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ABSTRACT 

The rising rate of antibiotic-resistant bacteria is a global health concern, and 

Pseudomonas aeruginosa is estimated to be a leader in serious threats. Bacteriophages, or 

viruses that infect bacteria, have gained renewed interest in Western Medicine as an alternative 

to antibiotics. Phage therapy of P. aeruginosa infections has primarily focused on using 

obligately lytic phages. However, prophages, or phages in the lysogenic life cycle, are estimated 

to far outnumber obligately lytic phages. In theory, these prophages can be genetically modified 

to be obligately lytic and thus ideal candidates for phage therapy. To date there has not been a 

comprehensive analysis on the diversity of P. aeruginosa-infecting prophages. Furthermore, 

genetic engineering of P. aeruginosa-infecting prophages has yet to be explored. 

Here I present a 2-fold study including a comprehensive analysis of the prevalence and 

diversity of prophages within all publicly available P. aeruginosa genomes paired with the 

engineering of 2 P. aeruginosa-infecting temperate phages. 6,852 high confidence prophage 

sequences were identified from 5,383 genomes of P. aeruginosa with 68% of the genomes 

containing at least 1 high confidence prophage. While 57% of these predicted prophages 

displayed sequence similarity to publicly available phage genomes, novel prophages were 

discovered. There was extensive diversity observed among the prophages, including diversity 

within the widely conserved integrase and C repressor coding regions – the two genes 

responsible for prophage entering and persisting through the lysogenic life cycle. Two P. 

aeruginosa temperate phages, Dobby and D3112, were engineered to become obligately lytic 



 

 ix 

phages. This engineering included removal of Dobby’s integrase and D3112’s C repressor genes 

producing phage strains eDobby and eD3112, respectively. To our knowledge, this is the first 

instance of a P. aeruginosa-infecting temperate phage being engineered to remove the C 

repressor for production of an obligately lytic phage. Both the ancestral and engineered strains 

were capable of infecting clinical P. aeruginosa isolates. Furthermore, both eDobby and eD3112 

were able to kill and debilitate P. aeruginosa ATCC 15692 at MOIs of 1 and 10. 

This study has identified numerous additional prophage candidates, which can be 

engineered using the approach presented here, for phage therapy of P. aeruginosa infections. 

 

 



 
 
 
 
 
 

1 

CHAPTER ONE 

INTRODUCTION 

Pseudomonas aeruginosa 

Pseudomonas aeruginosa is a Gram-negative, rod-shaped, and opportunistic pathogen 

that, when not found in infections, can be commonly isolated from environments closely linked 

with human activity, e.g., soil and water (Crone et al., 2020).  P. aeruginosa is the sixth most 

common cause of nosocomial infections with highest prevalence in catheter-associated urinary 

tract infections, ventilator-associated pneumonia, and surgical-site infections (Weiner et al., 

2016). The CDC considers P. aeruginosa to be a serious threat to the United States population 

due to its multi-drug resistance (CDC, 2021). The low permeability of the outer membranes of P. 

aeruginosa cells make it naturally resistant to chemotherapies (Nicas & Hancock, 1983). The 

bacteria’s ability to form biofilms also creates a barrier that is difficult for antibiotics, or even the 

host’s own immune responses, to cross (Drenkard, 2003). Production of antibiotic-inactivating 

enzymes, such as β-lactamase, and expression of efflux pumps are 2 additional intrinsic 

resistance systems of P. aeruginosa (Li et al., 2000). The bacterial cells can also frequently 

acquire drug resistance through mutational changes or horizontal gene transfer of resistance 

genes (Breidenstein et al., 2011). With such high rates of antibiotic resistance and difficulty in 

treating infections, new treatments have been explored to combat P. aeruginosa, including the 

use of bacteriophage (phage) therapy.  
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Phages and Phage Therapy 

Phages are viruses that infect bacteria. While phages are the most abundant biological 

entity on the planet with an estimated 1031 phages in existence, the majority of our knowledge 

about phages comes from marine environments where they have an estimated rate of 1023 

infections/second (Suttle, 2005, 2007). Phages are in fact ubiquitous; they are prevalent in many 

environments, including natural bodies of water, soil, sewer systems, and all examined human 

body sites (Dion et al., 2020; Navarro & Muniesa, 2017). The genome sizes of phages range 

anywhere from 2,000 bp to over 300,000 bp, but the average phage genomes are 30,000 to 

50,000 bp in size (Hatfull, 2008). While most isolated phages are tailed dsDNA phages (order: 

Caudovirales), there are also ssDNA phages that do not have tails (e.g., family: Microviridae) or 

are filamentous (e.g., family: Inoviridae), as well as dsRNA and ssRNA phages (Ackermann, 

2007).  

Phages are major drivers of microbial ecology and evolution (Klimenko et al., 2016). The 

majority of phages have a host range limited to 1 bacterial species and many are even specific to 

only certain strains or serotypes of a singular species (Drullis-Kawa, 2017). The particular host 

range of a phage is dependent on the host cell surface receptors as well as on host-range-

determining regions of the phage’s tail fiber protein (Bertozzi Silva et al., 2016; Yehl et al., 

2019). This selectivity is in direct contrast with antibiotics, which often affect both pathogenic 

bacteria as well as non-pathogenic or commensal species, contributing to the development of 

antibiotic resistance (Yehl et al., 2019). As phages are typically unaffected by the antibiotic-

resistance mechanisms of bacteria, they could be used to treat even antibiotic-resistant bacterial 

infections (Międzybrodzki et al., 2012). Felix d’Herelle was the first to use phages against 
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bacteria therapeutically and treated 4 cases of bacterial dysentery with phages in 1919 

(Chanishvili, 2012). With the discovery of antibiotics, phage therapies were quickly abandoned 

by Western medicine. 

Phage therapy has gained renewed interest in Western medicine due to the increasing 

rates of antibiotic resistance. This is especially true for infections due to P. aeruginosa (Kakasis 

& Panitsa, 2019). Animal models have been instrumental in ascertaining the efficacy of phage 

therapy of P. aeruginosa infections. Injection of phages into mice with Pseudomonas bacteremia 

was able to rescue mice survival even with delayed administration (Wang et al., 2006). In 

another study, phages administered through eye-drops were able to resolve a P. aeruginosa 

infection of Pseudomonas keratitis in murine models (Fukuda et al., 2012). Phage treatments 

were also found to not only dismantle P. aeruginosa infections of gut-derived sepsis in mice, but 

also improve the survival of the mice (Watanabe et al., 2007). Mice infected with P. aeruginosa 

in their lungs were able to be treated with phages that significantly slowed the spread of infection 

(Pabary et al., 2016). In a 2019 study, P. aeruginosa infections in zebrafish with cystic fibrosis 

were resolved using phage treatments, an optimistic result for human patients plagued with cystic 

fibrosis (Cafora et al., 2019).  

With such promising results from animal trials, clinicians in the US and Europe have 

recently turned to using phage therapy to treat patients in extenuating circumstances. In 2017, the 

first instance of successful intravenous phage therapy against P. aeruginosa septicemia in 

humans was reported (Jennes et al., 2017). In another case, a single application of phage 

treatment was successfully able resolve a P. aeruginosa infection of an aortic graft (Chan et al., 

2018). Additionally, phages have been used to resolve P. aeruginosa infections in other 
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individuals (Aslam, Courtwright, et al., 2019; Dedrick et al., 2019; Jault et al., 2019; Kortright et 

al., 2019; LaVergne et al., 2018; Łusiak-Szelachowska et al., 2014; Nir-Paz et al., 2019; Petrovic 

Fabijan et al., 2020; Reardon, 2014; Rhoads et al., 2009; Rose et al., 2014; Schooley et al., 2017; 

Armata Pharmaceuticals, Inc., 2016, 2019b, 2019a, 2019d, 2019g, p. 2, 2019h, p. 2, 2019c, p. 2, 

2019g, 2019f, 2019e, 2021; BiomX, Inc., 2021, p. 002; Bristol-Myers Squibb, 2011; Leitner et 

al., 2017; Locus Biosciences, 2021; National Cancer Institute (NCI), 2015, p. 5; University 

Hospital, Montpellier, 2013; Weir, 2019, 2020; Wolcott, 2011; Armata Pharmaceuticals, Inc., 

2016; MicroPhage, Inc., 2010; National Institute of Allergy and Infectious Diseases (NIAID), 

2008; Aslam, Pretorius, et al., 2019; Cano et al., 2020; Case Studies – Adaptive Phage 

Therapeutics, n.d.; Doub et al., 2020; C. Duplessis et al., 2018; C. A. Duplessis et al., 2019; 

Gainey et al., 2020). 

Phage Life Cycles 

Phages lack the ability to replicate on their own, thus requiring the use of their bacterial 

host’s machinery to produce progeny (Dennehy & Abedon, 2021). While there are several life 

cycles of phages, most phages tend toward 2 common circuitions, the lysogenic and the lytic life 

cycles, as displayed in Figure 1 (Dennehy & Abedon, 2021; Hobbs & Abedon, 2016). In the 

lytic life cycle, the phage DNA is inserted into the host cell whereupon the bacterial machinery is 

used for replication followed by fatal host lysis and the release of the phage progeny (Dennehy & 

Abedon, 2021). In the lysogenic life cycle, after the phage DNA is inserted into the host cell, the 

DNA integrates into the host cell’s genome or persists as an extrachromosomal plasmid. The 

phage’s genome is thus replicated as the bacteria reproduces (Dennehy & Abedon, 2021). 

Lysogenic phages are referred to as prophages. While some phages persist solely through a 
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single life cycle, e.g., obligately lytic phages continue only in the lytic life cycle, temperate 

phages are able to switch between the lysogenic and the lytic life cycles. Integrase and C 

repressor genes can be indicative of a phage persisting as a temperate phage through both life 

cycles (Reyes et al., 2010). 

 

Figure 1. Lytic and lysogenic life cycles of phages. A phage begins infection by attaching to a 

host cell and inserting its DNA into the cell. In the lytic cycle, the phage replicates using the host 

cell machinery and its mature progeny burst the host cell, killing the bacteria. In the lysogenic 

cycle, the inserted phage DNA is integrated into the bacterial genome, and it replicates as the 

bacteria itself replicates. Temperate phages switch between the two life cycles. 

Integrases are site-specific recombinase enzymes that directly mediate the integration of 

phages into the bacterial genome during a temperate phage’s life cycle (Groth & Calos, 2004). 

As illustrated in Figure 2, the integrase recognizes the phage attachment site attP and the 

bacterial attachment site attB (Groth & Calos, 2004). The enzyme then recombines the two 

attachment sites to integrate the phage DNA into the bacterial genome with the phage DNA 

being flanked on both sides by hybrid sites, attL and attR, consisting of half attP and half attB 

sequences (Groth & Calos, 2004). When the temperate phage is ready to exit the lysogenic life 

cycle and enter the lytic life cycle, the excisionase, paired with the integrase, will use the attL 
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and attR sites to excise the phage DNA from the bacterial genome (Groth & Calos, 2004). 

Integrases can be classified as either tyrosine recombinases or serine recombinases (Fogg et al., 

2014). The two families of site-specific recombinases are not related in their protein sequence 

and they have distinct mechanisms of recombination (Grindley et al., 2006). Tyrosine integrases 

recombine DNA through a tyrosine active site that both cleaves and then reseals the DNA by 

forming a 3’-phosphotyrosine intermediate (Landy, 2015). The serine integrases use a serine 

nucleophile to cleave the DNA for recombination and members of the serine family share a 

conserved catalytic domain (Stark, 2014). Without an integrase gene, temperate phages would be 

unable to integrate into a bacterial genome, limiting the lysogenic portion of their life cycles. 

 

Figure 2. Role of the integrase during phage integration. The integrase assists in integration of 

the phage into the bacterial host genome by recognizing the phage attachment site, attP, and the 

bacterial attachment site, attB. It then recombines the 2 attachment sites to integrate the phage 

DNA with attL and attR as the new attachment sites. 

The C repressor, also known as the CI regulator in the model phage λ, is a repressor and 

activator of transcription that plays a role in both maintaining the lysogenic life cycle and the 
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induction switch to the lytic life cycle (Blakely, 2004). Figure 3 illustrates this process. Briefly, 

the C repressor maintains the lysogenic state by repressing the transcription of the pL and pR 

promoters responsible for the expression of lytic genes (Oppenheim et al., 2005). One protein 

transcribed from the pR promoter is the Cro protein which is considered the counterpart to the C 

repressor (Folkmanis et al., 1977). The C repressor stunts transcription of pR which promotes 

transcription of Cro, and once Cro is transcribed it represses the transcription of the C repressor 

by inhibiting the pRM promoter (Svenningsen et al., 2005). The pRM promoter begins 

transcription of the C repressor in an already established lysogen to maintain the lysogenic life 

cycle, while the pRE promoter stimulates transcription of the C repressor following phage 

infection for integration (Oppenheim et al., 2005). Cro also regulates the production of CII, a 

lysogenic regulator that activates the pRE promoter to synthesize the C repressor (Oppenheim et 

al., 2005). Without the C repressor, temperate phages would be unable to maintain the lysogenic 

status in the bacterial genome. 

 

Figure 3. Role of C repressor in maintaining the lysogenic life cycle. The C repressor assists in 

maintaining the lytic cycle by repressing Cro through promoter inhibition. Cro is responsible for 

maintaining the lytic cycle and it in turn represses the C repressor through promoter inhibition. 

Cro also regulates CII, a lysogenic regulator that initializes the synthesis of the C repressor. 
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Temperate phages, which can switch between the lytic and lysogenic life cycles, 

contribute greatly to the wide genomic diversity of bacteriophages (Dion et al., 2020). The 

mosaic nature of phages is due to horizontal gene transfer and recombination between phage 

ancestors (Dion et al., 2020). Because temperate phages are able to integrate and excise their 

genomes into and out of bacterial hosts, they can pick up an extra gene from another prophage or 

the host or they can leave a gene behind for other temperate phages to acquire (Dion et al., 

2020). The phage terminase gene is a useful gene marker for the diversity and evolutionary 

relationships of phages as well as identifying recombination events (Adriaenssens & Cowan, 

2014; Sørensen et al., 2020). Terminases are involved in the packaging of the phage DNA and 

are conserved among all tailed phages (order: Caudovirales) (Casjens & Thuman-Commike, 

2011). 

Scope of Thesis 

As of May 2021, 21,367 complete phage genomes are publicly available in the NCBI 

Nucleotide database (NCBI Virus, n.d.-a). Of these, only 452 entries are phages that infect P. 

aeruginosa (NCBI Virus, n.d.-b). These 452 phages mainly represent obligately lytic phages or 

temperate phages that have been isolated and characterized in the lab through their propagation 

in the lytic life cycle. As it is known that lysogenic phages outnumber obligately lytic phages in 

human microbiome (Manrique et al., 2017), it can be assumed that there are many unknown 

prophage sequences inhabiting P. aeruginosa genomes. Temperate phages that reside in bacterial 

genomes as prophages can also be induced to display lytic activity against their host species 

(Dion et al., 2020). Thus, the catalogue of temperate phages represents an unexplored collection 

of phages with potential use as phage therapies. 
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Here I present a study of P. aeruginosa-infecting temperate phages, integrating 

bioinformatic and synthetic biology approaches. Chapter 2 details the first comprehensive 

catalogue of P. aeruginosa lysogenic phages. Over 5,000 publicly available P. aeruginosa 

genomes were examined for prophage sequences. The identified prophage sequences were 

further investigated for the presence of integrase and C repressor genes. I next explored the 

viability of temperate phages for phage therapy of P. aeruginosa infection (Chapter 3). A 

concern for using temperate phages is their propensity for integrating rather than lysing 

(clearing) of the infectious bacterium. Thus, I engineered two temperate P. aeruginosa-infecting 

phages, Dobby and D3112, by excising their integrase and C repressor genes, respectively. These 

engineered, now obligately lytic phages, were then evaluated for their efficacy against clinical P. 

aeruginosa isolates. Chapter 4 offers conclusions and future directions of this thesis work. 
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CHAPTER TWO 

PSEUDOMONAS AERUGINOSA PROPHAGE ANALYSIS 

Introduction  

Prophages are lysogenic phages that have integrated into their bacterial host’s genome 

and they can account for up to 20% of the host’s genome (Casjens & Hendrix, 2004). Nearly half 

of all sequenced bacterial genomes contained at least 1 prophage and those with larger genomes 

are more likely to contain prophages than bacteria with smaller genomes (Touchon et al., 2016). 

The presence of a prophage within the bacterial genome can give the host a selective advantage 

(Little, 2005). Lysogenic conversion is the expression of genes from the prophage genome that 

can change the phenotype of the bacterial host (Little, 2005). This can include extracellular 

toxins, adhesions to assist in bacterial attachment, effector proteins to assist in bacterial invasion, 

and virulence enzymes (Brüssow et al., 2004). Prophages can also protect the bacterial cell from 

environmental stressors and confer antibiotic resistance to the bacterial host (X. Wang et al., 

2010). Thus, prophages can contribute to both the virulence and the genetic diversity of their 

bacterial hosts. 

 Several computational tools have been developed to predict the presence of prophages 

within the genomes of bacterial species, e.g., VirSorter, VirFinder, PHAST, and PHASTER 

(Arndt et al., 2016; Camarillo-Guerrero et al., 2021; Roux et al., 2015; Zhou et al., 2011). 

VirSorter is able to detect and identify viral genome sequences from both complete and 

fragmented microbial genomes as well as metagenomes (Roux et al., 2015). It uses primary and 
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secondary metrics based on sequence similarity to known viruses and similarity to viral-like 

genome structures, respectively (Roux et al., 2015). The tool then builds probabilistic models to 

indicate whether regions of the input sequences contain more viral-like genes than would be 

found by random chance (Roux et al., 2015). VirSorter achieves comparable results to similar 

phage prediction tools but outperforms the other tools in analyses with larger-scale and 

fragmented microbial data sets (Roux et al., 2015). 

 A study to investigate the diversity of prophages in the bacterial genomes of the urinary 

microbiome used VirSorter to predict viral sequences (Miller-Ensminger et al., 2018). 86% of 

the urinary bacterial genomes were found to contain at least 1 prophage sequence, displaying the 

prevalence of phages within the urinary tract system (Miller-Ensminger et al., 2018). Another 

study mined through 2,898 cultured gut bacterial genomes and 28,060 gut metagenomes using 

VirSorter paired with VirFinder (Camarillo-Guerrero et al., 2021). The authors of this work 

identified 142,809 phage sequences and created the Gut Phage Database to explore phage 

diversity (Camarillo-Guerrero et al., 2021). VirSorter has also been applied across data sets from 

a variety of environmental niches. In a study published in 2015, VirSorter was used to mine 

through almost 15,000 publicly available bacterial and archaeal genomic data sets to identify 

over 12,000 prophage sequences, expanding the known viral sequences at the time by 10-fold 

(Roux et al., 2015). In a subsequent study, VirSorter was used to identify over 125,000 partial 

viral genomes from approximately 3,000 geographically diverse metagenomic samples (Paez-

Espino et al., 2016).  

The availability of bioinformatic tools for prophage prediction have enabled 

investigations of the diversity of prophages within specific bacterial genera and species. A study 
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on the diversity of 71 published Staphylococcus aureus temperate phages was conducted to 

determine the prevalence of phages from 386 different bacterial isolates, concluding that the 

distribution of phages from the strains differed greatly based on bacterial lineages (Goerke et al., 

2009). In 2013, 500 prophages were identified from 21 Salmonella and 48 Escherichia genomes 

using Phage Finder, PHAST, and Prophinder prediction tools (Bobay et al., 2013; Fouts, 2006; 

Lima-Mendez et al., 2008). The 500 predicted prophages were then compared to all publicly 

available enterobacteria phage genomes, finding that temperate phage genomes and lytic phage 

genomes form distinct clusters without overlap of the 2 groups (Bobay et al., 2013). A 2015 

study isolated and sequenced 627 Mycobacterium smegmatis phages to investigate their genomic 

similarities (Pope et al., 2015). They determined that, while a majority of the phage genomes 

clustered into 28 distinct groups, there was still the clear genetic mosaicism characteristic of 

bacteriophages (Pope et al., 2015). A study of 20 sequenced Klebsiella pneumoniae isolates 

harboring prophages identified 20 prophage genomes and found that only 2 conserved regions, 

int and umuCD, existed between the 20 prophages (F. Wang et al., 2019). In 2017, 442 

Pneumococcal genomes were analyzed using PHAST and prophage DNA existed in every 

genome (Brueggemann et al., 2017). The full-length phage predictions clustered into 4 different 

genetic groups that had very few genes shared between the groups, displaying the diversity of 

Pneumococcal prophages (Brueggemann et al., 2017). In yet another study, 49 Salmonella 

enterica isolates were screened for prophages both by PCR and PHASTER to compare the 

number of integrase genes amplified and annotated integrases, respectively. The PCR assays 

detected 147 integrase regions while PHASTER only identified 75 integrase genes from 102 

predicted prophages (Colavecchio et al., 2017). The results demonstrate the possibility of using 
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the integrase gene to identify prophages in bacterial genomes that some phage prediction tools 

may miss (Colavecchio et al., 2017). A subsequent study into S. enterica prophages identified 

154 different prophage sequences via PHASTER from 1,760 S. enterica genomes; it was found 

that the prophage sequences from the same serovar tended to share conserved regions, but there 

was little overlap between the serovars (Mottawea et al., 2018). The use of phage sequence 

prediction tools throughout these studies shows the high prevalence of prophages within a 

multitude of different bacterial genera. Furthermore, these studies reveal that while there are 

several conserved gene regions, e.g., integrases and terminases, between phages that infect the 

same bacterial species, there is also distinct mosaicism that results in broad phage diversity.  

Prophages of P. aeruginosa have also been studied, primarily with respect to their 

association with increased bacterial pathogenicity and fitness. The Liverpool Epidemic Strain 

(LES) of P. aeruginosa, which has been associated with infections in cystic fibrosis patients, 

harbors 5 prophages, LESϕ2, LESϕ3, LESϕ4, LESϕ5, and LESϕ6 (Davies et al., 2016). Not only 

do the prophages improve the invasiveness of LES, but they also assist in the displacement of 

other P. aeruginosa strains by LES, allowing LES full competitive advantage in lung infections 

(Davies et al., 2016). Another. P. aeruginosa prophage that has been investigated is the P. 

aeruginosa phage FIZ15, which causes lysogenic conversion in P. aeruginosa PAO1 leading to 

PAO1’s increased resistance to phagocytosis, increased resistance to normal human serum, and 

increased adhesion to human epithelial cells (Vaca-Pacheco et al., 1999). The Pseudomonas 

φCTX phage, isolated from a cytotoxin-producing strain of P. aeruginosa, was able to induce 

cytotoxin production in non-cytotoxin-producing strains of P. aeruginosa when integrated into 

their genomes (Hayashi et al., 1990). Inoviridae prophages, such as the Pf family of prophages, 
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can promote biofilm formations in the P. aeruginosa that they infect (Ambroa et al., 2020). As 

these four examples clearly demonstrate, P. aeruginosa prophages can have a profound effect on 

bacterial phenotype, competitiveness, and pathogenicity (Tsao et al., 2018).  

 In comparison to other bacterial taxa, there has not been any comprehensive studies of 

the diversity or prevalence of P. aeruginosa phages, a likely factor of the vast observed 

differences in genetic content and genome sizes of known lytic Pseudomonas phages (Xu et al., 

2020). The prevalence of Pf1-like prophages in P. aeruginosa was studied in 2015 (Knezevic et 

al., 2015). 241 strains of P. aeruginosa were screened with primers for both universal Pf1-like 

genes and genes specific to Pf1, Pf4, and Pf5 (Knezevic et al., 2015). Approximately 60% of the 

P. aeruginosa strains screened were found to have at least 1 Pf1-like genetic element and 56% of 

the strains contained universal elements of Pf1-like phages, displaying the prevalence of Pf1-like 

prophages in P. aeruginosa genomes (Knezevic et al., 2015). The diversity of lytic P. aeruginosa 

phages was investigated in 2012 using a collection of 68 isolated phages (Sepúlveda-Robles et 

al., 2012). The 68 phages were classified into 12 different phage species using phage-phage 

homology by DNA hybridization (Sepúlveda-Robles et al., 2012). 6 species were novel 

identifications at the time (Sepúlveda-Robles et al., 2012). In 2019, the P. aeruginosa phage 

diversity was expanded to include the 149 sequenced phages containing lytic proteins from the 

UnitProt database (Valero-Rello, 2019). While this study focused on investigating the lytic 

proteins of these phages, they were able to display the effect of phage lifestyle on protein 

variability within the phages (Valero-Rello, 2019).  

While there have been a few studies focused on the diversity of specific types of P. 

aeruginosa phages, there has yet to be a comprehensive study on the presence and diversity of 
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prophages in all publicly available genomes of P. aeruginosa, which now exceeds 5383 

genomes. The diversity and putative roles that prophages play in P. aeruginosa fitness and 

pathogenicity has yet to be catalogued. Furthermore, these prophages represent a reservoir of 

potential candidates for use in phage therapy to resolve P. aeruginosa infections. 

Methods 

Cataloguing P. aeruginosa Prophages. 

Through the Genome Information by Organism section of the NCBI Genome database, a 

5383 P. aeruginosa bacterial genomic assemblies were identified (September 2020). The 

assembly files were retrieved from the GenBank database using the FTP links for each genome. 

All of the 5383 genome assemblies were then entered into VirSorter v.1, a bioinformatic tool to 

predict phage sequences found inside of bacterial genomes (Roux et al., 2015). VirSorter v.1 

detects viral signals using both reference-based homology as well as reference-independent 

methods. It then predicts phage sequences with confidence levels ranging from 1 to 3 for 

extrachromosomal phages, e.g., lytic or plasmidial phages, and 4 to 6 for prophages, where 1 and 

4 are the highest confidence predictions and 3 and 6 are the lowest confidence predictions. For 

the entirety of Section I, only category 1 and category 4 predicted phages were retained for 

analysis.  

Taxonomic Classification of P. aeruginosa Prophages. 

All category 1 and 4 sequences were compared to previously characterized phage 

genomes in an effort to determine their likely taxonomic family. Each sequence was queried 

against all complete and partial genome sequences in GenBank (Organism: “Virus” and 

Division: “PHG”) using local BLAST (Camacho et al., 2009). This database includes 26,381 
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sequences and the BLASTn algorithm was used. Homologous results with a query coverage 

greater than 50% and a percent identity over 70% were considered to be acceptable and the 

taxonomies of the resulting similar phages were used to predict the taxonomy of the query 

phages. 

Evaluating Genetic Diversity of P. aeruginosa Prophages. 

Predicted phage sequences were then examined using Anvi’o v.6.2 to find the number of 

shared genes between each predicted phage (Eren et al., 2015). Anvi’o was used to identify 

homologs given the following parameters: MCL inflation value of 2 during cluster identification 

and a minbit heuristic score of 0.35 to remove weak gene matches. A python script was used to 

parse the Anvi’o output to identify homologous genes shared between genomes and produce an 

edgelist file, listing each pair of genomes (nodes) and the number of genes shared (edge weight). 

The edgelist file was then pruned using a python script to generate an undirected graph edgelist 

representation, eliminating self-loop edges or duplicate edges. Phage gene similarity was 

visualized using Cytoscape v.3.8.2 (Shannon et al., 2003). Different thresholds of edge weights 

(number of genes in common between phage genomes) were considered.  

Diversity of P. aeruginosa Prophage Integrase, C Repressor, and Terminase Coding 

Sequences. 

After analyzing the diversity of the category 1 and 4 predicted P. aeruginosa phages as a 

whole, the diversity of integrase and C repressor genes was then investigated. The predicted 

phages were annotated using PATRIC v.3.6.9 with the Bacteriophage Domain, the Genetic Code 

for Bacteria and Archaea, and the Bacteriophage Annotation Recipe (Brettin et al., 2015; Davis 

et al., 2020). The resulting annotations were parsed to identify coding regions identified as an 
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integrase using the words “integrase” and “Integrase”. The same process was repeated to identify 

C repressor coding regions using the word “repressor” in combination with the words “cI”, “CI”, 

“c1”, or “C1”. Finally, the terminase coding regions were identified using the words “terminase” 

and “Terminase”. The annotated integrase, C repressor, and terminase coding regions were then 

compared for similarity to all other annotated coding regions from the predicted phages. A local 

BLASTp with a maximum of 1 target sequence was used with the non-integrase coding regions 

as the database and the integrase coding regions as the query sequences. Any gene that had a 

percent identity greater than 70% and a query coverage greater than 70% was then added to the 

respective list of integrases and the same process was repeated for the C repressors and 

terminases. USEARCH v.11.0.667 (Edgar, 2010), a tool that clusters sequences based on 

sequence similarity, was used to create clusters of the integrase coding regions, clusters of the C 

repressor coding regions, and clusters of terminase coding regions with percent identities greater 

than or equal to 70%. The clusters for the 3 genes were then uploaded to Geneious Prime® 

2020.1.2 to visualize the quality of the clusters. The top 5 largest clusters for each gene were 

aligned using  MAFFT v.7.450 (Katoh & Standley, 2013) multiple alignment with the automatic 

algorithm option with its default parameters. Using FastTree v.2.1.11 (Price et al., 2010) with its 

default parameters, Newick trees were constructed and then visualized in iTOL v.6.1 (Letunic & 

Bork, 2007). For easier visibility, clades with an average branch length less than 0.00056 were 

collapsed. 

The phage memberships in the integrase, C repressor, and terminase clusters output from 

USEARCH were examined. A python script using Biopython SeqIO, NumPy, and pandas 
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packages counted the number of phages shared between each of the 3 sets of coding region 

clusters (Cock et al., 2009; Harris et al., 2020; Jeff Reback et al., 2021).  

Predicting Antibiotic Resistance and Virulence Factors Encoded by Prophages. 

ResFinder 4.1 (Bortolaia et al., 2020), an antibiotic resistance prediction tool that uses k-

mer based alignment against a curated database to locate possible genes associated with 

antibiotic resistance, and its databases were installed and downloaded from the tool’s bitbucket 

page (https://bitbucket.org/genomicepidemiology/resfinder/src/master/). All of the predicted 

prophages were separately run through the tool’s pipeline from the command-line in a Linux 

environment using the authors’ suggestions of an 80% threshold and 60% minimum coverage for 

acquired antibiotic resistance genes. The virulence factors of the phages were then predicted 

using VFDB, a curated database of pathogenic bacterial virulence factors (Chen et al., 2005). 

The full data set that encompasses all virulence factor genes, both predicted and experimentally 

known, was downloaded from the VFDB website (http://www.mgc.ac.cn/cgi-

bin/VFs/v5/main.cgi?func=VFanalyzer) and used as the BLAST database in a local BLASTn. 

Each predicted phage was compared for sequence similarity to the virulence factor database 

entries with a maximum target of 1 sequence.  

Results 

Prophages of P. aeruginosa. 

VirSorter identified 49,102 prophages in the 5,383 publicly available P. aeruginosa 

genomes examined here (Table 1). Of the total predicted prophages, 6,852 prophages were of 

category 1 and category 4, the highest confidence categories for unintegrated and integrated 

prophages, respectively. Given that these high confidence predictions likely represent viable 

https://bitbucket.org/genomicepidemiology/resfinder/src/master/
http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi?func=VFanalyzer
http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi?func=VFanalyzer
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temperate phages, further analysis was restricted to category 1 and 4 prophage sequences only. 

3,672 out of 5,383 P. aeruginosa genomes encoded for prophage sequences identified as either 

category 1 or 4. An average of 1.879 prophages were predicted per bacterial strain, with a 

maximum of 15 category 1 or 4 prophages predicted for 1 strain, P. aeruginosa XDR-PA 

(GCA_900707735.1). The 5,383 P. aeruginosa genomes were isolated from body sites, the 

environment, and industrial settings. Of the isolation sites, the urinary tract/urine, blood, the ear, 

feces, and hospitals had the highest average predictions per strain, ranging from 10 to 12 

predicted prophages per strain of P. aeruginosa from that isolation site category. A One-Way 

ANOVA determined the isolation sites were significantly associated with the numbers of 

predicted prophages for the strains of P. aeruginosa after normalization (p<2.2e-16). 

 Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 

Number of 

Prophages 

Predicted 

2668 12579 5666 4184 17367 6638 

Table 1. Summary statistics of VirSorter prophage prediction results. Categories 1 and 4 are the 

highest confidence predictions. Categories 3 and 6 are the lowest confidence predictions e.g., 

typically partial phages or phage-like genes.  

Genetic Diversity of P. aeruginosa Prophages. 

The taxonomy of each prophage was determined by querying each predicted prophage 

sequence to all publicly available characterized, sequenced phages. Of the 6,852 predicted 

prophages, 11 were classified as Inoviridae, 106 as Microviridae, 672 as Myoviridae, 105 as 

Podoviridae and 2,744 as Siphoviridae. The remaining 3,214 prophages were not homologous to 

any characterized, sequenced phages and thus a taxonomic classification could not be made. 
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The diversity of P. aeruginosa prophages was visualized through a network consisting of the 

prophages as nodes and the connecting edges representative of the number of genes shared 

between each prophage. The network is composed of 4 connected components (data not shown). 

The largest component contains 6,472 predicted tailed prophages (Myoviridae, Podoviridae, and 

Siphoviridae), Inoviridae prophages, and taxonomically uncharacterized (“Unknown”) 

prophages. The second connected component contains all 106 of the predicted Microviridae 

prophages. The final 2 connected components consist of 2 pairs of Myoviridae prophages. Both 

pairs were predicted from the same bacterial strain, P. aeruginosa ENVO278 

(GCA_006704765.1), which also contained another 7 predicted Myoviridae prophages (placed in 

the largest connected component). Following a BLAST analysis, 10 of the 11 Myoviridae 

prophages from P. aeruginosa ENVO278 were found to be highly similar (greater than 97% 

identity) to the characterized Pseudomonas phage EL (NC_007623.1).  

Further investigation into the category 1 and 4 prophage sequences revealed high 

confidence predictions of sequences too small to be a viable phage. While the average length of 

the predicted prophages was ~27Kbp, the smallest prophage sequence predicted with high 

confidence by VirSorter was 606 bp; this is far smaller than any documented prophage or phage 

for P. aeruginosa. In an effort to focus our investigation on complete prophages, we introduced a 

threshold for further investigation of the P. aeruginosa prophage network. Only edges 

representative of 5 or more shared genes between prophages (nodes) were retained; nodes that 

were not connected to any other node were removed from further consideration. After this 

thresholding, 6,676 of the originally predicted 6,852 (97.43%) prophages remained (Figure 4). 

The network contained a total of 3,814,212 edges representing the genes shared between the 
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prophages. It contains 2 Inoviridae prophages, 105 Microviridae prophages, 635 Myoviridae 

prophages, 99 Podoviridae prophages, 2,662 Siphoviridae prophages, and 3,173 prophages 

assigned to the Unknown taxonomic class. 

The prophages cluster within 5 connected components with the majority (6,513 

prophages; 97.56%) belonging to 1 large, connected component. This largest connected 

component includes prophages characterized as tailed prophages (Myoviridae, Podoviridae, and 

Siphoviridae), the Inoviridae prophages, and unclassified (“Unknown”) prophages. The 105 

Microviridae prophages (green nodes in Figure 4) belong to their own connected component, 

sharing genes only among other Microviridae prophages. The third connected component in 

Figure 4 contains 21 Siphoviridae prophages, which are distinctly different from other 

Siphoviridae prophage sequences within the largest connected component. These prophage 

sequences were identified from 18 different P. aeruginosa genomes. Further investigation of 

these sequences revealed genetic homology to strains of Escherichia coli as well as to the E. coli 

Lambda phage.  

The other 2 separated clusters contained prophages classified as Unknown (orange nodes 

in Figure 4). The first of the unknown clusters consisted of 27 prophages predicted from 27 

different genomes of P. aeruginosa. While BLAST queries of these prophage sequences revealed 

homology to a pyocin gene fragment (L06240.1), BAGEL4 (van Heel et al., 2018), a bacteriocin 

prediction tool, did not predict these sequences to be bacteriocins. The other cluster classified as 

Unknown contained 10 prophages predicted from 7 different P. aeruginosa genomes. The 

prophages were queried via BLAST and found to all have high similarity (over 75%) to at least 1 

of 2 uncultured Caudovirales phages (clone 3S_15: MF417945.1 and clone 3S_19: 
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MF417971.1), both identified through a skin metavirome project. Neither these 10 prophage 

sequences nor the 2 uncultured Caudovirales phage sequences exhibit significant sequence 

homology to any phage genome and thus may be representative of a new family of phages yet to 

be characterized.  

 

Figure 4. Network of P. aeruginosa predicted prophages. Prophages are the nodes color-coded 

by taxonomy: Inoviridae, Microviridae, Myoviridae, Podoviridae, Siphoviridae, or Unknown. 

Prophages are connected by the number of shared genes between each prophage. 

Diversity of P. aeruginosa Prophage Integrases, C Repressors, and Terminase Coding 

Sequences. 

PATRIC identified 283,493 coding regions within the 6,852 predicted prophage 

sequences. These annotations included 1,358 integrase coding regions, with 54 specified as 

tyrosine integrases and 1 as a serine integrase, 2,344 C repressor coding regions, and 4,546 

terminase coding regions. To ensure that all integrase, C repressor, and terminase genes within 
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these prophage sequences were included in our analysis, we conducted additional BLAST 

homology searches for representatives of these 3 genes. These queries identified an additional 

12, 17, and 24 integrase, C repressor, and terminase coding regions, respectively. Thus, a total of 

1,370 integrases, 2,361 C repressors, and 4,546 terminases are encoded within the predicted P. 

aeruginosa prophage sequences. 

To investigate the diversity of integrase sequences within the P. aeruginosa prophages, a 

phylogenetic tree was derived (Figure 5). The 5 red circles in Figure 5 indicate clades, inclusive 

of 154 sequences, that were identified as tyrosine integrases. The 1 orange circle in Figure 5 

represents the 1 integrase coding region identified as a serine integrase. As the integrases 

identified as tyrosine integrases are not closely related to each other, there is no correlation 

between integrase type (serine or tyrosine) on the tree in Figure 5. As the phylogenetic tree 

shows, there are distinct lineages of integrase genes among the prophages. We next performed 

clustering of the integrase coding regions (n=1370). In total, 72 different clusters of integrases 

were identified, with the largest containing 110 integrase coding regions. The integrase 

sequences within this cluster exhibit little sequence variation (average pairwise identity 98.3%) 

(Figure 6). 



 

 

24 

 

Figure 5. Phylogenetic tree of all annotated integrase coding regions. Average amino acid 

pairwise identity of 16.1% (n=1,370). Red circles indicate integrase clades identified as tyrosine 

integrases. The orange circle indicates the integrase cluster identified as a serine integrase. 

 

Figure 6. Phylogenetic tree of largest homologous cluster of integrase coding regions. Average 

amino acid pairwise identity of 98.3% (n=110). 
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The integrase from the temperate P. aeruginosa phage Dobby (NC_048109) was added 

into the list of all 1,370 integrases to identify coding regions similar to Dobby. After performing 

clustering on the coding regions, the integrase from the Dobby phage was not similar to any of 

the 1,370 integrase coding regions from the predicted prophages. A BLAST analysis was then 

used to compare the full Dobby genome against the 6,852 predicted prophage sequences. The 

Dobby phage was highly similar (≥70% identity) to 250 of the predicted prophages. Less than 

half (48.8%) of these predicted prophages contained an integrase coding region. The integrase 

coding regions from those that did have one were not similar to the integrase coding region from 

the Dobby phage (≤30% identity). 

We also examined the sequence diversity of the 2,361 C repressor coding sequences 

within the predicted P. aeruginosa prophages (Figure 7). The C repressor sequences were next 

clustered based upon sequence similarity resulting in 44 clusters. Most of the C repressor 

sequences (n=1604; 67.94%) clustered together. This largest cluster of 1,604 C repressor coding 

regions contains an average pairwise identity of 99.7% and its sequence diversity is shown in 

Figure 8.  
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Figure 7. Phylogenetic tree of all annotated C repressor coding regions. Average amino acid 

pairwise identity of 58.0% (n=2,361). 

 

Figure 8. Phylogenetic tree of largest homologous cluster of C repressor coding regions. Average 

amino acid pairwise identity of 99.7% (n=1,604). 
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The C repressor gene from the temperate P. aeruginosa phage D3112 (NC_005178) was 

added into the list of all 2,361 C repressors to identify similar coding regions. After clustering 

was performed on the C repressor coding regions, the C repressor from D3112 was not found to 

be similar to any of the 2,361 C repressor coding regions from the predicted prophages. A 

BLAST analysis compared the full D3112 genome against all 6,852 predicted prophages and 

D3112 was found to be highly similar (≥70% identity) to 314 of the predicted prophages. Out of 

these similar prophages, none contained a C repressor coding region.  

To investigate the homology of the terminases (n=4,570) within the prophages, the 

terminase coding regions were clustered into 81 homologous clusters of terminases. The largest 

of the terminase clusters contained 424 terminase coding regions with an average pairwise 

identity of 89.6%. 

Phage Membership Comparisons of Integrases and C Repressors to Terminases. 

Terminases are found in the genomes of all tailed phages and, therefore, is often used as a 

marker gene for phage diversity (Grose & Casjens, 2014). The associations between prophages 

that share homologous terminases and also share homologous integrases or C repressors were 

considered to investigate the genetic reassortment between prophage genomes. All 6,852 

prophages were inspected for the presence of a terminase, integrase, and C repressor coding 

region. 3,028 of the prophages contained terminase coding regions, 1,115 contained integrase 

coding regions, and 2,318 contained C repressor coding regions. 850 prophages encoded for both 

a terminase and an integrase, 391 prophages encoded for both a terminase and a C repressor, and 

713 prophages contained coding regions for all 3 of these genes. 
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Each prophage was next associated with the integrase, C repressor, and terminase clusters 

identified in the previous section. Between all 72 integrase clusters and all 81 terminase clusters, 

40 integrase clusters shared all of their prophages with individual terminase clusters and 3 

terminase clusters shared all of their prophages with individual integrase clusters. Figure 9 

displays the distribution of shared prophages between the integrase clusters and the terminase 

clusters with the highest numbers of co-occurring prophages existing between the largest 

integrase clusters and the largest terminase clusters. 

Of the 44 C repressor clusters and the 81 terminase clusters, 17 C repressor clusters 

shared all of their prophages with individual terminase clusters and 5 terminase clusters shared 

all of their prophages with individual C repressor clusters. The C repressor clusters and the 

terminase clusters in Figure 10 display a similar deduction to Figure 9, wherein the most shared 

prophages are between the largest C repressor clusters and the largest terminase clusters. 

 

Figure 9. Prophage membership shared between integrase clusters and terminase clusters. The 

largest terminase clusters tend to share the most prophages with the largest integrase clusters. 
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Figure 10. Prophage membership shared between C repressor clusters and terminase clusters. 

The largest terminase clusters tend to share the most prophages with the largest C repressor 

clusters. 

To look for possible associations between terminase clusters and integrase or C repressor 

clusters, a phylogenetic tree of all terminase coding regions was constructed with color-coded 

bands to represent whether the prophage that possessed the terminase also contained an 

integrase, a C repressor, both, or neither of the coding regions (Figure 11). Using a One Sample 

t-Test, it was found that the integrase cluster membership of a phage is not associated with the 

terminase cluster membership of the phage; phages within terminase clusters contain integrases 

from significantly more than 1 integrase cluster type (p=8.275e-06). A similar finding was 

determined using a One Sample t-Test for the C repressor. The C repressor cluster member of a 

phage is not associated with the terminase cluster membership of the phage; phages within 

terminase clusters contain C repressor sequences from significantly more than 1 C repressor 

cluster (p=8.079e-04). 
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Figure 11. Phylogenetic tree of all annotated terminase coding regions. Average pairwise identity 

of 8.9% (n=4,570). Terminases are color-coded by shared phage membership with integrase 

and/or C repressor homologous clusters. 

Antibiotic Resistance and Virulence Factors Encoded by Prophages. 

To analyze the possibility of prophages conferring antibiotic resistance to their bacterial 

host, all category 1 and 4 predicted prophage sequences were examined using ResFinder 4.1 

(Bortolaia et al., 2020). The antibiotic resistance prediction tool identified 71 predicted antibiotic 

resistance genes from 42 different prophage genomes, just 0.6% of the prophage sequences 

screened. The antibiotic resistance genes exhibited high percent identity (greater than 94%) and 

high query coverage (greater than 97%) to gene sequences within the ResFinder database. Of the 

71 results, 26 genes are associated with resistance to three classes of antibiotics: aminopenicillins 
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(such as amoxicillin), antipseudomonal penicillins, and 2nd and 3rd generation cephalosporin 

antibiotics. Aminopenicillins are typically used to treat Gram-positive aerobic bacteria and 

Gram-negative rod bacteria (Overview of Antibiotic Therapy, n.d.). Antipseudomonal penicillins 

also target Gram-negative rod bacteria, especially Pseudomonas species (Overview of Antibiotic 

Therapy, n.d.). 2nd and 3rd generation cephalosporins are used to treat most Gram-negative 

bacteria as well as some Gram-positive bacteria (Overview of Antibiotic Therapy, n.d.). 24 genes 

are predicted to confer resistance to Chloramphenicol, a broad-spectrum antibiotic that is now 

rarely used and is typically reserved for severe infections due to its association with causing 

aplastic anemia (PubChem, n.d.-a). Additionally, 20 genes are associated with resistance to 

Kanamycin and Neomycin, broad-spectrum aminoglycoside antibiotics that are used to treat a 

variety of bacterial infections (PubChem, n.d.-b, n.d.-c). The final antibiotic resistance gene 

identified by ResFinder was a beta-lactam gene. These results display that the majority of the 

predicted prophages do not carry antibiotic resistance genes.  

Next, the possibility of prophages conferring increased pathogenicity to their bacterial 

host by encoding genes associated with virulence was determined. Prophage sequences were 

screened against the Virulence Factors Database (VFDB) (Chen et al., 2005). Of the 6,852 

prophage sequences, 502 prophages possessed a total of 515 predicted virulence factor 

sequences. The 515 predicted sequences were composed of 72 unique virulence factor sequences 

for 63 unique virulence genes. Some of the more frequent virulence factors found included Type 

IV pili related genes, GacS/GacA system related genes, alginate regulation genes, Type II/III/VI 

secretion system related genes, and flagella related genes. 41 prophages contained both predicted 
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virulence factors and predicted antibiotic resistance genes. These results suggest that these 41 

prophages may increase their host’s pathogenicity. 

Discussion 

This is the first known report of the prevalence and diversity of prophages among P. 

aeruginosa strains. We limited our analysis to only the highest category prophage predictions 

from VirSorter, categories 1 and 4. Other investigations of phages in genomic and metagenomic 

data sets have taken a less conservative approach, including category 1, 2, 4 and 5 predictions 

(Camarillo-Guerrero et al., 2021; Miller-Ensminger et al., 2018; Paez-Espino et al., 2016). While 

others have noted that the lower confidence categories (3 and 6) tend to include only partial 

prophage genomes (Camarillo-Guerrero et al., 2021; Miller-Ensminger et al., 2018; Paez-Espino 

et al., 2016), our own prior work predicting prophages in the urinary microbiome found that most 

(∼71%) of the phage sequences in the category 2 and 5 predictions are not complete prophage 

sequences (Miller-Ensminger et al., 2018). Even with our stringent threshold, we identified 6,852 

prophages in 5,383 P. aeruginosa genomes. 68.21% of the genomes examined contained at least 

one category 1 or 4 prophage prediction. This falls in line with, and even surpasses, previous 

work estimating nearly half of all sequenced bacteria to contain prophages (Touchon et al., 

2016).  

Diversity of P. aeruginosa prophages. 

57% of the predicted prophages exhibited sequence similarity to publicly available phage 

genomes. These similarities were most frequent to siphoviruses (n=2,744). The remaining 

predicted prophage sequences (n=3,214) shared no significant homology to characterized phages, 

thus representative of novel phages infectious of P. aeruginosa. It is important to note that even 
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though a conservative approach was taken when selecting VirSorter predictions, there are likely 

false positives and prophage artifacts (nonfunctional prophages) included in these higher 

confidence predictions. For instance, Pseudomonas phages have a wide range of genome sizes, 

the smallest being the PRR1 phage (NC_0082941) at 3,573 bp and the largest being the 201phi2-

1 phage (NC_010821) at 316,674 bp in length. While the majority of our P. aeruginosa predicted 

prophage sequence lengths fall within this range, there are obvious false positives, e.g., our 

smallest predicted prophage is just 606 bp long. In fact, 332 prophage predictions were less than 

3,000 bp. These smaller predicted prophage sequences may also be the result of fragmented 

bacterial assemblies, as many of the genomes examined here draft assemblies. 

To minimize the impact of false positive predictions on our analysis, we implemented a 

threshold: a given predicted prophage must include 5 genes with another predicted prophage in 

order to be included in our data set. While this thresholding excluded these fragmented 

predictions, it also removed 9 of the 11 predicted inoviruses, which typically consist of only 8 

genes. Inoviruses are filamentous phages. While there are very few characterized inoviruses, 

recent research predicts that they are far more diverse and pervasive than previously thought 

(Roux et al., 2019). Extant prophage prediction tools, including VirSorter, frequently miss 

inoviruses (Paez-Espino et al., 2016, 2017; Roux et al., 2015). As such new tools have been 

developed to explicitly identify inoviruses, e.g., Inovirus Detector 

(https://bitbucket.org/srouxjgi/inovirus/src/master/).  

Our analysis did identify the inovirus Pf1. A previous study in 2015 studied the 

prevalence of Pf1-like phages in P. aeruginosa (Knezevic et al., 2015). The results displayed 

approximately 60% of the 241 strains screened via PCR contained at least 1 Pf1-like genetic 

https://bitbucket.org/srouxjgi/inovirus/src/master/
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element (Knezevic et al., 2015). Of the 5,383 strains of P. aeruginosa analyzed in this work, only 

11 were identified as strains of Pf1 via BLAST analysis. Pf1-like genetic elements were 

identified in an additional 93 predicted prophages. The prophage sequences had a high sequence 

similarity (>75% identity), but identities were only identified between one or a few genes (query 

coverage averaged 20%). These Pf1-like genetic elements were identified in prophage sequences 

classified as siphoviruses, myoviruses, or Unknown. It is these shared genes that “connect” the 

inoviruses to other taxa in the large, connected component of Figure 4. Our findings, however, 

are not consistent with the prior study. We find only ~2% of the P. aeruginosa genomes contain 

a Pf1-like genetic element. This inconsistency could be due to non-specific PCR primers used in 

the aforementioned study, e.g., they are amplifying non-Pf1 phages, or these genes are included 

in the Category 2, 3, 5, and/or 6 prophage predictions not examined here. 

Of the 672 predicted myoviruses, 11 were predicted from a single genome assembly of P. 

aeruginosa ENVO278 (GCA_006704765). 10 of these predicted prophage sequences were 

highly similar (>97% identity) to the genome of Phage EL (NC_007623.1), a giant Phi KZ-like 

Pseudomonas phage with a genome size of 211,215 bp. The 10 predicted prophages are 

significantly shorter than Phage EL; combined their length is just 88 Kbp, ~42% of the Phage EL 

complete genome. However, they can be perfectly and uniquely mapped to the Phage EL 

genome (average query coverage of 99.1%). It is possible that Phage EL, or a similar phage, may 

have previously infected this specific strain of P. aeruginosa and left behind gene fragments that 

were identified by VirSorter. Alternatively, Phage EL (or a relative) could have been infecting 

this strain when it was sequenced but was not able to be assembled into a single contig. The 10 

predicted prophages are in fact 10 separate contigs suggesting that they may not be integrated 
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within the P. aeruginosa ENVO278 genome. Without experimental investigation of this strain, 

we can only hypothesize whether or not VirSorter identified only small segments of Phage EL 

while it was infecting the host. 

While the majority of the predicted prophages were taxonomically classified using 

homologous phages, 3,214 were unable to be associated with any known, characterized phage. 

The network analysis performed here, however, provides a means to predict the putative 

taxonomic classification of many of these phages. The taxonomies of the unknown prophages 

could be assumed according to the classified prophages nearby in Figure 4 . After the threshold 

of 5 shared genes was added, the majority of the unknown prophages (n=3,136) clustered near 

the siphoviruses or near the myoviruses. However, the taxonomies of the 2 clusters that were 

separate connected components only contained phages of unknown classification. Thus, their 

taxonomies could not be deduced.  

Of the unknown phages, 1 of the separated clusters contained 27 related prophages and 

was found to have similarity to a single pyocin gene fragment (L06240.1). It is known that 

bacteriophage tails can resemble the structures and sequences of R-type and F-type pyocins. 

While BAGEL4 did not identify any bacteriocins within the 27 predicted prophages, it is 

possible that small fragments of the pyocin gene from the bacterial genomes were included in the 

prophage predictions without including the full functional pyocin. 

The second separated unknown cluster contained 10 prophages that were found to have 

high similarity (>76% identity) to at least 1 of 2 uncultured Caudovirales phages (MF417971 and 

MF417945). 6 of the prophages were also similar (>73% identity) to Halomonas phage phiHAP-

1 (EU399241) and 3 to both Ralstonia phage RSY1 (AB981169) and Ralstonia phage RSA1 
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(AB276040). The Halomonas phage and the Ralstonia phages are all classified as myoviruses, so 

it is possible that the 10 unknown prophages are also myoviruses. 

Evolution of P. aeruginosa Prophages. 

Following annotation of the high confidence predicted prophages, several temperate 

phage marker genes were identified for analysis: terminases, integrases, and C repressors. Of the 

6,852 predicted prophages, only 3,028 prophages encoded a terminase, a conserved gene among 

tailed phages. As expected, the 117 predicted microviruses and inoviruses do not contain 

terminase genes. That leaves 3,707 predicted prophages that should have contained a terminase 

gene and did not. The majority (n=2,127) of these prophages lacking terminases were classified 

as unknown taxonomy. Within the network of the predicted prophages, 2 separate connected 

components of 27 and 10 unknown prophages displayed homology to a pyocin gene fragment 

and to uncultured Caudovirales phages, respectively. This first group may not actually be phages, 

rather relatives of bacteriocins. Some of the remaining unknown prophages lacking a terminase 

shared significant sequence identity with characterized siphoviruses and myoviruses and thus are 

likely members of these taxonomic groups. The lack of the terminase may signify that they are 

nonfunctional or their VirSorter prediction is incomplete, i.e., the predicted sequence does not 

contain all phage coding regions. Those unknown prophage sequences that only exhibit modest 

sequence similarity with characterized tailed phages, may in fact be tailless and thus should not 

have a terminase. As our prior analysis of Pf1-like genes showed, there are gene homologs 

between inoviruses and caudoviruses. 

Along with predicted prophages missing terminase coding regions, many phages did not 

encode integrase or C repressor genes which are typically conserved genes of temperate phages. 
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Of the 4,570 prophages that included a terminase coding region, 2,616 prophages lacked an 

integrase or C repressor coding regions. While again microviruses and inoviruses lack these 

genes, their absence in other predicted prophages echoes the earlier challenge in distinguishing 

between complete and incomplete prophage sequences the methods of prediction. It is possible 

that many of the “high confidence” predicted prophages are not complete and are rather small 

segments of phage-like genes residing within the bacterial sequences. These genes may be 

evidence of previous phage infections of the bacteria, or they may be nonfunctional phages that 

no longer have the ability to excise from the bacterial genomes. Of the predicted prophages that 

lacked a terminase, 1,311 were category 1 predictions and 2,576 were category 4 predictions. 

The category 1 prophages are predicted to be “free” phages that are not integrated into a host 

genome. It would be expected that the prophages that lacked an integrase or a C repressor would 

more likely be category 1 predictions. However, the category 4 prophages greatly outnumbered 

the category 1 prophages by almost double with 4184 and 2668 predictions, respectively (Table 

1). 

The integrase and C repressor coding regions that were identified in the predicted 

prophages exhibited extensive diversity. The integrase coding regions shared an average amino 

acid pairwise identity of only 16.1%. Once clustered based on sequence similarity, the integrases 

formed 72 distinct clusters with very high sequence similarity (>95% average pairwise identity) 

in the largest cluster (n=110). The C repressor coding regions were more similar to each other 

with an average pairwise identity of 58.0%. After being clustered, the C repressors formed 44 

separate clusters with high sequence similarity (>86% average pairwise identity) within the 
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largest cluster (n=1604). While the integrase gene and the C repressor gene are widely conserved 

in temperate phages, they display substantial diversity between their clusters. 

The terminase coding regions also had broad diversity with an average pairwise identity 

of only 8.9%. As terminase genes are widely conserved among phages alongside integrases and 

C repressors (Catalano, 2000), it was unexpected to find no association between prophages that 

share homologous terminases with prophages that share homologous integrases or C repressors. 

The most phages that shared similar terminases with similar integrases were clustered in the 

largest of the homologous gene clusters, and a similar result was found for the C repressors. 

Phages that contain a terminase belonging to 1 cluster do not necessarily contain integrases of 

only one integrase cluster. On average, phages with a terminase also contain integrases from 

approximately 3 different integrase clusters. The same applies to C repressors where on average 

phages with a terminase also contain C repressors from approximately 2 different C repressor 

clusters. There is no distinct association between phages with terminases of one homologous 

group also containing integrases or C repressors from only one cluster. 

 The presence of antibiotic resistance genes and virulence factors was also investigated 

within the predicted prophages. Only 71 antibiotic resistance genes were predicted from 42 

different prophage sequences, just 0.6% of the sequences screened. While P. aeruginosa is 

known to be pathogenic and commonly resistant to antibiotics (Azam & Khan, 2019) and 

prophages have been identified in 68.21% of the bacterial strains, it does not seem there is any 

association between the presence of prophages with the presence of antibiotic resistance genes. 

However, 502 of the predicted prophages did contain virulence factors that could assist in the 

pathogenicity and fitness of P. aeruginosa. Future studies should look towards the association of 
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P. aeruginosa prophage presence with biofilm formations of the bacteria as prophages can be 

known to increase biofilm growth in P. aeruginosa strains (Rice et al., 2009).  
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CHAPTER THREE 

ENGINEERING PSEUDOMONAS AERUGINOSA TEMPERATE PHAGES 

Introduction 

While phage therapy is slowly being integrated as a treatment option in Western 

medicine, the therapeutic phages used to resolve bacterial infections in both animals and humans 

tend to be obligately lytic phages. They are predominantly used either alone or in a cocktail with 

other obligately lytic phages (Jault et al., 2019; Łusiak-Szelachowska et al., 2014; Rhoads et al., 

2009; Rose et al., 2014; Wright et al., 2009). Obligately lytic phages continue only in the lytic 

life cycle and as such are attractive candidates for killing bacterial cells in therapeutic settings 

(Chan et al., 2013). However, temperate phages are far more abundant than obligately lytic 

phages, as nearly half of all sequenced bacteria contain prophages (Touchon et al., 2016). 

Because phages often have a very narrow host-range, i.e., they can only infect a particular 

bacterial species or even specific strains, expanding our candidate set of phages to include both 

obligately lytic phages and the more abundant temperate phages would likely increase our ability 

to identify phages capable of lysing infectious strains of bacteria. 

 There are a few issues with the use of temperate phages which are why treatments have 

focused on obligately lytic phages. While temperate phages may begin lysing bacterial cells 

when first administered, it is possible for the phage to switch to the lysogenic life cycle, and thus 

be ineffective in killing the bacteria. Furthermore, integration could introduce new virulence or 

antibiotic resistance genes to the bacterial genome through transduction (Harrison & Brockhurst, 
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2017; Monteiro et al., 2019; Oliveira et al., 2015). This can turn a non-virulent bacterial strain 

into a virulent one, a process known as lysogenic conversion (Davies et al., 2016; Harrison & 

Brockhurst, 2017). Integration of the temperate phage into the bacterial genome could also result 

in superinfection immunity, in which the prophage enables the bacteria to be  resistant to 

infection by other phages, e.g., other phages used in a cocktail therapy or subsequent phage 

treatments (Dedrick et al., 2017). 

 Despite these concerns, temperate phages can be effective agents for killing bacteria. 

Temperate phages naturally reduce bacterial growth, and the integration of the phages can even 

lead to prevention of bacterial toxin release (Chung et al., 2012; Meader et al., 2013). Temperate 

phages are also effective treatments when used in combination with other temperate phages in a 

cocktail form. A 2015 study displayed successful results of temperate phage cocktails against 

strains of P. aeruginosa, as well as against Clostridium difficile strains (Burkal’tseva et al., 2011; 

Nale et al., 2016, 2018). 

 To eliminate the possibility of prophage integration into a targeted bacterial host, an 

alternative approach has recently been explored. Temperate phages can be genetically engineered 

to block entry into the lysogenic life cycle, a process known as virulent conversion (Kilcher et 

al., 2018). The integrase gene and the C repressor gene are responsible for the integration and 

maintenance of the prophage in the lysogenic life cycle, respectively (Monteiro et al., 2019). The 

engineering of prophages to remove or inactivate these genes creates obligately lytic phages 

(Monteiro et al., 2019). A 2013 study observed the natural recombination of a temperate 

Enterococcus faecalis phage with a prophage within the host bacteria to create a genetically 

modified, obligately lytic phage (Zhang et al., 2013). In 2018, an in vitro  method was developed 
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for targeted modification of the integrase and C repressor for temperate phages to make 

obligately lytic variants (Kilcher et al., 2018). A 2019 study conducted the first treatment of a 

human mycobacterial infection with genetically engineered phages (Dedrick et al., 2019). A 

therapeutic cocktail consisting of 3 phages was used to treat the infection. 2 of the 3 phages were 

genetically engineered to either remove or mutate the C repressor gene, forcing the phages to 

become obligately lytic and improve their ability to lyse the bacteria (Dedrick et al., 2019). The 

patient did not have any adverse reactions to the cocktail of engineered phages and there was 

significant clinical improvement after treatment (Dedrick et al., 2019). With the rising rates of 

antibiotic resistance and our limited catalogue of obligately lytic phages, it is important to 

identify possible temperate phage candidates that could be engineered to be obligately lytic. 

 While there have been several examples of temperate phages being engineered to become 

obligately lytic, there has only been one example of this process being performed on P. 

aeruginosa phages to date (Mageeney et al., 2020). 5 prophages induced from 2 strains of P. 

aeruginosa were engineered to remove the integrase from each of the phages, resulting in 5 

obligately lytic phages that killed P. aeruginosa PAO1 in vitro and in vivo (Mageeney et al., 

2020). While this prior study removed the integrase genes from the P. aeruginosa temperate 

phages to render them obligately lytic, there has yet to be a study on removing the C repressor 

gene from P. aeruginosa temperate phages to produce obligately lytic phages. 

To further display that P. aeruginosa phages can be engineered to become obligately lytic 

through removal of the integrase or the C repressor, I identified 2 temperate phages as potential 

candidates, D3112 and Dobby. Both phages were isolated from and infect strains of P. 

aeruginosa. D3112 was isolated from P. aeruginosa strain PAS429 and is known to infect many 



 

 

43 

different strains of P. aeruginosa (Roncero et al., 1990; Wang et al., 2004). The phage has a 

genome size of 37,611 bp and contains a C repressor gene that maintains the lysogenic state of 

the temperate phage when it is integrated into the host genome (Salmon et al., 2000). D3112 is 

closely related to the Mu-1 phage which has an infection latent period of 60 minutes with a burst 

size of 200 phages per bacterial cell (Campbell, A. M., n.d.). The Dobby phage was isolated 

from P. aeruginosa strain UMB2738 and is able to infect several strains of P. aeruginosa from 

the urinary tract (Johnson et al., 2019). Dobby has a genome size of 37,152 bp and it contains an 

integrase gene that is responsible for integrating the phage DNA into the bacterial host genome 

(Johnson et al., 2019). Dobby is closely related to φCTX, a member of the P2-like phages which 

have a typical infection latent period of 30 minutes and a burst size of 120 phages per bacterial 

cell (Campbell, A. M., n.d.; Nakayama et al., 1999). D3112 and Dobby would make promising 

candidates for virulent conversion by removing the C repressor or the integrase coding regions, 

respectively. Here I present the genetic engineering of these two phages and an evaluation of 

their ability to infect clinical isolates of P. aeruginosa. 

Methods 

Bacteriophage and Bacterial Isolates. 

Two phages, Dobby and D3112, were obtained for experimentation. The Dobby phage 

(NC_048109.1) was spontaneously induced and isolated from P. aeruginosa strain UMB2738 

(IRB: Indiana University 1803959731) that was cultured from a kidney stone (Johnson et al., 

2019). The D3112 phage (NC_005178.1) was obtained from the Félix d’Hérelle Center for 

Bacterial Viruses. The strain of P. aeruginosa used in the experiments of this study, P. 

aeruginosa ATCC 15692 was obtained from ATCC.  
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Bacteriophage DNA Isolation. 

Dobby and D3112 were grown to high titer using a diluted overnight culture of the 

laboratory strain P. aeruginosa ATCC 15692. 25mL of LB was inoculated with a single colony 

of P. aeruginosa ATCC 15692, then incubated with shaking at 37 degrees Celsius overnight. The 

culture was diluted the next day by 250uL culture in 25mL of LB incubated with shaking at 37 

degrees Celsius for 1.5 hours. After 1.5 hours, 250uL of either Dobby phage lysate or D3112 

phage lysate that had been stored at 4 degrees Celsius was added to the P. aeruginosa culture and 

placed in a shaking incubator 37 degrees Celsius overnight. The next day, 1mL of each of the 

inoculated cultures were removed and placed into 1.5mL microcentrifuge tubes and centrifuged 

at 13,000xg for 5 minutes. The supernatant was removed and filtered using 0.22um cellulose 

acetate membrane syringe filters and DNAse I, RNase-free (1U/uL) (Thermo Fisher Scientific, 

Thermo Scientific ™) was used following the recommended protocol to remove leftover 

bacterial DNA. Next, the Zymo Quick-DNA Viral Kit (ZymoResearch, CA, USA) was used to 

extract phage DNA following the manufacturer’s protocol. DNA was quantified using a Qubit 

fluorometer. 

 Because the host used to amplify Dobby and D3112 also contains a prophage, PCR was 

used to confirm the source of the DNA. PCR primers were created using Primer3 (Untergasser et 

al., 2012, p. 3) and the genome sequence for each of these phages (Dobby: 

CCACCACTCACGGACCTC and AGCCATGACTGCGCTACC; D3112: 

CCGACCGACGTCTATTCC and CGCGCCTGACTGTTGTAG). Primers were checked for 

self-dimerization using the ThermoFisher Multiple Primer Analyzer (Thermo Fisher Scientific, 

Thermo Scientific ™) and synthesized by Eurofins Genomics LLC (Louisville, KY). Using 10uL 
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of Go-Taq Master Mix (Promega, Madison, WI), 7uL of nuclease-free H2O, 1uL of each primer 

(10mM), and 1uL of phage DNA were combined for a 20uL reaction. PCR amplification was 

verified using a 1.2% agarose gel.  

 

Figure 12. Workflow of engineering process for Dobby and D3112. Dobby is the top blue 

genome and D3112 is the bottom green genome. The enzymatic digestion begins on the left, the 

digested (and ligated in Dobby’s case) genomes are transformed within P. aeruginosa competent 

cells to produce viable engineered eDobby and eD3112 phages.  

Digestion of Bacteriophage DNA. 

The Dobby phage DNA and the D3112 phage DNA were then engineered using 

enzymatic digestion to remove the integrase gene from Dobby and the C repressor gene from 

D3112. Figure 12 displays the workflow of the entire engineering process for Dobby and 

D3112. NEBCutter v2.0 was used to identify restriction enzymes closest to the integrase/C 

repressor with single cut sites within the phage genome sequence (Vincze et al., 2003). The 

restriction enzyme Alw44I (Thermo Fisher Scientific, Thermo Scientific ™) was used to digest 

the DNA of D3112 with the recommended protocol. The restriction enzyme Kpn2I (Thermo 

Fisher Scientific, Thermo Scientific ™) was used with the recommended protocol to digest the 

Dobby DNA. 10uL of the digested DNA of each of the two phages with 3uL loading dye and 
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10uL of each of the undigested DNA with 3uL loading dye for comparison were then loaded into 

a 1.2% agarose gel with 4uL ethidium bromide, the gel electrophoresis was run, and the gel was 

visualized in a UV light box to examine band sizes of the digested DNA and the undigested 

DNA of the two phages. Once verified, the largest band of each of the phages’ digested DNA 

was cut out of the gel and extracted using the Omega Bio-tek E.Z.N.A. Gel Extraction Kit 

(Omega Bio-tek, Inc., GA, USA) and its recommended protocol. 

The digested DNA for each phage was established to be lacking the integrase or C 

repressor genes using PCR primers constructed with Primer3 (Untergasser et al., 2012) to 

amplify a section of the phages’ sequences that included the cut sites and several hundred base 

pairs following the cut site (Table 2). These primers were then used on both the two digested 

phages as well as the undigested original two phages to show that the original phages still 

contained the cutsites and the successive base pairs and that the digested phages did not contain 

nucleotides following the cutsite. The amplicons of the PCR reactions were visualized through 

gel electrophoresis using a 1.2% agarose gel. The digested Dobby DNA and the digested D3112 

DNA were stored at -20 degrees Celsius for further downstream analysis.  

Primers Forward Sequence Reverse Sequence Expected Amplicon Size 

D3112 

Digestion Site 

ACATAGCCACCAT

CCCGAAA 

GTTGTCCTCGTCAATCC

AGC 230 

Dobby 

Digestion Site 

CATTCGACCGGCA

GCCTG 

TCAAGCGACTGGATGA

TGCA 181 

Dobby 

Missing Genes 

CACTACGGCGTGA

TGG 

CCTCATAGGATTCTGCT

GTC 2061 

Table 2. Primer sequences for verification of Dobby and D3112 engineering process. 
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Ligation of Dobby DNA. 

Due to the location of the Kpn2I cut position within the Dobby genome, 4 additional 

genes were removed in addition to the integrase. These coding regions were recovered for the 

engineered phage. The cut site of the genome was at 33,840bp and the integrase gene began at 

35,866bp until the end of the genome. PCR primers were created using Primer3 (Untergasser et 

al., 2012) that replicated and amplified the genes of the original Dobby that were missing from 

the digested Dobby DNA (Table 2). The primers began at 33,810bp and the amplicon extended 

to 35,871bp, amplifying the 4 missing genes and the 5’ end of the integrase. After running the 

PCR protocol using the new primers on the original Dobby DNA, the resulting amplicon was 

then digested using Kpn2I and its recommended digestion protocol. After the enzymatic 

digestion was completed, 10uL of the digested amplicon was loaded into a 1.2% agarose gel with 

4uL ethidium bromide and the gel electrophoresis was run. The gel was then visualized in a UV 

light box to identify and cut out the digested amplicon band. The digested amplicon band was 

then extracted using the Omega Bio-tek E.Z.N.A. Gel Extraction Kit (Omega Bio-tek, Inc., GA, 

USA) and its recommended protocol. The digested Dobby DNA and the digested amplicon were 

then ligated together using ThermoFisher T4 DNA Ligase (5U/uL) (Thermo Fisher Scientific, 

Thermo Scientific ™). 6uL of the digested amplicon, 11.8uL of the digested Dobby DNA, 2uL 

of the 10x T4 DNA Ligase Buffer, and 0.45uL of the T4 Ligase were combined and incubated at 

22 degrees Celsius for 10 minutes.  

Creation of Competent P. aeruginosa ATCC 15692 Cells. 

Competent P. aeruginosa cells were created using the laboratory strain of P. aeruginosa 

ATCC 15692 (Chuanchuen et al., 2002). To begin, 25mL of LB were inoculated with a single 
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colony of P. aeruginosa ATCC 15692 and incubated at 37 degrees Celsius overnight with 

shaking. The next day the following protocol was completed while keeping all tubes on ice 

throughout the entirety of the steps. 1.5mL microcentrifuge tubes were chilled on ice for 5 

minutes before use, then 1mL of the overnight P. aeruginosa culture was aliquoted into each 

tube. The tubes were then centrifuged at 13,000xg for 30 seconds and the supernatant was 

poured off. The cell pellets were then resuspended in 1mL of cold (4 degrees Celsius) 0.1M 

MgCl2 and again centrifuged at 13,000xg for 30 seconds. The supernatant was poured off of the 

tubes and the cell pellets were resuspended in 1mL of cold (4 degrees Celsius) TG salts (75 mM 

CaCl2, 6 mM MgCl2, 15% glycerol) solution and kept on ice for 10 minutes (Chuanchuen et al., 

2002). After a final centrifugation of the tubes at 13,000xg for 30 seconds, the supernatant was 

poured off and the cell pellets were resuspended in 200uL of cold (4 degrees Celsius) TG Salt 

Solution. The final P. aeruginosa competent cells were then stored at -80 degrees Celsius until 

future use.   

Transformation of Bacteriophage DNA. 

 The digested D3112 phage DNA and ligated Dobby DNA was transformed into the P. 

aeruginosa competent cells. 60uL of competent cells and 10uL of the phage DNA were 

combined in a 1.5mL microcentrifuge tube. The tube was then incubated on ice for 90 minutes. 

After the ice incubation, 1mL of LB warmed to 25 degrees Celsius was added to the tube and the 

mixture was incubated and shaken overnight at 37 degrees Celsius. The next day, 10uL spots of 

the transformed lysate were placed onto a lawn of 3mL LB soft agar (0.7% agarose) and 500uL 

of overnight culture of P. aeruginosa ATCC 15692 on an LB agar plate (1.7% agarose) and 

incubated overnight at 37 degrees Celsius. The next day, the plaques from the lysate spots were 
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harvested from the plate and placed into 1.5mL microcentrifuge tubes and 1mL of LB was 

added. The phage harvest was then disrupted for 10 minutes, centrifuged at 13,000xg for 2 

minutes, and filtered into new microcentrifuge tubes using 0.22um cellulose acetate membrane 

syringe filters. The filtered lysates were again spot-plated onto a lawn of P. aeruginosa ATCC 

15692 and incubated overnight. The remaining filtered lysates were stored at 4 degrees Celsius 

until future use. 

Verification of Engineered Phages. 

To validate that the phage harvested were from the digested/ligated phage DNA, the 

DNA was extracted from 300uL of the transformed digested phage lysate using the Zymo Quick-

DNA Viral Kit (ZymoResearch, CA, USA). PCR protocols with the primers for identity 

verification of the ancestral Dobby and ancestral D3112 were run to establish the respective 

identities of the engineered Dobby and engineered D3112. The digest primers used to verify the 

initial digestion of the engineered Dobby and engineered D3112 were also used in PCR protocols 

to establish the difference between the ancestral phages and the engineered phages. The 2 

validated engineered phages are hence referred to as eDobby and eD3112.  
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Figure 13. Display of host range testing process for ancestral and engineered phages. Phage 

lysates were added to bacterial lawns of 18 clinical isolates and 1 laboratory strain of P. 

aeruginosa. Strains that a phage displayed lytic activity in were considered the host range of the 

phage. 

Host Range Testing of Ancestral and Engineered Bacteriophages. 

The host ranges of the phages were determined using bacterial lawns of 19 different 

strains of P. aeruginosa and spots of phage lysate for the ancestral D3112, eD3112, ancestral 

Dobby, and eDobby. Figure 13 displays the host range testing for the 4 different phages. The 

phage lysates had all been stored at 4 degrees Celsius. The 19 P. aeruginosa strains are listed as 

follows: laboratory strain P. aeruginosa ATCC 15692, UMB151, UMB0501, UMB0740, 

UMB0801, UMB0802, UMB1046, UMB1204, UMB2231, UMB2253, UMB2261, UMB2738, 

UMB4740, UMB4836, UMB5686, UMB6995, UMB7567, UMB7777, and UMB8183. The 

UMB strains were obtained from the Wolfe Lab at Loyola University Chicago’s Stritch School 
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of Medicine, isolated as part of prior IRB-approved studies (IRB: LUC 203986; Indiana 

University 1803959731; LUC 204195; LUC 207152; LU 209983; LU 207906; LUC 207102; 

LUC 206129) (Hilt et al., 2014; Pearce et al., 2014, 2015; K. J. Thomas-White et al., 2016; Bajic 

et al., 2018; Price et al., 2016; K. Thomas-White et al., 2018). For each P. aeruginosa strain, a 

combination of 3mL LB soft agar (0.7% agarose) and 500uL bacterial culture were poured onto 

an LB agar plate (1.7% agarose). Once solidified, 10uL spots of each of the four phage lysates 

were pipetted onto the plate in replicates of 4. The plates were then incubated overnight at 37 

degrees Celsius, and plaques were visualized the next day.  

Biofilm Growth and Testing of Phage Infection. 

Two strains of P. aeruginosa, ATCC 15692 and UMB8183, were evolved, selecting for 

biofilm formation, with duplicates to yield 4 P. aeruginosa biofilms. 1 mL of overnight cultures 

of each strain were placed into 6-well plates and 5 mL of LB were added to the cultures and the 

well-plates were incubated at 37 degrees Celsius. Every day for several days, the excess liquid 

was pipetted off the tops of the wells and 5 mL of LB was added each day. On the 7th day, the 

lab was officially shut down due to the COVID-19 pandemic. The well-plates were placed into 

an anaerobic chamber kept at room temperature for three months. The biofilms were 

occasionally replenished with LB about every 3 weeks and returned to the room temperature 

anaerobic chamber. After three months, the 4 biofilms were removed from the well-plates and 

transferred to 4 flasks. The biofilms continued to grow at room temperature with bi-monthly 

replenishment of either 5 mL or 10 mL of LB each time.  

After over a year of growth, 1mL of each of the biofilms was pipette into a 1.5mL 

microcentrifuge tube. The 4 samples were then disrupted for 10 minutes and transferred to 
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QIAshredder cell-lysate homogenizers (Qiagen) and centrifuged at 16,000xg for 2 minutes. The 

4 sets of homogenized bacterial cells were then each grown overnight in 10mL of LB media at 

37 degrees Celsius shaken. The following day, 500uL of the overnight cultures were added to 

3mL of LB soft agar (0.7% agarose) and poured onto LB agar plates (1.7% agarose). Duplicate 

10uL spots of Dobby, eDobby, D3112, and eD3112 were pipetted onto the bacterial lawns, left 

to dry, and incubated overnight at 37 degrees Celsius.   

Dobby Integration Analysis. 

P. aeruginosa strains UMB151, UMB0801, UMB0802, UMB2231, UMB2253, and 

UMB2261 were each grown from a single colony in 5mL of LB media overnight at 37 degrees 

Celsius with shaking. The next day, the 6 bacteria were then subcultured with 500uL overnight 

culture in 10mL of fresh LB media and incubated at 37 degrees Celsius with shaking for 3 hours. 

5uL of Dobby lysate that had been stored at 4 degrees Celsius was added to each of the 6 

subcultures. An additional 6 subcultures were created without added phage lysate to serve as 

controls. The cultures were all incubated overnight at 37 degrees Celsius with shaking. 

The next day, 1mL was taken from each of the overnight cultures and centrifuged at 

13,000xg for 5 minutes. The lysates were completely removed from the tubes so only the 

bacterial cell pellets remained. The pellets were then washed with 500uL of PBS solution to 

remove phages from the cell pellet surface. The wash step was repeated 3 times. The cell pellets 

were then resuspended in 1mL LB media and vortexed to disperse the bacterial cells. Plastic 

loops were used to streak the resuspended cultures onto LB agar plates (1.7% agarose) that were 

incubated overnight at 37 degrees Celsius. The same process was repeated for the control 

cultures. 
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 3 single colonies were picked from each of the 6 plates of bacteria treated with phage and 

each of the 6 control plates. Colony PCRs were run using primers specific to the Dobby phage 

(CCACCACTCACGGACCTC and AGCCATGACTGCGCTACC). The 50uL reaction consisted 

of 23uL of nuclease-free H2O, 25uL of Go-Taq Master Mix (Promega, Madison, WI), 1uL of 

each primer (10mM), and 1 colony for a 50uL reaction setup. An additional reaction with 1uL of 

Dobby DNA instead of a bacterial colony was run as a positive control and a negative control 

(no bacterial colony or DNA) was run as well. PCR amplification was verified using a 1.2% 

agarose gel. 

Titer Quantification of Phages and Laboratory P. aeruginosa. 

Before testing the rate of infection for the ancestral D3112 and ancestral Dobby phages 

versus eD3112 and eDobby phages on the laboratory strain of P. aeruginosa ATCC 15692, the 

titer of each phage and of the bacterial strain needed to be determined. The phages had all been 

stored at 4 degrees Celsius for future use. Each of the four phages was diluted in a 10-fold serial 

dilution from 100 to 10-9. Bacterial lawns comprised of 3mL soft agar (0.7% agarose) and 500uL 

P. aeruginosa ATCC 15692 overnight culture grown from a single colony were poured onto LB 

agar plates (1.7% agarose) for the dilution series. For each of the four phages, 10uL of each 

dilution series was spotted onto the bacterial lawn and incubated overnight at 37 degrees Celsius. 

The next day, the number of plaques at the lowest dilution that still contained visible plaques 

were counted and used to calculate the titer of each phage lysate.   

 For the laboratory strain of P. aeruginosa ATCC 15692, the titer of the bacteria was 

determined using dilutions as well. 200mL of LB was inoculated with a single colony of the P. 

aeruginosa ATCC 15692 and grown overnight shaken at 37 degrees Celsius. The next day 1mL 
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of culture was aliquoted and diluted 10-fold up to 10-6. 100uL of the 10-6 diluted culture was 

pipetted onto an LB agar plate (1.7% agarose) and a cell spreader was used to spread the culture 

across the entirety of the plate. The plate was incubated overnight at 37 degrees Celsius, and the 

number of visible colonies were counted the next day to determine the titer of the P. aeruginosa 

strain ATCC 15692. 

Phage Effect on P. aeruginosa Growth. 

The rate of infection for each of the 4 phages (ancestral D3112, eD3112, ancestral 

Dobby, and eDobby) was measured every hour for 8 hours using a spectrophotometer. The 

spectrophotometer measured the bacterial culture density at 600nm. Two multiplicities of 

infections (MOI), or the ratio of phage particles to bacterial cells, were tested: 1 and 10. Each 

MOI was tested in triplicate for each phage strain with a single control sample of P. aeruginosa. 

The protocol began by inoculating 25mL of LB with a single colony of P. aeruginosa ATCC 

15692 that was grown overnight with shaking at 37 degrees Celsius. Due to the titer of the P. 

aeruginosa ATCC 15692 being similar to the phages’ titers, the bacterial culture needed to be 

diluted 1:100 in LB media to be able to achieve an MOI of 10 for the phages. The next day, the 

bacterial culture was diluted as 3mL culture into 297mL LB to adjust bacterial concentrations to 

achieve the two MOIs to be tested.  

The 300mL of diluted culture was then divided into 9 1mL microcentrifuge tubes, to 

serve as the bacterial control without phage, and 8 30mL flasks. Each of the 8 flasks included the 

addition of the appropriate amount of one of the 4 phages at one of the 2 MOIs. The ancestral 

D3112 phage required 0.1uL lysate per 1mL diluted bacterial culture to maintain an MOI of 1 

and 1uL lysate per 1mL culture for an MOI of 10. eD3112 used 1uL lysate per 1mL diluted P. 
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aeruginosa for an MOI of 1 and 10uL lysate per 1mL bacterial culture to achieve an MOI of 10. 

Both ancestral Dobby and eDobby needed 0.1uL of phage lysates per 1mL of culture for MOIs 

of 1 and 1uL of lysate per 1mL culture to maintain MOIs of 10. Each flask was then divided into 

27 1mL microcentrifuge tubes and incubated with shaking at 37 degrees Celsius. Three samples 

per phage/MOI and one sample of the control were immediately removed, transferred to 1mL 

cuvettes, and run through the spectrophotometer at 600nm. Every 60 minutes thereafter, 3 

samples per phage/MOI and 1 sample of the control were similarly transferred to 1mL cuvettes 

and run through the spectrophotometer. 

 Along with the spectrophotometric analysis, all samples, including the control samples, 

from 0 hours, 1 hour, and 8 hours were saved for further testing. Each was centrifuged at 

13,000xg for 5 minutes and the lysate was separated from the cell pellet in the microcentrifuge. 

For the 0 hour samples, the removed lysates were filtered through 0.22um cellulose acetate 

membrane syringe filters and stored at 4 degrees Celsius for plating. The 1 hour samples’ cell 

pellets were resuspended in 1mL LB, vortexed for 30 seconds, and stored at 4 degrees Celsius 

for plating. The 8 hour samples had both their lysates filtered through 0.22um cellulose acetate 

membrane syringe filters, as well as their cell pellets resuspended in 1mL LB and vortexed for 

30 seconds. Both the lysates and the resuspended cell pellets of the 8 hour samples were stored at 

4 degrees Celsius for future plating. The 0 hour lysates and the 8 hour lysates were all diluted in 

10-fold serial dilutions from 100 to 10-7. Each dilution series was 10uL spot-plated onto lawns of 

500uL P. aeruginosa ATCC 15692 and 3mL LB soft agar (0.7% agarose) on LB agar plates 

(1.7% agarose) that were then incubated overnight at 37 degrees Celsius. The 1 hour resuspended 

cell pellets and the 8 hour resuspended cell pellets were plated for bacterial colony counts. The 
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control samples without phage were required to be diluted in order to count the individual 

colonies, so they were diluted to both 10-4 and 10-5. 100uL of each of the dilutions were plated 

onto LB agar plates (1.7% agarose) and incubated overnight at 37 degrees Celsius. The triplicate 

samples that were inoculated with phage were not required to be diluted. 100uL of each of the 

samples were plated onto LB agar plates (1.7% agarose) and incubated overnight at 37 degrees 

Celsius.  

Results 

Verification of Ancestral and Engineered Phages. 

The Dobby phage and the D3112 phage were successfully engineered to their 

counterparts, eDobby and eD3112. The genome of D3112 was enzymatically digested to remove 

the C repressor gene from the beginning of the sequence. The genome was cut at 1,207 bp, which 

removed the C repressor gene as well as part of a helix-turn-helix domain-containing protein. 

The digested DNA was then transformed in P. aeruginosa ATCC 15692 competent cells to yield 

the engineered eD3112 phage. Primers were created to amplify the cut site of the enzymatic 

digestion (Table 2). Figure 14 displays that the ancestral D3112 phage retained the amplified 

cut site, but eD3112 did not retain that region.  
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Figure 14. Verification of enzymatic digest for eD3112. Primers amplify the region around the 

cutsite from the digestive enzyme. The ancestral D3112 displays a band because it was not 

digested. The same region was not amplified from eD3112 because it was digested.  

 The genome of Dobby was also cut using an enzymatic digest to remove the integrase 

gene. The resulting DNA was then confirmed to have been digested using primers that amplify 

over the cut site of the enzymatic digestion (Table 2). Figure 15 confirms that the digested DNA 

was cleaved at the restriction recognition site. The digestion cutsite at 33,840 bp excised the 

integrase gene along with 4 additional coding regions: a phosphoadenosine phosphosulfate 

reductase, a DUF4224 domain-containing protein, a hypothetical protein, and part of a DNA 

cytosine methyltransferase. The digested Dobby DNA could not be transformed into a viable 

phage without these 4 missing genes. Thus, primers were created to amplify these 4 coding 

regions from the Dobby genome (Table 2). The amplicon was digested and then ligated to the 

enzymatically digested genome. The product was transformed in P. aeruginosa ATCC 15692 

competent cells to yield the engineered eDobby phage. Figure 16 displays the presence of the 4 

missing genes in both the ancestral Dobby phage and eDobby. Figure 17 shows that the missing 
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genes were ligated at the digestion cut site as both Dobby and eDobby display amplicons from 

the Dobby digestion primers (Table 2).  

 

Figure 15. Verification of enzymatic digest for Dobby. Primers amplify the region surrounding 

the cutsite from the digestive enzyme. The ancestral Dobby displays a band because it was not 

digested. The digested Dobby did not have the region amplified because it was digested. 

 

Figure 16. Presence of missing genes ligated onto end of eDobby. The missing genes were 

amplified from the ancestral Dobby using primers specific to those genes. Both Dobby and 

eDobby display amplified bands because the missing genes were ligated onto the digested Dobby 

DNA to produce eDobby. 
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Figure 17. Verification of amplified genes ligated to digestion site. The same primers used to 

verify the digestion of the Dobby DNA were used to display the ligation of the missing genes to 

the end of the digested Dobby. After ligating the missing genes to the cutsite, eDobby displays 

an amplified band for the region surrounding the digestive cutsite. 

Host Ranges of Ancestral and Engineered Bacteriophages. 

The host range of the ancestral and engineered phages was determined using 19 P. 

aeruginosa strains - 18 clinical urinary isolates and 1 laboratory strain, P. aeruginosa ATCC 

15692. The host range assays show that removing the integrase or C repressor could change the 

ability of the phages to lyse different strains of P. aeruginosa. The ancestral Dobby phage was 

able to lyse 9 of the 19 total strains of P. aeruginosa and eDobby was able to lyse 14 of the 

strains (Figure 18). After removing the integrase gene, eDobby lost the ability to lyse 1 strain of 

P. aeruginosa but gained the ability to lyse 6 more strains of P. aeruginosa than the ancestral 

Dobby (Figure 18). The host ranges of the ancestral and engineered D3112 phages were also 

compared. The ancestral D3112 phage was able to lyse 12 of the 19 P. aeruginosa strains and 

eD3112 was able to lyse 10 of those 12 strains (Figure 19); eD3112 was not able to lyse any 

additional P. aeruginosa strains. The differences in host ranges between the ancestral phages and 

their corresponding engineered phages confirms the hypothesis that removal of either the 

integrase gene or the C repressor gene can affect the phage’s ability to lyse a bacterial strain. 
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Figure 18. Host range of eDobby versus Dobby. The lytic activity of the 2 phages was observed 

on 18 clinical isolates and 1 laboratory strain of P. aeruginosa. eDobby could not lyse UMB4740 

that Dobby could, but eDobby was able to lyse 6 more strains than Dobby, UM151, UMB0801, 

UMB0802, UMB2231, UMB2253, and UMB2261. 

 

Figure 19. Host range of eD3112 versus D3112. The lytic activity of the 2 phages was 

determined on 18 clinical isolates and 1 laboratory strain of P. aeruginosa. eD3112 could not 

lyse 2 strains that D3112 was able to, UMB4836 and UMB8183. 
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The ancestral and engineered phages were also tested on four biofilm-forming strains. 

The 4 biofilming strains were evolved from two strains of P. aeruginosa, the laboratory strain 

tested in the prior host-range assays (ATCC 15692) and UMB8183; these strains were evolved 

with minimal nutrients and oxygen for over 1 year, producing dense biofilms (Figure 20). 

Samples were taken from each of the 4 biofilms, disrupted and homogenized to release the 

bacteria within the biofilms, and grown to produce bacterial cultures. The 4 phages were spotted 

in duplicate onto bacterial lawns of these 4 strains. All 4 phages shared similar lytic activities 

across the 4 biofilm-forming hosts. While the 4 phages were able to produce plaques on one of 

the strains evolved from UMB8183, they were all unable to produce lytic activity in the second 

UMB8183 lawn. None of the phages were capable of producing plaques on the lawns of the 

ATCC 15692 evolved strains. In fact, addition of phage increased the growth of the bacteria at 

the area of spotting, resulting in thicker bacterial formations. 

 

Figure 20. Four biofilms evolved for over a year from 2 strains of P. aeruginosa. 2 biofilms from 

each of P. aeruginosa ATCC 15692 (left) and P. aeruginosa UMB8183 (right) were grown with 

minimal nutrients and minimal oxygen for several months. After over 1 year of growth, they 

formed thick, distinct biofilms in flasks. 
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Dobby Integration Analysis. 

eDobby gained the ability to lyse 6 strains of P. aeruginosa that the ancestral Dobby was 

not able to lyse: UMB151, UMB0801, UMB0802, UMB2231, UMB2253, and UMB2261. The 

possibility of the ancestral Dobby integrating into these strains rather than lysing them was 

investigated using colony PCRs with primers specific to the Dobby phage. The 6 bacterial strains 

exposed to Dobby lysate were compared to the same 6 strains without any additional phage and 

the reactions were run in triplicate. UMB151 displayed amplified bands in both the samples 

exposed to Dobby lysate and the control samples (Figure 21). After running a BLAST of the 

UMB151 assembly against Dobby’s genome, it was found that UMB151 contains a prophage 

that is highly similar to Dobby. 

UMB0802 displayed the presence of Dobby in the phage-exposed colony but not in the 

control colony reactions (Figure 21). After repeating the PCR for UMB0802 and obtaining the 

same results, it was confirmed that Dobby could be infecting and integrating into the genome of 

UMB0802 without showing any lytic activity against the bacteria (Figure 22). UMB0801, 

UMB2231, UMB2253, and UMB2261 did not display any evidence of Dobby integrating into 

the bacterial genomes (Figure 21). 
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Figure 21. Integration analysis for P. aeruginosa strains lysed by eDobby but not Dobby. The 6 

strains of P. aeruginosa that eDobby was able to lyse but Dobby could not lyse were evaluated 

for possible integration activity of Dobby. Dobby lysate was added to the 6 strains and the 

bacterial pellets were washed thoroughly to remove any free-floating phage. Colony PCR using 

Dobby primers was used to visualize signs of Dobby integrating into the host cells. UMB151 

contained a prophage similar to Dobby which is why there are bands of different lengths 

amplified in both the cultures with added lysate and the control cultures. UMB0802 was the only 

strain to show integration activity of Dobby in the cultures with added lysate but not the control 

cultures. 

 

Figure 22. Repeated integration analysis of UMB0802 to verify results. The analysis was 

repeated for UMB0802 using several colonies to verify the results from Figure 21. The band in 

the culture with added Dobby lysate and no bands in the control cultures verifies that Dobby 

displayed lysogenic activity. 
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Phage Effect on P. aeruginosa Growth. 

To compare the infection rate of the ancestral and engineered phages, one host was 

selected, the laboratory strain of P. aeruginosa ATCC 15692. Each phage was tested at two 

titers, one at a multiplicity of infection (MOI) of 1 and once at an MOI of 10, and each phage and 

MOI was performed in triplicate. Cultures were measured over time using optical density to 

quantify microbial growth over time in response to phage treatment. 

Figure 23 displays the bacterial growth in the presence of D3112 and eD3112 at both 

MOIs of 1 and 10 in comparison to the control P. aeruginosa ATCC 15692, grown without 

phage treatment. It can be seen that both phages inhibit bacterial growth over the course of 8 

hours at both MOIs. While eD3112 performs slightly better than the ancestral D3112, it is not 

statistically significant. After 1 hour with eD3112 treatment, the bacteria no longer grew, and the 

optical density remained below 0.005 for the duration of the analysis. Figure 24 shows the 

bacterial growth in the presence of Dobby and eDobby at both MOI 1 and MOI 10 in comparison 

to untreated P. aeruginosa ATCC 15692. Similar to that observed for D3112 treatment, both 

MOIs of Dobby and eDobby continued to inhibit bacterial growth over the 8 hours. Both phages 

at MOI of 10 performed slightly better than the phages at MOI 1, but all maintained the culture 

optical density below 0.01 for the entirety of the experiment after 1 hour. 
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Figure 23. eD3112 and D3112 effect on P. aeruginosa growth. The growth of P. aeruginosa 

ATCC 15692 was analyzed over 8 hours using spectrophotometric data. Either eD3112 or D3112 

was added to the bacterial cultures at an MOI of 1 or 10. The growth of the bacteria was 

measured and compared to the control culture without any added phage. Both phages at both 

MOIs severely stunted the growth of the P. aeruginosa strain throughout the 8 hours. 

 

Figure 24. eDobby and Dobby effect on P. aeruginosa growth. The growth of P. aeruginosa 

ATCC 15692 was analyzed over 8 hours using spectrophotometric data. Either eDobby or Dobby 

was added to the bacterial cultures at an MOI of 1 or 10. The growth of the bacteria was 

measured and compared to the control culture without any added phage. Both phages at both 

MOIs severely stunted the growth of the P. aeruginosa strain throughout the 8 hours. 
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To complement, the spectrophotometric data collected, P. aeruginosa was also plated for 

colony counts. The resuspended cell pellets of the control P. aeruginosa strain ATCC 15962 and 

the cultures that had been treated with the 4 phages at both MOI 1 and MOI 10 from 1 hour and 

8 hours were retained. Figure 25 and Figure 26 display the titers of all 1 hour and 8 hour 

bacterial cultures, both treated with phage and untreated. All 4 phages at both MOIs greatly 

reduced the number of colonies produced by the bacteria in comparison to the control culture. 

The control P. aeruginosa culture had a titer of 6.00x105 cfu/mL at 1 hour and continued to grow 

throughout the experiment to 5.00x106 cfu/mL at 8 hours. 

 The triplicate titers of the bacteria treated with the 4 phages remained consistently lower 

than the control P. aeruginosa. The cultures treated with ancestral D3112 at MOI of 1 had an 

average titer of 4.66x102 cfu/mL at 1 hour that declined to an average of 3.97x101 cfu/mL at 8 

hours. The bacteria treated with D3112 at MOI of 10 had an average titer of 6.10x101 cfu/mL at 

1 hour and retained a similar titer of 8.53x101 cfu/mL at 8 hours. The cultures treated with 

eD3112 at MOI of 1 were found to have an average titer of 6.13x101 cfu/mL at 1 hour and 

increased slightly to 1.25x101 cfu/mL at the 8 hour mark. The cultures treated with eD3112 at 

MOI of 10 had a very low average titer of 4.00x100 cfu/mL at 1 hour and 2.60x101 cfu/mL at 8 

hours. 

 The titers of the bacteria treated with the ancestral and engineered Dobby phages also 

retained low titers in comparison to the control P. aeruginosa. The bacteria treated with the 

ancestral Dobby phage at MOI of 1 were found to have an average titer of 1.81x102 cfu/mL at 1 

hour that decreased to 5.87x101 cfu/mL at 8 hours. When the MOI of Dobby was increased to 10, 

the bacteria had an average titer of 3.10x101 cfu/mL at 1 hour and 2.19x102 cfu/mL at 8 hours. 



 

 

67 

The cultures treated with eDobby at MOI of 1 maintained an average titer of 5.70x102 cfu/mL at 

1 hour and 5.37x101 cfu/mL at 8 hours. At an MOI of 10, the bacteria infected with eDobby had 

an average titer of 1.28x102 cfu/mL at 1 hour and 1.20x102 cfu/mL at 8 hours. Overall, all P. 

aeruginosa bacterial cultures treated with the 4 phages at both MOIs maintained significantly 

lower titers than the control P. aeruginosa displaying the effectiveness of phage infection on 

bacterial growth. 

 

Figure 25. Growth of P. aeruginosa at 1 hour and 8 hours after eD3112 and D3112 added. 

Colony counts were taken from P. aeruginosa ATCC 15692 at 1 hour and 8 hours after being 

treated with either eD3112 or D3112 at MOIs of 1 or 10. The results are compared to the control 

bacteria without added phage. At 1 hour the growth of the bacteria was depleted and the trend 

continued through the 8 hours. 
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Figure 26. Growth of P. aeruginosa at 1 hour and 8 hours after eDobby and Dobby added. 

Colony counts were taken from P. aeruginosa ATCC 15692 at 1 hour and 8 hours after being 

treated with either eDobby or Dobby at MOIs of 1 or 10. The results are compared to the control 

bacteria without added phage. At 1 hour the growth of the bacteria was depleted and the trend 

continued through the 8 hours. 

Efficient Lysis by Ancestral and Engineered Phages. 

The filtered lysates of D3112, eD3112, Dobby, and eDobby at both MOIs from 0 hours 

and 8 hours were saved from the analysis to identify the titers of the phages during infection. 

Figure 27 and Figure 28 display the titers of all 4 phages at 0 hours and at 8 hours. As the 

experiment was performed in triplicate, the averages of the phage titers were graphed with 

standard deviation gridlines. All phages gained significantly higher titers at the 8 hour mark as 

they had ample time to replicate in the host bacterial cells.  

D3112 MOI 1 had an average titer of 4.23x108 pfu/mL at 0 hours but increased to an 
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10 with an average titer of 4.57x108 pfu/mL at 0 hours and 2.70x1010 pfu/mL at 8 hours. eD3112 

MOI 1 had an average titer of 5.87x108 pfu/mL at 0 hours which increased to 2.63x1010 pfu/mL 

at 8 hours. The phage at an MOI of 10 had an average titer of 2.21x109 pfu/mL at 0 hours which 

was similar to the titer at 8 hours of 6.67x109 pfu/mL. 

Dobby MOI 1 displayed 5.03x108 pfu/mL as its average titer at 0 hours and 2.63x1010 

pfu/mL at 8 hours. At an MOI of 10, Dobby exhibited a similar shift in titers with an average of 

7.46x108 pfu/mL at 0 hours and 1.70x1010 pfu/mL at 8 hours. eDobby performed moderately 

better than its ancestor at both an MOI of 1 and an MOI of 10. eDobby with an MOI of 1 had an 

average titer of 4.27x108 pfu/mL at 0 hours and 3.27x1010 pfu/mL at 8 hours. At MOI 10, 

eDobby had 4.37x108 pfu/mL as its average titer at 0 hours and 2.00x1010 pfu/mL at 8 hours. All 

four phages at both MOI 1 and MOI 10 showed significant replication from the beginning to the 

end of the 8 hour experiment, displaying the ability of the phages to continually infect P. 

aeruginosa during phage treatment. 

 

Figure 27. Plaque counts of eD3112 and D3112 at 0 and 8 hours post-inoculation of culture. 

After either eD3112 or D3112 were added to P. aeruginosa ATCC 15692 cultures at MOIs of 1 

or 10, phage lysates were filtered from the cultures at 0 hours and 8 hours. Phage lysates were 

plated on bacterial lawns in dilution series. Both phages at both MOIs had large reproduction 

activity while maintaining lytic activity of the bacteria. 
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Figure 28. Plaque counts of eDobby and Dobby at 0 and 8 hours post-inoculation of culture. 

After either eDobby or Dobby were added to P. aeruginosa ATCC 15692 cultures at MOIs of 1 

or 10, phage lysates were filtered from the cultures at 0 hours and 8 hours. Phage lysates were 

plated on bacterial lawns in dilution series. Both phages at both MOIs had large reproduction 

activity while maintaining lytic activity of the bacteria. 

Discussion 

A broad spectrum of phages are needed to combat the rising rates of antibiotic-resistant 

infections in humans. The CDC considers antibiotic resistance to be one of the biggest health 

challenges in our society with approximately 2.8 million people contracting an antibiotic-

resistant infection each year (CDC, 2020). As more strains of bacteria become resistant to 

antibiotic treatments, it is important to expand our phage therapy candidates to include not only 

obligately lytic phages, but also engineered temperate phages. Temperate phages that have been 

engineered to knock out the integrase or the C repressor have been proven successful at killing 

bacteria (Dedrick et al., 2019; Kilcher et al., 2018; Zhang et al., 2013), including P. aeruginosa 

(Mageeney et al., 2020).  

The D3112 and Dobby phages isolated from P. aeruginosa are perfect examples of 

temperate phages to engineer for phage therapy against P. aeruginosa infections. Here, I have 

demonstrated the genetic engineering of D3112 and Dobby and their ability to infect clinical 
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isolates of P. aeruginosa. The C repressor of D3112 and the integrase of Dobby were removed 

via enzymatic digest to create obligately lytic variants of the phages that infect and kill P. 

aeruginosa. The integrase gene and the C repressor gene were located at the ends of the 

respective phages, making their removal ideal for enzymatic digestion. After the initial 

enzymatic digest to remove the integrase from the genome of Dobby, an extra 4 genes that were 

critical to the viability of the phage were also removed: a DUF4224 domain-containing protein, a 

phosphoadenosine phosphosulfate reductase, a hypothetical protein, and part of a DNA cytosine 

methyltransferase. Once the 4 coding regions were restored, we were able to produce viable 

engineered progeny.  

The functionality of the DUF4224 domain-containing protein is unknown. It is 

commonly found within phage genomes, yet this particular protein from Dobby does not have 

any similarity to other DUF4224 proteins within phages (Schuster-Böckler et al., 2004). The 

protein is only 70 nucleotides long and while it is found in both bacterial and viral genomes, it is 

assumed to be of phage origin (Schuster-Böckler et al., 2004). The phosphoadenosine 

phosphosulfate reductase is involved in the reduction of activated sulfate into sulfite and is 

commonly found in P. aeruginosa genomes (Krone et al., 1990). As this protein is not 

characterized to have specific functionality in phage genomes, the protein was most likely 

acquired by the phage during integration and excision. The hypothetical protein encoded in the 

genome of Dobby is only 62 nucleotides long. The protein is highly similar to other hypothetical 

proteins found within P. aeruginosa genomes, but only shows similarity to the φCTX phage 

(Accession no.: NC_003278), a close relative of Dobby. DNA cytosine methyltransferases are 

frequently found in bacterial genomes, but the presence and functionality of the proteins in 
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phages has also been studied (Murphy et al., 2013). Lytic and lysogenic phages alike can encode 

methyltransferases and they assist in protecting the phages from the bacterial host’s restriction 

endonucleases (Murphy et al., 2013). Future studies could explore which of these 4 genes are 

essential for Dobby’s successful replication in and lysis of P. aeruginosa. 

After successful creation of the engineered eD3112 and eDobby phages, both displayed 

changes to the bacterial isolates they were able to infect. eD3112 lost the ability to lyse 2 strains 

(UMB4836 and UMB8183) that were susceptible to the ancestral D3112 phage. After the 

removal of the integrase gene, eDobby could not lyse 1 strain (UMB4740) of P. aeruginosa that 

its ancestor could lyse. It is possible that there was interference with the phage receptors to 

recognize the bacterial host once the C repressor or integrase was removed. Alternatively, it 

could be that the lysis observed with the ancestral phages was the result of a native prophage in 

the UMB strain being induced. However, UMB4836 contained 1 high confidence prophage 

prediction within its genome. 

While eD3112 was not able to lyse any additional strains of P. aeruginosa in comparison 

to its ancestral phage, eDobby was able to lyse 6 additional strains of P. aeruginosa that the 

ancestral Dobby could not. We hypothesized that the Dobby phage was integrating into the 

genomes of these 6 strains because it still contained the integrase gene. It was determined that of 

the 6 strains, Dobby was integrating into the genome of 1 strain, UMB0802. While we have 

ways to test for attachment of phages to bacterial cells, it is difficult to determine if a phage is 

really infecting a bacterial cell without extensive sequencing techniques. Engineering temperate 

phages to become obligately lytic displays a novel way to determine if a temperate phage is just 

unable to infect a bacterial strain or if it is actually integrating into the host cell’s genome. 
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Along with being able to lyse the majority of the tested clinical isolates of P. aeruginosa, 

both engineered phages were also able to infect and kill the host cells within 1 of the 4 tested 

biofilms formed by P. aeruginosa. Most interesting was the fact that none of the phages, neither 

the ancestral nor the engineered strains, were capable of lysing the evolved biofilms of the 

laboratory P. aeruginosa ATCC 15692 strain, the same strain used to characterize the fitness of 

these phages. In fact, we observed increased growth of the evolved P. aeruginosa ATCC 15692 

strain in the area of the phage spot. Our study also found that only one of the evolved P. 

aeruginosa UMB8183 was lysed by the phages, while the other evolved strain was not. This 

suggests different adaptations occurred in the two strains leading one and not the other to be 

resistant to phage lysis. As these methods only tested the phages on the bacterial cells from the 

biofilms, a future step should be to test the efficacy of the engineered phages on the biofilm 

formations themselves. Antibiotics are often unable to penetrate biofilms, making the infections 

difficult to resolve (Singh et al., 2016). The use of engineered phages to penetrate and lyse the 

bacterial cells within a biofilm would greatly expand the ability of physicians to treat 

complicated P. aeruginosa infections.  

The 8 hour infection analysis of the engineered phages displayed their abilities to kill P. 

aeruginosa cultures and consistently reproduce throughout the 8 hours, which were comparable 

and even superior to the ancestral phages. Previous phage therapy studies have displayed 

resolution of bacterial infection with phage concentrations ranging from 105 pfu/mL to 109 

pfu/mL per dose (Dedrick et al., 2019; Jault et al., 2019; Jennes et al., 2017; Rose et al., 2014; 

Wright et al., 2009). The pfu/mL for each of the engineered phages fell within the range of prior 

phage therapy studies required for therapeutic treatments. eD3112 displayed 5.87x108 pfu/mL at 
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the beginning of the in vitro testing against P. aeruginosa that quickly grew to 2.63x1010 pfu/mL 

after 8 hours. eDobby showed similar results with 4.27x108 pfu/mL at the start of the analysis 

that grew to 3.27x1010 pfu/mL at 8 hours post-inoculation.  

Other phage therapy studies noted MOI values rather than pfu/mL values for the phages. 

One study focusing on the phage treatment of an aortic graft noted only an MOI of 0.00001 was 

required to display significant reduction of P. aeruginosa biofilms which is much below the 

typical requirement for treatments (Chan et al., 2018). Another study using phages to treat a P. 

aeruginosa burn wound required an MOI of 10 to treat the infection (Dedrick et al., 2019; Rose 

et al., 2014). Similar results were seen in the engineered eD3112 and eDobby phages. Both an 

MOI of 1 and an MOI of 10 were tested against P. aeruginosa. Significant cell death and stunted 

growth of the bacteria was displayed at both MOIs. Further testing would be needed to find the 

minimum MOI needed to sufficiently treat a P. aeruginosa infection. With such high titers and 

their efficacy in killing P. aeruginosa cells, the engineered eD3112 and eDobby make 

noteworthy candidates for phage therapy against P. aeruginosa infections.  
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CHAPTER FOUR 

CONCLUSIONS 

This study produces the first known comprehensive catalogue of predicted prophages 

from all publicly available genomes of P. aeruginosa. High confidence predictions of prophages 

are prevalent in P. aeruginosa, and they are taxonomically diverse, including representatives of 

the order Caudovirales as well as to phages of the Inoviridae and Myoviridae families. 

Homologous genes are common across these taxonomic groups, as our network analysis 

identified connections between phages of Caudovirales and inoviruses. While many of the 

predicted prophage sequences resembled characterized phages and thus could be taxonomically 

classified, nearly half of the predictions are novel and thus could not be classified. Future 

analyses need to be done to determine the potential taxonomic families of these Unknown 

predicted prophages.  

The integrase and C repressor coding regions, typically conserved among temperate 

phages, were found to be very diverse among the predicted prophages, especially the integrases. 

It was expected that phages with similar terminases, a conserved gene among tailed phages, 

would also share similar integrases or C repressors. However, this hypothesis was not observed 

among the predicted prophages, signifying substantial genetic exchange between P. aeruginosa 

prophages.  

While there was no association found between the predicted prophages and antibiotic 

resistance genes in P. aeruginosa, there may be potential associations with virulence factors. 



76 

 

 

Prophages may also have an effect on the formation of biofilms by P. aeruginosa. Future studies 

are needed to examine the relationship between prophage presence and biofilms, as well as 

prophage effect on other pathogenic facets of P. aeruginosa. 

This study also presented the successful engineering of temperate phages to obligately 

lytic phages, expanding the potential candidates for phage therapy. The C repressor was removed 

from the phage D3112 to create an obligately lytic eD3112 phage, the first known use of this 

technique for P. aeruginosa phages. The engineering produced a viable phage with similar, if not 

better, lytic activity against P. aeruginosa clinical isolates compared to the ancestral D3112 

phage. There were changes to the host range after engineering that resulted in eD3112 not being 

able to lyse 2 clinical isolates that its temperate ancestor D3112 could not.  

The obligately lytic eDobby phage was produced from Dobby by removing the integrase 

and replacing 4 additionally removed genes required for viability. eDobby displayed similar, if 

not better, lytic activity against clinical isolates of P. aeruginosa compared to the ancestral 

Dobby phage. Changes to the host range were observed after engineering, resulting in eDobby 

not being able to lyse 1 strain but being able to lyse 6 additional clinical isolates compared to 

Dobby. It was determined that Dobby was integrating into 1 of the 6 clinical isolates that eDobby 

was able to lyse after the integrase was removed. Engineering temperate phages could be used in 

future studies as an assay to determine whether the temperate phages are integrating into 

bacterial host genomes or if they are unable to infect cells when lytic activity is not observed.   

Both engineered phages displayed lytic activity against the bacterial cells from 1 of the 4 

tested P. aeruginosa biofilming lines, making the phages potential candidates for phage therapy 

against P. aeruginosa infections that include biofilms. However, future studies are needed to test 
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the phages on biofilms rather than only the bacterial cells from within the biofilms. P. 

aeruginosa biofilms in the lungs of cystic fibrosis patients can be lethal. As such, phages capable 

of disrupting these biofilms and clearing the infection are desperately needed. The next critical 

step in assessing the efficacy of engineered phages such as eD3112 and eDobby, or similar 

engineered temperate phages, is animal testing before the phages can be fully considered as 

candidates for phage therapy. 

The ability to successfully engineer temperate phages to become obligately lytic greatly 

increases the catalogue of phages available to treat bacterial infections. With growing rates of 

antibiotic resistance, new treatment options are in high demand. The abundance of temperate 

phages in the environment and the human body cannot be ignored any longer. Engineering 

temperate phages to become obligately lytic alleviates the fears associated with possible 

integration of the phages meant to treat infections. As such, engineered temperate phages are 

ideal candidates to treat bacterial infections. While we have focused here on engineered 

temperate phages to combat P. aeruginosa, the same strategy can be employed for temperate 

phages infectious of other bacterial species.  
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