the Jung and Shaw

method was the use of relatively non-hazardous NalO4 as the

oxidant.

PART 2. Synthesis of 1,2-O-isopropylidene-2-(R,S)-3-
(R.S)-trihydroxy-4-phenylsulfenyl butane (9) (10) 1,2-O-
isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-
phenylsulfinyl butane (11) and phenyl sulfonyl butane
(12) (Schemes 4, 5, 6, 7).

A. The synthesis of 1,2-O-isopropylidene-2-(R)-3-(R.S)-
trihydroxy-4-phenylsulfenyl butane (9).

The reaction of the anion of thioanisole with (3)
was first attempted according to a modified procedure by Corey
and Seebach.28 Nmr analysis of the crude oil suggested a
diastereomeric mixture of desired (9) had formed in the
reaction as well as other products from side reactions and
unreacted thioanisole. Because the crude oil was a complex

mixture of products and starting material, it was difficult to
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determine if any diastereofacial selectively had occurred in the
reaction. The crude oil was chromatographed on a silica gel
gravity column, to give an odorless, clear oil. The analytical
data of the purified oil suggested the desired compound had
formed in a 60/40 mixture of diasterecomers. After repeated
attempts at separating these isomers by conventional means,
the mixture was ultimately separated by the use of preparative
hplc.

Apart from the noxious odor of this reaction and
difficulty in separating the diastereomers, this procedure was
found to be satisfactory on a preparative scale giving 30-40%
yield of (9). In our hands, the use of cosolvent28 (DMPU), was
not found to greatly enhance the yields of desired product. The
unresponsiveness of the reaction to the addition of DMPU could
have been due to the nature of the anion generated as well as
subsequent stabilization of the anion by chelation with the
spectator metal.29 The impure and unstable nature of the
aldehyde electrophile?’ov 31 could have also contributed to the
apparent ineffectiveness of co-solvent as well as add to the

side product formation in the reaction.
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Scheme 4
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B. The attempted synthesis of 1,2-O-isopropylidene-2-
(S)-3-(R.S)-trihydroxy-4-phenylsulfenyl butane (10).
The initial conditions used for the synthesis of (10)

were identical to those used for the production of (9). The
worked up sample was chromatographed and the product
isolated as an oil, was analyzed. The product was found to be a
thioanisole adduct but a more precise analysis suggested that
elimination had occurred. The procedure was once again tried
generating the thioanisole anion at -10 OC but by adding the
aldehyde at -78 ©C and quenching at 1 minute, 5 minute and 10
minute time intervals. The yellow color was found not to be as
pronounced in these runs as they were in the first experiment.
However. the aldehyde was not entirely consumed in any of
these reactions. Two products were formed in these reactions;
one identical to the elimination product isolated in the first
experiment and the other was isolated in a small amount and
was not identified. The problem with this reaction could have

originated from several sources. The unstable nature of the
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aldehyde coupled to the resulting stereochemistry of the adduct
might have led to decomposition or elimination products as the

major components of the reaction.

Scheme 5
0 OH
I S
o} 0 0] (o]
N\ \
et 74
(6) (10)

C. The synthesis of 1,2-O-isopropylidene-2-(R)-3-(R.S)-
trihydroxy-4-phenylsulfinyl butane (11).

The synthesis of this compound was conducted in a
similar fashion as in the phenyl sulfide (9) case. The procedure
leading to the formation of (11) was found to be readily
extended to preparative scale. The only disadvantage of the
procedure was that the methyl phenyl sulfoxide was sold as a
very hard, white crystalline, moisture and heat sensitive solid
that came in a small brown, glass bottle. Placing the sample at
RT for 5-10 minutes under N2 prior to weighing out, expedites
the procurement of the compound from the bottle. The nmr data
obtained for the pure sulfoxide (11) was very complex due to
the introduction of another chiral center at the sulfoxide

moiety. As a result, it is not known whether or not
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diastereofacial selectivity occurred in this reaction. The
Separation of the various sulfoxide isomers via silica gel

chromatography was attempted and was only partially

successful.
Scheme 6
0
OH 0
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D. The synthesis of 1,2-O-isopropylidene-2-(R)-3-(R.S)-
trihydroxy-4-phenyl sulfonyl butane (12).

The synthesis of 1,2-O-isopropylidene-2-(R)-3-
(R,S)-hydroxy-phenyl sulfonyl butane (12) was of interest
because the phenyl sulfonyl moiety was used as a resonance
stabilized chromophore in many literature examples of
dianion32. 33 and anion generation.34~ 35 It was of interest to
see whether or not our adduct would perform in accordance
with literature precedent and serve as a model for sulfinyl
dianion additions.

The substrate for the reaction was either (9) vor
(11), differing in the number of equivalents of oxidizing agent,

(mCPBA) that was used. In the former case. 2-3 equivalents of
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mCPBA were necessary to complete the oxidation of the sulfide
to the sulfone while in the latter case. 1.5-2.5 equivalents of -
mCPBA were needed to complete the oxidation of the sulfoxide
to the sulfone. The reactions were carried out at RT with dry
methylene chloride as the solvent. In both cases, it was found
that the isopropylidene protecting group was cleaved if the
system was not buffered. As a result. 1.5 equivalents of K2CO3
was added to the reaction mixture to prevent protecting group
cleavage. The addition of K2CO3 probably slowed the reaction
down and contributed to the use of excess mCPBA. The end
result was the clean formation desired sulfone in 40% yield

after chromatography for both reactions.

Scheme 7
OH ( 0)x OH 8
Lo NN 2o
- —— o 0
0 0 (0] 0]
\ \
/\ /\
x=0 (9) (12)

x=1 (11)

PART 3. The attempted generation and reaction of C-O

sulfur stabilized dianion. (Scheme 8, 9).
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A. The synthesis of 1,2-O-isopropylidene-2-(R)-3-(R.S)-

trihydroxy-4-phenylsulfonyl-6-heptene (13).
As a first approximation to the character of this
novel. pro-sugar building block series, the trapping of the
sulfone stabilized dianion (Figure 5) was attempted using

allyl bromide as the alkylating agent.36,~ 37, 38

Figure 5

The use of co-solvent (DMPU) was found to be necessary for the
solubilization of the incipient dianion. Nmr analysis of the oil
suggested the formation of the desired allyl adduct (13).
B. The synthesis of 1.2-O-isopropylidene-2-(R)-3-(R.S)-
trihydroxy-4-deutero-4-phenylsulfinyl butane (14).

The beta-hydroxy sulfoxyl stabilized dianion was
formed using a literature procedure designed for use on another
beta-hydroxy sulfonyl compound.39’ 40 The reaction was
quenched with deuterated methanol and the crude oil was
analyzed for deuterium incorporation via comparison of the
proton spectrum of the product and the substrate (11). The

proton spectrum of the quenched reaction showed a



disappearance of certain peaks suggesting dianion formation

and trapping with deuterium had occurred. There was about a -
50% recovery of mass after work-up. This fair recovery could
be a indicator as to the nature and reactivity of this particular

dianion to these conditions.

Scheme 8
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Scheme 9
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(11) (14); R=D (18); R=CH(OH)(CH»>)2CH3
(15); R=allyl (19); R=CH(OH)Ph
(16); R=methyl (20); R=CH(OH)(CH3)?

(17); R=CH(OH)CH3 (21); R=CH(OH)(Et)2

C. The synthesis of 1.2-O-isopropylidene-2-(R)-3-(R.S)-
trihydroxy-4-phenylsulfinyl-6-heptene (15).

31
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Alkylation with allyl bromide of (11) was

conducted using a modified literature procedure 10, 11. 12
followed for the sulfonyl butane (13). The yield of product
(15) was found to be around 30%. The low yield of the reaction
could be due to moisture in the system. impurities in the allyl
bromide or the sulfoxide causing side reactions. The congested
nature of the’ dianion transition state could also result in a
lower than expected yield for the reaction, leading to a lower
incorporation of the allyl bromide electrophile with respect to
deuterium.

D. The synthesis of 1,2-O-isopropylidene-2-(R)-3-(R.S)-

trihydroxy-4-phenylsulfinyl pentane (16).

The alkylation of (11) was performed using the

conditions cited for the synthesis of the allyl derivative (15).
In this case the alkylating agent was methyl iodide. There was
a 70% recovery of crude product after work-up. The crude oil
was chromatographed on a silica gel gravity column, resulting
in two sets of fractions with an overall yield of 50% of desired
product (16). Nmr analysis of the oil suggested the formation
of the desired methyl adduct.

E. The synthesis of 1,2-O-isopropylidene-2-(R)-3-(R,S)-

5-(R.S)-tetrahydroxy-4-phenylsulfinyl-hexane (17).

Since the experiments to trap an incipient dianion

were moderately successful, an attempt was then made to add

a series of carbonyl electrophiles to the transiently generated
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dianion. The first carbonyl electrophile that was condensed
with (11) was the sterically unincumbered and reactive
acetaldehyde. As with the formation of (14), (15), (16). a
modified literature procedure was used in an attempt to form
(17).

Acetaldehyde is a relatively reactive carbonyl
electrophile. because of its small size. Although reactive,
acetaldehyde may not add to the dianion as readily as
deuterated acetone or alkyl halides. This may account for the
lower yields of this reaction in comparison to the former two
anion additions. Additionally, the acetaldehyde used for the
synthesis was not distilled prior to use. This also may account
for the low yields of desired (17) through the introduction of
impurities and moisture.

F. The attempted synthesis of 1,2-O-isopropylidene-2-
(R)-3-(R.S)-5-(R,S)-tetrahydroxy-4-phenylsulfinyl
octane (18).

The next aldehyde that was added to the sulfoxide
dianion was butyraldehyde. Butyraldehyde was chosen as an
electrophile because of its long carbon chain. Although
butyraldehyde was distilled and presumed to be anhydrous,
impurities and/or moisture in the butyraldehyde or the starting
sulfoxide could have played a role in a low yield for this

experiment.
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G. The attempted synthesis of 1,2-O-isopropylidene-2-

(R)-3-(R.S)-5-(R.S)-tetrahydroxy-4-phenylsulfinyl-
5-phenyl hexane (19).

Benzaldehyde was chosen as the next carbonyl
electrophile because of its availability, and its conjugated
system. Mechanistically, it is also of interest to observe
whether elimination or addition will predominate in this
reaction. The isolated product was found to be the desired

addition product (19).

H. The attempted synthesis of 1,2-O-isopropylidene-2-
(R)-3-(R.S)-hydroxy-4-phenylsulfinyl-5-hydroxy-5-
methyl-hexane (20).

The next series of experiments used ketones as the
electrophile in the reaction. Although carbonyl electrophiles in
the form of symmetric ketones would not result in the
generation of a new chiral center, it was of interest to see
whether or not ketones of this type were active enough to add
to the generated dianion and at what level desired product
formation would occur. Acetone was chosen as the first ketone
carbonyl electrophile because of its small size, and
availability. The reaction gave a mixture of the desired

acetone adduct and other UV(+) side-products.
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[. The attempted synthesis of 1.2-O-isopropylidene-2-

(R)-3-(R.,S)-hydroxy-4-phenylsulfinyl-5-hydroxy-5-
ethyl-heptane (21).

The next ketone used as an electrophile in the
dianion reaction was 3-pentanone. 3-Pentanone was chosen as
an electrophile because of its long, aliphatic chain. In general,
the two ketones used as electrophile candidates for addition to
the sulfoxide dianion, gave many side products, similar crude
product yields and poor desired product formation. Perhaps the
additional R group present in ketones as opposed to aldehydes
increases steric congestion and creates a softer carbonyl
carbon making it more incompatible with the dianion resulting
in less desired product formation.

PART 4 The attempted generation of the dianion of 1,2-
O-isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-
phenylsulfenyl butane (9) and investigational chemistry
of derivatives of (26) (Schemes 10, 11, 12, 13, 14,
15)

A. The attempted synthesis of 1,2-O-isopropylidene-2-
(R)-3-(R,S)-trihydroxy-4-deutero-4-phenylsulfenyl
butane (22).

Since there is little or no precedent for the

generation of dianions from beta-hydroxy methyl phenyl
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sulfides, an attempt was made to generate a dianion with our

substrate (9). and trap this dianion with deuterated methanol."

Scheme 10
OH OH
f/’\/S_Q /_/\/S < >
~ —_—> o o D
1% X
\
(9) (22)

The generation of the dianion was attemped as noted in part 3.
Deuterated methanol (2 eq) was added to individual reactions at
varying time intervals; 30 minutes, 1 hour, 1.5 hour, 2 hours, 3
hours, and 5 hours. In nearly each case, (3 hour and 5 hour
quenches were exceptions), the addition of deuterated methanol
turned each solution from pale yellow to near colorless. In
each case, however, no deuterium incorporation was evident via
nmr analysis of the alpha methylene proton resonances. This
result suggests that no dianion of (9) formed in the reaction.
In fact at the 3 hour and 5 hour time points, there was evidence
via nmr, that the solvent or the oxy-anion of substrate had
started to react with n-BuLi to form side products. Perhaps
this would explain the presence of color in these reaction after
deuterated acetone was added to the reaction as compared with

the other reactions. Several reaction temperatures were also
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ried while varying the times of deuterated acetone additions;
30 minutes/0 ©C. 1 hour/0 ©C, 30 minutes/-40 ©C, 1 hour/-40"
oC. All of the reactions resulted in no deuterium incorporation
and each showed evidence of degradation reactions. Anhydrous
diethyl ether was also tried as a solvent for these reaction
using the same criteria and time points as already cited for the
runs using THF. Similarly, no deuterium incorporation was
observed for these reactions. Solvent degradation products
were observed to form at the 2 hour time points for this series
of reactions. Alternate bases were tried to see if the dianion
of (9) could be generated using these as opposed to n-BuLi as
the base. Reactions using NaH, LDA, sec-BuLi, and t-BuLi all
resulted in no deuterium incorporation in the product. Finally,
a combination of literature procedures from other classes of
compounds were used in an attempt to generate the dianion of
(9). The conclusion reached as a result of these experiments
was that no dianion was generated from (9) possibly because of
destabilizing inductive effects and lack of a resonance
stabilized sulfur moiety alpha to the second generated anion

leading to low acidity of this proton (Figure 6).
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Figure 6
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B. The synthesis of 1,2-O-isopropylidene-2-(R)-3-(R.,S)-
trimethylsiloxy-4-phenylsulfenyl butane (23).

Since the desired dianion of (9) was not generated
by conventional or by following extensions of literature
procedure, it was of interest to observe whether an anion could
be generated alpha to the sulfur moiety when the hydroxide

group at position 2 was blocked with a protecting group.

Scheme 11
OH OSi(CH,),
Y ;
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\ N\
(9) (23)

The TMS (trimethylsilyl) group was chosen as a
potential protecting group because of its relative ease of

removal (using fluoride ion), and its stability in the presence of



mild to strong bases. Since the 2-hydroxy position was
diastereomeric, it was also of interest to see whether or not
derivitization at this position with TMS would result in a
favorable separation of the isomers via tlc and ultimately via
chromatography. Several attempts were made to separate the

isomers via tlc, however, all were unsuccessful.

C. The synthesis of 1,2-O-isopropylidene-2-(R)-3-(R.S)-
trimethylsiloxy-4-methyl-4-phenylsulfenyl butane (24).
The attempted generation of an anion alpha to the

sulfide group of (23) was conducted using anhydrous THF as the
solvent 2.2 equivalents of DMPU as co-solvent, and 1.8
equivalents of base (NaH, LDA, sec-BuLi, n-BuLi and t-BuLi) in
successive experiments. After 3 hours at -78 OC/N2,
2 equivalents of methyl iodide was added to the solutions and
stirred at -78 OC/N2 for 15 minutes. In each case, mini work-
up and tlc showed little or no reaction. This resulted in 80-
90% recovery of unreacted starting material (23) after work-
up. These experiments demonstrated that even with the
inductive factor eliminated by blocking the 2-hydroxy position,
the inherent low acidity of the alpha sulfide proton was still a
formidable barrier to the generation of an anion of (23).
Alternatively, the sterically congested protecting group did not

permit approach of the RLi reagent.
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D. The synthesis of 1,2-O-isopropylidene-2-(R)-3-(R.S)-
acetoxy-4-phenylsulfenyl butane (25).

As cited in part 4 example B, the attempt at
separating the silyl sulfide derivative epimers (23) by tlc
analysis and column chromatography failed. An attempt was
then made to form the acetate ester at the 3-hydroxyl in order

to separate the epimers.

Scheme 13
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(9) (25)

The acetylation of (9) was conducted in accordance with a
conventional procedure49 using dry pyridine as the solvent

with 1.5 equivalents of acetic anhydride as the acetylating

40
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agent. Chromatography enriched the mixtures to not greater
than 70%. |

E. The synthesis of 1.2-O-isopropylidene-2-(R)-3-0x0-4-
phenylsulfenyl butanone (26).

Since the elimination of the inductive factor did not
appear to raise the acidity of the alpha sulfide proton
substantially, it was of interest to see if one activated the
beta position, whether or not anion generation in the alpha
position would be observed. The oxidation of the 2-hydroxy to
the ketone would serve as a activator to the alpha position via
resonance stabilization of the incipient anion. The oxidation of
the 2 hydroxyl group was accomplished using the Corey-Kim
modification of Swern oxidation conditions (Scheme 14).40’41
It was observed that if the reaction temperature deviated much
higher than -10 9C, unidentified, more non-polar, elimination
products were formed in the reaction as well as the desired
ketone (26). Chromatography was immediately performed on
the crude yellow, smelly oil product resulting in 30% yield of
desired beta-keto sulfide (26). This oil was stored at -25 OC
under nitrogen when it was observed that the product
decomposed after sitting under nitrogen at room temperature
for several days. Because of its instability at room
temperature, data procurement was a problem for this

compound especially for micro analysis.
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Scheme 14
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F. The synthesis of 1,2-O-isopropylidene-2-(R)-3-0x0-4-
methyl-4-phenylsulfenyl butanone (27).
The attempted generation of the anion of (26) was

performed using the same procedure as cited for part 4,
example C. This result seemed peculiar because in other
similar substrates, NaH seemed to able a strong enough base to
abstract a proton from a carbon alpha to a ketone.43 An
example of this reaction can be illustrated by the aldol
condensation reaction. With the reaction of NaH and compound
(26), we were able to trap the oxy-acetate of the enol ether
using acetic anhydride (Figure 7). This result suggested that
the anion of (26) was indeed generated. However, some other
factors must have been operating in the system to prevent

reaction with an electrophile.
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G. The synthesis of 1.2-O-isopropylidene-2-(R)-3-0x0-4-
phenylsulfonyl-5-(R,S)-hydroxy hexanone (28).
Carbonyl additions also were attempted on the

beta-keto sulfide (26) derivative with the intent of gaining a
better understanding as to the character of the anion in
solution with the ultimate hope of determining what conditions
would be suitable for the generation of a dianion from (11).

The first attempted carbonyl electrophile addition was
acetaldehyde. Hplc analysis of the purified mixture showed the
isomers to be present in a 60/40 ratio suggesting some
diastereofacial selectivity occurred in this reaction. The
presence of unreacted starting material in this product could
suggest that the system was not anhydrous or the titer of the
t-BuLi was lower than anticipated. There was no observed
trapping of the enol form of the beta-keto sulfide using
acetaldehyde. Another experiment was attempted using 1.3
equivalents of acetic anhydride, as a quencher, in hopes of
trapping the enol as the acetate. No acetylated ene sulfide was

isolated from this experiment.



H. The synthesis of 1,2-O-isopropylidene-2-(R)-3-0x0-4-
phenylsulfonyl-5-(R.S)-hydroxy-5-phenyl pentanone (29).

The next electrophile that was added to (26) was

penzaldehyde. The reaction was quenched in two fashions, one-

half with 10%NH4Cl/ether followed by washes with 5% NaHCO3

and brine and the other half with 1.3 equivalents of acetic

anhydride.
Scheme 15
0 0
S—< > /_/K(S < >
- - > - R
p%¢ X
\ \
(26) (27):R=methyl

(28):R=CH(OH)CH3
(29):R=CH(OH)Ph
(30);R=CH(OH)(CH3)2

From the aqueous quench the resulting oil was purified to
afford eliminated benzaldehyde adduct (29a) (Figure 8) as
product in a product yield of 15%. This result suggested that
extended conjugation was a stabilizing factor for the

benzaldehyde adduct.
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Figure 8

(29a)

Trapped acetoxy enol of beta-keto sulfide (26) (Figure 7) was
observed in the acetic anhydride quenched experiment.
I.  The attempted synthesis of 1,2-O-isopropylidene-2-
(R)-3-0x0-4-phenylsulfonyl-5-hydroxy-5-methyl
hexanone (30).

Acetone was chosen as the ketone carbonyl
candidate because of its small size. The reaction was quenched
in two ways, one-half with 10% NH4Cl/ether followed by
washes with 5% NaHCO3 and brine and the other half with 1.3
equivalents of acetic anhydride. After evaporation to a near
colorless oil, the crude product yield was found to contain 50%
of starting material. From both quenches the resulting oils
were purified giving eliminated acetone adduct from the 10%
NH4Cl/ether quench and trapped enol beta-keto sulfide from the
acetic anhydride quench. These findings suggest that a
substantial amount of the enol form of the beta-keto sulfide is

present in solution and is available for condensation with the
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electrophile. acetone. However a large amount of unreacted
starting material was recovered with little or no desired (30)
found in the reaction. This also suggests that resonance
stabilization and extended conjugation are powerful driving
forces in reaction dealing with the formation of anions alpha to
a beta-keto sulfide. In terms of addressing the dianion
formation problem of (9), these reactions show that the
inductive effect plays a role in destabilizing the generation of
a second anion alpha to an oxy-anion and methyl phenyl sulfide.
Most importantly, these reactions show that resonance
stabilization of the second generated anion is a powerful and
necessary requirement for dianion formation in the series of

compounds where (9) is the parent.

Part 5  The condensation reactions of prochiral Michael
acceptors with methyl phenylsulfinyl anion and attempted
generation of a dianion from 2-methyl-3-(R,S)-hydroxy-
4-phenylsulfinyl-1-butene (32) (Schemes 16, 17,

18, 19)

A. The synthesis of 3-ene-3-(R.S)-hydroxy-4-
phenylsulfinyl-1-butene (31).
The stereoselective generation of chiral centers has
been used extensively in literature#4.43 as a strategy for

designing a chiral molecule without having to rely on using



expensive chiral building blocks and dealing with unstable
reactive intermediates such as 1,2-O-isopropylidene-2-(R)-
glyceraldehyde (3). Besides the former two problems
associated with starting from a chiral building block
framework, we found that protecting groups can sometimes be
lost during synthetic manipulations exposing the chiral centers
to attack by bases and other reactants. The other problem we
encountered was the toxicity issue. We had to use large
amounts of lead tetracetate to generate required amounts of
1,2-O-isopropylidene-2-(R)-glyceraldehyde (3) due to the
instability of (3) and the poor yields from the synthesis. As a
result of these problems, it was of interest to investigate if
other prochiral derivatives of the beta-hydroxy sulfoxide (11),
could be formed without having to deal with the isopropylidene
protecting group and conventional prochiral building blocks.
The first attempt at the construction of prochiral
methyl phenyl sulfoxide was performed using a traditional
Michael acceptor, acrolein, with the hope that 1.2 addition

would occur predominantly over 1.4 addition (Figure 9).

47



48

Figure 9
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As Scheme 16 illustrates, the reaction occurred in a 1,2

fashion to give (31) in 45% yield.

Scheme 16
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(31)

B. The synthesis of 2-methyl-3-(R,S)-hydroxy-4-
phenylsulfinyl-1-butene (32).
Since the first reaction with acrolein was

successful in giving the desired 1,2 adduct, it was of interest
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to extend this synthesis to other Michael acceptors to create
adducts with varying degrees of substitution at the vinyl bond.:
Methacrolein was tried as the next Michael electrophile
because of its substitution pattern. The reaction is illustrated

in Figure 17,

Scheme 17
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C. The synthesis of 1-phenyl-trans-2-methyl-(R,S)-3-
hydroxy-4-phenylsulfinyl-1-butene (33).

The next Michael acceptor adduct that was prepared
was l-benzyl-trans-2-methyl-(R,S)-3-hydroxy-4-
phenylsulfinyl-1-butene (33) using a-methyl-trans-
cinnamaldehyde (Scheme 18). In general, all three of the
preparations of prochiral Michael adducts gave purer
compounds, higher yields of products with shorter reaction

times than their chiral building block brothers (11) and (12).
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Scheme 18
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The compounds were stable at room temperature in vacuo for
several weeks without observing evidence of decomposition or
oxidation.
D. The synthesis of 2-methyl-3-(R,S)-hydroxy-4-
phenylsulfinyl-1,6-hexadiene (34).

Finally, since we wished to extend the use of these
adducts to dianion chemistry, the preparation of the dianion of
(32) was attempted using the same procedure used for the
trapping of the dianion of (11) with allyl bromide. The low
yield of the reaction could be due to moisture in the system,
impurities in the allyl bromide or the sulfoxide causing side
reactions. However, this experiment does demonstrate that
dianion chemistry can be successfully extended to this achiral
system. One can then propose to stereoselectively hydroxylate
the double bond44.45.46 in order to form the structure

necessary to make unnatural sugars (Scheme 19).
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Part 6. The assignment of sterecochemistry about the
hydroxyl group in 1,2-O-isopropylidene-2-(R)-3-(R.S)-
trihydroxy-4-phenylsulfonyl butane (12) and 1,2-O-
isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-
phenylsulfenyl butane (9) (Schemes 20, 21, 22)

The preparation of intermediates (9) and (12)
generated a chiral center at position 2 while a similar
preparation of (11) gave 2 chiral centers at position 1, 2 and at
the sulfoxide. Of these three compounds, (9) or (12) seemed
better candidates for the assignment of stereochemistry at
position 2 because the absence of the additional chiral center
of the sulfoxide simplifies the proton spectrum and enhances
the possibility of the separation of the epimers using
conventional means. In order to resolve the epimers, several

strategies were attempted:

(1) the formation of derivatives at position 2 and
the separation of diastereomers using
chromatography,

51



(2) preparative hplc of the parent molecules
(9) and (12).

The preparative hplc was used to follow the
cleavage of the sulfur moieties to form the protected aliphatic
alcohols (39) and (40). The optical rotations of the alcohols
were then compared with with those cited in the literature4”’
values. Out of the intermediates (9) and (12), the sulfide (9)

cleaved the most cleanly to liberate the protected alcohol.

A. The separation of 1,2-O-isopropylidene-2-(R)-3-(S)-
trihydroxy-4-phenyl sulfonyl butane (35) from 1.2-O-
isopropylidene-2-(R)-3-(R)-trihydroxy-4-phenyl sulfonyl
butane (36) using preparative HPLC.

The yields of purified compound from a supposedly
pure mixture were suprizingly low. This result could have been
due to non-organic salts being present in the sample or
compound (desired compound or salts) being retained on the
column. Upon standing at room temperature, both samples
solidified to give white crystalline solids. The nmr spectra
showed the samples to be 97% pure. Stereochemistry was
determined by oxidizing (37) using the conditions cited in the
experimental section, example 7. The proton spectra obtained
from this sample was identical to that of (35). One of the

sulfonyl epimers, (35), was found to have an optical rotation of

[a]25D -5.040 (c=1.3, MeOH). An optical rotation was not run on
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epimer (36) due to the small quantity of material obtained

after work-up.

Scheme 20

Scheme 21



B. The separation of 1.2-O-isopropylidene-2-(R)-3-(R)-
trihydroxy-4-phenylsulfenyl butane (37) from 1.,2-O-
isopropylidene-2-(R)-3-(S)-trihydroxy-4-phenylisulfenyl
butane (38) using preparative HPLC.

Optical rotations were performed using methanol as
the solvent. Epimer (37) was found to have an optical rotation
of [0]29D-46.80 (c=1.19.MeOH) (Scheme 21).

C. The synthesis of 1.2-O-isopropylidene-2-(R)-3-(S)-
trihydroxy butane (39) and 1,2-O-isopropylidene-2-(R)-
3-(R)-trihydroxy butane (40).

The respective sulfide epimers (37) and (38) were
cleaved to the protected aliphatic compounds (39) and (40)
(Scheme 22). Optical rotations were performed on both

samples and compared with the literature values. For the

derivative from (37), the rotation was [a]25D =33.90 (c=0.73,
CeHg). [a]25pn=33.80 (c=1.6, CgHg) (lity47: the derivative from
(38) was found to be [0]23p =2.90 (c=1.14, CgHg), [a]2dp =5.90
(c=1.4.C6Hp) (lit).47 The rotation for (39) probably does not
match up perfectly because of trace amounts of Raney nickel
residue of other benzyl impurities in the system that were
difficult to remove due to the water soluble nature of the
cleavage products of (37) and (38). Although the rotations of
the cleavage products of (37) and (38) do not precisely match

up with the literature values, the order of magnitude of the
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values suggest the following structure assignments; (37) gives

(39) and (38) gives (40).

Scheme 22
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F—/\/S‘Q/) Raney nickel /__/\
o o —> 0 0
N \
\ (37) A
OH Raney nickel ?H
Ay S
0o o o _°

\ 38
/\ 3% /\ (40)

PART 7. Isopropylidene migration studies of 1,2-O-

isopropylidene-2-(R)-3-(R.S)-trihydroxy-4-

phenylsulfinyl butane (11) and attempted sugar formation

usingdeprotected and derivitised 1,2-O-isopropylidene-2-

(R)-3-(R,S)-5-(R,S) tetrahydroxy-4-phenylsulfinyl-

octane (18) (Schemes 23, 24, 25)

A. The attempted formation of 2,3-O-isopropylidene-2-

(R)-3-(R.S)-4-phenylsulfinyl butan-1-ol (41)

Since we were successful in preparing the

necessary building blocks required for the synthesis of
unnatural sugars, it was of interest to see whether or not

protection or deprotection steps would be necessary prior to
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the final oxidation/cyclization steps. One strategy utilized
was that of acetonide migration.50~ 5152 As a pilot attempt, -
(11) was used as the substrate for the reaction (Scheme 23).
There were several literature procedures to chose from but the
most reasonable for our purposes was that described by
williamsd2 where the substrate was dissolved in methanol in
the presence of a catalytic amount of sulfuric acid. After
subjecting (11) to these conditions, hplc analysis of the
resulting product mixture clearly showed new peaks had formed

at the expense of substrate peaks.

Scheme 23

/

OH 0 Q/\O o
g . Aue
oo HO
<
(11) (41)

The nmr spectra of the crude product clearly showed shifts in
the isopropylidene methyl peaks. However, the reaction
appeared to be incomplete leading to the conclusion that the
1.2 isopropylidene must be the more thermodynamically stable

product53 or the barrier to migration was too high.
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B. The attempted synthesis of 1.2-O-isopropylidene-2-
(R)-3-(R,S)-5-(R.S)-diacetoxy-4-phenylsulfinyl-
octane (42).

An acetylation reaction of the buytraldehyde
sulfoxide adduct (18) was conducted using dry pyridine as the
solvent and using 2.1 equivalents of acetic anhydride as the
acetylating agent. After purification and analysis by nmr and
ms, it was revealed that only 1 hydroxyl was converted to the
acetate (Figure 11, Scheme 24). The results of the
experiment show that some acetylation proceeded selectively
but to derivitise both hydroxyls would require more forceful
conditions.

Figure 10

X= Acetate or H
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Scheme 24
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C. The attempted synthesis of I-hydroxy-2-(R)-hydroxy-
3-(R.S)-5-(R,S)-tetrahydroxy-4-phenylsulfinyl-octane
(43).

The deprotection of (18) was conducted using a
common literature procedure48 for the deacetonidation of
alcohols (Scheme 25). Nmr analysis revealed that the desired
(43) liberated pro-sugar adduct had formed in the reaction.

D. The attempted synthesis of 1-oxo-2-(R)-hydroxy-3-
(R.S)-5-(R,S)-trihydroxy-4-phenylsulfinyl-octanal
(44).

The substrate used for this reaction possessed 4
hydroxyls; 2 primary and 2 secondary. The oxidation of (43)
was performed on a small scale (15mg) in the hopes that some
determination could be made as to oxidation selectively and

propensity to form cyclization products.



Scheme 25
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The oxidation was carried out using the Corey-Kim modifiation
of Swern oxidation conditions.40  After work-up, the analysis
of the 10 mg of isolated product oil proved to be inconclusive.
Further experimentation to produce larger and purer quanities
of intermediate (3), in particular, could lead to success in

producing the desired chiral, pro-sugar analogs.



CHAPTER V

EXPERIMENTAL

Unless otherwise noted, materials were obtained
from commercial suppliers and used without further
purification. Melting points were taken in a Thomas-Hoover
capillary apparatus and were uncorrected. Elemental analyses
were obtained for some of the new compounds reported.
Elemental analyses were performed by the Abbott analytical
department. Ir, nmr, and mass spectra were recorded by the
Abbott structural chemistry department. E Merck silica gel
(70-230 mesh) obtained from VWR Scientific was used for
column chromatography. Preparative chromatography was
performed on selected examples using a 20x20 60F-254 Merck
preparative plate in accordance with the following standard
procedure: the sample was loaded onto the plate using 0.5-1.0
mL methylene chloride and the dried plate was immersed in 100
mL of a mobile phase, the plate was run to 1 cm from the
origin, thoroughly dried and the UV(+) bands were carefully
extracted using a single edged razor blade. The silica was
crushed with a motor and pestle and immersed in a 50/50

mixture of methanol/ethyl acetate for 1 h. gravity filtered and
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concentrated. Preparative HPLCs were run using YMS semi-
preparative (C18: 20x250 mm) columns.

Nmr spectra were determined on a General Electric
GN-300 spectrometer operating at 300.1 MHz. Chemical shifts
were expressed in ppm downfield from internal
tetramethylsilane.  Significant lH Nmr data were tabulated in
the order: multiplicity (s, singlet; d, doublet: t, triplet; q,
quartet;. m, multiplet; b, broad, ex. exchangeable with D20),
number of protons, designation and coupling constants where
applicable. Most of the IH Nmr data were run on diastereomeric
mixtures of compounds. As a result, the IH Nmr data collected
was fairly complex and the integration of protons was
estimated based upon these mixtures. Some selected
compounds were analyzed on a General Electric GN-500
spectrometer operating at 500.1 MHz. 13¢ nmr spectra were
all proton-decoupled and carbons were assigned using DEPT
experiments. The IR spectra were recorded on a Perkin-Elmer
Model 710A infrared spectrometer. The carbon tetrachloride
used as a solvent in the IR analysis contained less than 0.03%
H72O while the chloroform used contained 0.5-1 % ethanol. The
IR spectra run in 0.15% carbon tetrachloride were also run with
3mm cells. Mass spectra were obtained with a Hewlett-
Packard 5985A mass spectrometer or a Kratos Ms-50 with El

source (70eV).
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All solvents and reagents were purified when
necessary according to standard literature methods. Air- or
water-sensitive reactions were conducted under nitrogen
atmosphere utilizing standard techniques. All substrates were
dried for 48 h in vacuo over P20S5.

As with any chemical experimentation, the utmost
care should be taken when working with known sensitizers,
mutagens and teratogens such as lead tetracetate, aceloin,
acetaldehyde, chlorinated hydrocarbons and toluene. Working in
a ventilated hood while wearing gloves and a lab coat is highly

recommended.

PART A. The synthesis of compounds
1. 1.2,5.6-bis-O-isopropylidene-D-mannitol (2).
D-mannitol 5.46 g; (30 mM Aldrich) was added to an

oven dried, round bottom flask containing 9 mL of rapidly
stirring DMSO. p-Toluene sulfonic acid (0.03 g; 0.157 mM) was
added to the white slurry and the mixture was stirred at RT
under nitrogen. 2,2-Dimethoxypropane 9.2 mL; (2.49 equiv) was
added to the slurry via syringe. After 45 min the slurry turned
to a clear solution and stirring was continued at RT for 18 h.
The reaction was judged complete via tlc analysis and the clear
solution was poured into a separatory funnel containing 200 mL
ethyl acetate and 150 mL of 5% NaHCO3. A white precipitate

formed in the aqueous phase. The aqueous phase was washed
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with 3x100 mL portions of ethyl acetate and the organic
washes were combined, extracted with brine and dried with
anhydrous Na2SO4. The organic phase was gravity filtered and
the solvent was evaporated in vacuo to give a dense, white
solid. The residue was crystallized with the minimum amount
of boiling hexane and cooled at RT to give 5.1 g of fluffy white
crystals. Procedure yields 95% after crystallization. Rf=0.31
(toluene:methanol, 10:2 mL). m.p. 1199 C; [a]25D +1.60 (c=1,
MeOH) 1it16 [a]25p +1.90 (c= 2, MeOH). 'H-NMR (CD30D): & 4.25-
4.15 (m 4H), 3.95 (m, 2H), 3.65 (m, 2H), 1.35 (s, 6H). 1.33 (s,
6H). 13C-NMR (CD30D): 5 109, 76, 71, 67(CH20), 26. 25. IR
(KBr):  3450-3300, 3000-2950, 1390-1380(d), 1260. 1220,
1185 ecm-l. Mass spectrum (DCI/NH3): m/e 280 (m+17), 263
(m+1). Anal. Calcd for C12H2206(262.30): 5495 %C. 8.45 %H,;

Found: 55.16 %C, 8.59 %H.

2. 2.3-O-isopropylidene-2-(R)-glyceraldehyde (3).

To an oven dried, 500 mL round bottom flask was
added dried 4 angstrom molecular sieves followed by 100 mL of
dry methylene chloride. Lead tetraacetate (3.8 g; 8.5 mM; 1.12
equiv.) was added to the solvent and the yellow-orange mixture
was stirred at RT under nitrogen. The substrate (2 g; 7.6 mM)
was dissolved in 100 mL methylene chloride and added
portionwise to the lead tetracetate mixture. After 15 min, the

reaction progress was checked with KI paper. A negative
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response was interpreted as complete reaction. The yellow-
orange slurry was filtered in vacuo through celite giving a
clear, light-yellow solution. The filtrate was stirred rapidly
with a magnetic stirrer while 50 g of K2CO3 was added
portionwise to the solution. The mixture was stirred for 0.5 h
at RT. The yellow solution turned deep, rusty brown in color
and a brown precipitate formed in the solution. Note: this
phenomenon only occurred roughly 50% of the time, otherwise,
the solution remained colorless. The slurry was suction
filtered through celite and concentrated down to a yellow oil
that contained some methylene chloride residue. The residue
was fractionally distilled between 139 OC and 143 OC to give a
colorless liquid. The aldehyde was stored at -25 OC for several
weeks without observed significant decomposition or
racemization. 35-40% yield, Rf=0.34 (toluene:methanol, 10:2
mL). 1H-NMR (CDCI3): & 9.8 (s, 1H), 4.2 (m, 1H), 4.07 (m, 2-H),
1.3 (s, 3H), 1.2 (s, 3H), I3C-NMR (CDCl13): 3 210, 115, 83. 77,
69. 29, 25. IR (0.15%. CCl4, 3mm cell): 3500-3450, 2950-
2800. 1735 cm-l. Mass spectrum (DCI/NH3): m/e 148 (m+17),
131 (m+1). Anal. Calcd for CgH1003 (130): %C 55.37, %H 7.74;

Found %C 55.38, %H 7.67.

3. 1.2-isopropylidene L-ascorbic acid (5).
L-ascorbic acid (10 g: 56.7 mM) and 40 mL

anhydrous acetone were combined in an oven dried 100 mL
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flask. This slurry was stirred at RT for 5-10 min. Acetyl
chloride (1 mL; 14 mM) was added to the slurry and the mixture
was stirred at RT. At 15 min, the reaction slurry began to form
a clear solution. In 1 h, the clear solution began to reform a
flocculant, white slurry. After 18 h. the reaction was analyzed
by tlc and was shown to be complete. The slurry was suction
filtered and the residue crystals were dried in vacuo. 98%
yield Rf=0.1 (toluene:methanol, 10:2 mL). m.p. 214-218 (dec.)®
C; 1it21 217-2220 C : [0]25p -47.700 (c=1.35. MeOH). 1H-NMR
(CD30D): & 4.65-3.9(m, 6H), 1.35 (m, 6H). 13C-NMR (CD30D): 3
173, 154, 120, 111, 76, 75, 67(CH20), 27, 26. IR (KBr): 3300,
3000, 1720. 1630, 1330, 1170 cm-l. Mass spectrum
(DCI/NH3): m/e 234 (m+17), 217 (m+1). Anal. Caled CgH1206¢

(216.19): %C 50.00. %H 5.59: Found %C 49.98, %H 5.57.

4.  1,2-isopropylidene-L-gulonic-y-lactone (8).

L-gulonic-y-lactone (0.221 g: 1.24 mM) was
dissolved in DMF and stirred at RT. p-Toluene sulfonic acid (1.8
mg) was added to the substrate solution. under nitrogen, and
the reaction mixture was cooled to 10 ©C with an ice/water
bath. 2-Methoxypropane (154 mL: 1.61 mM) was added dropwise
to the substrate solution and this mixture was stirred at 10 OC
for 15 min. The cooling bath was removed and the mixture was
stired at RT for 24 h. After 24 h, tlc analysis showed

complete reaction to a more non-polar product. The reaction



was quenched with 0.28 g anhydrous NapCO3 and the slurry was
stirred for 2 h, suction filtered and evaporated to a yellow oil.
The oil was transferred to a round bottom flask and placed
under reduced pressure for 24 h to give a pale, orange solid that
was suspended in 3 mL acetonitrile and concentrated to a solid.
The solid was crystallized using 0.5 mL hot toluene. The
white-orange plates were washed repeatedly with
hexane:ethanol (9:1) and dried to give 98.6 mg of the desired
compound. 50% yield Rf=0.14 (toluene:methanol, 10:2 mL). m.p.
167-170 °C, 167-168 °oC (lit)22 [«]25p +38.30 (c=0.7. MeOH)
[0]25p +39.00 (c=1, MeOH).(lit)22. 1H-NMR (CDCI3): 5 4.5-3.6(m,
4H), 4.2 (m. 1H), 3.85 (m, 1H), 1.35 (s, 3H), 1.3 (s, 3H). 13C-NMR
(CDCI3): d 177, 111, 83, 76, 71, 70, 65 (CH20), 26, 25. IR (KBr):
3518. 3459, 1770, 1760 cm-l. Mass spectrum. (DCI/NH3): 236
(m+17), m/e 219 (m+1). Anal. Calc for CgH1406(218.20): %C

49.54. %H 6.47; Found %C 49.50, %H 6.52.

5. 1,2-O-isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-
phenylsulfenyl butane (9).

Thioanisole (3.8 mL; 32.4 mM; 1.2 equiv.) was added
to a 500 mL round bottom flask containing 38.5 mL anhydrous
THF and dried 4 angstrom molecular sieves under N2. The
thioanisole solution was cooled to -10 ©9C with an acetonel/ice
bath and (11.3 mL; 32.4 mM: 1.2 equiv.) of n-BuLi (2.5 M in

hexane) was added portionwise. The resulting light yellow
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anion solution was stirred at -10 ©C for 30 min prior to the
addition of aldehyde (3). After 0.5 h, aldehyde (3) (3.5 g: 26.9
mM) was added to the anion solution whereupon the color of the
solution changed from a light yellow color to colorless and
finally to a brighter yellow color over the course of 10 min.
The cooling bath was removed and the reaction mixture was
stirred at RT for 15 min. Mini-work-up and tlc indicated that
the reaction was near 85% complete resulting in 3-4 more non-
polar, UV(+) products. The yellow solution was poured into a
separatory funnel containing 150 mL of 10% NH4Cl. The
aqueous mixture was washed with 2x50 mL portions of ether.
The ether layers were combined and washed with 100 mL of 5%

NaHCO3 followed by 100 mL brine. The ether layer was dried
over anhydrous Na2SOg4, gravity filtered and concentrated in
vacuo to give 4 g of a smelly, yellow oil. The crude oil was
purified via chromatography on a silica gel gravity column
(solvent system composed of CHCI3:ethyl acetate, 40:1 mL)
affording 1.87 g of clear, odorless oil of (9). Procedure
afforded a 28% yield of an epimeric mixture of the desired
products after chromatography.

Rf=0.48 (toluene:methanol, 10:2 mL). 1H-NMR (CDCI3): b 7.4-
7.18 (m, 10H, aromatic), 4.25 (m, 1H), 4.05 (m, 1H), 3.8-4.1 (m,
3H), 3.85 (m, 1H), 3.65 (m, 2H), 3.35 (m, 1H), 3.09 (m, 2H), 2.9
(m, 1H). 2.55 (m, 1H) 2.53 (m, 1H) 1.35-1.45 (s, 12H). 13C-NMR
(CDCl13): d 129-126, 109, 77. 70, 66(CH20), 37(CH?2S), 26, 25.



IR (0.15%, CCl4, 3mm cell): 3560, 3080-3060(s), 3000-2880
em-l. Mass spectrum (DCI/NH3): m/e 272 (m+17), 255 (m+1). "
197. 162. Anal. Calcd for C13H1803S (254.346): 61.39 %C.
7.13 %H: Found 61.11 %C, 6.94 %H

6. 1,2-O-isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-
phenylsulfinyl butane (11).
Methyl phenyl sulfoxide (3.23 g; 23 mM; 1.2 equiv.)

was added to a 500 mL round bottom flask containing 31.5 mL
anhydrous THF and dried 4 angstrom molecular sieves under N2,
The sulfoxide solution was cooled to -10 ©C with an
acetone/ice bath and 9.23 mL (23 mM; 1.2 equiv.) of 2.5 M n-
BuLi (in hexane) was added portionwise to the sulfoxide
solution. The resulting light yellow anion solution was stirred
at -10 OC for 15 min. Aldehyde (3) (2.5 g; 19.2 mM) was added
to the anion solution whereupon the color of the solution
changed from a light yellow color to colorless and finally to a
brighter yellow color over the course of 10 min. The cooling
bath was removed and the reaction mixture was stirred at RT
for 10 min. Mini-work-up and tlc indicated that the reaction
was near 95% complete resulting in 3-4 more non-polar, UV(+)
products. The yellow solution was poured into a separatory
funnel containing 150 mL of 10% NH4Cl. The quenched reaction
mixture was washed with 2x50 mL portions of ether. The ether

layers were combined. washed with 100 mL of 5% NaHCO3, and
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100 mL brine. The ether layer was dried over anhydrous
Na2S04, gravity filtered and concentrated down in vacuo to
give 3.5 g of a smelly, off-white oil. The crude oil was purified
via chromatography on a silica gel gravity column

(toluene:ethyl acetate, 16:1 mL). After 1 Liter of 10 mL
fractions, the solvent system was changed to ethyl acetate.
The procedure afforded 12% yield of an epimeric mixture of
desired product (11). Rf=0.27 (ethyl acetate). IH-NMR (CDC13):
d 7.7-1.5 (m, 5H, aromatic), 4.4-3.9 (m, 4H). 3.1-3.25 (m, 1H),
2.85-3.0 (m, 1H). 1.45 (s, 3H), 132 (s, 3H). 1.27 (s, 3H), 1.1 (s,
3H). 13C-NMR (CDCI3): & 132-124, 109. 77, 70, 66(CH20),
60(CH2S0), 26, 25. IR (Film): 3450-3300, 3000-2900,
1420(s). 1380-1390, 1260, 1210, 1060. 850(s), 750(s), 690(s)
cm-l. Mass spectrum (DCI/NH3): m/e 288 (m+17), 271 (m+1),
255. 197, 158. Anal. Calc for C13H1804S (270.346): %C 57.76,

%H 6.71: Found %C 57.42, %H 6.59.

7. 1,2-O-isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-
phenylsulfonyl butane (12).
Thioether (9) was dried for 48 h in vacuo over P20s.
Compound (9) (2.2 g; 8.66 mM; 1.0 equiv.) was added to a 500 mL
round bottom flask containing 105 mL anhydrous methylene
chloride, dried 4 angstrom molecular sieves and crushed K2CO3
(1.43 g: 10.3 mM; 1.2 equiv.). Next, m-CPBA (3.29 g: 17.3 mM; 2

equiv.) was added to the solution. The cloudy. white reaction
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mixture was stirred at RT under N2 for 20 min and was
analyzed by tlc and the reaction was found to be 85% complete
giving 2-3 more polar, UV(+) products. The white solution was
poured into a separatory funnel containing 200 mL of 5%
NaHCO3. The solution was carefully swirled and vented. The
quenched reaction mixture was backwashed with 2x50 mL
portions of methylene chloride. The methylene chloride layers
were combined and washed with 200 mL brine, dried over
anhydrous Na2SO4, filtered and concentrated in vacuo to give
1.75 g of a white solid. The crude solid was purified via
chromatography on a silica gel gravity column (CHCI3:ethyl
acetate, 9:1 mL). The procedure afforded 39% yield of an
epimeric mixture of desired product (12). Characterization
(See 7b).

7b. 1,2-O-isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-

phenylsulfonyl butane (12).

Sulfoxide (11) was dried for 48 h in vacuo over

P205, Compound (11) (3.97 g: 1.47 mM: 1.0 equiv.) was added to
a 100 mL round bottom flask containing 16 mL anhydrous
methylene chloride dried 4 angstrom molecular sieves and
crushed K2CO3 (0.121 g; 0.88 mM; 0.6 equiv.). Next, m-CPBA
0.253 g: (1.47 mM; 1 equiv.) was added to the solution. The
cloudy, white reaction mixture was stirred at RT under N2 for
20 min and was analyzed by tlc and the reaction was found to

be 25% complete. An additional 0.1 g of m-CPBA was added to
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the reaction mixture in an effort to advance the reaction to
completion. The reaction was checked via tlc at 15 min after
the last addition of m-CPBA and was found to be around 90%
complete to give 2-3 more polar, UV(+) products. The white
solution was poured into a separatory funnel containing 100 mL
of 5% NaHCO3. The quenched reaction mixture was washed with
2x25 mL portions of methylene chloride. The methylene
chloride layers were combined and were then washed with 100
mL brine, dried over anhydrous Na2SOg4, filtered and
concentrated in vacuo to give 0.34 g of a white solid. The crude
solid was purified via chromatography on a silica gel gravity
column (CHCI3:ethyl acetate, 9:1 mL). The procedure afforded
44% vyield of an epimeric mixture of desired product (12).
Rf=0.44 (CHCI3:ethyl acetate, 9:1 mL). 1H-NMR (CDCI3): & 7.95-
7.55 (m, 10H, aromatic), 4.1-3.9 (m, 4H), 3.49-3.6 (m, 2H), 3.2
(m, 2H). 1.27 (s, 3H), 1.1 (s, 3H). 13C-NMR (CDCI3): & 139-129,
109, 76, 67, 66(CH20), S9(CH2S02), 26, 25. IR (Film): 3300-
3450, 2900-3000, 1420(s), 1380-1390(s), 1260, 1210, 1060,
850(s), 750(s), 690(s) cm-l. Mass spectrum (DCI/NH3): m/e
304 (m+17), 287(m+1). 218. Anal. Caled for C13H1805S
(286.345): %C 54.53, %H 6.34; Found %C 54.14, %H 6.28.

General Procedure for Beta-Hydroxy Sulfone

Dianion Generation For Alk;ﬂ Halides.

Sulfone (12) (59.7 mg:; 0.21 mM, 1.0 equiv.) was

added to a 10 mL round bottom flask containing 1.3 mL
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anhydrous THF and dried 4 angstrom molecular sieves under N2.
The sulfone solution was cooled to -78 OC with an acetone/dry
ice bath. n-BuLi (2.5 M in hexane) (0.183 mL; 0.46 mM: 2.2
equiv.) was added portionwise to the sulfone solution. DMPU
(55 microliters; 0.46 mM: 2.2 equiv.) was added dropwise to the
basic solution. The resulting light yellow-green dianion
solution was stirred at -78 ©C for 30 min prior to the addition
of electrophile. After 30 min, the electrophile (1.5 equiv.) was
added to the dianion solution whereupon the color of the
solution changed from a light yellow-green color to colorless
and finally to a brighter yellow color over the course of 30 min.
The cooling bath was removed and the reaction mixture was
stirred at RT for 1.5 h. The yellow solution was poured into a
separatory funnel containing 10 mL of 10% NH4Cl. The
quenched reaction mixture was washed with 2x10 mL portions
of ether. The ether layers were combined and washed with 10
mL of 5% NaHCO3 followed by 10 mL brine. The ether layer was
dried over anhydrous Na2SO4, filtered and concentrated in
vacuo to give a crude oil. The crude oil was purified via

preparative or column chromatography.

8. 1,2-O-isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-
phenylsulfonyl-5-heptene (13). Reaction with allyl

bromide.
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40 mg of crude (13) was purified using a
preparative chromatography with the procedure affording 8.2
mg of an epimeric mixture of desired product (13). 15% yield.
R¢=0.49 (ethyl acetate). IH-NMR (CDCI3): d 7.9-7.5 (m. SH,
aromatic), 5.85-5.65 (m, 2H), 5.2-5.0 (m, 4H). 4.61-4.55 (m,
1H). 3.9 (m, 1H), 3.7 (m. 1H), 3.3 (m. 1H), 3.15 (m, 1H), 2.95 (m,
1H), 2.7-2.6 (m, 2H), 1.45-1.35 (s, 6H). IR (Film): 3600-3500.
3000-2950, 1640-1660(s), 1445(s). 1380-1370(s), 1170,
1060, 850(s). 750(s), 690(s) cm-l.  Mass spectrum (DCI/NH3):
m/e 344 (m+17), 326 (m+1). Anal. Calcd for C1gH2205S

(326.410): %C 58.88, %H 6.79; Found %C 59.20, %H 6.81.

General Method for Beta-Hydroxy Methyl

Phenylsulfinyl Dianion Generation For Alkyl

Halides and Deuterated Electrophiles.

Sulfoxide (11) (0.215 g; 0.797 mM;1.0 equiv.) was

added to an oven dried, 10 mL round bottom flask containing 2.5
mL anhydrous THF and dried 4 angstrom molecular sieves under
N2. The sulfoxide solution was cooled to -78 OC with an
acetone/dry ice bath. n-BuLi (2.5 M in hexane) (0.7 mL; 1.75
mM: 2.2 equiv.) was added portionwise to the sulfone solution
followed by DMPU (2.5 mL; 1.75 mM; 2.2 equiv.). The resulting
light yellow-green dianion solution was stirred at -78 OC for
30 min prior to the addition of electrophile. After 30 min, the

electrophile(1.19 mM; 1.5 equiv.) was added to the dianion
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solution whereupon the color of the solution changed from a
light yellow-green color to colorless and finally to a brighter
yellow color over the course of 30 min. The cooling bath was
removed and the reaction mixture was stirred at RT for 2 h.
Mini-work-up and tlc indicated that the reaction was near 95%
complete resulting in at least 2-3 more non-polar, UV(+)
products. The yellow solution was poured into a separatory
funnel containing 50 mL of 10% NH4Cl. The quenched reaction
mixture was washed with 2x20 mL portions of ether. The ether
layers were combined and were then washed with 50 mL of 5%
NaHCO3 followed by 50 mL brine. The ether layer was dried
over anhydrous Na2SO4, and concentrated in vacuo . The crude
oil was chromatographed via silica gel chromatography
(toluene:ethyl acetate 10:6 mL: ethyl acetate) or preparative
chromatography.

9. 1,2-O-isopropylidene-2-(R)-3-(R.S)-trihydroxy-4-

deutero-4-phenylsulfinyl butane (14). Reaction with

deuterated methanol.

Rf=0.45 (ethyl acetate). 1H-NMR (CDCI3): & 7.7-7.5 (m,
5H, aromatic), 4.25-4.2 (m. 1H), 4.1 (m, 1H), 4.05-3.9 (m, 4H).
3.3-3.15 (m. 1H), 3.0-2.85(m, 2H), 1.41 (s, 3H), 1.32 (s 3H), 1.25
(s, 3H), 1.05 (s. 3H). IR (CDCI13): 3450-3300. 3000-2900,
1420(s), 1380-1390, 1260. 1210, 1060, 850(s), 750(s), 690(s)
cm-l. Mass spectrum (DCI/NH3): m/e 288 (m+17), 272 (m+1),
255. 197, 162.



10. 1.2-O-isopropylidene-2-(R)-3-(R.S)-trihydroxy-4-
phenylsulfinyl-5-heptene (15). Reaction with allyl
bromide.

The procedure afforded 13% of (15) (mixture of
isomers) after silica gel chromatography (toluene:ethyl acetate
100:6 mL ethyl acetate). Rf=0.40 (ethyl acetate). l1H-NMR
(CDCI3): d 7.7-7.5 (m, 5H. aromatic), 5.85-5.65 (m., 1H), 5.55-
5.45 (m, 1H), 5.25-4.95 (m. 3H). 4.65 (m, 1H), 4.25-3.9 (m, 4H),
3.15-3.05 (m, 1H), 2.95-2.89 (m, 1H), 2.8-2.6 (m, 2H) ,2.45-2.35
(m, 1H). 2.1-2.0 (m. 1H), 1.72 (s, 3H), 1.45 (s. 3H). 1.35 (s, 3H),
1.15 (s. 3H). 13C-NMR (CDCI3): 5 134, 131-125. 119(CH20),
109, 77. 76, 70, 67(CH20), 60(CH2S0), 27, 25. Mass spectrum
(DCI/NH3): m/e 328 (m+17), 311 (m+1), 202, 184. Anal. Calcd
for C1gH2204S (310.411): %C 6191, %H 7.14; Found %C 61.50,

%H 6.91.

11. 1.2-O-isopropylidene-2-(R)-3-(R,S)-trihydroxy-4-
methyl-4-phenylsulfinyl pentane (16). Reaction with
methyl iodide.

The procedure afforded 13% of (16) (mixture of
isomers) after silica gel chromatography(toluene:ethyl acetate,
100:6; ethyl acetate). Rf=0.31 (toluene:MeOH, 10:2 mL). 1H-
NMR (CDCI13): & 7.7-7.5 (m, 5H. aromatic), 4.25-4.2 (m, 1H),
4.15-4.1 (m ,1H). 4.05-3.9 (m, 4H), 3.3-3.15 (m. 1H), 3.0-2.85
(m, 2H), 1.41 (s, 3H), 1.32 (s, 3H), 1.25 (s, 3H), 1.05 (s, 3H).
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13C-NMR (CDCI3): d 132-124, 110, 77, 75. 70. 66.5(CH20), 27.
75. 7 . Mass spectrum (DCI/NH3): m/e 299 (m+17). 285 (m+1),
265. 147. 131. Anal. Calcd for C14H2004S (284.373). %C

59.13, %H 7.09: Found %C 59.25. %H 6.91.

General Method for Beta-Hydroxy Methyl
Phenylsulfinyl Dianion Generation
Sulfoxide (11) (0.215 g: 0.797 mM; 1.0 equiv.) was

added to an oven dried, 10 mL round bottom flask containing 2.5
mL anhydrous THF and dried 4 angstrom molecular sieves under
N2. The sulfoxide solution was cooled to -78 OC with an
acetone/dry ice bath. n-BuLi (2.5 M in hexane) (0.7 mL;1.75
mM: 2.2 equiv.) was added portionwise to the sulfone solution
followed by DMPU (2.5 mL: 1.75 mM; 2.2 equiv.). The resulting
light yellow-green dianion solution was stirred at -78 OC for
30 min prior to the addition of electrophile. After 30 min, the
electrophile (1.19 mM:; 1.5 equiv.) was added to the dianion
solution whereupon the color of the solution changed from a
light yellow-green color to colorless and finally to a brighter
yellow color over the course of 1.5 hr. The cooling bath was
removed and the reaction mixture was stirred at RT for 5-10
min. Reaction progress was monitored via mini-work-up and
tlc. The yellow solution was poured into a separatory funnel
containing 50 mL of 10% NH4Cl. The quenched reaction mixture

was washed with 2x20 mL portions of ether. The ether layers



were combined and washed with 50 mL of 5% NaHCO3 followed
by 50 mL brine. The ether layer was dried over anhydrous |
Na2S04, and concentrated in vacuo to give an oil. The crude oil
was purified using column or preparative chromatography
(toluene:ethyl acetate, 100:6 mL;ethyl acetate).
12. 1.2-O-isopropylidene-2-(R)-3-(R,S)-5-(R.S)-
tetrahydroxy-4-phenylsulfinyl hexane (17). Reaction
with acetaldehyde.

The procedure afforded 10% yield of (17) (mixture
of isomers) after silica gel chromatography (toluene:ethyl
acetate, 100:6 mL; ethyl acetate). Rg=0.44 (ethyl acetate). 1H-
NMR (CDCI13): d 7.7-7.5 (m, 5SH, aromatic), 4.4-4.35 (m, 1-2H),
4.3 (m, 1H), 4.1-3.95 (m, 4-5H), 3.15 (m.1H), 2.95-2.85 (m. 1H),
1.6 (m, 1H), 1.4-1.3(s, 6H), 1.15 (s, 2H), 09 (s, 1H). IR (CDCI3):
3450, 3000-2950, 1420(s), 1385-1390(s), 1250, 1220, 1150,
1070, 850(s), 690(s) cm-1- Mass spectrum (DCI/NH3): m/e 315
(m+1), 255. Anal. Calced for C15H2205S (314.399): %C 57.31,

%H 7.05; Found %C 57.53, %H 6.91.

13. 1,2-O-isopropylidene-2-(R)-3-(R,S)-5-(R,S)-
tetrahydroxy-4-phenylsulfinyl-octane (18). Reaction
with butyraldehyde.
The procedure afforded 13% of (18) (mixture of
isomers) after silica gel chromatography(toluene/ethyl

acetate, 10/0.6mL; ethyl acetate). Rf=0.4 (ethyl acetate).
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[a]25D -47.700 (c=1.35. MeOH). I3C-NMR (CDCI3): 5 141, 131-
129. 124, 110, 75. 71, 69(CH20). 37(CH2S0). 26. 25. 19(CH2).
14. 'H-NMR (CDCI3): & 7.7-7.5 (m, 5H. aromatic), 4.45 (m. 1H),
425 (m, 1H), 4.15-4.0 (m, 4H), 3.8 (m, 1H), 3.0 (m, 1H). 1.8 (m,
1H). 1.65(m, 1H). 1.4 (s. 3H). 1.35 (s, 3H), 1.05-0.9 (m ,4H). 0.3
(m, 1H). IR (Film): 3500-3250, 3000-2950, 1540(s). 1370-
1390(s). 1250, 1210, 1065(s), 1010-1025(s). 850(s), 750(s)
em-l. Mass spectrum (DCI/NH3): m/e 360 (m+17). 343 (m+1),
216, 199, 162. Anal. Calcd for C17H2605S (342.453): %C

59.63, %H 7.65: Found %C 59.83, %H 7.86

14. 1,2-O-isopropylidene-2-(R)-3-(R,S)-5-(R.S)-
tetrahydroxy4-phenylsulfinyl-5-phenyl hexane (19).
Reaction with benzaldehyde.

The procedure afforded 5% yield of (19) (mixture of
isomers) after silica gel chromatography(toluene/ethyl
acetate, 100:6 mL: ethyl acetate). Rf=0.38 ( ethyl acetate).
IH-NMR (CDCI3): & 7.75-7.2 (m, 10H, aromatic), 5.4 (m, 1H), 4.4
(m, 1H), 4.15-3.9 (m, 4H), 3.45 (m, 1H), 3.15 (m, 1H), 2.35 (m,
1H). 1.55 (s. 6H), 1.1 (s, 3H), 0.9 (s, 3H) IR (0.15%. CCl4, 3mm
cell):  3600-3300, 3100-2950, 1450(s), 1380(s), 1245, 1220,
1150, 1065, 850(s), 740(s) cm-1. Mass spectrum (DCI/NH3):
m/e 377 (m+1), 271, 250, 162, 138. Anal. Calcd for CogH2504S

(377.479): %C 63.64, %H 6.68; Found %C 63.50, %H 6.91.
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15. The synthesis of 1,2-O-isopropylidene-2-(R)-3-

(R.S)-5-(R.S)-tetrahydroxy-4-phenylsulfinyl-5-

methyl hexane (20). Reaction with acetone.

The procedure afforded 2% yield of (20) (mixture of

isomers) after silica gel chromatography(toluene/ethyl
acetate, 10/0.6mL:ethyl acetate). Rf=0.38 (ethyl acetate). ITH-
NMR (CDCI13): d 7.7-7.5 (m, 5H, aromatic), 4.0 (m, 4H), 3.25 (m.
2H). 2.95-2.85 (m, 2H), 1.7 (s, 3H). 1.6 (s. 2-3H). 1.4 (s, 3H). 1.3
(s, 3H). 1.05. 13C-NMR (CDCI3. 500 MHz): 5 132-124, 109, 73,
71, 62. 58(CH2S0), 56, 30, 25. 22. 14. Mass spectrum
(DCI/NH3): m/e 346 (m+17), 329 (m+1), 288, 271.

16. 1,2-O-isopropylidene-2-(R)-3-(R.S)-
trimethylsiloxy-4-phenylsulfenyl butane (23).
Sulfide (9) (1.1 g: 4.3 mM; 1.0 equiv.) was added to

an oven dried. 250 mL round bottom flask containing 100 mL
anhydrous DMF (distilled over CaH?). Imidazole (0.198 g: 2.85
mM: 0.66 equiv.) was added to the sulfide solution and the
mixture was stirred at RT. Trimethylsilylchloride (1.0 mL;
12.9 mM: 3 equiv.) was added to the sulfide solution via syringe
over a period of 5 min. The resulting solution was stirred at RT
for 18 hrs. The reaction mixture was analyzed by tlc and found
to be about 85% complete affording a more non-polar, UV (+)
product. The clear solution was poured into a separatory funnel

containing 200 mL ethyl acetate. 5% NaHCO3 was added to this
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solution and the mixture was vigorously shaken. A white
precipitate formed in the aqueous phase. The aqueous phase
was backwashed with 3x100 mL portions of ethyl acetate and
the organic washes were combined and dried with 150 mL brine
and anhydrous Na2SO4. The organic phase was filtered and the
solvent was evaporated in vacuo to give a colorless oil. The
crude oil was purified via chromatography on a silica gel
gravity column. The procedure afforded 42% yield of (23)
(mixture of isomers) after silica gel chromatography
(petroleum ether:ethyl acetate, 9:1 mL). Rg=0.77
(toluene:methanol, 10:2 mL). 1H-NMR (CDCI3): & 7.4-7.2 (m, SH),
4.15-4.1 (m, 1H), 4.05-4.0, (m, 1H), 3.85-3.8 (m, 2H). 3.3-3.2 (m
1H). 3.0-2.9 (m, 1H)., 1.4, (s, 3 H). 1.3. (s, 3 H) 0.1-0.3(s, 9H).
I3C.NMR (CDCI3):  d 136-126, 109, 78, 72. 66(CH20). 38. 36
(CH2S), 26, 25, 0.3-0.5. Mass spectrum (DCI/NH3): m/e 344
(m+17). 327 (m+1). Anal. Caled for ClgH2603SSi (326.529):

%C 58.85, %H 8.03; Found %C 59.00, %H 7.77.

17. 1.2-O-isopropylidene-2-(R)-3-(R,S)-acetoxy-4-
phenylsulfenyl butane (25).
Sulfide (9) (0.15 g: 0.59 mM, 1.0 equiv.) was added
to an oven dried, 50 mL round bottom flask containing 17 mL
anhydrous pyridine. Acetic anhydride (0.12 mL: 1.24 mM; 2.1
equiv.) was added to the sulfide solution via a syringe over a

period of 5 min. The resulting solution was stirred at RT for



18 hrs. After 18 hrs, the reaction mixture was analyzed by tlc
(toluene:methanol 10:2 mL) and was found to be 85% complete
to a more non-polar, UV (+) product. The clear solution was
poured into a separatory funnel containing 100 mL saturated
copper sulfate solution. The aqueous phase was backwashed
with 2x50 mL portions of methylene chloride and the organic
washes were combined and dried with 50 mL brine and
anhydrous Na2SO4. The organic phase was filtered and the
solvent was evaporated in vacuo to give a colorless oil. The
crude oil was purified via chromatography on a silica gel
gravity column.  The procedure afforded 66% yield of epimeric
mixture of (25) after silica gel chromatography (petroleum
ether:ethyl acetate, (9:1 mL). Rf=0.72 (toluene:methanol, 10:2
mL). 1H-NMR (CDCI3): & 7.4-7.2 (m, 5H), 5.05 (m, 2H), 4.15-4.1
(m. 1H), 4.05-4.0, (m, 1H), 3.85-3.8 (m, 2H), 3.3-3.2 (m, 1H),
3.0-2.9 (m, 1H), 2.05 (s, 3H), 1.98 (s, 2H), 1.4, (s, 3H), 1.3, (s,

3H) 1.3 (s, 3H). I13C-NMR (CDCI3): 3 170, 136-126, 109, 78, 72,
66(CH20). 36.5(CH2S). 26, 25, 20. IR (Film): 3100-2950, 1740,

1450-1445(s), 1380-1375, 1245, 1210, 1150, 1065, 850(s),
740(s) cm-l. Mass spectrum (DCI/NH3): m/e 314 (m+17). 297
(m+1). Anal. Calcd for C15H2004S (296.384): %C 60.79, %H

6.80; Found %C 60.78, %H 6.91.

18. 1.2-O-isopropylidene-2-(R)-3-0x0-4-methyl-
phenylsulfenyl butanone (26).
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Sulfide (9) (7.22 g: 284 mM: 1 equiv.) was dissolved
in 24 mL of dry toluene and set aside. NCS (10.2 g: 76.2 mM;
268 equiv) was dissolved in 80 mL sieve dried toluene and
cooled to -10 OC with an acetone/ice bath. DMS (7.69 mL; 110
mM: 3.9 equiv) was added to the stirring slurry. The mixture
was stirred for 20 min at -10 OC. After 20 min, the substrate
solution was added to the slurry and this was stirred for 15
min at -10 ©C. The reaction was analyzed by tlc via mini work-
up and the reaction was shown to be 85% complete resulting in
3-4 new UV(+) products. The reaction was quenched by adding
(Et)yaN (4.75 mL, 34.1mM, 1.2 equiv) to slurry. After stirring
for 3-5 min at -10 OC, the reaction mixture was poured into a
separatory funnel containing toluene and was washed once with
150 mL 5% NaHCO3. The aqueous phase was washed with 2x50
mL portions of toluene and the organic phases were combined
and dried over anhydrous Na2SO4. The toluene layer was
filtered and evaporated to a smelly, brown-yellow oil. The
crude oil was purified via chromatography on a silica gel
gravity column. The procedure afforded 30% yield of (26) after
silica gel chromatography (hexane:ethyl acetate, 100:7.5 mL).
Rf=0.17 (toluene:methanol, 10:2 mL) !H-NMR (CDCI3): & 7.4-7.2
(m, 5H). 4.65 (m .1H), 4.2-3.85 (m, 4H), 1.49, (s, 3H), 1.4, (s,
3H). I3C-NMR (CDCI3): 3 204, 130-127, 111, 79. 72, 66(CH20).
40(CH2S), 26, 24.5. IR (15%., CCl4, 3mm cell) 3700, 3500,
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3080-3060(s). 3000-2900, 1720 cm-l.  Mass spectrum
(DCI/NH3): m/e 270 (m+17), 254 (m+1).

19. 1.2-O-1sopropylidene-2-(R)-3-0x0-4-phenylsuifenyl-
5-(R.S)-hydroxy hexanone (28).

Sulfide (26) (0.750 g; 2.97 mM; 1.0 equiv.) was
added to an oven dried, 100 mL round bottom flask containing
15 mL anhydrous THF. The sulfide solution was cooled to -78
OC with an acetone/dry ice bath. t-BuLi (1.3 M in pentane) (2.0
mL; 3.87 mM; 1.3 equiv.) was added portion-wise. After each t-
BuLi addition, the substrate solution turned bright yellow and
disappeared after a few seconds. After all the t-BuLi was
added to the solution, the color remained bright yellow for
most of the duration of the reaction. The reaction mixture was
stirred at -78 OC under nitrogen for 1 hr. Acetaldehyde (0.22
mL; 3.86 mM; 1.3 equiv.) was added to the basic solution over a
2-3 minute period. The color of the reaction mixture changed
from a yellow color to a light yellow color. The cooling bath
was removed and the reaction mixture was stirred at RT for 5-
10 min. Mini-work-up and tlc indicated that the reaction was
near 75% complete resulting in 2-3 more non-polar, UV(+)
products. The light yellow solution was poured into a
separatory funnel containing 150 mL of 10% NH4Cl. The
quenched reaction mixture was backwashed with 2x50 mL

portions of ether. The ether layers were combined and were



then washed with 150 mL of 5% NaHCO3 followed by 100 mL
brine. The ether layer was dried over anhydrous Na2SO4,
filtered and evaporated in vacuo to give 800 mg of a off-white
oil. The crude oil was purified via chromatography on a silica
gel gravity column. The procedure afforded 30% yield of (28)
after silica gel chromatography (hexane:ethyl acetate .100:75
mL). Rf=0.7 (toluene:methanol, 10:2 mL) epimeric mixture of
(28) and unreacted starting material. IH-NMR (CDCI3): & 7.5-
7.2 (m, 10H), 5.05 (m, 1H), 4.65 (m, 1H), 4.2 (m. 2H), 4.1 (m ,1H),
3.95-3.85 (m, 2H), 2.1 (m. 2H), 1.55 (s. 3H), 1.45 (s, 3H), 1.4, (s,
3H), 1.38. (s. 3H), 1.35 (s, 3H). 13C-NMR (CDCI3): 5 204. 196,
149, 130-126, 111, 79, 78, 72, 66(CH20), 40(CH?2S). 26, 25, 17.
IR (Film) 3700, 3500. 3080-3060(s). 3000-2900, 1715 cm-l.
Mass spectrum (DCI/NH3): 296 (m+1), 279, 270.

20. 1,2-O-isopropylidene-2-oxo0-3-phenylsulfenyl-5-
phenyl-4-pentenone (29a).
Sulfide (26) (0.3 g; 1.19 mM; 1.0 equiv.) was added

to an oven dried, 100 mL round bottom flask containing 12 mL
anhydrous THF. The sulfide solution was cooled to -78 OC with
an acetone/dry ice bath. t-BuLi (1.7 M in pentane) (0.98 mL;:
1.55 mM: 1.3 equiv.) was added portion-wise to the sulfide
solution.  After each t-BuLi addition, the substrate solution
turned bright yellow and disappeared after a few seconds.

After all the t-BulLi was added to the solution, the color
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remained bright yellow for most of the duration of the reaction.
The reaction mixture was stirred at -78 OC under nitrogen for
30 min. Benzaldehyde (0.29 mL: 2.86 mM: 2.4 equiv.) was added
to the basic solution over a 2-3 minute period. The color of the
reaction mixture changed from a yellow color to a bright
yellow color. The cooling bath was removed and the reaction
mixture was stirred at RT for 5-10 min. Mini-work-up and tlc
indicated that the reaction was near 95% complete resulting in
2-3 more non-polar, UV(+) products. One half of the reaction
was worked up in the usual fashion. Acetic anhydride (0.18 mL;
1.9 mM: 1.6 equiv.) was added via syringe to the other half of
the reaction mixture and this was stirred at RT under nitrogen
for 15 min before quenching in the usual fashion. Mini work-up
a tlc of the acetic anhydride quenched reaction suggested that
the product make-up was identical to the product make-up
obtained from the other half of the reaction indicating no
hydroxyls remained. The bright yellow solution was poured into
a separatory funnel containing 150 mL of 10% NH4Cl. The
quenched reaction mixture was backwashed with 2x50 mL
portions of ether. The ether layers were combined and were
then washed with 150 mL of 5% NaHCO3 followed by 100 mL
brine. The ether layer was dried over anhydrous Na2SO4.
filtered and evaporated in vacuo to give 400 mg of a smelly.
orange-yellow oil. The crude oil was purified via

chromatography on a silica gel gravity column. The procedure
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affords 26% yield of eliminated, desired product (29a) and

unreacted benzaldehyde after silica gel chromatography
(hexane:ethyl acetate, 20:1 mL). Rf=0.62 (toluene:methanol.
10:2 mL) IH-NMR (CDCI3): & 7.5-7.1 (m, 10H), 5.25 (m, 1H), 5.1
(m. 1H). 4.65 (m, 1H), 4.25-4.1 (m, 2H). 4.0-3.9 (m, 1H). 2.2 (m,
3H). 1.45 (s, 3H), 1.4, (s, 3H). [3C-NMR (CDCI3): & 167. 145,
130-127, 115, 110, 74, 57(CH20), 40, 21, 18, 15. IR (Film)
3450-3350. 3000-2950, 1760, 1380-1375(s), 1200-1190,
1150. 1050, 850, 695 cm-l. Mass spectrum (DCI/NH3): m/e
358 (m+17), 341 (m+1), 312, 254.

21. 1,2-O-isopropylidene-2-(R)-3-(R.S)-acetoxy-4-
phenylsulfenyl-3-hexenone (30a).
Sulfide (26) (0.3 g: 1.19 mM; 1.0 equiv.) was added

to an oven dried, 100 mL round bottom flask containing 12 mL
anhydrous THF. The sulfide solution was cooled to -78 OC with
an acetone/dry ice bath and t-BuLi (1.7 M in pentane) (0.98 mL;
1.55 mM; 1.3 equiv.) was added portion-wise to the sulfide
solution. After each t-BuLi addition, the substrate solution
turned bright yellow and disappeared after a few seconds.

After all the t-Buli was added to the solution. the color

remained bright yellow for most of the duration of the reaction.

The reaction mixture was stirred at -78 OC under nitrogen for
30 min. Acetone (0.21 mL; 2.86 mM: 2.4 equiv.) was added to

the basic solution over a 2-3 minute period. The color of the
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reaction mixture changed from a yellow color to a dull yellow
color. The cooling bath was removed and the reaction mixture
was stirred at RT for 5-10 min. Mini-work-up and tic
(toluene:methanol 10:2 mL or hexane:ethyl acetate 10:2 mL)
indicated that the reaction was near 95% complete resulting in
2-3 more non-polar, UV(+) products. One half of the reaction
was worked up in the usual fashion. Acetic anhydride (0.18 mL;
1.9 mM; 1.6 equiv.) was added via syringe to the other half of
the reaction mixture and this was stirred at RT under nitrogen
for 15 min before quenching in the usual fashion. Mini work-up
and tlc of the acetic anhydride quenched reaction suggested
that the product make-up was different than the product make-
up obtained from the other half of the reaction. The bright
yellow solution was poured into a separatory funnel containing
150 mL of 10% NH4Cl and the reaction mixture was backwashed
with 2x50 mL portions of ether. The ether layers were
combined and were then washed with 150 mL of 5% NaHCO3
followed by 100 mL brine. The ether layer was dried over
anhydrous Na2SO04, filtered and evaporated in vacuo to give 200
mg of a smelly, orange-yellow oil. The crude oil was purified
via chromatography on a silica gel gravity column. The
procedure afforded 26% yield of an epimeric mixture of
elimination and the isolation of 50 mg of acetylated enol ether
of the starting material (30a) after silica gel chromatography

(hexane:ethyl acetate, 20:1 mL). Rf=0.72 (toluene:methanol,
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10:2 mL). !H-NMR (CDCI3): 3 7.4-7.25 (m, 5H). 6.3 (m, 1H), 4.65
(m. 1H), 4.1 (m, 1H), 4.0-3.9 (m. 1H), 2.2 (m, 3H). 1.45 (s. 3H),
1.4. (s. 3H). 13C-NMR (CDCI13): & 167. 145, 130-127, 115. 110.
76, 67(CH20), 26, 25, 19. IR (Film) 3000-2950, 1760, 1380-
1375(s), 1200-1190. 1150. 1050, 850, 695 cm-l. Mass
spectrum (DCI/NH3): m/e 311 (m+1), 292, 253.

22. 3-(R.,S)-hydroxy-4-phenylsulfinyl-1-butene (31).

Methyl phenyl sulfoxide (3.77 g; 27 mM: 1.2 equiv.)

was added to an oven dried. 100 mL round bottom flask
containing 19 mL anhydrous THF. The methyl phenyl sulfoxide
solution was cooled to -10 ©C with an acetone/ice bath. n-BuLi
(2.5 M in hexane) (10.7 mL; 27 mM: 1.2 equiv.) was added
portion-wise to the sulfoxide solution. The resulting light
yellow anion solution was stirred at -10 ©C for 20 min prior to
the addition of 97% acrolein. After 20 min, acrolein (1.5 mL;
224 mM; 1 equiv.) was added to the anion solution whereupon
the color of the solution changed from a light yellow color to
colorless and finally to a brighter yellow color over the course
of 15 min. The cooling bath was removed and the reaction
mixture was stirred at RT for 1-2 min. Mini-work-up and tlc
indicated that the reaction was near 95% complete resulting in
3-4 more non-polar, UV(+) products. The yellow solution was
poured into a separatory funnel containing 100 mL of 10%
NH4Cl. The quenched reaction mixture was backwashed with

2x50 mL portions of ether. The ether layers were combined and



were then washed with 100 mL of 5% NaHCO3 followed by 100
mL brine. The ether layer was dried over anhydrous Na2S04.
filtered and evaporated in vacuo to give 3.5 g of a smelly. off-
white oil. The procedure afforded 45% yield of an epimeric
mixture of (30) after silica gel chromatography (hexane:ethyl
acetate, 20:1 mL). Rf=0.4 (ethyl acetate). !H-NMR (CDCI3): d
7.7-7.5 (m, 5H), 6.0-5.8 (m, 1H), 5.4-5.2 (m, 2H). 4.85-4.7.(m.
1H), 3.9-3.7 (m, 1H), 3.1-2.75 (m, 2H), 1.7 (s, 1H). 13C-NMR
(CDCI3): d 143, 137-130, 124, 116(CH2), 110, 69. 66,
63(CH2S0O). IR (Film) 3400-3330. 3000-2950, 1420, 1030-
1020(s), 1000, 920, 770, 690 cm-l.  Mass spectrum (DCI/NH3):
m/e 214 (m+17), 197 (m+1).

23. 2-methyl-3-(R,S)-hydroxy-4-phenylsulfinyl-1-
butene (32).

Methyl phenyl sulfoxide (3.04 g: 21.7 mM; 1.2 equiv.)
was added to an oven dried. 100 mL round bottom flask
containing 19 mL anhydrous THF. The methyl phenyl sulfoxide
solution was cooled to -10 9C with an acetone/ice bath. n-
BuLi (2.5 M in hexane) (8.7 mL; 21.7 mM: 1.2 equiv.) was added
portion-wise to the sulfoxide solution. The resulting light
yellow anion solution was stirred at -10 9C for 20 min prior to
the addition of methacrolein. After 20 min, methacrolein (1.5

mL 18.1 mM: 1 equiv.) was added to the anion solution

whereupon the color of the solution changed from a light yellow
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color to colorless and finally to a brighter yellow color over
the course of 15 min. The cooling bath was removed and the
reaction mixture was stirred at RT for I-2 min. Mini-work-up
and tlc indicated that the reaction was near 95% complete
resulting in 3-4 more non-polar, UV(+) products. The reaction
was worked up as cited in example 23. The ether layer was
dried over anhydrous Na2SO4, filtered and evaporated in vacuo
to give white solid. The white solid was purified via
chromatography on a silica gel gravity column. The procedure
afforded 70% yield of an epimeric mixture of (32) after silica
gel chromatography (hexane:ethyl acetate, 100:6 mL). Rg=0.36
(ethyl acetate). H-NMR (CDCI13): & 7.65-7.5 (m, 5H), 5.1 (s, 1H),
4.9 (s. 1H), 4.6 (m, 1H), 3.7 (m, 1H), 3.15-3.05 (m, 1H), 2.85-
2.75 (s. 1H), 1.7¢s. 3H). 13C-NMR (CDCI3): d 145, 143, 129-
124, 112(CH2), 69, 63(CH2S0), 18. IR (KBr) 3400-3250(b),
3100-2900, 1660-1620, 1440(s), 1080(s), 1060(s), 1020-
1010(s), 900(s), 750(s). 690(s) cm-1. Mass spectrum
(DCI/NH3): m/e 228 (m+17), 211 (m+1), 195, 177. Anal. Calcd
for C11H1402S8(210.293): %C 62.83, %H 6.71; Found %C 62.74,
%H 6.72.

24, 1-phenyl-trans-2-methyl-(R.,S)-3-hydroxy-4-
phenylsulfinyl-1-butene (33).
Methyl phenyl sulfoxide (1.8 g: 12.7 mM; 1.2 equiv.)

was added to an oven dried. 100 mL round bottom flask
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containing 19 mL anhydrous THF. The methyl phenyl sulfoxide
solution was cooled to -10 9C with an acetone/ice bath. n-BuLi
(2.5 M in hexane) (5.1 mL: 12.7 mM; 1.2 equiv.) was added

portion—wise to the sulfoxide solution The resulting light

yell
the addition of a-methyl-trans-cinnamaldehyde. After 10 min,

ow anion solution was stirred at -10 9C for 10 min prior to

(1.5 mL: 10.7 mM; 1 equiv.) of a-methyl-trans-cinnamaldehyde
was added to the anion solution whereupon the reaction color
progressed as usual. The reaction monitoring and workup
proceeded as previously cited in example (31). The procedure
afforded an off-white oil that was purified via chromatography
on a silica gel gravity column. The procedure afforded 80%
yield of epimeric mixture of (33) after silica gel
chromatography (toluene:ethyl acetate, 25:1 mL:ethyl acetate).
Rf=0.49 (ethyl acetate). IH-NMR (CDCI3): d 7.7-7.1 (m, 10H),
6.65 (m, 1H), 6.6 (m, 1H), 5.1 (s 1H), 4.85 (m, 1H)., 4.72 (m, 1H),
3.95-3.85 (s, 1H), 3.25-3.15 (m, 3H), 2.95 (m, 1H), 2.85 (m, 1H),
2.35 (s, 3H), 1.87 (s, 3H), 1.8 (s, 3H). I3C-NMR (CDCI3): 5 144,
137, 131.-124, 74, 71, 62(CH2S0), 14, 13. IR (Film) 3250-
3300(b), 3100-2810, 1600-1590, 1440(s). 1080(s), 1020-
1030(s), 760(s), 700(s) cm-1. Mass spectrum (DCI/NH3): m/e
304 (m+17). 287(m+1), 269, Anal. Calcd for C11H1402S(): Calc.
%C 71.30. %H 6.39; Found %C 71.66. %H 6.49.



25. 2-Methyl-3-(R,S)-hydroxy-4-phenylsulfinyl-1.6-
hexadiene (34).

Sulfoxide (32) (50 mg: 0.48 mM: 1.0 equiv.) was
added to an oven dried, 10 mL round bottom flask containing
0.65 mL anhydrous THF. The sulfoxide solution was cooled to -
78 OC with an acetone/dry ice bath. n-BuLi (2.5 M in hexane)
(0.2 mL; 1.05 mM; 2.2 equiv.) of was added portion-wise to the
sulfoxide solution. DMPU (63 uliters; 1.05 mM; 2.2 equiv.) was
added dropwise to the basic solution. The resulting light
yellow-orange dianion solution was stirred at -78 ©C for 30
min prior to the addition of allyl bromide. After 30 min, 33
pliters (0.71 mM; 1.5 equiv.) of allyl bromide was added to the
dianion solution whereupon the color of the solution changed
from a light yellow-orange color to colorless over the course
of 30 min. The reaction was monitored and quenched as
previously cited in example (31). The crude oil was purified
via chromatography on a silica gel gravity column. The
procedure afforded 9% yield of epimeric mixture of (34) after
silica gel chromatography (toluene:ethyl acetate, 100:6 mL;
ethyl acetate). Rf=0.49 (ethyl acetate). IH-NMR (CDCI3, 500
MHz): & 7.6-7.5 (m, 5H), 6.0-5.9 (m, 1H), 5.55-5.4 (m, 1H), 5.15
(s. 1H), 5.05 (s, 1H), 4.9 (m, 2H). 4.4 (m, 1H), 2.85 (m, 1H), 2.3
(m, 1H), 2.1 (m, 1H). 1.8 (s, 3H). 13C-NMR (CDCI3): 3 143, 140.
134, 131-124, 118-117, 114, 112(CH2), 75, 71, 64-63(CH2S0),
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27, 19. 17. Mass spectrum (DCI/NH3): m/e 268 (m+17). 251

(m+1).

26. The separation of 1.,2-O-isopropylidene-3-(R)-3-(S)-

hydroxy-4-phenylsulfonyl butane (35) from 1.2-O-

isopropylidene-2-(R)-3-(R)-hydroxy-4-phenylsulfonyl

butane (36) using preparative HPLC.

The substrate was dissolved in 3 mL of methanol

and 450 microliter injections were made onto the column. A
total of 0.5 gram of a 60/40 mixture of sulfone (12) was
injected on to a semi-preparative hplc column using water, 65%
methanol, 30 g/L NaOAc*3H20, 1.5 mL/L glacial acetic acid and
20 mL/L ethylene glycol as the mobile phase. The flow rate
was 11 mL/minute with the sensitivity set at 16. Two sharp
peaks were separated out on the column with a retention time
of (1) 12 min and the other with a retention time of (2) of 14
min. The respective samples were poured into separatory
funnels containing 100 mL 5% NaHCO3. The aqueous layers
were back washed with 2x50 mL portions of methylene
chloride, were dried with 100 mL portions of brine and
suspended over anhydrous Na2S0O4. After basic aqueous work-
up, the eluents were evaporated to (1) 100 mg colorless oil and
(2) 300 mg colorless oil. Upon standing at RT, both samples

solidified to give white crystalline solids. The nmr spectra

showed the samples to be 97% pure. [0]23p -5.040 (c=1.3,

93



94

MeOH). (35). Rf=0.4 (chloroform:ethyl acetate., 9:1 mL). IH-
NMR (CDCI13): d 7.95-7.55 (m .10H aromatic), 4.1-3.9 (m. 4H).
3.6-3.49 (m. 2H). 3.2 (m. 1H), 1.27 (s. 3H). 1.1 (s, 3H). 13C-NMR
(CDC13):  d 139-129, 109, 76. 67. 66(CH20), 59(CH2S0?). 26,
25. Mass spectrum (DCI/NH3): m/e 304 (m+17). 287 (m+1).

218.

(36). 1H-NMR (CDCI3): 5 7.95-7.55 (m, 10H aromatic), 4.1-3.9
(m, 4H), 3.6-3.49 (m, 2H), 3.2 (m, 1H), 1.27 (s, 3H), 1.1 (s, 3H).
I3C-NMR (CDCI3): d 139-129. 109 76, 67, 66(CH20),
59(CH2S027), 26.3, 25. Mass spectrum (DCI/NH3): m/e 304
(m+17), 287 (m+1), 218. Anal. Calcd for C{3H1805S (286.345):

%C 54.53. %H 6.34; Found %C 54.04, %H 6.28.

27. The separation of 1,2-O-isopropylidene-2-(R)-3-(R)-

hydroxy-4-phenylsulfenyl butane (37) from 1.2-O-

isopropylidene-2-(R)-3-(S)-hydroxy-4-phenylsulfenyl

butane (38) using preparative HPLC.

The substrate was dissolved in 3 mL of methanol

and 450 microliter injections were made on to the column. A
total of 1 gram of a 70/30 mixture of sulfide (9) was injected
on to a semi-preparative hplc column using water, 60%
methanol, and 30 g/l NH4OAc as the mobile phase. The flow
rate was 11 mL/minute with the sensitivity set at 16. Two

sharp peaks were separated out on the column with a retention



time of 21 min and 26 min. The respective samples were
poured into separatory funnels containing 100 mL 5% NaHCO3.
The aqueous layers were back washed with 2x50 mL portions of
methylene chloride, were dried with 100 mL portions of brine
and suspended over anhydrous Na2SO4. After basic aqueous
work-up, the eluents were evaporated to 568 mg colorless oil
(faster eluting component) and 200 mg colorless oil (slower
eluting component). Upon standing at RT, both samples
solidified to give white crystalline solids. The nmr spectra
showed the samples to be 95% pure. (37). Re=0.5
(chloroform:ethyl acetate, 9:1 mL). [a]25D—46.80 (c=1.19,MeOH).
IH-NMR (CDCI3): ® 7.18-7.4 (m 5H aromatic), 4.25 (m, 1H), 4.05
(m, 1H), 3.85 (m,1H), 3.65 (m, 2H), 3.09 (d, 2H). 2.53 (d. 1H)
1.45-1.35 (s, 6H). Mass spectrum (DCI/NH3): m/e 272 (m+17),
255 (m+1), 197, 162.

(38). IH-NMR (CDCI3): b 74-7.18 (m, SH aromatic), 4.1-3.8 (m,
3H), 3.65 (m. 2H), 3.35 (m. 1H), 2.9 (m, 1H). 2.55 (d, 1H) 1.45-
1.35 (s, 12H). 13C-NMR (CDCI3): & 129-126, 109, 77, 70.
66(CH20). 37(CH2S), 26, 25. IR (CDCI3): 3600-3250(b), 3100-
2900. 1660-1620. 1480, 1440(s), 1280, 1220, 1080(s).
1060(s). 900(s), 750(s), 690(s) cm-l. Mass spectrum
(DCI/NH3): m/e 272 (m+17), 255 (m+1), 197, 162. Anal Calcd
for C13H1803S (254.346): 61.39%C. 7.13%H: Found 61.11%C,

6.94%H.



28.  1,2-O-isopropylidene-2-(R)-3-(S)-hydroxy butane

(39) and 1,2-O-isopropylidene-2-(R)-3-(R)-hydroxy

butane (40).

Substrate (37) or (38) respectively, (0.112 g: 0.44

mM) were dissolved in 10 mL methanol and stirred at RT. Plugs
of activated #28 wet Raney nickel (3 mL) were added to the
substrate solution rinsing the nickel into the reaction vessel
with water. The grey slurry was stirred at RT and the reaction
progress was monitored via tlc analysis. At 30 min, the
reaction mixture was analyzed by tlc and was shown to be 98%
complete to a more polar, UV(-) product. The slurry was poured
into 200 mL methanol and was carefully gravity filtered
making sure that all of the nickel residue remained moistened
with methanol wash. The filtrate was refiltered over a
micropore filtration apparatus and this filtrate was evaporated
in vacuo to a clear colorless oil which solidified upon standing
at RT (39). Rf=0.4 (toluene:MeOH, 10:2 mL). [a]29p=33.80
(c=1.6, CeHg) (lity47, [a]25p =33.90 (c=0.73, Ce¢He) . 1H-NMR
(CDCI3): d 4.1-3.82 (m, 4H), 2.09 (m, 1H), 1.42-1.36 (s, 6H),
1.16(d. 3H, J =6.5 Hz). 13C-NMR (CDCI3): ® 129-126. 109, 77,
70. 66(CH20), 37(CH2S), 26, 25. Mass spectrum (DCI/NH3): m/e
164 (m+17). 147 (m+1).
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@0). [a]2D =5.9° (c=14.CeHe) (li47. [a]2Op =2.90 (c=1.14,
ceHe). 'H-NMR (CDCI3): & 4.01 (dd, 1H, J 1'|=7.5 Hz. J 12=6.5
Hz). 3.93 (m. 2H). 3.67 (dd. 1HJ 1'1=7.5 Hz, J 1'2=6.5 Hz), 3.72-
361 (m. 3H), 2.73 (s. 1H), 1.45-1.35 (s, 6H), 1.14 (d, 3H. J =65
Hz). I3C-NMR (CDCI3): see example (39). Mass spectrum
(DCI/NH3): m/e 164 (m+17), 147( m+1). Anal. Calcd for

C7H1403 (146.20): 57.51%C. 9.65%H: Found %C 57.62. %H 9.85.



CHAPTER VI

SPECTRAL APPENDICES
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CHAPTER VII

SUMMARY

The objective of this project was to prepare pro-
sugar building blocks in a stereoselective synthesis using beta-
hydroxy sulfoxide dianions. This goal was realized with the
successful preparation of 1,2-O-isopropylidene-2-(R)-3-(R,S)-
5-(R,S)-tetrahydroxy-4-phenylsulfinyl hexane (17), 1.2-O-
isopropylidene-2-(R)-3-(R,S)-5-(R,S)-tetrahydroxy-4-
phenylsulfinyl-octane (18), 1,2-O-isopropylidene-2-(R)-3-
(R.S)-5-(R.S)-tetrahydroxy-4-phenylsulfinyl-6-phenyl hexane
(19), and 1,2-O-isopropylidene-2-(R)-3-(R.S)-5-tetrahydroxy-
4-phenylsulfinyl-5-methyl hexane (20). Additionally, we were
able to extend dianion chemistry to other structurally related
compounds. However, we were unable to prepare the dianion of
the beta-hydroxy sulfide (9). We also explored the chemistry
of the beta-keto phenyl sulfide derivative (26) in order to
investigate the reactivity of the alpha protons under strongly
basic conditions. The stereochemistry at the 2-hydroxy
position was assigned for the preparation of 1,2-O-
isopropylidene-2-(R)-3-(R.S)-trihydroxy-4-phenylsulfenyl
butane (9). Finally, we were unable to form an unnatural sugar

using an unprotected building block (18) in the synthesis.
232
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(Scheme 26) We attempted this synthesis only once using a
small amount (15 mg) of 75% pure substrate. We are confident
that given an adequate supply of pure substrate. further

experimentation will give the desired unnatural sugar products.

Scheme 26
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