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ABSTRACT 

 

Popular transcriptome imputation methods such as PrediXcan and FUSION use 

parametric linear assumptions, and thus are unable to flexibly model the complex genetic 

architecture of the transcriptome. Although non-linear modeling has been shown to improve 

imputation performance, replicability and potential cross-population differences have not been 

adequately studied. Therefore, to optimize imputation performance across global populations, we 

used the non-linear machine learning (ML) models random forest (RF), support vector regression 

(SVR), and K nearest neighbor (KNN) to build transcriptome imputation models, and evaluated 

their performance in comparison to elastic net (EN). We trained gene expression prediction 

models using genotype and blood monocyte transcriptome data from the Multi-Ethnic Study of 

Atherosclerosis (MESA) comprising individuals of African, Hispanic, and European ancestries 

and tested them using genotype and whole blood transcriptome data from the Modeling the 

Epidemiology Transition Study (METS) comprising individuals of African ancestries. We show 

that the prediction performance is highest when the training and the testing population share 

similar ancestries regardless of the prediction algorithm used. While EN generally outperformed 

RF, SVR, and KNN, we found that RF outperforms EN for some genes, particularly between 

disparate ancestries, suggesting potential robustness and reduced variability of RF imputation 

performance across global populations. When applied to a high-density lipoprotein (HDL) 

phenotype, we show including RF prediction models in PrediXcan reveals potential gene 

associations missed by EN models. Therefore, by integrating non-linear modeling into 
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PrediXcan and diversifying our training populations to include more global ancestries, we may 

uncover new genes associated with complex traits. We did not find any significant associations 

when the prediction models were applied to obesity status and microbiome diversity. 
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CHAPTER ONE 

INTRODUCTION 

Genome Wide Association Study (GWAS) 

 The human genome consists of approximately 3 billion nucleotide base pairs with 99.9% 

of the DNA sequence similar across humans (Chial, 2008). Despite the high degree of similarity 

of the genomic sequences across people and populations, there are different levels of variation in 

the DNA that contribute to the phenotypic manifestation that make us look different from one 

another as well as lead to different susceptibilities to diseases. The most common form of genetic 

variations in the DNA is the single nucleotide polymorphism (SNP), where at a single base pair 

in the genome, the individuals in a population have varying nucleotide sequence.  

In recent years, advancements in high-throughput genotyping and sequencing 

technologies have assayed hundreds of thousands of SNPs leading to an explosion in the amount 

of genetic data publicly available (Visscher, Brown, McCarthy, & Yang, 2012). Consequently, 

researchers have leveraged strong statistical analysis to probe single nucleotide genetic variations 

through genome wide association study (GWAS) of traits of interest (Christensen & Murray, 

2007).  

Specifically, GWAS involves interrogating the entire genome by conducting multiple 

statistical association tests between SNPs and traits. Additionally, according to the National 

Institutes of Health, GWAS is defined as a study of common genetic variation across the entire 

human genome designed to identify genetic associations with observable traits 
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(Mitchell, Ferguson, & Ferguson, 2007). GWAS has been used by various researchers to 

successfully identify genetic associations for many complex diseases (MacArthur et al., 2017). 

INTEGRATING THE TRANSCRIPTOME INTO GWAS 

Expression Quantitative Trait Loci (eQTL) 

 Although GWAS has been remarkable in identifying disease susceptibility loci for 

complex traits, there are still many challenges associated with interpreting the results, one of 

which, is that the functional significance of some of these identified loci are unclear. Simply put, 

in most cases, knowing that a SNP is statistically associated with a complex trait does not fully 

shed light into the biological mechanism and regulation of the trait. Thus, GWAS successes are 

still many steps removed from clinical application, and subsequently, precision medicine. In fact, 

majority of the discovered significant GWAS disease associated loci have only explained a small 

portion of the variance in disease risk (Manolio et al., 2009). Indeed, most of these variants 

identified through GWAS are usually found in the noncoding region of the genome, thereby 

complicating identification of their functional importance in understanding the biology of 

complex traits (Huang, 2015; MacArthur et al., 2017; M. I. McCarthy et al., 2008; Visscher et 

al., 2012). 

In a bid to incorporate functional genomics into GWAS – in order to further elucidate the 

mechanisms behind identified complex disease associations –  increased research attention has 

been paid to the study of regulatory elements that can influence a gene’s transcriptional activities 

and consequently alter phenotypes (Li et al., 2018). One important class of such regulatory 

elements are called the expression quantitative trait loci (eQTLs) (Albert & Kruglyak, 2015). 

Indeed, many studies have shown that the noncoding regions of the genome are particularly 
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enriched for gene regulatory variants such as eQTLs. This suggests that genetically regulated 

gene expression might play a critical role in explaining the phenotypic variability in a wide range 

of complex traits (Aguet et al., 2017; Gamazon, Huang, Cox, & Dolan, 2010; Gamazon et al., 

2013; Nicolae et al., 2010). In fact, the Genotype-Tissue Expression (GTEx) Project aimed to 

collect a comprehensive set of eQTLs from different human tissues and to provide the scientific 

community a database of genetic associations with molecular traits such as mRNA levels (Aguet 

et al., 2017; GTEx Consortium, 2015; Lonsdale et al., 2013). More so, given that a handful of 

SNPs have large effect associations that can explain most of the heritable component of gene 

expression traits, mathematical modeling of the relationship between genotype and gene 

expression is achievable using moderate sample sizes (Wheeler et al., 2016). Indeed, this has led 

to the development of transcriptome methods such as PrediXcan (Gamazon et al., 2015) and 

FUSION (Gusev et al., 2016) which integrate cis-eQTL genotype and transcriptome datasets in 

order to predict the transcriptome from GWAS data, and subsequently test for association 

between the predicted transcriptome and trait of interest. cis-eQTLs are SNPs located near the 

target gene, usually within 1 mega base, and tend to have larger effect sizes than trans-eQTLs, 

which are farther away or on different chromosomes. Because most GWAS lack corresponding 

transcriptome data, these methods may identify gene regulatory mechanisms underlying complex 

traits as well as better interpretability of the direction of effect of uncovered genetic associations. 

Optimizing Transcriptome Prediction 

The mathematical model used in PrediXcan is Elastic Net (EN) (Zou & Hastie, 2005) 

while FUSION uses Bayesian Sparse Linear Mixed Model (BSLMM) (Zhou, Carbonetto, & 

Stephens, 2013). The EN model used by PrediXcan is a combination of L1 (LASSO) (Tibshirani, 
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1996) and L2 (Rigde) (Hoerl & Kennard, 1970) regularization of the cis-eQTLs effect sizes, thus 

assuming a parametric prior for the cis-eQTLs. The same parametric assumption is made by 

FUSION since BSLMM assumes a normal mixture prior, combining Bayesian Variable 

Selection Regression (BVSR) (Guan & Stephens, 2011) and Linear Mixed Modeling (LMM) 

(Yu et al., 2006). Given their parametric and linear assumptions, these tools fail to flexibly 

model the distributions of the cis-eQTL genotypes and their relationship with gene expression 

(Nagpal et al., 2019). Studies have shown that some cis-eQTL relationships can be best modeled 

mathematically with non-linear and non-parametric assumptions (Manor & Segal, 2013; Nagpal 

et al., 2019). Manor and Segal showed that by using very simple non-linear modeling with the K 

Nearest Neighbor (KNN) (Cover & Hart, 1967) algorithm, robust gene expression prediction can 

be achieved using just cis-eQTLs. Wang et al. 2016, found that a mixed model based random 

forest (Breiman, 2001) (a non-linear model) has the potential to capture the non-linear 

relationships of cis-eQTLs and gene expression, and thus improve imputation performance. Most 

recently, a method called TIGAR (Nagpal et al., 2019), which is based on a non-parametric 

Bayesian method called Dirichlet process regression (Zeng & Zhou, 2017), was shown to 

achieve better imputation R2 than PrediXcan on simulation data where at least 1% of the cis-

eQTLs are causal and true expression heritability is at most 0.2. TIGAR (Nagpal et al., 2019) 

was also shown to impute expression for more genes than PrediXcan in a real dataset, thus 

corroborating the potential of using non-parametric and non-linear modeling of gene expression 

prediction in order to uncover more gene associations with complex traits. 

Although several studies have shown that non-linear modeling of cis-eQTLs and gene 

expression can improve imputation performance R2 (Manor & Segal, 2013; Nagpal et al., 2019; 
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J. Wang et al., 2016), we sought to further explore the cross-population portability of non-linear 

modeling of cis-eQTLs and gene expression with new cohorts. Generally, a large UK Biobank 

based study has acknowledged the discrepancy in genetic prediction due to lack of diversity in 

training cohorts (Martin et al., 2017). More specifically, the importance of genetic ancestries 

diversity in gene expression prediction has also been corroborated by many recent studies 

(Fryett, Morris, & Cordell, 2020; Keys et al., 2019; Mikhaylova & Thornton, 2019; Mogil et al., 

2018). Using parametric and linear modeling, these studies have shown that similarity in 

ancestries between the training and testing population improves gene expression prediction 

(Fryett et al., 2020; Keys et al., 2019; Mikhaylova & Thornton, 2019; Mogil et al., 2018). 

However, the replicability of these observations and the potential cross-population differences 

with non-linear machine learning modeling have not been adequately studied.  

Microbiome 

While some variants in the DNA, through GWAS and eQTL studies, have been 

discovered to be associated with many complex diseases, many other aspects of the human 

ecosystem contribute to diseases or influence morbidity. For centuries, microscopic living 

organisms known collectively as microbes have been studied and identified by scientists as the 

cause of many diseases in humans. The human gastrointestinal tract is inhabited by these 

microbes such as bacteria, viruses, fungi, archaea, and protozoa, all of which are collectively 

referred to as the gut microbiota (Davis, 2016). In fact, the human gut microbiota contains about 

100 trillion microbes, all of which when combined, have about 100 times more genes (the 

microbiome) than are found in the entire human genome (Qin et al., 2010).  
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These microbes in humans have been found to play important roles such as breaking 

down soluble fiber and non-digestible nutrients, producing vitamins, metabolizing xenobiotics, 

preventing colonization by pathogens, and supporting development of a mature immune system 

(Bergman, 1990; Davis, 2016; den Besten et al., 2013; Krebs et al., 2002). In fact, microbiome 

studies have shown that there is a relationship between nutrients, gut microbiota, and human 

diseases such as obesity (Davis, 2016). Specifically, by assisting in breaking down fiber and non-

digestible nutrients, the microbes directly and indirectly regulate adiposity and energy 

homeostasis through a genetic pathway and potential eQTL associations (GTEx Consortium, 

2015; Hong et al., 2005; Kimura, Inoue, Hirano, & Tsujimoto, 2014). Thus, host microbiome 

compositional differences provide biomarkers that could be tested for risk or presence of 

diseases (Chassaing, Aitken, Gewirtz, & Vijay-Kumar, 2012; Clemente, Ursell, Parfrey, & 

Knight, 2012; Karlsson, Tremaroli, Nielsen, & Bäckhed, 2013). Microbiome diversity is 

measured in terms of diversity within (Alpha Diversity) and between (Beta Diversity) study 

samples (Kuczynski et al., 2010; Lozupone & Knight, 2008). 

Genetics of Lipid and Obesity 

Many studies have associated cardiovascular diseases with obesity and lipid 

measurements such as total cholesterol, high-density lipoprotein (HDL), triglycerides, as well as 

low-density lipoprotein (LDL) (Akil & Ahmad, 2011; Carbone et al., 2019; Rader & Hovingh, 

2014; Stone et al., 2014). Focusing on lipids, HDL is considered the good cholesterol, while 

LDL is the bad one (Mozaffarian et al., 2016). Indeed, studies have shown that decreased HDL 

levels and increased LDL levels are associated with heart attacks and strokes (Stone et al., 2014). 

The “goodness” of HDL is due to its inherent property of being less prone to oxidation, and its 
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role in carrying cholesterol from tissues back to the liver as well as transporting lipid molecules 

out of arterial walls, thereby reducing the amount of cholesterol in circulation (Feingold & 

Grunfeld, 2018). Unchecked excessive accumulation of fat molecules in the artery causes 

blockage of blood flow, thereby causing stroke if the blockage occurs in the brain or heart attack 

if the blockage is in the coronary artery (Scott, 2004). 

Obesity is one of the leading causes of cardiovascular disease mortality and morbidity 

(Akil & Ahmad, 2011). Obesity has been defined by the World Health Organization as abnormal 

or excessive fats that accumulate and present a risk to health (Mamat et al., 2011). Obesity is 

measured in terms of body mass index (BMI). BMI is calculated by dividing the body weight 

(kilograms) with the square of the body height (meters) such that a person with BMI score of 30 

or above is considered obese (Mamat et al., 2011; Wyatt, Winters, & Dubbert, 2006). Obesity is 

a major risk factor for the development of diseases such as type-2 diabetes, hypertension, and 

coronary artery disease (Poirier et al., 2006; Ritchie & Connell, 2007). Indeed, obesity has been 

found to increase cardiovascular disease mortality and morbidity (Van Gaal, Mertens, & 

Christophe, 2006). 

In recent years, scientists have sought to leverage the advances in next generation 

sequencing techniques to identify and understand the genetic variations underlying complex 

traits such as obesity and cardiovascular diseases. Through GWAS, some SNPs have been found 

to associate with lipid and obesity phenotypes. A GWAS using Framingham Heart Study (FHS) 

data identified twenty-nine genome-wide significant (P < 5 x 10-8) SNPs associated with total 

cholesterol and HDL-cholesterol (Ma et al., 2010). Indeed, GWAS has uncovered about 100 loci 

associated with lipid traits and experimental follow-up on the GWAS loci has identified the 
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functional relevance of genes GALNT2, TRIB1, PNPLA3, SUGP1, SOCS2, RAMP3, APOB, 

CETP, ZPR1, FAAH and SORT1 in lipid traits study (Andaleon, Mogil, & Wheeler, 2019; 

DiStefano et al., 2015; Ma et al., 2010; Willer & Mohlke, 2012; Wood et al., 2013). In the same 

vein, a GWAS on obesity and related traits identified seventeen SNPs significantly associated 

with obesity status and waist to hip ratio (K. Wang et al., 2011). These SNPs were found within 

the FTO gene as well as NRXN3 gene (K. Wang et al., 2011). SNP variations in the FTO gene 

region has been found to significantly associate with BMI and risk of obesity across multiple 

study populations (Fawcett & Barroso, 2010). 

Lack of Diversity in Genetic Studies 

While GWAS has been applied to shed light on many complex traits such as obesity and 

cardiovascular disease, majority of the studies were carried out largely on populations of 

European ancestries (Martin et al., 2019). In fact, the largest GWAS and meta-analysis to 

understand obesity biology was carried out largely in populations of European descent (Locke et 

al., 2015). Similarly, many lipid trait GWAS have been performed in predominately European 

individuals, including one from the Global Lipids Genetics Consortium of over 100,000 people 

(DiStefano et al., 2015; Teslovich et al., 2010; Wood et al., 2013). Generally, a study has shown 

that predicting disease risk based on European GWAS is skewed in African populations (Martin 

et al., 2017). Strikingly, the burden of obesity is disproportionately higher in US based adults of 

recent African origin when compared to populations of other ancestries (Dugas et al., 2017; 

Flegal, Kruszon-Moran, Carroll, Fryar, & Ogden, 2016). While the observed disproportionate 

burden of obesity is true, genetic differences alone cannot account for this disparate prevalence 
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because environment, social behavior and culture, diet, and consequent microbiota composition 

collectively play a big role (Archie & Tung, 2015; Singh et al., 2017). 

Summary 

 In this thesis, we sought to optimize other machine learning models such as random 

forests (RF), support vector regression (SVR), and k nearest neighbor (KNN) for transcriptome 

prediction within and across populations, in comparison to the standard transcriptome prediction 

tool – PrediXcan – built on elastic net (EN). Additionally, we performed integrative 

transcriptome and gut microbiome studies to explore the possibility of discovering gene 

associations with HDL and obesity through a transcriptome wide association study (TWAS). In 

the machine learning comparisons, we found that gene prediction models were generally best in 

EN and closely followed by RF. Additionally, we corroborated previous findings that similarity 

in ancestry improves gene expression prediction accuracy. In the integration of the predicted 

transcriptome and microbiome to TWAS of HDL and obesity, we found a gene association 

reported in previous studies.  

 Next, we describe our methods in chapter two and present results in chapter three. We 

end with a discussion of our findings and directions for future research in chapter four.   
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CHAPTER TWO 

METHODS 

GENOMIC AND TRANSCRIPTOMIC TRAINING DATA PREPARATION 

The Multi-Ethnic Study of Atherosclerosis (MESA) 

The MESA cohort is made up of 6814 individuals recruited from 6 sites across the USA 

(Baltimore, MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; northern 

Manhattan, NY; St. Paul, MN) and consists of 53% female and 47% male individuals between 

the ages of 45-84 (Bild et al., 2002) with the demographics approximately distributed as 38% 

European American (CAU), 23% Hispanic American (HIS), 28% African American (AFA), and 

11% Chinese American (CHN). From the whole cohort, RNA was extracted from CD14+ 

monocytes from 1264 individuals across the three subpopulations (AFA, HIS, CAU) and 

quantified on the Illumina Ref-8 BeadChip (Liu et al., 2013). Individuals with both genotype 

(dbGaP: phs000209.v13.p3) and expression data (GEO: GSE56045) included 234 AFA, 386 

HIS, and 582 CAU. Illumina IDs were converted to Ensembl IDs using the RefSeq IDs from 

MESA and GENCODE (Harrow et al., 2012) version 18 (gtf and metadata files) to match 

Illumina IDs to Ensembl IDs. If there were multiple Illumina IDs corresponding to an Ensembl 

ID, the average of those values was used as the expression level. 

MESA Genotype Data Analysis and Quality Control 

Genotype quality control and imputation were performed as previously described (Mogil 

et al., 2018). To summarize, all MESA population genotypes were in genome build 
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GRCh37/hg19. We used the Michigan Imputation Server and 1000 genomes phase 3 v5 

reference panel and Eagle v2.3 to impute genotypes in each of the MESA subpopulation. The 

imputation reference populations were EUR for CAU and mixed population for AFA and HIS 

(Das et al., 2016; GTEx Consortium, 2015; Loh et al., 2016). Imputation results were first 

filtered by R2 < 0.8, minor allele frequency (MAF) > 0.01, and ambiguous strand SNPs were 

removed. After filtering, 9,352,383 SNPs in AFA, 7,201,805 SNPs in HIS, and 5,559,636 SNPs 

in CAU were remaining for further analysis. PLINK (https://www.cog-genomics.org/plink2) 

(Chang et al., 2015) was used for quality control and cleaning of the genotype data. We removed 

SNPs with call rate < 99%, and LD pruned the resulting SNPs by removing 1 SNP in a 50 SNP 

window if r2 > 0.3. We conducted identity by descent (IBD) analysis on the genotype data and 

removed one pair of related individuals (IBD > 0.05). The cleaned genotypes were merged with 

HapMAP populations (Yoruba in Ibadan, Nigeria (YRI), Utah residents with Northern and 

Western European descent (CEU), and East Asians from Beijing, China and Tokyo, Japan 

(ASN)) and principal component analysis was done both across and within populations using 

EIGENSTRAT (Price et al., 2006). After quality control, the final sample sizes used for the gene 

expression prediction model training are AFA = 233, HIS = 352, and CAU = 578. The final 

sample sizes used for downstream TWAS analysis are AFA=1188, HIS=952, and CAU=1716. 

MESA Transcriptome Data and Quality Control 

PEER factor analysis was performed on the expression data of each subpopulation using 

the PEER R package (Stegle, Parts, Piipari, Winn, & Durbin, 2012). Mogil et al. showed that the 

true positive replication rate was similar for 10, 20, and 30 PEER factors. As such, we used 10 

PEER factors to adjust for potential batch effects and experimental confounders in the measured 

https://www.cog-genomics.org/plink2


12 
 

gene expression data. Then, we quantile normalized adjusted expression levels for use in model 

building.  

GENOMIC AND TRANSCRIPTOMIC TEST DATA PREPARATION 

The Modeling the Epidemiology Transition Study (METS) 

The METS cohort comprises of 2506 healthy individuals of African origin between the 

ages of 25-45 years, with approximately 500 (~50% male) from each of sites; Ghana, South 

Africa, Seychelles, Jamaica and Chicago, US (Luke et al., 2011). Out of these cohort, 77 female 

individuals (38 Ghana and 39 Chicago, US) underwent genome-wide genotyping on the Illumina 

Infinium Multi-Ethnic AMR/AFR BeadChip and RNA sequencing (RNA-seq) from whole blood 

using the NuGEN mRNA-Seq with AnyDeplete Globin library preparation kit. Single-end 50bp 

RNA-seq was performed by the Duke University Sequencing and Genomic Technologies Shared 

Resource. (Loyola IRB #210260091217). 

METS Genotype Data Analysis and Quality Control 

The METS genotype data is in genome build GRCh38/hg38. We performed all quality 

control using PLINK v1.90b4.4 (Chang et al., 2015). We removed SNPs on non-autosomal 

chromosomes, below a call rate threshold of 0.01, or not in Hardy-Weinberg equilibrium (HWE) 

(P< 0.00001). Prior to identity by descent (IBD) and principal component analysis (PCA), we 

LD-pruned variants using PLINK’s --indep-pairwise option at thresholds 50 5 0.3. Due to small 

sample size, we did not remove individuals based on cryptic relatedness. Prior to PCA, we 

merged METS genotypes with HapMap reference populations and filtered the merged population 

for missingness (--geno 0.01) and minor allele frequency (MAF) (--maf 0.01) and performed 

LD-pruning (--indep-pairwise 50 5 0.3). We performed METS genotype imputation on the 
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Sanger Imputation service (Loh et al., 2016; S. McCarthy et al., 2016) using the African Genome 

Resources reference panel. After imputation, non-ambiguous strand SNPs in HWE (P > 0.05), 

with MAF > 0.05 and imputation R2 > 0.8 were retained and the cleaned genotypes were lifted 

over to genome build GRCh37/hg19 for gene expression prediction analyses. 

METS Transcriptome Data Analysis and Quality Control 

We used FASTQC (Andrews et al., 2012) to analyze RNA-seq quality and found 50 high 

fidelity bases with no primers or over-represented sequences. We quantified gene expression 

using Salmon pseudoalignment (Patro, Duggal, Love, Irizarry, & Kingsford, 2017), which 

estimates the transcripts per million (TPM) for each gene using a reference transcriptome 

without performing the time-consuming process of an actual alignment. We used only protein-

coding genes as defined by GENCODE (Harrow et al., 2012) version 28 and removed genes with 

mean TPM < 0.01. The resulting expression data were quantile normalized and PEER factor 

analyzed (Stegle et al., 2012). Since the study population originates from two divergent country 

populations (Ghana and USA), the Ghana individuals and USA individuals were subsequently 

corrected separately using 10 PEER factors to adjust for potential batch effects and experimental 

confounders. Then, adjusted expression levels were quantile normalized for use in model 

building. 

MODEL BUILDING 

Prediction Models 

We used MESA expression values for protein coding genes and genotypes of SNPs 

within 1 Mb of each gene, i.e. in cis, to fit the models. We used the fitted model to predict 

expression in METS. Model performance were evaluated by Spearman correlation (ρ) of the 
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METS predicted and measured gene expression values defined by GENCODE (Harrow et al., 

2012) version 28. Like prior studies, we considered ρ > 0.1 as significant (Gamazon et al., 2015; 

Mogil et al., 2018). 

Elastic Net 

We used the glmnet R package (Friedman, Hastie, & Tibshirani, 2010) to implement 

elastic net (EN) with the alpha parameter set at 0.5, which has previously been shown to perform 

optimally for predicting gene expression (Wheeler et al., 2016). For every single gene, we 

carried out nested cross-validation of the EN model as follows: firstly, training data was split into 

roughly five equal parts, secondly for each held-out fold, ten-fold cross-validation was 

performed on the remaining four folds to minimize the lambda parameter, and the model with the 

minimal lambda was used to predict on the held-out fold to determine the coefficient of 

determination (R2). After going through each of the five folds, we used the average R2 as our 

measure of model performance. The trained models with minimal lambda were used to predict 

expression in the test data (Mogil et al., 2018).  

Random Forest 

We used the scikit-learn Python package version 0.21.2 (Pedregosa et al., 2011) (Python 

version 3.7.3) to implement random forest (RF) regression and all the hyperparameters in the 

regressor were set to default except for the n_estimators hyperparameter (which is the number of 

trees in the forest). For every single gene, via five-fold cross-validation, we conducted a grid 

search of the best n_estimators hyperparameter ranging from 50 to 500 inclusive that yields the 

highest cross-validated regression coefficient of determination (R2). The range of trees used in 

the grid search were informed by our preliminary analysis result as shown in Figure 1. 
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Subsequently, for every gene, we used the resulting best n_estimators hyperparameter to fit the 

random forest regressor model and predict expression in the test data. 

 

Figure 1. Random Forests Trees Performance. We compared the distribution of the cross-

validated (CV) R2 of all genes at different random forest number of trees (5, 50, 500, 5000). This 

informed the range of trees we used in the random forest model building hyperparameter tuning. 

In this plot, gene models with CV R2 < -1 were filtered out.  

K Nearest Neighbor 

We used the scikit-learn Python package version 0.21.2 (Pedregosa et al., 2011) (Python 

version 3.7.3) to implement K nearest neighbor (KNN) regression. The hyperparameters were set 

to default except for n_neighbours (which is the number of neighbors (k) to use), weights (which 

is a weight function used in the prediction), and P (which is the power parameter for the 

Minkowski metric). We used two of the weights function parameters namely 'uniform' (wherein 

all points in each neighborhood are weighted equally) and 'distance' (wherein all points in each 

neighborhood are weighted by the inverse of their distance). For every gene, via five-fold cross-

validation, we conducted a grid search of the best three hyperparameter combinations that yield 

the highest cross-validated regression coefficient of determination (R2). The three 
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hyperparameter combinations were drawn from k (odd numbers between 3 and 31 inclusive), 

weights (uniform and distance), and P (1,2,3). Subsequently, for every gene, we used the 

resulting best hyperparameter combination to fit the KNN regressor model and predict 

expression in test data. 

Support Vector Machine 

We used the scikit-learn Python package version 0.21.2 (Pedregosa et al., 2011) (Python 

version 3.7.3) to implement support vector regression (SVR). We set all parameters to default 

except for the following: gamma (which was set to 'scale'), kernel (which is the type of kernel to 

use in the model), degree (which is specifically for the degree of the polynomial kernel 

function), and C (which is the penalty for error term). For every gene, via five-fold cross-

validation, we conducted a grid search of the best three hyperparameter combinations that yield 

the highest cross-validated regression coefficient of determination (R2). The three 

hyperparameter combinations were drawn from kernel ('linear', 'poly', 'rbf', 'sigmoid'), degree 

(2,3,4,5,6,7) and C (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0). 

Subsequently, for every gene, we used the resulting best hyperparameter combination to fit the 

SVR regressor model and predict expression in test data. 

METS GUT MICROBIOME 

Microbiome Analysis 

Microbial genomic DNA was extracted from the stool of 61 female individuals divided 

into 25 African Americans residing in Chicago USA, and 36 Ghana natives residing in Ghana 

(Individuals in the METS cohort). The V4 region of the 16S rRNA gene was amplified and 

paired end multiplex sequencing performed on Illumina Miseq platform (Dugas et al., 2018). The 
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resulting raw sequences were processed with DADA2 R package version 1.16.0 (Callahan et al., 

2016). Quality control and filtering of low quality regions of the sequences (Figures 2 and 3) 

were performed with the DADA2 filterAndTrim function using the following parameters: 

truncLen = c(275, 175),  maxEE = c(2,2), truncQ = 2. The DADA2 denoised forward and reverse 

reads were merged (Parameters: mergePairs(justConcatenate = TRUE)), and chimera sequences 

were removed, yielding the final Amplicon Sequence Variant (ASV) table. The ASVs were 

classified to species level using the DADA2 formatted training set of the SILVA reference 

database (Callahan et al., 2016; Quast et al., 2012). Alpha diversity indices such as Shannon, 

Fisher, and Inverse Simpson (Peet, 1974) were calculated using Phyloseq R package version 

1.30.0 (McMurdie & Holmes, 2013). 
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Figure 2. Sample of raw forward sequences before filtering. Quality profiles of the forward reads 

wherein Phred quality score is on the y axis and base position is on the x axis. The grey scale in 

each plot is a heat map of the frequency of each quality score at each base position. The green 

line represents mean quality score at each position while the orange line represents the quartiles 

of the quality score distribution. The red line shows the scaled proportion of reads that extend to 

at least that position. 
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Figure 3. Sample of raw forward sequences after filtering. Quality profiles of the forward reads 

wherein Phred quality score is on the y axis and base position is on the x axis. The grey scale in 

each plot is a heat map of the frequency of each quality score at each base position. The green 

line represents mean quality score at each position while the orange line represents the quartiles 

of the quality score distribution. The red line shows the scaled proportion of reads that extend to 

at least that position. 
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CHAPTER THREE 

 RESULTS 

Elastic Net Outperforms Machine Learning Models for Cross-Validated Gene Expression 

Prediction 

We sought to determine if non-parametric machine learning models could improve SNP-

based imputation of the transcriptome across populations compared to the parametric elastic net 

models currently used in PrediXcan (Gamazon et al., 2015). We trained each of the machine 

learning algorithms, random forest (RF), support vector regression (SVR), and K nearest 

neighbor (KNN), using genotype and blood monocyte transcriptome data from each 

subpopulation in the Multi-Ethnic Study of Atherosclerosis (MESA). The training samples in the 

MESA subpopulations are distributed as African Americans (AFA, n=233), European Americans 

(CAU, n=578), and Hispanic Americans (HIS, n=352). To have a larger sample size, we also 

combined the genotype and transcriptome of the MESA subpopulations (AFA, HIS, CAU) into 

the ALL cohort (n=1163). Standard quality control analysis was done on the genotype data. We 

also adjusted for potential batch effects and experimental confounders in the transcriptome data 

using PEER factor analysis (see Methods) and for population structure using the first 3 genotypic 

principal components. Using each of the MESA subpopulations and ALL, we then performed 

model training through 5-fold cross-validation of RF, SVR, and KNN, and nested cross 

validation of EN by using SNPs within 1 Mb of each gene to predict its expression level. We 

used the coefficient of determination (R2) between predicted and observed expression as our 

measure of model performance. We found that across all the subpopulations and prediction 
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algorithms, ERAP2, HLA-C, HLA-DRB1, CHURC1, RAD51, and SNAP29 have R2 > 0.5, 

thus suggesting their SNP predictors are conserved across global populations. We also found that 

EN usually outperformed the ML models, but RF outperformed EN on many gene models, 

especially those trained in HIS and CAU (Figures 4 and 5). This suggests that different 

prediction algorithms may be potentially more robust for different training populations.  

Focusing only on the model training built in the ALL cohort, the model building 

converged and completed for 9623 genes in RF, SVR, KNN, and 9622 in EN. The 9622 genes in 

EN models are also in SVR and KNN, while 9621 are in RF. The average R2 for each of the 

prediction algorithms are EN=0.0733, SVR=0.0476, RF=0.0409, and KNN=0.0103. TACSTD2, 

RNF150, HLA-DRB5, HLA-DRB1, CHURC1 genes have R2 > 0.8 across EN, RF and SVR 

models while all genes in the KNN model have R2 < 0.8. Overall, EN outperformed all ML 

models (Figure 4). Focusing on the overlapping genes with R2 > 0.01 (EN vs SVR =3736, EN vs 

RF =3635, EN vs KNN = 2598), EN performed better on approximately 99%, 97%, and 93% of 

the overlapping genes than KNN, SVR, and RF, respectively. Table 1 shows the number of 

genes that have models in each of the prediction algorithm at different R2 thresholds. EN had the 

most genes with models compared to the ML methods across all thresholds. However, at R2 > 

0.5, RF has almost same number of gene models as EN (RF=194, EN=222), distantly followed 

by SVR, while KNN has just 28 genes. This clearly shows that EN, RF, and SVR models have 

generally good performance for most of the highly predictable genes. The same comparison 

trend is generally observed in the imputation models trained with AFA, CAU, and HIS (Tables 2, 

3, and 4). However, unlike ALL and AFA, we observed that RF outperformed EN on HIS and 

CAU trained data (Figure 4). This suggests integrating both EN and RF models into 



22 
 

transcriptome prediction may be useful. Next, we sought to determine how our models 

performed in an independent test cohort. 

 

Figure 4. Comparison of the Cross-Validated Gene Expression Prediction Performance in the 

MESA Cohort. Machine learning (ML) models prediction R2 compared to elastic net across 

MESA subpopulations wherein each point on the plot is a gene. The linear regression fit is 

shown by the red line and the identity line (slope=1) is blue in each plot. In the ALL cohort 

(combination of AFA, HIS, CAU subpopulations), RF model have 9621 genes while SVR and 

KNN models have 9622 genes in common with Elastic Net. Pearson correlations (R) between 

Elastic Net (EN) performance and Random Forest (RF), Support Vector Regression (SVR), and 

K nearest neighbor (KNN) are 0.98, 0.97, and 0.89, respectively. In the AFA cohort, the 

overlapping genes between models are RF vs EN = 9608, SVR and KNN vs EN = 9609 while 

the R are 0.93, 0.86, and 0.75, respectively. In the HIS cohort, ML models have 9499 genes in 

common with EN, and the R between EN and RF, SVR, and KNN are 0.91, 0.92, and 0.84, 

respectively. In the CAU cohort, ML models have 9499 genes in common with EN, and the R 

between EN and RF, SVR, and KNN are 0.94, 0.96, and 0.88, respectively. EN generally 

outperformed RF, SVR, and KNN, except for some genes where RF outperforms EN, 

particularly in the HIS and CAU subpopulations. 
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Figure 5. Distribution of the Cross-Validated Gene Expression Prediction Performance in the 

MESA Cohort. The distribution of gene models with CV R2 > -1 in the ALL (EN=9622, 

RF=9623, SVR=9623, KNN=9623), AFA (EN=9609, RF=9622, SVR=9623, KNN=9623), HIS 

(EN=9621, RF=9501, SVR=9501, KNN=9501), and CAU (EN=9621, RF=9501, SVR=9501, 

KNN=9501) cohorts. Abbreviations are Elastic Net (EN), Random Forest (RF), Support Vector 

Regression (SVR), K Nearest Neighbor (KNN).  

 

Table 1. Numbers of genes with expression prediction models for each method after filtering by 

cross-validated R2 in the ALL cohort. Total gene models before filtering; EN=9622, RF=9623, 

SVR=9623, KNN=9623. Abbreviations are Elastic Net (EN), Random Forest (RF), Support 

Vector Regression (SVR), and K Nearest Neighbor (KNN).  

 

Method R2 > -0.1 R2 > -0.01 R2 > 0 R2 > 0.01 R2 > 0.05 R2 > 0.1 R2 > 0.5 

EN 9622 9621 6823 5729 3176 2108 222 

RF 9544 4924 4158 3651 2449 1687 194 

SVR 9622 8929 5355 3772 2185 1454 141 

KNN 9263 4193 3206 2601 1422 839 28 
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Table 2. Number of genes with expression prediction models for each method after filtering by 

cross-validated R2 in the AFA cohort. Total gene models before filtering; EN=9623, RF=9623, 

SVR=9623, KNN=9623. Abbreviations are Elastic Net (EN), Random Forest (RF), Support 

Vector Regression (SVR), and K Nearest Neighbor (KNN). 

 

Method R2 > -0.1 R2 > -

0.01 

R2 > 0 R2 > 0.01 R2 > 0.05 R2 > 0.1 R2 > 0.5 

EN 9589 6641 4860 4051 2601 1814 181 

RF 8538 3608 3165 2841 1970 1398 157 

SVR 9574 4492 3258 2648 1462 917 52 

KNN 9361 3864 3093 2473 1163 581 10 

 

Table 3. Number of genes with expression prediction models for each method after filtering by 

cross-validated by R2 in the HIS cohort. Total gene models before filtering EN=9621, RF=9501, 

SVR=9501, KNN=9501. Abbreviations are Elastic Net (EN), Random Forest (RF), Support 

Vector Regression (SVR), and K Nearest Neighbor (KNN). 

 

Method R2 > -0.1 R2 > -

0.01 

R2 > 0 R2 > 0.01 R2 > 0.05 R2 > 0.1 R2 > 0.5 

EN 9618 8009 5038 3959 2288 1532 147 

RF 8858 3701 3295 2976 2101 1530 187 

SVR 9497 5630 3841 3056 1784 1153 95 

KNN 9460 3914 3135 2529 1317 716 17 

 

Table 4. Number of genes with expression prediction models for each method after filtering by 

cross-validated R2 in the CAU cohort. Total gene models before filtering EN=9621, RF=9501, 

SVR=9501, KNN=9501. Abbreviations are Elastic Net (EN), Random Forest (RF), Support 

Vector Regression (SVR), and K Nearest Neighbor (KNN). 

 

Method R2 > -0.1 R2 > -

0.01 

R2 > 0 R2 > 0.01 R2 > 0.05 R2 > 0.1 R2 > 0.5 

EN 9621 9405 5758 4314 2619 1753 221 

RF 9210 4025 3527 3108 2214 1577 241 

SVR 9501 7084 4402 3387 2059 1396 178 

KNN 9496 4089 3202 2606 1481 878 38 
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Similarity in Ancestry Improves Prediction Performance Across Prediction Models 

Recent studies using EN have observed that similarity in training and testing population 

improves prediction performance (Fryett et al., 2020; Keys et al., 2019; Mikhaylova & Thornton, 

2019; Mogil et al., 2018). Consequently, in order to see if the same observation will be replicated 

using nonlinear ML algorithms, we used new genotype and whole blood transcriptome data from 

77 African American individuals in Chicago, USA and Africans in Ghana enrolled in the 

Modelling the Epidemiology Transition study (METS) as a replication cohort (Luke et al., 2011, 

2014). We performed standard quality control and adjusted for potential confounders in the 

METS genotype and transcriptome data (see Methods). We predicted gene expression in the 

METS cohort using only gene models with CV R2 > 0.01 in each of the prediction algorithms 

trained with the MESA cohort. Specifically, we tested models trained in each of the MESA 

subpopulations; AFA=233, HIS=352, CAU=578, and the combined population; ALL=1163. To 

accommodate for any effect sample size may have in our study, we also used the combination of 

AFA and HIS subpopulations (AFHI=585), which is a similar sample size as CAU, to train the 

prediction algorithms. Both AFA and HIS contain recent African admixture and thus share more 

genetic ancestries with our test cohort (METS) than CAU (Figure 6). To determine how accurate 

the prediction algorithms trained in MESA are in METS, we computed the Spearman correlation 

(ρ) between the METS predicted expression values and METS measured expression values. 

To evaluate the prediction performance of the training MESA subpopulation in METS, 

for each of the prediction algorithm methods, we calculated the mean ρ for common predicted 

genes across the subpopulations (Table 5). Across the training subpopulations, the mean ρ in 

METS is highest when using AFHI-trained models for all the prediction algorithms. As shown in 
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Tables 5 and 6, across all the tested prediction algorithms, the training subpopulations 

comprising individuals of recent African ancestries (AFA, HIS, AFHI, ALL) significantly 

outperformed the training subpopulation comprising only individuals of European descent 

(CAU). This shows that prediction performance is highest when the genetic distance between the 

training population and testing population are closest regardless of the prediction algorithm used. 

Also, larger sample size improves prediction performance but not as much as when majority of 

the individuals in the training set share similar ancestries with those in the test set, i.e. AFHI-

trained models perform the same as ALL-trained models (Table 5). If larger sample size were the 

main factor to improve prediction performance, we would expect the average ρ to be 

significantly highest in ALL. However, we see that average ρ in ALL is less than in AFHI, even 

though AFHI has lower sample size. More so, the ALL-trained models average ρ were not 

significantly better than AFA-trained models (Welch test p-values, EN=0.3369, RF=0.8892, 

SVR=0.1916, KNN=0.3382) (AFA has the lowest sample size and closest ancestry similarity to 

METS across the training MESA subpopulations). Thus, this highlights the importance of 

similarity in ancestry at improving prediction performance. 

Table 5. Mean prediction performance of MESA-trained models in METS. We focused on the 

common predicted genes across the training subpopulations for each prediction method. The 

number of common genes across the training subpopulation for each prediction method are 

EN=2221, RF=1589, SVR=1435, and KNN=1078. Abbreviations are Elastic Net (EN), Random 

Forest (RF), Support Vector Regression (SVR), K Nearest Neighbor (KNN). 

 

Model AFA HIS CAU AFHI ALL 

EN 0.1243 0.0975 0.0767 0.1301 0.1297 

RF 0.1152 0.1096 0.0853 0.1197 0.1161 

SVR 0.0932 0.0925 0.0758 0.1058 0.1015 

KNN 0.0823 0.0788 0.0634 0.0893 0.0888 
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Table 6. Welch two Sample t-test of the prediction performance of MESA-trained models in 

METS. The t-test was carried out between training subpopulations comprising individuals of 

African ancestries (AFA, HIS, AFHI, ALL) and subpopulation comprising only individuals of 

European ancestries (CAU). Only the P-values from the t-test are recorded in the table. 

 

Model AFA vs CAU HIS vs CAU AFHI vs CAU ALL vs CAU 

EN 2.200 x 10-16 5.043 x 10-5 2.200 x 10-16 2.200 x 10-16 

RF 2.860 x 10-6  1.267 x 10-4 8.648 x 10-8 1.436 x 10-6 

SVR 5.005 x 10-3  6.334 x 10-3 1.998 x 10-6 4.760 x 10-5 

KNN 4.286 x 10-3 1.671 x 10-2 8.751 x 10-5 1.430 x 10-4 

 

 

Figure 6. Principal Component Analysis of METS. The genotypic principal component plot of 

the METS (Modeling the Epidemiological Transition Study) and MESA (Multi-ethnic Study of 

Atherosclerosis) populations analyzed with HapMap populations. The abbreviations are MESA 

African Americans (AFA), East Asians from Beijing, China and Tokyo, Japan (ASN), MESA 

European Americans (CAU), European ancestry from Utah (CEU), MESA Hispanic Americans 

(HIS), Yoruba from Ibadan, Nigeria (YRI).  
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When we examine all prediction results in METS, the numbers of genes we were able to 

predict gene expression values for varied across algorithms and populations (Figure 7). The gene 

models trained with the ALL cohort predicted gene expression values for more genes than the 

rest of the other training populations across all prediction algorithms. This is probably because, 

ALL cohort has the largest sample size. In fact, the number of genes captured decreases from 

ALL to AFA as the sample size decreases. Interestingly though, when we filter by ρ > 0.1, AFA 

captures more genes (EN=1545, RF=1167, SVR=961, KNN=824) than HIS and CAU, again 

showing the importance of similarity in ancestry between training and testing population for 

gene expression prediction regardless of prediction algorithm. The models trained with AFHI 

and ALL cohorts capture more genes than AFA most probably because of their larger sample 

size and the fact that they also contain the AFA cohort. Therefore, although larger sample size is 

important in prediction performance, it is paramount that individuals in the training population 

have similar ancestry with the testing population. 
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Figure 7. Number of Predicted Genes in METS after Filtering by ρ. The MESA population used 

to train each set of models is shown on the x-axis and the number of genes with predicted 

expression values in METS is shown on the y-axis. ρ is the Spearman correlation between 

predicted and observed gene expression in METS. 

Elastic Net Trained Models Outperform Machine Learning Models in Test Cohort 

The elastic net models predict gene expression values in METS for more genes than 

Random Forest (RF), Support Vector Regression (SVR), and K Nearest Neighbor (KNN) (Figure 

7). When all genes predicted in METS are compared, prediction performance is highest for RF-

trained models in the HIS and CAU populations, while performance is highest for EN-trained 

models in the AFA, AFHI, and ALL populations (Figure 8). However, when we compare test 

prediction performance of the machine learning algorithms against EN on the genes they both 

can predict (intersection), EN performs best regardless of training population with RF being the 
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closest to EN (Figures 9 and 10). In our comparison of ALL-trained models, the number of 

overlapping genes between EN and the other algorithms are RF=1126, SVR=1063, and 

KNN=654. Although EN generally outperforms the other algorithms, we observe that all the 

genes in each of the algorithms did not overlap with those in EN even though they captured 

fewer genes than EN (Table 7). That is, these algorithms have significant performance (ρ > 0.1) 

on some genes that EN does not, and vice versa. To probe further into the algorithm pairs, we 

counted the genes unique to each algorithm (Table 7). Expectedly, EN captures over 1000 unique 

genes, however, the few unique genes (<300) captured by each of RF, SVR, and KNN suggests 

that prediction performance in test cohorts can be improved by combining gene models from EN 

and these other algorithms. 

Table 7. Number of ALL-trained Predicted Genes in METS in Algorithm Pairs. Abbreviations 

are Elastic Net (EN), Random Forest (RF), Support Vector Regression (SVR), K Nearest 

Neighbor (KNN). 

Genes EN vs RF EN vs SVR EN vs KNN 

Overlap 1126 1063 654 

Unique 1092 292 1155 296 1564 211 
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Figure 8. Prediction performance of models trained in MESA populations and tested in METS. 

We predicted expression in METS using only gene models with R2 > 0.01. The MESA 

population used to train each set of models is shown on the x-axis and the Spearman correlation 

between predicted and observed gene expression in METS is shown on the y-axis. All METS 

predicted genes are shown in the plot. 
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Figure 9. Comparison of Algorithm Test Prediction Performance in METS from Models Trained 

in MESA. Prediction performance ρ (Spearman correlation between predicted and observed gene 

expression in METS) for each gene in each machine learning (ML) model vs. elastic net (EN) is 

shown. Only genes with ρ > 0.1 are plotted. The linear regression fit is shown by the red line and 

identity line (slope=1) is blue in each plot. In the ALL cohort, the numbers of genes that overlap 

are EN vs RF = 1126, EN vs SVR = 1063, EN vs KNN = 654, and their Pearson correlations (R) 

are 0.8121, 0.7699, and 0.6199, respectively.  In the AFHI cohort, the numbers of genes that 

overlap are EN vs RF = 1182, EN vs SVR = 1055, EN vs KNN = 717, and their Pearson 

correlations (R) are 0.8212, 0.7547, and 0.6150, respectively. In the AFA cohort, the numbers of 

genes that overlap are EN vs RF = 922, EN vs SVR = 683, EN vs KNN = 554, and their Pearson 

correlations (R) are 0.8260, 0.7339, and 0.5753, respectively. In the HIS cohort, the numbers of 

genes that overlap are EN vs RF = 762, EN vs SVR = 663, EN vs KNN = 496, and their Pearson 

correlations (R) are 0.6289, 0.6179, and 0.5371, respectively. In the CAU cohort, the numbers of 

genes that overlap are EN vs RF = 614, EN vs SVR = 623, EN vs KNN = 434, and their Pearson 

correlations (R) are 0.6336, 0.6096, and 0.4701, respectively. 
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Figure 10. Distribution of Prediction Performance in METS from Models Trained in MESA 

cohort. Distributions of prediction performance (Spearman’s ρ) for genes with ρ > -0.5 in each 

algorithm. Note, EN and RF models have similar distributions and are shifted to the right 

compared to SVR and KNN. 

Elastic Net and Machine Learning Models Identify the Same Gene in Lipid TWAS 

To evaluate the biological importance of the prediction algorithms in identifying 

significant genes associated with traits, we carried out transcriptome wide association studies 

(TWAS) on high-density lipoprotein (HDL) levels. In our analysis, we used a genotype dataset 

from the MESA cohort (n=3856), comprising individuals from the subpopulations that were not 

used in building any of the imputation models and in which we have corresponding lipid 

phenotype data (AFA=1188, HIS=952, and CAU=1716). The genotype data were cleaned using 

standard quality control procedures (See Methods). We used the ALL-trained imputation gene 

models (genes with CV R2 > 0.01) from each algorithm to impute transcriptome levels from the 



34 
 

MESA genotypes. We adjusted the predicted transcriptome levels for population structure using 

the first 10 genotype principal components and rank normalized the HDL levels. Using the 

adjusted predicted transcriptome levels and normalized HDL data, we conducted association 

tests using linear regression. Interestingly, all tested prediction algorithms except KNN identified 

a significant association (P<5 x 10-8) for the gene CETP (Figures 11 and 12). The lack of 

association with HDL for all gene expression values predicted from KNN trained models is 

consistent with our earlier results in this paper that KNN is worse at imputing transcriptome 

levels compared to the other algorithms. The directions of effect of CETP transcriptome levels as 

predicted by EN, RF, and SVR are the same (Figure 13). An increase in predicted CETP 

expression is associated with decreased HDL levels across EN, RF, and SVR. The ability of the 

three algorithms to identify the same significant hit underscores their effectiveness at imputing 

gene expression (CETP R2, EN=0.0917, RF=0.0772, SVR=0.0539). More so, the p-value of 

HDL association with CETP predicted transcriptome levels was most significant in RF (p=7.933 

x 10-14), and highest in SVR (p=2.278 x 10-8), thus showing that RF outperformed EN (p=6.869 

x 10-11) in this instance.  
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Figure 11. HDL Transcriptome-Wide Association Studies Results. Manhattan plot of the gene P-

values from the TWAS between HDL (high density lipoprotein) values and predicted gene 

expression. Using models trained in MESA ALL cohort, we predicted gene expression in MESA 

(n=3856) genotype data comprising individuals not used in the model training with HDL 

phenotype data and then carried out TWAS. Genome-wide significance (P < 5 x 10-8) is shown 

by the red line in the plots. The X axis are ordered from chromosomes 1 to 22 (left to right). 
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Figure 12. Q-Q Plot of Association Tests P-Values. Q-Q plot of the P-values from the TWAS 

between HDL (high density lipoprotein) values and predicted gene expression. Using models 

trained in MESA ALL cohort, we predicted gene expression in MESA (n=3856) genotype data 

comprising of individuals not used in the model training and that equally has HDL phenotype 

data and then carried out TWAS. The red line in each plot show the null expected distribution of 

the P-values. 
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Figure 13. Increased HDL Levels correlate with decreased CETP Predicted Expression. 

Direction of effect of the CETP gene on HDL levels. Using models trained in the MESA ALL 

cohort, we predicted gene expression in MESA (n=3856) genotype data comprising individuals 

not used in the model training with HDL phenotype data. Each point in the plot represents an 

individual. The linear regression fit is shown by the red line in each plot. The blue contour lines 

from two-dimensional kernel density estimation help visualize where the points are concentrated. 

Consequently, we carried out comparison of EN and RF on their t-statistic values from 

the association tests between HDL and predicted gene expression. We found that both EN and 

RF t-statistic values were almost parallel for the genes they have in common thus corroborating 

the observed similar performance on their common genes from our previous results (Figures 4 

and 8). In the EN TWAS, 5279 genes were tested for association with HDL. In the RF TWAS, 

16 unique genes that were not present in EN TWAS were tested for association with HDL 

(Figure 14).  Among the RF unique genes, we found a gene, ST8SIA4, that may potentially be 

associated with normalized HDL (p=4.288 x 10-3) but was missed by EN (ST8SIA4 R2, EN=-
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0.0005, RF=0.0100) (Figure 14). This discovery is consistent with our previous results wherein 

we found that although EN has many genes in common with RF in their imputation models, the 

RF algorithm generated some unique gene models (Table 7). Thus, by combining EN and RF 

models in gene expression imputation and subsequent TWAS analysis, we may uncover more 

and new significant gene-trait associations. Note however, that by combining EN and RF 

models, we are not significantly changing the number of tests performed. Depending on 

predictive performance inclusion threshold, adding RF expression prediction models may 

increase the number of tests by up to 13% (Table 7), which does not dramatically change the 

Bonferroni correction threshold. 
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Figure 14. Comparison of the HDL Association t-statistics from RF and EN models trained in the 

MESA ALL cohort. Comparison of RF and EN t-statistics from the TWAS of HDL and 

predicted transcriptome in MESA individuals not used for imputation model building. Each dot 

in plot represents the t-statistic values of a gene from the HDL TWAS while the identity line 

(slope=1) is shown in blue. We see that the t-statistic values are similar between RF and EN 

except for genes that are unique in each algorithm shown as red dots in the plot. CETP is 

strongly associated with HDL levels using both EN- and RF-trained models. RF-trained models 

revealed the unique gene ST8SIA4 (no prediction model in EN) maybe potentially associated 

with HDL levels (p=4.288 x 10-03). 

Microbiome Diversity Differs Between Ghanaians and African Americans 

We compared gut microbiome profiles (See Methods) of 36 Ghanaians in Ghana and 25 

African Americans in USA from the METS cohort (Figure 15). We found that Ghanaians have 

higher alpha diversity than Americans (Figure 16). Since Ghanaians are more in our sample, we 

randomly removed 11 Ghana individuals from the analysis to match the Americans sample size. 
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Even though the samples sizes were equal, alpha diversity was still highest in the individuals 

from Ghana (Figure 17), thus suggesting clear microbiome differences between the two groups. 

However, when we analyzed the microbiome profile based on obesity status of the study 

individuals (obesity was classified as having body mass index BMI ≥ 30), we found no 

significant difference between the alpha diversity of obesity status (Figure 18). 

 

 

Figure 15. Bray Curtis Dissimilarity plot of the METS cohort. The microbiome species 

composition of the cohorts is clearly separated by site. Also, there is no marked difference 

between the microbial compositions of obese and lean individuals. Obesity was classified as 

BMI ≥ 30.0 
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Figure 16. Alpha diversity distribution of all 61 METS sample by population. As seen in the plot, 

Africans in Ghana have higher alpha diversity than African Americans in the USA across all 

tested diversity indices. 

 

 

Figure 17. Alpha diversity distribution of METS with equal number of Ghanaians and Americans 

(25 each). As shown in the plot, microbial alpha diversity is highest in Ghanaians than in 

Americans (Welch t-test p-values; Shannon Index=9.777 x 10-05, InvSimpson Index=8.504 x 10-

05, Fisher Index=1.033 x 10-08). 
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Figure 18. Alpha diversity distribution of METS with equal number of obese and lean 

individuals (24 each). As shown in the plot, there is no significant difference in the microbial 

alpha diversity of obese and lean individuals (Welch t-test p-values; Shannon Index=0.1634, 

InvSimpson Index=0.3309, Fisher Index=0.0230). Obesity was classified as BMI ≥ 30.0 

No Associations Found in Limited Sample Transcriptome-wide Association Studies of 

Microbiome Diversity and Obesity 

We sought to explore potential genetic relationship between gene expression and 

microbiome diversity index as a quantitative heritable trait as well as obesity. To achieve this 

goal, we predicted gene expression on the 61 individuals in the METS cohort whom we have 

genotype, transcriptome, and microbiome data using the prediction models trained with the ALL 

cohort. The predicted expression profiles were adjusted for population structures and 

confounders (See Methods). We subsequently carried out association tests between the adjusted 

predicted expression and obesity status using logistic regression (Figures 19 and 20). We found 

no genome wide significant association between predicted expression and obesity status across 

all the predictive algorithms. We also conducted association test between the adjusted predicted 

expression and microbiome alpha diversity index (Shannon Index) using linear regression 
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(Figures 21 and 22). Again, we found no significant associations, thus suggesting a very low 

effect sizes of gene expression regulations due to microbial composition, like other complex 

traits where thousands of individuals are required for genome-wide significance. 

 

Figure 19. Transcriptome-Wide Association with Obesity. We carried out logistic regression 

between predicted transcriptome and obesity status from 61 individuals in the METS cohort. The 

predicted transcriptome profiles were generated using the ALL-trained imputation models. 

Genome-wide significance (P < 5 x 10-8) is shown by the red line in the plots. The X axis are 

ordered from chromosomes 1 to 22 (left to right). Obesity was classified as BMI ≥ 30.0. 
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Figure 20. Q-Q plot of METS obesity association tests p-values. Q-Q plot of the P-values from 

the TWAS between obesity status and predicted gene expression in METS cohort (n=61). The 

red line in each plot show the null expected distribution of the P-values. Obesity was classified 

as BMI ≥ 30.0. 
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Figure 21. Transcriptome-Wide Association with microbiome alpha diversity index – Shannon 

index. We carried out linear regression between predicted transcriptome and Shannon index 

values from 61 individuals in the METS cohort. The predicted transcriptome profiles were 

generated using the ALL-trained imputation models. Genome-wide significance (P < 5 x 10-8) is 

shown by the red line in the plots. The X axis are ordered from chromosomes 1 to 22 (left to 

right). 
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Figure 22. Q-Q plot of METS microbiome alpha diversity (Shannon Index) association tests p-

values. Q-Q plot of the P-values from the TWAS between Shannon index values and predicted 

gene expression in METS cohort (n=61). The red line in each plot show the null expected 

distribution of the P-values. 
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CHAPTER FOUR  

DISCUSSION AND CONCLUSION 

We explored the potential of using non-linear machine learning modeling, including 

random forest (RF), support vector regression (SVR), and K nearest neighbor regression (KNN), 

to further improve gene expression prediction performance across global populations in 

comparison to parametric linear elastic net (EN) modeling, which is currently used in PrediXcan 

(Gamazon et al., 2015). To accomplish this, we trained each of the prediction models with 

genotype and transcriptome data from the MESA cohort on 9623 protein coding genes and 

compared their cross-validated imputation performance (R2). Although almost paralleled by RF, 

we found EN generally outperformed the tested non-parametric machine learning models. This is 

consistent with a recent study where it was shown that the genome wide polygenic risk score 

method based on simple linear additive effects of genetic factors outperformed non-linear 

machine learning models in genetic prediction of cardiovascular disease risk (Gola, Erdmann, 

Müller-Myhsok, Schunkert, & König, 2020). However, in our study, we found that when the 

prediction models are trained within each of the MESA subpopulations, RF sometimes 

outperformed EN, specifically on HIS and CAU data (Figure 4, 8). This suggests potential 

robustness and reduced variability of RF imputation performance across global populations. In 

addition, we also found genes ERAP2, HLA-C, HLA-DRB1, CHURC1, RAD51, and SNAP29 

have R2 > 0.5 for all the training subpopulations across all prediction models, indicating the high 

heritability (Gamazon et al., 2015; Mogil et al., 2018; Wheeler et al., 2016) and suggesting 

commonality of their cis-eQTL predictors across global populations. 
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We further tested the MESA trained models on genotype and transcriptome data from 

African-origin individuals in the METS cohort. We show that models trained with the cohorts 

(AFA, HIS, AFHI, ALL) comprising individuals similar in ancestries with METS have better 

prediction performance than the models trained with individuals (CAU) of no recent African 

ancestries (Table 5, Figure 8). Thus, as seen in recent studies (Fryett et al., 2020; Keys et al., 

2019; Mikhaylova & Thornton, 2019; Mogil et al., 2018), we show similarity in ancestries 

between training and testing populations improves prediction performance. Notably, we found 

that the improvement in prediction due to ancestries similarity is consistent within all tested 

prediction algorithms, further underscoring the huge importance of diverse ancestries in genetic 

studies.  

We applied the trained models on out-of-sample MESA genotype data with 

corresponding high-density lipoprotein (HDL) phenotype values. All tested prediction models 

except for KNN identified the gene CETP to be significantly associated with HDL (Figure 11). 

As seen in a recent study on lipids traits (Andaleon et al., 2019), we show that increased CETP 

expression is significantly associated with lower HDL levels and the direction of effect are the 

same for EN, RF, and SVR models (Figure 13). Thus, we computationally corroborate the 

biological importance of CETP gene in HDL associated diseases. In many studies, the CETP 

gene has been experimentally associated with HDL levels in humans, and currently stands as a 

potential drug target for the treatment of atherosclerosis (Barter et al., 2003; de Grooth et al., 

2004; Kosmas, Dejesus, Rosario, & Vittorio, 2016; Tall & Rader, 2018; Thompson et al., 2003). 

Thus, our analysis in a relatively small TWAS (n=3856) identified a known drug target that has 

been studied extensively in the context of preventing cardiovascular disease. However, because 
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of the inability of nonlinear models to use GWAS summary statistics as training data, 

applicability of the nonlinear machine learning models in TWAS is limited to only GWAS with 

genotypes and phenotypes available. 

We analyzed microbiome data of our test cohort (METS) to understand the geographical 

and phenotypical microbial composition differences. We found that Africans in Ghana have 

higher gut microbiome diversity than African Americans in the USA (Figures 16, 17, and 18) as 

shown in a previous study (Dugas et al., 2018). The differences in the two groups microbiota 

composition can be attributed to their different social behaviors and nutrition due to culture and 

socioeconomic realities. Indeed, many studies have shown that social interactions and diet can 

alter microbiota composition (Archie & Tung, 2015; Singh et al., 2017). Focusing on obesity 

status, we found no significant differences in the gut microbiome diversity of obese and lean 

individuals in our study which contrasts with many other studies (Kalliomäki, Carmen Collado, 

Salminen, & Isolauri, 2008; Le Chatelier et al., 2013; Ley et al., 2005). Nonetheless, our finding 

of no microbiota diversity differences in the obese and lean individuals are not unfounded as 

some studies have also shown inconsistencies in the microbial composition of these two groups 

(Duncan et al., 2008; Zhang et al., 2009). These inconsistencies can be attributed to confounding 

factors such as fasting, diet, and use antibiotics. We also explored the possibility of integrating 

microbiome into our transcriptome prediction model. We found no significant association 

between the predicted transcriptome and obesity status, as well as microbiome alpha diversity 

(Shannon Index) across all the prediction algorithms. Thus, suggesting that any potential gene 

expression regulations due to microbiota composition maybe too small to detect with the few 

sample size (61) used in our study. 
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Overall, although linear modeling of cis-eQTLs and gene expression is generally good at 

imputing expression for new data, linear models fail to accurately predict expression for some 

genes. Interestingly, our study shows the imputation performances for some genes are 

comparatively better with non-linear machine learning modeling like random forest (Figure 9) 

than linear modeling like elastic net. Therefore, by increasing ancestries diversity and sample 

sizes of study populations, optimizing prediction performance on these genes with machine 

learning modeling, and incorporating the models into the existing PrediXcan tool, we may 

further increase the probability of uncovering new gene-trait associations in downstream 

transcriptome-phenotype analyses. 
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