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CHAPTER 1

INTRODUCTION

Educational and psychological instruments are widely used to measure traits that are 

not directly measurable (Crocker & Algina, 1986), such as math ability and self-esteem. 

Depending on the design of the instrument and the nature of the measured trait, response 

data may represent different dimensional s tructures. One of the dimensional structures 

that has been increasingly discussed in the literature is the bifactor structure (e.g., Bolt, 

2019; Rodriguez et al., 2016; Wang et al., 2015).

In a bifactor structure, a primary (or general) dimension exists to represent the trait 

of substantive interest, and this dimension impacts the responses to all items (i.e., the 

general dimension represents the dependencies across all items). Also, one or more 

secondary (or specific) dimensions exist to represent the other traits that additionally 

impact the responses to subsets of items (i.e., the specific dimensions represent the 

dependencies in subsets of items beyond the dependencies from the general dimension), 

with these secondary traits usually being specific domains of the primary trait or altogether 

irrelevant to the primary trait (such as wording method effects; Marsh et al., 2010).

To confirm whether a  bifactor structure is represented in the response data, a  bifactor 

item response theory (IRT) model (Gibbons & Hedeker, 1992) is needed. In a bifactor IRT 

model, the item discriminations distinguish the different sources that impact the item 

responses. Such a model, then, can determine how much the general and specific 

dimensions is represented in the data, which contributes to score validity (American 

Educational Research Association et al., 2014) and provides theoretical insights about the 

measured trait (details are provided in Chapter 2; Caspi et al., 2014; Marsh, 1996).
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Unfortunately, applying the bifactor model to data has its challenges. One challenge

is an empirical identification issue (Chen & Fujimoto, 2022; Stone & Zhu, 2015) that is

seldom discussed in the literature. This issue occurs when an item’s discriminations on the

general and specific dimensions (or within-item discriminations) are similar in strength,

making it difficult to obtain accurate estimates for those discriminations.

The empirical identification issue was alluded to in Stone and Zhu (2015), where they

noted that when “multiple slope parameters are estimated for each item, the likelihood

surface may have multiple equivalent modes when the slope parameters are similar in size”

(Stone & Zhu, 2015, p. 165), leading to the estimates being indeterminate. Such equivalent

modes, then, could result in biased results that should not be interpreted. Recently, Chen

and Fujimoto (2022) provided empirical evidence of this issue and concluded that

within-item discriminations being similar in strength creates problems in estimating the

bifactor model. More importantly, they demonstrated that software may not produce error

messages to indicate that the results are impermissible when within-item discriminations

being similar creates problematic estimates, thereby leading researchers to form inferences

on results that are untrustworthy.

The current evidence regarding the empirical identification issue was shown in only

limited situations under full-information maximum likelihood (FIML) estimation method.

The extent to which the within-item discriminations have to be similar before estimation

issues arise and whether the similarity depends on sample size, strength of the item

discriminations, and item targetedness (i.e., how well the items’ response categories are

targeted to the respondents) are unclear. Also, whether the empirical identification issue

occurs under other estimation methods is unknown.

As researchers are using the bifactor model more frequently, being able to apply the

model without having concerns about the parameter estimates is critical. If the empirical

identification issue with the bifactor model occurs during their analysis without the

researchers realizing it is happening, then inaccurate results may be reported and



3
interpreted, which would mislead researchers into a false sense of score validity and

misguide their theoretical conclusions about the measured trait. Thus, a thorough

investigation on the empirical identification issue is needed, which will inform researchers

as to when they should interpret their findings or proceed with caution.

This dissertation fills the aforementioned void. Specifically, I used simulations to

investigate how similar the within-item discriminations need to be before estimation issues

arise and whether an interaction effect exists between the within-item discriminations

being similar and other factors, with these factors including sample size, magnitude of the

within-item discriminations, and item targetedness. In addition, I examined the empirical

identification issue under FIML and Bayesian estimation methods. The former is the

dominant approach to estimating IRT models, with marginal maximum likelihood (MML)

via the expectation-maximization (EM) algorithm being commonly used as the estimation

technique (DeMars, 2013). Exploring the full-information method informs researchers on

how the within-item discriminations being similar affects the discrimination estimates

under a commonly used method. With regards to Bayesian estimation, it has been gaining

momentum with IRT models (Fox, 2010), as it incorporates prior information that could be

helpful in obtaining more accurate results in situations where FIML fails (e.g., Fujimoto,

2019). By examining the Bayesian method, I would show whether the empirical

identification issue is a problem that occurs under other methods and whether assigning

priors to item discriminations could prevent the issue from happening. If Bayesian

estimation does not produce better results than FIML, then I would show that the

empirical identification issue is a concern for Bayesian methods as well and assigning priors

does not help in estimating the discrimination parameters when they are similar in

strength. If Bayesian estimation produces more accurate results, then I would provide a

solution to the empirical identification issue of the bifactor model.

In the next chapter, I provide a conceptual overview of three different types of

dimensional structure, including unidimensional, between-item-dimensionality, and bifactor
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structures. I then introduce the technical details of the IRT models that can be used to

confirm these dimensional structures, followed by a discussion of a key assumption of the

IRT models (i.e., local item independence) and the approaches to determining a bifactor

structure. Thereafter, I discuss the challenges of fitting a bifactor model and the two

estimation approaches (i.e., FIML and Bayesian estimation) I focused on. Chapter 2 ends

with the open questions I plan to answer in this dissertation. Then, in Chapter 3, I provide

the details of the method I used to investigate the conditions that lead to the empirical

identification issue. In Chapters 4 and 5, I focus on the findings, and discuss the

significance and limitations of my findings, respectively.
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CHAPTER 2

LITERATURE REVIEW

Educational and psychological instruments (or tests) are often designed to measure 

latent traits having different dimensional structures, leading to different patterns of  the 

dependencies being displayed in the responses across the items. Investigating the pattern of 

the dependencies in the item responses, then, allows researchers to determine the 

dimensional structure represented in the data. Going through the process of identifying the 

pattern is important because it has implications for score validity as outlined in Standards 

for Educational and Psychological Testing (American Educational Research Association 

et al., 2014) and can contribute theoretical insight about the measured trait (e.g., Caspi 

et al., 2014; Marsh, 1996).

Unfortunately, confirming certain dimensional structures ( i.e., confirming certain 

patterns of the dependencies in the data) could be challenging, leading to inaccurate 

estimates of the psychometric properties of the data. If researchers interpret the inaccurate 

results without realizing the inaccuracies, then they would obtain a false sense of score 

validity and possibly make misleading statements about the theoretical trait being 

measured.

For this dissertation, I focus on the challenges of confirming the bifactor structure. 

To get a better understanding of such challenges, next, I start by reviewing two

widely-represented dimensional structures—unidimensional and

between-item-dimensionality structures—and providing a conceptual overview of the item 

response theory (IRT) models related to these structures. The reason theses structures are 

reviewed first i s that the bifactor structure can be viewed as an extension of t hem. I  then
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review the bifactor structure and provide a conceptual overview of the corresponding IRT

model, followed by a discussion on why confirming a bifactor structure could be more

challenging than confirming other types of structures. The technical details of IRT models

are provided thereafter.

Dimensional Structures

The unidimensional structure is the simplest structure that could be represented in

data. Figure 1a is a visualization of such a structure represented in data arising from an

instrument consisting of ten items (i.e., Item 1 to Item 10, which are represented in the

rectangles). All items are related to (or discriminate on) a single common dimension (i.e.,

Dim 1, which is represented in the circle), as indicated by all items having arrows from

Dim 1. Such a structure conveys that the measured latent trait consists of a single

dimension, through which the dependencies in the responses across the items can be fully

determined. One example of when a unidimensional structure may be represented in data

is self-esteem data as measured by the Rosenberg’s Self-Esteem Scale (RSES; Rosenberg,

1965). The RSES contains 10 items intended to measure self-esteem. Thus, if the scale

measures only this latent trait, then only a unidimensional IRT model is needed for the

data—that is, a model that accounts for the dependencies in the responses with a single

dimension (Maydeu-Olivares & McArdle, 2005; Reise et al., 2014).

However, a single dimension is rarely able to account for all the dependencies in the

data (Reckase, 2009; Reise et al., 2014), leading to the necessity of representing the latent

trait with multiple dimensions. The two common forms of multidimensionality are

between-item- and within-item- dimensionality (Hartig & Höhler, 2008; Rauch & Hartig,

2010). In a between-item-dimensionality structure (e.g., the structure displayed in Figure

1b), more than one dimension exists (e.g., Dim 1 and Dim 2 represented in the circles in

Figure 1b), with each item measuring only one of the dimensions and the dimensions being

allowed to correlate. Thus, in Figure 1b, Dim 1 accounts for the dependencies in the

responses related to a set of items (i.e., Items 1 through 5), and Dim 2 accounts for the
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(a) An example of a unidimensional

structure
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(b) An example of a
between-item-dimensionality structure:
Correlated two-dimensional structure
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(c) An example of a
within-item-dimensionality structure:

Bifactor structure
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Figure 1. Visualizations of different dimensional structures. In each of the figures, latent 
trait dimension(s) is (are) represented in circle(s) and items are represented in 
rectangulars. An arrow pointing from a dimension to an item indicates that the item 
discriminates on that dimension. A curve with double arrows that links two dimensions 
means the dimensions are correlated.
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dependencies in the responses for another set of items (i.e., Items 6 through 10). One

example of this type of structure can be seen in math anxiety, which can consist of two

related forms—learning math anxiety and math evaluation anxiety (Hopko, 2003).

Accordingly, the latent trait of math anxiety can be represented by two correlated

dimensions to account for the dependencies in the subsets of items and also reflect the

relationship between the two forms of math anxiety, leading to a structure that is more

complex than a unidimensional structure. Of course, a between-item-dimensionality

structure can have more dimensions, with each dimension containing more or fewer items

than the structure displayed in Figure 1b. To determine whether such a

between-item-dimensionality structure is represented in data, a

between-item-dimensionality IRT model would be necessary—that is, an IRT model in

which each individual has multiple abilities to account for the dependencies in the data,

with the abilities being allowed to correlate.

Even though the between-item-dimensionality structure is useful to account for more

complex patterns of the dependencies represented in the data than the unidimensional

structure, it may not be appropriate in some situations. For example, one situation where

a between-item-dimensionality structure may not be appropriate is when the dimensions

are highly, but not perfectly, correlated (i.e., large shared variance among the dimensions),

suggesting that a common dimension could exist to explain the dependencies in the

responses across all items. Simply assuming a unidimensional structure in such a scenario,

however, may still result in unexplained dependencies in subsets of items. Another

situation in which the between-item-dimensionality is not ideal is when researchers settle

on a two-dimensional structure for data from instruments that consist of positively and

negatively phrased items. For instance, a correlated two-dimensional structure is frequently

examined to represent the positively and negatively worded items of the RSES (e.g.,

Alessandri et al., 2015; Donnellan et al., 2016; Salerno et al., 2017). However, separating

self-esteem into positive and negative forms of self-esteem could be misleading, as positive
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and negative wordings are methodological artifacts that have been widely used to prevent

response bias (Carmines & Zeller, 1979; Marsh et al., 2010) and do not reflect distinct

aspects of self-esteem. In other words, the dimensions of positive self-esteem and negative

self-esteem mix up the trait of substantive interest (i.e., the self-esteem) and the wording

method effect, leading to score validity being questionable in this case. A more appropriate

structure for the aforementioned situations could be a nested structure (or

within-item-dimensionality structure), of which the bifactor structure is a typical case.

A bifactor structure is for when multiple sources of dependencies are represented in

the data, with one general source leading to dependencies across all item responses and

extra sources leading to dependencies in the responses to subsets of items that are beyond

the dependencies from the general source. The general source is represented by a primary

(or general) dimension in the bifactor structure, and the extra sources are represented by

secondary (or specific) dimensions. An example of such a structure is displayed in Figure

1c, in which the general source of dependencies is represented by Dim 1 (i.e., the primary

dimension), indicated by all items having arrows from it; the additional sources of

dependencies are represented by Dim 2 and Dim 3 below the items (i.e., the secondary

dimensions), and each one of these has arrows pointing to only a subset of items. Thus,

each item has two arrows pointing to it, indicating that two different dimensions influence

the responses to the items (i.e., two dimensions are represented in each item response).

A bifactor structure could be represented in the data for different reasons. One

reason could be that a primary dimension is being measured that overlies a few specific

domains. Certain mental disorders could be represented by a bifactor structure. For

example, in psychopathology data, a general psychopathology dimension should account for

the dependencies across all diagnostic symptom items, and the specific dimensions may

represent underlying styles of psychopathology (e.g., externalization and internalization)

that account for additional dependencies that result from different ways of processing the

symptoms (e.g., Caspi et al., 2014).
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Characteristics of the way an instrument is developed could also lead to a bifactor

structure being represented in the data. In educational tests, items are usually grouped

into testlets, which is when a subset of items are linked by a common stimulus (DeMars,

2012). For example, in a math test, some items could be equation-oriented and other items

could be word problems. The latter type of items, however, may partially measure

students’ reading ability, an ability irrelevant to math ability. Ignoring the dependencies

resulting from “reading” could be problematic—as would be the case if a unidimensional

structure is assumed for the data—because then any overall math ability score would

actually represent math ability (the focus of a math test) and reading ability (which is

irrelevant to math ability).

A bifactor structure could also be represented in the data when the psychological

instruments used to gather the data consist of items written in different polarities. One

example of this type of instrument is the RSES (Rosenberg, 1965), which I noted earlier.

The RSES measures self-esteem using five positively phrased and five negatively phrased

items. Including items worded in different polarities could induce a wording method effect

(Marsh et al., 2010; Michaelides et al., 2016), leading to additional dependencies being

represented in data. RSES data, then, may not be as simple as reflecting a single

dimension, as the responses to the positively worded items could have additional

dependencies beyond self-esteem, and likewise, the negatively worded items can as well. If

a unidimensional structure is assumed for the RSES data, then any overall self-esteem

score would actually represent an individual’s self-esteem level as well as how they process

positive and negative phrases, with the processing of positive and negative phrases being

irrelevant to self-esteem. A unidimensional model, then, would create a score validity issue

in this situation because the ability estimates would represent more than just the

substantive dimension of interest.

Many reasons other than the ones I have discussed may lead to a bifactor structure

being represented in the data, although these ones I noted tend to be the common reasons.
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To confirm whether such a structure is represented in the data, a bifactor IRT model

(Gibbons et al., 2007) is needed. This model can determine how much a general and a

specific dimension is represented in each item’s responses (i.e., the model separates the

sources influencing the responses), through which one can better understand to what

degree the dimension of substantive interest (i.e., the general dimension) is represented in

the data and, in turn, obtain more accurate estimates of individuals’ levels on this general

dimension.

Even though the bifactor IRT model’s ability to separate the different sources of

dependencies provides useful details about how much the general and specific dimensions

influence the responses, this feature could lead to an empirical identification issue (Chen &

Fujimoto, 2022; Stone & Zhu, 2015). To provide specific details about this issue and which

parameters are involved with it, next, I review the technical details of the IRT models based

on the dimensional structures I have discussed. I then discuss a key assumption underlying

the IRT models—local item independence (LII)—and explain the impact of specifying an

inappropriate structure could have on LII. Thereafter, I review the approaches to

determining a bifactor structure and the challenges with fitting a bifactor model to data,

followed by a discussion on two estimators used to estimate the parameters of a bifactor

model. This chapter ends with the open problems I aim to address. For the remainder of

this dissertation, I turn to wording method effects for an example when necessary.

Item Response Theory Model

I start with a generic form of a multidimensional item response theory (IRT) model,

followed by a discussion of three special cases of the generic form that correspond to the

dimensional structures I have discussed.

The general IRT model I discuss is based on the graded response model (GRM;

Samejima, 1997), a model that has been widely used to deal with ordered polytomous

responses, such as those gathered from administration of educational and psychological

rating scales. For the presentation of the IRT models and for general discussion, I use the
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following notations. Let i represent an individual (where i = 1, 2, . . . , N , with N

representing the total number of individuals). Let j represent the item index (where

j = 1, 2, . . . , J , with J representing the total number of items). Let d represent a dimension

(where d = 1, 2, . . . , D, with D representing the total number of dimensions). Let k

represent a category score (where k = 0, 1, 2, . . . , m, with m representing the highest score

category).

A GRM based on a logit link function has the following general form for the

cumulative probability of individual i endorsing category k or greater on item j:

P (Yij ≥ k|θi, αj , τjk) = eαjθ⊺
i

−τjk

1 + eαjθ⊺
i

−τjk
. (1)

Accordingly, the conditional probability of a response of k is defined as follows:

P (Yij = k|θi, αj , τjk) =


1 − P (Yij ≥ k + 1|θi, αj , τj(k+1)), if k = 0,

P (Yij ≥ k|θi, αj , τjk) − P (Yij ≥ k + 1|θi, αj , τj(k+1)), if 0 < k < m,

P (Yij ≥ k|θi, αj , τjk), if k = m.

(2)

Regarding the parameters that make up these equations, θi represents individual i’s

1 × D vector of latent trait dimensional positions (or abilities), or θi = (θi1, θi2, . . . , θid, θiD),

with all elements being estimated. The population latent trait dimensional positions are

typically assumed to follow a D-variate normal distribution, and formally

θ ∼ N D(µθ, Σθ), (3)

where µθ is the mean vector and Σθ is a D × D variance–covariance matrix, or

Σθ =



σ2
11 σ12 . . . σ1D

σ21 σ2
22 . . . σ2D

... ... . . . ...

σD1 σD2 . . . σ2
DD


. (4)

The elements along the main diagonal of Σθ are variances and the elements off the main
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diagonal are covariances. αj is item j’s 1 × D vector of discriminations, or

αj = (αj1, αj2, . . . , αjd, αjD). Finally, τjk is the intercept for the kth category of item j,

with τj0 < τj1 < . . . < τj(m+1), τj0 ≡ −∞, and τj(m+1) ≡ ∞.

Different designs of θ, Σθ, and αj can be used to account for different patterns of the

dependencies displayed in the response data, which also lead to different IRT models. As

discussed, item j is also described by a set of category intercept parameters (i.e., τjk),

which is determined solely by the number of response categories for item j and is irrelevant

to the dimensionality of the model. Thus, τjk is not a focus of the following discussion on

the IRT models. Next, I introduce the design matrices for the item discriminations and

specifications for θ and Σθ under the unidimensional, between-item-dimensionality, and

within-item-dimensionality IRT models to discuss the technical aspects of the structures I

provided a conceptual overview of earlier. In doing so, the technical complexity of the

structures are easier to see.

Unidimensional IRT Model

As noted earlier, the unidimensional model assumes the latent trait space consists of

a single dimension. Accordingly, the vector of latent trait dimensional positions (θi) under

a unidimensional model contains only one element, making θi a scalar, or θi = θi. The

latent trait dimensional positions are typically assumed to be distributed as a univariate

normal distribution, and formally

θi ∼ N (µθ, σ2), (5)

which indicates that the mean vector and variance–covariance matrix in Equation 3 reduce

to scalars. αj is also a scalar under a unidimensional model in that item j discriminates on

a single dimension (e.g., in Figure 1a, each item has only one arrow from the latent
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dimension, or Dim 1). The item discrimination matrix for the J items becomes

α =



α1,1

α2,1

...

αj,1

αJ,1


, (6)

with each αj describing item j’s ability to discriminate individuals with respect to their

trait levels. In other words, it indicates the amount of information the item provides to the

single dimension that represents the latent trait space, or how strongly related an item is to

the dimension.

Between-Item-Dimensionality IRT Model

The between-item-dimensionality IRT model assumes the latent trait space consists

of multiple correlated dimensions, with each item discriminating on only one dimension.

The vector of latent trait dimensional positions for individual i, or θi, then, is a 1 × D

vector. Regarding the variance–covariance matrix (i.e, Equation 4), Σθ is a D × D matrix,

with all elements either below or above the main diagonal being estimated (e.g., σdd′ is

estimated for all d and d′, where d > d′ and d > 2 when the lower elements are estimated),

indicating the dimensions can be correlated (e.g., in Figure 1b, the two latent trait

dimensions are correlated, given the correlation is not estimated to be 0).

With respect to the vector of discriminations for item j, or αj , it is also a 1 × D

vector. However, only one element in αj is nonzero because under a

between-item-dimensionality specification, each item discriminates on only one of the D

dimensions, meaning the other elements in αj are fixed to 0. For example, in the

between-item-dimensionality structure depicted in Figure 1b, each item has only one arrow

from one of the two latent trait dimensions, representing a single estimated discrimination

related to each item. Thus, a between-item-dimensionality model that can be used to
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confirm such a structure would have the following design matrix for the item

discriminations:

α =



α1,1 0

α2,1 0

α3,1 0

α4,1 0

α5,1 0

0 α6,2

0 α7,2

0 α8,2

0 α9,2

0 α10,2



, (7)

with each row of the matrix representing an item’s 1 × 2 vector of discriminations.

Likewise, in a D dimensional situation, where D > 2, each row would have D elements,

with only one element being nonzero and the other elements being 0 (i.e., D − 1 elements

being fixed to 0).

Within-Item-Dimensionality IRT Model

The bifactor model is a type of within-item-dimensionality model, in which a general

and specific dimensions are used to account for the different sources of dependencies in the

data. Regarding the parameters of the bifactor model, the vector of latent trait

dimensional positions for individual i, or θi, is a 1 × D vector, similar to the

between-item-dimensionality model but with D representing the general dimensional plus

the secondary dimensions. The variance–covariance matrix is also a D × D matrix, but all

elements off the main diagonal in Σθ in Equation 4 are 0 (i.e., σdd′ = 0 for all d and d′,

where d ̸= d′), indicating that the dimensions are orthogonal to each other (e.g., in Figure

1c, no correlations exist among the three latent trait dimensions), which is commonly

assumed because the general dimension should account for any correlations among the
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secondary dimensions.

The design matrix for the item discriminations is also different under the bifactor

model in that more than one element in αj can be nonzero. For discussion’s sake, I assume

that item j’s discrimination on the general dimension is the first element (i.e., d = 1) and

the item’s discriminations on the specific dimensions are the remaining elements (i.e.,

d ≥ 2). In a bifactor model, for each item, the first element is nonzero because all items

discriminate on the general dimension, and only one of the remaining elements at most is

nonzero. For instance, in Figure 1c, each item has two arrows pointing to it, one from the

general dimension and another from one of the specific dimensions, indicating that each

item discriminates on two dimensions. Thus, the following would be the design matrix for

the item discriminations related to the structure in Figure 1c:

α =



α1,1 α1,2 0

α2,1 α2,2 0

α3,1 α3,2 0

α4,1 α4,2 0

α5,1 α5,2 0

α6,1 0 α6,3

α7,1 0 α7,3

α8,1 0 α8,3

α9,1 0 α9,3

α10,1 0 α10,3



, (8)

with each row of the matrix representing an item’s 1 × 3 vector of discriminations. The

magnitude of the two non-zero discriminations within an item indicates how much

information the item contributes to their corresponding dimensions, which in turn indicates

how much these dimensions are represented in the responses to that item. A discrimination

of 0 indicates that the corresponding dimension is not represented in the responses.

Estimating two discriminations for each item is how the bifactor model separates the
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sources of dependencies from the secondary dimensions and the source of dependencies

from the primary dimension. One example of when we would need to perform this

separation is with Rosenberg’s Self-Esteem Scale (RSES; Rosenberg, 1965) data. The

RSES has five positively worded items and five negatively worded items. When using a

bifactor model to analyze RSES data, two discrimination estimates are obtained for each

item, with one of them (i.e., αj1) solely representing how much “self-esteem” is represented

in that item’s responses and the other (i.e., αjd′ , where d′ is the other dimension on which

the item discriminates) representing how much the wording method influence the

responses. By doing this, we could remove the effects of the wording method on the item

responses and thus obtain an ability estimate that represents only the self-esteem level for

an individual. In addition, by separating the wording method effects and the effect of

“self-esteem” on the item responses, we could gain theoretical insight about whether the

individuals treat positive and negative phrased items in different ways, which could be of

interest to some researchers (Marsh et al., 2010).

Unfortunately, having to separate the different sources of dependencies (i.e., how

much the general and a specific dimension is represented) in each item’s responses is what

makes confirming a bifactor structure more complex than confirming a unidimensional or a

between-item-dimensionality structure. With the latter two structures, the models have to

only be concerned with one source of dependencies in each item (i.e., only one

discrimination per item has to be estimated), whereas in a bifactor model, an item may

have two nonzero discriminations being estimated, leading to the bifactor model being

more challenging to apply.

Even though applying the bifactor model has its challenges, there are a couple

reasons for fitting the model. One reason to fit the bifactor model relates to the

assumption of local item independence, since violating this assumption has consequences.

In addition, as previously noted, researchers may be interested in determining how much of

the different sources of dependencies are represented in the data for theoretical reasons.
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Local Item Independence

To get a better understanding of local item independence (LII) and the consequences

of violating it, I now discuss the LII assumption in more detail. LII is one of the central

assumptions of IRT models. According to Embretson and Reise (2013), local independence

is obtained when the relations among the item responses are fully characterized by the IRT

model, indicating that no remaining dependencies exist in the responses given the IRT

model. Formally, the assumption requires that an individual’s responses to different items

are independent once conditioned on the ability level(s) and the item parameters (Chen &

Thissen, 1997; Coulacoglou & Saklofske, 2017; Jiao et al., 2012; Liu & Thissen, 2012) and

can be expressed mathematically as

P (Y = y|θ, α, τ ) =
N∏

i=1

J∏
j=1

P (yij|θi, αj , τjk), (9)

where P (Y = y|θ, α, τ ) represents the joint conditional probability of the data matrix and

is also the likelihood of the data, given the latent trait positions θ, the discrimination

matrix α, and the category intercept matrix τ .

As discussed, if an appropriate IRT model is correctly specified (i.e., the IRT model

matches the dimensional structure underlying the data), then all the dependencies in the

responses should be accounted for by the model, leading to LII in the data. Consequently,

using an IRT model that underspecifies the number of dimensions (e.g., a unidimensional

IRT model when the data represents a bifactor structure) would result in a violation of the

LII assumption (i.e., local item dependence). Such a violation could lead to biased

estimates of individuals’ ability levels and item parameters, and inflate the measurement

reliability of the latent trait estimates (e.g., DeMars, 2006; Jiao et al., 2012; Yen, 1984), as

these are based on the likelihood of the data in which LII is met. For example, if a

unidimensional model is used to analyze RSES data, it would be assumed that all the

dependencies in the data are because of a single source—general self-esteem. The model,

then, would ignore any dependencies in the data related to the wording method effect,
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which is well known to occur when the items are written in different polarities (Marsh

et al., 2010; Michaelides et al., 2016), leading to a violation in LII. Yet, the likelihood of

the data would be used to establish the psychometric properties of the data—a likelihood

that violates an indispensable assumption of the model. To achieve LII with the RSES

data, one may need to use a bifactor model.

Determining a bifactor structure

A common approach to evaluating whether a bifactor structure is represented in the

data is by calculating the explained common variance (ECV; Sijtsma, 2009). The ECV has

been widely used to quantify the degree to which a general trait accounts for the common

variance among items. Thus, it provides insights into whether a unidimensional or bifactor

structure is more appropriate for the data because it assesses how dominant the general

dimension is in the response process relative to the specific dimensions. Formally, the ECV

is defined as the ratio of variance explained by the general dimension to the total variance

explained by the general and specific dimensions (Reise et al., 2010; Rodriguez et al., 2016)

and is expressed as

ECV = Σλ2
GEN

Σλ2
GEN + Σλ2

SPE1 + Σλ2
SPE2 + . . . + Σλ2

SPED−1

, (10)

where Σλ2 is the sum of the square of the standardized factor loadings (or λjd). The

subscript “GEN” denotes the general dimension, and “SPE” denotes the specific

dimension. Although these standardized factor loadings are typically used in confirmatory

factor analysis, they can be easily derived through a straightforward transformation of the

item discriminations (Paek et al., 2018), which is expressed as

λjd = αjd

S
, (11)

where S is a scaling constant equal to 1.7. Thus, the accuracy of the item discrimination

estimates can influence the ECV, thereby affecting judgments about how strongly a

bifactor structure is represented in the data. Specifically, a high ECV indicates that a large
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proportion of the explained variance in the responses is accounted for by the general

dimension, which supports a strong presence of a single dimension and thus a

unidimensional model might be a reasonable fit for the data; a low ECV suggests that the

specific dimensions substantially contribute to explaining the variance in the responses,

thus indicating that a bifactor model might be more suitable than a unidimensional model.

Another approach to assessing the presence of a bifactor structure involves the

intraclass correlation (ICC) at the item level. The ICC indicates the proportion of the

variance in the responses for item j that is attributable to the general dimension (Lee &

Cho, 2017). Formally, the ICC for item j is expressed as

ICCj =
α2

j,GEN

α2
j,GEN + α2

j,SPE
. (12)

As indicated in Equation 12, the maximum value of ICC is 1, which implies that all the

variance in the responses for item j is perfectly accounted for by the general dimension,

with no contribution from the specific dimensions. However, in reality, ICC values typically

fall between 0 and 1, primarily due to measurement error and individual differences. Thus,

ICC values approaching 1 suggest that a unidimensional structure is strongly represented

in the data, as the influence of the specific dimensions is minimal. Conversely, low ICC

values indicate that a between-item-dimensionality structure is more appropriate, as the

general dimension does not adequately account for the variance in the item responses.

Moderate ICC values are indicative of a bifactor structure, where both the general and

specific dimensions play substantial roles in accounting for the variance in the responses.

Both ECV and item level ICC highlight the importance of accurate estimation of the

item discrimination parameters, as any bias in their estimation could potentially lead to

incorrect conclusions regarding whether a bifactor structure is represented in the data.

However, estimating the discrimination parameters of a bifactor model has its challenges,

as I discuss next.
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Challenges of Fitting a Bifactor Model

One of the challenges that exists with the bifactor model but has not been fully

investigated is an empirical identification issue (Chen & Fujimoto, 2022; Stone & Zhu,

2015). This issue is different from the well-documented mathematical identification issue.

A mathematical identification issue occurs when multiple equivalent modes in the

likelihood distribution exist for the item parameters, indicating more than one set of

parameter estimates exist that lead to the same likelihood of the data. That is, no one

unique solution exists to maximizing the likelihood. One example of the impact of multiple

modes in the likelihood is that the signs of the item discrimination estimates can switch

but still lead to the same likelihood. When all the item discriminations are supposed to be

oriented in the same direction, they can all be either positive or negative. Depending on

the sign of the item discriminations, the estimates for all the other parameters of the model

will adjust. The issue occurs regardless of the number of dimensions specified for the IRT

model (i.e., all the models I have discussed may be affected) or the sample size that

contributed to the data.

The estimation issue arising from the multiple equivalent modes in the likelihood can

be addressed by setting the location and metric of the latent trait scale underlying the IRT

model (Bafumi et al., 2005; Embretson & Reise, 2013). Specifically, the location is often set

by fixing the mean of the population ability distribution (i.e., all elements of µθ in

Equation 3) to a specific value, typically 0. Regarding the metric, it is commonly set in one

of two ways. One way is to fix the variances of the dimensional variance–covariance matrix

(i.e., the elements along the main diagonal of Equation 4) to 1, and freely estimate all

nonzero item discrimination parameters, with all the item discriminations restricted to be

oriented in the same direction (usually positive). Another way to set the metric is to fix

the first nonzero item discrimination related to each dimension (e.g., α1,1, α1,2, and α6,3 in

Equation 8) to some value (typically 1) and freely estimate the remaining nonzero

discriminations and the dimensional variances (Reckase, 2009; Reise & Haviland, 2005).
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Once the location and the metric of the latent trait scale are set, a unique solution for the

parameters should be estimatable.

In contrast, an empirical identification issue occurs when the model is mathematically

identified but the parameters still cannot be accurately estimated because the data do not

provide enough information (e.g., the sample size is too small or the quality of the data is

poor). As noted in the Mplus user’s guide, “Mixture models that are in theory identified

can in certain samples and with certain starting values be empirically non-identified”

(L. K. Muthén & Muthen, 2017, p. 526), indicating that the empirical identification may

be determined by the amount of information that can be used in the estimation process. In

this dissertation, I focus on the challenges of fitting a bifactor model under an empirical

identification issue that may occur when more than one discrimination parameter is

estimated for an item, and those discrimination parameters for the item are similar in

strength (i.e, the within-item discriminations are similar, e.g., α1,1 ≈ α1,2 in Equation 8).

In other words, the empirical identification issue occurs when the item level ICC is around

.50 (i.e., about 50% of the variance in the item’s responses is attributable to the general

dimension and 50% to the specific dimension). For simplicity, I use the ratio of the item’s

discrimination on the general dimension to its discrimination on the specific dimension, or

ratio = αj1/αjd (where 1 < d ≤ D), to represent the similarity of an item’s discriminations.

A ratio close to 1 then indicates that the item’s discriminations are very similar in

strength, which in turn means that the ICC for that item is near .50.

Stone and Zhu (2015) noted that the reason within-item discriminations being similar

(or ratio ≈ 1) could lead to an empirical identification issue is that “the likelihood surface

may have multiple equivalent modes” (p. 165). However, Chen and Fujimoto (2022)

suggested that the multiple modes were not exactly equal but were close in height to where

the amount of information in the data could determine whether the parameter estimates

corresponding to the greater mode could be reached. Therefore, when an item’s

discriminations are similar in strength, obtaining accurate estimates for those



23
discrimination parameters may be difficult, particularly when conventional estimation

methods are used, such as the marginal maximum likelihood estimation (MMLE) (Chen &

Fujimoto, 2022) that estimates the parameters rely solely on the information in the data.

The empirical identification issue that I am discussing is not a problem for the

unidimensional and between-item-dimensionality models, as in these models, each item has

only one discrimination to estimate.

Currently, there is only some evidence of the empirical identification issue arising

from within-item discriminations being similar in the literature, as the issue has only been

investigated in a very limited set of conditions under MMLE (Chen & Fujimoto, 2022). A

more thorough investigation on the conditions in which the empirical identification issue

could arise is missing, which is the focus of my dissertation. In addition, whether the

empirical identification issue is a problem that occurs only under MMLE is unknown. This

is of interest as well because other estimation methods can incorporate prior information,

which could possibly resolve the empirical identification issue. Next, I discuss two

estimation methods that I focus on.

Parameter Estimation of the Bifactor Model

Full-Information Maximum Likelihood Estimation

The full-information maximum likelihood (FIML) estimator I discuss is based on

marginal maximum likelihood estimation (MMLE) via the expectation-maximization (EM)

algorithm (Bock and Aitkin, 1981) method. This estimator is of interest because it is one

of the most commonly used estimation methods for IRT models (DeMars, 2013). If the

empirical identification issue appears in a wide range of conditions under FIML, then one

should be cautious in using it when the within-item discriminations being similar is a

possibility.

MMLE is an iterative estimation procedure, with the iterations successively

improving the model parameter estimate by maximizing the marginal probability of a

response set (Bock & Aitkin, 1981; Embretson & Reise, 2013; Forero & Maydeu-Olivares,
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2009; Gibbons et al., 2007). Formally, this marginal probability is expressed as

P (Y |α, τ ) =
∫ +∞

−∞
P (Y |θ, α, τ )f(θ)dθ, (13)

where f(θ) is a prior distribution assigned to the latent trait dimensional positions (or

abilities), such as the multivariate normal distribution expressed in Equation 3. The

parameter estimates for α and τ are the values that maximize the above likelihood

function. The item parameter estimates, in turn, can be used to estimate the individuals’

ability levels, such as through the expected a posteriori method (Bock & Mislevy, 1982,

Chen et al., 1998).

As Equations 13 shows, MMLE only requires assigning a prior distribution to the

latent trait dimensional positions, and no other information other than the response data is

needed to estimate the other parameters. Unfortunately, this could create problems in the

estimation process when the within-item discriminations are similar in strength, as the

information in the data alone may not be sufficient to differentiate the within-item

discriminations.

Bayesian Inference

The Bayesian method is of interest because it has been increasingly applied in IRT

modeling (Albert, 1992) and, more importantly, recent studies (e.g., Fujimoto &

Neugebauer, 2020; Kieftenbeld & Natesan, 2012) have demonstrated the effectiveness of

the Bayesian method in estimating item parameters in situations in which conventional

methods are not appropriate.

In Bayesian estimation, all parameters are treated as coming from a probability

distribution. Accordingly, Bayes’ theorem states that the joint posterior distribution for

the parameters is the likelihood of the data combined with the prior, or

f(θ, α, τ |Y ) = P (Y |θ, α, τ )f(θ, α, τ )
P (Y )

= P (Y |θ, α, τ )f(θ)f(α)f(τ )
P (Y ) ,

(14)
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where P (Y ) is the marginal probability of the response data. The joint prior f(θ, α, τ )

can be rewritten as f(θ)f(α)f(τ ) when the priors for item parameters and latent ability

are assumed to be independent.

The Bayesian method could be a potential solution to the empirical identification

issue that has been demonstrated to exist under MMLE because a prior is assigned to all

the parameters, including the item discriminations, which are the parameters that lead to

the empirical identification issue I have been focusing on. Specifically, assigning priors to

the item discriminations would provide more information to their estimation than relying

on the data alone. The additional information from the priors could then help in the

estimation of the within-item discriminations and, in turn, overcome the empirical

identification problem that has been shown to appear under MMLE. Unfortunately, no

studies have been conducted that investigated this possibility.

Open Questions

Confirming bifactor structures in the data has increased over the years, as many

psychological traits being measured tend to follow a bifactor structure (e.g., Bornovalova

et al., 2020; Hendy & Biderman, 2019; Murray et al., 2016; Yeo & Suárez, 2022).

Unfortunately, using a bifactor IRT model to analyze data could be more challenging

compared with the unidimensional and between-item-dimensionality IRT models, as the

bifactor model separates the different sources of the dependencies represented in the data

for each item (i.e., separates the contributions of the general and specific dimensions on the

responses), whereas the other models I have described assume that the dependencies in

each item’s responses is from a single source. The process of separating the sources of the

dependencies within the items is what could lead to an empirical identification issue for the

bifactor model (Stone & Zhu, 2015), which could affect the quality of the evidence the

model provides for score validity and could also mislead researchers about how strongly the

general and specific dimensions are represented in the data, thereby affecting theoretical

interpretation of the latent trait measured.
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Unfortunately, to date, the different conditions in which the empirical identification

problem arises are unclear. Specifically, there is a lack of evidence on how similar the

within-item discriminations have to be before estimation issues arise under the bifactor

model. Also, it is unclear whether an interaction effect exists between within-item

discriminations being similar and some other factors that have been proven to impact the

estimation of the IRT models, such as sample size (e.g., De Ayala, 1994; Forero &

Maydeu-Olivares, 2009; Jiang et al., 2016; Kose & Demirtasli, 2012) and item targetedness

(e.g., Linacre et al., 2002; Xia & Yang, 2018). In addition, the impact of magnitude of the

within-item discriminations on the empirical identification of the bifactor model has not

been examined.

Filling in these knowledge gaps in the literature is the focus of my dissertation.

Specifically, I used simulations to investigate some of the potential conditions necessary for

within-item discriminations to create estimation problems, that is, how similar the

within-item discriminations need to be and the factors that affect how similar the

within-item discriminations have to be. I explored the effects of within-item

discriminations being similar and all the related factors across the methods of FIML and

Bayesian estimation. If the Bayesian approach can produce more accurate and stable

parameter estimates than FIML, then I will have provided a solution to the empirical

identification issue of the bifactor model that I have discussed. The prior distributions for

the item parameters are discussed in the next chapter.

Conclusion

The bifactor model has been increasingly used by researchers, as it can contribute to

score validity and provide theoretical insights about the measured trait. Thus, it is critical

that one is able to perform a bifactor analysis without having to be concerned about the

estimates. Otherwise, inaccurate results may be reported and interpreted by researchers,

resulting in false evidence of support for score validity. Also, theoretical conclusions about

the measured trait will be drawn based on inaccurate results, which may lead the readers
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to perceive the measured trait in a misleading way.

Fully understanding the conditions that may lead to the empirical identification issue

under different estimators will alert researchers to be cautious when certain situations

appear and also inform them about how large of a sample size (i.e., how much information

in the data) is needed to obtain accurate estimates in their circumstances.

The remainder of this dissertation is organized as follows. In Chapter 3, I discuss the

details of the simulation studies that I conducted to investigate the conditions that lead to

the empirical identification issue for the bifactor model. In Chapter 4, I present the

findings of the simulation studies. In Chapter 5, I discuss the findings, significance, and

limitations of my findings.
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CHAPTER 3

METHOD

In the previous chapter, I introduced an empirical identification i ssue of the bifactor 

IRT model, one that occurs when an item’s discriminations on the general and specific 

dimensions are approximately equal (or αj1/αjd ≈ 1, where 1 < d ≤ D). Such similarity of 

the within-item discriminations may lead to difficulties in  obtaining accurate estimates for 

those parameters, which in turn may result in scores that lack validity and inaccurate 

theoretical conclusions about the measured trait. To date, it is unknown how similar the 

within-item discriminations must be before this issue arises. It is also unclear whether the 

extent of the similarity of the within-item discriminations that lead to estimation issues 

depends on other factors such as sample size, item targetedness, and magnitude of the item 

discriminations. Additionally, whether the estimation method used matters in the 

empirical identification i ssue has not been i nvestigated. This dissertation fills these gaps in 

the literature through a series of simulation studies.

In this chapter, I provide the details of the simulation studies that were conducted to 

investigate the empirical identification i ssue with the bifactor m odel. The first of  these 

studies (i.e., Study 1) aimed to investigate how similar the within-item discriminations 

must be (i.e., how close to 1 the ratio αj1/αjd, where 1 < d ≤ D, has to be) before the 

empirical identification i ssue arises and whether the s imilarity depends on sample size. 

Study 1 established a baseline, as it investigated the empirical identification i ssue under 

conditions in which the magnitude of the item discriminations and item targetedness were 

ideal (i.e., only the within-item discriminations were manipulated). If estimation issues 

appeared in Study 1, it would also demonstrate that the empirical identification issue
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exists under fairly ideal conditions.

Study 2 examined whether the similarity of the within-item discriminations that

leads to the empirical identification issue depends on the magnitude of the item

discriminations. It explored the conditions in which item targetedness was ideal but the

similarity of the within-item discriminations and the magnitude of the item discriminations

were manipulated. Comparing the results across Studies 1 and 2 indicates whether the

magnitude of the item discriminations plays a factor in the empirical identification issue.

Study 3 further inspected whether the similarity of the within-item discriminations

depends on item targetedness. Therefore, the magnitude of the item discriminations were

ideal but the similarity of the within-item discriminations and item targetedness were

manipulated. Similarly, comparing the results across Studies 1 and 3 demonstrates whether

an interaction effect exists between similarity of the within-item discriminations and item

targetedness.

Bifactor models based on full-information maximum likelihood (FIML), Bayesian

method using less informative priors (LessInfo), and Bayesian method using adaptive

informative priors (AdptInfo) were used to analyze each data replicate in the three studies

to investigate whether the estimation method used matters in the empirical identification

issue of focus for this dissertation. The results based on FIML served as the baseline, as it

did not assume any prior information about the item parameters. Comparing the results

based on FIML and Bayesian method demonstrates whether assigning prior information to

the item discrimination parameters can be a solution to the empirical identification issue.

Regarding the two Bayesian approaches, they differ with respect to the prior assigned to

the item discriminations to establish a pattern of how prior information assigned to the

discriminations may impact the estimates.

Study 1: Investigating the Similarity of the Within-Item Discriminations

I conducted a simulation study with a 3 × 3 design (sample size by ratio of

within-item discriminations). The sample sizes included 500, 1,000, and 2,000 to determine
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whether the empirical identification issue depends on sample size. Sample sizes smaller

than 500 were not tested because FIML has been shown to produce biased estimates in

these conditions (Drasgow, 1989; Forero & Maydeu-Olivares, 2009; Reiser & VandenBerg,

1994). In addition, smaller sample sizes risked the possibility that certain response

categories would not be represented in the data. Thus, focusing on moderate to large

sample sizes ensured that sample size was not the reason for any estimation difficulties and

that all response categories were represented. The ratios of the within-item discriminations

(i.e., αj1/αjd, where 1 < d ≤ D) included 1.5, 1.3, and 1.1 to examine how similar the

within-item discriminations must be before the empirical identification issue arises. These

ratios were selected based on preliminary analyses, which represented item-level ICCs of

.69, .63 ,and .55, respectively. A ratio of 1 or smaller (i.e., the discrimination on the

secondary dimension is equal to or greater than the discrimination on the primary

dimension) were not examined because the primary dimension usually represents the latent

trait of central interest and the secondary dimensions represent nuisance traits (Toland

et al., 2017), indicating that an item’s discriminatory power on the primary dimension

should be larger than its discriminatory power on the secondary dimension.

The bifactor structure to which I generated data is the same as that used in Chen &

Fujimoto (2022) that initially demonstrated the existence of the empirical identification

issue. Specifically, it is the dimensional structure used to control for wording method

effects in the Rosenberg’s Self-Esteem scale (RSES; Rosenberg, 1965), with 10 items

discriminating on the primary dimension (Dim 1), three of the items additionally

discriminating on a specific dimension (Dim 2), and five items additionally discriminating

on another specific dimension (Dim 3) (Reise et al., 2016). A visualization of this bifactor

structure is in Figure 2.

Data Generation

Fifty data sets were generated for each simulation condition, with each data set

resembling 4-point ratings to 10 items (similar to RSES data). The latent trait dimensional
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Figure 2. Visualization of the dimensional structure investigated. In the figure, latent trait 
dimensions are represented in circles and items are represented in rectangulars. An arrow 
pointing from a dimension to an item indicates that the item discriminates on that 
dimension.

positions (θi) were randomly drawn from a D-variate normal distribution with a mean

vector of 0s and an identity matrix for its variance–covariance matrix, N D(0, I). Regarding 

the item intercepts, τj1 were randomly drawn from a uniform distribution over the interval

(−3.5, −0.5), or U(−3.5, −0.5), τj2 were randomly drawn from U(τj1 + 1.5, τj1 + 2.5), and

τj3 were randomly drawn from U(τj2 + 1.5, τj2 + 2.5). The item intercepts obtained through 

this process ensured that each category was well-represented in the data, given the latent trait 

dimensional positions.

For the discrimination parameters, the generation values for the item discriminations 

on the general dimension were obtained by randomly drawing values from U(1.25, 2.50); 

the item discriminations on the specific dimensions were obtained by taking the items’



32
corresponding discriminations on the primary dimension and dividing them by randomly

drawn values from U(1.5, 1.8). These two processes ensured that the resulting

discrimination values were distinctly different as well as reasonable in strength, given the

latent trait dimensional positions.

Those processes discussed above composed the first stage of the data generation,

which led to an ideal situation in that the item responses would represent a bifactor

structure without any estimation issues arising because the resulting within-item

discrimination values were, as noted earlier, distinct for each item and no categories were

under- or over- represented across the items. The second stage of the data generation

involved manipulating the resulting values from the first stage to reflect the simulation

conditions, which I discuss next.

To investigate the impact of within-item discriminations being similar on parameter

estimation, I adjusted Item 1’s discrimination on the specific dimension (i.e., α1,2) so that

it met the ratio condition relative to the item’s discrimination on the primary dimension

(i.e., α1,1). Therefore, α1,2 = α1,1/c, where c is 1.5, 1.3, or 1.1 depending on the ratio

condition. As discussed previously, a ratio of 1.1 leads to more similar within-item

discriminations; as the ratio increases, the within-item discriminations become more

distinct. I manipulated only one item to ensure that any estimation issue that might occur

in this item was not due to similar within-item discriminations in another item and to

establish a clear pattern of how the ratio size (i.e., how similar the within-item

discriminations were) led to an empirical identification issue in this item and how sample

size might influence the necessary ratio size. The data generation values for the item

discriminations and category intercepts are in Table 1.

Data Analysis

The bifactor model I fitted is a special case of the general form of the

multidimensional IRT model that is expressed in Equations 1 and 2. Three versions of the

bifactor model were investigated. The first was based on full-information maximum



33

Table 1. The Values Used for the Item Discriminations and Category Intercepts to Generate the Data in Study 1

Ratio = 1.5 Ratio = 1.3 Ratio = 1.1

Category intercepts
Primary

dimension Secondary dimensions Secondary dimensions Secondary dimensions
Item τj1 τj2 τj3 αj1 αj2 αj3 αj2 αj3 αj2 αj3

1 −2.34 −0.53 1.63 2.29 1.53 1.76 2.08
2 −0.91 0.91 2.53 2.22 1.38 1.38 1.38
3 −1.05 1.09 2.61 1.67 0.96 0.96 0.96
4 −2.48 −0.47 1.75 1.91
5 −1.65 −0.05 2.25 2.15
6 −1.89 −0.003 1.88 1.64 1.04 1.04 1.04
7 −2.46 −0.26 1.76 1.96 1.19 1.19 1.19
8 −0.96 1.33 3.62 2.34 1.49 1.49 1.49
9 −1.72 0.35 2.53 1.87 1.17 1.17 1.17
10 −2.48 −0.87 1.56 2.26 1.34 1.34 1.34

Note. An empty space indicates a value of 0. The category intercepts and the items’ discriminations on the primary
dimension remain the same for all ratio conditions in Study 1.

likelihood estimation (Bifactor-FIML), which served as the baseline, as it did not assume

any prior information on the item parameters. The other two were based on Bayesian

estimation, with one using less informative priors (Bifactor-LessInfo) and the other using

adaptive informative priors (Bifactor-AdptInfo). These Bayesian versions were included to

demonstrate whether adding prior information can resolve the empirical identification

issue, and if so, whether a greater amount of prior information is more effective in resolving

this issue. As noted earlier, these two Bayesian approaches differ in terms of the prior

assigned to the item discriminations so that a pattern can be established on how different

prior information may impact the estimates.

All three versions of the bifactor model were used to analyze each data replicate. The

Mplus software (L. Muthén & Muthén, 2016) was used to perform all analyses involving

the model based on FIML (i.e., Bifactor-FIML), and RStan (the R interface of Stan; Team

et al., 2016) was used to perform all analyses involving the models based on Bayesian

estimation (i.e., Bifactor-LessInfo and Bifactor-AdptInfo). Next, I introduce the specifics of

the three versions of the bifactor model.
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Analyses Based on FIML

When full-information maximum likelihood (FIML) was used to estimate the model,

20 quadrature points were used. Also, the default convergence criterion in Mplus were

used. That is, the estimation process stoped when the incremental improvement in the

minimization function reached 1E−6. The dimensional positions were assumed to be

multivariate normally distributed, and formally

θi ∼ N D(0, I). (15)

As noted earlier, the mean vector of 0s and the variances being set to 1 (as the identity

matrix conveys) establish the location and metric of the underlying scale, respectively. The

identity matrix also indicates that all dimensions are set to be orthogonal to each other, as

conventionally done for the bifactor model.

Analyses Based on Bayesian Estimation

As discussed in Chapter 2, the joint posterior distribution for the parameters under

the Bayesian method is as follows:

f(θ, α, τ |Y ) = P (Y |θ, α, τ )f(θ, α, τ )
P (Y )

= P (Y |θ, α, τ )f(θ)f(α)f(τ )
P (Y ) .

(16)

The posterior distribution was estimated using an advanced dynamic Hamiltonian Monte

Carlo (HMC) algorithm based on the No-U-Turn sampler (NUTS). NUTS dynamically

determines the optimal number of steps during the sampling process (Hoffman, Gelman,

et al., 2014), thereby enhancing the efficiency of the standard HMC algorithm. The priors

for the item parameters and latent ability were assumed to be independent.

Different priors assigned to the parameters may result in different posterior

distributions, which can possibly lead to estimates based on one prior distribution being

more accurate than estimates based on another. Next, I describe the two sets of prior

distributions that were used — the less informative priors and the adaptive informative
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priors. These two sets of priors differ only in terms of the prior assigned to the item

discriminations. The reason only the prior for the item discriminations are set differently is

that the item discriminations are the parameters that are affected by the empirical

identification issue. Thus, keeping the priors assigned to the other parameters the same

and adjusting only the prior assigned to the item discriminations could establish a clear

pattern of how the different priors may result in more accurate item discrimination

estimates. I am going to describe the priors for the dimensional positions and category

intercepts first, and then discuss how the priors differ for the item discriminations.

Priors Assigned to the Dimensional Positions and the Category

Intercepts. The prior assigned to the dimensional positions (i.e., f(θ) in Equation 16)

was a multivariate normal distribution that is expressed in Equation 15, with the mean

vector of 0s and the elements of the main diagonal of the variance-covariance matrix being

fixed to 1. Each category intercept was assigned a univariate normal distribution with a

mean of 0 and a standard deviation (SD) of 10, or

τjk ∼ N (0, 10), (17)

for all j, and for all k ranging from 1 to 3 with the restriction τj1 < τj2 < τj3.

Prior Assigned to the Item Discriminations

Less Informative Prior. The less informative prior assigned to the item

discriminations was a lognormal distribution

αjd ∼ logn(µαd
, σαd

) (18)

for all j and d corresponding to the estimated discriminations, and the mean and SD of the

lognormal distribution were fixed to 0 and 1, respectively, or

µαd
= 0.00 for all d, (19)
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and

σαd
= 1.00 for all d. (20)

This prior is less informative compared with the prior I describe next. This less

informative prior places support on a narrower range of values than non-informative priors

(e.g., a uniform distribution) but a wider range than some stronger priors that may alter

results (e.g., strong informative priors that may be needed when the information from the

data is not sufficient for parameter estimation). Specifically, a mean of 0 and a SD of 1 for

the lognormal distribution mainly support values that range from 0.14 to 7.10, which

means that about 95% of the values from this lognormal distribution fall within this range.

Adaptive Informative Prior. Under the Bayesian method based on adaptive

informative prior, the prior distribution assigned to the item discrimination was a

lognormal distribution as expressed in Equation 18, with the SD of the lognormal

distribution fixed to 0.50, or

σαd
= 0.50 for all d, (21)

and the mean of the lognormal distribution was assigned a hyperprior of

µαd
∼


N (0, 0.40), when d represented a primary dimension,

N (−0.41, 0.40), when d represented a secondary dimension.
(22)

This prior can be beneficial for parameter estimation for two reasons. First, it

differentiates the distributions for the discriminations on the primary and secondary

dimensions. Recall that with the less informative prior, a fixed mean and SD were used,

regardless of the dimension. However, as discussed earlier, secondary dimensions usually

represent nuisance traits (Toland et al., 2017), leading to the items’ discriminatory power

on the primary dimension being stronger than that on the secondary dimensions. Thus,

assigning the same prior distribution to all discrimination parameters may not provide

information to distinguish the two sets of discriminations and thus still lead to the
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empirical identification issue. The adaptive informative prior differentiates the

distributions for the two sets of discriminations by specifying different means for the

lognormal distribution, leading to a starting point in which there is a higher probability

that the sampled discriminations for the primary dimension are stronger than those for the

secondary discriminations.

More importantly, the hyperprior assigned to the mean of the lognormal distribution

(i.e., Equation 22) enables the prior distribution in Equation 18 to not only adapt

automatically to support the range of values most appropriate to the items’ discriminatory

power but also adapt only within a reasonable range (Fujimoto & Neugebauer, 2020). For

instance, the hyperprior assigned to the mean of the lognormal distribution for the primary

dimension (or µα1) mainly supports values that range from −1.24 to 1.24, within which

approximately 95% of the values of the hyperprior fall. In other words, values smaller than

−1.24 or larger than 1.24 will be unlikely to be sampled for µα1 . In turn, the hyperprior

leads to a low probability of sampling values smaller than 0.21 or larger than 4.72 for the

item discriminations on the primary dimension. More importantly, the hyperprior assigned

to the mean of the lognormal distribution for the secondary dimensions (or µαd
, where

1 < d ≤ D) leads to a low probability of sampling values smaller than 0.14 or larger than

3.13 for the item discriminations on the secondary dimensions.

Technical Details for the Bayesian Approaches. For the two versions of the

bifactor model based on Bayesian estimation, the algorithm used to estimate the posterior

distribution for each model consisted of two chains. Each chain consisted of 3,500 sampled

values, with the first 1,000 values discarded (i.e., the burn-in samples). In the end, there

were 5,000 sampled values on which inferences were formed.

The convergence of the results was evaluated using the R̂ statistic and visual

inspection. Specifically, an R̂ value less than 1.1 (Brooks & Gelman, 1998) and trace plots

that appeared to be a “fat hairy caterpillar” without any bends (Lunn et al., 2013;

Sorensen & Vasishth, 2015) were considered as adequate convergence.
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Next, I introduce the analytic strategies that were used to examine the performance

of the three versions of the bifactor model (i.e., Bifactor-FIML, Bifactor-LessInfo, and

Bifactor-AdptInfo), which include the acceptable rate and recovery of the discrimination

parameters.

Analytic Strategy

Acceptable Rate. The acceptable rate (AR) for each simulation condition was

calculated as follows:

AR = h

50 , (23)

where 50 is the number of data replicates that were generated in each simulation condition.

The h is the number of runs in which the model converged and none of the absolute values

of the bias in the item discrimination estimates were greater than 1.00. This threshold of

1.00 was selected because it represented one SD on the metric of the latent trait scale (when

the SDs of the latent trait dimensional positions are set to 1), and thus this threshold

represented estimates that were inaccurate by over 1 unit of the latent trait scale. The AR,

thus, represents the likelihood of obtaining accurate item discrimination estimates, with a

noticeably smaller AR indicating that severely inaccurate item discrimination estimates are

frequently obtained or a lack of convergence. Comparing the ARs across the simulation

conditions under the same estimation method then demonstrates whether accurate

estimates are more difficult to be obtained in some conditions than others, and comparing

the ARs across the three versions of the bifactor model determines how biased the item

discrimination estimates are likely to be under certain estimation method(s).

Parameter Recovery. To investigate how the estimation process varied across the

different simulation conditions and the different versions of the bifactor model, I also

examined the recovery of the item discriminations with respect to the errors of the

discrimination estimates.

Each of these errors represents the difference between the value for item j’s
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discrimination on dimension d that was estimated during the analysis of the rth data

replicate (α̂jdr) and the data generation value corresponding to that discrimination (αjd),

or formally

er = α̂jdr − αjd, (24)

with α̂jdr being the point estimate when FIML estimation is used and being the mean of

the posterior distribution when a Bayesian method is used. I used boxplots to provide a

visualization of the errors across the data replicates for each simulation condition. The

lower and upper limits of the boxplots (i.e., the whiskers) are at most Q1 − 1.5× IQR and

Q3 + 1.5× IQR, respectively, where Q1 and Q3 are the first and third quartiles,

respectively, and IQR is the interquartile range (i.e., IQR = Q3 − Q1).

Item discriminations suffering from estimation issues can be reflected in the boxplots

in one of two ways. One way is for the median of the errors (i.e., the median bias) being

noticeably greater or less than 0. The other way is for the problematic parameters’

corresponding IQRs and full ranges (upper limit minus lower limit) being larger and having

more outliers than those for the parameters estimated without any issues, regardless of

whether the medians are 0; even if the medians are 0, large IQRs and full ranges of the

errors across the data replicates can indicate that severe over- and under-estimation

occurred, representing inconsistency in the estimation of those parameters across the data

replicates. Thus, the full range and IQR can demonstrate the estimation stability across

the data replicates.

Study 2: Investigating the Interaction Effect Between Similarity and

Magnitude of Item Discriminations

Study 2 used the same parameters as those in Study 1 but Item 1’s discriminations

were further manipulated to examine whether the similarity of the within-item

discriminations that leads to estimation issues depends on the magnitude of the item

discriminations (i.e., whether an interaction effect exists between similarity of the
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within-item discriminations and magnitude of the item discriminations on the empirical

identification issue). The magnitude of the item discriminations is of interest because

stronger item discriminations are seen in real data. For example, in Rosenberg Self-Esteem

Scale (RSES) data, item discriminations could be as large as 3.65, and more importantly,

the items in the RSES that were demonstrated to produce questionable results tended to

have stronger discriminatory power (Chen & Fujimoto, 2022). However, it is unknown

whether the magnitude of the item discriminations plays a role in the estimation issue

arising from when the within-item discriminations are similar in size.

The design of this simulation study involved three factors: sample size (three sizes),

similarity of the within-item discriminations (three levels), and magnitude of the

within-item discriminations (two levels). The conditions for the sample size were the same

as those in Study 1 that represented moderate to large samples in typical applications (i.e.,

500, 1,000, and 2,000). The interaction between similarity of the within-item

discriminations and magnitude of the item discriminations were represented by

manipulating Item 1’s discriminations. This manipulation involved two steps. First, α1,2

(i.e., Item 1’s discrimination on the specific dimension) was adjusted so that α1,1 relative to

α1,2 met a specific ratio. More formally, α1,2 was obtained through α1,2 = α1,1/c, where c

was 1.5, 1.3, or 1.1 depending on the ratio condition. Second, for each ratio size condition,

Item 1’s discriminations (i.e., both α1,1 and α1,2) were amplified by multiplying them by

1.5 and 2 to represent different levels of magnitude. For instance, under the ratio condition

of 1.5 and magnitude level of 2, α1,1 (i.e., Item 1’s discrimination on the primary

dimension) was set to α1,1 × 2 and α1,2 was set to α1,1/1.5 × 2. By adjusting Item 1’s

discriminatory strength, I was able to examine how the magnitude of the item

discriminations impacts how similar the within-item discriminations have to be before the

empirical identification issue. For example, when the magnitude of the item

discriminations gets larger, a ratio of 1.5 may lead to the empirical identification issue (i.e.,

the within-item discriminations do not need to be very similar before the issue arises),
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whereas when the magnitude is smaller, a ratio of 1.3 may be needed (i.e., the within-item

discriminations may need to be more similar before the issue arises). The data generation

values for the item discriminations and category intercepts are in Tables 2 to 4.

Table 2. The Values Used for the Item Discriminations to Generate the Data under Ratio = 1.5 in Study 2

Magnitude = 1 Magnitude = 1.5 Magnitude = 2
Category
intercepts

Primary
dimension

Secondary
dimension

Primary
dimension

Secondary
dimension

Primary
dimension

Secondary
dimension

Item τj1 τj2 τj3 αj1 αj2 αj3 αj1 αj2 αj3 αj1 αj2 αj3

1 −2.34 −0.53 1.63 2.29 1.53 3.44 2.29 4.58 3.05
2 −0.91 0.91 2.53 2.22 1.38 2.22 1.38 2.22 1.38
3 −1.05 1.09 2.61 1.67 0.96 1.67 0.96 1.67 0.96
4 −2.48 −0.47 1.75 1.91 1.91 1.91
5 −1.65 −0.05 2.25 2.15 2.15 2.15
6 −1.89 −0.003 1.88 1.64 1.04 1.64 1.04 1.64 1.04
7 −2.46 −0.26 1.76 1.96 1.19 1.96 1.19 1.96 1.19
8 −0.96 1.33 3.62 2.34 1.49 2.34 1.49 2.34 1.49
9 −1.72 0.35 2.53 1.87 1.17 1.87 1.17 1.87 1.17
10 −2.48 −0.87 1.56 2.26 1.34 2.26 1.34 2.26 1.34

Note. An empty space indicates a value of 0.

Similar to Study 1, for each of the 3 × 3 × 2 design conditions (sample size by ratio of

within-item discriminations by magnitude of item discriminations), fifty data sets were

generated. The results of Study 2 were compared with those of Study 1, as the latter is

equivalent to a magnitude condition in which the multiplying constant is 1. All three

versions of the bifactor model (i.e., Bifactor-FIML, Bifactor-LessInfo, and

Bifactor-AdptInfo) were used to analyze data under each condition. The same analytic

strategies as those used in the previous study were used in this study.

Study 3: Investigating the Interaction Effect Between Similarity and Item

Targetedness

Study 3 was performed to determine how item targetedness (i.e., how well each

response category is represented in the data) affects how similar the within-item

discriminations has to be before the empirical identification issue appears. Item

targetedness was investigated because it has been demonstrated to play a factor in the

estimation of IRT models (e.g., Linacre et al., 2002; Reiser & VandenBerg, 1994; Xia &

Yang, 2018). Unfortunately, no evidence currently exists to show whether items being
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Table 3. The Values Used for the Item Discriminations to Generate the Data under Ratio = 1.3 in Study 2

Magnitude = 1 Magnitude = 1.5 Magnitude = 2
Category
intercepts

Primary
dimension

Secondary
dimension

Primary
dimension

Secondary
dimension

Primary
dimension

Secondary
dimension

Item τj1 τj2 τj3 αj1 αj2 αj3 αj1 αj2 αj3 αj1 αj2 αj3

1 −2.34 −0.53 1.63 2.29 1.76 3.44 2.64 4.58 3.52
2 −0.91 0.91 2.53 2.22 1.38 2.22 1.38 2.22 1.38
3 −1.05 1.09 2.61 1.67 0.96 1.67 0.96 1.67 0.96
4 −2.48 −0.47 1.75 1.91 1.91 1.91
5 −1.65 −0.05 2.25 2.15 2.15 2.15
6 −1.89 −0.003 1.88 1.64 1.04 1.64 1.04 1.64 1.04
7 −2.46 −0.26 1.76 1.96 1.19 1.96 1.19 1.96 1.19
8 −0.96 1.33 3.62 2.34 1.49 2.34 1.49 2.34 1.49
9 −1.72 0.35 2.53 1.87 1.17 1.87 1.17 1.87 1.17
10 −2.48 −0.87 1.56 2.26 1.34 2.26 1.34 2.26 1.34

Note. An empty space indicates a value of 0.

off-targeted amplifies the estimation difficulty that occurs when within-item

discriminations are similar in size.

To demonstrate the role of item targetedness in the empirical identification issue, this

simulation study included two item targetedness conditions in addition to the three sample

size conditions (i.e., 500, 1,000, and 2,000) and three ratio conditions (i.e., 1.1, 1.3, and

1.5). Similar to the previous studies, only Item 1’s parameters were adjusted to display a

clear pattern of the potential interaction effect between item targetedness and similarity of

the within-item discriminations by sample size. The adjustment of the item discriminations

was identical to Studies 1 and 2, that is, α1,2 = α1,1/c, where c is 1.5, 1.3, or 1.1 depending

on the ratio condition. The item targetedness was adjusted in one of two ways. One way

was setting Item 1’s first (τ1,1), second (τ1,2), and third (τ1,3) intercepts to −6.38, −2.88,

and 1.92, respectively, with these values coming from an analysis of real RSES data. These

values represent a situation in which Item 1’s higher rating categories are noticeably

over-represented in the data relative to the lower categories. Another way the item

targetedness was adjusted entailed reversing Item 1’s intercepts such that τ1,1 became

−1.92, τ1,2 became 2.88, and τ1,3 became 6.38. These values represent an opposite situation

in which Item 1’s lower rating categories are noticeably over-represented in the data

relative to the higher categories. The data generation values for the item discriminations
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Table 4. The Values Used for the Item Discriminations to Generate the Data under Ratio = 1.1 in Study 2

Magnitude = 1 Magnitude = 1.5 Magnitude = 2
Category
intercepts

Primary
dimension

Secondary
dimension

Primary
dimension

Secondary
dimension

Primary
dimension

Secondary
dimension

Item τj1 τj2 τj3 αj1 αj2 αj3 αj1 αj2 αj3 αj1 αj2 αj3

1 −2.34 −0.53 1.63 2.29 2.08 3.44 3.12 4.58 4.16
2 −0.91 0.91 2.53 2.22 1.38 2.22 1.38 2.22 1.38
3 −1.05 1.09 2.61 1.67 0.96 1.67 0.96 1.67 0.96
4 −2.48 −0.47 1.75 1.91 1.91 1.91
5 −1.65 −0.05 2.25 2.15 2.15 2.15
6 −1.89 −0.003 1.88 1.64 1.04 1.64 1.04 1.64 1.04
7 −2.46 −0.26 1.76 1.96 1.19 1.96 1.19 1.96 1.19
8 −0.96 1.33 3.62 2.34 1.49 2.34 1.49 2.34 1.49
9 −1.72 0.35 2.53 1.87 1.17 1.87 1.17 1.87 1.17
10 −2.48 −0.87 1.56 2.26 1.34 2.26 1.34 2.26 1.34

Note. An empty space indicates a value of 0.

and category intercepts are in Tables 5 to 7.

The same number of data replicates were generated for each of the 3 × 3 × 2

conditions (sample size by ratio of within-item discriminations by item targetedness). Also,

all three versions of the bifactor model and the same analytic strategies were used to

investigate whether the interaction effect between similarity of the within-item

discriminations and item targetedness is similar under the three estimation methods.

In the next chapter, I present the findings of the simulation studies that provide

insight into how sample size, magnitude of the item discriminations, and item targetedness

interact with similarity of the within-item discriminations. Then in Chapter 5, I discuss

the findings, significance, and limitations of this dissertation.
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Table 5. The Values Used for the Item Discriminations to Generate the Data under Ratio = 1.5 in Study 3

Ideal targetedness
Higher categories
over-represented

Lower categories
over-represented

Primary
dimension

Secondary
dimension

Category
intercepts

Category
intercepts

Category
intercepts

Item αj1 αj2 αj3 τj1 τj2 τj3 τj1 τj2 τj3 τj1 τj2 τj3

1 2.29 1.53 −2.34 −0.53 1.63 −6.38 −2.88 1.92 −1.92 2.88 6.38
2 2.22 1.38 −0.91 0.91 2.53 −0.91 0.91 2.53 −0.91 0.91 2.53
3 1.67 0.96 −1.05 1.09 2.61 −1.05 1.09 2.61 −1.05 1.09 2.61
4 1.91 −2.48 −0.47 1.75 −2.48 −0.47 1.75 −2.48 −0.47 1.75
5 2.15 −1.65 −0.05 2.25 −1.65 −0.05 2.25 −1.65 −0.05 2.25
6 1.64 1.04 −1.89 −0.003 1.88 −1.89 −0.003 1.88 −1.89 −0.003 1.88
7 1.96 1.19 −2.46 −0.26 1.76 −2.46 −0.26 1.76 −2.46 −0.26 1.76
8 2.34 1.49 −0.96 1.33 3.62 −0.96 1.33 3.62 −0.96 1.33 3.62
9 1.87 1.17 −1.71 0.35 2.53 −1.71 0.35 2.53 −1.71 0.35 2.53
10 2.26 1.34 −2.48 −0.87 1.56 −2.48 −0.87 1.56 −2.48 −0.87 1.56

Note. An empty space indicates a value of 0.

Table 6. The Values Used for the Item Discriminations to Generate the Data under Ratio = 1.3 in Study 3

Ideal targetedness
Higher categories
over-represented

Lower categories
over-represented

Primary
dimension

Secondary
dimension

Category
intercepts

Category
intercepts

Category
intercepts

Item αj1 αj2 αj3 τj1 τj2 τj3 τj1 τj2 τj3 τj1 τj2 τj3

1 2.29 1.76 −2.34 −0.53 1.63 −6.38 −2.88 1.92 −1.92 2.88 6.38
2 2.22 1.38 −0.91 0.91 2.53 −0.91 0.91 2.53 −0.91 0.91 2.53
3 1.67 0.96 −1.05 1.09 2.61 −1.05 1.09 2.61 −1.05 1.09 2.61
4 1.91 −2.48 −0.47 1.75 −2.48 −0.47 1.75 −2.48 −0.47 1.75
5 2.15 −1.65 −0.05 2.25 −1.65 −0.05 2.25 −1.65 −0.05 2.25
6 1.64 1.04 −1.89 −0.003 1.88 −1.89 −0.003 1.88 −1.89 −0.003 1.88
7 1.96 1.19 −2.46 −0.26 1.76 −2.46 −0.26 1.76 −2.46 −0.26 1.76
8 2.34 1.49 −0.96 1.33 3.62 −0.96 1.33 3.62 −0.96 1.33 3.62
9 1.87 1.17 −1.71 0.35 2.53 −1.71 0.35 2.53 −1.71 0.35 2.53
10 2.26 1.34 −2.48 −0.87 1.56 −2.48 −0.87 1.56 −2.48 −0.87 1.56

Note. An empty space indicates a value of 0.
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Table 7. The Values Used for the Item Discriminations to Generate the Data under Ratio = 1.1 in Study 3

Ideal targetedness
Higher categories
over-represented

Lower categories
over-represented

Primary
dimension

Secondary
dimension

Category
intercepts

Category
intercepts

Category
intercepts

Item αj1 αj2 αj3 τj1 τj2 τj3 τj1 τj2 τj3 τj1 τj2 τj3

1 2.29 2.08 −2.34 −0.53 1.63 −6.38 −2.88 1.92 −1.92 2.88 6.38
2 2.22 1.38 −0.91 0.91 2.53 −0.91 0.91 2.53 −0.91 0.91 2.53
3 1.67 0.96 −1.05 1.09 2.61 −1.05 1.09 2.61 −1.05 1.09 2.61
4 1.91 −2.48 −0.47 1.75 −2.48 −0.47 1.75 −2.48 −0.47 1.75
5 2.15 −1.65 −0.05 2.25 −1.65 −0.05 2.25 −1.65 −0.05 2.25
6 1.64 1.04 −1.89 −0.003 1.88 −1.89 −0.003 1.88 −1.89 −0.003 1.88
7 1.96 1.19 −2.46 −0.26 1.76 −2.46 −0.26 1.76 −2.46 −0.26 1.76
8 2.34 1.49 −0.96 1.33 3.62 −0.96 1.33 3.62 −0.96 1.33 3.62
9 1.87 1.17 −1.71 0.35 2.53 −1.71 0.35 2.53 −1.71 0.35 2.53
10 2.26 1.34 −2.48 −0.87 1.56 −2.48 −0.87 1.56 −2.48 −0.87 1.56

Note. An empty space indicates a value of 0.
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CHAPTER 4

RESULTS

In the previous chapter, I discussed the details of the simulation studies that were 

conducted to investigate the empirical identification issue with the bifactor model, including 

whether the estimation method matters. In this chapter, I present the results of the 

simulation studies conducted. For each study, I discuss the results of acceptable rate and 

parameter recovery regarding the errors of the parameter estimates by estimation method. 

Results of Study 1

To provide a review, this first study was conducted to examine the s imilarity of the 

within-item discriminations required before the empirical identification i ssue a rises. It 

explored the conditions in which the item discrimination similarity (or the ratio of the 

within-item discriminations) varied, while item targetedness and the magnitude of the item 

discriminations were ideal. Specifically, the factors manipulated were the sample s ize (500, 

1,000, and 2,000) and the similarity of the within-item discriminations, represented by ratio 

(1.1, 1.3, and 1.5). Next, I discuss the results by estimation method, followed by a 

summary of the main findings in Study 1.

Acceptable Rates across the Three Estimation Methods

Recall that the acceptable rate (AR) represents the proportion of runs that converged 

and none of the absolute values of the errors in the item discrimination estimates were 

greater than 1.00. The ARs for the three estimation methods are summarized in Figure 3. 

In each plot, the sample sizes are represented along the x-axis, the acceptable rates are 

represented along the y-axis, and the ratios are represented by different colors with smaller
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ratio indicating that the within-item discriminations are more similar in magnitude and

larger ratio indicating the within-item discriminations are more distinct.

Under full-information maximum likelihood (FIML; in Figure 3a), within a sample

size, the ARs did not change much across the ratios. For instance, when N = 500, the AR

was .90 for the ratio of 1.1, .90 for the ratio of 1.3, and .96 for the ratio of 1.5. Similarly, in

each of the other two sample sizes, the ARs displayed minor variability across different

ratios within the sample size. Additionally, when comparing across the sample sizes under

FIML, the ARs were similar for all sample sizes regardless of the ratio. In other words,

sample size had minimal impact on obtaining impermissible or extreme estimates regardless

of how similar the within-item discriminations were. Specifically, for N = 500, the average

AR across the ratios was .92, and it was .96 and 1.00 for N = 1,000 and 2,000, respectively.

In contrast, under Bayesian method using less informative priors (LessInfo; in Figure

3b), the ARs changed more noticeably across the ratio conditions for N = 500. The AR

was .64 for the ratio of 1.1, .74 for the ratio of 1.3, and .78 for the ratio of 1.5, showing that

when the sample size was comparatively small, potentially acceptable parameter estimates

were more likely to be obtained under LessInfo when the within-item discriminations were

distinct. This trend persisted for N = 1,000, under which the AR was .80 for the ratio of

1.1, whereas is was .94 and 1.00 for the ratios of 1.1 and 1.5, respectively. However, this

pattern did not hold as strongly for N = 2,000, under which the AR varied less as the ratio

increased. Particularly, when N = 2,000, the ARs ranged from .96 to 1.00. In spite of the

trends observed within LessInfo, the ARs were noticeably lower under LessInfo than FIML,

especially in the smaller sample sizes and smaller ratio conditions.

When comparing across the sample sizes under LessInfo, the average AR across the

ratios was clearly lower for the smaller sample size than those for the larger sample sizes,

which was inconsistent with the pattern observed under FIML. For N = 500, the average

AR was .72 across the ratios, whereas it was .91 and .99 for N = 1,000 and 2,000,

respectively. The average ARs were noticeably lower under LessInfo, particularly for the
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(a) Acceptable rates under full-information maximum likelihood

estimation (FIML)
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(c) Acceptable rates under Bayesian method using adaptive
informative priors (AdptInfo)
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Figure 3
Figure 3. Visualizations of the acceptable rates (ARs) under the three estimation methods,
from Study 1. In each plot, the sample sizes and the proportion of runs in which the item
discrimination estimates were acceptable are represented along the horizontal and vertical
axes, respectively. Ratios are represented in different colors.
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smaller sample sizes, which suggests that the Bayesian method using less informative priors

was more likely to produce unacceptable parameter estimates than FIML when the sample

size was small.

With respect to Bayesian method using adaptive informative priors (AdptInfo; in

Figure 3c), the ARs were almost perfect for all sample sizes and ratio conditions (AR

≥ .96), suggesting that AdptInfo consistently produced potentially acceptable parameter

estimates. Comparing with FIML, the ARs were higher under AdptInfo than those

obtained under FIML for the smallest sample size. Specifically, under AdptInfo, the

average AR across the ratios was .98 for N = 500, whereas this rate was .92 under FIML.

When comparing AdptInfo with LessInfo, the ARs under AdptInfo were noticeably larger

than those under LessInfo, particularly at N = 500 and N = 1,000. Specifically, the

average ARs at N = 500 and N = 1,000 were .98 and .99, respectively, under AdptInfo,

whereas these two rates were .72 and .91, respectively, under LessInfo.

Overall, the AR patterns suggest that non-convergence or extreme parameter

estimates were barely obtained under AdptInfo and FIML, regardless of sample size and

ratio of within-item discriminations. However, under LessInfo, the ARs were higher for

larger sample sizes, suggesting that the sample size played a more impactful role in the

parameter estimation of the bifactor model for LessInfo than for the other two methods.

Although the AR showed the frequency of permissible results, it did not demonstrate

how accurate the parameter estimates were and whether all runs that converged produced

consistent results. The parameter recovery results I review next provide insight into the

accuracy and stability of the parameter estimates and inform whether AdptInfo and FIML

also provided estimates that were more accurate and consistent than LessInfo for the

bifactor model as the within-item discriminations changed.

Parameter Recovery: Errors of the Parameter Estimates

Full-information maximum likelihood. The distribution of the errors related

to the item discrimination estimates under FIML is summarized in Figure 4. In each plot,
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the item discrimination parameters are represented along the x-axis (where αjd is item j’s

discrimination on dimension d), and the y-axis represents the errors. The plots within the

same row differ in sample size and the plots within the same column differ in ratio. If no

estimation difficulty exists, then the errors related to each item should be distributed

similarly within a sample size and centered around 0, and thus the boxplots (i.e., medians,

interquartile ranges [IQRs; i.e. Q3 − Q1], lower and upper limits of the boxplots [LULs; i.e.,

Q1 − 1.5× IQR and Q3 + 1.5×], and full ranges [i.e., upper limit minus lower limit]) should

be similar across the discriminations. Unfortunately, that is not the case.

Although the median errors were all close to 0 for N = 500 (the plots in the left

column of Figure 4), the IQRs, LULs, and full ranges varied across the parameters,

showing the inconsistency in the accuracy of the estimates for the discriminations.

Specifically, when Item 1’s discriminations on the primary and secondary dimensions were

very similar in magnitude (i.e., ratio = 1.1), the IQR, LUL, and full range of the errors

across the data replicates for Item 1 were noticeably greater than those for the other items,

especially for the errors related to the primary dimension. For example, the range of the

errors was 1.67 with an LUL of (−0.64, 1.03) for α1,1, whereas among the other items’

discriminations on the primary dimension (i.e., αj1 where j ̸= 1), the largest error range

was 1.16 (LUL[−0.43, 0.74]) and the smallest was 0.60 (LUL[−0.34, 0.37]), which were for

α8,1 and α3,1, respectively. A comparable pattern was observed in the errors related to the

secondary dimensions. In particular, when the ratio = 1.1, the range of the errors was 2.31

(LUL[−0.69, 1.62]) for α1,2, whereas among the other items’ discriminations on the

secondary dimensions (i.e., αj,d where j ̸= 1 and d ̸= 1), the largest error range was 1.13

(LUL[−0.49, 0.64]) and the smallest was 0.81 (LUL[−0.40, 0.40]), which were for α2,2 and

α3,2, respectively.

When Item 1’s discriminations became more distinct, the errors associated with α1,1

became more similar to those of the other items’ discriminations on the primary dimension,

whereas the errors associated with α1,2 still exhibited larger ranges and LULs than those of
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the other items’ discriminations on the secondary dimension. Specifically, for ratio = 1.3,

the range of the errors was 1.22 (LUL[−0.44, 0.79]) for α1,1, which was similar to the

largest error range (i.e., 1.14 (LUL[−0.48, 0.66]) for α2,1) among the other items’

discriminations on the primary dimension. In contrast, the range of the errors for α1,2 was

1.81 (LUL[−0.70, 1.11]), whereas among the other items’ discriminations on the secondary

dimensions, the largest was 1.45 (LUL[−0.53, 0.92]), which was for α2,2.

When the ratio of Item 1’s discriminations further increased to 1.5, the range of the

errors was 1.44 (LUL[−0.72, 0.72]) for α1,2, whereas among the other items’ discriminations

on the secondary dimension, the largest error range was 1.19 (LUL[−0.40, 0.79]), which

was for α10,3.

As the sample size increased to 1,000 (the plots in the middle column of Figure 4),

the ranges of the errors related to Item 1 became smaller compared with those observed at

N = 500. However, its ranges were still larger than those of the other items, particularly

when its within-item discriminations were more similar in strength. For example, the range

of the errors was 1.15 (LUL[−0.40, 0.74]) for α1,1 under the ratio of 1.1, whereas the largest

among the other items’ discriminations on the primary dimension was 0.85 (LUL[−0.31,

0.54]), which was for α8,1. Likewise, the range of the errors associated with α1,2 was larger

than that observed among the remaining discriminations on the secondary dimension.

However, as the within-item discriminations became more distinct, the differences in the

range of the errors between Item 1 and the other items were negligible, regardless of the

dimension of the parameter. For example, when ratio = 1.3, the range of the errors was

1.28 (LUL[−0.48, 0.80]) for α1,2, whereas the largest among the other items’ discriminations

on the secondary dimension was 0.95 (LUL[−0.41, 0.54]), which was for α2,2.

When the sample size increased to 2,000 (the plots in the right column of Figure 4),

the range of the errors related to Item 1 became even smaller. Additionally, the

inconsistency in the accuracy of the estimates between Item 1’s parameters and those of

the other items became minimal, especially when Item 1’s discriminations were clearly
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different. In particular, when N = 2,000 and ratio = 1.5, the range of the errors for α1,1

was 0.76 (LUL[−0.28, 0.48]), whereas the ranges in the errors for the other items’

discriminations on the primary dimension fell between 0.33 (LUL[−0.15, 0.18] for α3,1) and

0.63 (LUL[−0.32, 0.31] for α2,1). Similarly, the range of the errors for α1,2 was 0.90

(LUL[−0.40, 0.50]), whereas the ranges for the other items’ discriminations on the

secondary dimensions fell between 0.32 (LUL[−0.14, 0.18] for α6,3) and 0.56 (LUL[−0.36,

0.20] for α2,2).

Bayesian method using less informative priors. The distribution of the

errors related to the item discrimination estimates under LessInfo is summarized in Figure

5. For N = 500 (the plots in the left column of Figure 5), the errors associated with Item

1’s discriminations showed noticeably larger medians, LULs, and/or full ranges than those

observed in the other items, especially when Item 1’s discriminations were more similar in

magnitude. Specifically, when Item 1’s discriminations on the primary and secondary

dimensions were very similar in magnitude (i.e., ratio = 1.1), the median of the errors for

α1,1 and α1,2 were 0.30 and 0.21, respectively, whereas the median for the other items’

discrimination parameters were all close to 0. The full ranges and LULs further

demonstrated the inconsistency of estimation accuracy between Item 1 and the other items

when N = 500. Specifically, the range of the errors was 2.82 with an LUL of (−0.59, 2.22)

for α1,1 when ratio = 1.1, whereas among the other items’ discriminations on the primary

dimension (i.e., αj1 where j ̸= 1), the largest error range was 1.19 (LUL[−0.44, 0.75]) and

the smallest was 0.60 (LUL[−0.29, 0.31]), which were for α8,1 and α3,1, respectively. For

the item discriminations on the secondary dimensions, the range of the errors was 3.32

(LUL[−0.61, 2.71]) for α1,2, which was still noticeably larger than those among the other

discriminations on the secondary dimensions (i.e., αj,d where j ̸= 1 and d ̸= 1) with the

largest error range of the latter was 1.30 (LUL[−0.51, 0.79]), which was for α2,2, and the

smallest was 0.82 (LUL[−0.43, 0.39]) for α3,2.

As Item 1’s discriminations became more distinct at ratio = 1.3, similar patterns
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were observed as those noticed when ratio = 1.1. That is, the medians of the errors related

to Item 1’s discrimination parameters, especially α1,2, were larger than 0, whereas the

medians of the errors for the other items’ discrimination parameters were all close to 0.

Additionally, the full ranges and LULs for Item 1’s discrimination parameters were clearly

larger than those for the other item discriminations. When the ratio increased to 1.5, the

median of the errors related to Item 1’s parameter estimates became near 0. Moreover, the

disparity in the full ranges and LULs of the errors between Item 1 and the other items

became less pronounced compared with what was observed when Item 1’s discriminations

were relatively similar. Particularly, the range of the errors was 1.69 (LUL[−0.45, 1.23]) for

α1,1 and 1.83 (LUL[−0.76, 1.07]) for α1,2 under ratio = 1.5, whereas among the other item

discriminations, the largest error range for the discriminations on the primary dimension

was 1.35 (LUL[−0.32, 1.03]), which was for α2,1, and the discrimination on the secondary

dimensions was 1.62 for α2,2 (LUL[−0.66, 0.96]).

When the sample size increased to 1,000, the estimation for all items, including Item

1, became more accurate, although similar trends in estimation inconsistency described for

the N = 500 were still observed between Item 1 and the other items. For N = 1,000 (the

plots in the middle column of Figure 5), the errors for α1,1 under the ratio of 1.1 had a

median of 0.20, with the range being 1.68 (LUL[−0.41, 1.27]), and the errors for α1,2 had a

median of 0.24, with the range being 2.58 (LUL[−0.52, 2.06]). However, for the other item

discriminations, regardless of the dimension, the largest absolute median of errors was 0.04

(for α2,2), with the range being 0.81 (LUL[−0.51, 0.30]). As the ratio increased to 1.3, the

medians associated with Item 1 were near 0, but the inconsistency in estimation accuracy

persisted. With the ratio further increased to 1.5, the magnitude of the differences in

estimation accuracy between Item 1 and the other items became minor, especially for the

discriminations on the primary dimension. Specifically, the range of the errors was 0.92

(LUL[−0.31, 0.61]) for α1,1, which was similar to those observed for other item

discriminations on the primary dimension where the largest and smallest ranges were 0.83
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(LUL[−0.34, 0.49]) for α10,1 and 0.50 (LUL[−0.23, 0.26]) for α6,1, respectively.

When the sample size increased to N = 2,000 (the plots in the right column of Figure

5), the medians and ranges of the errors related to Item 1 decreased further regardless of

the similarity of its within-item discriminations. More importantly, the magnitude of the

differences in the accuracy of the estimates between Item 1’s parameters and those of the

other items became even less noticeable, especially when Item 1’s discriminations were

clearly different. For instance, when ratio = 1.5, the error range of α1,1 was 0.83

(LUL[−0.28, 0.55]), similar to the error ranges of the other items’ discrimination estimates

on the primary dimension that fell between 0.33 (LUL[−0.16, 0.17]) for α3,1 and 0.62

(LUL[−0.31, 0.30]) for α2,1.

Bayesian method using adaptive informative priors. The distribution of

the errors related to the item discrimination estimates under AdptInfo is summarized in

Figure 6. For N = 500 (the plots in the left column of Figure 6), the errors associated with

Item 1’s discrimination parameter on the primary dimension exhibited comparable median,

LUL, and full range to those seen for the other items, as observed for all ratios. For

instance, when ratio = 1.1, the medians were all close to 0 for the discriminations on the

primary dimension, including α1,1; with respect to LUL and range, the errors for α1,1 had a

range of 1.11, with an LUL of (−0.64, 0.47), whereas the largest and smallest ranges for

the other parameters on the primary dimension were 1.13 (LUL[−0.42, 0.71] for α8,1) and

0.62 (LUL[−0.26, 0.36] for α3,1).

Concerning the discrimination parameters on the secondary dimensions, the errors

related to α1,2 displayed a larger range and LUL than those observed for other items,

especially for the ratios of 1.1 and 1.3. For example, when ratio = 1.1, the range of the

errors for α1,2 was 1.50 (LUL[−0.70, 0.80]), whereas for the other items’ discriminations on

the secondary dimensions, the largest and smallest ranges were 1.03 (LUL[−0.43, 0.60])

and 0.71 (LUL[−0.31, 0.40]), which were for α2,2 and α3,2 respectively. As the ratio

increased to 1.5, the discrepancies in ranges and LULs between α1,2 and the other
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discriminations on the secondary dimensions became smaller. Specifically, the range of the

errors for α1,2 was 1.30 (LUL[−0.67, 0.62]) and the range for the other discriminations on

the secondary dimensions fell between 0.77 (LUL[−0.36, 0.41]) for α3,2 and 1.16

(LUL[−0.57, 0.59]) for α2,2.

For N = 1,000 (the plots in the middle column of Figure 6), a similar trend was

observed across the discrimination parameters on the primary dimension, with no

significant differences observed between Item 1 and the other items. With respect to the

secondary dimensions, the discrepency in estimation accuracy between Item 1 and the

other items still existed, particularly when Item 1’s discriminations were similar, albeit to a

lesser extent. Specifically, when ratio = 1.1, the range of the errors for α1,2 was 1.36

(LUL[−0.57, 0.79]), whereas the largest and smallest ranges were 0.74 (LUL[−0.43, 0.32])

for α8,3 and 0.52 (LUL[−0.26, 0.26]) for α7,3 among the other item’s discriminations on the

secondary dimensions.

When the sample size increased to 2,000, all discrimination estimates, including those

for Item 1, were noticeably better. With respect to estimation accuracy between Item 1’s

discriminations and the other discriminations, similar patterns were seen as those for the

other two sample size conditions. Specifically, no noticeable differences were observed for

α1,1, compared with the other discriminations on the primary dimension. However, the

estimates for α1,2 displayed a larger error range and wider LUL than the other

discriminations on the secondary dimensions.

Comparison across the three estimation methods. The empirical

identification issue was consistently observed across all three estimation methods.

Specifically, when estimating the discrimination parameters of Item 1, the accuracy was

noticeably poorer compared with the estimation of the discrimination parameters for the

other items. This discrepancy was more pronounced when the sample size was relatively

small (for example, with N = 500 or 1,000) and when Item 1’s discriminations were similar

(such as when the ratio was 1.1 or 1.3). However, the degree of the discrepancy in the
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estimation accuracy varied depending on the estimation method used. For example, the

disparity in estimation accuracy between Item 1 and the other items was less pronounced

under FIML than LessInfo, showing that FIML could provide more accurate estimates for

the bifactor model in the conditions where the sample size is small, the within-item

discriminations are similar, or both.

However, when more informative priors were used (i.e., AdptInfo), there was a

noticeable improvement in estimating Item 1’s discrimination parameters compared with

FIML and LessInfo. More specifically, under AdptInfo, the estimation of Item 1’s

parameter on the primary dimension achieved accuracy levels comparable to those of the

other items, and this held true irrespective of the sample size and the similarity of Item 1’s

discriminations. With regards to Item 1’s discrimination on the secondary dimension, its

estimation displayed greater inaccuracy and instability compared with the other items,

albeit to a noticeably lesser extent than under FIML and LessInfo.

Summary of Study 1

Study 1 demonstrated that within-item discriminations being similar may lead to

estimation difficulties. As the within-item discriminations become more similar, the

challenges in estimation become increasingly pronounced. Moreover, sample size plays a

role in amplifying the estimation challenges. Specifically, for a given level of similarity of

the within-item discriminations (i.e., under the same ratio condition), the estimation

difficulties intensifies as the sample size decreases.

Additionally, Study 1 evaluated the efficacy of different estimation methods in

estimating the discrimination parameters of the bifactor model under challenging

situations. The findings show that AdptInfo performs better than FIML and LessInfo, as

AdptInfo consistently produced more accurate and stable estimates, particularly when the

within-item discriminations were most similar.

In sum, the findings of Study 1 suggest that the empirical identification issue with

the bifactor model is affected by both similarity of the within-item discriminations and
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sample size, and highlight the importance of carefully considering these factors when

modeling a bifactor structure. Furthermore, it demonstrates that the choice of estimation

method matters, as estimation method can greatly affect the quality of the results.

Results of Study 2

To provide a review, Study 2 further investigated whether the effect of within-item

discrimination similarity on the estimates depended on magnitude of the item

discriminations. The study explored the conditions in which the item targetedness was

ideal but the similarity of the within-item discriminations and the magnitude of the

discriminations were varied. Specifically, the factors manipulated in this study were sample

size (500, 1,000, and 2,000), ratio of within-item discriminations (1.1, 1.3, and 1.5), and

magnitude of the discriminations (1.5 and 2). Next, I discuss the results by estimation

method, followed by a comparison of the performances of the three estimation methods and

a summary of the main findings. The results of Study 2 were compared with those of

Study 1, as the latter is equivalent to a magnitude condition in which the multiplying

constant is 1.

Full-Information Maximum Likelihood Estimation

Acceptable Rates. Recall that the acceptable rates (ARs) represent the proportion

of runs that converged and none of absolute values of the error in the item discrimination

estimates were greater than 1.00. The ARs for full-information maximum likelihood

(FIML) estimation are summarized in Figure 7. In each plot, the magnitudes of the

within-item discriminations are represented along the x-axis, the acceptable rates are

represented along the y-axis, and the ratios are represented by different colors. The results

with a magnitude of 1 indicate that they originated from Study 1 and thus serve as a

baseline.

When N = 500 (as depicted in Figure 7a), the ARs were all acceptable and did not

show significant variation compared with the baseline condition (i.e., magnitude = 1, which

is in Study 1), regardless of how similar Item 1’s discriminations were. However, as the
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magnitude of Item 1’s discriminations increased, the ARs were reduced noticeably. For

instance, when magnitude = 2, the AR for ratio = 1.1 dropped to .34 from the baseline

value of .90. Similar patterns were observed under the other two ratio conditions, where

the AR noticeably decreased as the magnitude of Item 1’s discriminations increased. This

indicates that when dealing with large magnitudes of within-item discrimination, there is a

higher likelihood of obtaining extreme estimates, warning messages, or both.

When the sample size increased to 1,000 and 2,000 (as shown in Figures 7b and 7c), a

general increase in ARs was observed irrespective of the ratio and the magnitude of Item

1’s discriminations. However, variation in ARs across the different magnitude conditions

remained, albeit they were less pronounced than when N = 500. In other words, as the

magnitude of Item 1’s discriminations increased, the ARs decreased, though not as sharply

as when the sample size was smaller. For example, when N = 1,000, the AR for ratio = 1.1

was .52 when magnitude = 2, compared with .92 at baseline. However, the reduction in

ARs (i.e., .40) was not as steep as that observed when N = 500 (i.e., .56).

The findings pertaining to ARs suggest that magnitude of within-item

discriminations plays a role in the estimation of the bifactor model. The results of the

parameter recovery reviewed next further reveal the estimation accuracy and stability of

FIML under different magnitude conditions.

Parameter Recovery: Errors of the Parameter Estimates. For N = 500, the

distribution of the errors related to the item discrimination estimates under FIML is

summarized in Figure 8. In each plot, the item discrimination parameters are represented

along the x-axis (where αjd is item j’s discrimination on dimension d), and the y-axis

represents the errors. The plots within the same row differ in the magnitude of Item 1’s

discriminations, while the plots within the same column differ in the ratio of Item 1’s

discriminations. If the magnitude of within-item discriminations does not play a role in the

empirical identification issue, then the errors related to Item 1 should be distributed

similarly across various magnitudes conditions, provided the ratio condition remains
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(a) Acceptable rates under full-information maximum likelihood

estimation at N = 500

Magnitude = 1 Magnitude = 1.5 Magnitude = 2
0.0

0.5

1.0
0.96

0.80

0.52

0.90

0.74

0.56

0.90

0.58

0.34

Magnitude of Item 1’s Discriminations

A
cc

ep
ta

bl
e

R
at

e

Ratio = 1.1

Ratio = 1.3
Ratio = 1.5

(b) Acceptable rates under full-information maximum likelihood
estimation at N = 1,000
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(c) Acceptable rates under full-information maximum likelihood
estimation at N = 2,000
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Figure 7
Figure 7. Visualizations of the acceptable rates (ARs) under full-information maximum
likelihood estimation (FIML), from Study 2. The magnitudes of within-item
discriminations are represented along the horizontal axis; the proportion of runs in which
the item discrimination estimates were acceptable are represented along the vertical axis.
Ratios are represented in different colors.
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constant.

Unfortunately, when the within-item discriminations for Item 1 were highly similar

(i.e., ratio = 1.1), the discrepancies in the estimation accuracy between Item 1’s

discrimination parameters and those of the other items became more pronounced as the

magnitude of Item 1’s discriminations increased, as illustrated in the plots in the first row

of Figure 8). Specifically, when magnitude = 1.5, the range of the errors was 3.94 with an

LUL of (−1.12, 2.81) for α1,1, whereas among the other items’ discriminations on the

primary dimension (i.e., αj1 where j ̸= 1), the largest error range was 1.08 (LUL[−0.35,

0.73]) and the smallest was 0.62 (LUL[−0.20, 0.41]), which were for α8,1 and α9,1,

respectively. Recall that at baseline (magnitude = 1; from Study 1), the range was 1.67

(LUL[−0.64, 1.03] for α1,1, with the largest and smallest ranges across the other

parameters on the primary dimension being 1.16 (LUL[−0.43, 0.74]) and 0.60 (LUL[−0.27,

0.32]), respectively. Notice that the largest and smallest ranges of the errors across the

other parameters on the primary dimension remained relatively stable; however, the range

of the errors for α1,1 increased from 1.67 to 3.94 as the magnitude of the within-item

discriminations for Item 1 increased from 1 to 1.5. With regards to the discriminations on

the secondary dimension, similar patterns were observed. Particularly, the range of the

errors for α1,2 was 4.55 (LUL[−1.32, 3.24], while the largest and smallest ranges across the

other discrimination parameters on the secondary dimension were 1.34 (LUL[−0.52, 0.82])

(for α8,3) and 0.68 (LUL[−0.29, 0.39]) (for α3,2), respectively. At baseline, that range was

2.31 (LUL[−0.69, 1.62]) for α1,2, with the largest and smallest ranges across the other

discrimination parameters on the secondary dimension being 1.13 (LUL[−0.49, 0.64]) and

0.81 (LUL[−0.40, 0.40]), respectively. As the magnitude of Item 1’s discriminations further

increased to 2, the errors associated with Item 1 exhibited even larger ranges compared

with those under magnitude = 1 and 1.5. Specifically, when magnitude = 2, the range of

the errors increased to 8.62 (LUL [−2.25, 6.37) for α1,1 and 10.61 (LUL [−2.49, 8.12) for

α2,1. It is worth noting that these ranges remained considerably larger than those observed
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for other discrimination parameters.

When the within-item discriminations for Item 1 became more differentiated (i.e.,

ratio = 1.3 and 1.5; shown in the plots in the second and third rows of Figure 8)), the

trends observed were similar to those for ratio = 1.1. Specifically, as the magnitude of Item

1’s discriminations increased, the full ranges and LULs of the errors related to Item 1’s

parameter estimates became noticeably larger compared with those observed under

magnitude = 1, while the ranges and LULs of the errors related to the parameter estimates

for the other items remained stable. This indicates that the magnitude of an item’s

discriminations can impact the estimation difficulties arising from when its within-item

discriminations are similar in size. Larger item discriminations exacerbate the difficulty in

estimating that item’s discrimiations. In other words, whether an item’s discriminations

being similar leads to estimation issues depends on the magnitude of the item

discriminations.

As the sample size increased to 1,000 (as shown in Figure 9) and 2,000 (as shown in

Figure 10), similar patterns persisted under each ratio condition. However, the ranges and

LULs associated with Item 1 were mitigated compared with those at N = 500. For

instance, at N = 2,000, the error range was 6.47 (LUL[−1.42, 5.05)]) for α1,1 and 7.07

(LUL[−1.62, 5.45)]) for α1,2 in the most challenging scenario (i.e., ratio = 1.1 and

magnitude = 2). In contrast, at N = 500, that error range was 8.62 (LUL[−2.25, 6.37)])

for α1,1 and 10.61 (LUL[−2.49, 8.12)]) for α1,2. This trend held across other combinations

of ratio and magnitude conditions, suggesting that a larger sample size can alleviate

estimation difficulties that arise when an item’s discriminations are large and similar in

strength.

Bayesian Method Using Less Informative Priors

Acceptable Rates. The acceptable rates (ARs) for the Bayesian method using less

informative priors (LessInfo) are summarized in Figure 11. At N = 500 (as shown in Figure

11a), a noticeable decline in ARs was observed as the magnitude of Item 1’s discriminations
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increased, similar to the pattern seen under FIML. For instance, when ratio = 1.5, the AR

dropped to .42 for magnitude = 2, compared with .54 for magnitude = 1.5 and .78 for

magnitude = 1. This pattern was consistently observed across the other ratio conditions,

indicating that, as the magnitude of Item1’s discriminations increased, the ARs decreased.

When the sample size increased to 1,000 and 2,000 (as illustrated in Figures 11b and

11c, respectively), a general increase in ARs was observed, irrespective of the ratio and the

magnitude of Item 1’s discriminations. Nevertheless, fluctuations in ARs across the

magnitude conditions persisted, indicating that the presence of larger item discriminations

can exacerbate the estimation challenges arising from when the within-item discriminations

are similar.

The observations in ARs under LessInfo provides further support for the influential

role that the magnitude of within-item discriminations plays in the parameter estimation of

the bifactor model. The results of the parameter recovery reviewed next further reveal the

estimation accuracy and stability of less informative priors as the magnitude of Item’1

discrimination changes.

Parameter Recovery: Errors of the Parameter Estimates. For N = 500, the

distribution of the errors related to the item discrimination estimates under Bayesian

method using less informative priors (LessInfo) is summarized in Figure 12. The results

revealed that, when the within-item discriminations for Item 1 were very similar (i.e., ratio

= 1.1), the difference in estimation accuracy between Item 1’s discrimination parameters

and those of the other items became more pronounced as Item 1’s discriminations

increased in magnitude. For example, when magnitude = 1.5, the range of the errors was

5.36 with an LUL of (−1.02, 4.34) for α1,1. In contrast, the other items’ discriminations on

the primary dimension had a largest error range of 1.23 (LUL[−0.53, 0.70]) and the

smallest of 0.62 (LUL[−0.22, 0.40]), which were for α8,1 and α9,1, respectively. When the

magnitude increased to 2, the error range for α1,1 increased to 5.99 (LUL[−2.20, 3.79]).

However, the error ranges for the other items’ discriminations on the primary dimension
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(a) Acceptable rates under Bayesian method using less

informative priors at N = 500
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(b) Acceptable rates under Bayesian method using less
informative priors at N = 1,000
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(c) Acceptable rates under Bayesian method using less
informative priors at N = 2,000
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Figure 11
Figure 11. Visualizations of the acceptable rates (ARs) under the Bayesian method using
less informative priors (LessInfo), from Study 2. The magnitudes of within-item
discriminations are represented along the horizontal axis; the proportion of runs in which
the item discrimination estimates were acceptable are represented along the vertical axis.
Ratios are represented in different colors.
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remained relatively stable. Recall that at baseline (i.e., magnitude = 1), the range was 2.82

(LUL[−0.59, 2.22] for α1,1, with the largest and smallest ranges across the other

parameters on the primary dimension being 1.19 (LUL[−0.44, 0.75]) and 0.60 (LUL[−0.29,

0.31]), respectively. Moreover, it was observed that the medians of the errors associated

with Item 1 also increased at magnitudes of 1.5 and 2 compared with at a magnitude of 1.

For example, the median error for α1,1 was 1.11 at a magnitude of 1.5, and 0.71 at a

magnitude of 2, compared with 0.30 at a magnitude of 1. This suggests that the estimates

for Item 1’s discrimination parameters are increasingly overestimated under LessInfo as the

magnitude of its within-item discriminations rises.

Regarding the discriminations on the secondary dimension, similar trends were

evident. For example, with a magnitude of 2, the error range for α1,2 was 6.33 (LUL[−2.41,

3.92]), whereas the largest and smallest error ranges for the other discrimination

parameters on the secondary dimension were 1.11 (LUL[−0.55, 0.56]) for α2,2 and 0.57

(LUL[−0.26, 0.31]) for α3,2, respectively. In contract, at baseline, the range was 3.32

(LUL[−0.61, 2.71]) for α1,2. Additionally, the median of the errors associated with α1,2 was

1.18 for magnitude = 1.5 and 0.56 for magnitude = 2, as opposed to 0.21 for magnitude =

1, which further confirmed the observation that as the magnitude of Item 1’s

discriminations increased, the overestimation of Item 1’s discriminations became greater.

When the within-item discriminations for Item 1 became more differentiated (ratios

of 1.3 and 1.5, as shown in the second and third rows of Figure 12), the trends observed

aligned with those at ratio = 1.1. Specifically, as the magnitude of Item 1’s discriminations

increased, both the full ranges and LULs of the errors associated with Item 1’s parameter

estimates increased noticeably compared with that observed at the baseline magnitude of

1. Conversely, the ranges and LULs of the errors concerning the parameter estimates for

the other items remained stable. This indicates that the magnitude of an item’s

discriminations has a tangible impact on the estimation difficulties arising from when its

within-item discriminations are similar.
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As the sample size increased to 1,000 (as shown in Figure 13) and 2,000 (as shown in

Figure 14), the patterns observed under each ratio condition remained consistent. However,

there was a noticeable reduction in the ranges and LULs related to Item 1 compared with

those at N = 500. For instance, when N = 2, 000, the error range was 3.29 (LUL[−0.58,

2.70)]) for α1,1 and 3.79 (LUL[−0.72, 3.06)]) for α1,2 for ratio = 1.1 and magnitude = 1.5.

In contrast, when N = 500, that error range was 5.36 (LUL[−1.02, 4.34)]) for α1,1 and 4.83

(LUL[−1.01, 3.82)]) for α1,2; and when N = 1,000, that error range was 4.05 (LUL[−0.61,

3.44)]) for α1,1 and 4.48 (LUL[−0.90, 3.58)]) for α1,2. This trend was generally observed

across various combinations of ratio and magnitude conditions, suggesting that an increase

in sample size has the potential to mitigate the estimation challenges encountered when an

item’s discriminations are similar and large in magnitude.

Bayesian Method Using Adaptive Informative Priors

Acceptable Rates. The acceptable rates (ARs) for the Bayesian method using

adaptive informative priors (AdptInfo) are summarized in Figure 15. At N = 500 (as

shown in Figure 15a), slight decrease in AR was observed when the magnitude of Item 1’s

discriminations increased from 1 to 1.5. Specifically, the average AR across the three ratio

conditions was .98 and .94 for magnitude = 1 and 1.5, respectively. However, when the

magnitude of Item 1’s discriminations further increased to 2, a noticeable reduction in ARs

was seen, with the averages AR across the ratio conditions reducing to .43. The most

noticeable drop was observed at the ratio of 1.1, indicating that the magnitude and the

similarity of Item 1’s discriminations jointly affected obtaining potentially acceptable

results.

When the sample size increased to 1,000 (as illustrated in Figures 15b), similar trends

were observed. To be specific, under magnitude = 1 and 1.5, the ARs were similar and

nearly perfect (i.e. ≥ .96), regardless of the ratio of Item 1’s discriminations. However, for

magnitude = 2, noticeable decreases were seen in ARs, especially at ratio = 1.1, where the

AR dropped to .58, in contrast to .96 at magnitude = 1.5 and .98 at magnitude = 1.
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(a) Acceptable rates under Bayesian method using adaptive

informative priors at N = 500
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(b) Acceptable rates under Bayesian method using adaptive
informative priors at N = 1,000
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(c) Acceptable rates under Bayesian method using adaptive
informative priors at N = 2,000

Magnitude = 1 Magnitude = 1.5 Magnitude = 2
0.0

0.5

1.0
1.00 0.98 0.981.00 1.00

0.90

0.98 0.98

0.62

Magnitude of Item 1’s Discriminations

A
cc

ep
ta

bl
e

R
at

e

Ratio = 1.1

Ratio = 1.3
Ratio = 1.5

Figure 15
Figure 15. Visualizations of the acceptable rates (ARs) under the Bayesian method using
adaptive informative priors (AdptInfo), from Study 2. The magnitudes of within-item
discriminations are represented along the horizontal axis; the proportion of runs in which
the item discrimination estimates were acceptable are represented along the vertical axis.
Ratios are represented in different colors.
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Nonetheless, the decreases observed were less pronounced compared with those seen when

N = 500.

As the sample size further increased to 2,000 (as shown in Figures 15c), the ARs

exhibited further improvement across all magnitude and ratio conditions. However, it is

critical to note that when magnitude = 2, the AR declined to .62 for ratio = 1.1, in

contrast to .98 when magnitude = 1.5 and .98 when magnitude = 1, confirming the

existence of an interaction effect between the magnitude and the similarity of Item 1’s

discriminations on obtaining acceptable parameter estimates.

Although the observations in ARs under AdptInfo further supported the importance

of the magnitude of within-item discriminations in the parameter estimation of the bifactor

model, the results suggest that the role of the magnitude is negligible when magnitude = 1

or 1.5, regardless of the sample size and the ratio of within-item discriminations. It is only

when the within-item discriminations are considerably large in magnitude (for instance,

magnitude = 2) that ARs are affected, which diverges from the patterns observed under

FIML and LessInfo. The review of parameter recovery results next reveals whether the

findings in ARs hold for the estimation accuracy and stability under AdptInfo.

Parameter Recovery: Errors of the Parameter Estimates. For N = 500, the

distribution of the errors related to the item discrimination estimates under the Bayesian

method using adptive-informative priors (AdptInfo) is summarized in Figure 16. When the

ratio of the within-item discriminations for Item 1 was 1.1, the difference in estimation

accuracy between Item 1’s discrimination parameters and those of the other items became

more noticeable as Item 1’s discriminations increased in magnitude. For example, when

magnitude = 1.5, the range of the errors for α1,1 was 2.00 with an LUL of (−1.16, 0.84),

whereas the largest error range for the other items’ discriminations on the primary

dimension was 1.17 (LUL[−0.51, 0.66]) for α8,1 and the smallest was 0.62 (LUL[−0.20,

0.41]) for α9,1. As the magnitude increased to 2, the error range for α1,1 increased to 2.30

(LUL[−2.26, 0.04]), whereas the error ranges for the other items’ discriminations on the
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primary dimension remained relatively stable. Recall that at baseline (i.e., magnitude = 1;

from Study 1), the range of the errors for α1,1 was 1.11 (LUL[−0.64, 0.47]), with no

noticeable differences in the ranges of the errors and LULs between α1,1 and the other

items’ discriminations on the primary dimension. However, Item 1’s discrimination

parameters were progressively underestimated at magnitudes of 1.5 and 2 in comparison to

magnitude = 1. For example, the median error for α1,1 was −0.27 for magnitude = 1.5, and

−1.06 for magnitude = 2, compared with −0.05 at a magnitude of 1. These observations

indicate that, under AdptInfo, the estimates for Item 1’s discrimination parameters were

progressively underestimated as the magnitude of its discriminations became stronger.

Regarding the discrimination parameters on the secondary dimension, similar trends

were observed. In particular, as the magnitude of Item 1’s discriminations increased, the

errors and LULs associated with α1,2 became more noticeablely underestimated relative to

the baseline. For example, when the magnitude was 2, the range of the errors for α1,2 was

2.09 (LUL[−2.50, −0.42]), whereas the largest and smallest ranges of the errors for the

other discrimination parameters on the secondary dimension were 1.03 (LUL[−0.44, 0.59])

for α2,2 and 0.54 (LUL[−0.18, 0.36]) for α3,2, respectively. In contrast, at baseline, the

range was 1.50 (LUL[−0.70, 0.80]) for α1,2. Moreover, the median error corresponding to

α1,2 was −0.45 for magnitude = 1.5 and −1.32 for magnitude = 2, as opposed to −0.13 for

magnitude = 1. These findings further confirmed the observation that, as the magnitude of

Item 1’s discriminations increased, the estimates for Item 1’s discrimination parameters

under AdptInfo were subject to more pronounced underestimation.

When the within-item discriminations for Item 1 became more differentiated at ratios

of 1.3 and 1.5 (as shown in the second and third rows of Figure 16), the trends observed

aligned with those of ratio = 1.1. Specifically, with an increase in the magnitude of Item

1’s discriminations, both the full ranges and LULs of the errors associated with Item 1’s

parameter estimates increased compared with the baseline magnitude of 1. In contrast, the

ranges and LULs of the errors concerning the parameter estimates for the other items
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remained stable.

While Item 1’s discrimination parameters tended to be underestimated as the

magnitude of its discriminations increased, the underestimation issue was reduced as the

ratio of Item 1’s discriminations became more differentiated, suggesting that both the ratio

and magnitude of the item’s discriminations play a role in the estimation of a bifactor

model based on adaptive informative priors.

As the sample size increased to 1,000 (as shown in Figure 17) and 2,000 (Figure 18),

the estimation accuracy improved for all discrimination parameters, including those for

Item 1. However, a discrepancy in estimation accuracy between Item 1 and the other items

persisted, especially when Item 1’s discriminations were similar in strength and large in

magnitude. For example, when N = 2,000, the range of the errors was 1.42 (LUL[−0.70,

0.72]) for α1,1 and 1.69 (LUL[−0.80, 0.89]) for α1,2 when ratio = 1.1 and magnitude = 1.5.

In comparison, when N = 1,000, the range of the errors was 1.40 (LUL[−0.81, 0.59]) for

α1,1 and 2.04 (LUL[−1.16, 0.87]) for α1,2. When contrasted with the case where N = 500,

where the range of the errors was 2.00 (LUL[−1.16, 0.84]) for α1,1 and 1.95 (LUL[−1.37,

0.58]) for α1,2, it is evident that larger sample sizes helped to improve the estimation of the

problematic item. This pattern was consistently observed across almost all combinations of

ratio and magnitude conditions, indicating that a larger sample size can mitigate

underestimation under AdptInfo when an item’s discriminations are large in magnitude

and similar in strength.

Comparison across the three estimation methods. The results based on

the three estimation methods consistently demonstrate that the estimation challenges

arising from when an item’s discriminations being similar become more evident as the

magnitude of the items’ discriminations increased. Specifically, for a fixed sample size and

ratio of within-item discriminations, the estimation of Item 1’s discrimination parameters

became increasingly worse than the remaining items as the magnitude of Item 1’

discrimination parameters increased. However, the extent of the discrepancy in estimation
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between Item 1 and the other items varied depending on the estimation method employed.

Noticeably, the disparity in estimation accuracy was less severe under FIML compared

with LessInfo, indicating that FIML could yield more accurate estimates for the bifactor

model across a range of ratio, magnitude, and sample size conditions.

While the estimation of Item 1’s discrimination parameters worsened as the

magnitude of these parameters increased, the use of more informative priors under

AdptInfo led to a significant improvement in the estimation accuracy of these parameters

compared with using FIML and LessInfo. However, it is important to note that the

parameters tended to be underestimated with AdptInfo.

Summary of Study 2

Study 2 demonstrated that an increase in the magnitude of an items’ discriminations

can exacerbate the estimation difficulties that arise when the item’s discriminations are

similar in strength. Furthermore, sample size influences the severity of these estimation

challenges. Specifically, for a given level of similarity and magnitude of within-item

discriminations, the estimation difficulties amplify as the sample size decreases. In

addition, Study 2 evaluated the effectiveness of different estimation methods in estimating

the discrimination parameters of the bifactor model under more challenging situations than

those seen in Study 1. The results highlight some of the advantages of AdptInfo over both

FIML and LessInfo, as AdptInfo consistently yielded more accurate and stable estimates.

However, it is critical to note that AdptInfo tended to underestimate the discrimination

parameters for the problematic items. In summary, the findings of Study 2 suggest that the

estimation accuracy of the bifactor model is affected by the similarity and magnitude of an

items’ discriminations, and sample size. Consistent with Study 1, Study 2 reinforced that

the choice of estimation method matters, as it can have an impact on the accuracy of the

results.
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Results of Study 3

Study 3 further explored whether the effect of within-item discrimination similarity

on the estimates depended on item targetedness. It examined the conditions in which the

magnitude of the item discriminations was ideal but the similarity of the within-item

discriminations and the item targetedness were manipulated. Specifically, the factors

manipulated in this study included the sample size (500, 1,000, and 2,000), the ratio of

Item 1’s discriminations (1.1, 1.3, and 1.5), and the item targetedness of Item 1 (the higher

categories being more represented in the responses than the lower categories and vice

versa). Next, I discuss the results by estimation methods, followed by a comparison of the

performance of the three estimation methods and a summary of the main findings. The

results of this study were compared with those of Study 1 because the latter is equivalent

to an item targetedness condition in which all items including Item 1 are ideally targeted

to the respondents.

Full-Information Maximum Likelihood Estimation

Acceptable Rates. The ARs for full-information maximum likelihood (FIML)

estimation are summarized in Figure 19. In each plot, how well Item 1 was targeted to the

respondents is represented along the x-axis, the acceptable rates are represented along the

y-axis, and the ratios are represented by different colors. The results for when Item 1 was

ideally targeted originate from Study 1 and serve as the baseline.

At N = 500, the average ARs across the ratios were nearly the same for the three

item targetedness conditions (as shown in Figure 19a). Specifically, at baseline, the average

AR across the three ratios was .92, with a range of .90 to .94; when the lower categories

had a greater representation in the data than the higher categories for Item 1, the average

AR was .93, with a range of .90 to .96; when the higher categories had a greater

representation in the data than then lower categories for Item 1, the average AR was .92,

with a range of .88 to .96. These observations suggest that the variation in the targetedness

of Item 1 had a negligible effect on obtaining extreme estimates, warning messages, or both
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for the bifactor model. When the sample size increased to 1,000 and 2,000 (as depicted in

Figures 19b and 19c, respectively), similar patterns were observed. That is, for any given

ratio, the ARs did not change noticeably across the three targetedness conditions.

In sum, the AR findings suggest that item targetedness played a minimal role in

obtaining convergence warnings, extreme estimates, or both. The results of the parameter

recovery reviewed next further reveal whether the item targetedness affects the estimation

accuracy and stability of the bifactor model under FIML.

Parameter Recovery: Errors of the Parameter Estimates. For N = 500, the

distribution of the errors related to the item discrimination estimates under FIML is

summarized in Figure 20. In each plot, the item discrimination parameters are represented

along the x-axis (where αjd is item j’s discrimination on dimension d), and the errors are

represented along the y-axis. The plots within the same row differ in Item 1’s targetedness,

while the plots within the same column differ in how similar Item 1’s discriminations are.

If item targetedness does not matter, then the distributions of the errors should look

similar across the different item targetedness conditions.

When the ratio of Item 1’s discriminations was 1.1, the discrepancies in the

estimation accuracy between Item 1’s discrimination parameters and those of the other

items appeared stable despite changes in Item 1’s targetedness, as demonstrated by in the

plots in the first row of Figure 20). Specifically, when Item 1’s lower categories had a

greater representation in the data than the higher categories (shown in the first column),

the range of the errors was 1.65, with an LUL of (−0.57, 1.08), for α1,1, whereas among the

other items’ discriminations on the primary dimension (i.e., αj1 where j ̸= 1), the largest

error range was 1.14 (LUL[−0.52, 0.63]) and the smallest was 0.73 (LUL[−0.34, 0.39]),

which were for α5,1 and α3,1, respectively. Similarly, when Item 1’s higher categories had a

greater representation in the data than the lower categories (shown in the third column),

the range of the errors for α1,1 was 1.51, with an LUL of (−0.53, 0.98), whereas the ranges

of the errors for the other items’ discriminations on the primary dimension fell between
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(a) Acceptable rates under full-information
maximum likelihood estimation at N = 500
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(b) Acceptable rates under full-information
maximum likelihood estimation at N = 1,000
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(c) Acceptable rates under full-information
maximum likelihood estimation N = 2,000
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Figure 19
Figure 19. Visualizations of the acceptable rates (ARs) under full-information maximum
likelihood estimation (FIML), from Study 3. The targetedness of Item 1 is represented
along the horizontal axis; the proportion of runs in which the item discrimination estimates
were acceptable are represented along the vertical axis. Ratios are represented in different
colors.



86

a

1,1

a

2,1

a

3,1

a

4,1

a

5,1

a

6,1

a

7,1

a

8,1

a

9,1

a

10
,1

a

1,2

a

2,2

a

3,2

a

6,3

a

7,3

a

8,3

a

9,3

a

10
,3

-2024

P
ar

am
et

er
s

Error

a

1,1

a

2,1

a

3,1

a

4,1

a

5,1

a

6,1

a

7,1

a

8,1

a

9,1

a

10
,1

a

1,2

a

2,2

a

3,2

a

6,3

a

7,3

a

8,3

a

9,3

a

10
,3

-2024

P
ar

am
et

er
s

Error

a

1,1

a

2,1

a

3,1

a

4,1

a

5,1

a

6,1

a

7,1

a

8,1

a

9,1

a

10
,1

a

1,2

a

2,2

a

3,2

a

6,3

a

7,3

a

8,3

a

9,3

a

10
,3

-2024

P
ar

am
et

er
s

Error

a
1,1
a

2,1
a

3,1
a

4,1
a

5,1
a

6,1
a

7,1
a

8,1
a

9,1
a

10
,1

a
1,2
a

2,2
a

3,2
a

6,3
a

7,3
a

8,3
a

9,3
a

10
,3

-2024

P
ar

am
et

er
s

Error

a
1,1
a

2,1
a

3,1
a

4,1
a

5,1
a

6,1
a

7,1
a

8,1
a

9,1
a

10
,1

a
1,2
a

2,2
a

3,2
a

6,3
a

7,3
a

8,3
a

9,3
a

10
,3

-2024

P
ar

am
et

er
s

Error

a

1,1

a

2,1

a
3,1

a

4,1

a

5,1

a

6,1

a

7,1

a

8,1

a

9,1

a

10
,1

a

1,2

a

2,2

a

3,2

a

6,3

a

7,3

a

8,3

a

9,3

a

10
,3

-2024

P
ar

am
et

er
s

Error

a
1,1
a

2,1
a

3,1
a

4,1
a

5,1
a

6,1
a

7,1
a

8,1
a

9,1
a

10
,1

a
1,2
a

2,2
a

3,2
a

6,3
a

7,3
a

8,3
a

9,3
a

10
,3

-2024

P
ar

am
et

er
s

Error

a
1,1
a

2,1
a

3,1
a

4,1
a

5,1
a

6,1
a

7,1
a

8,1
a

9,1
a

10
,1

a
1,2
a

2,2
a

3,2
a

6,3
a

7,3
a

8,3
a

9,3
a

10
,3

-2024

P
ar

am
et

er
s

Error

a
1,1
a

2,1
a

3,1
a

4,1
a

5,1
a

6,1
a

7,1
a

8,1
a

9,1
a

10
,1

a
1,2
a

2,2
a

3,2
a

6,3
a

7,3
a

8,3
a

9,3
a

10
,3

-2024

P
ar

am
et

er
s

Error

L
ow

er
 C

at
eg

or
ie

s 
O

ve
r-

R
ep

re
se

nt
ed

C
at

eg
or

ie
s 

Id
ea

ll
y 

T
ar

ge
te

d
H

ig
he

r 
C

at
eg

or
ie

s 
O

ve
r-

R
ep

re
se

nt
ed

Ratio=1.1 Ratio=1.3 Ratio=1.5

F
ig

ur
e

20
Fi

gu
re

20
.

Bo
xp

lo
ts

su
m

m
ar

iz
in

g
th

e
er

ro
rs

of
th

e
ite

m
di

sc
rim

in
at

io
n

es
tim

at
es

fo
rN

=
50

0
un

de
rf

ul
l-i

nf
or

m
at

io
n

m
ax

im
um

(F
IM

L)
es

tim
at

io
n,

fro
m

St
ud

y
3.

T
he

pl
ot

s
in

ea
ch

ro
w

di
ffe

r
in

It
em

1’
s

ta
rg

et
ed

ne
ss

;t
he

pl
ot

s
in

ea
ch

co
lu

m
n

di
ffe

r
in

sim
ila

rit
y

of
It

em
1’

s
di

sc
rim

in
at

io
ns

.
In

ea
ch

pl
ot

,t
he

ho
riz

on
ta

la
xi

s
re

pr
es

en
ts

th
e

ite
m

di
sc

rim
in

at
io

n
pa

ra
m

et
er

s
(w

he
re

α
j,

d
is

ite
m

j’
s

di
sc

rim
in

at
io

n
on

di
m

en
sio

n
d
)

an
d

th
e

ve
rt

ic
al

ax
is

re
pr

es
en

ts
th

e
er

ro
rs

.



87
0.74 (LUL[−0.28, 0.45]) for α3,1 and 1.20 (LUL[−0.49, 0.71]) for α8,1. Notice that the range

of the errors related to α1,1, as well as the largest and smallest ranges of the errors across

the other parameters on the primary dimension, were all similar between the two

targetedness conditions. More importantly, comparable values were seen at baseline (shown

in the middle column).

With regards to the discriminations on the secondary dimension, similar patterns

were observed. Particularly, when Item 1’s lower categories had a greater representation in

the data (shown in the first column), the range of the errors for α1,2 was 2.40 (LUL[−0.58,

1.82], while the largest and smallest ranges across the other discrimination parameters for

the secondary dimension were 1.15 (LUL[−0.51, 0.64]) for α10,3 and 0.71 (LUL[−0.36,

0.36]) for α3,2, respectively. When Item 1’s higher categories had a greater representation

in the data (shown in the third column), the range of the errors for α1,2 was 2.44

(LUL[−0.71, 1.73], while the largest and smallest ranges across the other discrimination

parameters for the secondary dimension were 1.36 (LUL[−0.58, 0.77]) for α10,3 and 0.59

(LUL[−0.30, 0.30]) for α3,2, respectively. Similar to these two targetedness conditions,

when Item 1’s categories were ideally targeted to the respondents (shown in the middle

column), the range of the errors was 2.31 (LUL[−0.69, 1.62]) for α1,2, with the largest and

smallest ranges across the other discrimination parameters for the secondary dimension

being 1.04 (LUL[−0.41, 0.64]) and 0.81 (LUL[−0.40, 0.40]), respectively. Overall, the

results observed under ratio = 1.1 indicate that Item 1’s targetedness did not have a

critical effect on the estimation challenges posed by the empirical identification issue.

When the within-item discriminations for Item 1 became more differentiated, as seen

at ratios of 1.3 and 1.5 (shown in the plots in the second and third rows of Figure 20), the

trends observed were similar to those for ratio = 1.1. Specifically, even with changes in

Item 1’s targetedness, the full ranges and LULs of the errors related to Item 1’s

parameters, as well as those related to other items’ parameters, remained stable. These

observations confirmed that the targetedness of an item might not be a contributing factor
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to the estimation difficulties that emerge when the item’s discriminations are similar in

size. In other words, whether an item’s discriminations being similar leads to estimation

issues does not depend on the item’s targetedness.

As the sample size increased to 1,000 (as shown in Figure 21) and 2,000 (see Figure

22), similar patterns continued to be observed under each ratio condition, albeit with an

improvement in the estimation accuracy for all discrimination parameters. The results

suggest that the targetedness of an item does not play a noticeable role in the empirical

identification issue, reinforcing the conclusion that increasing the sample size can mitigate

the estimation challenges that arise from when an item’s discriminations are similar in

strength.

Bayesian Method Using Less Informative Priors

Acceptable Rates. The ARs for Bayesian method using less informative priors

(LessInfo) are summarized in Figure 23. At N = 500 (see Figure 23a), the average ARs

across the ratios were approximately similar between the two off-targetedness conditions.

Specifically, under the condition where Item 1’s lower categories had a greater

representation in the data than the higher categories (shown in the first column), the

average AR across the three ratio conditions was .85, with a range of .82 to .90. Similarly,

when Item 1’s higher categories had a greater representation in the data than the lower

categories (shown in the third column), the average AR across the three ratios was .85,

with a range of .80 to .88. In contrast, at baseline (shown in the middle column), the

average AR was .72, ranging from .64 to .78. As the sample size increased, the

discrepancies in ARs between the baseline and the two off-targetedness scenarios

diminished. In particular, when N = 2,000, the ARs were almost indistinguishable among

the three targetedness conditions for any given ratio.

The findings regarding ARs indicate that, for LessInfo, the item targetedness plays a

more impactful role in obtaining acceptable results compared with FIML, especially when

dealing with smaller sample size. The results of the parameter recovery reviewed next
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further reveal how the targetedness of Item 1 affects the accuracy and stability of

estimating parameters.

Parameter Recovery: Errors of the Parameter Estimates. For N = 500, the

distribution of the errors related to the item discrimination estimates under LessInfo is

summarized in Figure 24. When the ratio of Item 1’s discriminations was 1.1, the

discrepancies in the estimation accuracy between Item 1’s discrimination parameters and

that of the other items varied as Item 1’s targetedness changed, as demonstrated in the

plots in the first row of Figure 24). Specifically, when Item 1’s lower categories had a

greater representation in the data than its higher categories (shown in the first column of

the figure), the range of the errors was 1.78 with an LUL of (−0.49, 1.29) for α1,1, whereas

among the other items’ discriminations on the primary dimension (i.e., αj1 where j ̸= 1),

the largest error range was 1.13 (LUL[−0.54, 0.59]) and the smallest was 0.73 (LUL[−0.36,

0.37]), which were for α5,1 and α3,1, respectively. Likewise, when Item 1’s higher categories

had a greater representation in the data than its lower categories (shown in the third

column of the figure), the range of the errors for α1,1 was 1.91 with an LUL of (−0.51,

1.40), whereas the error ranges of the other items’ discriminations on the primary

dimension fell between 0.74 (LUL[−0.31, 0.42]) and 1.23 (LUL[−0.51, 0.72]). It is

important to note that the range of the errors related to α1,1, as well as the largest and

smallest error ranges across the other parameters on the primary dimension, were similar

across the two targetedness conditions. However, at baseline (shown in the middle column

of the figure), the range of the errors associated with α1,1 was larger, leading to greater

discrepancy in the estimation accuracy for α1,1 and for the other discrimination parameters

on the primary dimension. Particularly, when Item 1’s categories were ideally targeted to

the respondents, the error range for α1,1 was 2.82, with an LUL of (−0.59, 2.22), whereas

the error ranges for the other items’ discriminations on the primary dimension fell between

0.60 (LUL[−0.29, 0.31]) and 1.19 (LUL[−0.44, 0.75]).

When considering the discrimination parameters on the secondary dimension, similar
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(a) Acceptable rates under Bayesian method using

less informative priors at N = 500
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(b) Acceptable rates under Bayesian method using
less informative priors at N = 1,000
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(c) Acceptable rates under Bayesian method using
less informative priors at N = 2,000
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Figure 23
Figure 23. Visualizations of the acceptable rates (ARs) under Bayesian method using less
informative priors (LessInfo), from Study 3. The targetedness of Item 1 is represented along
the horizontal axis; the proportion of runs in which the item discrimination estimates were
acceptable are represented along the vertical axis. Ratios are represented in different colors.
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patterns were observed. When Item 1’s lower categories had a greater representation in the

data than its higher categories (shown in the first column of the figure), the range of the

errors for α1,2 was 2.26 (LUL[−0.55, 1.71], while the largest and smallest ranges across the

other discrimination parameters on the secondary dimension were 1.21 (LUL[−0.56, 0.65])

for α10,3 and 0.70 (LUL[−0.35, 0.35]) for α3,2, respectively. When Item 1’s higher categories

had a greater representation in the data than its lower categories (shown in the third

column of the figure), the range of the errors for α1,2 became 2.94 (LUL[−0.69, 2.25], while

the largest and smallest ranges across the other discrimination parameters on the

secondary dimension were 1.52 (LUL[−0.37, 1.15]) and 0.60 (LUL[−0.27, 0.32]),

respectively. In contrast, under the ideal condition (shown in the middle column of the

figure), the range of the errors increased to 3.32 (LUL[−0.61, 2.71]) for α1,2, with the

largest and smallest ranges for the other discrimination parameters on the secondary

dimension being 1.30 (LUL[−0.51, 0.79]) and 0.82 (LUL[−0.42, 0.39]), respectively.

Overall, the results observed under ratio = 1.1 show that when Item 1 was off-targeted, the

accuracy of Item 1’s discrimination estimates improved, while the discrimination estimates

for the other items remained relatively stable.

When the within-item discriminations for Item 1 became more differentiated, for

example, a ratio of 1.3, similar trends were observed only for the secondary dimension

(shown in the plots in the second row of Figure 24). Specifically, when Item 1’s lower

categories had a greater representation in the data than its higher categories, the range of

the errors for α1,2 was 2.19 (LUL[−0.55, 1.64]), while the largest and smallest ranges for

the other discrimination parameters related to the secondary dimensions were 1.71

(LUL[−0.48, 1.23]) for α2,2 and 0.73 (LUL[−0.35, 0.38]) for α3,2, respectively. Similarly,

when Item 1’s higher categories had a greater representation in the data than its lower

categories, the range of the errors for α1,2 was 2.25 (LUL[−0.77, 1.48]), while the largest

and smallest ranges for the other discrimination parameters related to the secondary

dimensions were 1.30 (LUL[−0.55, 0.75]) and 0.79 (LUL[−0.43, 0.37]), respectively.
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However, under the Ideal condition, the range of the errors related to α1,2 became 2.81

(LUL[−0.73, 2.08]), with the largest and smallest ranges for the other discrimination

parameters related to the secondary dimensions being 1.65 (LUL[−0.52, 1.13]) and 0.68

(LUL[−0.35, 0.33]), respectively. It is critical to note that the range of the errors for α1,2

was larger under the Ideal condition than in the two problematic targetedness conditions,

while the ranges of the errors for the other discrimination parameters related to the

secondary dimensions remained relatively stable across all targetedness conditions.

As the ratio of Item 1’s discriminations further increased to 1.5 (as shown in the plots

in the third rows of Figure 24), the trends observed for ratio = 1.1 were no longer evident.

Specifically, despite changes in Item 1’s targetedness, the full ranges and LULs of the errors

related to Item 1’s parameters, as well as those related to the other items’ parameters,

remained stable.

The trends for N = 500 seem to indicate that under LessInfo, an item’s targetedness

might impact the estimation difficulties arising when the item’s discriminations are similar

in size. Specifically, an item being off-targeted may mitigate the estimation difficulties.

However, the extent of the impact may depend on the degree of similarity of the item’s

discriminations, with the effect of the item’s targetedness becoming more pronounced when

the item’s discriminations are more similar.

As the sample size increased to 1,000 (as depicted in Figure 25) and 2,000 (see Figure

26), similar patterns to those observed under N = 500 were found under each ratio

condition, albeit with an overall enhancement in the estimation accuracy for all

discrimination parameters, including those of Item 1. The findings suggest that under

LessInfo, when an item’s discriminations are relatively distinct, the item being off-targeted

does not worsen the estimation difficulties. However, when an item’s discriminations are

highly similar, the item being off-targeted may lead to improved estimation accuracy for its

discrimination parameters.
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Bayesian Method Using Adaptive Informative Priors

Acceptable Rates. The ARs for the Bayesian method using adaptive informative

priors (AdptInfo) are summarized in Figure 27. The patterns observed under AdptInfo

were consistent to those seen under FIML in that the ARs did not vary evidently across

the three targetedness conditions. Specifically, when N = 500 (as shown in Figure 27a), the

average ARs across the ratios were almost identical under three item targetedness

conditions, with it being at least .99. As the sample size increased to 1,000 and 2,000 (as

depicted in Figures 27b and 27c), a similar trend was observed, indicating that, irrespective

of the given ratio, the ARs remained largely unaffected by variations in item targetedness.

The findings regarding ARs under AdptInfo mirror those observed under FIML,

indicating that item targetedness does not affect obtaining permissible results. The results

of the parameter recovery reviewed next reveal how the targetedness of Item 1 affects the

accuracy and stability of its estimation under AdptInfo.

Parameter Recovery: Errors of the Parameter Estimates. For N = 500, the

distribution of the errors related to the item discrimination estimates under AdptInfo is

summarized in Figure 28. For ratio = 1.1, the patterns regarding estimation accuracy

observed between Item 1’s discriminations and the other items’ discriminations seemed

consistent across the item targetedness conditions (as shown in the plots in the first row of

Figure 28). Specifically, when Item 1’s lower categories were more represented in the data

than its higher categories, the range of the errors for α1,1 was 1.20 with an LUL of (−0.59,

0.61), whereas among the other items’ discriminations related to the primary dimension

(i.e., αj1 where j ̸= 1), the largest error range was 1.12 (LUL[−0.52, 0.60]) and the smallest

was 0.71 (LUL[−0.32, −.39]), which were for α5,1 and α3,1, respectively. Similarly, when

Item 1’s higher categories were more represented than its lower categories, the range of the

errors for α1,1 was 1.17 with an LUL of (−0.52, 0.65), whereas the ranges of the errors for

the other items’ discriminations on the primary dimension fell between 0.74 (LUL[−0.28,

0.46]) and 1.17 (LUL[−0.48, 0.69]). Notice that the range of the errors related to α1,1, as
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(a) Acceptable rates under Bayesian method using

adaptive informative priors at N = 500

Low
er

ca
teg

or
ies

ov
er

-re
pre

se
nted

Cat
eg

or
ies

id
ea

lly
ta

rg
ete

d

High
er

ca
teg

or
ies

ov
er

-re
pre

se
nted

0.0

0.5

1.0
0.98 0.96

1.001.00 0.98 1.001.00 1.00
0.96

A
cc

ep
ta

bl
e

R
at

e Ratio = 1.1

Ratio = 1.3
Ratio = 1.5

(b) Acceptable rates under Bayesian method using
adaptive informative priors at N = 1,000
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Figure 27
Figure 27. Visualizations of the acceptable rates (ARs) under Bayesian method using
adaptive informative priors (AdptInfo), from Study 3. The targetedness of Item 1 is
represented along the horizontal axis; the proportion of runs in which the item
discrimination estimates were acceptable are represented along the vertical axis. Ratios are
represented in different colors.
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well as the largest and smallest error ranges across the other discriminations on the

primary dimension, were highly similar between the two off-targetedness conditions. More

importantly, comparable values were also observed at baseline (i.e., ideal condition), with a

range of the errors for α1,1 being 1.11 (LUL[−0.64, 0.47]) and the largest and smallest error

ranges for the other parameters related to the primary dimension being 0.62 (LUL[−0.26,

0.36]) and 1.13 (LUL[−0.42, 0.71]), respectively.

With respect to the discriminations related to the secondary dimensions, similar

patterns were observed. Particularly, when Item 1’s lower categories were more represented

than its higher categories, the range of the errors for α1,2 was 1.30 (LUL[−0.60, 0.70], while

the largest and smallest ranges for the other discrimination parameters related to the

secondary dimensions were 1.10 (LUL[−0.53, 0.47]) for α10,3 and 0.65 (LUL[−0.29, 0.35])

for α3,2, respectively. When Item 1’s higher categories were more represented than its lower

categories, the range of the errors for α1,2 was 1.96 (LUL[−0.73, 1.22], while the largest and

smallest ranges for the other discrimination parameters related to the secondary dimensions

were 1.33 (LUL[−0.65, 0.67]) and 0.56 (LUL[−0.21, 0.35]), respectively. Similar to these

two problematic targetedness conditions, when Item 1’s categories were ideally targeted to

the respondents, the range of the errors was 1.50 (LUL[−0.70, 0.80]) for α1,2, with the

largest and smallest ranges for the other discrimination parameters related to the secondary

dimensions being 1.03 (LUL[−0.43, 0.60]) and 0.71 (LUL[−0.31, 0.40]), respectively.

When the within-item discriminations for Item 1 became more distinct, as seen under

ratios of 1.3 and 1.5 (shown in the plots in the second and third rows of Figure 28), the

trends were comparable to those observed when the ratio = 1.1. Specifically, the full error

ranges and LULs related to Item 1’s parameters, as well as those related to other items’

parameters, remained similar regardless of changes in Item 1’s targetedness. These

observations indicate that, under AdptInfo, the targetedness of an item might not worsen

the estimation difficulties that arise when the item’s discriminations are similar in size. In

other words, the impact of within-item discriminations being similar on estimates is
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seemingly independent of item targetedness with AdptInfo.

As the sample size increased to 1,000 (as depicted in Figure 29) and 2,000 (see Figure

30), similar patterns to those observed under N = 500 were found under each ratio

condition. However, there was an overall improvement in the accuracy of the estimates for

all discrimination parameters, including those of Item 1. The findings suggest that, under

AdptInfo, the item targetedness does not exacerbate the estimation challenges that arise

when an item’s discriminations are similar.

Comparison across the three estimation methods. The results reveal that,

for FIML and AdptInfo, item targetedness does not influence the estimation challenges

arising from within-item discriminations being similar in strength. Specifically, for a given

sample size and ratio of within-item discriminations, the estimation of Item 1’s

discrimination parameters remained stable as item targetedness varied. In other words, the

inconsistency concerning the estimation accuracy observed between Item 1 and the other

items was not affected by item targetedness. However, it is important to note that the

inconsistency in estimation accuracy between Item 1 and the remaining items was less

pronounced under AdptInfo when compared with FIML.

In contrast, the results based on LessInfo reveal a slightly different pattern.

Particularly, when an item’s discriminations are relatively distinct, its targetedness does

not play a role. In fact, when an item’s discriminations are highly similar, the item being

off-targeted could result in more accurate estimates for the discrimination parameters.

Further investigation is needed to delve into this odd pattern.

Summary of Study 3

Study 3 demonstrated that an item’s targetedness has minimal influence on the

estimation difficulties that arise when the item’s discriminations are similar in strength,

especially when FIML or AdptInfo is used. Furthermore, in line with the previous two

studies I have discussed, sample size is shown to influence the severity of the bias in the

discrimination estimates. Specifically, for a given level of similarity of the within-item
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discriminations and item targetedness, the bias decreases as the sample size increases.

Study 3 further evaluated the performance of the different estimation methods for the

bifactor model under more challenging situations. The results highlight that AdptInfo

performs better than both FIML and LessInfo, as AdptInfo consistently yielded stable and

more accurate estimates. In summary, the findings of Study 3 suggest that, when an item’s

discriminations are similar, the item’s targetedness may not affect the estimation accuracy

of the bifactor model in most scenarios.
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CHAPTER 5

DISCUSSION

The bifactor item response theory (IRT) model is being used more frequently to 

determine the dimensionality of test data. Compared with some widely-used IRT models, 

such as the unidimensional model and the between-item-dimensionality model, the bifactor 

model allows researchers to assess the dependencies in the responses across all items, as 

well as the unique dependencies within the responses of subsets of items. This, in turn, 

enables researchers to better evaluate the degree to which a bifactor structure is 

represented in the data, thereby providing evidence of score validity.

To separate the different sources of dependencies influencing the responses, the 

bifactor model estimates two discrimination parameters for each item: one accounting for 

how much the general trait (or primary dimension) is represented in the item’s responses, 

and the other for how much the extra (or secondary) dimension impacts the responses. 

Unfortunately, estimating two discrimination parameters per item can be challenging, as an 

empirical identification issue may arise during the estimation p rocess. Specifically, the issue 

appears when an item’s discriminations on the primary and secondary dimensions (or 

within-item discriminations) are similar in strength, leading to difficulties in  estimating 

those discriminations. Currently, only limited evidence exists demonstrating that this issue 

occurs. How similar an item’s discriminations need to be before the empirical identification 

issue arises is unknown. Also, whether the similarity of the within-item discriminations is 

moderated by factors like magnitude of the discriminations and item targetedness 

regarding when the empirical identification i ssue appears in bifactor modeling i s unclear. 

Moreover, whether the empirical identification i ssue occurs s imilarly under different
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estimation methods has not been determined. By conducting three simulation studies in

my dissertation, I provide insight about these questions.

Study 1 extended the investigation on the empirical identification issue demonstrated

by Chen and Fujimoto (2022). This first study confirmed that an item’s discriminations on

the general and specific dimensions being similar in strength can lead to estimation

challenges, and more importantly, it went beyond just this finding in that it provided

additional evidence of this issue under varying sample sizes and degrees of within-item

discrimination similarity, as well as explored the issue across different estimation methods.

Study 1 revealed that the estimation method matters in the empirical identification issue of

the bifactor model, a finding previously unexplored in literature, with Bayesian method

using adaptive informative priors outperforming full-information maximum likelihood

estimation and Bayesian method using less informative priors, particularly in situations

where the sample size was small (e.g., N ≤ 1,000) or when the item’s discriminations were

very similar (e.g., a ratio near 1).

Studies 2 and 3 also expanded on Chen and Fujimoto’s (2022) work by showing the

impact of magnitude of the discriminations and item targetedness on the empirical

identification issue, respectively. Study 2 revealed an interaction effect between within-item

discrimination similarity and magnitude of the discriminations. More specifically, when the

magnitude of an item’s discriminations was greater, the discriminations did not have to be

as similar before the estimation problems appeared; when the magnitude of an item’s

discriminations was weaker, the discriminations had to be more similar before the

estimation issue occurred. With regards to the performance of the different estimation

methods, Bayesian method using adaptive informative priors, again, outperformed the

other two methods consistently across all conditions. However, it is critical to note that

this method underestimated the discrimination parameters for items having stronger

discriminatory powers.

Study 3 further explored the impact of item targetedness on the within-item
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discrimination similarity before the empirical identification issue arises. The results did not

show a clear pattern of the interaction between within-item discrimination similarity and

item targetedness. Specifically, with full-information maximum likelihood estimation and

Bayesian method using adaptive informative priors, item targetedness did not interact with

within-item discrimination similarity, implying that item targetedness may not impact the

similarity required for the estimation issue to emerge. However, under Bayesian method

using less informative priors, when the item was off-targeted, its within-item

discriminations had to be more similar to observe the empirical identification issue.

The three studies together, then, demonstrate that the empirical identification issue

of the bifactor model due to the item’s discriminations being similar is moderated by

magnitude of the within-item discriminations. Additionally, these studies highlight the

empirical nature of this identification issue that I focused on, showing that larger sample

sizes can mitigate the estimation inaccuracies caused by within-item discriminations being

similar and the discriminations being strong in magnitude. The reason is, as sample size

increases, there is more information in the data, leading to these factors creating less of an

estimation problem. The findings regarding the impact of item targetedness on the

empirical identification issue were inconclusive, which was unexpected because Xia and

Yang (2018) suggested that more extreme threshold values may lead to inaccurate

parameter estimation. However, their focus was on all items being off targeted, whereas I

focused on only one item, resulting in the overall targetedness of the items as a set not

being sufficiently off-targeted. This might explain the lack of the interaction effect between

item targetedness and similarity of the within-item discriminations on the estimation issue.

The studies I conducted also collectively demonstrated that the estimation method

matters in the empirical identification issue of the bifactor model that I focused on. If we

were to view FIML as a Bayesian model with noninformative priors on the item parameters

(ignoring the difference between marginal and conditional likelihoods), then the only

difference among the estimation methods explored would be the priors assigned to the item
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parameters. Thus, any observed differences in the parameter estimation across the three

methods can be directly attributed to the differences in the priors assigned to the item

parameters. In the conditions I examined, Bayesian estimation using adaptive informative

priors was consistently observed to produce more accurate discrimination estimates than

the other two estimation methods when the empirical identification issue occurred.

However, as I noted earlier, this method underestimated an item’s discrimination

parameters when the item’s discriminatory powers were strong in magnitude. This

underestimation occurred because the hyperpriors applied in this method shifted the values

likely to be supported by the priors to where the majority of the discrimination parameters

were. However, underestimation may be desirable compared with overestimation. For

example, in high-stakes testing, conservative estimates could be beneficial, as they can

reduce the risk of overestimating the reliability of a test. Concerning Bayesian method

using less informative priors, it generally underperformed when compared with the other

two methods, which was unexpected considering the presence of some degree of information

provided by the priors.

Regarding the most commonly used method in IRT modeling—full-information

maximum likelihood estimation—this dissertation shows that it may not be an optimal

estimation method because it may produce noticeably biased parameter estimates when an

item’s discriminations are similar in strength, large in magnitude, or both. The reason this

method fails when the empirical identification issue occurs is that it only requires assigning

a prior distribution to the latent trait dimensional positions, and no other information

other than the response data is needed to estimate the other parameters. This could create

problems in the estimation process when the within-item discriminations are similar in

strength, as the information in the data alone may not be sufficient to differentiate the

within-item discriminations.
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Limitations and Future Directions

Although I provide insight into the factors that contribute to the estimation issue

arising from within-item discrimination being similar, several limitations should be

acknowledged. Firstly, I only examined a single bifactor structure composed of 10 items, a

structure motivated by RSES data. I focused on one structure so that I could perform a

more in-depth investigation (e.g., exploring factors that interact with the within-item

discrimination similarity) than if I were to explore a range of bifactor structures. However,

focusing on one structure may limit the generalizability of my findings. Nonetheless, it is

reasonable to anticipate that the effect of the factors that I have shown to impact the

empirical identification issue will persist—albeit to varying degrees—with other bifactor

structures, as Stone and Zhu (2015) suggested that this empirical identification is a general

issue. Future research, however, should confirm whether the number of items impacts the

empirical identification issue because it is possible that including more items in a bifactor

structure might mitigate the estimation challenges associated with item having similar

within-item discriminations, as more items represent more information in the data.

Another limitation of this study is that I only manipulated a single item in order to

establish clear patterns of how the factors of interest impact the empirical identification

issue with the bifactor model. Future investigations might examine the empirical

identification issue with more than one item presenting extreme parameter values and

explore whether more than one such item could influence the estimation of nonproblematic

items. A third limitation of this dissertation is that, within Bayesian estimation, I only

examined two priors for the item discriminations. Of these two priors, the more informative

one produced more accurate discrimination estimates when the empirical identification

issue occurred, but it underestimated the parameters, particularly when the magnitude of

an item’s discriminations was strong. The specific impacts of the inaccuracies associated

with these priors, however, remain unclear. Future studies should investigate how

inferences are impacted by these inaccuracies. If a substantive impact is identified, then
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more accurate ways to estimating the bifactor model will be needed. For instance, a way

that could potentially produce more accurate parameter estimates is a two-step approach,

with the first step involving estimating the bifactor model using informative priors,

followed by adjusting the prior for items with noticeably larger discrimination estimates.

A final limitation of this dissertation is that I only focused on the impact of the

empirical identification issue on the item discrimination estimates. The broader impacts of

this issue are unexplored. Future research should examine how the empirical identification

issue affects the validity and reliability (e.g., categorical ω) of tests. In addition, given the

equivalent transformation of factor loadings and IRT discrimination parameters, it is

logical to anticipate that the empirical identification issue could also influence structural

inferences within the context of structural equation modeling, which needs to be verified by

further investigations.

Conclusions

Bifactor IRT modeling has grown considerably in fields like education and

psychology, as it can verify a structure that is suitable to many theories. However, the

practical application of the bifactor model presents certain challenges, one of which is an

empirical identification issue that was the focus of this dissertation. This issue occurs when

an item’s discrimination parameters on the primary and secondary dimensions are similar

in strength, resulting in potentially biased estimates for these parameters. Currently, only

one study has demonstrated in a simple scenario that this problem exists. Whether other

typical situations seen in practice like strength of the discriminations and item targetedness

interact with the empirical identification issue and whether the estimation method matters

have not been explored.

My work on this dissertation broadens our understanding about this empirical

identification issue with the bifactor model. I provide new insight about the factors that

influence this issue and offer guidance on the choice of estimation methods to mitigate the

issue. My findings indicate that magnitude of the item discriminations impacts how
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different the within-item discriminations may have to be before the estimates are not

biased. Furthermore, an adaptive informative prior within a Bayesian setting may be

better to use than less informative priors within the same setting or FIML within the

frequentist framework. However, I also reveal new concerns such as the underestimation,

thereby highlighting the need for further exploration of alternative estimation methods and

strategies for handling the empirical identification issue.



113
REFERENCES

Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs

sampling. Journal of educational statistics, 17 (3), 251–269.

https://doi.org/10.3102/10769986017003251

Alessandri, G., Vecchione, M., Eisenberg, N., & Łaguna, M. (2015). On the factor structure

of the Rosenberg (1965) General Self-Esteem Scale. Psychological Assessment,

27 (2), 621. https://doi.org/10.1037/pas0000073

American Educational Research Association, American Psychological Association, &

National Council on Measurement in Education. (2014). Standards for educational

and psychological testing.

Bafumi, J., Gelman, A., Park, D. K., & Kaplan, N. (2005). Practical issues in

implementing and understanding Bayesian ideal point estimation. Political Analysis,

13 (2), 171–187. https://doi.org/10.1093/pan/mpi010

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item

parameters: Application of an EM algorithm. Psychometrika, 46 (4), 443–459.

https://doi.org/10.1007/BF02293801

Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a

microcomputer environment. Applied psychological measurement, 6 (4), 431–444.

https://doi.org/10.1177/014662168200600405

Bolt, D. M. (2019). Bifactor mirt as an appealing and related alternative to cdms in the

presence of skill attribute continuity. In Handbook of diagnostic classification models

(pp. 395–417). Springer. https://doi.org/10.1007/978-3-030-05584-4_19

Bornovalova, M. A., Choate, A. M., Fatimah, H., Petersen, K. J., & Wiernik, B. M. (2020).

Appropriate use of bifactor analysis in psychopathology research: Appreciating

benefits and limitations. Biological Psychiatry, 88 (1), 18–27.

https://doi.org/10.1016/j.biopsych.2020.01.013

https://doi.org/10.3102/10769986017003251
https://doi.org/10.1037/pas0000073
https://doi.org/10.1093/pan/mpi010
https://doi.org/10.1007/BF02293801
https://doi.org/10.1177/014662168200600405
https://doi.org/10.1007/978-3-030-05584-4_19
https://doi.org/10.1016/j.biopsych.2020.01.013


114
Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of

iterative simulations. Journal of computational and graphical statistics, 434–455.

https://doi.org/10.2307/1390675

Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. Sage

publications.

Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S.,

Meier, M. H., Ramrakha, S., Shalev, I., Poulton, R., et al. (2014). The p factor: One

general psychopathology factor in the structure of psychiatric disorders? Clinical

psychological science, 2 (2), 119–137. https://doi.org/10.1177/2167702613497473

Chen, W., & Fujimoto, K. A. (2022). An empirical identification issue of the bifactor item

response theory model. Applied Psychological Measurement.

https://doi.org/10.1177/01466216221108133

Coulacoglou, C., & Saklofske, D. H. (2017). Psychometrics and psychological assessment:

Principles and applications. Academic Press.

Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. ERIC.

De Ayala, R. (1994). The influence of multidimensionality on the graded response model.

Applied Psychological Measurement, 18 (2), 155–170.

https://doi.org/10.1177/014662169401800205

DeMars, C. E. (2006). Application of the bi-factor multidimensional item response theory

model to testlet-based tests. Journal of educational measurement, 43 (2), 145–168.

https://doi.org/10.1111/j.1745-3984.2006.00010.x

DeMars, C. E. (2012). Confirming testlet effects. Applied Psychological Measurement,

36 (2), 104–121. https://doi.org/10.1177/0146621612437403

DeMars, C. E. (2013). A tutorial on interpreting bifactor model scores. International

Journal of Testing, 13 (4), 354–378. https://doi.org/10.1080/15305058.2013.799067

Donnellan, M. B., Ackerman, R. A., & Brecheen, C. (2016). Extending structural analyses

of the Rosenberg Self-Esteem Scale to consider criterion-related validity: Can

https://doi.org/10.2307/1390675
https://doi.org/10.1177/2167702613497473
https://doi.org/10.1177/01466216221108133
https://doi.org/10.1177/014662169401800205
https://doi.org/10.1111/j.1745-3984.2006.00010.x
https://doi.org/10.1177/0146621612437403
https://doi.org/10.1080/15305058.2013.799067


115
composite self-esteem scores be good enough? Journal of Personality Assessment,

98 (2), 169–177. https://doi.org/10.1080/00223891.2015.1058268

Drasgow, F. (1989). An evaluation of marginal maximum likelihood estimation for the

two-parameter logistic model. Applied Psychological Measurement, 13 (1), 77–90.

https://doi.org/10.1177/014662168901300108

Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press.

Forero, C. G., & Maydeu-Olivares, A. (2009). Estimation of irt graded response models:

Limited versus full information methods. Psychological methods, 14 (3), 275.

https://doi.org/10.1037/a0015825

Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. Springer.

Fujimoto, K. A. (2019). A more flexible Bayesian multilevel bifactor item response theory

model. Journal of Educational Measurement. https://doi.org/10.1111/jedm.12249

Fujimoto, K. A., & Neugebauer, S. R. (2020). A general bayesian multidimensional item

response theory model for small and large samples. Educational and Psychological

Measurement, 1–30. https://doi.org/10.1177/0013164419891205

Gibbons, R. D., Bock, R. D., Hedeker, D., Weiss, D. J., Segawa, E., Bhaumik, D. K.,

Kupfer, D. J., Frank, E., Grochocinski, V. J., & Stover, A. (2007). Full-information

item bifactor analysis of graded response data. Applied Psychological Measurement,

31 (1), 4–19. https://doi.org/10.1177/0146621606289485

Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item bi-factor analysis.

Psychometrika, 57 (3), 423–436.

Hartig, J., & Höhler, J. (2008). Representation of competencies in multidimensional IRT

models with within-item and between-item multidimensionality. Zeitschrift für

Psychologie/Journal of Psychology, 216 (2), 89–101.

https://doi.org/10.1027/0044-3409.216.2.89

https://doi.org/10.1080/00223891.2015.1058268
https://doi.org/10.1177/014662168901300108
https://doi.org/10.1037/a0015825
https://doi.org/10.1111/jedm.12249
https://doi.org/10.1177/0013164419891205
https://doi.org/10.1177/0146621606289485
https://doi.org/10.1027/0044-3409.216.2.89


116
Hendy, N. T., & Biderman, M. D. (2019). Using bifactor model of personality to predict

academic performance and dishonesty. The International Journal of Management

Education, 17 (2), 294–303. https://doi.org/10.1016/j.ijme.2019.05.003

Hoffman, M. D., Gelman, A., et al. (2014). The no-u-turn sampler: Adaptively setting path

lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15 (1), 1593–1623.

Hopko, D. R. (2003). Confirmatory factor analysis of the math anxiety rating scale–revised.

Educational and Psychological Measurement, 63 (2), 336–351.

https://doi.org/10.1177/0013164402251041

Jiang, S., Wang, C., & Weiss, D. J. (2016). Sample size requirements for estimation of item

parameters in the multidimensional graded response model. Frontiers in psychology,

7, 109. https://doi.org/10.3389/fpsyg.2016.00109

Jiao, H., Kamata, A., Wang, S., & Jin, Y. (2012). A multilevel testlet model for dual local

dependence. https://doi.org/10.1111/j.1745-3984.2011.00161.x

Kieftenbeld, V., & Natesan, P. (2012). Recovery of graded response model parameters: A

comparison of marginal maximum likelihood and Markov chain Monte Carlo

estimation. Applied Psychological Measurement, 36 (5), 399–419.

https://doi.org/10.1177/0146621612446170

Kose, I. A., & Demirtasli, N. C. (2012). Comparison of unidimensional and

multidimensional models based on item response theory in terms of both variables

of test length and sample size. Procedia-Social and Behavioral Sciences, 46, 135–140.

https://doi.org/10.1016/j.sbspro.2012.05.082

Lee, W.-y., & Cho, S.-J. (2017). Detecting differential item discrimination (did) and the

consequences of ignoring did in multilevel item response models. Journal of

Educational Measurement, 54 (3), 364–393. https://doi.org/10.1111/jedm.12148

Linacre, J. M., et al. (2002). Optimizing rating scale category effectiveness. Journal of

applied measurement, 3 (1), 85–106.

https://doi.org/10.1016/j.ijme.2019.05.003
https://doi.org/10.1177/0013164402251041
https://doi.org/10.3389/fpsyg.2016.00109
https://doi.org/10.1111/j.1745-3984.2011.00161.x
https://doi.org/10.1177/0146621612446170
https://doi.org/10.1016/j.sbspro.2012.05.082
https://doi.org/10.1111/jedm.12148


117
Liu, Y., & Thissen, D. (2012). Identifying local dependence with a score test statistic based

on the bifactor logistic model. Applied Psychological Measurement, 36 (8), 670–688.

https://doi.org/10.1177/0146621612458174

Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2013). The bugs book. A

Practical Introduction to Bayesian Analysis, Chapman Hall, London.

Marsh, H. W. (1996). Positive and negative global self-esteem: A substantively meaningful

distinction or artifactors? Journal of personality and social psychology, 70 (4), 810.

https://doi.org/10.1037/0022-3514.70.4.810

Marsh, H. W., Scalas, L. F., & Nagengast, B. (2010). Longitudinal tests of competing

factor structures for the rosenberg self-esteem scale: Traits, ephemeral artifacts, and

stable response styles. Psychological assessment, 22 (2), 366.

https://doi.org/10.1037/a0019225

Maydeu-Olivares, A., & McArdle, J. J. (2005). Contemporary psychometrics. Psychology

Press.

Michaelides, M. P., Koutsogiorgi, C., & Panayiotou, G. (2016). Method effects on an

adaptation of the Rosenberg Self-Esteem Scale in Greek and the role of personality

traits. Journal of Personality Assessment, 98 (2), 178–188.

https://doi.org/10.1080/00223891.2015.1089248

Murray, A. L., Eisner, M., & Ribeaud, D. (2016). The development of the general factor of

psychopathology ‘p factor’through childhood and adolescence. Journal of abnormal

child psychology, 44 (8), 1573–1586. https://doi.org/10.1007/s10802-016-0132-1

Muthén, L. K., & Muthen, B. O. (2017). Mplus User’s Guide. Los Angeles, CA: Muthén &

Muthén.

Muthén, L., & Muthén, B. (2016). Mplus. The comprehensive modelling program for

applied researchers: user’s guide, 5.

Paek, I., Cui, M., Öztürk Gübeş, N., & Yang, Y. (2018). Estimation of an IRT model by

Mplus for dichotomously scored responses under different estimation methods.

https://doi.org/10.1177/0146621612458174
https://doi.org/10.1037/0022-3514.70.4.810
https://doi.org/10.1037/a0019225
https://doi.org/10.1080/00223891.2015.1089248
https://doi.org/10.1007/s10802-016-0132-1


118
Educational and Psychological Measurement, 78 (4), 569–588.

https://doi.org/10.1177/0013164417715738

Rauch, D. P., & Hartig, J. (2010). Multiple-choice versus open-ended response formats of

reading test items: A two-dimensional IRT analysis. Psychological Test and

Assessment Modeling, 52 (4), 354.

Reckase, M. D. (2009). Multidimensional item response theory models. In

Multidimensional item response theory (pp. 79–112). Springer.

Reise, S. P., Cook, K. F., & Moore, T. M. (2014). Evaluating the impact of

multidimensionality on unidimensional item response theory model parameters. In

Handbook of item response theory modeling (pp. 31–58). Routledge.

Reise, S. P., & Haviland, M. G. (2005). Item response theory and the measurement of

clinical change. Journal of personality assessment, 84 (3), 228–238.

https://doi.org/10.1207/s15327752jpa8403_02

Reise, S. P., Kim, D. S., Mansolf, M., & Widaman, K. F. (2016). Is the bifactor model a

better model or is it just better at modeling implausible responses? application of

iteratively reweighted least squares to the Rosenberg Self-Esteem Scale. Multivariate

Behavioral Research, 51 (6), 818–838.

https://doi.org/10.1080/00273171.2016.1243461

Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations:

Exploring the extent to which multidimensional data yield univocal scale scores.

Journal of personality assessment, 92 (6), 544–559.

https://doi.org/10.1080/00223891.2010.496477

Reiser, M., & VandenBerg, M. (1994). Validity of the chi-square test in dichotomous

variable factor analysis when expected frequencies are small. British Journal of

Mathematical and Statistical Psychology, 47 (1), 85–107.

https://doi.org/10.1111/j.2044-8317.1994.tb01026.x

https://doi.org/10.1177/0013164417715738
https://doi.org/10.1207/s15327752jpa8403_02
https://doi.org/10.1080/00273171.2016.1243461
https://doi.org/10.1080/00223891.2010.496477
https://doi.org/10.1111/j.2044-8317.1994.tb01026.x


119
Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models:

Calculating and interpreting statistical indices. Psychological methods, 21 (2), 137.

https://doi.org/10.1037/met0000045

Rosenberg, M. (1965). Society and the adolescent self-image. Princeton,NJ: Princeton

Pniversity Press.

Salerno, L., Ingoglia, S., & Coco, G. L. (2017). Competing factor structures of the

Rosenberg Self-Esteem Scale (RSES) and its measurement invariance across clinical

and non-clinical samples. Personality and Individual Differences, 113, 13–19.

https://doi.org/10.1016/j.paid.2017.02.063

Samejima, F. (1997). Graded response model. In Handbook of modern item response theory

(pp. 85–100). Springer.

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of cronbach’s

alpha. Psychometrika, 74, 107–120. https://doi.org/10.1007/s11336-008-9101-0

Sorensen, T., & Vasishth, S. (2015). Bayesian linear mixed models using stan: A tutorial

for psychologists, linguists, and cognitive scientists. arXiv preprint

arXiv:1506.06201. https://doi.org/10.48550/arXiv.1506.06201

Stone, C. A., & Zhu, X. (2015). Bayesian analysis of item response theory models using

SAS. Sas Institute.

Team, S. D., et al. (2016). Rstan: The r interface to stan. R package version, 2 (1), 522.

Toland, M. D., Sulis, I., Giambona, F., Porcu, M., & Campbell, J. M. (2017). Introduction

to bifactor polytomous item response theory analysis. Journal of school psychology,

60, 41–63. https://doi.org/10.1016/j.jsp.2016.11.001

Wang, W.-C., Chen, H.-F., & Jin, K.-Y. (2015). Item response theory models for wording

effects in mixed-format scales. Educational and Psychological Measurement, 75 (1),

157–178. https://doi.org/10.1177/0013164414528209

Xia, Y., & Yang, Y. (2018). The influence of number of categories and threshold values on

fit indices in structural equation modeling with ordered categorical data.

https://doi.org/10.1037/met0000045
https://doi.org/10.1016/j.paid.2017.02.063
https://doi.org/10.1007/s11336-008-9101-0
https://doi.org/10.48550/arXiv.1506.06201
https://doi.org/10.1016/j.jsp.2016.11.001
https://doi.org/10.1177/0013164414528209


120
Multivariate Behavioral Research, 53 (5), 731–755.

https://doi.org/10.1080/00273171.2018.1480346

Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of

the three-parameter logistic model. Applied Psychological Measurement, 8 (2),

125–145. https://doi.org/10.1177/014662168400800201

Yeo, Z. Z., & Suárez, L. (2022). Validation of the mental health continuum-short form: The

bifactor model of emotional, social, and psychological well-being. Plos one, 17 (5),

e0268232. https://doi.org/10.1371/journal.pone.0268232

https://doi.org/10.1080/00273171.2018.1480346
https://doi.org/10.1177/014662168400800201
https://doi.org/10.1371/journal.pone.0268232


121

VITA

Wenya Chen earned a Bachelor of Arts in English from Hubei University of

Education in Wuhan, China, in 2012. Continuing her education at Indiana University

Bloomington, she obtained a Master of Science in International and Comparative

Education with a minor in Quantitative Research Methods in 2014. Wenya attended

Loyola University Chicago for her doctoral training, where she studied Research

Methodology and received her Ph.D. in 2024.

During her time at Loyola, Wenya served as a Graduate Research Assistant and

Teaching Assistant, and performed independent research. Her publication has appeared in

Applied Psychological Measurement, entitled “An Empirical Identification Issue of the

Bifactor IRT Model”. Also, her research findings were presented at various national and

international conferences, including the National Council on Measurement in Education,

the Psychometric Society, and the International Studies Association.

Currently, Wenya is a Senior Statistician at Stanley Manne Children’s Research

Institute at Lurie Children’s Hospital of Chicago.


	Factors Impacting the Empirical Identification of the Bifactor IRT Model of Rating Data
	Recommended Citation

	Cover page_no_director_name
	Dissertation_WChen_FINAL.pdf
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	Dimensional Structures
	Item Response Theory Model
	Unidimensional IRT Model
	Between-Item-Dimensionality IRT Model
	Within-Item-Dimensionality IRT Model
	Local Item Independence
	Determining a bifactor structure

	Challenges of Fitting a Bifactor Model
	Parameter Estimation of the Bifactor Model
	Full-Information Maximum Likelihood Estimation
	Bayesian Inference

	Open Questions
	Conclusion

	CHAPTER 3 METHOD
	Study 1: Investigating the Similarity of the Within-Item Discriminations
	Data Generation
	Data Analysis
	Analyses Based on FIML
	Analyses Based on Bayesian Estimation
	Prior Assigned to the Item Discriminations
	Analytic Strategy

	Study 2: Investigating the Interaction Effect Between Similarity and Magnitude of Item Discriminations
	Study 3: Investigating the Interaction Effect Between Similarity and Item Targetedness

	CHAPTER 4 RESULTS
	Results of Study 1
	Acceptable Rates across the Three Estimation Methods
	Parameter Recovery: Errors of the Parameter Estimates
	Summary of Study 1

	Results of Study 2
	Full-Information Maximum Likelihood Estimation
	Bayesian Method Using Less Informative Priors
	Bayesian Method Using Adaptive Informative Priors
	Summary of Study 2

	Results of Study 3
	Full-Information Maximum Likelihood Estimation
	Bayesian Method Using Less Informative Priors
	Bayesian Method Using Adaptive Informative Priors
	Summary of Study 3


	CHAPTER 5 DISCUSSION
	Limitations and Future Directions
	Conclusions

	REFERENCES
	VITA


