A Fair Share: How Awareness of Inequality, Allocation Method, and System Justification Affect Perceptions of Distributive Fairness

David Thomas IglioZZi

Follow this and additional works at: https://ecommons.luc.edu/luc_theses

Part of the Social Psychology Commons

Recommended Citation

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Copyright © 2021 David Thomas IglioZZi
LOYOLA UNIVERSITY CHICAGO

A FAIR SHARE:
HOW AWARENESS OF DISPARITY, ALLOCATION METHOD, AND SYSTEM JUSTIFICATION AFFECT PERCEPTIONS OF DISTRIBUTIVE FAIRNESS

A THESIS SUBMITTED TO
THE FACULTY OF THE GRADUATE SCHOOL
IN CANDIDACY FOR THE DEGREE OF
MASTER OF ARTS

PROGRAM IN SOCIAL PSYCHOLOGY

BY
DAVID T. IGLIOZZI
CHICAGO, IL
DECEMBER 2021
ACKNOWLEDGMENTS

I would like to thank first and foremost my advisor and thesis director at Loyola University Chicago. Dr. Yael Granot. Without her guidance and trust, I would not be here at Loyola let alone produce work half as good as what you see here. I’d also like to thank Dr. Victor Ottati as my second reader and for his crucial input on the theoretical and statistical foundation of this work.

I owe a great degree of my success to my friends in the Social Psychology department as well as the larger Loyola University Chicago community. In times of doubt, I can always count on my peers to be there for me with reassurance and advice. In particular, I’d like to thank Salma Moaz, Kelsey Berryman, Chad Osteen, Akila Raoul, and Yelyzaveta DiStefano.

Finally, I’d like to thank my partner and best friend, Caroline Fortin. I am so lucky to have found such a wonderful person to build a future with. Without them I would truly be lost in this world.
LIST OF TABLES

Table 1. Regression Coefficients of Three-Way Interaction on Policy Fairness
Table 2. Regression Coefficients of Three-Way Interaction on Policy Support

21 25
LIST OF FIGURES

Figure 1. Mean policy support across allocation strategies and domains 6

Figure 2. Predicted mean values of policy fairness at high and low system justification for those in the moderate disparity condition 22

Figure 3. Predicted mean values of policy fairness at high and low system justification for those in the high disparity condition 22

Figure 4. Predicted mean values of policy support at high and low system justification for those in the moderate disparity condition 26

Figure 5. Predicted mean values of policy support at high and low system justification for those in the high disparity condition 27
ABSTRACT

In considering the different ways people view inequality and various proposed solutions, this study draws on classic psychological theories of distributive justice which outline three modes of allocation strategies: equality, equity, and need. While Deutsch’s (1975) work on these three allocation alternatives laid the groundwork for years of distributive justice research that would follow, little empirical work has actually experimentally evaluated the conditions under which people might be more or less willing to support equity, equality, or need-based strategies. There is evidence that certain individual difference measures can predict support for redistribution. That is—those who rate highly on system justification, political orientation, or in personal wealth and income are less likely to support redistribution (García-Sánchez et al, 2018). Building upon existing literature, I developed three distinct policy solutions based in each of the three resource allocation strategies to address a problem of inequality and measured individual difference measures as predictors for support for each of the three allocation strategies. Level of disparity corrected by each policy was also manipulated into a high and moderate category. I found that those low in system justification are more likely to support need-based policy across disparity conditions and those high in system justification are likely to support need-based policy above equity and equality-based policy when there is high disparity but are least likely to support need-based policy when there is moderate or ambiguous disparity.
A FAIR SHARE: HOW AWARENESS OF INEQUALITY, ALLOCATION METHOD, AND SYSTEM JUSTIFICATION AFFECT PERCEPTIONS OF DISTRIBUTIVE FAIRNESS

Inequality in the United States has been rising for decades. Between 1983 and 2016, the upper class increased their total share of all wealth from 60% to 79%, while the lower class’ share fell from 7% to 4% (Pew Research Center, 2020). Recently, such disparities have been put into stark relief, as the COVID-19 pandemic has increased objective inequality within the U.S.; those low in socioeconomic status (SES) have a higher risk of contracting COVID-19, are more likely to have their housing and employment situations completely upended and have limited access to healthcare than those high in SES (Patel et al., 2020). Even with a plethora of evidence of inequality, people are often either unaware, unwilling to see, or disagree about whether such disparities are indeed unfair, and therefore fail to agree on optimal ways to ensure fair access to resources.

Distributive Justice

In considering the different ways people view inequality and various proposed solutions, I draw on classic psychological theories of distributive justice. Distributive justice is the perceived fairness of the distribution of conditions and goods which affect all dimensions of individual well-being (i.e., psychological, physiological, economic, and social). According to Deutsch (1975), there are three main modes, or resource allocation strategies, in which distributive justice may be achieved: equality, equity, and need. An equality-based allocation
strategy requires that equal amounts of resources are given to each recipient, as when a parent gives an equal amount of their estate away to each of three children in their will. Equity can be conceptualized as a merit-based approach to distributive justice. An equity-based allocation strategy requires that the ratio between one recipient’s input (e.g., a contribution of some sort) over the output they are given is equal to other recipients’ input/output ratios. An example of this would be when a parent bequeaths more of their estate to the child who paid for their nursing home bills than to their other two children who did not contribute financially to their parent’s long-term care. Conversely, a need-based allocation strategy requires consideration of the current relevant needs of each recipient and allocates more resources to those recipients who have the greatest need (Deutsch, 1975), as when a parent leaves more to the child who has a chronic illness, to aid with their medical expenses, than to their other two children who do not face the same financial challenges. Each approach presents a different approach to resolving inequality (which will hereafter be referred to as disparity so as not to confuse similar terms). The choice between one of the three approaches often depends on what is perceived to be the fairer of the three options.

Research suggests that perceptions of fairness are not static and depend heavily on the situation as well as the goals of both the perceiver and the allocator. Certain contextual factors, including relationship or transactional goals, can meaningfully predict what allocation strategy is seen as appropriate for a given situation. When the goal is generally enhancing productivity, as in many workplaces, there is evidence that an equity-based allocation is preferred by both workers and employers (Leventhal, 1976). When the goal is achieving cooperation and harmony within a group, an equality-based allocation is generally deemed appropriate (Smith & Cook 1973). Finally, a need-based allocation strategy is considered most appropriate when the most
salient goal is the well-being of members of a group (Schwartz, 1975). However, even within the same domain with the same goal, opinions about optimal allocation strategies may differ.

Individual Differences affecting Justice Perceptions

Such differences may stem from individual characteristics that lead some people to consider a given outcome fair while others do not across situations. For example, there is evidence that individuals perceive the cause of disparity differently across the political ideological spectrum. Conservatives are more likely to make internal attributions for others’ poverty (Weiner, Osbourne, & Rudolph, 2011), unemployment (Feather, 1985), and criminal behavior (Carroll, Perkowitz, Lurigio, & Weaver, 1987), and are more likely to oppose proposals for governmental support than their liberal counterparts (Skitka & Tetlock, 1993). This is because those high in right-wing ideology tend to be more satisfied with the existing system and believe that success is based on individual merit (Chambers, Swan, & Heesacker, 2014).

Highly correlated with political ideology (Jost et al., 2017), system justification is an important individual difference to examine when considering distributive justice. System justification is a bias that leads individuals to defend and justify aspects of the status quo (Jost, Banaji, & Nosek, 2004). Economic system justification, for example, leads individuals to perceive economic disparity as a natural condition and a product of merit and deservingness (Jost & Thompson, 2000). Economic system justification is also associated with reduced support for government intervention into disparity through redistribution or other equality-enhancing polices such as affirmative action (García-Sánchez, et. al., 2018; Jost & Thompson, 2000; Rodriguez-Bailon, Bratanova, Willis, Lopez-Rodriguez, Sturrock, & Loughnan, 2017). Thus, system justification should meaningfully determine support for certain policy approaches.
Pilot Study

To develop a method of research studying system justification and its effects on perceptions of distributive justice, one must first identify the general trends in support for the three methods of resource allocation, the types of policy endorsed by high and low system justifiers, and the domain in which allocation strategies are applied. As previously stated, it is likely that preference for allocation strategy will vary by domain, and that high and low system justifiers will display different preferences of allocation strategy regardless of domain. I developed a pilot study in which I sought to explore these patterns and use the resulting data to inform hypotheses for a subsequent study design as well as selecting a domain for future exploration.

Method. Primarily, I wanted to determine if any individual difference measures, such as system justification, predicted support for one resource allocation policy over and above the other two, and whether those distinctions were meaningfully different across policy domains. I selected five domains (i.e., healthcare, hiring, the legal system, education, and income) and wrote three short policy proposals per domain, each embodying one of the three allocation methods (equality, equity, or need). To mute the influence of variability in U.S. political knowledge on distribution preferences, I adapted Mitchell and colleagues’ (1993) hypothetical society paradigm, in which participants imagine they are a citizen of the hypothetical society; I asked American participants, Amazon Mechanical Turk participants recruited through Cloud Research, to imagine they were a citizen of a fictional “Country Z,” to consider how likely they were to support redistribution policy proposals across domains, and to indicate their political beliefs.
Across two studies\(^1\) (N=385)—one pre-COVID (January 2019) and one during COVID (June 2019)—I measured political ideology, system justification, and self-reported income, and tested how these factors predicted broad support for equality, equity, and need-based proposals across several policy domains. Political ideology was measured as a continuous variable in which participants were asked how liberal or conservative they would describe themselves on an 11-item scale (1=extremely liberal, 11=extremely conservative). System Justification was measured as an 8-item index assessing how strongly they hold system justifying attitudes (1=strongly agree, 9=strongly disagree).

In exchange for $0.50, Amazon Mechanical Turk Workers participated in the study in the winter and spring of 2020. The final sample included in the analysis below included 385 participants (\(M_{\text{age}} = 37.41, SD_{\text{age}} = 11.57; M_{\text{SysJust}} = 5.55, SD_{\text{SysJust}} = 1.25; M_{\text{politicalO}} = 7.72, SD_{\text{politicalO}} = 2.75\)) of whom 61.8% self-identified as men and 37.9% self-identified as women. The racial breakdown of the sample is as follows: 242 White, 97 Black, 26 Latinx, 5 Asian, 14 Native American, and 1 Pacific Islander.

Results. A 3(allocation strategy: equity, equality, need) x 5(domain: hiring, income, education, health, the legal system) repeated measures ANOVA\(^2\) was conducted to examine the difference in ratings of different policies by domain. Across all five domains, a main effect of allocation strategy on support emerged, \(F(2, 645)=10.655, p<.001,\) partial \(\eta^2=.028.\) Bonferroni post hoc tests indicated significantly higher support for need-based policies over and above

\(^1\) I collapsed participants across two periods of data collection—the first preceding and second during COVID—because most primary analyses did not reveal a significant moderating effect of time (\(p>.05\)). Participants who were unable to pass an attention check were dropped from the sample.

\(^2\) Mauchley’s test indicated that the assumption of sphericity had been violated, so Greenhouse-Geisser corrected tests are reported (Howell, 2012).
equity- and equality-based policies ($p=.002$ and $p<.001$, respectively), though there was no significant difference between equity- and equality-based policies. Further, results indicated a significant interaction of allocation strategy and domain, $F(8, 2393)=12.253, p<.001$, partial $\eta^2 = .032$, suggesting that context affects which policies were considered more or less fair. For example, in the healthcare domain need-based policy was preferred over both equality-based policy, $t(2393)=7.38, p < .001$, and equity-based policy, $t(2393)=8.90, p < .001$ while in the education domain both need- and equality-based policies were preferred over equity-based polices, $t(2393)=4.69, p < .001$, and $t(2393)=6.47, p < .001$, respectively (See Figure 1).

Figure 1. Mean policy support across allocation strategies and domains.

To investigate the effects of system justification beliefs on support for equality-, equity-, and need-based policies depending on domain, I measured system justification on a 9-point scale
(Kay & Jost, 2003). I used participants’ median system justification rating (\(Mdn = 4.45\)) to define those equal to or lower than the median as low system justifiers and those above the median as high system justifiers. There was a significant main effect of system justification beliefs, \(F(1, 364)=60.65, p<.001\), in which those high in system justification were significantly less likely to support any policy across domain or allocation strategy than those low in system justification. Then, I ran five separate 3(allocation strategy: equity, equality, need) x 2(system justification beliefs: high, low) repeated measures ANOVAs\(^3\) predicting support for each of the policies within each of the five domains, as moderated by system justification. Those high in system justification were less likely to support redistribution policies than those low in system justification when considering income, \(F(1, 377)=56.307, p<.001\), hiring, \(F(1, 377)=37.628, p<.001\), the legal system, \(F(1, 380)=46.682, p<.001\), healthcare, \(F(1, 377)=39.123, p<.001\) and education, \(F(1, 379)=40.423, p<.001\).

The only domain in which there was a significant interaction effect of system justification beliefs and allocation strategy was healthcare. The analysis for the healthcare domain indicated a significant interaction effect of system justification beliefs and allocation strategy, \(F(2, 376)=3.063, p<.05\). Upon further investigation, the healthcare domain’s interaction effect was driven by data from the second survey which was conducted during the first few months of the COVID-19 pandemic. Running separate ANOVA analyses between time points (pre- and during-COVID), responses revealed a non-significant interaction during time 1 and a significant interaction effect at time 2, \(F(2, 195)=3.883, p<.05\), in which high system justifiers rate support for equality significantly higher than support for equity, \(p<.05\). However, there is no significant interaction effect at time 1.

\(^3\) Mauchley’s test indicated that the assumption of sphericity had been violated, so the Greenhouse-Geisser corrected tests are reported.
difference in support between equality and need, and equity and need. Low system justifiers, on the other hand, did not indicate any significant preference for one policy over the other. The COVID-19 pandemic, a crisis in health care, spurred less discerning preference for healthcare policy among low system justifiers, perhaps due to the desire for more comprehensive healthcare policy in general.

Discussion. Apart from pandemic-specific effects in healthcare policy perception, no interaction effects emerged across the other domains. Those low in system justification were more likely to support any government policy addressing redistribution of resources over those high in system justification; high system justifiers, embracing the status quo, appeared resistant to change. There also emerged a difference in support for whether people preferred equity-, equality-, or need-based approaches that changed depending on domain. Yet, an interaction between system justification and resource allocation policy did not emerge. This is surprising because theory generally states that high system justifiers should have different patterns of support across allocation strategies than low system justifiers. While system justification and meritocracy are separate constructs (Son Hing et al., 2011), in domains in which meritocracy is the status quo, particularly hiring, and income, those high in system justification should support the more meritocratic allocation strategy (i.e., equity) more so than those low in system justification who should be less likely to support equity (Hook & Cook, 1979). However, we did not find this pattern. This implies that there may be additional moderators that affect policy support.

To further this research, it is prudent to choose one domain to investigate. With one domain, it would be easier to create a between-subjects experimental design, which is more ecologically valid in the context of policy proposals. There were generally consistently main
effects of allocation strategy and system justification across most domains. In many ways, it is heartening to see that in many domains there is a healthy balance between allocation strategy support. However, the intention of this research is to explore the areas in which disagreements are magnified to devise methods to bridge the gaps between perceptions. Therefore, it is important to select a domain in which there are meaningful difference between allocation strategy. In selecting a domain, both healthcare and education might warrant further exploration because resource allocation seems to play an important role in those domains. For my subsequent experiment, I chose to use education as my policy domain. Given the extant COVID-19 pandemic, the world is experiencing historical temporal instability and most likely participants’ healthcare perceptions will largely reflect the pandemic rather than what might be considered “normal” circumstances. Additionally, I chose to follow up on the education domain for the present study because there is a common misconception that the education system is a place of meritocracy, ignoring the socioeconomic and racial disparities that make the narrative of meritocracy farcical (Lardier et al., 2019). Potentially, differential awareness of disparity may be a key factor in support for allocation strategy. One such difference that I chose to explore in the main study is the awareness of disparity.

(Mis)Perception and Awareness of Disparity

Pervasive and systemic disparity can lead to many objective and observable negative consequences. Some of the many effects of economic disparity include a lower quality of life and well-being. Specifically, those who live in high-disparity countries have worse overall health than those who live in low-disparity countries; this is true for both poor and wealthy citizens of those countries alike (Subramanian & Kawachi, 2006; Wilkinson, 1992). Similarly, high levels of income disparity predict lower levels of social cohesion, higher levels of depression and status
anxiety, and increased drug and alcohol consumption (Wilkinson & Pickett, 2017). Income disparity also weakens democratic institutions. There is evidence that, within the United States, states with higher income disparity have lower rates of voter participation (Solt, 2010). A study across multiple democratic countries demonstrated that higher economic disparity was negatively associated with interest in politics, frequency of political discussion, and election participation in all but the wealthiest citizens of those countries, essentially demonstrating a wealth-based barrier to civic engagement (Solt, 2008). Thus, reducing objective and measurable disparity could potentially decrease these negative personal and societal effects.

Unfortunately, there is a gap between actual disparity and people’s perceptions of disparity. In one study, Americans estimated the actual national distribution of wealth across quintiles. Democrats, wealthier individuals, and those identifying as male estimated that the distribution of wealth in the U.S. was more disparate than did Republicans, poorer individuals, and participants who identified as female. However, all demographic groups estimated a more equal distribution of wealth than actually exists in the U.S. (Norton & Ariely, 2011). These results indicate that there is indeed rampant misperception of the magnitude of disparity that exists between U.S. citizens. Similarly, Kraus and colleagues’ research shows that Americans vastly and consistently underestimate the level of wealth disparity between the richest and poorest Americans as well as between Black, Latinx, and White Americans in the United States (Kraus, Onyeador, Daumeyer, Rucker, & Richeson, 2019). These results are similar across countries. A study conducted in Spain showed that when exposed to narratives that legitimize societal inequality, those who perceive higher societal inequality are more likely to rate inequality between the highest paid and lowest paid workers as fair. This effect is diminished when individuals are exposed to narratives that delegitimize societal inequality (Willis,
Rodríguez-Bailón, López-Rodríguez, & García-Sánchez, 2015). This suggests that the narratives around inequality in society affect endorsements of what level of inequality is tolerable. The chronic underestimation of societal disparity may lead to decreases in support for policy that attempts to create a more equal distribution of resources and wealth.

To understand support for redistributive policy, research often uses perception of disparity as a predictor variable. García-Sánchez and colleagues (2018) showed that the relationship between perceived disparity and support for redistribution tactics to remedy disparity was moderated by economic system justification beliefs. Individuals high in system justification beliefs did not support redistribution of resources because it challenged the status quo when they perceived high levels of disparity. In contrast, individuals low in system justification beliefs supported redistribution of resources under conditions of high disparity (García-Sánchez, et al., 2018). However, participants in this work were not presented with a specific mode or formal policy by which redistribution would take place. Further exploration into distributive justice theory may provide an avenue by which research can explore how to restore economic fairness for those affected by economic disparity by shifting support for redistribution policies.

Even with information readily available on systemic disparity, people might not acknowledge its existence and, consequently, oppose redistributive policies. Perception of disparity, presuming awareness, may be lowered by either reducing the magnitude of disparity one believes there to be or increasing the disparity that one believes to be acceptable. In fact, those who perceive high levels of disparity but do not report being personally affected by this disparity generally have a higher tolerance for economic disparity; conversely, those who experience economic disparity more regularly are less likely to tolerate societal economic
disparity (García-Castro, Rodríguez-Bailón, & Willis, 2020). These results suggest that experience with disparity may be the most effective lens for engendering awareness and accurate perceptions of disparity; yet policy change requires broader support, and therefore other means of potentially tuning the perceptions of the privileged to existing disparity.

The Present Study

While Deustch’s (1975) work on these three allocation alternatives laid the groundwork for years of distributive justice research that would follow (this piece has been cited 3724 times), little empirical work has experimentally evaluated the conditions under which people might be willing to support equity, equality, or need-based strategies. There is evidence that certain individual difference measures can predict support for redistribution. That is—those who rate highly on system justification, political orientation, or in personal wealth and income are less likely to support redistribution (García-Sánchez et al, 2018). While there is some literature that examines differences in support for the three allocation strategies, these studies are largely correlational in nature. Building upon existing literature, I developed three distinct policy solutions based upon each of the three resource allocation strategies (i.e., equality, equity, and need) to address a problem of disparity and measured individual differences (i.e., system justification) as predictors of support for each of the three allocation strategies.

Further, instead of measuring perceived disparity – which potentially conflates awareness of actual disparity with tolerance for disparity—I manipulated awareness of objective disparity. By presenting information on objective disparity, I manipulate awareness of objective disparity (moderate versus high disparity). In this way, differences that emerge between those who have access to the same information on societal disparity can be inferred to stem from acceptance of or tolerance for that disparity.
I measured three dependent variables: fairness of policy presented, support for policy presented, and subsequent behavior (i.e., sign a petition or protest) in support of the policy presented. Research provides evidence that fairness judgments precede support for policy (Joireman et al., 2001). Thus, fairness perceptions are likely to effect support. I presented policies from a hypothetical “Country Z” because in presenting American participants with disparity statistics about their own country, noise would be introduced due to people’s different levels of existing knowledge about disparity in the U.S. For example, many people do not believe in the systemic disparity present in the U.S. For example, White Americans have a higher belief in U.S. meritocracy than do minorities (Reynolds & Xian, 2014) and are less likely to believe in the systemic racism that perpetuates the racial wealth gap in the U.S (Nelson, Adams, & Salter, 2013). I wanted the manipulation of information to be equally powerful and vivid for all participants. Building on the pilot study, the present work uses a vignette describing a fictional “Country Z” to manipulate not only the context of the policy solution, but also participants’ awareness of disparity (i.e., moderate disparity vs. high disparity). This choice is meant to increase internal validity by eliminating variables outside of our fictional “Country Z” and allowing for an analysis of dispositional factors (e.g., political orientation or income) independent of context.

Hypotheses

I predict that there will be a main effect of system justification on all three of my measured dependent variables, since low system justifiers will endorse policy changes to restore fairness more than high system justifiers (who will prefer no change). I predicted that high system justifiers will perceive the equity-based allocation strategy to be significantly more fair than low system justifiers and that low system justifiers will perceive need and equality
allocation strategies as fairer than high system justifiers. As noted above, given the main effect of system justification in the pilot study, I predict that there will be a main effect of system justification in that high system justifiers will be less likely to support policy, regardless of allocation strategy, than low system justifiers. I also predicted that there will be a main effect of system justification on behavioral intention so that low system justifiers are more likely to report willingness to engage in supportive behaviors (i.e., sign a petition or attend a protest) than high system justifiers.

As there is little prior research into awareness of disparity alongside ratings of fairness, support, and behavioral intention and this experiment is largely exploratory regarding manipulation of disparity, I did not predict any main effect of awareness of disparity on any of the three dependent variables.

My predicted pattern of results is that across disparity conditions, low system justifiers will be more likely to rate need as fairer than equity or equality, will be more likely to support need over equality and equity, and will be more likely to engage in behaviors in support of need over equality and equity. That is, there will be a consistent pattern in low system justifiers’ endorsement of each of the three dependent variables, regardless of disparity condition due to the already high levels of endorsement of allocation proposals. However, for high system justifiers, I predict that disparity condition will impact the fairness, support, and behavioral intention measures between the allocation strategy conditions. That is, I believe the pattern of results will change between moderate and high disparity condition due to the likely threshold of urgency needed to impact high system justifiers’ willingness to support change in the status quo. Taken together, these predictions should yield a three-way interaction between system justification beliefs, disparity condition, and allocation strategy.
Methods

Participants and Procedure

In exchange for $0.75 (N = 598), Amazon Mechanical Turk Workers participated in the study in the spring of 2021. As an attention check, participants were asked three questions relevant to the manipulations. Participants who answered wrong or left blank more than one of the three questions were dropped from the sample (N = 5). The final sample included in the analysis below included 593 participants (251 men, 335 women, 5 nonbinary, 2 trans; 464 White, 46 Black, 21 Latinx, 61 Asian, 6 Native American, 3 Pacific Islander) (M_age = 43, SD_age = 17.14; M_sysJust = 5.43, SD_sysJust = 1.77; M_politicalO = 5.20, SD_politicalO = 2.94).

Participants were told that the purpose of this study is to evaluate proposed policy solutions to an ongoing issue that they would read about. Participants were randomly assigned into a disparity condition and then into a policy solution condition. Participants then answered several questions about their perceptions of disparity, their support for the proposed solution, their level of system justification (Kay & Jost, 2003), and several demographic questions.

This experiment used a 2 (awareness of actual disparity: high, moderate) x 3 (policy solution: equality, equity, need) x 2 (system justification: high, low) between-participants factorial design. The predictions, methods, and proposed analyses were pre-registered with AsPredicted before data collection commenced. The anonymous pdf is available here: https://aspredicted.org/CLQ_8RK.

I conducted a preliminary a priori power analysis model described above. To do so, I used G*Power to identify the number of participants needed for power of 0.8. The statistical test used was a fixed model linear multiple regression and the number of tested predictors was four—System Justification attitudes, disparity condition, and two dummy code variables for the three
allocation conditions—and there were eleven total predictors in the model accounting for the four variables and all permutations of interactions. Power analyses indicated that, anticipating a small effect-size (around 0.02) would require a sample of 602 participants. Therefore, with a total sample size of 598 participants, the experiment is most likely slightly underpowered.

Manipulations

Actual (Presented) Disparity: Participants were placed into one of two conditions: high disparity (N = 302) or moderate disparity (N = 290). In both disparity conditions, participants were asked to read a small excerpt detailing “Country Z’s” disparity in public school graduation rates between districts (See Appendix A). In the high disparity condition, the graduation rates of the districts ranged from 90% to 50%. In the low disparity condition, the graduation rates of the districts ranged from 90% to 80%. To determine appropriate percentages to use, I referred to existing state-level high school graduation rates in the U.S. The lowest high school graduation rate by state in 2018 was 69% in the District of Columbia; the highest was 91% in Iowa and New Jersey (National Center for Education Statistics, 2020). The lowest graduation rate, 69%, was lowered to 50% for the high disparity condition in order to exaggerate the disparity treatment.

Resource allocation strategy: Participants were randomly assigned to one of three allocation policy conditions: equality (N = 196), equity (N = 198), or need (N = 199). In all conditions, participants read a policy for a new magnet school system. They learned that this policy intended to help limit disparity in graduation rates between districts. Each condition (equality, equity, or need) had a policy for allotting spots into a new magnet school based on the congruent resource allocation strategy. All three conditions included the following set up:

“Country Z wants to create a magnet school system that would add one new high school per district. Magnet schools are schools that offer special courses and programs not necessarily
offered in other schools, and within Country Z are proven to deliver a higher quality learning experience than the pre-existing schools. Each magnet school has an enrollment capacity of 50% of the total children in each district.”

After this set up each policy specified a different protocol for allotting spots to the new magnet school.

Equality-based Policy: “Every child will be entered into a lottery and those randomly chosen from the lottery can attend the magnet school, regardless of their testing scores.”

Equity-based Policy: “Students who place within the highest 50% of testing scores from the previous year can attend the magnet school.”

Need-based Policy: “Students who place within the lowest 50% of testing scores from the previous year can attend the magnet school.”

As an attention check, all participants were asked to report the two different graduation rates in percentages reported in the text above as well as the policy domain and the name of the country discussed in the text.

Dependent Measures

Perception of Disparity: To determine if the moderate and high disparity conditions induced the intended effect in participants’ perceptions, the following question was asked as a manipulation check: “Better performing schools have a higher graduation rate than lower performing schools. Based on what you learned about different graduation rates in Country Z, how large do you feel the disparity is between the graduation rates of the best and lowest performing schools?” (1 = extreme disparity, 7 = no disparity at all).

Perceived Fairness: Participants were asked to what extent they believed the policy they were presented with was fair (1 = not fair at all, 7 = extremely fair).
Policy support: Participants were asked how likely they would be to support the policy (1=not at all likely, 7=extremely likely) as well as how likely they were to oppose the policy (1=not at all likely, 7=extremely likely). These two measures were highly inversely correlated, \(r(593) = -0.779, p < .001 \). Therefore, to create a single policy support measure for my analyses, I reverse coded the opposition survey item and averaged it together with the support survey item to create an aggregate measure of policy support (\(M = 4.20, SD = 1.8 \)).

Behavioral Intention: Participants were asked how likely they would be to engage in behavior on two two-item separate subscales (1=not at all likely, 7=extremely likely): one containing behaviors intended to support the policy (i.e. “I would sign a petition to support this policy” and “I would go to a protest to support this policy”) and the other containing behaviors intended to oppose the policy (“I would sign a petition to oppose this policy” and “I would go to a protest to oppose this policy”). To create a composite behavioral intention measure, I reverse coded the 2 opposition survey items and averaged them together with the 2 support survey items, to create an overall measure of behavioral intent to support the policy (\(M = 4.11, SD = 1.32 \)).

Policy efficacy: Participants were asked to what extent they believed the policy strategy suggested would effectively address the problem of graduation rate disparity (1=not at all likely, 7=extremely likely).

Demographic/Individual Difference Measures

System Justification attitudes: Using the methodology of Kay & Jost (2003), participants completed an 8-item index designed to measure how strongly they hold system justifying attitudes (1=strongly agree, 9=strongly disagree) with questions such as “In general, you find society to be fair.”
Demographics: Participants also completed several demographic questions about their age, gender, ethnicity, political ideology, and socioeconomic status.

Results

Disparity Manipulation Check

To test the effectiveness of the awareness of disparity manipulation, I conducted an independent samples t-test using the awareness of disparity condition (*moderate, high*) as the independent variable predicting participants’ reported perception of disparity. Participants in the moderate disparity condition (*M* = 4.26, *SD* = 1.38) rated the described disparity in graduation rates as significantly less extreme compared to participants in the high disparity condition (*M* = 2.35, *SD* = 1.31), *t*(590) = 17.3, *p* < .001. Thus, it can be said that the manipulation of disparity was effective in shifting perceptions of disparity as intended among participants.

Predicting Policy Fairness Perceptions

I conducted a linear regression analysis predicting policy fairness perceptions from 11 predictor variables: mean-centered System Justification (S), Disparity (D), two dummy coded variables to capture the three allocation strategies (E1 and E2), the second-order interaction terms (SxE1, SxE2, SxD, DxE1, DxE2), and the higher-order interaction terms (SxDxE1, SxDxE2). I primarily coded the allocation strategy variables such that *equality* condition was the reference category (coded 0). However, to provide all potential comparisons, I additionally created two other coding schemas: one in which the *equity* condition was the reference category, and one in which the *need* condition was the reference category. The overall model, regardless of

4 Income was used as a covariate in this data analysis which did not affect the regression model significantly nor altered the effects of the other variables so results without the covariate is presented below. Political ideology was not used as a covariate because of how highly correlated it is with system justification beliefs (e.g., Jost et al. 2017).
which policy solution was coded as the reference category, explained a significant portion of the variance in policy fairness perceptions, $\Delta R^2 = .038$, $F(11, 581) = 2.501$, $p = .004$.

There was no main effect of system justification in the equality or need condition. However, there was a main effect of system justification in the equity condition, $\beta = .161$, $t(581) = 2.353$, $p = .019$, in which high system justifiers rated equity as significantly fairer than low system justifiers. There was a main effect of disparity condition in the equality condition, $\beta = -.149$, $t(581) = -2.095$, $p = .037$, in which those who were made aware of higher disparity rated the equality policy as less fair than those made aware of moderate disparity. There was no main effect of disparity on those in the need or equity conditions.

The three-way interaction between system justification beliefs, disparity condition, and the comparison between the equality-based and need-based policy on policy fairness perceptions was marginally significant $\beta = .115$, $t(581) = 1.885$, $p = .06$. The three-way interaction in which equality-based policy was compared to equity-based policy was not significant $\beta = .073$, $t(581) = 1.194$, $p = .233$. The full results can be found in Table 1. Using a separate coding schema in which need-based policy was the reference category, I also examined the three-way interaction between system justification beliefs, disparity condition, and the comparison between need-based and equity-based policy, which was not significant $\beta = -.045$, $t(581) = -.753$, $p = .452$. Figure 2 represents the predicted mean values of policy fairness at high (+1 SD) and low (-1 SD) system justification for those in the moderate disparity condition and Figure 3 represents the predicted mean values of policy fairness at high (+1 SD) and low (-1 SD) system justification for those in the high disparity condition.
Table 1. Regression Coefficients of Three-Way Interaction on Policy Fairness

<table>
<thead>
<tr>
<th></th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>β</td>
<td>t</td>
</tr>
<tr>
<td>(Constant)</td>
<td>3.853</td>
<td>.126</td>
<td>.025</td>
<td>.335</td>
</tr>
<tr>
<td>System Justification</td>
<td>.025</td>
<td>.076</td>
<td>.025</td>
<td>.335</td>
</tr>
<tr>
<td>E1</td>
<td>.317</td>
<td>.177</td>
<td>.084</td>
<td>1.787</td>
</tr>
<tr>
<td>E2</td>
<td>.546</td>
<td>.179</td>
<td>.146</td>
<td>3.043</td>
</tr>
<tr>
<td>Disparity Condition</td>
<td>-.264</td>
<td>.126</td>
<td>-.149</td>
<td>-2.095</td>
</tr>
<tr>
<td>SxE1</td>
<td>.135</td>
<td>.102</td>
<td>.081</td>
<td>1.328</td>
</tr>
<tr>
<td>SxE2</td>
<td>-.082</td>
<td>.104</td>
<td>-.048</td>
<td>-1.785</td>
</tr>
<tr>
<td>SxD</td>
<td>-.089</td>
<td>.076</td>
<td>-.088</td>
<td>-1.175</td>
</tr>
<tr>
<td>DxE1</td>
<td>.255</td>
<td>.177</td>
<td>.083</td>
<td>1.436</td>
</tr>
<tr>
<td>DxE2</td>
<td>.411</td>
<td>.179</td>
<td>.134</td>
<td>2.293</td>
</tr>
<tr>
<td>SxDxE1</td>
<td>.122</td>
<td>.102</td>
<td>.073</td>
<td>1.194</td>
</tr>
<tr>
<td>SxDxE2</td>
<td>.196</td>
<td>.104</td>
<td>.115</td>
<td>1.885</td>
</tr>
</tbody>
</table>

The dummy code presents equality as the baseline comparison condition.
Figure 2. Predicted mean values of policy fairness at high and low system justification for those in the moderate disparity condition

Figure 3. Predicted mean values of policy fairness at high and low system justification for those in the high disparity condition

Simple Effects of System Justification and Disparity. Examining the equality-based policy condition, simple effects analyses indicated no significant main effects of system justification and disparity condition. That is—high system justifiers and low system justifiers did
not differ in their overall perceptions of fairness of equality-based policy. However, using predictive points analyses, I found that high system justifiers differed significantly in their fairness perceptions of equality-based policy as a function of disparity condition, $\beta = 0.238, t(581) = 2.324, p = .02$. High system justifiers in the moderate disparity condition rated the equality-based policy as fairer than those in the high disparity condition.

In the equity-based policy condition, simple effects analyses revealed a non-significant effect of system justification on perception of fairness in the moderate disparity condition. However, in the high disparity condition, there was a positive association between system justification attitudes and fairness perceptions of equity-based policy, $\beta = 0.194, t(581) = -2.074, p = .038$. Taken together, low system justifiers did not significantly differ in their perceptions of fairness of equity-based policy, across the two disparity conditions, nor did high system justifiers. However, specifically and only when disparity was high, high system justifiers perceived the equity-based policy to be fairer than did low justifiers.

Examining the need-based policy condition, simple effects analyses indicate no significant association of system justification and fairness perceptions in the high disparity condition and a trending positive association of system justification and fairness perceptions in the moderate disparity condition. $\beta = -.164, t(581) = -1.49, p = .137$. Further, we see that across disparity conditions, low system justifiers did not significantly differ in their fairness perceptions of the need-based policy. However, high system justifiers rated the need-based policy as marginally fairer in the high disparity condition than in the moderate disparity condition, $\beta = 0.191, t(581) = 1.86, p = .064$. These results imply that while those low in system justification attitudes remain stable in their perceptions of fairness of need-based policy regardless of disparity context, those who are high in system justification are malleable and are more likely to
perceive need-based policy as fair when awareness of disparity is high than when disparity is moderate.

Simple Effects of Resource Allocation Policy. To determine if the difference seen within cells between equality, equity, and need conditions, I conducted a simple effects analysis. In the moderate disparity condition, need is marginally significantly rated higher in support among low system justifiers than equality, $p = .069$, and not significantly different than equity, while there is no significant difference in fairness between equality and equity. There is no difference in fairness perceptions between allocation strategy in the moderate disparity condition among high system justifiers. In the high disparity condition, low system justifiers perceived need to be significantly fairer than equality, $p = .05$, though not significantly rated higher in fairness than equity, while there as no significant difference in fairness between equality and equity. High system justifiers, on the other hand, in the high disparity condition rated need, $p < .001$, and equity, $p = .002$, significantly fairer than equality, though there was no significant difference between fairness perceptions of equity and need.

Predicting Policy Support

I next conducted a linear regression analysis using the same model to predict policy from mean-centered system justification, the disparity manipulation (dummy coded), and policy solution condition (with two dummy codes, such that equality-based policy served as the reference category), including all subsequent second and third order interaction terms. The overall model, regardless of which policy solution was coded as the reference category, explained a significant portion of the variance of policy support, $\Delta R^2 = 0.038$, $F(11, 581) = 2.105$, $p = .018$. There was no main effect of either awareness of disparity or system justification in the equality, equity, or need conditions.
Table 2. Regression Coefficients of Three-Way Interaction on Policy Support

<table>
<thead>
<tr>
<th></th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>(\beta)</td>
<td>(t)</td>
</tr>
<tr>
<td>(Constant)</td>
<td>3.945</td>
<td>.129</td>
<td>.026</td>
<td>.343</td>
</tr>
<tr>
<td>System Justification</td>
<td>.027</td>
<td>.077</td>
<td>.026</td>
<td>.343</td>
</tr>
<tr>
<td>E1</td>
<td>.217</td>
<td>.181</td>
<td>.057</td>
<td>1.195</td>
</tr>
<tr>
<td>E2</td>
<td>.454</td>
<td>.183</td>
<td>.119</td>
<td>2.476</td>
</tr>
<tr>
<td>Disparity Condition</td>
<td>-.133</td>
<td>.129</td>
<td>-.074</td>
<td>-1.031</td>
</tr>
<tr>
<td>SxE1</td>
<td>.069</td>
<td>.104</td>
<td>.041</td>
<td>.663</td>
</tr>
<tr>
<td>SxE2</td>
<td>-.094</td>
<td>.106</td>
<td>-.055</td>
<td>-.883</td>
</tr>
<tr>
<td>SxD</td>
<td>-.028</td>
<td>.077</td>
<td>-.027</td>
<td>-.357</td>
</tr>
<tr>
<td>DxE1</td>
<td>.085</td>
<td>.181</td>
<td>.027</td>
<td>.467</td>
</tr>
<tr>
<td>DxE2</td>
<td>.362</td>
<td>.183</td>
<td>.116</td>
<td>1.976</td>
</tr>
<tr>
<td>SxDxE1</td>
<td>.067</td>
<td>.104</td>
<td>.039</td>
<td>.639</td>
</tr>
<tr>
<td>SxDxE2</td>
<td>.222</td>
<td>.106</td>
<td>.128</td>
<td>2.085</td>
</tr>
</tbody>
</table>

The dummy code presents equality as the baseline comparison condition.
When equality is the reference category, the three-way interaction between system justification beliefs, disparity condition, and the comparison between the equality-based and need-based policy on support was significant $\beta = 0.128, t(581) = 2.085, p = .038$. However, the three-way interaction term that compares equality-based to equity-based policy was not significant $\beta = 0.039, t(581) = 0.639, p = .523$. The full results can be found in Table 2. Using a separate coding schema in which need-based policy is the reference category, I also examined the three-way interaction between system justification beliefs, disparity condition, and the comparison between need-based and equity-based policy which trended toward significance $\beta = -0.091, t(581) = -1.535, p = .125$. Figure 4 represents the predicted mean values of policy support at high (+1 SD) and low (-1 SD) system justification for those in the moderate disparity condition and Figure 5 represents the predicted mean values of policy support at high (+1 SD) and low (-1 SD) system justification for those in the high disparity condition.

Figure 4. Predicted mean values of policy support at high and low system justification for those in the moderate disparity condition
Simple Effects of System Justification and Disparity. Parsing first participants’ support in the equality condition, simple effects analyses revealed no significant effects of system justification and disparity condition. That is—high system justifiers and low system justifiers did not differ in their support for equality-based policy. Additionally, across disparity conditions, support for equality did not change.

Focusing next on the equity condition, simple effects analyses again revealed no significant effects of system justification and disparity condition. That is—high system justifiers and low system justifiers did not differ in their support for equity-based policy. Additionally, across disparity condition, equity-based policy support did not change.

Examining the need condition, simple slope analyses indicated a significant negative association of support for policy and system justification $\beta = - .257$, $t(581) = -2.33$, $p = .02$ in the moderate disparity condition such that low system justifiers were more likely to support need based policies than high system justifiers. Additionally there was a trending positive association
of support for policy and system justification $\beta = .125$, $t(581) = 1.354$, $p = .176$ in the high disparity condition. Further, across disparity conditions, low system justifiers (at the -1 SD level) did not significantly differ in their support for need-based policy. However, high system justifiers supported need-based policy significantly more in the high disparity condition than in the moderate disparity condition, $\beta = -0.318$, $t(581) = -3.083$, $p = .002$. These results imply that while those low in system justification attitudes remain stable in their support for need-based policy regardless of the disparity context, those who are high in system justification are malleable and are more likely to support need-based policy when awareness of disparity is high than when disparity is ambiguous or moderate.

Results of the three-way analysis predicting policy support suggest: 1) that support for equality and equity-based policy is largely stable across level of awareness of disparity and level of system justification attitudes, 2) that when considering need-based policy, low system justifiers attitudes are also stable in their support, regardless of level of awareness of disparity, and 3) comparatively, high system justifiers are significantly positively influenced by awareness of disparity when considering their support for need-based policy-- the higher the disparity, the more likely they are to support need-based policy.

Simple Effects of Resource Allocation Policy. The simple effects analysis yielded few significant results. Among low system justifiers in the moderate disparity condition, there was no significant difference between equality and equity, or need and equity. However, there was a marginal significance in which need was rated higher in support than equality, $p = .064$. Among high system justifiers in the moderate disparity condition, there was no significant difference in support between any of the allocation strategies. Within the high disparity condition, there was no significant difference in support for allocation strategy among low system justifiers. However,
among high system justifiers, need was rated higher in support than equality, \(p < .001 \). There was no significant difference between need and equity nor equity and equality among high system justifiers in the high disparity condition.

Predicting Behavioral Intentions

I conducted linear regression analyses predicting policy effectiveness as well as behavioral intentions. None of the 3-way interactions were significant.

Discussion

Overall, the results indicate that of the three allocation strategies, support for and perceived fairness of need-based allocation is the least consistent across levels of disparity and individual system justification. Additionally, between high and low system justifiers, it is the higher system justifiers who are more malleable when considering need-based policy. That is, those high in defense of the status quo are less likely to support need-based policies when salient disparity in society directly related to the policy is moderate than when made aware of high disparity.

The findings did not conform exactly to my hypothesized results. First, there was not a main effect of system justification across all three dependent variables. Of the three dependent variables, only perception of fairness showed a main effect of system justification, though not in the exact predicted manner. High system justifiers rated equity as fairer than low system justifiers as predicted, but there was no difference within the need and equality conditions. Past research suggests that both fairness and support of policy are closely related (e.g., Banducci, & Karp, 1999). However, while largely similar, there was one fairly important difference between support and fairness: high system justifiers in the high disparity condition rated need-based policy higher than equity-based policy in support but rated those same policies almost
identically in fairness. This suggests that while low system justifiers rate their support for policy very closely to their perception of the policy’s fairness, fairness may not be the only criteria of support for high system justifiers.

The results of the full 3-way analysis suggest that need-based policy is most variable in response to context and individual differences. This suggests that the opinions of high system justifiers in relation to need-based policy is moveable, and that movement is dependent on the degree of disparity in society of which they are aware. The implication of this understanding of the data is that highlighting societal disparity is one way to garner support among high system justifiers when proposing a need-based policy. As related to policy, it can be surmised that communicating a need-based policy in terms that emphasizes a large existing disparity that needs to be addressed will most effectively persuade high system justifiers to support said policy. Conversely, those low in system justification remain steadfast in their support for need-based policy regardless of their awareness of disparity in the relevant domain. Thus, the results of this study provide some evidence on how to raise the support and perception of fairness ratings of high system justifiers, but little evidence on methods in which to change the support and fairness ratings of low system justifiers.

Interestingly, while system justification, disparity, and allocation method interacted to predict policy support, they did not predict follow-up actions in support of the policy (i.e., support with a petition or protest). It may be that while people acknowledge unfairness and conceptually support change, it may take stronger contextual influences for them to actively involve themselves. Such motivating contexts may include a sense of injustice or a close association with the community affected by the perceived disparity (Mannarini, Roccato, Fedi, & Rovere, 2009).
Many of the results from the present study were trending, though not significant. Given that we did not reach a full sample size of 600 it could be that the sample was simply underpowered to show the full effect of the manipulations. To test this, I conducted a post hoc power analysis using G*Power. Having calculated the full models’ effect size of both the effect on policy support ($\eta^2 = .039$) and fairness perceptions ($\eta^2 = .046$), I found that the experiment was sufficiently powered at 0.98 and 0.99, respectively. Therefore, while many of the results were trending or marginal, I can rule out lack of power as an underlying cause for less significant results.

It is important to note that this experiment is a between-subjects design. As discussed previously, this is intentional and meant to foster ecological validity. Generally, when policies are put forth, very rarely are citizens offered a choice other than the binary of support or oppose. Take, for instance, ballot propositions—citizens vote either “Yes” or “No” on policies ranging from labor laws to proposed building projects within their community. However, there is potential value in designing an experiment in which participants choose between policies based on equity, equality, or need allocation strategies. A within-subjects design would allow for the direct comparison of policy preferences. In the context of this experiment, I cannot directly say that need-based policy is preferred overall. However, if a within-subjects experiment were to show similar or identical results, I could definitively say that participants preferred need-based policy over equity- and equality—based policy. While the pilot results do conform to this paradigm, they do not show the same pattern of results in support for policy across resource allocation strategies in the education domain, and do not measure perceived disparity in which we could break down the results with a similar interaction analysis.
To my knowledge, this is one of the first investigations to explicitly disentangle differential support for equity, equality and need with an experimental and causal design. In doing so, this experiment assesses the impact on individual system justification beliefs and awareness of level of disparity on support for and perceived fairness of different allocation strategies.

This study lays a foundation of evidence on which we can continue to build. With significant results in a hypothetical scenario, one possibility is to conduct a study that includes policy solutions proposed in a real political scenario in order to confirm that our findings are generalizable to the current United States political landscape. Investigating several specific domains outside of education is also a fruitful direction to take this research. As found in the pilot study, participants’ support for each of the distributive justice principles varied by domain. It would be important to understand how the social norms of domains such as healthcare, hiring, the legal system, immigration, and others may shift how individuals perceive distributive justice.

There are also a host of important and relevant variables that can be addressed in follow-up studies to understand the underlying psychological mechanisms that cause an individual to prefer one resource allocation solution over the others. The personal cost of a policy—that is, the actual implications of a policy on an individual—could be investigated to determine the egocentric influences on support or opposition to a policy. Research on distributive justice has focused whether the allocator has a personal stake in the outcome (van der Toorn, Berkics, & Jost, 2010). Specifically, van der Toorn and colleagues (2010) provide evidence that participants believe scenarios are fairer if they stand to benefit from them personally. But what about if the outcome requires loss or sacrifice of resources or power? By extending the study design to also include a manipulation of the personal cost to the individual (e.g., higher taxes) inherent in each
policy, we could examine how this factor may change our pattern of results. Another variable to be investigated could be the perception of likely policy success. The level of confidence that a policy may be a truly effective solution to a problem of inequality may influence an individual’s support for that policy. By systematically considering the relative and collective influence of these forces, it is possible to ascertain which policy strategies are most likely to appeal to most people and how to frame policies to engender maximal public support.
APPENDIX A

PERCIEVED DISPARITY MANIPULATION TEXT
Vignette Text:

Country Z is a wealthy country. However, thousands of its children attend schools that are subpar. The discrepancies can be seen in high school graduation rates. While some districts have a graduation rate of 90%, other districts have a graduation rate of just under 50%. (80% for moderate disparity) Education experts in Country Z believe disparities in graduation rates to result from differences in per-student funding between districts and varying levels of student-to-teacher ratios, problems which can be tied to the number and caliber of schools.
REFERENCE LIST

VITA

David Igliozzi was born and raised in Providence, Rhode Island. Before attending Loyola University Chicago, he attended the Tufts University where he earned a Bachelor of Science in Engineering Psychology in 2015.

While at Loyola, Mr. Igliozzi has served on several committees, including the Enhancing Diversity in Graduate Education (EDGE) as assistant co-chair, the Committee on Diversity Affairs (CODA) as co-chair, and the Loyola Graduate Worker’s Union as co-chair.

Currently, Mr. Igliozzi is a Graduate Assistant at Loyola University Chicago. He lives in Chicago, Illinois with his partner.