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INTRODUCTION 

A. Purpose. The purpose of this study was to test the 

hypothesis that perinatal exposure to cocaine (gestational day 

15 through postnatal day 10) compromises the development of 

the medial preoptic nucleus - central part (MPNc), a nucleus 

involved in sexual differentiation of the brain. Other 

gestational parameters were also studied to ensure findings of 

this study were consistent with the literature in order to 

more confidently test a novel hypothesis. This hypothesis was 

tested by: (1) comparing the volume of the MPNc in male and 

female pups exposed to Omg/kg, 7.5mg/kg, 15mg/kg, and 30mg/kg 

of cocaine in the womb; and by (2) measuring the gestational 

parameters of maternal weight gain, litter size, maternal 

weight gain/litter size, pup weight, male/female sex ratio, 

and gross birth defects. 

This research is important not only for the insight 

gained into cocaine's effects upon the process of sexual 

differentiation in rodents, but also for what might be 

speculated concerning cocaine's effects upon the process of 

sexual differentiation in humans. Indeed, past research has 

shown similarities as well as differences in the process of 

sexual differentiation during development in rodents and 

primates (Manson, 1989). The most concrete difference to be 

1 
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shown is the timing of the critical periods for morphogenesis 

of the reproductive tract and sexual differentiation of the 

central nervous system (CNS) • In primates these events occur 

late in the first trimester while in rodents they occur in the 

perinatal period (Manson, 1989). 

The gonadal hormones involved in morphogenesis of the 

reproductive tract and the CNS are identical for all mammalian 

species studied (Wilson and Lasznitzki, 1971; Gondos, 1980; 

Maclusky and Naftolin, 1981) . Testosterone produced by the 

Leydig cells of the fetal testis promotes masculinization of 

both the male reproductive tract and the CNS (Langman, 1981). 

Therefore, if cocaine could be shown to impair this process of 

brain sexual differentiation in rodents, insights could be 

gained concerning cocaine's teratogenic potential in 

prenatally-exposed human fetuses. 

The teratogenicity of cocaine upon the human fetus has 

become an issue of grave concern due to the increasing numbers 

of pregnant women who expose their offspring to cocaine 

prenatally. In 1986, the National Institute on Drug Abuse 

estimated that 3 million people in the United States abuse 

cocaine regularly (Adams et al., 1986). Use by pregnant 

women, which has been shown to have deleterious consequences 

for both mother and child, has been reported to be common in 

inner city communities (Zuckerman et al., 1989). As of 1990, 

it has been reported that between 10 and 20% of births at 

metropolitan and suburban hospitals are complicated by drug 
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abuse as indicated by the presence of cocaine metabolites in 

urine collected during the gestational period (Dow-Edwards et 

al., 1990). According to Dow-Edwards et al. (1990), the 

actual prevalence of cocaine use during pregnancy is likely to 

be even greater. If it could be shown, therefore, that 

cocaine impairs the development of the rat MPNc, insight could 

be gained into the behavioral consequences of perinatal 

cocaine exposure as well as the mechanism of brain sexual 

differentiation itself. 



B. Review of Related Literature. 

4 

Prenatal cocaine 

exposure has been shown to have many deleterious developmental 

effects. The first well-controlled clinical study of the 

developmental effects of prenatal cocaine exposure was done by 

Chasnoff et al. (1985). This study revealed that cocaine­

influenced pregnancies were characterized by an increased 

incidence of abruptio placentae (miscarriage) as well as 

neurobehavioral abnormalities in the offspring. These infants 

prenatally exposed to cocaine were described as appearing 

"jittery" and as exhibiting decreased interactive behavior and 

poor organizational responses. A later study (Bingol et al., 

1987) documented retardation of intrauterine growth, increased 

stillbirth, and bony skull defects in cocaine-exposed babies. 

Church et al. (1987) also reported an increase in cephalic 

hemorrhages in cocaine-exposed infants. Further studies 

performed by MacGregor et al. (1987) reported a significant 

decrease in birth weight and head circumference in inf ants 

exposed to cocaine in the womb. From all these studies one 

can suggest that prenatal cocaine exposure can induce a number 

of different developmental abnormalities. 

A specific developmental abnormality of perinatal cocaine 

exposure, decreased head circumference, has been linked to 

brain damage. studies of children with compromised head 

and/or somatic growth have documented neurobehavioral 

impairment (Villar et al. , 1984) . Other researchers have 

reported that babies with slow head growth in utero had 
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delayed cognitive index, motor performance, perceptual 

performance, and motor ability at three to seven years of age 

(Harvey et al., 1982) . A later study (Hadeed and Siegel, 

1989) confirmed that perinatally-exposed infants exhibited 

microcephaly when compared to non-exposed infants. 

Neurobehavioral developmental studies of rats exposed 

prenatally to cocaine revealed that treated pups showed 

decreased learning and memory capabilities coupled with an 

increase in locomotor activity (Spear et al., 1987). Hence, 

previous research has established a link between perinatal 

cocaine exposure and compromised brain development as 

evidenced by microcephaly. 

One deleterious effect cocaine 

developing brain is alteration 

may 

of 

have upon the 

neurotransmitter 

concentrations. In adults, cocaine has been found to inhibit 

the presynaptic reuptake of the neurotransmitters 

norepinephrine, serotonin, and dopamine resulting in increased 

levels of these neurotransmitters in the synaptic cleft (Ritz 

et al., 1987). As a result, cocaine has been found to enhance 

the interaction of the neurotransmitters with both presynaptic 

and postsynaptic receptors by prolonging contact time 

(Bradford, 1986). In the case of chronic cocaine abuse, the 

nervous system responds to this persistent neurochemical 

stimulation with compensatory receptor adaptations (Gawin, 

1991) . Gawin and Ellinwood ( 1988) have hypothesized that 

cocaine abuse over long periods of time modifies the density 
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of the postsynaptic receptors. Specifically, cocaine-induced 

postsynaptic stimulation of norepinephrine receptors (Dackis 

and Gold, 1987) has been found to increase the density of both 

beta- and alpha-receptors (Banerjee et al., 1979; Chanda et 

al., 1979; Pert et al., 1979). In addition, norepinephrine­

induced increases in cyclic-adenylate monophosphate (cAMP) are 

potentiated by chronic cocaine administration. Together, 

these results have been suggested to indicate postsynaptic 

receptor supersensitivity (Banerjee et al., 1979; Seidler, 

1991) . 

An understanding of cocaine's effects upon catecholamine 

systems is important for interpreting the results of this 

project, in that catecholamines have been hypothesized to be 

responsible for the development of the brain regions they 

influence in adult life (Lauder and Krebs, 1986). In 

addition, it has been found that the MPNc is a region richly 

innervated by catecholamine-containing terminals (Simerly et 

al., 1986; Jacobson et al., 1989) . Therefore, cocaine's 

effects upon catecholamines may result in changes in the 

development of the brain regions they influence, e.g. the 

MPNc. 

Another possibility by which cocaine could affect the 

development of the MPNc is by alteration of the interactions 

between hormones and neurotransmitter systems. Preliminary 

studies have suggested that there is an interactive effect 

between neurotransmitters and hormones in mediating aspects of 
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sexual differentiation of the brain (Lauder and Krebs, 1986). 

The neurotransmitter norepinephrine, in particular, has been 

suggested to be primarily involved in androgen-dependent 

sexual differentiation of the brain (Raum and Swerdloff, 

1981). While a single injection of testosterone propionate 

given to female rats within the first 9-10 days of postnatal 

life will permanently block the luteinizing hormone surge 

mechanisms and ovulation (Barraclough, 1961; Barraclough and 

Gorski, 1961; Diaz et al., 1989), norepinephrine stimulation 

prior to such administration was shown to reverse this effect 

(Raum and Swerdloff, 1981). The researchers found that beta­

adrenergic receptor stimulation by norepinephrine prior to 

testosterone administration in four-day-old female rats 

prevented the development of anovulatory sterility in 

adulthood, i.e. had a feminizing effect that overrode the 

masculinizing effect of testosterone. 

In a later study conducted by Jacobson et al. {1989) the 

medial preoptic area was found to be 

catecholamine-containing terminals. In 

catecholamine innervations were found 

a region rich in 

addition, these 

to be sexually 

dimorphic, with the female MPNc receiving a greater density of 

terminals than the male MPNc (Jacobson et al., 1989). This 

work would seem to imply that there is a sexually dimorphic 

innervation pattern of catecholaminergic stimulation that 

either enhances or causes sexual dimorphisms in MPNc volume. 

Therefore, if Raum and Swerdloff 's research concerning 
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norepinephrine is correct, it would be reasonable to 

hypothesize that cocaine, which has been found to indirectly 

increase the number of norepinephrine postsynaptic receptors 

(Dackis and Gold, 1987) , would interfere with androgen­

dependent brain sexual differentiation. 

Indeed, a recent study conducted by Chasnoff et al. 

(1988) supported the hypothesis that cocaine interferes with 

some aspects of somatic sexual differentiation. This study 

reported the existence of genitourinary tract anomalies in 

cocaine-exposed infants. Of the fifty cocaine-exposed 

infants, nine demonstrated anomalies, some infants exhibiting 

more than one malformation. Anomalies among the fifty infants 

included: female pseudohermaphroditism (4%), hydronephrosis 

(14%), ambiguous genitalia (4%), and anal atresia (4%). 

Ultrasound examination of one female infant revealed the 

absence of both the uterus and ovaries. In addition, the 

Center for Disease control (1989) reported urogenital tract 

malformations in the offspring of women using cocaine during 

early pregnancy. Most recently, a study conducted by El-Bizri 

et al. (1991) confirmed cocaine's teratogenic potential on the 

genitourinary tract in rats. This study found a dose­

dependent increase in such soft tissue malformations as 

enlarged bladders and 

intraperitoneal dosages. 

hydronephrosis at increasing 

In addition, perinatal cocaine 

exposure was also found to reduce sperm counts by 40% in male 

pups exposed to only 10 mg/kg of cocaine (McGivern et al., 
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1989). Further, research done by Raum et al. (1990) has 

suggested that exposure to cocaine compromises sexual 

differentiation of the male brain by interfering with 

hypothalamic nuclear incorporation of testosterone and 

estradiol during the critical perinatal period for MPNc 

development. Thus, there is sufficient evidence to support 

the idea that perinatal cocaine exposure compromises both 

sexual differentiation of the brain as well as the 

genitourinary tract. 

Brain sexual differentiation has been hypothesized to be 

controlled by the preoptic-anterior hypothalamic area (Gorski, 

1974). Gorski et al. (1978) have recently discovered a 

hypothalamic nucleus, the medial preoptic nucleus - central 

part (MPNc), that is hypothesized to be involved in sexual 

differentiation of the brain. The volume and shape of this 

nucleus have been found to be sexually dimorphic in rats 

(Gorski et al., 1978), ferrets (Tobet et al., 1986), gerbils 

(Commins and Yahr, 1984), monkeys (Bubenik and Brown, 1973; 

Ayoub et al., 1983), and most recently in humans (Swaab and 

Fliers, 1985; Allen et al., 1989; Levay, 1991). In rats, the 

MPNc has been found to be three to eight times larger in males 

than in females (Gorski et al., 1978; Gorski et al., 1980; 

Jacobson et al., 1981; Jacobson et al., 1985; Handa et al., 

1986; Jacobson et al., 1989; Jarzab et al., 1990; Rhees et 

al., 1990). This morphological difference has been shown to 

be independent of the steroidal environment in the adult while 
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being profoundly influenced by the perinatal steroid 

environment (Gorski et al., 1978; Jacobson et al., 1980; 

Jacobson et al., 1981; Dohler et al., 1984A). Hence, since 

perinatal cocaine exposure has been found to influence the 

steroid environment of the developing fetus (Raum et al., 

1990; Benton et al., 1991), morphological differences might be 

observed in the size of this nucleus. 

Many different studies have implicated the medial 

preoptic area (MPOA) , of which the MPNc is a part, as a 

critical brain structure for the expression of sexual behavior 

(Heimer and Larsson, 1967; Slimp et al., 1978; Gray and 

Brooks, 1984; Turkenburg et al. 1988). Lesions in this area 

have been found to impair masculine sexual behavior in both 

male (Heimer and Larsson, 1967) and female (Gray and Brooks, 

1984) rats as well as male primates (Slimp et al., 1978). 

Lesions in the MPOA seem to promote feminine sexual responses, 

such as lordosis, in both male (Hennessey et al., 1986) and 

female (Powers and Valenstein, 1972; Turkenburg et al., 1988) 

rats. Electrical stimulation of the monkey MPOA evokes 

penile erection, ejaculation, mounting, and thrusting 

behaviors (Robinson and Mishkin, 1966). Similarly, changes in 

neuronal activity in the MPOA of the male monkey have been 

related to sexual activity (Maclean and Ploog, 1962; Robinson 

and Mishkin, 1966; Oomura et al., 1983). According to Gorski 

(1974), "It is generally accepted that neonatal androgen 

exposure in some way permanently masculinizes the preoptic-
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anterior hypothalamic area," which he suggests regulates 

ovulation in females. While the MPOA is essential for cyclic 

gonadotropin regulation in rats (Gorski, 1968), it is not 

necessary for this function in primates, but still plays a 

modulatory role (Plant et al., 1979; Pohl and Knobil, 1982). 

Therefore, if cocaine could be found to interfere with the 

development of this area, resultant complications in 

reproductive behavior as well as gonadotropin regulation could 

be postulated. 

Most interestingly, a recent study conducted by Raum et 

al. (1990) found that perinatal cocaine exposure inhibited 

uptake of sex steroids in the hypothalamus. Cocaine was found 

by Raum et al. (1990) to inhibit nuclear uptake of 

testosterone and estradiol in the hypothalamus of neonatal 

rats by approximately 50%. Further, this inhibition of 

hypothalamic nuclear uptake of sex hormones during the 

critical period for sexual differentiation has been postulated 

by Raum et al. (1990) to be responsible for demasculinization 

of adult male sex-related behaviors. Hence, if cocaine could 

be shown to influence the size of the MPNc, correlative 

evidence of a role for the MPNc in sexually differentiated 

behaviors would be obtained. 

While the reproductive behavioral consequences of 

perinatal cocaine exposure have been studied (Abel et al., 

1989; Raum et al., 1990), the possible morphological changes 

o specific brain regions have not. Therefore, it is the 
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purpose of this study to investigate the effects of perinatal 

cocaine exposure on the morphology of the MPNc. If it could 

be shown that this adrenergic uptake blocker impairs 

development and maturation of the MPNc, insight could be 

gained not only into the brain damage imposed upon the 

cocaine-exposed offspring, but also into the mechanism of 

brain sexual differentiation itself. 



MATERIALS AND METHODS 

A. Experimental Design. Thirty female Sprague-Dawley 

rats were housed with a lighting cycle of twelve hours light 

and twelve hours dark (lights on at 0700h). From these thirty 

rats, six experimental blocks were designated (see Table I). 

Each block consisted of five rats mated within a few days of 

each other. With the exception of the 30mg/kg rat, the other 

four pregnant rats in each group were randomly assigned, one 

to each treatment group. The 30mg/kg rat was mated first so 

that pair-feeding and pair-watering could be carried out (see 

below) • These blocks were created allowing one dam from each 

treatment group to be evaluated in six consecutive time frames 

to rule out technique effects, resulting from increased 

experience on the part of the investigator. 

Beginning on day 15 of pregnancy until parturition, the 

females were weighed on a pan-balance and subsequently 

injected subcutaneously with Omg/kg (two control groups), 

7.5mg/kg, 15mg/kg, or 30mg/kg of cocaine hydrochloride. A 

stock solution of cocaine was made by dissolving 30 mg of 

cocaine hydrochloride in 1 ml of sterile 0.9% (w/v) saline. 

This stock solution was diluted with saline and injected into 

the rats belonging to the 15 mg/kg and the 7.5 mg/kg treatment 

groups so that the final volume of each injection was 

13 
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Table 1. Experimental Design. 

TREATMENT GROUP 

NO PF/W PF/W 7.5MG/KG 15MG/KG 30MG/KG 

MALE 6* 6 6 6 6 

FEMALE 6 6 6 6 6 

*Number of pups analyzed in each treatment group. 
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equivalent to that administered to the 30 mg/kg treatment rat 

in each experimental block on the specified day of pregnancy. 

For example, if a 15mg/kg rat weighed 2oogm, and the 

30mg/kg rat received a total injection volume of 0.20ml on 

this gestational day, O. lml of cocaine stock solution in 

addition to O.lml of saline would be drawn. The volume of 

injections ranged between o. 23ml-O. 45ml. Control animals were 

injected with sterile saline at an equivalent volume as was 

injected into the 30 mg/kg rat on the specified day of 

pregnancy. All injections were given at 0800h. 

Beginning also on day 15 of pregnancy until parturition, 

the pregnant females were pair-fed and pair-watered according 

to the 30mg/kg treatment group animals. Pair-feeding and 

pair-watering were employed to rule out a possible 

malnutrition effect confounding the results obtained for the 

cocaine-treated animals. This was accomplished by weighing 

the food and water consumed by the 30mg/kg treatment group 

animals on day 15 of gestation onward. Except for the first 

control group, this amount of food and water was given to the 

other three treatment animals in the experimental block on the 

same gestational day as the 30mg/kg treatment animal. The 

first control group animal in the block was neither pair-fed 

nor pair-watered in order to differentiate between effects of 

malnutrition and effects of cocaine exposure upon brain 

development. All 30mg/kg treatment animals were mated first 

so that the amount of food and water consumed on each 
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gestational day was established for the other four treatment 

animals in each experimental block. 

At parturition, four male and four female pups from each 

litter were cross-fostered. Cross-fostering was accomplished 

by mating a surrogate dam at the same time as each treatment 

animal. At birth, the surrogate pups were removed and 

replaced with the eight treatment pups to rule out possible 

postgestational malnutrition and caretaking effects. These 

pups were weighed every day and continued to receive 

subcutaneous cocaine hydrochloride injections for 10 days 

post-gestation during their critical period of brain sexual 

differentiation. This time frame of cocaine injections (from 

day 15 of gestation until day 10 postpartum) was based upon 

previous studies on the developmental sensitivity (the period 

during which hormones have been found to influence the volume 

of the MPNc) of the MPNc to hormones. Developmental 

sensitivity has been shown to begin on day 18 of gestation 

(Rhees et al., 1990) and continue through days 7-10 postpartum 

(Dunlap et al. , 1978) . The concentration of the pup 

injections remained consistent with their parent's treatment 

group specifications. This continuation of maternal cocaine 

dosage was chosen because according to Dow-Edwards (1990), rat 

maternal and fetal plasma cocaine levels are essentially the 

same by fifteen minutes after administration to the mother. 
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B. Perfusions. on day ten of postnatal life one male 

and one female pup were obtained from each dam. These pups 

were anesthetized with either Methoxyflurane or ethyl-ether. 

once deep anesthesia was achieved, an intracardiac injection 

of one hundred units of heparin in 0.10 ml was administered. 

one minute later, an intracardiac perfusion was performed by 

making an incision in the bottom of the left ventricle and 

inserting a canula gently upward into the ascending aorta. 

The first perfusate, 0.9% saline (w/v), was flushed through 

the rat's circulatory system until the rat had become 

exsanguinated. Two-hundred milliliters of the second 

perfusate, 10% formalin in 0.10 M sodium phosphate (pH 7.4), 

were subsequently flushed through the rat's circulatory 

system. The total perfusion time lasted approximately thirty 

minutes. Following this procedure, the pups were decapitated, 

their brains removed and stored the same solution of 10% 

formalin in 0.10 M sodium phosphate at 4°C. Brains were 

allowed to postfix in the 10% formalin in O. 10 M sodium 

phosphate for a minimum of two weeks. Following postf ixation, 

the brains were transferred to a solution composed of 30% 

sucrose (w/v), 10% formalin in 0.10 M sodium phosphate for a 

minimum of four days, were subsequently embedded in 20% 

gelatin (w/v). The gelatin block was allowed to fix in the 

30% sucrose, 10% formalin in 0.10 M sodium phosphate for a 

minimum of one week to ensure proper sectioning. 
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c. sectioning and Staining. The brains were sectioned 

at a thickness of 60 um on a dry-ice freezing microtome. This 

thickness was chosen to ease the identification of the 

boundaries of the MPNc. According to studies done by Gorski 

et al. {1980), the boundaries of the MPNc of thinner sections 

become "much 

analysis of 

more difficult to recognize. 11 

thinner sections (6 um) has 

In addition, 

been found to 

underestimate MPNc volume (Allen et al. , 1988) . The volume of 

the rat MPNc was reported to be underestimated by 

approximately 60% when 6 um sections were employed over 60 um 

sections for analysis {Allen et al. , 1988) • Following 

sectioning, serial sections were mounted onto gelatin-coated 

slides and stained. Briefly, sections were dehydrated with 

alcohol, defatted with xylene, rehydrated with distilled 

water, stained with an aqueous solution of 0.1% thionin in 

0.10 M sodium acetate buffer (Ph 5.2) for 3 to 4 minutes, 

differentiated with alcohol, and finally coverslipped with 

Permount (Gorski et al., 1978). Both thionin and Cresyl 

violet staining have been employed for processing MPNc tissue 

sections in earlier studies. Thionin staining was chosen for 

this project because studies conducted by Gorski et al. (1980) 

found that Cresyl violet failed to differentiate the MPNc from 

the surrounding medial preoptic area. Earlier studies done by 

Gorski et al. (1978) employing thionin staining found the MPNc 

to be "intensely stained" in comparison with the surrounding 

medial preoptic area. Since defining the boundaries of the 
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MPNc apart from the surrounding medial preoptic area was of 

critical importance in determining the volume of the MPNc, a 

stain was chosen that maximizes this contrast. 
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D. MPNc Volume and Brain Volume Determinations . ... 

Following these histological procedures, the volumes of the 

MPNc were determined for five brains from each treatment 

group. This was accomplished by employing a series of 

standard tracing and computer procedures (Gorski et al., 1978; 

Gorski et al, 1980; Barron et al., 1988; Allen et al., 1989; 

Jarzab et al., 1990). MPNc sections were projected onto paper 

with the aid of a microprojector set at 25X magnification. 

For each section, the boundaries of the left and right MPNc 

were drawn, as defined by the structural criteria of Robert 

McGivern at the University of California Los Angeles School of 

Medicine (Neptune Soleimanzadeh, University of California Los 

Angeles, personal communication, 1992). These criteria 

included specifications concerning location landmarks, roughly 

the number of sections the MPNc can be found in, cellular 

density, cell size, and staining criteria. In terms of 

location landmarks, the MPNc can be easily identified as the 

darkest-staining area half-way between the closed anterior 

commissure and the optic chiasm. The MPNc can be found in 

roughly eight to twelve sections, depending upon the angle at 

which the brain was cut. The MPNc contains larger neurons 

with approximately 33% more cells/unit area than does the 

surrounding medial preoptic area. Lastly, the MPNc stains 

roughly as darkly as the suprachiasmatic nucleus. The MPNc 

drawings were done in a "blind" fashion to prevent 

experimental bias on the part of the investigator. ~riefly, 
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the brains were coded so that the sex and treatment group of 

the pups were unknown at the time of measurement. These 

tracings of the MPNc were made from the microprojector onto 

paper and the resultant areas were calculated with the aid of 

the computer program BIOQUANT II (Bioquant Apple Program 

version 2.1; R & M Biometrics) with a digitalizing pad (Allen 

et al., 1989) . The MPNc volumes were subsequently computed by 

summing all the MPNc areas and then multiplying this sum by 

the section thickness (60 um) (Barron et al., 1988; Allen et 

al. f 1989) • 

A rough index corresponding to total brain volume was 

calculated by determining the area of the first brain section 

containing the suprachiasmatic nucleus (SCN) and multiplying 

this area by the section thickness (60 um). This measure was 

calculated to see if MPNc volume changed re la ti ve to total 

brain volume to ensure that any changes observed in the MPNc 

were due to volume changes in the nucleus itself and not 

merely resultant changes arising from overall changes in brain 

volume. Such an index has been demonstrated to represent an 

accurate assessment of overall brain size (Jacobson et al., 

1980). Whereas Jacobson et al. ( 1980) employed the indexes of 

brain height and brain width from one representative section, 

this study employed the index of brain volume from one 

representative section. A volumetric index was chosen over a 

linear measure to allow a ratio of the (MPNc volume)/(brain 

volume index) to be calculated. 
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E. Statistical analyses. The effect of cocaine and sex 

upon the measured gestational parameters were determined by a 

two-way analysis of variance (ANOVA}. When a significant F­

value was obtained, means of the right MPNc volumes among the 

treatment groups were compared by the parametric Newman-Keuls 

Test (Zar, 1984). This parametric multiple comparison test 

was employed because the assumption of population normality 

had been previously accepted in the literature (Gorski et al., 

1978; Gorski et al., 1980; Jacobson et al., 1981; Dehler et 

al. , 1982; Commins and Yahr, 1984; Dehler et al., 1984A; 

Anderson et al., 1986; Handa et al., 1986; Barron et al., 

1988; Allen et al., 1989; Cherry and Baum, 1990) and the 

assumption of homogeneity of variance in the present study was 

confirmed by the use of the Bartlett test (Zar, 1984). 

Paired t Tests were performed for comparison of results 

obtained from the left and right sides of the brain. This 

statistical analysis was employed to determine whether the 

right and left nuclei differed significantly in terms of 

volume. While both right and left MPNc volumes were analyzed 

to determine if they differed significantly, only right MPNc 

volumes were utilized for all other MPNc analysis. This 

decision was made due to the fact that the left MPNc had 

tissue tears through the nucleus itself. Finally, linear 

regression analyses were performed to determine lines of "best 

fit" to express the relationship between cocaine dosage and 

MPNc volume. 



RESULTS 

A. Gestational Parameters. 

1. Maternal Weight Gain. Treatment group and block were 

found to have a significant effect upon maternal weight gain 

(p<O. 01) . Non-pair-fed, non-pair-watered controls showed 

significantly greater maternal weight gains (p<0.001) than 

pair-fed, pair-watered controls or any of the three cocaine 

treatment groups. However, the three cocaine treatment groups 

and the pair-fed, pair-watered controls showed no 

statistically significant (1.0>p>0.50) differences in their 

maternal weight gains (see Fig. 1). 

2. Litter Size. Treatment group, block, and the 

interaction between the treatment group and experimental block 

were all found not to have any effect (1.0>p>0.50) upon dam 

litter size (see Fig. 2). Litter sizes ranged from 10-20 pups 

in the two control groups and from 5-19 in the cocaine 

treated groups. Non-pair-fed, non-pair-watered controls had 

a mean litter size of 16.000; pair-fed, pair-watered controls 

had a mean litter size of 13.167; 7.5mg/kg treatment dams had 

a mean litter size of 15.000; 15 mg/kg treatment dams had a 

mean litter size of 15.5; and 30mg/kg treatment dams had a 

mean litter size of 12.571 pups. 
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Fig. 1. Effect of treatment group on maternal weight gain. 
Bars represent the mean +/- S.E.M. of 6 replicates. 
Non-pair-fed controls gained significantly more weight than 
other treatment groups (p<0.05). 
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Fig. 2. Effect of cocaine on litter size. Bars represent 
the mean+/- S.E.M. of 6 replicates. Treatment group 
had no effect upon the size of the litter delivered by 
each dam. 
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3. Maternal Weight Gain Per Pup. Treatment group 

and experimental block were found to have a significant 

(p<0.01) effect upon maternal weight gain/litter size (see 

Fig. 3). When compared to the non-pair-fed, non-pair-watered 

controls, the cocaine-treated dams and the pair-fed, pair­

watered dams exhibited a reduction in maternal weight gain 

(see Fig. 3). When compared to the pair-fed, pair-watered 

controls, none of the cocaine-treatment dams exhibited a 

significant (1.0>p>0.15) reduction in maternal weight gain 

(see Fig. 3) . 

4. Pup Weight. Treatment group and block were not found 

to have a significant effect (0.75>p>0.15) upon the pup 

weights as measured on day ten of postnatal life (see Fig. 4). 

s. Male-Female sex Ratio. Treatment group, experimental 

block, and the interaction between treatment group and block 

were all found not to affect the male-female sex ratio (total 

number of males/litter size) (0.75>p>0.50) (see Fig. 5). 

6. Gross Birth Defects. 

observed in any of the pups 

No gross birth defects were 

( 489 total) from any of the 

litters in the five treatment groups. 
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Fig. 3. Effect of cocaine on maternal weight gained per 
pup. Bars represent the mean +/- S.E.M. of 5-6 replicates. 
Only non-pair-fed controls were statistically different 
(p<0.05) from other treatment groups. 
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Fig. 4. Effect of cocaine on pup weight. Bars represent 
the mean +/- S.E.M. of 5-6 replicates. Treatment group 
had no effect (0.25>p>0.10) on the weight of the pups. 
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FIG. 5. Effect of cocaine upon the sex ratio (males/total pups). 
Bars represent the mean +/- S.E.M. of 6 replicates. Treatment 
group had no effect (0. 75>p>0.50) upon the sex ratio. 
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B. MPNc Measurements. 

1. MPNc Volumes. Photographs of representative sections 

containing the MPNc are shown for a control female, control 

male, and a 30 mg/kg treatment male (see Fig. 6-8). Treatment 

group, sex, and the treatment-sex interaction were all found 

to have a significant effect upon MPNc volume {p<0.010). One 

way ANOVAs revealed that cocaine was found to have a 

significant inhibitory effect (p<O. 001) upon male MPNc volumes 

while not affecting the female MPNc volumes {1.0>p>0.75). 



Fig. 6. Representative section through the MPNc of 
a control female. Magnification = 296X. 



Fig. 7. Representative section through the MPNc of 
a control male. Magnification = 296X. 



-~--------~----------------------

Fig. 8. Representative section through the MPNc of 
a male treated with 30 mg/kg cocaine. 
Magnification = 296X. 
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While the female MPNc volumes were statistically 

indistinguishable among all the treatment groups (see Fig. 9), 

a decrease in male MPNc volumes was observed in the cocaine-

treated pups (see Fig. 10). This relationship between the 

dose of cocaine administered and MPNc volume resulted in a 

linear regression equation of Y = -0. 451X + 24. 577 with a 

squared multiple r equal to 0.422 when the cocaine doses were 

plotted in a linear fashion against the male MPNc volumes. 

When the logarithm of cocaine dosages were plotted against the 

male MPNc volumes, this relationship resulted in a linear 

regression equation of Y = -9.269X + 26.557 with a squared 

multiple r equal to 0.933 (see Fig. 11). These data would 

seem to indicate that this dose-response relationship best 

fits a logarithmic curve. However, the possibility of an 

"all-or-none" effect of cocaine upon male MPNc development 

still exists in that the volumes for the cocaine treatment 

groups were not found to differ significantly from one another 

(0.75>p>.35). 

2. Index of Brain Volume. A rough measure of overall 

brain volume was calculated by computing an index of brain 

volume. This index of brain volume was computed by 

determining the area of the most rostral section of each brain 

that contained the suprachiasmatic nucleus (SCN) and then 
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Fig. 9. Effect of cocaine upon right female MPNc volumes. 
Bars represeent the mean +/- S.E.M. of 5 replicates. 
Treatment group had no effect (1.0>p>0.75) upon female 
MPNc volumes. 
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Fig. 10. Effect of cocaine upon male right MPNc volume. 
Bars represent the mean +/- S.E.M. of 5 replicates. 
Cocaine had a significant (p<0.05) inhibitory effect 
upon male MPNc volume. 
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multiplying this area by the section thickness (60 um). These 

computed measures of rough brain volume were then analyzed by 

a two factor ANOVA. Treatment group (0.75>p>0.50), the sex 

(1.0>p>0.75) of the pup, and the treatment*sex interaction 

(1.0<p<0.75) were all found to have no effect upon the 

calculated measure of overall brain volume size (see Fig. 12). 

3. (MPNc Volume)/ (Brain Volume Index) Ratio. Once a 

rough measure of total brain volume was determined, a ratio of 

MPNc volume to "total" brain volume was calculated and then 

analyzed by a two factor ANOVA. This statistical test was 

performed to determine if the changes observed in MPNc volume 

were the result of overall changes in brain size or rather the 

result of changes in the nucleus itself. The two factor ANOVA 

revealed that there were indeed significant sex (p<0.001) and 

treatment group (0.005>p>0.001) effects when this ratio was 

employed. The treatment group*sex interaction did not 

significantly affect this ratio (0.50>p>0.25). Further, a 

Newman-Keuls posthoc test confirmed that there were no 

differences (1. O>p>O. 75) among the various treatment groups in 

female (MPNc volume)/(brain volume) ratios (see Fig. 13) as 

was observed when the female MPNc volumes were compared. In 

addition, the cocaine-treated male (MPNc volume)/(brain 

volume) ratios were significantly (p<O .10) lower than the 

control male (MPNc volume)/(brain volume) ratios (see Fig. 
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Fig. 12. Index of brain volume. Bars represent the mean 
+/- S.E.M of 5 replicates. Treatment group (0.75>p>0.50) 
and sex (1.0>p>0.75) had no effect upon the index of 
brain volume. 
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Fig. 13. Effect of cocaine upon female MPNc 
volume/brain volume. Bars represent the mean 
+/- S.E.M. of 5 replicates. Treatment group had 
no effect upon female MPNc volume/brain volume. 
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14). These results confirmed the above findings that 

differences observed between cocaine-treated and control­

treated MPNc volumes were the result of changes in this 

nucleus itself and not merely resultant changes arising from 

overall changes in brain size. 

With the confirmation of differences among the male 

treatment groups, a linear regression analysis was again 

employed to determine a line of "best fit" to express a 

possible relationship between the dose of cocaine administered 

and MPNc volume. This relationship resulted in a linear 

regression equation of Y = -o .134X + 7. 822 with squared 

multiple r equal to o. 713 when the cocaine dosages were 

plotted in a linear fashion against the average MPNc volumes. 

When the logarithm of the cocaine dosages were employed, this 

relationship resulted in a linear regression equation of Y = -

2.787X + 8.435 with a squared multiple r equal to 0.935 (see 

Fig. 15) . Again, these data would seem to indicate and 

confirm that this dose-response relationship best fits a 

logarithmic curve. 

Thus, these data indicated that perinatal cocaine 

exposure compromised the development of the male MPNc (while 

not affecting the female MPNc), possibly in a logarithmic, 

dose-dependent manner. Furthermore, this decrease in male 

MPNc volume was not due to an overall decrease in brain size, 

but rather was specific to the MPNc. 
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+/- S.E.M. of 5 replicates. Cocaine had a significant 
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IV. DISCUSSION 

The purpose of this project was to test the hypothesis 

that perinatal cocaine exposure (gestational day 15 through 

postnatal day 10) compromises the development of the medial 

preoptic nucleus - central part (MPNc), a nucleus involved in 

sexual differentiation of the brain. Other gestational 

. parameters were also studied ensure findings of this project 

were in line with those of the literature in order to more 

confidently test a novel hypothesis. This hypothesis was 

tested by comparing volume of the MPNc in male and female pups 

exposed to Omg/kg, 7.5mg/kg, 15mg/kg, and 30mg/kg of cocaine 

perinatally. In addition, an index of brain volume was 

obtained to ensure that any changes observed in MPNc volume 

were due to volume changes in the nucleus itself and not 

merely resultant changes arising from overall changes in brain 

volume. This index of brain volume was determined by 

measuring the area of the most rostral section containing the 

SCN and multiplying this area by the section thickness (60um). 

The ratio of (MPNc volume)/ (brain volume index) was also 

calculated to allow comparison of adjusted MPNc volumes 

encompassing possible changes in overall brain volume. 

Gestational parameters such as maternal weight gain, litter 

44 
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size, maternal weight gain per pup, pup weight, male/female 

sex ratio, and gross birth defects were studied to verify that 

the findings of this project were in line with those reported 

in the literature. This framework allowed for the more 

confident testing of a novel experimental measure, that being 

the effect of cocaine upon the development of the MPNc. 



A. Potential outcomes. 
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Several different 

experimental outcomes of cocaine's effect on MPNc volume could 

have been postulated prior to the execution of this project. 

First, some previous literature predicted that cocaine 

would have no effect upon the volume of the female MPNc, while 

significantly decreasing the volume of the male MPNc. Studies 

done by Raum et al. (1990) showed that cocaine decreased 

hypothalamic uptake of gonadal steroids by 50%. Earlier 

studies had found the volume of the MPNc to be profoundly 

influenced by the steroidal environment of the medial preoptic 

area from day eighteen (Dehler et al., 1984B; Rhees et al., 

1990) of gestation through day ten of postnatal life (Dunlap 

et al., 1978; Jacobson et al., 1981). Since this was 

precisely the time frame that the pups were exposed to the 

drug, cocaine could have been postulated to inhibit the 

hypothalamic uptake of the steroids testosterone and estradiol 

in males, resulting in a volume reduction in the MPNc. 

According to this hypothesis, the female MPNc would not be 

affected, since females are not believed to be exposed to 

gonadal steroids during their critical period of brain sexual 

differentiation (Gorski, 1974). In fact, it has been accepted 

that masculinization of the brain occurs by this gonadal 

steroid exposure during the critical period (Gorski, 1974). 

Second, it would also have been reasonable to 

hypothesize, previous to this study, that cocaine exposure 

could inhibit the development of not only the male MPNc, but 
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also the female MPNc to a much lesser extent. Although this 

hypothesis was less likely for the reason stated above, it was 

possible that the female hypothalamus has some gonadal steroid 

uptake, al though to a much lesser extent than that of the 

male. 

Third, it would have been possible to hypothesize that 

cocaine could have actually increased the volume of the MPNc. 

This result would have been possible if cocaine inhibited the 

synthesis of the neurotransmitter serotonin in the MPNc. 

Previous studies had shown that cocaine has a serotonin­

depleting effect upon the brain and reduces serotonin 

synthesis from its precursor, tryptophan (Schubert et al., 

1970; Knapp and Madell, 1972). Randa et al. (1986) reported 

an increase of MPNc volume in one-day-old female rats after 

prenatal inhibition of serotonin synthesis with para­

chlorophenylalanine. In their discussion, the authors argued 

for a direct, steroid-independent effect of para­

chlorophenylalanine on the development of the MPNc. If 

cocaine were to exert a similar serotonin-inhibiting action 

upon the MPNc, it might have been found to augment MPNc 

development in a steroid-independent manner. 

Cocaine could also have been postulated to augment the 

volume of the MPNc if it could be shown that cocaine utilized 

a similar mechanistic pathway as the beta-2-receptor agonist, 

salbutamol. In a study conducted by Jarzab et al. (1990), 

salbutamol, a beta-2-receptor agonist, was found to increase 



the volume of the MPNc in both male and female rats. 
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This 

effect was particularly impressive in males because previous 

studies utilizing pre- and/or postnatal treatment of male rats 

with large amounts of gonadal steroids had been unable to 

increase the volume of the MPNc above normal (Dohler et al., 

1984A) • Thus, if cocaine acted in a similar fashion to 

salbutamol on the MPNc, then increases in both male and female 

MPNc could have been predicted. 

Last, it was possible that cocaine would fail to 

influence the size of either the male or female MPNc with 

statistical significance. This possible outcome would have 

resulted if indeed cocaine had no effect upon the development 

of the MPNc. If this were actually the case, this study would 

raise questions concerning the precise role of the MPNc in 

brain sexual differentiation in rats due to the fact that 

cocaine had been previously shown to demasculinize adult male 

sex related behaviors (McGivern et al., 1989; Raum et al., 

1990). This study was therefore imperative to ascertain not 

only the possible effects of cocaine on MPNc development, but 

also to further elucidate the pathway of brain sexual 

differentiation. 
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B. Gestational Effects. In this study, no effects of 

treatment group were found upon any of the gestational 

parameters (litter size, pup weight, male/female sex ratio, 

and gross birth defects) with the exception of maternal weight 

gain and maternal weight gain per pup. The lack of effect of 

cocaine upon these gestational parameters is consistent with 

numerous perinatal studies in which similar dosages of cocaine 

were administered (Fantel and MacPhail, 1982; Church et al., 

1988; Abel et al., 1989; Fung et al., 1989; Hutchings et al., 

1989; Spear et al., 1989; Dow-Edwards, 1990; Dow-Edwards et 

al., 1990; Henderson and McMillen, 1990; Raum et al., 1990; 

Sobrian et al., 1990; Vasa et al., 1990; El-Bizri et al., 

1991) . 

In a study conducted by Abel et al. (1989) employing the 

same subcutaneous dosages used in this experiment, no 

significant differences in litter sizes were observed between 

the control- and cocaine-treated dams. These researchers also 

reported that this maternal cocaine dosage did not 

significantly affect the number of implants or fetal 

resorptions. The present results in which cocaine was found 

not to affect litter size are consistent with other perinatal 

cocaine studies in which similar dosages of cocaine were 

administered to gravid dams (Abel et al., 1989: Fung et al., 

1989; Hutchings et al., 1989; Spear et al., 1989; Dow-Edwards 

et al., 1990; Raum et al., 1990; Sobrian et al., 1990; 

Henderson and McMillen, 1990; Vasa et al., 1990). 
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Treatment group was found, however, to have a significant 

effect upon maternal weight gain. The cocaine-treated dams 

and the pair-fed, pair-watered controls were found to gain 

significantly less weight than did the non-pair-fed, non-pair­

watered controls. These results in which cocaine-treated dams 

were found to gain less weight than non-pair-fed, non-pair­

watered controls are consistent with other perinatal cocaine 

studies (Abel et al., 1989; Fung et al., 1989; Hutchings et 

al., 1989; Dow-Edwards et al., 1990; Henderson and McMillen, 

1990; Sobrian et al., 1990; Vasa et al., 1990). These results 

therefore reiterate the importance of pair-feeding and pair­

watering in perinatal cocaine studies to remove possible 

maternal nutritional effects from confounding the data. These 

data would also suggest that most of the statistical 

differences observed in maternal weight gain were due to the 

appetite-suppressing effects of cocaine. Since cocaine­

treatment was not found to significantly affect litter size or 

pup weights, it could be postulated from these findings that 

gestational cocaine use has deleterious consequences on 

maternal health apart from those on the developing fetus(es). 

It is an interesting finding of this and other studies 

that while cocaine-exposed dams exhibited an anoretic 

reduction in weight gain, perinatally-exposed pups did not 

(Church et al., 1988; Abel et al., 1989; Spear et al., 1989; 

Dow-Edwards et al., 1990; Raum et al .. 1990; Vasa et al., 

1990; El-Bizri et al., 1991). The lack of pair-feeding and 
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pair-watering in the newborn pups cannot account for this 

effect, since this would be expected to further increase the 

weight difference between the cocaine-injected and saline­

injected pups. Indeed, this was not found to be the case. 

While this study did not investigate cocaine's effects upon 

ingestive behavior, it might be postulated that the 

discrepancy between the two cases may be due to an immaturity 

in the neural circuitry controlling ingestive behavior in the 

pups. The ventromedial hypothalamic nucleus (VMH) is a region 

implicated in the control of ingestive behavior (Hughes et 

al., 1987). Neuronal genesis with maturation of synaptic 

contacts in the VMH has been reported to occur between 

gestational day 14 and the early postnatal period (Lauder, 

1983). Of note, Dow-Edwards et al. (1990) reported that in 

rats exposed to cocaine prenatally, glucose metabolism in the 

VMH was significantly decreased by 31%. This decrease in VMH 

glucose metabolism was greater than in any other selected 

structure in the brain. A reduction in glucose metabolism in 

the VMH during its period of development may thus result in a 

delayed maturity of the neural circuitry controlling ingestive 

behavior. such a delay could explain why the cocaine-exposed 

pups failed to exhibit an anoretic decrease in weight gain. 

In terms of cocaine's teratogenic potential upon the 

developing fetus, this study failed to find any observable 

gross birth defects among the cocaine-exposed infants. This 

finding is consistent with the literature (Fantel and 
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MacPhail, 1982; Dow-Edwards, 1988; Abel et al., 1989; Fung et 

al., 1989; Hutchings et al., 1989; Sobrian et al., 1990; Vasa 

et al., 1990; El-Bizri et al., 1991). Some studies employing 

dosages of 30 mg/kg of cocaine or less have reported a low 

incidence (one or two) gross birth defects (Henderson and 

McMillen, 1990; Raum et al., 1990). This discrepancy in the 

literature could be due to the rate of gross birth defects in 

the population perinatally exposed to cocaine. If this rate 

of gross birth defects was one pup out of 500 pups, then it 

would be just as likely to find one birth defect as it would 

be to find zero. 

Summarizing this portion of the project, it was seen that 

the treatment group significantly affected the maternal weight 

gain in general as well as maternal weight gain per pup. The 

non-pair-fed, non-pair-watered controls were found to gain 

more weight than any of the cocaine-treated dams or the pair­

fed, pair-watered controls. There were no significant 

effects of treatment group on litter size, pup weight, sex 

ratio, or occurrence of gross birth defects. These findings 

are all in corroboration of previous studies. In addition, 

these findings set up an experimental framework to test a 

significant novel hypothesis, namely, that cocaine would 

affect the development of the brain, in particular, the MPNc. 
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c. Neuroanatomical Effects. 

The neuroanatomical measures studied in this project were 

a computed index brain volume, MPNc volume, and the MPNc 

volume/brain volume index. Cocaine treatment and sex of the 

pup were not found to have any effect upon the computed index 

of brain volume. This finding is in agreement with other rat 

studies which found no differences in brain size between 

control males and females after perfusion (Gorski et al. , 

1980; Jacobson et al., 1980; Robinson et al., 1986; Baron et 

al. t 1988) o 

The MPNc volumes obtained in the measurement of control 

males and females were also found to be in agreement with 

those reported in the literature (Jacobson et al., 1980). 

Jacobson et al. (1980) found male MPNc volumes to average 

around 0.0260 mm3
, and this study found control MPNc volumes 

3 to average around 0.0255 mm in ten day old pups. Likewise, 

Jacobson et al. (1980) found ten day old female MPNc volumes 

to average around 0.0120 3 mm, and this study determined 

control female MPNc volumes to average around o. 0123 mm3
• 

While many findings in this study have repeated what has 

been reported in the literature, the novel finding of this 

project was that male MPNc volumes were reduced in pups 

perinatally-exposed to cocaine. Cocaine was found to decrease 

the volume of the male MPNc, while having no effect upon the 

female MPNc. A similar result was obtained in another study 

conducted by Barron et al. (1988) in which the effects of 
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prenatal alcohol exposure upon the MPNc of male and female 

rats were studied. These researchers found that both the 

volume and average cell size were markedly smaller in alcohol­

exposed males relative to the control males. In contrast, 

prenatal alcohol exposure did not affect the MPNc volume or 

cell size in females. The authors postulated that this 

reduction in male MPNc volume was due to impairment of brain 

masculinization during the critical period of development for 

this nucleus. Since it had been demonstrated earlier that 

both chronic (Ylikahri et al., 1974; Gordon et al., 1976) and 

acute (Lester and Van Theil, 1977; Gordon et al., 1978) 

alcohol consumption lowers sex steroids in males, in 

particular testosterone synthesis in the testes (Cicero et 

al., 1980; Ficher and Levitt, 1980), the researchers 

postulated that alcohol decreased testosterone synthesis in 

the male fetal testes. This postulated decrease in fetal 

testosterone during the perinatal critical period had been 

previously shown to decrease the volume of the male MPNc 

(Gorski et al., 1978; Gorski et al., 1980; Jacobson et al., 

1981; Dehler et al., 1982). 

While alcohol has been postulated to reduce male MPNc 

volume indirectly by decreasing fetal testosterone synthesis 

in the testes (Barron et al., 1988), cocaine may be 

hypothesized to reduce male MPNc volume directly by inhibiting 

hypothalamic nuclear uptake of estradiol and testosterone. 

This hypothesis is supported by the work of Raum et aL ( 1990) 
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who found 'prenatal inhibition of hypothalamic sex steroid 

uptake by cocaine. In this study female pups delivered on day 

22 of gestation by cesarean section were injected 

subcutaneously within 30 minutes of delivery with either 

saline or 10 mg/kg cocaine. Thirty minutes postinjection, all 

animals were injected intracerebroventricularly with 25 

microci of tritiated testosterone and were decapitated 60 

minutes later. When the nuclear concentrations of 

testosterone and estradiol incorporated into the hypothalami 

were measured, it was discovered that cocaine inhibited the 

mean nuclear incorporation of testosterone and estradiol by 

46% and 51% respectively. 

In their discussion, Raum et al. (1990) postulated that 

their data indicate that prenatal exposure to cocaine will 

disrupt normal sexual differentiation of the male brain by 

interfering with nuclear incorporation of testosterone and 

estradiol during the critical perinatal period. The results 

obtained from this thesis support their hypothesis by 

providing neuroanatomical evidence for such a disruption in 

sexual differentiation of the male brain. Further, the 

results of this project provide a neuroanatomical basis to 

support reported resultant impairment of male reproductive 

behavior induced by perinatal exposure to cocaine (McGivern et 

al., 1989; Raum et al., 1990). 

Just how cocaine is able to inhibit hypothalamic 

incorporation of estradiol and testosterone was recently 
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elucidated by Benton et al. (1991). These researchers found 

that beta-1-adrenergic stimulation by cocaine inhibited a 

critical step in neuronal sexual differentiation - estradiol 

nuclear receptor binding. Since beta-1-adrenergic stimulation 

was shown previously to inhibit nuclear accumulation of 

estradiol in hypothalamic nuclei (Raum et al., 1984), beta­

adrenergic stimulation caused by cocaine (Seidler, 1991) was 

hypothesized to be responsible for this inhibited receptor 

binding. This hypothesized effect could be mediated by cyclic 

AMP (CAMP) . Resultant phosphorylation of the estradiol 

receptor, due to increased CAMP levels, could be found to 

block the binding of the receptor to the nuclear DNA acceptor 

sites. If this were indeed the case, decreased estradiol 

nuclear receptor binding as well as increased CAMP levels 

would need to exist. This hypothesis was confirmed in that 

cocaine was indeed found to block estradiol nuclear receptor 

binding as well as stimulate CAMP levels (Benton et al., 

1991). 

Additional studies conducted by Petitti and Etgen have 

also provided evidence supporting the hypothesis that cocaine 

interferes with masculinization of the brain by noradrenergic, 

beta-1 receptor activated CAMP formation (Etgen and Petitti, 

1987; Petitti and Etgen, 1990). These researchers found that 

beta-1-stimulated CAMP formation was reduced in the presence 

of estrogen in the preoptic area. Since estrogen binding in 

this area has been postulated to be responsible for 



57 

masculinization of the brain, substances found to decrease in 

this steroid's binding could be postulated to interfere with 

the sexual differentiation process. 

This hypothesis of cocaine-induced stimulation of beta-1 

receptors leading to the inhibition of male MPNc development 

is not contradictory to the study done by Jarzab et al. (1990) 

citing increases in MPNc volume after postnatal exposure to 

the beta-2-adrenergic agonist salbutamol. Beta-1 and beta-2 

receptors, although structurally related, differ in their 

affinity to various adrenergic agonists (Stiles et al., 1984). 

According to Katzung (1989) norepinephrine has relatively no 

effect on beta-2 receptors while having a high affinity for 

beta-1-receptors. In addition, brain sexual differentiation 

has been postulated to result from noradrenergic-steroid 

interactions (Raum and Swerdloff, 1981; Nock and Feder, 1981). 

Hence, since salbutamol binds exclusively to beta-2-adrenergic 

receptors, it operates outside of this pathway. Another 

consideration is that cocaine is known the block the reuptake 

of norepinephrine (Ritz et al., 1987), leading to an increase 

in noradrenergic postsynaptic receptors (Banerjee et al., 

1979; Chanda et al., 1979; Pert et al., 1979). This effect 

would seem to imply that cocaine alters the beta-1 

postsynaptic receptor as evidenced by its supersensitivity 

(Banerjee et al., 1979; Seidler, 1991). 

In terms of sexual differentiation, this work supports 

the role of the MPNc as one critical brain region in the 
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control of masculine sexual behavior. Since it was previously 

shown that cocaine inhibits masculine sexual behavior while 

not affecting female sexual behavior (McGivern et al., 1989; 

Raum et al., 1990), reductions in cocaine-exposed male MPNc 

volumes and not in female MPNc volumes lend anatomical support 

to MPNc 's neuronal control of masculine sexual behavior. 

Further, in light of recent work conducted by Anderson et al. 

(1986) and Cherry and Baum (1990) correlating male MPNc volume 

to coital behavior in males, this work predicts dose-dependent 

reductions in perinatally-exposed males' capabilities to 

engage in copulatory behavior. 
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D. Summary. In summary, even though cocaine was found 

to have no effect upon the developing fetuses in terms of 

litter size, pup weight, sex ratio, and occurrence of gross 

birth defects, the same doses were found to have a significant 

effect upon male MPNc development, but not upon female MPNc 

development. Cocaine was found to induce a reduction in male 

MPNc volume. Further studies, with increased sample sizes, 

would need to be done to determine if indeed this reduction in 

male MPNc volume is dose-dependent. It is possible that 

cocaine reduces MPNc in an "all-or-none" fashion in that the 

MPNc volumes from the three cocaine treatment groups did not 

differ statistically from one another. Based upon related 

studies, this reduction in male MPNc volume may be due to 

decreased hypothalamic nuclear uptake of gonadal steroids due 

to beta-1-adrenergic stimulation induced by cocaine. The 

present work further provides an anatomical correlate, 

supporting a role for the differentiated MPNc in controlling 

male copulatory behavior. The behavioral implication of these 

results is that males perinatally exposed to cocaine during 

their critical period of MPNc differentiation may exhibit 

compromised coital capabilities as well as impaired 

gonadotropin regulation. 
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