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ABSTRACT 

Most cancer chemotherapeutic agents are ineffective in a subset of patients; thus, it is 

important to consider the role of genetic variation in drug response. Lymphoblastoid cell lines 

(LCLs) derived from 1000 Genomes Project populations of diverse ancestries are a useful model 

for determining how genetic factors impact variation in cytotoxicity. In our study, LCLs from 

three 1000 Genomes Project populations of diverse ancestries were previously treated with 

increasing concentrations of eight chemotherapeutic drugs and cell growth inhibition was 

measured at each dose with half-maximal inhibitory concentration (IC50) or area under the dose-

response curve (AUC) as our phenotype for each drug. We conducted genome-wide (GWAS), 

transcriptome-wide (TWAS), protein-based association studies (PAS) within and across ancestral 

populations. We identified four unique loci with GWAS, three genes with TWAS, and seven 

proteins with PAS significantly associated with chemotherapy-induced cytotoxicity within and 

across ancestral populations. For etoposide, increased STARD5 predicted expression associated 

with decreased etoposide IC50 (p = 8.5 x 10-8). Functional studies in A549, a lung cancer cell 

line, revealed that knockdown of STARD5 expression resulted in decreased sensitivity to 

etoposide following exposure for 72 (p = 0.033) and 96 hours (p = 0.0001). By identifying loci, 

genes, and proteins associated with cytotoxicity across ancestral populations, we strive to 

understand the genetic factors impacting the effectiveness of chemotherapy drugs and to 

contribute to the development of future cancer treatment.  
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CHAPTER ONE 

INTRODUCTION 

Cancer Genomics and Treatments 

The Cancer Genome and Common Variants 

Cancer is a complex disease with genetic, environmental, and lifestyle-based risk factors 

and in recent years it has become a leading cause of death globally (Torre et al. 2016). There are 

more than 100 distinct types of cancer that can occur across tissues, each with unique genetic 

characteristics (Stratton, Campbell, and Futreal 2009). The most common cancer types 

worldwide are prostate and lung cancer in men and breast cancer in women (Torre et al. 2016). 

Cancer arises when a series of somatic mutations occur within a cell, allowing it to proliferate 

without regulation and, in many cases, metastasize (Stratton, Campbell, and Futreal 2009; 

Shibata 2012). Currently, more than 350 protein-coding genes in the human genome have been 

found to be mutated in various cancer types and likely contribute to cancer development 

(Stratton, Campbell, and Futreal 2009). Of these mutations, around 90% have been found to be 

dominant in effect, meaning mutation in only one allele will contribute to the cell becoming 

cancerous (Stratton, Campbell, and Futreal 2009). Additionally, some types of cancer emerge 

when a cell incorporates viral DNA, such as the development of cervical cancer in individuals 

that contracted human papilloma virus (Stratton, Campbell, and Futreal 2009).  

Of the protein-coding genes that have been implicated in cancer development, some 

occur more frequently across cancer types while others are unique to specific tumors. Somatic  
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mutations in TP53, a tumor suppressor gene, are found in more than half of all human cancers 

spanning many tissues including brain, breast, lung, ovarian, and colorectal carcinomas (Olivier, 

Hollstein, and Hainaut 2010; Leroy, Anderson, and Soussi 2014). The gene TP53 encodes the  

protein p53; wildtype p53 functions to suppress tumor development by regulating transcription 

and inducing apoptosis (Ko et al. 2019). Mutations in TP53 commonly occur in the DNA-

binding domain of p53, resulting in a reduction in the ability to bind DNA and mediate 

transcription in the mutated protein (Baugh et al. 2018). These mutations occur across 

approximately 190 codons, most often as missense mutations resulting in single-amino acid 

changes rather than as frameshift or nonsense mutations, which are more common in other tumor 

suppressor genes (Olivier, Hollstein, and Hainaut 2010; Baugh et al. 2018). Additionally, a 

greater number of mutations in TP53 is correlated with increasingly altered structure of the p53 

protein, resulting in functional changes that promote a cancerous phenotype (Baugh et al. 2018).  

Other tumor suppressor genes commonly implicated in cancer are BRCA1 and BRCA2, 

which both regulate transcription and DNA repair in response to damage (Yoshida and Miki 

2004). The proteins encoded by BRCA1 and BRCA2 have been found in complexes to repair 

double stranded breaks in DNA in addition to having independent functions in transcription 

mediation and cell cycle regulation (Yoshida and Miki 2004; Varol et al. 2018). BRCA1 and 

BRCA2 mutations are associated with increased susceptibility to breast, ovarian, and prostate 

cancers (Yoshida and Miki 2004). As some BRCA mutations are germline, increased cancer 

susceptibility is hereditary; women with inherited BRCA mutations therefore have a 45% to 75% 

chance of developing breast cancer within their lifetime (Baretta et al. 2016). Breast cancers with 

BRCA mutations have also been found to be more aggressive and are correlated with higher 

mortality rates (Baretta et al. 2016). 
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Although common mutations in tumor suppressor and other cancer-associated genes have 

been widely studied, much is still unknown about the mechanisms through which these 

mutations promote cancer development and progression. By conducting studies on the cancer 

genome, the functions of common mutants associated with cancer development, such as those 

arising from TP53 and BRCA, can be better understood. Additionally, genetic studies exploring 

the effectiveness of cancer treatments allow for the identification of new variants and genes 

associated with treatment phenotypes.  

Chemotherapeutic Drugs and Mechanisms 

Chemotherapy-based treatments for cancer emerged in the early 1900s; however, use of 

chemotherapeutics did not become widespread until the 1960s when studies demonstrated they 

could be used to cure more advanced cancers that were less responsive to surgery and radiation 

therapy (DeVita and Chu 2008). The discoveries of various chemotherapeutics allowed for 

targeted treatments to emerge and adjuvant chemotherapy methods to arise, using multiple 

methods of treatment in conjunction to produce better patient outcomes (DeVita and Chu 2008). 

A common example of this is the use of chemotherapeutics to reduce the size of the tumor before 

surgery, in effort to improve the likelihood of complete extraction and preserve more of the 

surrounding healthy tissue (DeVita and Chu 2008). Subsequently, the advancements provided by 

chemotherapy have caused cancer mortality rates to continually decline since 1990 (DeVita and 

Chu 2008).   

Platinum-based drugs are a common class of chemotherapeutics; these include cisplatin, 

carboplatin, and oxaliplatin, all of which are widely used to treat various cancer types (Hato et al. 

2014). The reactive platinum in these drugs is able to covalently bind to DNA to form platinum- 
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DNA adducts, which disrupt DNA repair mechanisms, causing cancerous cells to induce 

apoptosis (Dasari and Tchounwou 2014; Hato et al. 2014). Recent studies have found that 

platinum-based chemotherapeutics may also have anticancer effects as a result of immune 

system modulation (Hato et al. 2014). Treatments with platinum-based drugs have been found to 

enhance T-cell activation, strengthening the immune response towards cancerous cells, and to 

regulate the phosphorylation of STAT signaling proteins that then interact with programmed 

death receptors to induce cell death (Hato et al. 2014). However, platinum-based 

chemotherapeutics also come with challenges. For cisplatin in particular, negative side effects 

can occur, including severe kidney problems, hearing loss, gastrointestinal disorders, and 

hemorrhage (Dasari and Tchounwou 2014). Additionally, cisplatin-resistance is common; thus, 

combination therapies with radiation or other chemotherapeutics are used to provide effective 

treatment of resistant tumors (Dasari and Tchounwou 2014). 

One drug often used jointly with cisplatin to treat resistant tumors is paclitaxel. Paclitaxel 

was found to be an effective anticancer drug in the 1980s when a clinical study found 30% of 

patients with advanced ovarian cancer responded positively to treatment (Weaver 2014). 

Currently, paclitaxel is used primarily to treat breast, ovarian, and lung cancers (Weaver 2014; 

Zhu and Chen 2019). Paclitaxel inhibits microtubule production by reducing the concentration of 

tubulin subunits in the cell and it also binds to existing microtubules and interferes with their 

function in cell division, leading to mitotic arrest and, ultimately, cell death (Weaver 2014; Abu  

Samaan et al. 2019). Paclitaxel also has positive immunological effects, as it promotes the 

activation and proliferation of T cells and natural killer cells, bolstering the body’s own immune 

response to cancer cells (Zhu and Chen 2019). Resistant ovarian cancers treated with a  
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combination of cisplatin and paclitaxel had a 73% better response rate than those treated with 

cisplatin alone (Dasari and Tchounwou 2014).  

Another common class of chemotherapeutics are antineoplastic drugs; these inhibit DNA 

topoisomerases, which are responsible for cutting and pasting both single- and double-stranded 

DNA (Hande 1998). The antineoplastic drug etoposide inhibits topoisomerase II, disrupting 

DNA replication, recombination, and transcription in malignant cells, resulting in increased 

DNA degradation and apoptosis (Hande 1998). Etoposide is used to treat both small and non-

small cell lung cancers, gastric and testicular cancers, and lymphoma, with response rates 

ranging from 10% to 45% (Hande 1998).  

Although chemotherapy is a widely effective treatment for various cancer types, 

limitations exist.  Varied patient responses, including the development of drug-resistant tumors 

that require combination therapies, and the degree of tumor progression both impact the success 

of chemotherapy treatments (Galmarini, Galmarini, and Galmarini 2012; Stordal et al. 2012; 

Marin et al. 2009). Moreover, finding effective treatments for metastatic cancer is especially 

challenging, despite recent developments in targeted therapy and cancer immunology. (Roy and 

Saikia 2016; Galmarini, Galmarini, and Galmarini 2012). Therefore, personalized approaches to 

cancer medicine that deepen our understanding of the genetic variants and biological 

mechanisms impacting a patient’s response to treatment are necessary in order to successfully 

cure advanced cancers (Jackson and Chester 2015). 

Lymphoblastoid Cell Lines  

One method for identifying factors that impact drug efficacy and patient response is to 

conduct pharmacogenomic studies of chemotherapeutics, which involve treatment with drug, 

quantitative measurement of response or cytotoxicity, and statistical analysis of a response or  
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cytotoxicity phenotype in relation to genomic, transcriptomic, or proteomic variation. Cancer 

pharmacogenomic studies are often performed using in vitro human cell lines models, including 

lymphoblastoid cell lines (LCLs) and cancer cell lines from various tissues (Niu and Wang 

2015). LCLs are derived by infecting blood lymphocytes with the Epstein-Barr virus; this 

immortalizes the cell population, providing a model that continuously proliferates without 

becoming tumorigenic (Hussain and Mulherkar 2012).  The widespread availability and relative 

affordability of cell lines makes it easier to conduct initial studies with in vitro models rather 

than clinically in patients (Niu and Wang 2015; Heather E. Wheeler and Dolan 2012).  

LCLs from the International HapMap and 1000 Genomes Projects serve as one effective 

model for determining genetic factors contributing to chemotherapeutic cytotoxicity because 

they have extensive genetic information and environmental factors can be controlled (Heather E. 

Wheeler and Dolan 2012). There are also LCLs derived from a multitude of ancestral 

populations making them particularly useful for studying how cytotoxicity varies across 

ancestral populations (Heather E. Wheeler and Dolan 2012; International HapMap Consortium 

2003; 1000 Genomes Project Consortium et al. 2015). Studies conducted in LCLs do have 

limitations though, as complex drug effects and interactions that exist in the body cannot be fully 

determined in vitro and treatment with a single drug does not allow for analysis of the factors 

contributing to the effectiveness of combination therapies, which are commonly used on less-

responsive tumors (Heather E. Wheeler and Dolan 2012; Roell et al. 2019). Overall, LCLs 

provide a promising model for pharmacogenomic studies due to their vast utility, and they have 

enabled the identification of variants involved in cancer progression and may contribute to the 

development of more effective and personalized cancer treatments. 
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Multi-Omics Approaches in Genetic Studies 

Genome-Wide Association Studies 

 Genome-wide association studies (GWAS), which emerged in the early 2000s, are a 

powerful computational tool used to identify genotypic variants in the form of single nucleotide 

polymorphisms (SNPs) associated with a given phenotype (Bush and Moore 2012; Ku et al. 

2010). The human genome contains millions of SNPs that can have significant phenotypic 

implications as they can impact RNA transcript stability and cause amino acid changes that could 

potentially alter protein structure and function (Bush and Moore 2012). The majority of SNPs 

have two alleles, with the major allele occurring with greater frequency than the minor allele in a 

given population (Bush and Moore 2012). Commonly occurring alleles generally have lower 

penetrance, meaning they have smaller genetic effects (Bush and Moore 2012). Consequently, 

the heritability of complex diseases is determined through the combination of a multitude of 

alleles, which can be identified with GWAS (Bush and Moore 2012). 

 Conducting GWAS requires both genotype and phenotype data for a group of 

individuals; phenotype data must be measured quantitively and can either be continuous or in the 

form of cases and controls (Bush and Moore 2012). GWAS implement linear modeling to test 

the null hypothesis that there is no significant difference in phenotype between alleles of a SNP; 

millions of SNPs are analyzed and those found to be significantly associated with the phenotype 

can then be further investigated (Bush and Moore 2012). As a result of linkage disequilibrium, 

which is the non-random correlation of alleles at a given locus, not all SNPs identified through 

GWAS will be causal; false positives that appear to associate with the phenotype may occur due 

to linkage to the causal SNP (Bush and Moore 2012). Thus, while GWAS are useful for 

identifying novel variants associated with complex traits, additional studies are necessary to  
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better understand and validate findings so that they may one day be applied to improve 

treatment. 

 As GWAS have become more established, many software tools have been developed to 

allow for greater utility and more accurate results. Genome-wide efficient mixed-model 

association (GEMMA), which uses linear mixed modeling, is one of those tools (Zhou and 

Stephens 2012). GEMMA rapidly produces results even with large sample sizes (Zhou and 

Stephens 2012). Additionally, GEMMA can adjust for population-based covariates, including 

ancestry and relatedness, which allows for admixed populations to be analyzed and related 

individuals to remain in samples rather than be filtered out as they would skew results if not 

accounted for (Zhou and Stephens 2012).  

Cancer GWAS 

The emergence of GWAS provided a novel approach for investigating the role of genetic 

variants in cancer. As of 2017, more than 700 SNPs associated with increased risk for various 

malignancies had been identified, providing new insight into the heritability of cancer (Sud, 

Kinnersley, and Houlston 2017). More than 90% of these variants are located within non-coding 

regions of the genome, such as intergenic and intronic regions, rather than in protein-coding 

regions, making them challenging to interpret (Chen et al. 2019). However, when the SNPs are 

located within protein-coding regions the results can be promising, as further research can then 

be conducted on the possible role of gene expression levels, protein functions, and chemical 

pathways on cancer development (Sud, Kinnersley, and Houlston 2017; Liang et al. 2020).  

In addition to providing insight into the genetics of and biochemical mechanisms 

involved in cancer risk, GWAS can also help to contextualize known environmental factors that 

can lead to cancer development. Several GWAS identified significant SNPs associated with both  
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nicotine dependence and lung cancer susceptibility within the genes CHRNA3, CHRNA5, and 

CHRNB4, all of which encode nicotinic acetylcholine receptor subunits (Bossé and Amos 2018). 

These findings demonstrate the relationship between smoking, a well-known environmental risk 

factor, and lung cancer development, adding to our understanding of how environmental and 

genetic components impacting cancer risk are related (Bossé and Amos 2018). While many 

significant loci associated with cancer risk have been found, these variants generally have low 

penetrance and only account for a small percentage of heritability (Liang et al. 2020). In order to 

better understand the genetic factors impacting cancer risk, additional association studies can be 

performed to directly identify significant gene expression and protein levels that play a role in 

malignancy.   

Transcriptome-Wide Association Studies  

Although GWAS identify associations at the SNP level, they do not provide insight into 

the underlying biochemical mechanisms that regulate traits (Gamazon et al. 2015). 

Transcriptome-wide association studies (TWAS) are another method for analyzing factors 

impacting phenotype as they identify genes with significant expression levels that can then be 

further studied to determine their role in regulating traits (Gamazon et al. 2015; Barbeira et al. 

2019; Mogil et al. 2018). One widely used tool for conducting TWAS is PrediXcan, which 

employs statistical modeling to predict transcript expression levels from genotypes and 

determine associations between predicted gene expression and phenotype (Gamazon et al. 2015). 

Through predictive modeling, PrediXcan provides an accessible method to analyze gene 

expression levels and their impact on phenotype as the user does not need to have transcript data 

but only genomic data, as they would for GWAS, or GWAS summary statistics; this is notable as 

it eases the process of studying the transcriptome, which historically has been more challenging  
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due to the rapid rate of degradation of RNA samples and human tissue accessibility (Gamazon et 

al. 2015; Barbeira et al. 2018). 

The prediction models used in PrediXcan were trained with cross-validated Elastic Net 

regularization of genotype and transcriptomic data from approximately 20,000 samples from 48 

tissue types primarily from the Genotype-Tissue Expression (GTEx) Project (Gamazon et al. 

2015). These models can be used to predict tissue-specific gene expression levels from 

genotypes and identify associations with phenotypes. Additional predictive models also derived 

with Elastic Net were trained with transcriptomic data from monocytes from diverse populations 

from the Multi-Ethnic Study of Atherosclerosis (MESA) cohort and tested in independent 

cohorts (Mogil et al. 2018; Bild et al. 2002). These models differ from the GTEx models as they 

can be used to predict population-specific gene expression levels. Another tool for conducting 

TWAS is MulTiXcan, which uses the same GTEx models as PrediXcan but derives results by 

aggregating expression levels to find associations across tissues rather than to find tissue-specific 

associations (Barbeira et al. 2019). Most importantly, both PrediXcan and MulTiXcan can aid in  

contextualizing GWAS results, as they implicate gene regulation in relation to phenotype and 

provide the direction of effect for each association. Thus, conducting TWAS in addition to 

GWAS enables researchers to better identify the biochemical mechanisms impacting phenotype, 

as the combination of associations with SNPs and gene expression levels creates a more cohesive 

understanding of the factors regulating traits. 

Advantages of Studying Proteomic Variants 

Both GWAS and TWAS have become prominent computational tools in the field of 

human genetics, enabling scientists to expand their knowledge of the variants impacting complex 

traits. Yet, a truly holistic understanding of the biological processes regulating phenotypes  
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requires a multi-omics approach where genomic, transcriptomic, and proteomic variants are all 

analyzed (Hasin, Seldin, and Lusis 2017; I. Subramanian et al. 2020). While the transcriptome 

has been more widely studied due to the larger and more complete nature of transcriptomic data 

sets, the proteome has become the subject of more recent analyses as high-throughput 

technologies have amassed large proteomic datasets (Liu 2008; Aslam et al. 2017). Proteomic 

data is far more dynamic than genomic and even transcriptomic data, as protein expression 

levels, structure, and function vary depending on cell type, conditions, and conformations, 

whereas genomic data is consistent across cell type and transcriptomic data accounts for 

primarily tissue-based expression differences (Manzoni et al. 2018). Moreover, analyzing the 

proteome is vital in understanding gene function, as many proteins undergo post-translational 

modifications, resulting in complexities in regulation and protein function that studying the 

genome and transcriptome alone will not account for (Aslam et al. 2017). Thus, the intricacies of 

the proteome can provide clarity into the biological mechanisms underlying disease development  

and progression, while also challenging us to create methods of analysis accounting for greater 

degrees of complexity. 

Computational omics studies all rely on statistical testing to identify significant 

associations with phenotype; when testing integrates multi-omics data the results can be 

compared across the genome, transcriptome, and proteome to identify novel regulating pathways 

and find commonalties that further implicate and contextualize mechanisms (Hasin, Seldin, and 

Lusis 2017; I. Subramanian et al. 2020). Although progress have been made in the development 

of software tools designed for proteomic studies, there are still advancements needed to improve 

performance and expand the degree with which the full proteome can be studied (Aslam et al. 

2017). Protein-based association studies (PAS), for example, take statistical analysis a step  
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beyond TWAS to identify significant proteins associated with a given phenotype; however, the 

software tools for performing PAS are still being developed and necessary data is still being 

collected, so they are not truly proteome-wide yet, as only a subset of proteins have been 

included in predictive modelling or other analysis methods (Okada et al. 2016; Brandes, Linial, 

and Linial 2020). Nonetheless, proteomic studies have versatile applications, as their results not 

only provide greater insight into the biochemical factors regulating disease risk, but also enable 

further analyses into how proteomic variation impacts treatment (Manzoni et al. 2018). 

Significant protein associations identified through PAS have more therapeutic application than 

significant SNPs or transcripts from genomic and transcriptomic studies, as the functions and 

relevant mechanisms of significant proteins can be more directly explored through clinical 

experimentation (Doll, Gnad, and Mann 2019; Ahmed 2020). Consequently, when specific 

biochemical pathways are implicated, scientists can begin developing more personalized 

treatments that effectively target the proteins involved (Ahmed 2020).  

 One organization seeking to expand access to proteomic data for its utilization in 

computational analyses of disease traits is the NHLBI Trans Omics for Precision Medicine 

(TOPMed) Consortium (Raffield et al. 2020). The TOPMed Consortium includes proteomic data 

from various studies, including the MESA cohort (Bild et al. 2002; Raffield et al. 2020). 

Proteomic data was collected for approximately 1,300 proteins from blood plasma samples using 

SOMAscan aptamer-based arrays, which measure protein levels through the binding of the target 

protein to a specific aptamer (Gold et al. 2010; Raffield et al. 2020). Looking forward, this data 

can be used in future studies to find associations between protein levels and diseases, providing 

new insight into how omics traits regulate phenotype and their larger role in human health.   
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Several studies have investigated the potential applications of proteomic analyses on 

cancer precision medicine (Tyanova and Cox 2018; Uzozie and Aebersold 2018; Doll, Gnad, and 

Mann 2019; Giudice and Petsalaki 2019). While cancer has been the focus of many other genetic 

studies, including GWAS and TWAS that have identified hundreds of significant SNPs and 

transcript associations, proteomic studies greatly expand on previous findings, as determining the 

functionalities of implicated proteins is more relevant in understanding the mechanisms 

regulating complex cancer phenotypes (Doll, Gnad, and Mann 2019). The characterization of 

proteins associated with cancer risk and prognosis enables the option of preventative measures 

for high-risk patients and the determination of the best course of treatment for patients with 

cancer (Tyanova and Cox 2018; Sellami and Bragazzi 2020). Proteomic studies also provide 

insight into cancer-specific biochemical pathways, which could potentially be useful in the  

development of targeted therapies (Uzozie and Aebersold 2018). Cancer precision medicine has 

slowly advanced as computational and clinical pharmacogenomic studies have made beneficial 

discoveries; the first cancer drug based on genetic factors rather than tumor or tissue type was 

approved by the FDA in 2017 (Doll, Gnad, and Mann 2019). Overall, the use of computational 

methods for analyzing the role of proteomic variants in disease risk and treatment is vital, as 

future clinical studies can further explore relevant proteins to enable the development of more 

effective and personalized treatments. 

Diversity in Genetic Studies  

In the past two decades, genetic studies have identified and contextualized a myriad of 

genomic, transcriptomic, and proteomic variants impacting phenotypes; however, these studies 

are often lacking the diversity, as the vast majority of participants are of European ancestries.  
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This discrepancy can be illustrated with GWAS, as 81% of participants across the more than 

3,000 studies published as of 2018 were of European ancestries (Hindorff et al. 2018). This is 

detrimental as alleles and allele frequencies differ across human populations; thus, 

disproportionately analyzing data from one ancestral population over others results in fewer  

significant variants being identified and some rare variants found only within certain populations 

not being included at all (Hindorff et al. 2018). Consequently, this lack of representation hinders 

our understanding of how genetic differences affect disease and treatment, limiting the clinical 

application of findings, as the bias from studying predominantly European populations yields 

incomplete results (Sirugo, Williams, and Tishkoff 2019).  

The 1000 Genomes Project (phase 3) aimed to expand diversity in human genetic 

research by performing whole-genome sequencing on 26 ancestral populations from around the  

world and creating a publicly available platform where the data collected could be accessed and 

utilized in genetic studies (1000 Genomes Project Consortium et al. 2015). Through this project, 

more than 88 million SNPs were genotyped; notably, African ancestral populations had the 

highest proportions of population- and continent-specific SNPs, as well as the greatest total 

numbers of SNPs, at about 5 million per genome (1000 Genomes Project Consortium et al. 

2015). These populations have since been used in hundreds of studies, which subsequently 

implicated a plethora of novel variants in phenotypic regulation (S. L. Park, Cheng, and Haiman 

2018). These findings demonstrate that the development of precision medical treatments is 

dependent on greater diversity in genetic studies. 

Summary 

There have been a number of previous studies demonstrating the impacts of genomic 
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variation on chemotherapeutic drug response (Niu and Wang 2015; R. S. Huang, Duan, Bleibel, 

et al. 2007; H. E. Wheeler et al. 2013; R. S. Huang, Duan, Shukla, et al. 2007; Bleibel et al. 

2009; R. S. Huang, Duan, Kistner, Hartford, et al. 2008; R. S. Huang, Duan, Kistner, Bleibel, et 

al. 2008; O’Donnell et al. 2012; Hartford et al. 2009). In this project, we sought to expand on  

prior findings by conducting GWAS, TWAS and PAS on drug-response phenotypes from eight 

chemotherapeutics measured in HapMap LCLs derived from three ancestral populations 

consisting of individuals with African, Asian, and European ancestries. By including individuals 

of diverse backgrounds in this study, we identified associations both within and across ancestral 

populations. Previous GWAS were conducted on subsets of these individuals before the 1000 

Genomes Project was complete, thus at that time many individuals had been genotyped through 

the HapMap Project but not sequenced (R. S. Huang, Duan, Bleibel, et al. 2007; Bleibel et al.  

2009; Komatsu et al. 2015; Gamazon et al. 2013; H. E. Wheeler et al. 2013; R. S. Huang, Duan, 

Shukla, et al. 2007; R. S. Huang, Duan, Kistner, Hartford, et al. 2008; O’Donnell et al. 2012; R. 

S. Huang, Duan, Kistner, Bleibel, et al. 2008; Gamazon et al. 2018; Hartford et al. 2009; 1000 

Genomes Project Consortium et al. 2015; International HapMap Consortium 2003). In this study, 

all individuals were either sequenced or imputed with the 1000 Genomes as reference, allowing 

more SNPs to be analyzed. We also performed TWAS and PAS on these data for the first time to 

discover gene- and protein-based associations and gain further insight into the underlying 

mechanisms involved in regulating drug response. Moreover, for the most significant gene 

identified, STARD5, we validated our results by performing knockdown experiments in a lung 

cancer cell line treated with the associated chemotherapeutic, etoposide. By conducting GWAS, 

TWAS, and PAS, confirming our results experimentally, and incorporating diverse ancestral  
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populations, we aimed to cultivate a deeper understanding of the genomic factors and 

biochemical mechanisms impacting chemotherapy drug response and contribute to the 

development of future precision cancer treatment. 
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Data Preparation 

We procured cytotoxicity phenotypes measured in HapMap LCLs from previous studies 

of eight chemotherapy drugs, including ara-C, capecitabine, carboplatin, cisplatin, daunorubicin, 

etoposide, paclitaxel, and pemetrexed (R. S. Huang, Duan, Bleibel, et al. 2007; Bleibel et al. 

2009; Komatsu et al. 2015; Gamazon et al. 2013; H. E. Wheeler et al. 2013; R. S. Huang, Duan, 

Shukla, et al. 2007; R. S. Huang, Duan, Kistner, Hartford, et al. 2008; O’Donnell et al. 2012; R. 

S. Huang, Duan, Kistner, Bleibel, et al. 2008; Gamazon et al. 2018; Hartford et al. 2009). These 

LCLs were derived from 178 individuals from the Yoruba population in Ibadan, Nigeria (YRI), 

178 individuals with European ancestries from Utah, United States (CEU), and 90 individuals 

from a combined population of Han Chinese from Beijing, China and Japanese from Tokyo, 

Japan (ASN). The YRI population contained 58 parent-child trios and the CEU population 

contained 52 parent-child trios, which we accounted for when conducting our genetic analyses. 

17 
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The numbers of LCLs with measured phenotypes varied for each drug (Table 1). Cellular  

sensitivity to each drug was recorded as the area under the dose-response curve (AUC) for ara-C, 

capecitabine, paclitaxel, and pemetrexed, and as the half-maximal inhibitory concentration (IC50) 

for carboplatin, cisplatin, daunorubicin, and etoposide. These concentrations were all measured 

after 72 hours of exposure to the corresponding chemotherapeutic. We rank-normalized (RN) the 

AUC or IC50 for use in our subsequent genetic analyses. Additionally, once phenotypic data was 

collected for each ancestral population and drug, genotypic data were imputed using BEAGLE; 

all genotypes were in Genome Build 37 and only autosomal variants were analyzed (Browning 

and Browning 2007).  

Table 1. Individuals with genotype and phenotype data. Counts given for each ancestral 

population and drug combination.  

 

  Population 

  CEU YRI ASN ALL 

Drug 

Ara-C  

(RN AUC) 
165 177 90 432 

Capecitabine 

(RN AUC) 
165 175 90 424 

Carboplatin 

(RN IC50) 
168 172 84 430 

Cisplatin 

(RN IC50) 
166 175 90 431 

Daunorubicin 

(RN IC50) 
86 173 0 259 

Etoposide 

(RN IC50) 
84 171 0 255 

Paclitaxel 

(RN AUC) 
77 87 0 164 

Pemetrexed 

(RN AUC) 
84 176 0 260 
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Genome-Wide Association Studies 

GWAS with Ancestral Populations 

Some individuals with HapMap LCLs used in this study were sequenced in the 1000 

Genomes Project and some had genotypes only. Individuals genotyped in HapMap r28, but not 

sequenced, were previously imputed to 1000 Genomes (Komatsu et al. 2015). Imputation was 

performed using BEAGLE version 3.3.2, which considers the relatedness of the trios in the 

imputation (Browning and Browning 2007). We used SNPs with imputation R2 > 0.8, population 

minor allele frequency (MAF) > 0.05, and in Hardy–Weinberg equilibrium (P > 1 × 10−6) in our 

studies.  

Prior to conducting GWAS, we created a relatedness matrix for each of the ancestral 

populations, YRI, CEU, and ASN, using GEMMA. For each ancestral population we used the 

genotype dosages, with a minimum MAF of 0.05, to calculate the centered relatedness matrix. 

We then used GEMMA version 0.98.1 to conduct GWAS using the linear mixed model Wald 

test for each ancestral population and corresponding phenotypes (Table 1) (Zhou and Stephens 

2012). After conducting GWAS, we created QQ, Manhattan, and LocusZoom plots to aid in 

visualizing our results. We made the QQ and Manhattan plots in R using the package qqman and 

created the LocusZoom plots with the single plot service on http://locuszoom.org/ (Turner 2014; 

Pruim et al. 2010). We made LocusZoom plots for all SNPs with genome-wide significance (p < 

5 x 10-8) and we used the corresponding 1000 Genomes Nov. 2014 ancestral population when 

generating the LocusZoom plots. 

GWAS with Combined Population 

To organize data for the ALL population, we combined the BIMBAM files for both the 

genotype and phenotype data from each ancestral population into single files. We then used a  
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subset of 100,000 SNPs to convert the BIMBAM files into PLINK files, which we needed to 

conduct principal components analysis (PCA) with KING (Manichaikul et al. 2010; Purcell et al. 

2007). We used the covariates calculated by KING to account for population stratification in the 

ALL population. We also plotted the first three principal components to demonstrate that they 

accounted for population-based variation (Figure 1). Once these covariates were obtained, we 

generated a relatedness matrix for ALL and then conducting GWAS using the same methods as 

described for the ancestral populations, with the only difference being the inclusion of the 

covariates generated with PCA when conducting GWAS. We generated QQ, Manhattan, and 

LocusZoom plots as well, using the same methods (Pruim et al. 2010). As the ALL population 

does not correspond to a single 1000 Genomes Nov. 2014 population, we made multiple 

LocusZoom plots for each genome-wide significant SNP, each with a different ancestral 

population included in the ALL.  

Transcriptome-Wide Association Studies 

We conducted TWAS with PrediXcan on both the ancestral and combined populations for all 

applicable phenotypes, using the GTEx v7 and MESA prediction models (Gamazon et al. 2015; 

Mogil et al. 2018; Barbeira et al. 2018). PrediXcan was used to calculate the predicted 

expression levels for each gene. We then used GEMMA to perform a total of 7,487,956 

association tests, as this enabled us to account for relatedness within the populations with the 

matrices created previously. To use GEMMA for this purpose, we reformatted the predicted 

expression matrices outputted by PrediXcan into a readable format for GEMMA, so the  

association tests could be performed. This produced results specific to each prediction model for 

each population and phenotype combination. Additionally, we conducted TWAS with 

MulTiXcan for the same populations and phenotypes, using the GTEx v7 prediction models only 
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Figure 1. Principal component analysis (PCA) of genotype data. (A) Scree plot showing the 

percentage of variance accounted for by each of the ten PCs. (B) PC1 plotted against PC2 for 

each individual, colored by ancestral population: ASN, CEU, or YRI. (C) PC1 plotted against 

PC3 for each ancestral population. (D) PC2 plotted against PC3 for each ancestral population. 

 

(Barbeira et al. 2019). We did not use GEMMA to conduct these association tests, as MulTiXcan 

aggregates across prediction models to find overall associations and GEMMA does not conduct 
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the association tests in this manner. Using MulTiXcan, we performed 727,944 association tests 

and produced a single set of results for each population and phenotype combination, containing 

overall rather than model-specific associations. For the ALL population, we included the 

covariates generated from PCA when performing the association tests with both GEMMA and 

MulTiXcan to account for population stratification. We then adjusted the p-values derived from 

both GEMMA and MulTiXcan using Bonferroni correction, to determine which genes had 

significant predicted expression levels associated with drug cytotoxicity. For each significant 

gene, we then created predicted expression plots in R using the package ggplot2, which plot the 

gene’s predicted expression level against the chemotherapy phenotype (either IC50 or AUC) for 

each individual (Wickham 2016).  

Gene Set Enrichment Analyses 

After performing TWAS on each population and cytotoxicity phenotype, we used the 

FUMA tool GENE2FUNC to perform gene set enrichment analysis of the results from 

PrediXcan and MulTiXcan (Watanabe et al. 2017). One GENE2FUNC query was made for each 

ancestral population and phenotype combination. We submitted two lists of genes for each 

query, one for background genes, which contained all the genes analyzed during TWAS, and one 

for genes of interest, which contained a significant subset of genes based on either the PrediXcan 

or MulTiXcan results we generated previously. To achieve a subset of approximately 100 genes 

in each genes of interest list, we used a significance threshold of unadjusted p-value < 0.0005 for  

all the PrediXcan results and unadjusted p-value < 0.005 for all the MulTiXcan results. The 

PrediXcan results, which were derived from multiple prediction models, were combined so that 

the top genes across all models were selected for each ancestral population and phenotype. For 

the GENE2FUNC optional parameters, we used all the default options except for gene  
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expression data sets, for which we selected GTEx v7: 53 tissue types and GTEx v7: 30 general 

tissue types, as these correspond to the prediction models we used when conducting TWAS. We 

report significant gene sets that are enriched in each run of PrediXcan or MulTiXcan for each 

ancestral population and phenotype with adjusted p (Benjamini-Hochberg FDR) < 0.05.  

Gene Knockdown Experiments 

Cancer Cell Lines 

We obtained non-small cell lung cancer line A549 (CCL-185) from ATCC (Manassas, 

VA). IDEXX BioResearch (Columbia, MO) performed authentication of the cancer cell line, 

Case # 12135-2020, by using the Promega CELL ID System (Madison, WI) with 8 short tandem 

repeat markers (CSF1PO, D13S317, D16S539, D5S818, D7S820, TH01, TPOX, vWA) and 

amelogenin (for sex). 

Compound preparations 

We dissolved etoposide (Sigma-Aldrich, St. Louis, MO) in DMSO to obtain a stock 

solution of 10 mM and filtered using a 0.22 µm solvent resistant filter (EMD Millipore, Billerica, 

MA, USA) for sterility. We serially diluted the stock in media for final concentrations of 5 to 

100 µM for treatment of the A549 cancer cell line. Vehicle control was 0.1% DMSO in media. 

Cellular Assay with STARD5 knockdown 

We maintained A549 cells in F-12K media (Life Technologies; Carlsbad, CA) 

supplemented with 10% FBS (Hyclone, Fisher Scientific; Hanover Park, IL) and 1% Penicillin-

Streptomycin (Life Technologies). We incubated cultures in a humidified incubator at 37°C with 

5% CO2.  We performed knockdown of STARD5 using a modified reverse transfection method 

(Thermo Fisher “Literature Code: 00189-08-C-01-U”).  We mixed ON-TARGETplus 

SMARTpool siSTARD5 or ON-TARGETplus non-targeting pool (siSCR) purchased from  
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Dharmacon Inc. (Lafayette, CO) with DharmaFECT1 (Dharmacon Inc.) as per manufacturer’s 

recommendations to create the transfection mix. We added complete media siSTARD5 or siSCR 

complex to produce 25nM final concentrations of each, then added the mixture to a cell pellet 

such that the final concentration of cells was 6000 cells/100 µL volume and plated into 96-well 

flat bottom tissue culture plates (Cell Star; Quality Biologicals Inc., Gaithersburg, MD). As a 

quality control check of the effect of siRNA on cell growth rates, we assayed cell viability using 

CellTiter-Glo 2.0 (Promega; Madison, WI), which measures cellular ATP from 0 to 96 hours in 

control wells. At 24 hours, we replaced transfection media with media containing increasing 

concentrations of etoposide (5 to 100 µM). To determine cellular sensitivity to etoposide in 

presence of siSTARD5 or siSCR, we incubated cells with drug for 72 and 96 hours followed by 

cell viability assays using CellTiter-Glo 2.0.   

Quantitative reverse transcription PCR analysis 

At 0, 72, and 96 hours post-drug treatment, we added trypsin to wells of A549 cells 

(6,000 cells/well) containing siSTARD5 or siSCR and combined, pelleted, and stored the cells at 

-80oC.  We extracted RNA using RNeasy Plus (Qiagen; Valencia, CA) and prepared cDNA from 

500 ng RNA/sample with the High Capacity cDNA kit (Life Technologies).  To determine 

STARD5 knockdown in A549 cells, we performed quantitative reverse transcription PCR (qRT-

PCR) for STARD5, Hs01075234_m1 and a control gene B2M, 4326319E (Life Technologies) 

using TaqMan Fast Gene Expression mix (Applied Biosystems; Foster City, CA). We ran each 

qRT-PCR in triplicate and determined gene expression levels using the relative standard curve 

method on the Viia7 (Life Technologies). We calculated percent knockdown by dividing the 

relative STARD5 expression levels in the siSTARD5 sample by the STARD5 expression in the 

non-targeting control (siSCR).  
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Derivation of Protein-based Prediction Models 

 We derived new prediction models using protein level data from the MESA cohort 

obtained from the TOPMed Consortium. We trained population-based prediction models using 

genotype and plasma protein data from a SOMAscan aptamer-based assay of 1335 proteins from 

individuals of African (AFA, n = 183), European (EUR, n = 416), Chinese (CHN, n = 71), and 

Hispanic/Latino (HIS, n = 301) ancestries in the TOPMed MESA multi-omics pilot study (Bild 

et al. 2002; Raffield et al. 2020). A total of five model groups were created from this data, 

corresponding to each separate population and one combined population (ALL-M). We used 

cross-validated elastic net regularization (alpha mixing parameter=0.5) using the R package 

glmnet with genetic variants within 1Mb of the gene encoding each protein as predictors for 

protein levels (Friedman, Hastie, and Tibshirani 2010). The models we derived were then tested 

in a separate population comprised of individuals of predominately European ancestries. We 

created database files, one for each population group, containing all protein models with 

Spearman correlation > 0.1 between predicted and observed levels, which were used as the  

models in the PAS we conducted. These models are referred to as the TOPMed prediction 

models in subsequent sections. 

Protein-based Association Studies 

 We conducted protein-based association studies (PAS) with PrediXcan on both the 

ancestral and combined populations for all applicable phenotypes, using the TOPMed prediction 

models. As with TWAS, we used PrediXcan to calculate the predicted levels for each protein. 

We then reformatted the prediction matrices derived with PrediXcan for GEMMA, which we 

used to perform a total of 10,931 association tests, while accounting for relatedness in each 

ancestral population. This produced results specific to each prediction model for each population  
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and phenotype combination. We used Bonferroni correction to adjust the p-values in each set of 

results for multiple testing across models, to identify proteins with predicted levels significantly 

associated with cytotoxicity. For each significant protein we created plots in R using the package 

ggplot2, displaying the predicted protein levels versus the cytotoxicity phenotype (either IC50 or 

AUC) for each individual (Wickham 2016).  
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Overview of Analyses 

In order to investigate genetic and transcriptomic effects on chemotherapeutic toxicity, we 

gathered and analyzed previously published dose-response data from LCLs of three diverse 

ancestral populations (Komatsu et al. 2015; R. S. Huang, Duan, Bleibel, et al. 2007; Bleibel et al. 

2009; Hartford et al. 2009; R. S. Huang, Duan, Shukla, et al. 2007; R. S. Huang, Duan, Kistner, 

Hartford, et al. 2008; O’Donnell et al. 2012; Gamazon et al. 2018; H. E. Wheeler et al. 2013; R. 

S. Huang, Duan, Kistner, Bleibel, et al. 2008; Gamazon et al. 2013). These LCLs were derived 

from 178 individuals from the Yoruba population in Ibadan, Nigeria (YRI), 178 individuals with 

European ancestries from Utah, United States (CEU), and 90 individuals from a combined 

population of Han Chinese from Beijing, China and Japanese from Tokyo, Japan (ASN). Both the 

YRI and CEU populations included parent-child trios. We used phenotypes from eight  
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chemotherapy drugs in our study. Depending on the drug, the cytotoxicity phenotype from each 

individual’s LCL was calculated either with the half-maximal inhibitory concentration (IC50) or 

the area under the dose-response curve (AUC). We rank-normalized (RN) these measurements for 

use in our genetic analyses. The total counts for individuals with both genotype and phenotype 

data varied for each drug and ancestral population. We then performed GWAS, TWAS, PAS, and 

gene set enrichment analyses to identify multi-omic traits significantly associated with 

chemotherapy-induced cytotoxicity (see overview in Figure 2). 

GWAS reveal four loci associated with chemotherapy-induced cytotoxicity 

We conducted GWAS using 1000 Genomes Project sequenced and imputed genotypes to 

identify genome-wide significant associations between SNPs and the cytotoxicity of each drug 

for each ancestral population (YRI, CEU, and ASN) and in all three ancestral populations 

combined (ALL) (1000 Genomes Project Consortium et al. 2015). We used GEMMA to perform 

univariate linear mixed model GWAS while accounting for relatedness in each ancestral 

population and population stratification in the ALL population using covariates generated with 

PCA (Zhou and Stephens 2012).We used a threshold p-value = 5 x 10-8 to determine genome-

wide significance. We found twelve unique SNPs at four independent loci to be significantly 

associated with cytotoxicity of four distinct chemotherapeutics, all of which were not previously 

implicated in any other GWAS as they do not appear in the GWAS catalog (Table 2) (MacArthur 

et al. 2017).  

We found two SNPs located in a noncoding region of chromosome four, rs61079639 (p = 

2.3 x 10-9) and rs60507300 (p = 2.3 x 10-9), to be associated with daunorubicin cytotoxicity in the 

YRI population (Figure 3). We found three SNPs on chromosome nine, rs2100011 (p = 4.7 x 10-

9), rs2254812 (p = 4.7 x 10-9), and rs2254813 (p = 4.7 x 10-9), to be associated with carboplatin 
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 Figure 2. Overview of Analyses. 
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cytotoxicity in the ASN population (Figure 4). These SNPs are located in the gene PPP1R26; 

rs2100011 is an intron variant and rs2254812 and rs2254813 are 5’ untranslated region variants. 

Additionally, we found six SNPs located in a noncoding region of chromosome twelve, led by 

rs7971310 (p = 1.1 x 10-8), to be associated with etoposide cytotoxicity in the YRI population 

(Table 2). Two of these SNPs, rs2711729 (p = 4.9 x 10-8), rs2711728 (p = 4.9 x 10-8), were also 

found to be associated with etoposide cytotoxicity in the ALL population (Figure 5). We found 

Table 2. Genome-wide significant SNPs (Genome Build 37) from all GWAS performed. 

 

Pop. Drug SNP Chr. Position A1 A2 P-value Beta 

YRI Daunorubicin rs61079639 4 96611494 T A 2.3 x 10-9 0.79 

YRI Daunorubicin rs60507300 4 96611493 T G 2.3 x 10-9 0.79 

ASN Carboplatin rs2100011 9 138376145 A G 4.7 x 10-9 0.77 

ASN Carboplatin rs2254812 9 138375872 C G 4.7 x 10-9 0.77 

ASN Carboplatin rs2254813 9 138375861 G A 4.7 x 10-9 0.77 

YRI Etoposide rs7971310 12 47428174 G A 1.1 x 10-8 -0.85 

YRI Etoposide rs7960974 12 47424034 A G 1.1 x 10-8 -0.85 

YRI Etoposide rs7979399 12 47424033 G T 1.3 x 10-8 -0.85 

YRI Etoposide rs2711729 12 47409824 A G 1.5 x 10-8 0.88 

YRI Etoposide rs2711728 12 47411926 C A 1.5 x 10-8 0.88 

YRI Etoposide rs11183699 12 47426533 A G 2.6 x 10-8 -0.79 

YRI Cisplatin rs10510241 3 2907097 A G 4.7 x 10-8 0.65 

ALL Etoposide rs2711729 12 47409824 A G 4.9 x 10-8 0.80 

ALL Etoposide rs2711728 12 47411926 C A 4.9 x 10-8 0.80 
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Figure 3. GWAS results for YRI and Daunorubicin cytotoxicity phenotype. (A) QQ plot of 

GWAS results showing expected vs observed p-values, red line at x=y. (B) Manhattan plot of 

GWAS results, red line at genome-wide significance threshold. (C) LocusZoom plot of 

rs61079639 (p = 2.3 x 10-9), the blue line measures the recombination rate at a certain position 

and each point is colored to indicate linkage disequilibrium (r2) with rs61079639 in the 1000 

Genomes Nov. 2014 AFR population. 
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Figure 4. GWAS results for ASN and Carboplatin cytotoxicity phenotype. (A) QQ plot of 

GWAS results showing expected vs observed p-values, red line at x=y. (B) Manhattan plot of 

GWAS results, red line at genome-wide significance threshold. (C) LocusZoom plot of 

rs2100011 (p = 4.7 x 10-9), the blue line measures the recombination rate at a certain position and 

each point is colored to indicate linkage disequilibrium (r2) with rs2100011 in the 1000 Genomes 

Nov. 2014 ASN population. 
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Figure 5. GWAS results for ALL and Etoposide cytotoxicity phenotype. (A) QQ plot of GWAS 

results showing expected vs observed p-values, red line at x=y. (B) Manhattan plot of GWAS 

results, red line at genome-wide significance threshold. (C) LocusZoom plot of rs2711729 (p = 

4.9 x 10-8), the blue line measures the recombination rate at a certain position and each point is 

colored to indicate linkage disequilibrium (r2) with rs2711729 in the 1000 Genomes Nov. 2014 

AFR population. 
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one SNP located on chromosome three, rs10510241 (p = 4.7 x 10-8), to be associated with cisplatin 

cytotoxicity in the YRI population (Figure 6). This SNP is an intron variant in the gene CNTN4. 

No genome-wide significant associations were found for CEU. Through conditional analysis we 

found that the SNPs in each chromosomal region were not independent, thus each set of SNPs 

represents one association between the corresponding cytotoxicity phenotype and locus. None of 

the significant SNPs identified in one ancestral population replicated in another ancestral 

population (Table 3). 

Table 3. Genome-wide significant SNP results (Genome Build 37) across populations from all 

GWAS performed. See Table 2 for chromosome, position, and alleles. 

 

 

SNP Drug 
YRI 

P-value 

YRI 

Beta 

ASN 

P-value 

ASN 

Beta 

CEU 

P-value 

CEU 

Beta 

ALL 

P-value 

ALL 

Beta 

rs61079639 Daunorubicin 2.3 x 10-9 0.79 N/A N/A 0.59 0.98 3.6 x 10-6 0.84 

rs60507300 Daunorubicin 2.3 x 10-9 0.79 N/A N/A 0.59 0.98 3.6 x 10-6 0.84 

rs2100011 Carboplatin 0.29 0.66 4.7 x 10-9 0.77 0.35 0.82 0.0096 0.66 

rs2254812 Carboplatin 0.24 0.66 4.7 x 10-9 0.77 0.35 0.82 0.012 0.66 

rs2254813 Carboplatin 0.24 0.66 4.7 x 10-9 0.77 0.35 0.82 0.012 0.66 

rs7971310 Etoposide 1.1 x 10-8 -0.85 N/A N/A 0.62 0.95 4.6 x 10-5 0.78 

rs7960974 Etoposide 1.1 x 10-8 -0.85 N/A N/A 0.61  0.60 N/A N/A 

rs7979399 Etoposide 1.3 x 10-8 -0.85 N/A N/A 0.60 0.60 N/A N/A 

rs2711729 Etoposide 1.5 x 10-8 0.88 N/A N/A 0.17 0.07 4.9 x 10-8 0.80 

rs2711728 Etoposide 1.5 x 10-8 0.88 N/A N/A 0.17 0.07 4.9 x 10-8 0.80 

rs11183699 Etoposide 2.6 x 10-8 -0.79 N/A N/A 0.64 0.60 6.8 x 10-5 0.77 

rs10510241 Cisplatin 4.7 x 10-8 0.65 0.94 0.22 0.94 0.70 7.5 x 10-4 0.61 
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Figure 6. GWAS results for YRI and Cisplatin cytotoxicity phenotype. (A) QQ plot of GWAS 

results showing expected vs observed p-values, red line at x=y. (B) Manhattan plot of GWAS 

results, red line at genome-wide significance threshold. (C) LocusZoom plot of rs10510241 (p = 

4.7 x 10-8), the blue line measures the recombination rate at a certain position and each point is 

colored to indicate linkage disequilibrium (r2) with rs10510241 in the 1000 Genomes Nov. 2014 

AFR population. 

 



36 

TWAS predict expression of three genes are associated with chemotherapy-induced 

cytotoxicity 

Following GWAS, we conducted TWAS using both PrediXcan and MulTiXcan to 

identify significant associations between predicted gene expression levels and the cytotoxicity of 

each drug for each ancestral population (Gamazon et al. 2015; Barbeira et al. 2019). PrediXcan 

and MulTiXcan utilize prediction models to calculate predicted expression levels for various 

genes and identify associations between predicted gene expression levels and phenotype 

(Gamazon et al. 2015; Barbeira et al. 2019). Both PrediXcan and MulTiXcan calculate predicted 

gene expression levels for each gene using each model individually, but while PrediXcan then 

finds model-specific associations between predicted gene expression and phenotype, MulTiXcan 

aggregates expression to find overall associations and identifies models with the best and worst 

performance (Gamazon et al. 2015; Barbeira et al. 2019). We used the 48 GTEx version 7 tissue-

based prediction models, which each contain approximately 10,000 genes, to run PrediXcan and 

MulTiXcan (Gamazon et al. 2015; Barbeira et al. 2019). Additionally, for PrediXcan only, we 

used the 5 MESA population-based prediction models, which each contain approximately 8,000 

genes (Mogil et al. 2018). To obtain the PrediXcan results, we used PrediXcan to calculate the 

predicted gene expression levels and GEMMA to conduct the association tests, as this accounted 

for relatedness within each ancestral population (Gamazon et al. 2015; Zhou and Stephens 2012). 

To obtain the MulTiXcan results, we used the same predicted gene expression levels and 

conducted the association tests with MulTiXcan, as this produced aggregate associations 

(Barbeira et al. 2019). For the ALL population, we accounted for population stratification with 

the same covariates as in GWAS. 
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We found three significant associations (Bonferroni adjusted p-value < 0.05) between 

gene expression and cytotoxicity, two from PrediXcan and one from MulTiXcan. Using 

PrediXcan, we determined increased predicted expression of STARD5 in the brain cortex tissue 

to be associated with a decrease in the concentration of etoposide required for cytotoxicity (IC50) 

in the ALL population (p = 8.5 x 10-8) (Figure 7A). Additional results for the YRI population, 

etoposide phenotype, and STARD5 derived from other GTEx version 7 and MESA models can 

be seen in Table 4. We also found increased predicted expression of USF1 in the liver tissue to  

Table 4. STARD5 results for the ALL population and Etoposide cytotoxicity phenotype derived 

from GTEx version 7 and MESA models. 

Model P-value Adj. P Beta 

Brain Cortex 8.5 x 10-8 0.023 -1.1 

MESA AFHI 9.1 x 10-5 1.00 -2.1 

MESA HIS 3.4 x 10-4 1.00 -1.0 

Esophagus Mucosa 3.6 x 10-3 1.00 -0.66 

MESA ALL 4.9 x 10-3 1.00 -0.63 

Stomach 4.9 x 10-3 1.00 -2.8 

Esophagus Muscularis 0.018 1.00 -0.92 

Skin Sun Exposed Lower leg 0.073 1.00 -0.51 

MESA CAU 0.098 1.00 -0.65 

Testis 0.11 1.00 0.70 

Artery Tibial 0.14 1.00 1.6 

Brain Hippocampus 0.18 1.00 -0.24 

Esophagus Gastroesophageal Junction 0.19 1.00 -0.20 

Lung 0.23 1.00 -1.6 

Muscle Skeletal 0.33 1.00 2.4 

Nerve Tibial 0.33 1.00 -0.69 

Brain Frontal Cortex 0.71 1.00 -4.4 

Colon Sigmoid 0.73 1.00 0.15 

Skin Not Sun Exposed Suprapubic 0.91 1.00 0.034 

Cells Transformed fibroblasts 1.00 1.00 0.010 
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be associated with an increase in the concentration of capecitabine required for cytotoxicity (AUC) 

in the ALL population (p = 8.7 x 10-8) (Figure 7B). Using MulTiXcan, we found increased 

predicted expression of CCAR1 to be associated with a decrease in the concentration of 

capecitabine required for cytotoxicity (AUC) in the YRI population (p = 4.2 x 10-6) (Figure 7C). 

FUMA identifies enrichment in oncogenic signatures 

We performed FUMA gene set enrichment analysis on top PrediXcan results for each ancestral 

population and drug and found twelve significant gene sets (Table 5) (Watanabe et al. 2017). For 

the CEU population and cisplatin, we identified one significant gene set WNT_UP.V1_ UP (p = 

1.2 x 10-5). This gene set is an oncogenic signature, denoting up-regulation of the listed genes as 

a result of the over-expression of WNT1 in mammary epithelial cells (Ziegler et al. 2005). The 

genes making up this set were all found to have predicted expression levels associated with 

cisplatin IC50. Cisplatin is often used to treat a variety of cancers, including lung, colon, 

testicular, and ovarian cancers (Trendowski, El-Charif, et al. 2019; Trendowski, El Charif, et al. 

2019). Additionally, for the CEU population and cytarabine arabinoside (ara-C), we identified 

the gene set P53_DN.V1_DN to be significant (p = 1.1 x 10-4). This is another oncogenic 

signature, characterized by down-regulation of the genes listed in cancer cell lines with mutated 

TP53 from the NCI-60 collection (A. Subramanian et al. 2005). The genes in the set are 

impacted by mutations in TP53, a known tumor suppressor gene that, when mutated, can lead to 

malignancy (A. Subramanian et al. 2005). The predicted expression levels of these genes are 

associated with ara-C AUC.  

We also performed FUMA gene set enrichment analysis on top MulTiXcan results for 

each ancestral population and drug, which identified fifteen significant gene sets (Table 6). For 

the YRI cohort and Daunorubicin, four gene sets, classified as cancer gene neighborhoods, were 
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Table 5. Significant Gene Sets from FUMA tool GENE2FUNC generated using top genes from 

PrediXcan results. 

 

 

Pop. Drug Category Gene Set N n 

P-

valu

e 

Adj. P Genes 

CEU 
Cisplati

n 

Oncogenic 

Signatures 
WNT_UP.V1_UP 170 7 

1.2 x 

10-5 
0.0023 

VAMP1, RPAP3, LTB4R, 

SERPINF1, AP2S1, 

POMC, HS3ST1 

ASN 
Capecit

abine 

microRNA 

Targets 

(MsigDB c3) 

CCCACAT_MIR2

993P 
48 4 

1.7 x 

10-5 
0.0038 

RAB6A, ITGAV, ABCE1, 

TRPM3 

CEU 
Capecit

abine 

Hallmark Gene 

Sets (MsigDB h) 

HALLMARK_PE

ROXISOME 
100 5 

1.1 x 

10-4 
0.0053 

PRDX5, RETSAT, 

ABCC5, SEMA3C, 

GSTK1 

CEU 
Paclita

xel 

GWAS Catalog 

Reported Genes 

Liver enzyme 

levels (gamma-

glutamyl 

transferase) 

42 4 
8.9 x 

10-6 
0.015 

GSTT2B, DDTL, KB-

226F1.2, DDT, GGT1 

ALL 
Carbop

latin 

Chemical and 

Genetic 

Pertubation Gene 

Sets 

NIKOLSKY_BRE

AST_CANCER_1

7Q21_Q25_AMP

LICON 

318 9 
4.6 x 

10-6 
0.016 

PDK2, CACNA1G, 

SCPEP1, COG1, 

FAM104A, C17orf80, 

BTBD17, GPRC5C, 

SLC16A3 

CEU 
Paclita

xel 

Hallmark Gene 

Sets (MsigDB h) 

HALLMARK_EPI

THELIAL_MESE

NCHYMAL_TRA

NSITION 

190 5 
3.2 x 

10-4 
0.016 

VCAM1, COL1A1, 

MATN3, CXCL1, ECM2 

CEU Ara-C 
Oncogenic 

Signatures 
P53_DN.V1_DN 179 6 

1.1 x 

10-4 
0.020 

AJAP1, KCNAB2, 

GPRC5B, HOXB2, 

CBX4, DFNA5 

ASN Ara-C 

Chemical and 

Genetic 

Pertubation Gene 

Sets 

SOTIRIOU_BRE

AST_CANCER_G

RADE_1_VS_3_

DN 

51 5 
6.5 x 

10-6 
0.022 

PIGV, BBS1, TUBGCP4, 

SNX1, CRTC3 

ASN Ara-C 

Chemical and 

Genetic 

Pertubation Gene 

Sets 

NIKOLSKY_BRE

AST_CANCER_1

1Q12_Q14_AMP

LICON 

153 7 
1.5 x 

10-5 
0.025 

BBS1, ZDHHC24, CCS, 

LRFN4, RAD9A, 

NDUFV1, MTL5 

YRI Ara-C 

Immunological 

Signatures 

(MsigDB c7) 

GSE39110_DAY3

_VS_DAY6_POS

T_IMMUNIZATI

ON_CD8_TCELL

_UP 

190 8 
5.2 x 

10-6 
0.025 

RRP12, TRMT112, 

ACAT1, BTG1, EVL, 

MPPE1, FAM161A, 

MAPK11 

ALL 
Daunor

ubicin 

Chemical and 

Genetic 

Pertubation Gene 

Sets 

RICKMAN_TUM

OR_DIFFERENTI

ATED_WELL_V

S_POORLY_UP 

219 8 
8.8 x 

10-6 
0.030 

LMO4, TRAF3IP3, 

BCL2L11, ABHD12, 

IFT122, MSL2, VARS2, 

CASC7, AGO2 

ASN 
Cisplati

n 

Cancer Gene 

Modules  

(MsigDB c4) 

MODULE_372 21 3 
7.8 x 

10-5 
0.034 

ABCC4, TWSG1, 

CCNE2 
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Table 6. Significant Gene Sets from FUMA tool GENE2FUNC generated using top genes from 

MulTiXcan results. 

 

Pop. Drug Category Gene Set N n 
P-

value 

Adj. 

P 
Genes 

YRI 
Carbop

latin 

GO Cellular Components 

(MsigDB c5) 

GO_COMPACT_M

YELIN 
15 4 

7.4 x 

10-6 

0.00

43 

NCMAP, CD59, 

MPP5, PLLP 

CEU 
Daunor

ubicin 

GO Cellular Components 

(MsigDB c5) 

GO_CYTOPLASMI

C_DYNEIN_COMP

LEX 

14 5 
9.3 x 

10-6 

0.00

54 

TPR, DYNLL1, 

BCL2L11, 

DYNC1LI1, DCTN4 

CEU Ara-C KEGG (MsigDB c2) 

KEGG_PENTOSE_

PHOSPHATE_PAT

HWAY 

22 4 
3.7 x 

10-5 

0.00

68 

H6PD, PFKM, TKT, 

TKTL2 

CEU 
Carbop

latin 

Immunological 

Signatures (MsigDB c7) 

GSE4142_GC_BCE

LL_VS_MEMORY_

BCELL_DN 

189 9 
5.8 x 

10-6 

0.01

7 

STX6, AMPD3, 

ALOX15B, PIGL, 

ASAP2, HACL1, 

ZNF827, UNC5CL, 

C9orf64 

CEU 
Carbop

latin 

Immunological 

Signatures (MsigDB c7) 

GSE17721_CPG_V

S_GARDIQUIMOD

_8H_BMDC_DN 

193 9 
6.9 x 

10-6 

0.01

7 

LRP8, SLK, AMPD3, 

EEF1G, EMC7, 

NDRG4, CTDNEP1, 

LRRC16A, QKI 

YRI 
Daunor

ubicin 

Cancer Gene 

Neighborhoods (MsigDB 

c4) 

GCM_TPT1 66 6 
5.3 x 

10-5 

0.02

3 

RPL27A, RPS3, 

NDUFA12, NPM1, 

RPS18, RPS10 

ALL 
Cisplati

n 
BioCarta (MsigDB c2) 

BIOCARTA_MCM_

PATHWAY 
18 3 

1.2 x 

10-4 

0.02

6 

ORC1, CDC6, 

MCM6 

YRI 
Daunor

ubicin 

Cancer Gene 

Neighborhoods (MsigDB 

c4) 

GNF2_EIF3S6 113 7 
1.5 x 

10-4 

0.03

2 

PNRC2, RPL27A, 

RPS3, EIF3D, 

NPM1, RPS18, 

RPS10 

CEU Ara-C WikiPathways 

Pathways in clear 

cell renal cell 

carcinoma%WikiPat

hways_20190110%

WP4018%Homo 

sapiens 

79 6 
6.8 x 

10-5 

0.03

3 

ARNT, TGFB2, TPI1, 

PFKM, MDH1, TSC1 

YRI 
Daunor

ubicin 

Cancer Gene 

Neighborhoods (MsigDB 

c4) 

MORF_ACTG1 126 7 
2.9 x 

10-4 

0.03

4 

TAGLN2, RPL27A, 

ZFPL1, RPS3, 

NPM1, RPS18, 

RPS10 

YRI 
Daunor

ubicin 

Cancer Gene 

Neighborhoods (MsigDB 

c4) 

MORF_TPT1 91 6 
3.2 x 

10-4 

0.03

4 

RPL27A, ZFPL1, 

RPS3, NPM1, RPS18, 

RPS10 

YRI 
Cisplati

n 

microRNA Targets 

(MsigDB c3) 

ACCAATC_MIR50

9 
43 5 

2.6 x 

10-4 

0.03

5 

PCDHA2, PCDHA3, 

PCDHA4, PCDHA5, 

ZFAND3 

YRI 
Cisplati

n 

microRNA Targets 

(MsigDB c3) 

GTAGGCA_MIR18

9 
25 4 

3.1 x 

10-4 

0.03

5 

CAPRIN1, MBLAC2, 

SRPK2, MTSS1 

ALL 
Capecit

abine 

GO Cellular Components 

(MsigDB c5) 

GO_BASAL_PLAS

MA_MEMBRANE 
32 4 

6.4 x 

10-5 

0.03

7 

SLC27A5, PKD2, 

ERBB2IP, CAV1 

ALL 
Cisplati

n 
Reactome (MsigDB c2) 

REACTOME_G2_

M_CHECKPOINTS 
41 4 

7.1 x 

10-5 

0.04

8 

ORC1, ATM, CDC6, 

MCM6 
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identified: GCM_TPT1 (p = 5.33e-05), GNF2_EIF3S6 (p = 1.49e-04), MORF_ACTG1 (p = 

2.92e-04), and MORF_TPT1 (p = 3.18e-04). Cancer gene neighborhoods develop as a result of 

mutations in multiple genes in an area of the genome and are common to some cancer types, 

including leukemia. One gene in all four of these sets, RPS18, has been found to be highly 

expressed acute lymphoblastic leukemia. Another gene, NPM1, which is also included in each of 

these sets, has been found to be upregulated in both acute myeloid and lymphoblastic leukemia. 

Daunorubicin is used to treat various subtypes of leukemia, including acute myeloid and 

lymphoblastic leukemia, thus it is interesting that the predicted expression levels for the genes 

making up these neighborhoods were identified by MulTiXcan to be associated with 

Daunorubicin IC50. 

Knockdown experiments validate reduced STARD5 expression is associated with reduced 

etoposide-induced cytotoxicity 

After conducting GWAS and TWAS, we followed up on our results by performing 

functional experiments for STARD5, as this gene had the most significant predicted expression 

levels from the TWAS results. The predicted expression plot for STARD5 showed a negative 

correlation between STARD5 predicted expression and etoposide IC50. Therefore, for our 

functional experiments, we hypothesized that the knockdown of STARD5 expression levels 

would result in a higher etoposide IC50, which corresponds to lower cellular sensitivity to 

etoposide. We selected the lung cancer cell line A549 for the knockdown experiments, as 

etoposide is often used to treat lung cancer (Qiu et al. 2019). 

After knocking down STARD5 with siRNA, we treated A549 cells with increasing 

concentrations of etoposide and then measured relative viability at 72 and 96 hours after 

treatment (Figure 8A).  siRNA reduced STARD5 expression to less than 25% of control at 0, 72,  
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and 96 hours (Figure 8B). At both 72 and 96 hours, reduced STARD5 expression significantly 

increased cell viability (Figure 8C-D, p = 0.034 for 72 hours, p = 0.0001 for 96 hours), validating 

our TWAS results that higher expression of STARD5 is correlated with greater sensitivity to 

etoposide. 

 

 

Figure 8. Evaluation of the effect of STARD5 knockdown on sensitivity of A549 lung cancer 

cells to etoposide. (A) Experimental scheme for knockdown of STARD5 in A549 and treatment 

with etoposide. (B) STARD5 expression was reduced < 25% for cells treated with siSTARD5 

(gray bars) compared to expression in siSCR (black bars) at time of drug treatment (0H) and at 

72 and 96 hours as determined by quantitative reverse transcription PCR (qRT-PCR). Relative 

viability, determined by CellTiter-Glo 2.0 assay, for A549 cells treated with increasing 

concentrations of etoposide at (C) 72 hours and (D) 96 hours after treatment with siSTARD5 

(open circle) or siSCR control (closed circle). Data represents two independent experiments 

including at least three replicates analyzed by two-way ANOVA showing the SEM. 
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PAS predict seven unique proteins to be significantly associated with chemotherapy-

induced cytotoxicity 

 In addition to GWAS and TWAS, we conducted PAS to identify significant associations 

between predicted protein levels and the cytotoxicity of each drug for each ancestral population. 

We first predicted protein levels with PrediXcan using the TOPMed prediction models and we 

then used GEMMA to perform the association tests, in order to account for relatedness within 

each population. We found seven unique proteins with predicted levels significantly associated 

with chemotherapy-induced cytotoxicity (Bonferroni adjusted p-value < 0.05) in three of the four 

populations (Table 6). In the ASN population, the most significant association identified was 

found with the TOPMed EUR model between increased predicted levels of the protein encoded 

by NAGK and increased cisplatin concentration required for cytotoxicity (Figure 9A). In the ALL 

population, the most significant association identified was found with the TOPMed ALL-M 

model between increased predicted levels of the protein encoded by HK2 and decreased 

daunorubicin concentration required for cytotoxicity (Figure 9B). In the YRI population, the 

 

Table 7. Significant predicted protein levels from all PAS performed. 

 

Pop. Drug Model 
Protein-

coding Gene 
Chr. P-value Adj. P Beta 

ASN Cisplatin TOPMed EUR NAGK 2 1.2 x 10-4 0.0065 2.4 

ALL Daunorubicin TOPMed ALL-M HK2 2 1.0 x 10-4 0.015 -3.3 

ALL Pemetrexed TOPMed CHN IL17RD 3 5.9 x 10-4 0.015 -4.5 

ALL Ara-C TOPMed EUR DPT 1 1.8 x 10-4 0.016 1.6 

YRI Pemetrexed TOPMed CHN IL17RD 3 1.3 x 10-3 0.036 -5.2 

ALL Daunorubicin TOPMed ALL-M EGF 4 2.6 x 10-4 0.038 -1.3 

ALL Ara-C TOPMed AFA IL5RA 3 7.2 x 10-4 0.039 3.9 

YRI Pemetrexed TOPMed HIS PDE5A 4 4.3 x 10-4 0.042 1.8 
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most significant association identified was found with the TOPMed CHN model between 

increased predicted levels of the protein encoded by IL17RD and decreased pemetrexed 

concentration required for cytotoxicity. 

 

 

Figure 9. Predicted protein levels of significant PAS hits versus measured drug cytotoxicity 

levels. (A) Predicted levels of the protein encoded by NAGK in the ASN population as 

determined by PrediXcan using the TOPMed EUR prediction model plotted against rank-

normalized Cisplatin IC50 levels as measured in LCLs from the ASN population. (B) Predicted 

levels of the protein encoded by HK2 in the ALL population as determined by PrediXcan using 

the TOPMed ALL-M prediction model plotted against rank-normalized Daunorubicin IC50 levels 

as measured in LCLs from the ALL population. Each point represents an individual, the curved 

yellow lines convey density in regard to the distribution of the points, and the purple line is the 

best fit determined by linear regression, which shows the direction of effect. 

 

 

 

 

 



 

 

 

CHAPTER FOUR 

DISCUSSION AND CONCLUSION 
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Bioinformatics, Loyola University Chicago, Chicago, IL, USA, 3Section of 

Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA 

 

We conducted GWAS, TWAS and PAS for eight chemotherapeutic cytotoxicity 

phenotypes measured in LCLs from individuals in three ancestral populations (YRI, CEU, and 

ASN) and one combined population (ALL). We identified twelve SNPs at four unique loci, three 

genes, and seven proteins significantly associated with chemotherapy-induced cytotoxicity. For 

the most significant gene, STARD5, we performed knockdown experiments to follow up on our 

finding that increased STARD5 expression associates with decreased etoposide IC50. These 

functional experiments validated this result, as knockdown of STARD5 increased viability of 

A549 lung cancer cell lines treated with etoposide, demonstrating the positive correlation 

between STARD5 expression and cellular sensitivity to etoposide.  

The TWAS we conducted identified an association between increased predicted 

expression of STARD5 and decreased etoposide IC50, implying a greater cellular sensitivity to 

etoposide. This finding was then validated through the knockdown experiments we performed, 

46 
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which demonstrated that a reduction of STARD5 expression to twenty-five percent that of 

unaltered expression results in increased viability in A549 lung cancer cell lines treated with 

etoposide. Etoposide is a chemotherapeutic and antineoplastic drug that targets topoisomerase II, 

an enzyme that plays an essential role in DNA replication, recombination, and transcription, by 

cutting and pasting double-stranded DNA (Hande 1998). By interfering in topoisomerase II 

function in malignant cells, etoposide disrupts necessary biological processes, leading to an 

increase in DNA breakage that ultimately induces apoptosis (Hande 1998). Etoposide is 

commonly used to treat lung cancer; this informed our selection of the A549 lung cancer cell line  

for use in the knockdown experiments to test how etoposide IC50 would be impacted by a 

reduction in STARD5 expression (Zucchetti et al. 1995). Additionally, previous projects have 

used A549 cell lines to study factors contributing to etoposide-induced cell death (Litwiniec et 

al. 2013; Y. Huang et al. 1997).  

STARD5 encodes a steroidogenic acute regulatory related lipid transfer domain protein 

(Rodriguez-Agudo et al. 2005). Studies have found STARD5 to become more highly expressed 

as a response to endoplasmic reticulum (ER) stress, which leads to the relocation of the protein 

encoded by STARD5 from the nucleus to the cytosol and cell membrane (Rodriguez-Agudo et al. 

2012). Etoposide, while disrupting normal topoisomerase II function, often induces ER stress in 

the process (C. Wang et al. 2016). This could contribute to increased STARD5 expression in 

cancer cells. Additionally, increased STARD5 expression in hepatocytes has been linked to 

increased cholesterol levels (Rodriguez-Agudo et al. 2005). STARD5 protein binds and transports 

cholesterol and other sterol-derived molecules in the liver and thus helps regulate lipid 

homeostasis and metabolism (Rodriguez-Agudo et al. 2005). The mechanisms for cholesterol  
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homeostasis and drug metabolism have been found to rely on the same cellular receptors, 

including pregnane X receptor (PXR) (Rezen et al. 2011). PXR binds etoposide as well as other  

chemotherapeutics to activate CYP3A4, a key enzyme involved in drug metabolism (Schuetz et 

al. 2002). The role of STARD5 in regulating metabolism and other liver functions could be one 

explanation for the association between etoposide-induced cytotoxicity and increased STARD5 

expression. Etoposide metabolism occurs primarily in the liver, where STARD5 is highly 

expressed (Kawashiro et al. 1998; Rodriguez-Agudo et al. 2005). Overall, increased expression 

of STARD5, whether preexisting or prompted by ER stress, may facilitate etoposide metabolism 

in the liver, in turn promoting etoposide-induced cytotoxicity. 

The GWAS we conducted revealed four unique loci associated with cellular sensitivity to 

either carboplatin, cisplatin, daunorubicin, or etoposide. In the ASN population, we found three 

SNPs on chromosome 9 located within PPP1R26 to be associated with carboplatin-induced 

toxicity. PPP1R26 has been associated with tumor formation and is upregulated in breast 

carcinomas, promoting metastasis through the degradation of retinoblastoma protein, a tumor 

suppressor protein (Zheng et al. 2018; Yang et al. 2005). In the YRI population, we found one 

SNP on chromosome 3 located within CNTN4 to be associated with cisplatin-induced toxicity. 

CNTN4 encodes a contactin 4, an immunoglobulin that regulates cellular interactions and axonal 

growth in the nervous system (Garcia et al. 2020; Evenepoel et al. 2018). Overexpression of 

CNTN4 has been found to be associated with malignancy in nerve tissue and with cisplatin-

induced nephrotoxicity (Garcia et al. 2020; Evenepoel et al. 2018). In the ALL population, we 

found two SNPs on chromosome 12 in proximity to AMIGO2 to be associated with etoposide-

induced toxicity. AMIGO2 is a scaffold protein that binds to PDK1 to regulate the 

phosphoinositide 3-kinase–Akt signaling pathway, which plays a role in many biological  

https://pharmafactz.com/cyp3a4-enzyme-everything-you-need-to-know/
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mechanisms, including cell proliferation and metabolism (H. Park et al. 2015). Overexpression 

of AMIGO2 has been found to induce abnormal Akt signaling, which contributes to the onset and  

progression of various cancers (H. Park et al. 2015). Additionally, AMIGO2 overexpression is a 

common characteristic of metastatic tissue, particularly when metastasis occurs in the liver, as 

AMIGO2 regulates cell adhesion in liver cells (Kanda et al. 2017).   

The PAS we conducted identified seven unique proteins associated with cellular 

sensitivity to either ara-C, cisplatin, daunorubicin, or pemetrexed. In the ASN population we 

found N-Acetylglucosamine kinase, encoded by NAGK, to be significantly associated with 

cisplatin cytotoxicity. N-Acetylglucosamine kinase is known to regulate the Wnt signaling 

pathway, which is involved in metabolism and cell growth and proliferation (Neitzel et al. 2019). 

In the ALL population we found Hexokinase II, encoded by HK2, to be significantly associated 

with daunorubicin cytotoxicity. Hexokinase II catalyzes the first step in glycolysis and the 

upregulation of HK2 in cancer cells has been found to increase the rate of glucose metabolism, 

aiding in cell growth and inhibiting apoptosis (Rai et al. 2019). Hexokinase II has been 

implicated in several previous cancer studies and has also been used as a target for some recently 

developed anticancer therapeutics (Nakajima et al. 2019; S.-J. Wang et al. 2021). Additionally, 

the inhibition of Hexokinase II has been found to increase cellular sensitivity to daunorubicin in 

myeloid leukemia cells, as this diminishes the protective effects of Hexokinase II against 

apoptosis, increasing the likelihood of drug-induced cytotoxicity (Rai et al. 2019). In the ALL 

population we also identified interleukin-17 receptor D, encoded by IL17RD, to be associated 

with cellular sensitivity to pemetrexed. A previous study found that the downregulation of  

IL17RD is common in certain cancer types, such as colon cancers, and can also promote tumor 

development (Girondel et al. 2021). We found that the lower predicted levels of interleukin-17  
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receptor D associate with a higher concentration of pemetrexed need for cytotoxicity; this is 

consistent with these prior findings, as IL17RD functions as a tumor suppressor, thus its 

inhibition may result in tumors that are more challenging to treat and require higher dosages of 

chemotherapeutics (Girondel et al. 2021).  

Additionally, we performed FUMA gene set enrichment analysis on the top genes 

identified with TWAS (Watanabe et al. 2017). For CEU and ara-C, we identified enrichment in 

the oncogenic signature gene set P53_DN.V1_DN, which consists of genes that are down-

regulated in cell lines with mutated TP53 (A. Subramanian et al. 2005). Mutations in TP53, 

which encodes a tumor suppressor protein, are linked to various cancer types, and the genes in 

this set are often down-regulated in cancers where TP53 is also mutated (A. Subramanian et al. 

2005). TP53 mutations are known to confer resistance to ara-C (Goldberg et al. 2018; Ko et al. 

2019). We also found enrichment in the oncogenic signature WNT_UP.V1_UP for CEU and 

cisplatin. This gene set consists of upregulated genes in the Wnt signaling pathway, which is 

involved in cell proliferation (Ziegler et al. 2005). Abnormal activation of this pathway can result 

in tumor formation and progression (Giles, van Es, and Clevers 2003). For CEU and paclitaxel, 

enrichment was found in a GWAS Catalog Reported gene set, containing genes associated with 

liver enzyme levels. GGT1 encodes gamma-glutamyl transferase, the main enzyme featured in 

this set, which cleaves extracellular glutathione and transfers its components—glutamic acid, 

cysteine, and glycine—for intracellular use (Bansal et al. 2019). Upregulation of GGT1 is a 

feature of a variety of cancer types, including kidney and ovarian carcinomas (Bansal et al. 2019;  

Stordal et al. 2012). Ovarian carcinomas often are treated with combination chemotherapy using 

cisplatin and paclitaxel, as these drugs use different mechanisms to induce cell death; however, a 

subset of patients develop resistance to one or both of these drugs (Stordal et al. 2012).  
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Upregulation of GGT1 was found to be associated with paclitaxel resistance in ovarian cancer 

cell lines already resistant to cisplatin (Stordal et al. 2012). Thus, the enrichment of genes in this  

set, which are associated with paclitaxel, and the association with GGT1 in particular, may be 

understood in the context of this prior finding. 

This study has limitations; only the STARD5 TWAS association was functionally 

validated, functional studies of the other discovered GWAS, TWAS, and PAS associations have 

not yet been attempted. In addition, the functional follow up to the TWAS we conducted utilized 

the lung cancer cell line A549 rather than patients with lung cancer or another replication 

population. However, the A549 siRNA experiments we performed validated the association 

between increased STARD5 expression and increased etoposide-induced cytotoxicity that we 

ascertained through TWAS. To fully understand how STARD5 expression impacts the 

mechanisms through which etoposide induces cell death, further mechanistic studies are 

required. Association studies conducted with proteomic data could enhance these findings 

further, as well as additional functional studies that explore links between STARD5 and drug 

metabolism. Moreover, if strides towards precision medicine are to continue, studies must 

promote greater diversity within participating populations, as currently the majority of human 

genome-wide studies are conducted on individuals of European ancestries (Hindorff et al. 2018; 

Landry et al. 2018). By studying diseases and drug response in populations with diverse 

ancestries data will become more representative of the global population and knowledge of 

genetic variants and their role in disease and drug response will be expanded (Landry et al. 

2018). In summary, this project successfully identified novel genetic variants involved in 

chemotherapy-induced cytotoxicity in diverse ancestral populations through GWAS, TWAS, 

PAS, gene set enrichment analysis, and functional gene knockdown experiments.  
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